
Backward Private DSSE: Alternative Formulations of Information

Leakage and Efficient Constructions

Sanjit Chatterjee, Shravan Kumar Parshuram Puria, and Akash Shah

Department of Computer Science and Automation,
Indian Institute of Science, Bangalore, India.
E-mail: {sanjit, shravan, shaha}@iisc.ac.in

Abstract

Dynamic Searchable Symmetric Encryption (DSSE), apart from providing support for search oper-
ation, allows a client to perform update operations on outsourced database efficiently. Two security
properties, viz., forward privacy and backward privacy are desirable from a DSSE scheme. The former
captures that the newly updated entries cannot be related to previous search queries and the latter en-
sures that search queries should not leak matching entries after they have been deleted. These security
properties are formalized in terms of the information leakage that can be incurred by the respective con-
structions. Existing backward private constructions either have a non-optimal communication overhead
or they make use of heavy cryptographic primitives. Our main contribution consists of three efficient
backward private schemes that aim to achieve practical efficiency by using light weight symmetric cryp-
tographic components only. In the process, we also revisit the existing definitions of information leakage
for backward privacy [Bost et al. CCS’17] and propose alternative formulations. Our first construction
ΠBP-prime achieves a stronger notion of backward privacy whereas our next two constructions ΠBP and
ΠWBP achieve optimal communication complexity at the cost of some additional leakage. The prototype
implementations of our schemes depict the practicability of the proposed constructions and indicate that
the cost of achieving backward privacy over forward privacy is substantially small.

1 Introduction

Due to a variety of crucial benefits, enterprises outsource their data to cloud resident storage. If the out-
sourced data is stored as plaintext on remote servers then it may be intercepted by adversaries. Hence,
data is stored in encrypted form on remote servers. However, if the client has to decrypt the data in order
to get results for a search query, it defeats the purpose of outsourcing data. Generic tools such as fully
homomorphic encryption [19] or oblivious RAM [22, 39] can be considered to construct protocols that leak
almost no information to the server. But as of now, these tools are costly for large databases and hence, are
impractical.

A practical solution to this problem is Searchable Symmetric Encryption (SSE) [36, 14, 13, 11] that trades
efficiency for security. Dynamic Searchable Symmetric Encryption (DSSE) [27, 10, 33] adds a vital feature
to static SSE schemes, i.e., the ability for the client to efficiently perform update operations remotely on
the outsourced database with the guarantee that minimal information is leaked to the server in the process.
These constructions of (D)SSE that aim to achieve an acceptable balance between security and performance,
explicitly describe the leakage profile and formally prove that the information leaked from the scheme is
bounded by the leakage profile.

Simultaneously with the works on constructing SSE schemes with improved efficiency, security and ex-
pressiveness of queries [11, 26, 16], there is another line of work that shows the real-world consequences of
these leakages [9, 43, 2]. Zhang et al. [43] through file injection attack showed that it is possible to reveal the
contents of past search queries of DSSE schemes with a few injection of documents and Abdelraheem et al.
[2] showed that the consequences of this attack is even more devastating in the case of relational databases.

1

Because of the file injection attack, forward privacy has garnered significant interest in the research
community. The notion of forward privacy was introduced in [38], while it was first formalized in [5]. In
hindsight, the first DSSE scheme that satisfied the notion of forward privacy was proposed in 2005 [12].
Along with forward privacy, Stefanov et al. [38] asserted that backward privacy should also be satisfied by
a DSSE scheme. Informally, backward privacy states that search queries should not leak matching entries
after they have been deleted. The notion of backward privacy was first formalized by Bost at el. [7].

1.1 Related Work

Kamara et al. [27] proposed the first sublinear (in the size of the database) DSSE scheme. Forward private
scheme Σoφoζ [5] achieves optimal communication complexity (linear in the size of result set) but it makes
use of asymmetric cryptographic primitives and does not support parallel processing. A GGM-PRF [21]
based forward private DSSE scheme Diana was proposed in [7]. Diana makes use of symmetric cryptographic
primitives only and supports parallel processing but doesn’t have optimal computational and communication
complexity. Asymptotically optimal forward private DSSE schemes that make use of symmetric cryptographic
primitives only and support parallelism were proposed in [29, 15, 37]. Further, FASTIO scheme [37] ensures
a reasonable locality [10], a measure of I/O efficiency.

The notion of backward privacy was first formally described in [7], through three different security
definitions, ordered from most to least secure called respectively BPIP, BPUP and WBP. Bost et al. [7]
proposed a generic way to achieve backward privacy from any forward private DSSE scheme. However, the
communication complexity of the derived backward private scheme isn’t optimal. In [7], a backward private
scheme Dianadel based on constrained pseudo-random function (CPRF) [8, 4, 28] and a backward private Janus
framework based on a puncturable encryption scheme with a particular incremental update property [25],
were also proposed. The communication and computational complexity of search and update protocols of
Dianadel are not optimal. The search protocol in Janus is single-roundtrip and has an optimal communication
complexity. However, the computational complexity of search protocol is O(nw · dw), where nw and dw
respectively denote the number of documents matching keyword w and delete operations performed on
keyword w. As acknowledged in [7], with just a few hundred deletions per keyword, Janus will not be
practical because of both computational and storage overhead reasons. Further, [7] has imposed the following
restriction on Dianadel and Janus: reinsertion of document-keyword pairs that were previously deleted is not
allowed. We refer to this constraint as reinsertion restriction in the rest of our paper.

While a previous version of this work was under submission in a conference, there appeared two works
on backward private DSSE [20, 40]. Chamani et al. [20] proposed a practically efficient BPUP-secure scheme
called Mitra. They also proposed two other backward private schemes Orion and Horus that achieve quasi-
optimal (linear in nw upto a logarithmic factor) search computation complexity but make use of Path ORAM
[39] and as a result are impractical for large databases [32]. Sun et al. [40] proposed a symmetric puncturable
encryption (SPE) scheme and instantiated the Janus framework with the proposed SPE scheme. We provide a
comprehensive comparative analysis of the performance and security of these schemes vis à vis our proposed
schemes in Section 4.5.

1.2 Our Contributions

We start with revisiting the notion of information leakage in the context of backward privacy. In our
investigation, we identify that Weak Backward Privacy (WBP) notion proposed by Bost et al. [7] should only
be used to argue backward privacy in reinsertion restriction setting. We propose two alternative formulations
of information leakage, viz., BP-I and BP-II to capture the notion of backward privacy. BP-I is strong in the
sense that, for a search query on keyword w, it allows only the timestamp of the update queries on w and
the identifiers of the documents containing w to be leaked. On the other hand, BP-II relaxes the definition
for backward privacy by allowing some additional leakage.

Our main contribution consists of three backward private schemes ΠBP-prime, ΠBP and ΠWBP that are
BP-I, BP-II and WBP secure respectively. We start with a simple forward private scheme ΠFP, that serves as a
building block for our backward private schemes. The construction ΠBP-prime is similar to the approach of

2

applying the generic transformation to achieve backward privacy [7] from forward private scheme ΠFP. Due to
its use of only light weight symmetric components and low leakage level, ΠBP-prime can be a suitable candidate
for adoption in practice. However, one limitation of ΠBP-prime is that the communication complexity isn’t
optimal. We address this issue in our main construction ΠBP. ΠBP makes use of tags generated using a
pseudo random permutation (PRP) which ensures that only the tags corresponding to the set of documents
currently matching the keyword w are returned to client. Thus, ΠBP avoids unnecessary communication
overhead, while at the same time ensuring that any information violating the notion of backward privacy is
not leaked to the server. To the best of our knowledge, ΠBP is the first practical backward private scheme that
has optimal update and search communication complexity and uses symmetric cryptographic primitives only.
Further, ΠBP is easily parallelizable, provides reasonable locality and allows reinsertion of document-keyword
pair. With a simple modification in ΠBP, we construct a single roundtrip weak backward private scheme
ΠWBP that improves upon the concrete communication overhead in Search protocol by around 40%. All our
constructions are forward private as well. A comparison of our schemes with some prior and concurrent
works [7, 20, 40] is provided in Table 1.

Schemes
Computation Communication Backward

PrivacySearch Update Search Update # Rounds
Fides [7] O(o′w) O(1) O(o′w) O(1) 2 BPUP

Dianadel [7] O(aw) O(log(aw)) O(nw + dwlog(aw)) O(1) 2 WBP

Janus [7] O(nw · dw) O(1) O(nw) O(1) 1 WBP

Mitra [20] O(o′w) O(1) O(o′w) O(1) 2 BPUP

Orion [20] O(nwlog
2(N)) O(log2(N)) O(nwlog

2(N)) O(log2(N)) O(log(N)) BPIP

Horus [20] O(nwlog(dw)log(N)) O(log2(N)) O(nwlog(dw)log(N)) O(log2(N)) O(log(dw)) WBP

Janus++ [40] O(nw · d) O(d) O(nw) O(1) 1 WBP

ΠBP-prime (Our Work) O(o′w) O(1) O(o′w) O(1) 2 BP-I
ΠBP (Our Work) O(o′w) O(1) O(nw) O(1) 2 BP-II

ΠWBP (Our Work) O(o′w) O(1) O(nw) O(1) 1 WBP

All the constructions are also forward private. The client storage for all the constructions is O(mlog(n))
except Orion, where the corresponding complexity is O(1). Refer Section 2.4 for the notations used.

Generally, o′w < nw · dw, as the former term has an additive factor whereas the latter term has a
multiplicative factor.

Table 1: Comparison of backward schemes ΠBP-prime, ΠBP and ΠWBP with some prior and concurrent works.

ΠFP is the most efficient forward private scheme in literature. Our implementation results show that the
performance of ΠBP is comparable to ΠFP. For example, the time taken by the search protocol of ΠBP for a
search that returned 150,000 results is around 0.68 seconds as compared to 0.54 seconds in ΠFP.

We also introduce a desirable property for DSSE schemes called inverse backward privacy. This property
ensures that a search query should leak no information about the identifier of the document that had been
deleted and re-inserted later.

2 Notations and Definitions

The security parameter is denoted by λ. All procedures in our construction implicitly take λ as input.
By efficient, we mean probabilistic polynomial-time in λ. All the algorithms (including adversaries and
simulators) are assumed to be efficient unless otherwise specified. A function f : N → R is said to be a
negligible function iff for all c > 0, ∃ n0 ∈ N such that ∀n ≥ n0, f(n) < n−c. The function neg(λ) denotes

a negligible function in λ. For a finite set X, x
$←− X means that x is uniformly sampled from X and |X|

denotes the cardinality of set X. x ← y denotes that variable x is assigned the value of variable y and
operator ‖ denotes concatenation. For a data structure DS, |DS| denotes the memory space occupied by the
data structure in bits. addr(D) denotes the address in memory at which data structure instance D is stored.
⊥ denotes null value. For sets X1, . . . , Xn and Y , Func(X1 × · · · × Xn, Y) denotes the set of all functions

3

Realprf
A (λ)

1. K
$←− K

2. b← AF(K,.)

3. return b

Idealprf
A (λ)

1. f
$←− Func(I,O)

2. b← Af(.)

3. return b

Figure 1: PRF Security Definition

Realprp
A (λ)

1. K
$←− K

2. b← AF(K,.)

3. return b

Idealprp
A (λ)

1. f
$←− Perm(X)

2. b← Af(.)

3. return b

Figure 2: PRP Security Definition

from X1 × · · · ×Xn to Y . For set X, Perm(X) denotes the set of all permutations on X. For sets X1 and
X2, PermX1

(X2) denotes the set of all functions from X1 × X2 to X2, where for every x ∈ X1, we have a
permutation on X2.

We use pseudo random functions (PRF), pseudo random permutations (PRP) and RCPA secure symmetric
key encryption schemes in our constructions.

2.1 Pseudorandom Function

Pseudorandom Function (PRF) F is polynomial-time computable in λ and is indistinguishable from a truly
random function by any adversary A.

Definition 2.1. Let F ∈ Func(K × I,O) be an efficient, keyed function. For algorithms A, we define the

experiments Realprf
A (λ) and Idealprf

A (λ) as shown in Figure 1.

F is a pseudorandom function if for all probabilistic polynomial-time adversaries A, Advprf
F,A(λ)=∣∣Pr[Realprf

A (λ) = 1]− Pr[Idealprf
A (λ) = 1]

∣∣ ≤ neg(λ).

2.2 Pseudorandom Permutation

Pseudorandom permutation (PRP) F is polynomial-time computable and invertible in λ and is indistinguish-
able from a truly random permutation by any adversary A.

Definition 2.2. Let F ∈ PermK(X) be an efficient, keyed function. For algorithms A, we define the experi-
ments Realprp

A (λ) and Idealprp
A (λ) as shown in Figure 2.

F is a pseudorandom permutation if for all probabilistic polynomial-time adversaries A, Advprp
F,A(λ)=∣∣Pr[Realprp

A (λ) = 1]− Pr[Idealprp
A (λ) = 1]

∣∣ ≤ neg(λ).

2.3 Symmetric Key Encryption Scheme

A symmetric key encryption scheme E consists of three algorithms: Gen,Enc and Dec.

• Gen(): It outputs a key k.

• Enc(k,m): It takes as input the key k, and a message m ∈ M, where M is the message space, and
outputs a ciphertext e.

4

Initialize()

1. k← Gen()

2. b
$←− {0, 1}

Guess(b′)

1. if b′ = b then

2. return true

3. else

4. return false

Encrypt(m)

1. if b = 0

2. e = Enc(k,m)

3. else

4. e
$←− C

5. return e

Figure 3: Security Game: RCPAE

• Dec(k, e): It takes as input the key k and a ciphertext e and outputs a message m ∈M or ⊥.

Correctness: For all k← Gen() and for all messages m ∈M, it is required that Dec(k,Enc(k,m)) = m.

RCPA Security Notion of Symmetric Key Encryption Scheme The pseudorandom ciphertexts un-
der chosen plaintext attack (RCPA) security notion [10] for symmetric key encryption scheme E=(Gen,Enc,Dec)
is captured in Figure 3. Initialize() algorithm generates the key k using Gen algorithm of E and picks a random
challenge bit b. The adversary can then adaptively ask queries to Encrypt() oracle. The game returns true
if the adversary’s output b′ equals the challenge bit b. In Figure 3, C denotes the ciphertext space.

Definition 2.3. A symmetric key encryption scheme E = (Gen,Enc,Dec) is said to have pseudorandom
ciphertexts under chosen plaintext attack (RCPA) if no adversary A can win the game shown in Figure 3,
except with probability at most 1

2 + neg(λ). This probability is denoted by Pr[RCPAE = 1].

The advantage of A in RCPAE game is defined as follows: AdvRCPA
E,A (λ)=2 · Pr[RCPAE = 1]− 1.

2.4 Dynamic Searchable Symmetric Encryption (DSSE)

Our system consists of two parties: the client C (data owner) and the server S. C, who owns the database
DB, encrypts the database and outsources it to S. The encrypted copy of the database created ensures
that S responds to C’s queries (search and update) in an efficient manner with the guarantee that minimal
information apart from the intended output of the query operation is leaked to the server.

We primarily follow the formalization of Bost et al. [7] with certain additions. A keyword is denoted by
w and a document is addressed by its document identifier ind. The database DB can be represented as: DB
= {(indi,Wi) : 1 ≤ i ≤ n}, where n denotes the number of documents in the database, indi ∈ {0, 1}` are
distinct document indices and Wi ⊆ {0, 1}∗ is a set of keywords matching document indi, represented by
binary strings of arbitrary length. Additionally, we consider the following notations:

W = ∪ni=1Wi, the set of keywords,

m = |W| ,# keywords,

N =

n∑
i=1

|Wi| ,# document-keyword pair,

DB(w) = {indi : w ∈Wi}, the set of documents containing w,

nw = |DB(w)| , # documents containing w

aw, # add operations performed on w

dw, # del operations performed on w

5

ow, # updates performed on w

n′w, # documents containing w in previous1 search operation

a′w, # add operations performed on w after the previous search

d′w, # del operations performed on w after the previous search

o′w = n′w + a′w + d′w.

A DSSE scheme Π comprises of the following [7]:

• Setup(DB) is a probabilistic algorithm that takes as input the initial database DB. It outputs (stC,EDB),
where the client’s state stC is given to C and the encrypted database EDB is given to S. Setup algorithm
is executed by C.

• Search(q, stC; EDB)=(SearchC(q, stC),SearchS(EDB)) is a protocol (possibly probabilistic) between C and
S. The input of C is the search query q and client’s state stC. The input of S is the encrypted database
EDB. The output to the client is the updated client’s state stC

′ and the set Res comprising of indices
matching the search query q. The output to the server is the updated encrypted database EDB′.

• Update(q, stC; EDB)= (UpdateC(q, stC),UpdateS(EDB)) is a protocol (possibly probabilistic) between C
and S. The input of C is the query q=(op, in) comprising of update operation op ∈ {add, del} and the
document-keyword pairs (w,ind) denoted by in, and client’s state stC. The input of S is the encrypted
database EDB. The output to the client is the updated client’s state stC

′. The output to the server is
the updated encrypted database EDB′.

In this work, we consider the case of single keyword search, so, q=w and Res=DB(w) in Search protocol. For
simplicity, we consider in=(ind, w), i.e., a single document-keyword pair in Update protocol. Bulk-Updates
can be supported by calling the Update protocol repeatedly. Similar to [11], for a given query q, we consider
the output of Search protocol to be the set of document identifiers satisfying q. This allows us to decouple
the storage of documents from the storage of data structures used to realize the search operation, which
is the focus of this work. SSE schemes are of two types: response-revealing and response-hiding [26]. The
former reveals the query response in plaintext whereas the latter does not. We use this categorization in our
paper.

Security We consider S to be honest-but-curious. The security definition follows the real/ideal simulation
paradigm [14, 11]. The definition is parameterized by a leakage profile L which captures all the information
that the adversary learns about the database and queries through its participation in the protocols. Hence,
the view of the adversary in the real world can be simulated by L.

L = {LSetup, LSearch, LUpdate}, where LSetup, LSearch and LUpdate correspond to the information leaked in
the Setup, Search and Update protocols respectively to the server.

Definition 2.4. Let Π = (Setup, Search, Update) be a DSSE scheme and let L = {LSetup, LSearch, LUpdate}
be a stateful algorithm. For algorithms A and Sim, we define the experiments RealΠA(λ) and IdealΠA,Sim(λ)
as follows:

RealΠA(λ) A(1λ) chooses DB. The experiment then runs (stC,EDB) ← Setup(DB) and gives EDB to A.
Then A makes polynomial number of adaptive queries. For each query q, if q is a search query (resp. update
query), the game runs (Res, stC,EDB) ← Search(q, stC;EDB) (resp. (stC,EDB) ← Update(q, stC;EDB)) and
gives the generated transcript to A. Eventually A returns a bit that the game uses as its own output.

IdealΠA,Sim(λ) The game initializes a counter i=0 and an empty list q. A(1λ) chooses DB. The experiment
then runs EDB ← Sim(LSetup(DB)) and gives EDB to A. Then A makes polynomial number of adaptive
queries. For each query q, the game records this as q[i], increments i and if q is a search query (resp. update

1Throughout the paper by previous search on w, we mean the last search operation on w before the current search on w.

6

DSSECorΠ
A(λ)

1. flag = false

2. (DB, stA)← A(1λ)

3. (stC0,EDB0)← Setup(DB)

4. for 1 ≤ i ≤ p(λ) do

5. (qi, stA)← A(stA,EDB0,Ti−1)

6. if qi is a search query

7. Resi,EDBi, stCi ← Search(qi, stCi−1; EDBi−1)

8. τi ← Transcript[Search(qi, stCi−1; EDBi−1)]

9. if Resi 6= DB(wi) //qi = wi

10. flag = true

11. else

12. EDBi, stCi ← Update(qi, stCi−1; EDBi−1)

13. τi ← Transcript[Update(qi, stCi−1; EDBi−1)]

14. return flag

Figure 4: DSSE Correctness

query), the game gives transcript generated by Sim(LSearch(DB,q)) (resp. Sim(LUpdate(DB,q))). Eventually
A returns a bit that the game uses as its own output.

We say that Π is L-semantically secure against adaptive attacks if for all adversaries A, there exists an
algorithm Sim such that

∣∣Pr[RealΠA(λ) = 1]− Pr[IdealΠA,Sim(λ) = 1]
∣∣ ≤ neg(λ).

Common Leakage We follow some of the notations of common leakages from [5, 7]. The leakage profile
L keeps as state the query list Q, i.e., the list of all queries issued so far along with their timestamp. The
entries in Q are (u,w) for a search query on w, or (u, op, (ind, w)) for an update query (op, (ind, w)), where
u denotes the timestamp of the query. Corresponding to the search queries, the search pattern sp(w) can be
defined as sp(w) = { u : (u,w) ∈ Q }.

We also use the notation Hist(w) that denotes the list of all the modifications made to DB(w) over
the time. It consists of DB0(w), the set of document indices matching w at setup, and a list UpHist(w),
comprising of the updates of documents matching w, called the update history. For example, consider two
documents 1 and 2 matching w. Suppose, the update queries are (add, (1, w)), (add, (2, w)) and (del, (1, w))
at timestamp 3, 12 and 20 respectively, then UpHist(w) = [(3, add, 1), (12, add, 2), (20, del, 1)].

Updates(w) denotes the set of timestamps of updates on w. Formally,

Updates(w) = {u|(u, add, (ind, w)) ∈ Q or (u, del, (ind, w)) ∈ Q}.

Updatesop(w) is exactly like Updates(w) except along with the timestamp it also stores op corresponding to
the update query.

Correctness We say that a DSSE scheme is correct if the Search protocol returns the correct results for the
keyword being searched (i.e., DB(w)), except with negligible probability. We follow a similar formalization
to [10].

In Figure 4, the adversary A makes p(λ) many queries, for some polynomial p. Transcript[Protocol] means
the view of server in Protocol. T0=∅ and Ti={τj : 1 ≤ j ≤ i}, 1 ≤ i ≤ p(λ). Here, τj denotes the transcript
of the jth query.

Definition 2.5. Let Π = (Setup, Search, Update) be a DSSE scheme. For algorithm A we define the
experiment DSSECorΠ

A(λ) as shown in Figure 4.

We say that Π is correct if for all adversaries A, Pr[DSSECorΠ
A(λ) = 1] ≤ neg(λ).

3 Security Notions in DSSE

In this section, we perform a critical analysis of the existing notions of information leakage in backward
private DSSE followed by some alternative formulations. The question of what is the right definition of

7

security is a vexed one [30]. Even for a widely used cryptographic primitive like digital signature, it has
been argued that the accepted standard definition of security [24, 23] does not take into account various
issues that may crop up depending upon the application scenarios [31, 35, 42]. It is but natural that for a
relatively new crypto/security protocol like DSSE, one needs to look at the definitional question from various
perspectives. Apart from giving better insight about the real world security assurance of the protocol, this
exercise also helps to choose among alternative definitions to achieve some sort of optimal balance between
security and efficiency for the task at hand.

Several works in the context of searchable encryption [10, 11, 13, 14, 26, 27], argue security of SSE
schemes by formulating a leakage profile L and proving that the leakage incurred in the proposed scheme is
bounded by L. However, works in the context of DSSE [5, 7] present the formulated information leakages
corresponding to forward/backward privacy notion in the form of security definitions. Here, we follow the
latter approach.

Bost at el. [7] made a seminal contribution in the area of DSSE by formalizing the notion of backward
privacy through three different security definitions viz., BPIP, BPUP and WBP, ordered from most to least
secure based on their respective information leakages. Naturally, like any other formalization of security this
requires further investigation. In that vein, we first argue why weak backward privacy (WBP) cannot serve
as a general definition for backward privacy and should be used to argue backward privacy in re-insertion
restriction setting only. Second, we introduce additional definitions (Definition 3.5 and Definition 3.6) for
backward privacy in terms of information leakage. Finally, we introduce a desirable property for DSSE
scheme which we call inverse backward privacy.

For simplicity we will assume that, DB is initially empty. Thus, the Setup algorithm leaks no information.
If DB is not initially empty, typically, LSetup = N , where N denotes the number of document-keyword pairs.

3.1 Forward Privacy

We recall the strongest notion of forward privacy discussed in [7]. Informally, a DSSE scheme is forward
private if the Update protocol leaks no information about the updated keywords. Definition 3.1 captures
that an update operation doesn’t leak more than the operation op = {add, del} of the update query q.

Definition 3.1. (FP-I). An L={LSetup,LSearch,LUpdate}-semantically secure against adaptive attacks DSSE
scheme Π is FP-I iff LSetup,LSearch,LUpdate can be written as:

LSetup() = ∅. LSearch(w) = {sp(w),Hist(w)}.
LUpdate(op, (ind, w)) = op.

3.2 Backward Privacy

The notion of backward privacy was informally introduced in [38] as “queries cannot be executed over the
deleted documents”. The follow up work [7] stated that a DSSE scheme is backward private if, whenever a
document-keyword pair (ind, w) is added to the database and later deleted, subsequent searches on w should
not reveal ind if it cannot be inferred from the search and access pattern. Based on the above notion, we
now elaborate our interpretation of backward privacy. Let qprev be the previous search query on w and let
ind /∈ DB(w)′ (here, DB(w)′ denotes the set of documents matching w in the previous search on w). If the
last update operation on (ind, w) before the next search query qcur is del operation, then ind should not
be revealed to S as it cannot be inferred from the results of current and previous search queries. Let the
set of such inds be denoted by IBP. For example, let DB(w)′={1, 2} for search query qprev at timestamp 5.
Let the update operations on w after query qprev and before the next search query qcur be (6, add, (3, w)),
(12, del, (3, w)), then identifier 3 should not be revealed to S.

Backward privacy was formalized in [7], through three different security definitions, ordered from most
to least secure called respectively BPIP, BPUP and WBP. Informally, these definitions are described below.

• Backward Privacy with insertion pattern (BPIP): During a search on some keyword w, BPIP schemes

8

leak the documents currently matching w, when they were inserted, and the total number of updates
on w.

• Backward Privacy with update pattern (BPUP): During a search on w, BPUP schemes leak the documents
currently matching w, when they were inserted, and when all the updates on w happened (but not
their contents).

• Weak backward privacy (WBP): During a search on w, WBP schemes leak the documents currently
matching w, when they were inserted, when all the updates on w happened, and which deletion update
canceled which insertion update.

Let us demonstrate the differences between these notions with an example. Consider the following entries
in query list Q1 corresponding to w: (1, add, (ind1, w)), (4, add, (ind2, w)), (5, del, (ind1, w)), (12, add, (ind3, w)).
Let us consider the leakage for each definition after a search query on w at timestamp 15. The first notion
reveals that ind2 and ind3 match keyword w and that this entries were added at time 4 and 12 respectively. It
also reveals that there were a total of 4 updates for w. The second notion, additionally reveals that updates
on w happened at time 1, 4, 5 and 12. Finally, the third definition also reveals that the index that was added
for w at time 1 was deleted at time 5.

Let us recall the additional leakage functions from [7, 6] apart from the leakage functions described in
Section 2.4, required to formally capture the notions of backward privacy mentioned above.

For a keyword w, TimeDB(w) is the list of all documents matching w, excluding the deleted ones together
with the timestamp of when they were inserted in the database. Formally, TimeDB(w) can be constructed
from the query list Q as follows:

TimeDB(w) = {(u, ind)|(u, add, (w, ind)) ∈ Q and

∀u′ > u, (u′, del, (w, ind)) /∈ Q}. (1)

The deletion history DelHist(w) of w is the list of timestamps for all deletion operations, together with the
timestamp of the inserted entry it removes. Formally, DelHist(w) is constructed as:

DelHist(w) = {(uadd, udel)|∃ind s.t. (uadd, add, (w, ind)) ∈ Q and

(udel, del, (w, ind)) ∈ Q}. (2)

With these tools, we can now formally define these three notions of backward privacy formally.

Definition 3.2. (BPIP). An L={LSetup,LSearch, LUpdate}-semantically secure against adaptive attacks DSSE
scheme Π is BPIP iff LSetup,LSearch,LUpdate can be written as:

LSetup() = ∅. LUpdate(op, (ind, w)) = {op}.
LSearch(w) = {TimeDB(w), ow}.

Definition 3.3. (BPUP). An L={LSetup,LSearch, LUpdate}-semantically secure against adaptive attacks DSSE
scheme Π is BPUP iff LSetup,LSearch,LUpdate can be written as:

LSetup() = ∅. LUpdate(op, (ind, w)) = {op, w}.
LSearch(w) = {TimeDB(w),Updates(w)}.

Definition 3.4. (WBP). An L={LSetup,LSearch, LUpdate}-semantically secure against adaptive attacks DSSE
scheme Π is WBP iff LSetup,LSearch,LUpdate can be written as:

LSetup() = ∅. LUpdate(op, (ind, w)) = {op, w}.
LSearch(w) = {TimeDB(w),DelHist(w)}.

9

The above definitions indicate that the notion of backward privacy is more involved than that of forward
privacy. Forward privacy can be formalized by ensuring that the update query doesn’t leak the keyword
corresponding to which the update has been made. Whereas it is more subtle in the case of backward
privacy. In formulating the leakage profile for backward privacy, one must ensure that no leakage is incurred
w.r.t. document identifiers in IBP described above. One approach is to formulate a strong leakage profile for
the security notion in hand that allows very limited information leakage to be incurred by the constructions
satisfying it. This approach was followed in formulating leakage profiles in definitions BPIP and BPUP. A
possible shortcoming of this approach is that there could be candidate constructions that don’t satisfy these
strong definitions but may still satisfy the intuitive notion of backward privacy. The other extreme could be
to allow ‘as much information as one can think of’ to be leaked that can be allowed by the security notion
in hand. This seems to be the approach followed in WBP security notion. However, in this approach one
must be careful not to violate the basic security notion of the corresponding task while allowing for more
information leakage. We revisit the notion of WBP from this perspective.

Remark LSearch in BPIP, BPUP and WBP should be augmented with leakage function sp(w). Moreover,
LSearch in WBP should also be augmented with leakage function Updates(w). The rationale behind the same
is described in Section 3.4.

3.3 Revisiting Weak Backward Privacy

In this section, we scrutinize the notion of weak backward privacy. Let us consider the following entries
in query list Q1 corresponding to w: (1, add, (ind, w)), (3, w), (5, del, (ind, w)), (6, w), (12, add, (ind, w)),
(14, del, (ind, w)), (18, w). Let us denote the search queries on w at timestamps 3, 6 and 18 by q1, q2 and q3

respectively.

Leakage of the search query q1:

TimeDB(w) = {(1, ind)}. DelHist(w) = ∅.

Leakage of the search query q2:

TimeDB(w) = ∅. DelHist(w) = {(1, 5)}.

Note that, DelHist(w) leaks that the add operation at timestamp 1 is canceled by the del operation at
timestamp 5. Through the content of DB(w) after queries q1 and q2 the adversary can infer that the del
operation at timestamp 5 corresponds to document ind. Therefore, it adheres to the notion of backward
privacy described at the beginning of this section.

Now, let us consider the search query q3. After the search query q2, (ind, w) was added at timestamp
12 and later deleted at timestamp 14. Through the same intuitive notion of backward privacy, based on
the state of DB(w) after queries q2 and q3, the adversary should not infer which document does the update
queries at timestamp 12 and 14 correspond to. However, the leakage of the search query q3 is:

TimeDB(w) = ∅. DelHist(w) = {(1, 5), (1, 14), (12, 5), (12, 14)}.

Hence, through the leakage profile the adversary can infer that updates at timestamp 12 and 14 correspond to
document ind as it has already inferred which document the update queries at timestamp 1 and 5 correspond
to. Clearly, this goes against the intuitive notion of backward privacy.

The following restriction is imposed on the constructions Dianadel and Janus that are proven to be weak
backward private in [7]: ‘reinsertion of a document-keyword pair is not allowed after the deletion of the
corresponding document-keyword pair’. The reinsertion restriction allows one to avoid scenarios such as
above that violate the intuitive notion of backward privacy. Hence, WBP can be considered to argue backward
privacy in reinsertion restriction setting only. However, WBP-constructions proposed in subsequent works
[20, 40] do not explicitly mention that reinsertion of document-keyword pair is not allowed. Therefore, in
order to avoid any ambiguity, we feel it should be clarified that WBP is applicable in such restricted scenarios
only.

10

Remark The case of reinsertion of document-keyword pair, may not be a concern in certain use-cases of
SSE schemes where a new document identifier can be assigned to the updated document, thereby, ensuring
that the newly inserted document-keyword pairs cannot be related to older ones. But this trick may not
always be applicable especially when the contents of file can change dynamically over time. Here, one
needs to handle reinsertion of keyword in existing documents, i.e., the document identifier can’t be changed.
Therefore, in such scenarios one needs to support reinsertion of document-keyword pairs. As an example,
consider the case of a hospital database where the patients’ records are documents and the disease they are
suspected to suffer from are keywords. One cannot rule out a scenario in which based on newer symptoms
a patient is re-suspected to suffer from a disease, say malignant brain tumor, which she had been ruled out
to suffer from earlier.

3.4 Suggested Modifications

Here, we point out subtle issues in Definitions 3.2, 3.3 and 3.4 and suggest modifications to address them.
We first argue that sp(w) should be a part of LSearch(w) in definitions of BPIP, BPUP and WBP [7, Definition
4.2]. The constructions satisfying the respective definitions leak sp(w) in Search protocol. This implies that
sp(w) can be derived from the other leakage functions in the respective definitions. Now, consider the corner
case where no updates corresponding to w has occurred so far and two search queries on w are executed at
timestamps 5 and 8 respectively. For search query at timestamp 8, sp(w)={5}. However, the state of other
leakage functions at timestamp 8 are: TimeDB(w)=∅, Updates(w)=∅ and DelHist(w)=∅. As can be observed,
sp(w) cannot be derived from other leakage functions. Hence, sp(w) should be included in LSearch(w) of BPIP,
BPUP and WBP.

Next. we argue that LSearch in WBP should also be augmented with leakage function Updates(w). Recall
that the informal notion of WBP in [7] states that a search query on w should at most leak the documents
currently matching w, when they were inserted, when all the updates on w happened and the total number
of updates on w. While formalizing the leakage profile of WBP [7, Definition 4.2], the leakage in Search
protocol is described as: LSearch(w) = (TimeDB(w),DelHist(w)). Note that, Updates(w) isn’t explicitly a
part of LSearch(w). This implies that, given TimeDB(w) and DelHist(w) one can construct Updates(w).
Now, consider the following entries in query list Q1 corresponding to w: (1, add, (1, w)), (2, del, (2, w)),
(4, add, (3, w)), (6, del, (1, w)), (8, w). Let us denote the search query on w at timestamps 8 by q1.

Leakage functions at search query q1:

TimeDB(w) = {(4, 3)}. DelHist(w) = {(1, 6)}.
Updates(w) = {1, 2, 4, 6}.

Note that, TimeDB(w) and DelHist(w) collectively do not capture any information about the update operation
at timestamp 2. As a result, Updates(w) cannot be constructed given the leakage functions TimeDB(w) and
DelHist(w). Hence, Updates(w) should be a part of LSearch(w) of WBP. Further, the construction Janus also
leaks Updates(w) in Search protocol. Hence, Updates(w) should be included in the leakage profile of Janus
construction.

Thus, the search leakage in the respective security definitions become:

LBPIP,Search : {sp(w),TimeDB(w), ow}.
LBPUP,Search : {sp(w),TimeDB(w),Updates(w)}.
LWBP,Search : {sp(w),TimeDB(w),Updates(w),DelHist(w)}.

3.5 Alternative Formulations of Leakage

We propose two alternative formulations of information leakage in the context of backward privacy (Definition
3.5 and 3.6). As mentioned earlier, similar to [11], for a given query q, we consider the output of Search
protocol to be the set of document identifiers satisfying q. This allows us to decouple the storage of documents
from the storage of data structures used to realize the search operation in all our constructions and provide
security definitions accordingly.

11

Definition 3.5, i.e., BP-I captures that an update query should leak nothing and a search query should
only reveal when the updates on w happened apart from the identifiers of the documents currently matching
w. BP-I is similar to the definition of Backward privacy with update pattern (BPUP) in [7] except BP-I
doesn’t allow leakage of TimeDB(w). BP-I tightly captures the leakage profile of constructions Fides, Mitra2

and ΠBP-prime. This exercise of tightly capturing the leakage avoids confusion regarding the immunity of
constructions against attacks which result from leakages that are indeed not incurred by them, TimeDB(w)
in this case.

Definition 3.5. (BP-I) An L={LSetup,LSearch,LUpdate}-semantically secure against adaptive attacks DSSE
scheme Π is BP-I iff LSetup,LSearch,LUpdate can be written as:

LSetup() = ∅. LUpdate(op, (ind, w)) = ∅.
LSearch(w) = {sp(w),Updates(w),DB(w)}.

Constructing backward private DSSE schemes with optimal communication complexity is an interesting
question to explore. To achieve this goal it seems necessary for S to be able to identify which insertion entry
is canceled by a particular delete entry. However, the stronger definitions BPIP, BPUP and BP-I do not allow
such information to be leaked to S. Therefore, like WBP, one needs to craft a definition that allows some
non-trivial relation among the update queries to be leaked. But unlike WBP it should be able to capture the
notion of backward privacy in the general setting. We observe that there can be several alternatives to relax
the formal notion of backward privacy. Next, we describe one such candidate definition, i.e., BP-II. Later,
we show a natural construction (see Section 4.3), whose leakage profile is tightly captured by BP-II.

In order to describe the leakage profile of BP-II, let us introduce some new leakage functions. Let DB(w)
and DB(w)′ denote the set of documents matching w in the current and previous search respectively and
let LDB(w) denote the list of documents matching w in the current search, in order of their insertion. An
element in LDB(w) is of the form (i, ind), where i denotes the index and ind denotes the document identifier.
Let the timestamp of the current and previous search be denoted as uc and up respectively. We define the
following leakage functions:

PreUp(w) = {(ind, u)| ind ∈ DB(w)′ and (u, op, (ind, w)) ∈ Q

and up < u < uc}.
CurUp(w) = {(ind, u)| ind ∈ DB(w) and (u, op, (ind, w)) ∈ Q

and up < u < uc}.
UpPair(w) = {(u1, u2)|(u1, op, (ind, w)) ∈ Q and

(u2, op, (ind, w)) ∈ Q and up < u1 < u2 < uc}.

PreUp(w) captures the relation between the identifiers obtained as a result in the previous search on w
and the updates that happen after the previous search on w and before the current search on w. CurUp(w)
captures the relation between the identifiers obtained as a result in the current search on w and the updates
that happen after the previous search on w and before the current search on w. UpPair(w) captures the
relation among the updates corresponding to some ind, that happen after the previous search on w and
before the current search on w.

For example, let us consider the search query on w at timestamp 16. Let the timestamp of the previous
search query on w be 4. Let DB(w) and DB(w)′ be {1, 3} and {1, 2} respectively. Let (5, del, (1, w)),
(7, del, (2, w)), (12, add, (1, w)) and (15, add, (3, w)) be the update queries on w that occur between these two
searches. The respective leakage functions will be:

PreUp(w) = {(1, 5), (2, 7), (1, 12)}. UpPair(w) = {(5, 12)}.
CurUp(w) = {(1, 5), (1, 12), (3, 15)}.

Next, we describe the search leakage of BP-II. Though the leakage functions defined above may appear
a bit complex, they are useful abstractions through which BP-II captures the notion of backward privacy as

2Mitra can be proven BP-I secure with a minor modification (sending document identifiers in search result DB(w) in random
order).

12

shown below. In Search protocol, along with sp(w) and Updatesop(w), leakage functions PreUp(w), CurUp(w),
UpPair(w) and LDB(w) can be leaked to S. As already defined in the beginning of Section 3.2, recall that IBP

denotes the set of document identifiers relevant to the notion of backward privacy. Note that, ∀ind ∈ IBP,
as ind /∈ DB(w)′ and as the last update operation on (ind, w) is del operation, it follows that ind /∈ DB(w).
Hence, no information about the inds in IBP can be revealed through leakage functions PreUp(w), CurUp(w)
and LDB(w). As the other leakage functions viz., sp(w) and UpPair(w), do not leak ind corresponding to an
update, no information about identifiers in IBP gets revealed.

Definition 3.6. (BP-II) An L={LSetup,LSearch,LUpdate}-semantically secure against adaptive attacks scheme
Π is BP-II iff LSetup,LSearch,LUpdate can be written as:

LSetup() =∅. LUpdate(op, (ind, w)) = ∅.
LSearch(w) ={sp(w),Updatesop(w),PreUp(w),CurUp(w),

UpPair(w), LDB(w)}

Note that Definitions 3.5 (BP-I) and 3.6 (BP-II) capture the notion of forward privacy as well. Therefore,
constructions that are BP-I and BP-II secure are naturally forward private.

Inverse Backward Privacy We identify a new desirable property for a DSSE scheme called inverse
backward privacy which captures the complementary situation of backward privacy. Analogous to backward
privacy, a DSSE scheme is inverse backward private if whenever a document-keyword pair (ind, w) is deleted
and later added, subsequent search queries on w won’t reveal the fact that (ind, w) was deleted unless it can
be inferred by the search and access pattern of the search query. For example, let DB(w)={1, 2} for search
query q at timestamp 5. Let the update operations on w after query q and before the next search query be
(6, del, (1, w)), (12, add, (1, w)), then no information about the identifier 1 in update queries at timestamp 6
and 12 should be revealed to S on the next search query on w.

Inverse Backward Privacy property could be of relevance in various use-cases. For instance, consider
the employee database where the employee records correspond to document and project teams she works in
correspond to keywords. An employee E1 maybe dropped and reincluded in a project team. We would like
to hide the fact that employee E1 was dropped briefly, if no search on that project team had been performed
during that period. Definition 3.5 (BP-I) is strong enough to capture our notion of inverse backward privacy.
Therefore, all constructions that can be shown to satisfy Definition 3.5 are inverse backward private.

To summarize, we proposed alternative formulations of leakages in the form of two new security defi-
nitions. We argued that the two definitions capture the notion of backward privacy. An interesting open
question is to analyze the real-world consequences of the leakages incurred by constructions satisfying the
definitions of backward privacy, viz., BPIP, BPUP, BP-I, BP-II or even WBP (in restricted setting).

3.6 Comparison among Definitions

Finally we discuss the relations among the definitions of backward privacy. Precisely, we give comparison
among the leakages incurred in Search protocol in the definitions of backward privacy. As we remarked
earlier, the notion of WBP is only suitable to argue backward privacy in a restricted setting. Hence, it would
not be meaningful to compare the definitions of backward privacy which apply to the general setting with
WBP. Therefore, WBP is not considered for comparison in this section.

If L1 leaks less than L2, we denote it as L1 � L2. By the proposition, “L1 leaks less than L2” we
mean that L1 gives less information about the database and the queries to the simulator than L2, or, said
otherwise, that every information given by L1 can be inferred from L2. If L1 leaks strictly less than L2, we
denote it as L1 ≺ L2. Here, we give an argument to derive the leakage functions in L1 through that of L2 in
order to show that L1 ≺ L2. And with the help of counter examples, we showcase that the leakage functions
in L1 cannot be derived from that of L2.

Recall the leakage functions corresponding to Search protocol in the existing definitions [7] are related in

13

LBPIP,Search LBP-I,Search

LBPUP,Search

LBP-II,Search

LWBP,Search

General Setting

Reinsertion Restriction Setting

Here, L1 → L2 denotes L1 ≺ L2

Figure 5: Relations among Definitions of Backward Privacy

the following way:

LBPIP,Search ≺ LBPUP,Search ≺ LWBP,Search. (3)

We recall LSearch of all the definitions below. See Section 2.4 (Common Leakages) and Section 3 for the
description of the leakage functions used here.

LBPIP,Search : {sp(w),TimeDB(w), ow}. (4)

LBPUP,Search : {sp(w),TimeDB(w),Updates(w)}. (5)

LBP-I,Search : {sp(w),Updates(w),DB(w)}. (6)

LBP-II,Search : {sp(w),Updatesop(w),PreUp(w),CurUp(w)

UpPair(w), LDB(w)}. (7)

As can be observed from (4) and (6), for BPIP, TimeDB(w) cannot be derived from leakage functions
in LBP-I,Search (see Example 1, described below) and for BP-I, Updates(w) cannot be derived from leakage
functions in LBPIP,Search (see Example 2, described below). Hence, LBPIP,Search and LBP-I,Search cannot be orderly
related.

From (5) and (6) it is straightforward that all the leakage functions in LBP-I,Search can be derived from the
leakage functions in LBPUP,Search, as DB(w) can be easily obtained from TimeDB(w). Further, as described
Example 1 (described below), TimeDB(w) cannot be derived from leakage functions in LBP-I,Search. Hence,
LBP-I,Search ≺ LBPUP,Search.

From (5) and (7), one can conclude that all the leakage functions in LBPUP,Search can be derived from the
leakage functions in LBP-II,Search, as TimeDB(w) can be derived from CurUp(w), Updatesop(w) and DB(w) (in
particular LDB(w)) of current and previous searches on w. Note that, TimeDB(w) comprises of information
regarding the timestamp of the add updates corresponding to document identifiers in DB(w) that are not
followed by their respective del update. This can be easily determined by keeping track of all the add
updates corresponding to document identifiers in DB(w) that are not followed by the respective del update
through CurUp(w) over all searches on w and Updatesop(w). Further, some leakage functions in LBP-II,Search

say, UpPair(w), cannot be derived from LBPUP,Search (see Example 4, described below). Hence, LBPUP,Search ≺
LBP-II,Search.

Examples

14

1. Consider the entries corresponding to w in query lists Q1 and Q2 as described below. Corresponding
to w, (1, add, (1, w)), (2, add, (2, w)), (3, del, (1, w)) and (6, w) are present in Q1. Corresponding to w,
(1, add, (1, w)), (2, del, (1, w)), (3, add, (2, w)) and (6, w) are present in Q2.

Leakage functions corresponding to search query at timestamp 6 in Q1:

sp(w) = {6}. ow = 3.

TimeDB(w) = {(2, 2)}. DB(w) = {2}.
Updates(w) = {1, 2, 3}.

Leakage functions corresponding to search query at timestamp 6 in Q2:

sp(w) = {6}. ow = 3.

TimeDB(w) = {(3, 2)}. DB(w) = {2}.
Updates(w) = {1, 2, 3}.

As can be observed the leakage functions in LBP-I,Search, i.e., sp(w), Updates(w) and DB(w) are the
same for query lists Q1 and Q2. However, TimeDB(w) is different for query lists Q1 and Q2. Hence,
TimeDB(w) cannot be uniquely determined from the leakage functions in LBP-I,Search.

2. Consider the entries corresponding to w in query lists Q1 and Q2 as described below. Corresponding
to w, (1, add, (1, w)), (2, add, (2, w)), (3, del, (1, w)) and (6, w) are present in Q1. Corresponding to w,
(1, add, (1, w)), (2, add, (2, w)), (5, del, (1, w)) and (6, w) are present in Q2.

Leakage functions corresponding to search query at timestamp 6 in Q1:

sp(w) = {6}. ow = 3.

TimeDB(w) = {(2, 2)}. DB(w) = {2}.
Updates(w) = {1, 2, 3}.

Leakage functions corresponding to search query at timestamp 6 in Q2:

sp(w) = {6}. ow = 3.

TimeDB(w) = {(2, 2)}. DB(w) = {2}.
Updates(w) = {1, 2, 4}.

As can be observed the leakage functions in LBPIP,Search, i.e., sp(w), TimeDB(w) and ow are the same for
query lists Q1 and Q2. However, Updates(w) is different for query lists Q1 and Q2. Hence, Updates(w)
cannot be uniquely determined from the leakage functions in LBP-I,Search.

3. Consider the entries corresponding to w in query lists Q1 and Q2 as described below. Corresponding
to w, (1, add, (1, w)), (2, add, (2, w)), (3, del, (1, w)) and (6, w) are present in Q1. Corresponding to w,
(1, add, (1, w)), (2, del, (1, w)), (3, add, (2, w)) and (6, w) are present in Q2.

Leakage functions corresponding to search query at timestamp 6 in Q1:

sp(w) = {6}. Updates(w) = {1, 2, 3}.
DB(w) = {2}. UpPair(w) = {(1, 3)}.

Leakage functions corresponding to search query at timestamp 6 in Q2:

sp(w) = {6}. Updates(w) = {1, 2, 3}.
DB(w) = {2}. UpPair(w) = {(1, 2)}.

As can be observed the leakage functions in LBP-I,Search, i.e., sp(w), Updates(w) and DB(w) are the
same for query lists Q1 and Q2. However, UpPair(w) is different for query lists Q1 and Q2. Hence,
UpPair(w) cannot be uniquely determined from the leakage functions in LBP-I,Search.

15

4. Consider the entries corresponding to w in query lists Q1 and Q2 as described below. Corresponding to
w, (1, add, (1, w)), (2, add, (2, w)), (3, del, (1, w)), (4, del, (2, w)), (5, add, (3, w)) and (6, w) are present in
Q1. Corresponding to w, (1, add, (1, w)), (2, add, (2, w)), (3, del, (2, w)), (4, del, (1, w)), (5, add, (3, w))
and (6, w) are present in Q2.

Leakage functions corresponding to search query at timestamp 6 in Q1:

sp(w) = {6}. Updates(w) = {1, 2, 3, 4, 5, 6}.
TimeDB(w) = {(5, 3)}. UpPair(w) = {(1, 3), (2, 4)}.

Leakage functions corresponding to search query at timestamp 6 in Q2:

sp(w) = {6}. Updates(w) = {1, 2, 3, 4, 5, 6}.
TimeDB(w) = {(5, 3)}. UpPair(w) = {(1, 4), (2, 3)}.

As can be observed the leakage functions in LBPUP,Search, i.e., sp(w), Updates(w) and TimeDB(w) are
the same for query lists Q1 and Q2. However, UpPair(w) is different for query lists Q1 and Q2. Hence,
UpPair(w) cannot be uniquely determined from the leakage functions in LBPUP,Search.

4 Backward Private DSSE Constructions

In this section we propose three backward private schemes ΠBP-prime, ΠBP and ΠWBP that are respectively
BP-I, BP-II and WBP secure. Our starting point is a forward private DSSE scheme ΠFP which is a modified
version of the scheme proposed in [15].

4.1 ΠFP: A Warm-up Solution

The central idea in ΠFP (Figure 6) is to make updates using fresh keys. Hence, the keys disclosed in previous
searches do not reveal anything about these new updates. ΠFP is described in Figure 6. The construction
makes use of PRFs Ft, Fd: {0, 1}λ × {0, 1}∗ → {0, 1}λ and hash functions H1: {0, 1}λ × {0, 1}∗ → {0, 1}2λ
and H2: {0, 1}λ × {0, 1}∗ → {0, 1}µ, where µ=λ+1 and λ is security parameter.

The Setup algorithm generates secret keys kt and kd. C initiates three maps: T, D and W. The maps
T and D are stored at S’s end. Corresponding to w, D stores the pointer to PSetw, the set of document
identifiers in plaintext that were obtained as a result of the latest search operation on w and T stores
encrypted entries inserted after the latest search operation on w. The map W is stored at C’s end. In W,
corresponding to w, C stores the version verw (initialized to 0) and counter cw (initialized to -1). verw ensures
that the key kw used in the Update protocol is unknown to S, cw stores information about the number of
entries added to T corresponding to w after the latest search operation.

Update: When C wants to add/del a document-keyword pair (ind, w), it computes key kw using keyword w
and verw (see line 5) and increments cw. Based on kw and cw, C computes the hash digests label and pad
and sends (label, e=pad⊕ (b||ind)) to S. S then adds (label, e) to T. For add (resp. del) operation, b=0 (resp.
b=1).

Note that, kw used in processing update queries is computed using updated verw. Since, kw is output of
PRF Ft at w‖verw, it is indistinguishable from random for S. As label (resp. pad) is computed as H1(kw‖cw)
(resp. H2(kw‖cw)) for an update query, it is indistinguishable from random for S as H1 (resp. H2) is modeled
as a random oracle. Hence, in the security proof, update queries can be simulated by generating random
(label, e) pair.

Search: When C wants to perform a search query on w, it computes labelw (see line 5) and the key kw is
computed (see line 7) only if new entries are inserted in map T. C sends labelw, kw and cw to S. kw gets
revealed to S only if a new entry was inserted to T after the previous search on w. Hence, C updates the
version verw (see line 8). verw is not updated in a search query on w for which corresponding to w, no

16

Setup()

1. kt
$←− {0, 1}λ, kd

$←− {0, 1}λ

2. W,T,D← empty map

3. return (EDB = (D, T),

stc = (kt, kd, W)) to (S,C)

Update(op, w, ind, stC;EDB)

UpdateC(op, w, ind, stC)

1. (verw, cw)←W[w]

2. if (verw, cw) = ⊥ then

3. verw ← 0, cw ← −1

4. cw ← cw + 1

5. kw ← Ft(kt, w‖verw)

6. label← H1(kw‖cw)

7. pad← H2(kw‖cw)

8. b← 0 (op=add)/ 1 (op=del)

9. e← (b‖ind)⊕ pad

10. W[w]← (verw, cw)

11. Send (label, e) to S

UpdateS(EDB)

12. Receive (label, e) from C

13. T[label]← e

Search(w, stC;EDB)

SearchC(w, stC) :

1. (verw, cw)←W[w]

2. if (verw, cw) = ⊥ then

3. return ∅
4. else

5. labelw ← Fd(kd, w)

6. if cw 6= −1 then

7. kw ← Ft(kt, w‖verw)

8. verw ← verw + 1, cw ← −1

9. W[w]← (verw, cw)

10. else

11. kw ← ⊥
12. Send (labelw, kw, cw) to S

SearchS(EDB) :

13. Receive (labelw, kw, cw) from C

14. addr(PSetw)← D[labelw]

15. Retrieve PSetw and set AuxSet← PSetw

16. if kw 6= ⊥ then

17. c← 0

18. while c ≤ cw do

19. label← H1(kw‖c), e← T[label]

20. pad← H2(kw‖c), (b‖ind)← e⊕ pad

21. if b = 0

22. AuxSet← AuxSet ∪ {ind}
23. else

24. AuxSet← AuxSet \ {ind}
25. Remove T[label]

26. c← c + 1

27. Store AuxSet in disk

28. Set D[labelw]← addr(AuxSet)

29. Send AuxSet to C

Figure 6: Scheme ΠFP

updates on map T were made after the previous search on w. Based on the information received from C, S
computes the result set and updates D with the newly computed result set.

In ΠFP, verw ensures that S cannot relate later updates with previous search queries and cw ensures that
S cannot correlate update queries on w after the previous search operation on w.

Remark Essentially, ΠFP is same as the construction in [15] except the following: 1) The search counter
corresponding to w (denoted as verw) is updated differently than in [15] to avoid unnecessary increments to
the search counter, 2) After a search operation on w, the revealed document identifiers are stored together
(DB(w)) in plaintext (as suggested in [7]) to provide reasonable locality without incurring any additional
leakage.

Example 1 Consider the following list of update queries: (add, (1, w1)), (add, (1, w2)), (add, (2, w1)),
(add, (3, w1)), (add, (3, w2)), (del, (1, w1)). Figure 7.a shows the state of indexes at C and S after these
updates are processed. Figure 7.b shows the state of indexes at C and S after search on w1.

Correctness The scheme is correct as long as there are no repeated labels in maps T and D. Since, Fd
is a PRF, only with negligible probability labelw in D is same for two distinct keywords. The input to H1 is
repeated only with negligible probability as Ft is a PRF. If we consider H1 to be a collision resistant hash
function, only with negligible probability label in T is repeated.

In Appendix A, we provide complete proofs of correctness and FP-I-security (see Definition 3.1) of ΠFP.

17

w ver
w

c
w

w
1

0 3

w
2

0 1

w ver
w

c
w

w
1

1 -1

w
2

0 1

Client Index

Client Index

W

W

label value

H
1
(k

w1
||1) (0||2) H⊕

2
(k

w1
||1)

H
1
(k

w2
||0) (0||1) H⊕

2
(k

w2
||0)

H
1
(k

w1
||3) (1||1) H⊕

2
(k

w1
||3)

H
1
(k

w1
||0) (0||1) H⊕

2
(k

w1
||0)

H
1
(k

w2
||1) (0||3) H⊕

2
(k

w2
||1)

H
1
(k

w1
||2) (0||3) H⊕

2
(k

w1
||2)

Empty

label
w

PSet
w

F
d
(k

d
,w

1
) 2,3

Server Index

Server Index

T

D

T

D

k
w2

=F
t
(k

t
,w

2
||0)

k
w1

=F
t
(k

t
,w

1
||0)

k
w2

=F
t
(k

t
,w

2
||0)

(a)

(b)

label value

H
1
(k

w2
||0) (0||1) H⊕

2
(k

w2
||0)

H
1
(k

w2
||1) (0||3) H⊕

2
(k

w2
||1)

Figure 7: Example 1: Indexes at C and S before and after search on w1 in construction ΠFP. W = Client
Index, D = Index that stores search results of previous search query at S and T = Index that stores updates
after the last search on w at S

4.2 ΠBP-prime : Realizing Strong Privacy

As ΠFP reveals the deleted entries, it isn’t backward private. We propose backward private DSSE scheme
ΠBP-prime that makes use of light weight symmetric primitives only. The scheme in Figure 8 is similar to
applying the generic two-roundtrip backward-private scheme transformation [7] on ΠFP but with the following
essential modification: the document identifiers revealed by search query are stored together in plaintext thus
providing reasonable locality by avoiding re-encryption of revealed identifiers (as mentioned in Section 4.1). A
high degree of locality ensures that the document identifiers are stored in contiguous memory locations which
results in significant I/O efficiency. The construction makes use of PRFs Ft, Fd: {0, 1}λ × {0, 1}∗ → {0, 1}λ,
symmetric encryption scheme E and hash function H1: {0, 1}λ × {0, 1}∗ → {0, 1}2λ.

Unlike ΠFP, encryption of b‖ind is stored in T at S in Update protocol (see line 8). Padding in ΠFP using
H2 was necessary to prevent S from learning anything about the update. However, in ΠBP-prime, encryption
of the updated entry is stored which is random in the view of S, thus revealing no information about the
updated entry.

The Search protocol in ΠBP-prime comprises of two rounds. Round 1 of Search is similar to the Search
protocol of ΠFP. At the end of round 1 of Search, S sends PSetw, the result set of previous search on w and
AList, the list of ciphertexts corresponding to all the updates on w after the previous search on w, in order
of their insertion. While preparing AList, S only learns the timestamps at which updates corresponding to
w have happened because the entries in AList are encrypted. Based on the information received from S, C
computes AuxSet (see line 28-35 of Search protocol). AuxSet consists of all the document identifiers currently
matching keyword w in random order. In the second round of communication, AuxSet is forwarded to S,
who stores AuxSet in D[labelw].

Correctness As mentioned in correctness of ΠFP, the scheme is correct as long as there are no repeated
labels in maps T and D. Since, these labels are generated in the same manner as they were generated in
ΠFP, correctness of ΠBP-prime immediately follows from that of ΠFP.

Asymptotic Complexity The communication complexity in round 1 of the Search protocol is O(o′w) and
that of round 2 is O(nw). The computational complexity of the Search protocol is O(o′w). The communication
and computation cost of the Update protocol is O(1). Space complexity at the server’s end is O(N + D′),
where D′ =

∑
∀w d

′
w and at the client’s end is O(m log(n)).

18

Setup()

1. kt
$←− {0, 1}λ, kd

$←− {0, 1}λ

2. ke ← E .Gen()

3. W,T,D← empty map

4. return (EDB = (D, T),

stc = (ke, kt, kd,W)) to (S,C)

Update(op, w, ind, stC;EDB)

UpdateC(op, w, ind, stC)

1. (verw, cw)←W[w]

2. if (verw, cw) = ⊥ then

3. verw ← 0, cw ← −1

4. cw ← cw + 1

5. kw ← Ft(kt, w‖verw)

6. label← H1(kw‖cw)

7. b← 0 (op=add)/ 1 (op=del)

8. e← E .Enc(ke, b‖ind)

9. W[w]← (verw, cw)

10. Send (label, e) to S

UpdateS(EDB)

11. Receive (label, e) from C

12. T[label]← e

Search(w, stC;EDB)

Round 1

SearchC(w, stC) :

1. (verw, cw)←W[w]

2. if (verw, cw) = ⊥ then

3. return ∅
4. else

5. labelw ← Fd(kd, w)

6. if cw 6= −1 then

7. kw ← Ft(kt, w‖verw)

8. verw ← verw + 1

9. cw ← −1

10. W[w]← (verw, cw)

11. else

12. kw ← ⊥ //No need of round 2

13. Send (labelw, kw, cw) to S

SearchS(EDB) :

14. Receive (labelw, kw, cw) from C

15. addr(PSetw)← D[labelw]

16. Retrieve PSetw

17. AList← ∅
18. if kw 6= ⊥ then

19. c← 0

20. while c ≤ cw do

21. label← H1(kw‖c)
22. e← T[label]

23. Append e to AList

24. Remove T[label]

25. c← c + 1

26. Send (PSetw,AList) to C

Round 2

SearchC(w, stC) :

27. Receive (PSetw,AList) from S

28. (verw, cw)←W[w]

29. AuxSet← PSetw

30. for c← 0 to |AList| do
31. (b‖ind)← E .Dec(ke,AList[c])
32. if b = 0

33. AuxSet← AuxSet ∪ {ind}
34. else

35. AuxSet← AuxSet \ {ind}
36. return AuxSet

SearchS(EDB) :

37. Receive AuxSet from C

38. D[labelw]← AuxSet

Figure 8: Scheme ΠBP-prime

19

w ver
w

c
w

w
1

0 3

w
2

0 1

w ver
w

c
w

w
1

1 -1

w
2

0 1

Client Index

Client Index

W

W

label value

H
1
(k

w1
||1) (0||tag

w1,0
(2)) H⊕

2
(k

w1
||1)

H
1
(k

w2
||0) (0||tag

w2,0
(1)) H⊕

2
(k

w2
||0)

H
1
(k

w1
||3) (1||tag

w1,0
(1)) H⊕

2
(k

w1
||3)

H
1
(k

w1
||0) (0||tag

w1,0
(1)) H⊕

2
(k

w1
||0)

H
1
(k

w2
||1) (0||tag

w2,0
(3)) H⊕

2
(k

w2
||1)

H
1
(k

w1
||2) (0||tag

w1,0
(3)) H⊕

2
(k

w1
||2)

Empty

label
w

PSet
w

F
d
(k

d
,w

1
) tag

w1,1
(2), tag

w1,1
(3)

Server Index

Server Index

T

D

T

D

k
w2

=F
t
(k

t
,w

2
||0)

k
w1

=F
t
(k

t
,w

1
||0)

k
w2

=F
t
(k

t
,w

2
||0)

(a)

(b)

label value

H
1
(k

w2
||0) (0||tag

w2,0
(1)) H⊕

2
(k

w2
||0)

H
1
(k

w2
||1) (0||tag

w2,0
(3)) H⊕

2
(k

w2
||1)

tag
w,ver

(ind)=G
tag

(k
g
,w||ind||ver)

tag
w,ver

(ind)=G
tag

(k
g
,w||ind||ver)

Figure 9: Example 2: Indexes at C and S before and after search on w1 in ΠBP. W = Client Index, D =
Index that stores tags of search results of previous search query at S and T = Index that stores updates
after the last search on w at S

Security We prove ΠBP-prime is BP-I secure in the random oracle model. The proof relies on the pseudo
randomness of Fd, Ft and RCPA security of encryption scheme E . The complete proof appears in Appendix
B.

In a concurrent work [20], a backward private construction Mitra was proposed independently. Mitra
was further optimized to obtain Mitra∗ in [20]. ΠBP-prime is similar to Mitra∗ except the following minor
difference: the revealed document identifiers in ΠBP-prime are stored in plaintext whereas in Mitra∗ they
are re-encrypted. This property of ΠBP-prime results in better locality. The leakage profile of constructions
ΠBP-prime and Mitra∗ are same.

4.3 ΠBP: Realizing Optimal Communication Complexity

As can be observed from the asymptotic analysis of ΠBP-prime, the communication complexity of Search
protocol is O(o′w) which is not optimal i.e., O(nw). Further, as C has to process each ciphertext it receives
from S, the computation complexity at C’s end also becomesO(o′w) due to the above communication overhead.
In order to obtain optimal communication complexity, S should send entries corresponding to only the set
of documents currently matching w (DB(w)) to C. One approach to satisfy the above requirement is to
associate a tag corresponding to each update entry. Using these tags, S, while performing a search on w
will be able to correlate the update queries on w corresponding to the same ind. As in Dianadel and Janus, if
the tags are generated deterministically using just ind and w, it leaks DelHist(w) and hence, will not satisfy
BP-II. In ΠBP, we leverage the version verw to generate the tags in a clever yet simple manner to ensure that
the leakage is bounded by Definition 3.6.

Scheme ΠBP is described in Figure 10. For a keyword w, D stores the pointer to PSetw, the set of tags
corresponding to document identifiers that were obtained as a result of the latest search operation on w. The
construction makes use of PRFs Ft, Fd: {0, 1}λ × {0, 1}∗ → {0, 1}λ, PRP Gtag: {0, 1}λ × {0, 1}λ → {0, 1}2λ
and hash functions H1: {0, 1}λ × {0, 1}∗ → {0, 1}2λ and H2: {0, 1}λ × {0, 1}∗ → {0, 1}µ, where µ=λ+1.

For an update query (op, (ind, w)), a tag corresponding to (ind, w) is generated using the current version
verw. Then, b‖tag is stored in T at S in Update protocol (see line 10).

Round 1 of Search protocol is similar to the Search protocol of ΠFP. At the end of round 1 of Search, S
sends TS, the set of tags corresponding to the document identifiers currently matching w in order of their
insertion. For every tag in TS, C computes G−1

tag to get the document identifier ind which it adds to AuxSet
and re-computes tag using the updated version which it stores in PSet. AuxSet consists of all the document
identifiers currently matching keyword w and PSet consists of the updated tags, in order of their insertion.

20

Setup()

1. kt
$←− {0, 1}λ, kd

$←− {0, 1}λ,

kg
$←− {0, 1}λ

2. W,T,D← empty map

3. return (EDB = (D, T),

stc = (kt, kd, kg, W)) to (S,C)

Update(op, w, ind, stC;EDB)

UpdateC(op, w, ind, stC)

1. (verw, cw)←W[w]

2. if (verw, cw) = ⊥ then

3. verw ← 0, cw ← −1

4. cw ← cw + 1

5. kw ← Ft(kt, w‖verw)

6. label← H1(kw‖cw)

7. pad← H2(kw‖cw)

8. tag← Gtag(kg, w‖ind‖verw)

9. b← 0 (op=add)/ 1 (op=del)

10. e← (b‖tag)⊕ pad

11. W[w]← (verw, cw)

12. Send (label, e) to S

UpdateS(EDB)

13. Receive (label, e) from C

14. T[label]← e

Search(w, stC;EDB)

Round 1

SearchC(w, stC) :

1. (verw, cw)←W[w]

2. if (verw, cw) = ⊥ then

3. return ∅
4. else

5. labelw ← Fd(kd, w)

6. if cw 6= −1 then

7. kw ← Ft(kt, w‖verw)

8. verw ← verw + 1

9. cw ← −1

10. W[w]← (verw, cw)

11. else

12. kw ← ⊥ //No need of round 2

13. Send (labelw, kw, cw) to S

SearchS(EDB) :

14. Receive (labelw, kw, cw) from C

15. addr(PSetw)← D[labelw]

16. Retrieve PSetw

17. TS← PSetw

18. if kw 6= ⊥ then

19. c← 0

20. while c ≤ cw do

21. label← H1(kw‖c)
22. e← T[label]

23. pad← H2(kw‖c)
24. (b‖tag)← e⊕ pad

25. if b = 0

26. TS← TS ∪ {tag}
27. else

28. TS← TS \ {tag}
29. Remove T[label]

30. c← c + 1

31. Send TS to C

Round 2

SearchC(w, stC) :

32. Receive TS from S

33. (verw, cw)←W[w]

34. PSet← ∅, AuxSet← ∅
35. for all tag ∈ TS do

36. (w‖ind‖ver′)← G−1
tag (kg, tag)

37. AuxSet← AuxSet ∪ {ind}
38. PSet← PSet ∪ { Gtag(kg, w‖ind‖verw)}
39. return PSet,AuxSet

SearchS(EDB) :

40. Receive PSet,AuxSet from C

41. D[labelw]← PSet

Figure 10: Scheme ΠBP

C sends PSet and AuxSet to S, who stores PSet at D[labelw] and can use AuxSet to fetch the matching
documents. Note that, recomputed tags enables S to consistently handle future searches and updates as the
tags corresponding to subsequent updates on w are made using the same value of verw.

Let U be the set of update queries corresponding to w after the previous search and before the current
search on w. The tags are generated using the same verw exclusively ∀qu ∈ U and ∀ ind ∈ DB(w)′. Since, the
tags are computed using PRP Gtag taking w, ind and verw as input, S can only learn the relation between
the tags corresponding to the same ind among the update queries in U and DB(w)′. As the inds in PSet are
stored in order of insertion, S can link the update queries in U with these inds. The above leakage is precisely
captured in BP-II via leakage functions UpPair, PreUp and CurUp. Moreover, S cannot relate update queries
in U with the update queries that are made before the previous search on w and after the current search on
w as the tags are generated using different verw.

Example 2 Consider the following list of update queries: (add, (1, w1)), (add, (1, w2)), (add, (2, w1)),
(add, (3, w1)), (add, (3, w2)), (del, (1, w1)). Figure 9.a shows the state of indexes at C and S after these
updates are processed. Figure 9.b shows the state of indexes at C and S after search on w1.

In conclusion, ΠBP achieves optimal communication complexity and uses symmetric primitives only. D
provides reasonable locality as it stores the tags corresponding to previous search results together. ΠBP is
easily parallelizable and doesn’t impose reinsertion restriction.

Further, in order to obtain a response-hiding scheme, C sends only PSet to S in line 39 in second round

21

Setup()

1. W,T,D← empty map

2. bad← false

3. return (EDB = (D, T), stc = W)

to (S,C)

Update(op, w, ind, stC;EDB)

UpdateC(op, w, ind, stC)

1. (verw, cw)←W[w]

2. if (verw, cw) = ⊥ then

3. verw ← 0, cw ← −1

4. cw ← cw + 1

5. kw ← Keyt[w, verw]

6. valr
$←− {0, 1}λ

7. if H1[kw, cw] 6= ⊥ then

8. bad← true, valr ← H1(kw‖cw)

9. Hash1[w, verw, cw]← valr

10. pad← H2(kw‖cw)

11. tag← Keytag[w, ind, verw]

12. b← 0 (op=add)/ 1 (op=del)

13. e← (b‖tag)⊕ pad

14. W[w]← (verw, cw)

15. Send (valr, e) to S

Search(w, stC;EDB)

Round 1

SearchC(w, stC) :

1. (verw, cw)←W[w]

2. if (verw, cw) = ⊥ then

3. return ∅
4. else

5. labelw ← Keyd[w]

6. if cw 6= −1 then

7. kw ← Keyt[w, verw]

8. for i = 0 to cw do

9. H1[kw, i]← Hash1[w, verw, i]

10. verw ← verw + 1

11. cw ← −1

12. W[w]← (verw, cw)

13. else

14. kw ← ⊥ //No need of round 2

15. Send (labelw, kw, cw) to S

Round 2

SearchC(w, stC) :

16. Receive TS from S

17. (verw, cw)←W[w]

18. PSet← ∅, AuxSet← ∅
19. for all tag ∈ TS do

20. (w, ind, ver′)← Key−1
tag [tag]

21. AuxSet← AuxSet ∪ {ind}
22. tag′ ← Keytag[w, ind, verw]

23. PSet← PSet ∪ { tag′}
24. return PSet,AuxSet

H1(k‖c)

1. val← H1[k, c]

2. if val = ⊥ then

3. val
$←− {0, 1}λ

4. if ∃w, ver s.t. ver = W[w].verw ∧
k = Keyt[w, ver] ∧ c ≤W[w].cw then

5. bad← true, val← Hash1[w, ver, c]

6. H1[k, c]← val

7. return val

Figure 11: Games G3 and G′3 (Theorem 4.1). G′3 includes the box code and G3 does not.

of search protocol. We can eliminate the second round of communication using standard piggybacking
technique [15, 18] and upload the updated tag set PSet with the next search query, thus, achieving a single
roundtrip response-hiding backward private DSSE protocol.

Correctness Like ΠBP-prime, correctness of ΠBP immediately follows from that of ΠFP.

Asymptotic Complexity The communication complexity of the Search protocol is O(nw). The com-
putational complexity of the Search protocol is O(o′w). The communication and computational cost of the
Update protocol is O(1). Space complexity at the server’s end is O(N +D′), where D′ =

∑
∀w d

′
w and at the

client’s end is O(m log(n)).

Security We prove ΠBP is BP-II in the random oracle model. The proof relies on pseudo randomness of
Fd, Ft and Gtag.

Theorem 4.1. If Fd, Ft are secure PRFs, Gtag is a secure PRP and H1, H2 are hash functions modeled as
random oracles outputting 2λ and µ bits respectively then ΠBP is BP-II secure (Definition 3.6).

Proof. We structure our proof using a sequence of games G0 to G5. G0 will compute a distribution identical
to RealΠBP

A (λ) and G5 will compute a distribution that can be simulated perfectly given the leakage profile

L, i.e., its distribution is identical to IdealΠBP

A,Sim(λ).

Game G0: G0 is exactly identical to RealΠBP

A (λ).

Pr[RealΠBP

A (λ) = 1] = Pr[G0 = 1]. (8)

22

Game G1: In G1, every call to PRFs Ft and Fd are answered using tables Keyt and Keyd respectively. The
entries in table Keyt are referred by (w, ver) and entries in table Keyd are referred by w. Conventionally,
when an entry is being accessed for the first time, it is chosen at random and then used thereafter, which is
followed in the rest of the paper unless mentioned explicitly. If there exists an adversary A that is able to
distinguish between games G0 and G1, we can construct an adversary B1 that can distinguish Ft from a truly
random function and/or an adversary B2 that can distinguish Fd from a truly random function. Formally,
there exist adversaries B1 and B2, such that

|Pr[G0 = 1]− Pr[G1 = 1]| ≤ Advprf
Ft,B1

(λ) + Advprf
Fd,B2

(λ)

≤ neg(λ). (9)

Game G2: In G2, every call to PRP Gtag is answered using table Keytag. The entries in table Keytag are
referred by (w, ind, ver). If the randomly generated tag has been selected earlier in Keytag, G2 is aborted.
Since, the number of queries to PRP Gtag, say q, is a polynomial in security parameter, by the birthday bound

we can conclude that the probability that the two tags are equal is at most q2

2λ
, i.e., neg(λ). Therefore, G2

aborts with negligible probability.

Now, if there exists an adversary A that is able to distinguish between games G1 and G2, we can construct
an adversary B that can distinguish Gtag from a truly random permutation. Formally, there exists an
adversary B, such that

|Pr[G1 = 1]− Pr[G2 = 1]| ≤ Advprp
Gtag,B(λ) +

q2

2λ

≤ neg(λ). (10)

Game G3: In G3, instead of calling H1 to generate label in the Update protocol, we pick random strings.
Then, during the Search protocol, the random oracle H1 is programmed accordingly, to ensure consistency.

Tables Hash1 and H1 are used to simulate the random oracle H1, the entries in the table Hash1 are
referred by (w, ver, c) and in the table H1 by (k, c).

Figure 11 formally describes G3, and an intermediate game G′3. In G′3, H1 is never programmed to two
different values for the same input, thus, ensuring consistency. Instead of storing the randomly picked value
in table Hash1 at position (w, verw, cw), one first checks whether H1 is already programmed at value (kw, cw)
which can happen if there was a query to the random oracle H1 with input (kw‖cw). If the check is true, the
value H1(kw‖cw) is stored in Hash1[w, verw, cw] else the randomly picked value is stored in Hash1[w, verw, cw].
The random oracle when needed in the Search protocol in line 9 or by an adversary’s query to random oracle
H1 in line 5 is lazily programmed in G3, so that the outputs are consistent throughout.

The only difference between game G2 and G′3 is how we model the random oracle H1. The outputs of H1

is perfectly indistinguishable in both these games, therefore,

Pr[G′3 = 1] = Pr[G2 = 1]. (11)

Let us denote the event ‘the flag bad is set to true’ in G′3 by E1. The games G′3 and G3 are also
perfectly identical unless the event E1 occurs, and we can apply identical-until-bad technique [3] to bound
the distinguishing advantage between G′3 and G3.

|Pr[G′3 = 1]− Pr[G3 = 1]| ≤ Pr[E1]. (12)

The event E1 occurs in line 8 of Update protocol and in line 5 of H1 algorithm. The former captures the fact
that adversary has already queried random oracle H1 at input (kw‖cw) and the latter captures the fact that
the adversary queries random oracle H1 on a valid input (k‖c) and the value k is not currently revealed to
adversary. Since, the value kw is picked uniformly at random, the probability with which event E1 occurs is
negligible. Using (11) and (12), we can conclude:

|Pr[G2 = 1]− Pr[G3 = 1]| ≤ neg(λ). (13)

23

Setup()

1. W,T,D← empty map

2. u = 0

3. Update, STs← empty table

4. STs[w][0]← −1, ∀w ∈W

5. return (EDB = (D, T),

stc = W) to (S,C)

Update(op, w, ind, stC;EDB)

UpdateC(op, w, ind, stC)

1. Append (u, op, ind) to Update[w]

2. Hash1[u]
$←− {0, 1}2λ

3. Hash2[u]
$←− {0, 1}µ

4. Send (Hash1[u],Hash2[u]) to S

5. u← u + 1

Search(w, stC;EDB)

Round 1

SearchC(w, stC) :

1. Append u to STs[w]

2. (empty, verw, cw, {tagc,H1,w,c,

H2,w,c}0≤c≤cw)← GetDatar1(

Update, STs,Hash1,Hash2,Tag)

3. if empty = true then

4. return ∅
5. else

6. labelw ← Keyd[w]

7. if cw 6= −1 then

8. kw ← Keyt[w, verw]

9. for i = 0 to cw do

10. H1[kw, i]← H1,w,i

11. H2[kw, i]← H2,w,i ⊕ tagi

12. else

13. kw ← ⊥
14. Send (labelw, kw, cw) to S

Round 2

SearchC(w, stC) :

15. Receive TS from S

16. PSetw,AuxSetw ← GetDatar2(Tag,TS)

17. return PSetw,AuxSetw

18. u← u + 1

GetDatar2(Tag,TS)

1. PSet← ∅
2. Tagtemp ← empty map

3. for ∀ tag ∈ TS do

4. (w, ind)← Tag[w]−1[tag]

5. PSet← PSet ∪ {Tagtemp[ind]}
6. AuxSet← AuxSet ∪ {ind}

7. Tag[w]← Tagtemp

8. return PSet,AuxSet

GetDatar1(Update,STs,Hash1,Hash2,Tag)

1. if Update[w] = ⊥
2. empty← true

3. else

4. empty← false

5. verw ← −1

6. for i = 1 to |STs[w]| − 1 do

7. if ∃ u, op, ind s.t. (u, op, ind)

∈ Update[w] ∧ u >

STs[w][i− 1] ∧ u < STs[w][i] then

8. verw ← verw + 1

9. cw ← −1, ul← |STs[w]| − 1

10. for u = STs[w][ul − 1] to STs[w][ul] do

11. if ∃ op, ind s.t. (u, op, ind)

∈ Update[w] then

12. cw ← cw + 1

13. b← 0 (op=add)/ 1 (op=del)

14. tagcw
← b‖Tag[w, ind]

15. H1,w,cw ← Hash1[u]

16. H2,w,cw ← Hash2[u]

17. return (empty, verw, cw, {tagc,

H1,w,c, H2,w,c}0≤c≤cw)

Figure 12: Game G5 (Theorem 4.1)

Game G4: In G4, what we did for H1 in game G3, we do for H2. Using the same arguments, we can conclude:

|Pr[G3 = 1]− Pr[G4 = 1]| ≤ neg(λ). (14)

Game G5: In G5 (see Figure 12), we abstract out the information that needs to be simulated by the simulator
in order to output transcripts identical to G4. Using GetDatar1 and GetDatar2 algorithms in G5, one keeps
track of the randomly generated tag, label and pad differently than in G4. In Search protocol, the random
oracles are programmed identically to that in G4. Queries to random oracles H1 and H2 can be simulated by
outputting random values.

As we output fresh random strings in Update protocol, the transcripts of Update protocol is identical to
that of Update protocol in G4.

Next, we describe the Search protocol in G5. Based on tables Update, STs (search timestamps) and
Tag map, the value of the following components: emptyw, verw, cw and {tagc, H1,w,c, H2,w,c}0≤c≤cw are
determined using GetDatar1 algorithm. Flag empty is set to 1 if Update[w] is empty. verw is the count of
searches for which there was an update on map T corresponding to keyword w after the previous search.
The loop in line 6 of GetDatar1 algorithm determines the number of times version number is updated, i.e.,
value of verw. Here, cw denotes the count of updates on map T corresponding to keyword w after the
previous search. tag is picked from the map Tag, therefore, if the indices are same, the tags are equal,
thus ensuring the consistency. The values {H1,w,c, H2,w,c}0≤c≤cw are used to simulate the random oracles
consistently with the response given at the time of update queries. The loop in line 10 of GetDatar1 algorithm

24

computes the values of cw and {tagc, H1,w,c, H2,w,c}0≤c≤cw . GetDatar2 algorithm outputs LDB(w) and new
tags corresponding to the document identifiers currently present in DB(w). These tags are ordered based on
the order of insertion of documents they correspond to. As the values of components are computed correctly
and consistently w.r.t. previous queries, the transcripts of Search protocol is identical to that of Search
protocol in G4. Therefore, we conclude that:

Pr[G5 = 1] = Pr[G4 = 1]. (15)

Simulator Sim: Finally, we construct a simulator that given the leakage profile L simulates game G5 correctly.
Sim can simulate Update protocol correctly as in G5. Instead of using keyword w, Sim uses the counter
w=min sp(w) uniquely mapped from w using LSearch in simulating the Search protocol (line 6 and line 8). In
line 2 of Search protocol, Sim uses sp(w), Updatesop(w), PreUp(w) and UpPair(w) instead of STs, Update
and Tag as input to the GetDatar1 algorithm. In GetDatar1, we use the timestamps of search and update
queries and make use of indices to generate tag. However, the indices are used just to identify when same
tags need to be generated. This can be ensured using, PreUp(w) and UpPair(w).

Also, the output of GetDatar2 is LDB(w) and an ordered list of freshly generated random tags which can
be simulated easily using CurUp(w) and LDB(w). In GetDatar2, the indices are used to just associate an
order to the generated tags, which can be ensured by the components CurUp(w) and LDB(w) of the leakage
profile. Thus, Sim is able to produce transcripts of output of Search and Update protocols identical to G5.
Hence, we conclude that:

Pr[IdealΠBP

A,Sim(λ) = 1] = Pr[G5]. (16)

By connecting all the games, we conclude∣∣∣Pr[Real
ΠBP
A (λ) = 1]− Pr[Ideal

ΠBP
A,Sim(λ) = 1]

∣∣∣ ≤ neg(λ). (17)

4.4 ΠWBP : A Weak Backward Private Variant

As mentioned in Section 3.3, there are various use-cases such as storing a collection of text files in which
reinsertion restriction is not a concern. Here, we propose a simple one roundtrip response-hiding backward
private scheme ΠWBP in the reinsertion restriction setting. Our construction ΠWBP is essentially a simple
modification to ΠBP. Further, it also inherits all the salient features of ΠBP. ΠWBP improves upon the
concrete efficiency of Search protocol in ΠBP, by eliminating the computation and transmission of newly
generated tags in the second round of communication. This shows that one can construct an efficient WBP

scheme with optimal communication complexity using simple primitives only.

In ΠBP, we use verw in computation of tags to securely handle reinsertions. The tags corresponding to
fresh updates after a search are computed using the updated verw. Hence, these tags cannot be related to
the deleted entries before this search. This ensures backward privacy in cases where reinsertion is allowed.
However, when we consider the reinsertion restriction setting, an add query is not allowed after a delete
query corresponding to the same document-keyword pair. Hence, verw is not required in computation of
tags in this setting. Therefore, for an update query, tag in line 8 of Update protocol in ΠBP (see Figure 10)
is computed as tag← Gtag(kg, w‖ind) in ΠWBP.

Search protocol in ΠWBP is identical to Round 1 of Search protocol in ΠBP. In line 31 of Search protocol in
ΠBP, S along with sending TS to C, stores TS at D[labelw]. From TS, C retrieves the search results in similar
fashion as in ΠBP. Recomputation of tags in Search protocol in ΠBP is needed because verw gets updated.
While in ΠWBP, since the tags are independent of verw, recomputation of tags is not required. Hence, the
second round of communication is not needed.

The changes we make in ΠBP in constructing ΠWBP induces additional leakage which can be shown to be
bounded by the leakage profile of WBP. The proof of Theorem 4.1 can be easily adapted to prove security of
ΠWBP.

25

The crucial observation from our constructions is that efficient backward private schemes can be real-
ized without involving complex cryptographic primitives. The simplicity of design in our backward private
constructions is an appealing feature, particularly from the implementation perspective.

4.5 Comparative Analysis

In Table 1, we provided a comparison of our schemes with some prior and concurrent works [7, 20, 40].
On that line, we conclude this section with a comparative study of the currently available BP-secure DSSE
schemes. The goal is to figure out the scenarios in which each of these constructions would fit best. Let us
first consider the scenario where the requirement is to achieve minimal information leakage. The candidate
constructions are Orion [20] and Moneta [7] as they satisfy strong notion of backward privacy (BPIP). As
the search time of Orion is quasi-optimal in nw (linear in nw upto a logarithmic factor), it may appear to be
more suitable than Moneta in such scenarios. However, Orion may not be practical for very large databases
as Path-ORAM [39] is used as a building block in its construction, which limits the applicability of Orion in
such scenarios [32]. Constructions Mitra [20], Fides [7] and ΠBP-prime (Section 4.2) satisfy the next level of
backward privacy. Mitra and ΠBP-prime are essentially the same, make use of symmetric primitives only and
as a result are very efficient in practice. But, these constructions still suffer from significant communication
overhead.

In order to overcome the above limitations, one can look to trade security a bit for performance, while at
the same time ensure that the notion of forward and backward privacy is preserved. Constructions Dianadel

[7], Janus [7], Janus++ [40], Horus [20] and ΠWBP (Section 4.2) satisfy the notion of weak backward privacy
(WBP). The communication and computation complexity of search and update protocols of Dianadel isn’t
optimal (See Table 1). To improve upon the communication overhead of Search protocol, a single round-
trip Janus framework [7] was proposed. It was instantiated using asymmetric and symmetric puncturable
encryption scheme in Janus [7] and Janus++ [40] respectively. However, the computational complexity of
search protocol in Janus framework is O(nw · dw), which is unreasonably high (nw · dw >> o′w). Horus,
a modified version of Orion, was proposed in order to improve the number of round trips in the Search
protocol (O(log(N)) to O(log(dw))). But Horus suffers from the same scalability issue as Orion. ΠWBP is a
single-round trip DSSE scheme that achieves optimal communication complexity, makes use of symmetric
primitives only and is very efficient in practice. However, the computation complexity of the Search protocol
is not quasi-optimal in nw. Moreover, the notion of weak backward privacy can only be used in scenarios
where reinsertion of keyword-document is not allowed.

BP-II (Definition 3.6) along with satisfying the intuitive notion of backward privacy, allows the reinsertion
of keyword-document pairs. The corresponding construction, ΠBP (Section 4.3) is the first DSSE scheme
that satisfies the notion of backward privacy in the general setting that achieves optimal communication
complexity, makes use of symmetric primitives only and is very efficient in practice. The only limitation is
that the search time in ΠBP is not quasi-optimal in nw which seems to be the cost that one has to pay to
achieve optimal communication complexity in Update and Search protocol.

5 Implementation Results

In this section, we discuss the implementation results of schemes ΠFP and ΠBP. ΠFP being currently the
most efficient forward private scheme in literature, serves as a benchmark to evaluate the performance of
other DSSE schemes. The implementation results for ΠBP gives a fair indication about the performance
of ΠBP-prime and ΠWBP as their asymptotic complexity are same and they also make use of light-weight
symmetric primitives. Further, the concrete computation cost of ΠWBP reduces further as the tags need not
be recomputed. We have implemented the schemes in C++. For pseudo random functions Fd, Ft and pseudo
random permutation Gtag, we use AES, and for hash functions H1 and H2, we use SHA-256. We use the
AES and SHA-256 function available in OpenSSL library [41] in our code. Maps T and W are stored using
RocksDB [17].

All our experiments were performed on a desktop computer with an Intel Core i5 4460 3.20GHz CPU and

26

Implementation Time (s)
Time per

pair ∗ (µs)
Strg. at
S (GB)

Strg. at
C (MB)

ΠFP (in main memory) 164.66 4.49 2.8 2.4
ΠFP (in ext. disk) 172.66 4.71 2.8 2.4

ΠBP (in main memory) 182.90 4.98 2.8 2.4
ΠBP (in ext. disk) 193.74 5.28 2.8 2.4

∗ - document-keyword pair, Strg. = Storage

Table 2: EDB Creation

0

20

40

60

80

100

120

Se
ar

ch
 t

im
e

p
er

 m
at

ch
ed

 e
n

tr
y
(µ
s)

Number of matched documents

ПFP (Single-Threaded)
ПBP (Single-Threaded)
ПFP (Multi-Threaded)
ПBP (Multi-Threaded)

Figure 13: Average per entry search time (Main memory)

8GB RAM running Ubuntu 16.04 LTS. Our code is designed to run as a single program as we are interested
in determining the performance of Search and Update protocols of our constructions.

We used Enron email dataset [1] to create EDB on which we perform our search and update operations.
We wrote a python code to extract keywords from the mails in Enron email dataset using NLTK library
[34]. The number of documents, number of keywords and number of document-keyword pairs in our dataset
are 517,401, 212,020 and 36,688,028 respectively.

EDB Creation EDB was created to store all the document-keyword pairs extracted from the Enron email
dataset. The computational works and I/O latency required for EDB creation are parallelized using thread
pool. Table 2 shows the time taken to create an EDB, the time taken to process each document-keyword
pair and the size of EDB and W just after EDB creation. For in memory results, only map T was mounted
on to main memory.

For each entry in Table 2, we ran our experiment 10 times and computed the average. The time taken
to create EDB in main memory and external disk is similar for both the schemes. The time taken to create
EDB for ΠBP is reasonably close to that of ΠFP. The per document-keyword processing time is very less for
both the schemes as only symmetric primitives are used in our constructions.

0

20

40

60

80

100

120

140

Se
ar

ch
 t

im
e

p
er

 m
at

ch
ed

 e
n

tr
y
(µ
s)

Number of matched documents

ПFP (Single-Threaded)
ПBP (Single-Threaded)
ПFP (Multi-Threaded)
ПBP (Multi-Threaded)

Figure 14: Average per entry search time (External disk)

27

4

6

8

10

12

1 2 3 4 5 6 7 8

A
ve

ra
ge

 S
ea

rc
h

 t
im

e
p

er

m
at

ch
ed

 e
n

tr
y
(µ
s)

Number of threads

ПFP (Main Memory)
ПFP (External Disk)
ПBP (Main Memory)
ПBP (External Disk)

Figure 15: Average per entry search time (# Threads)

EDB Search To evaluate the search performance, we searched all the keywords extracted from the Enron
email dataset just after EDB creation and measured the overall time taken for the Search protocol. The
performance of both the schemes when T is mounted on to main memory and when T is stored on external
disk was evaluated. Figure 13 describes the search time per matched entry (stpme) based on the number
of documents returned in the search results for both the schemes when T is mounted on to main memory.
It illustrates the performance in single threaded and multi-threaded environment. Figure 14 describes the
same when T is stored on the external hard disk. In Figures 13 and 14,

RS(i) =

{
DB(w) = 1 if i = 0

2i−1 < DB(w) ≤ 2i if 1 ≤ i ≤ 18.

Figure 15 illustrates that the stpme for both the schemes is affected by the number of threads used to
perform the search operation. For searches matching less number of documents, the cost is high because of
one time computations such as storage access in computation of token at C’s end, creation of threads, access
to map D, etc., which is amortized for searches matching large number of documents. The performance
of both the schemes improve significantly in multi-threaded environment, thus, highlighting the potential
for parallelism in practice. The schemes performed the best when the number of threads were around the
number of cores in the processor, i.e., 4. The performance of ΠBP is comparable to the performance of ΠFP.
The stpme in ΠBP was 4.50 (resp. 4.89) µs for queries whose result set size was in the interval (217, 218] and
the average stpme was 5.59 (resp. 5.95) µs for all queries when T was mounted on to main memory (resp.
stored on external disk).

EDB Dynamic Environment To show the performance of search queries in dynamic environment, i.e.,
where search queries are interspersed with update queries, we identified the set of keywords matching more
than 80k documents from the extracted document-keyword pairs, say S80k. An initial EDB was constructed
using extracted document-keyword pairs apart from those corresponding to keywords in S80k. The document-
keyword pairs corresponding to keywords in S80k are then utilized to perform update queries dynamically.
Figure 16 describes the stpme with regard to the probability (p) of search queries on keywords in S80k. This
implies that the update queries occur with probability 1-p, of which, with probability 0.1 it is a del query.
The performance evaluation includes the time required to process del operation in search queries. For both
the schemes, Figure 16 illustrates that the average stpme decreases in scenarios where search queries are
frequent, as both the schemes exploit the locality introduced by D. The average stpme in ΠBP turns out to
be 1.53 µs, when the probability of search query is 0.0005.

The prototype implementations of ΠFP and ΠBP indicate that the cost of achieving backward privacy
over and above forward privacy is substantially small. This makes ΠBP a suitable candidate for practical
deployment.

Communication Cost As all our constructions make use of symmetric primitives only, the communication
cost becomes the main performance bottleneck. We now compare the communication cost of ΠBP-prime, ΠBP

and ΠWBP as a function of the nature of update queries. Figure 17 depicts the communication cost of the
trio based on the number of documents returned in the search results and the probability with which an

28

0

2

4

6

8

10

0.0000005 0.000005 0.00005 0.0005 0.005 0.05

A
ve

ra
ge

 S
ea

rc
h

 t
im

e
p

er

m
at

ch
ed

 e
n

tr
y
(µ
s)

Probability of search query (p)

ПBP ПFP

Figure 16: Average per entry search time (Dynamic Environment)

0.1

0.1

0.1

0.2

0.2

0.2

0.3

0.3

0.3

0.4

0.4
0.4

0

5,000

10,000

15,000

20,000

25,000

1
2

4
8

16
32

64
128

256
512

1,024
2,048

4,096
8,192

16,384
32,768

65,536
1,31,072

2,62,144

C
o

m
m

u
n

ic
at

io
n

 S
iz

e
(i

n
 K

B
)

ПBP-prime ПBP ПWBP

Figure 17: Communication Cost: Number of matching documents vs. Probability of delete queries

update query is a del query. As can be observed, for ΠBP and ΠWBP the communication cost depends only
upon the result set size and is independent of the nature of update queries. Therefore, the communication
complexity is the same for all types of update query distribution for ΠBP and ΠWBP. However, that is not
the case for ΠBP-prime, as can be observed from Figure 17, the communication complexity increases with
increase in the percentage of delete queries. But note that if the percentage of delete query is less, then the
communication cost of ΠBP-prime is less than ΠBP in practice. Concretely, ΠWBP has the least communication
overhead among all our backward private constructions in practice. As already mentioned in Section 4.2,
ΠBP-prime avoids re-encryption of entries and thus improves upon the communication cost of Mitra∗. Hence,
the communication cost of our constructions fair reasonably well against the most efficient construction until
this work.

6 Conclusion

The main contribution of this paper is to propose three efficient backward private DSSE schemes, viz.,
ΠBP-prime, ΠBP and ΠWBP. We start with revisiting the existing definitions of backward privacy and propose
alternative formulations of leakage for backward privacy, viz., BP-I and BP-II. The proposed constructions
achieve practical efficiency by using light weight symmetric cryptographic components only. In particular,
our construction ΠBP is the first backward private scheme in the general setting that achieves optimal
communication complexity using symmetric cryptographic primitives only. The main takeaway from this
work is that efficient backward private schemes can be realized without involving complex cryptographic
primitives. The simplicity of their design make our backward private constructions even more appealing,
particularly from the implementation perspective. On the definition front, an interesting question arising out
of this study is to analyze the real-world consequences of the leakages incurred by constructions satisfying
the definitions of backward privacy, viz., BPIP, BPUP, BP-I, BP-II or even WBP (in restricted setting). On

29

the construction front, an interesting problem to pursue is to design an efficient, single roundtrip, response
revealing backward private scheme in the general setting ideally with optimal communication complexity.

References

[1] “Enron Email Dataset,” https://www.cs.cmu.edu/ enron/, Accessed: 2018-05-14.

[2] M. A. Abdelraheem, T. Andersson, and C. Gehrmann, “Inference and Record-Injection Attacks on
Searchable Encrypted Relational Databases,” IACR Cryptology ePrint Archive, vol. 2017, p. 24, 2017.

[3] M. Bellare and P. Rogaway, “The Security of Triple Encryption and a Framework for Code-Based
Game-Playing Proofs,” in EUROCRYPT, ser. LNCS, vol. 4004. Springer, 2006, pp. 409–426.

[4] D. Boneh and B. Waters, “Constrained Pseudorandom Functions and Their Applications,” in ASI-
ACRYPT, ser. LNCS, vol. 8270. Springer, 2013, pp. 280–300.

[5] R. Bost, “Σoϕoς: Forward Secure Searchable Encryption,” in ACM CCS. ACM Press, 2016, pp.
1143–1154.

[6] ——, “Searchable Encryption: New Constructions of Encrypted Databases,” Ph.D. dissertation, 2018.

[7] R. Bost, B. Minaud, and O. Ohrimenko, “Forward and Backward Private Searchable Encryption from
Constrained Cryptographic Primitives,” in ACM CCS. ACM Press, 2017, pp. 1465–1482.

[8] E. Boyle, S. Goldwasser, and I. Ivan, “Functional Signatures and Pseudorandom Functions,” in PKC,
ser. LNCS, vol. 8383. Springer, 2014, pp. 501–519.

[9] D. Cash, P. Grubbs, J. Perry, and T. Ristenpart, “Leakage-Abuse Attacks Against Searchable Encryp-
tion,” in ACM CCS. ACM Press, 2015, pp. 668–679.

[10] D. Cash, J. Jaeger, S. Jarecki, C. S. Jutla, H. Krawczyk, M. Rosu, and M. Steiner, “Dynamic Searchable
Encryption in Very-Large Databases: Data Structures and Implementation,” in NDSS. The Internet
Society, 2014.

[11] D. Cash, S. Jarecki, C. Jutla, H. Krawczyk, M.-C. Roşu, and M. Steiner, “Highly-Scalable Searchable
Symmetric Encryption with Support for Boolean Queries,” in CRYPTO, ser. LNCS. Springer, 2013,
vol. 8042, pp. 353–373.

[12] Y. Chang and M. Mitzenmacher, “Privacy preserving keyword searches on remote encrypted data,” in
ACNS, ser. Lecture Notes in Computer Science, vol. 3531, 2005, pp. 442–455.

[13] M. Chase and S. Kamara, “Structured Encryption and Controlled Disclosure,” in ASIACRYPT, ser.
LNCS, vol. 6477. Springer, 2010, pp. 577–594.

[14] R. Curtmola, J. A. Garay, S. Kamara, and R. Ostrovsky, “Searchable Symmetric Encryption: Improved
Definitions and Efficient Constructions,” in ACM CCS. ACM Press, 2006, pp. 79–88.

[15] M. Etemad, A. Küpçü, C. Papamanthou, and D. Evans, “Efficient Dynamic Searchable Encryption with
Forward Privacy,” PoPETs, vol. 2018, no. 1, pp. 5–20, 2018.

[16] S. Faber, S. Jarecki, H. Krawczyk, Q. Nguyen, M. Rosu, and M. Steiner, “Rich Queries on Encrypted
Data: Beyond Exact Matches,” in ESORICS, ser. LNCS, vol. 9327. Springer, 2015, pp. 123–145.

[17] Facebook, “RocksDB: A persistent key-value store for fast storage environment,” https://rocksdb.org/,
Accessed: 2018-05-14.

[18] S. Garg, P. Mohassel, and C. Papamanthou, “TWORAM: Efficient Oblivious RAM in Two Rounds
with Applications to Searchable Encryption,” in CRYPTO, ser. LNCS, vol. 9816. Springer, 2016, pp.
563–592.

30

[19] C. Gentry, “A Fully Homomorphic Encryption Scheme,” Ph.D. dissertation, Stanford, CA, USA, 2009,
aAI3382729.

[20] J. Ghareh Chamani, D. Papadopoulos, C. Papamanthou, and R. Jalili, “New constructions for forward
and backward private symmetric searchable encryption,” in Proceedings of the 2018 ACM SIGSAC
Conference on Computer and Communications Security, ser. CCS ’18. ACM, pp. 1038–1055.

[21] O. Goldreich, S. Goldwasser, and S. Micali, “How to Construct Random Functions (Extended Ab-
stract),” in FOCS. IEEE Computer Society Press, 1984, pp. 464–479.

[22] O. Goldreich and R. Ostrovsky, “Software Protection and Simulation on Oblivious RAMs,” J. ACM,
no. 3, pp. 431–473, 1996.

[23] S. Goldwasser, S. Micali, and R. L. Rivest, “A ”paradoxical” solution to the signature problem (extended
abstract),” in FOCS. IEEE Computer Society, 1984, pp. 441–448.

[24] ——, “A digital signature scheme secure against adaptive chosen-message attacks,” SIAM J. Comput.,
vol. 17, no. 2, pp. 281–308, 1988.

[25] M. D. Green and I. Miers, “Forward Secure Asynchronous Messaging from Puncturable Encryption,”
in IEEE Symposium on Security and Privacy. IEEE Computer Society Press, 2015, pp. 305–320.

[26] S. Kamara and T. Moataz, “Boolean Searchable Symmetric Encryption with Worst-Case Sub-linear
Complexity,” in EUROCRYPT, ser. LNCS, vol. 10212. Springer, 2017, pp. 94–124.

[27] S. Kamara, C. Papamanthou, and T. Roeder, “Dynamic Searchable Symmetric Encryption,” in ACM
CCS. ACM Press, 2012, pp. 965–976.

[28] A. Kiayias, S. Papadopoulos, N. Triandopoulos, and T. Zacharias, “Delegatable Pseudorandom Func-
tions and Applications,” in ACM CCS. ACM Press, 2013, pp. 669–684.

[29] K. S. Kim, M. Kim, D. Lee, J. H. Park, and W. Kim, “Forward Secure Dynamic Searchable Symmetric
Encryption with Efficient Updates,” in ACM CCS. ACM Press, 2017, pp. 1449–1463.

[30] N. Koblitz and A. Menezes, “Another look at security definitions,” Adv. in Math. of Comm., vol. 7,
no. 1, pp. 1–38, 2013.

[31] A. Menezes and N. P. Smart, “Security of signature schemes in a multi-user setting,” Des. Codes
Cryptography, vol. 33, no. 3, pp. 261–274, 2004.

[32] M. Naveed, “The fallacy of composition of oblivious RAM and searchable encryption,” IACR Cryptology
ePrint Archive, vol. 2015, p. 668, 2015.

[33] M. Naveed, M. Prabhakaran, and C. A. Gunter, “Dynamic Searchable Encryption via Blind Storage,”
in IEEE Symposium on Security and Privacy. IEEE Computer Society Press, 2014, pp. 639–654.

[34] NLTK Project, “Natural Language Toolkit,” https://www.nltk.org/, Accessed: 2018-05-14.

[35] T. Pornin and J. P. Stern, “Digital signatures do not guarantee exclusive ownership,” in ACNS, ser.
LNCS, vol. 3531, 2005, pp. 138–150.

[36] D. X. Song, D. Wagner, and A. Perrig, “Practical Techniques for Searches on Encrypted Data,” in IEEE
Symposium on Security and Privacy. IEEE Computer Society Press, 2000, pp. 44–55.

[37] X. Song, C. Dong, D. Yuan, Q. Xu, and M. Zhao, “Forward Private Searchable Symmetric Encryption
with Optimized I/O Efficiency,” IEEE Transactions on Dependable and Secure Computing, 2018.

[38] E. Stefanov, C. Papamanthou, and E. Shi, “Practical Dynamic Searchable Encryption with Small Leak-
age,” in NDSS. The Internet Society, 2014.

[39] E. Stefanov, M. van Dijk, E. Shi, C. W. Fletcher, L. Ren, X. Yu, and S. Devadas, “Path ORAM: An
Extremely Simple Oblivious RAM Protocol,” in ACM CCS. ACM Press, 2013, pp. 299–310.

31

[40] S.-F. Sun, X. Yuan, J. K. Liu, R. Steinfeld, A. Sakzad, V. Vo, and S. Nepal, “Practical backward-
secure searchable encryption from symmetric puncturable encryption,” in Proceedings of the 2018 ACM
SIGSAC Conference on Computer and Communications Security, ser. CCS ’18. ACM, 2018, pp.
763–780.

[41] The OpenSSL Project, “OpenSSL Cryptography and SSL/TLS Toolkit,” https://www.openssl.org/,
Accessed: 2018-05-14.

[42] S. Vaudenay, “Digital signature schemes with domain parameters: Yet another parameter issue in
ECDSA,” in ACISP, ser. LNCS, vol. 3108. Springer, 2004, pp. 188–199.

[43] Y. Zhang, J. Katz, and C. Papamanthou, “All Your Queries Are Belong to Us: The Power of File-
Injection Attacks on Searchable Encryption,” in USENIX Security Symposium. USENIX Association,
2016, pp. 707–720.

A Correctness and Security of ΠFP

A.1 Proof of Correctness

Theorem A.1. If Fd, Ft are secure PRFs and H1 is a collision-resistant hash function then ΠFP is correct.

Proof. We use the games G0 and G1. The games are identical to ΠFP (see Figure 6) except for the following
changes:

1. In the Setup algorithm, we initialize the sets LabSet1, LabSet2 to null set and set boolean variable bad
to false.

2. We remove line 5 and 6 of Update protocol and after line 4 in the Update protocol, we add the following
code:

G0, G1

5. kw ← Keyt[w, verw]

6. label← H1(kw‖cw)

7. if label ∈ LabSet1 then

8. bad← true, label
$←− {0, 1}λ \ LabSet1

9. LabSet1 ← LabSet1 ∪ {label}

3. We replace line 5 in the Search protocol with the following code:

G0, G1

5. labelw ← Keyd[w]

6. if ∃ w′ s.t (w′, labelw) ∈ LabSet2 ∧ w′ 6= w then

7. bad← true, labelw
$←− {0, 1}λ \ LabSet2

8. LabSet2 ← LabSet2 ∪ {(w, labelw)}

4. We replace line 7 in the Search protocol with the following code:

G0, G1

7. kw ← Keyt[w, verw]

In the modification snippets, G1 includes the box code and G0 does not. The first game G0 will output 1,
only if bad is set, as repeated labels in maps T and D are the only source of incorrectness. G0 produces an

32

identical distribution to real game when bad is not set. If the value assigned to label is repeated, G0 replaces
it with new value which hasn’t been assigned to any label up till now.

Let us denote the event ‘the flag bad is set to true’ in G0 by E0. This gives,

Pr[DSSECorΠFP

A (λ) = 1] ≤ Pr[E0]. (18)

In G1, every call to PRFs Ft and Fd are answered using tables Keyt and Keyd respectively. The entries in
table Keyt are referred by (w, ver) and entries in table Keyd are referred by w.

Let us denote the event ‘the flag bad is set to true’ in G1 by E1.

There exists an adversary B1 that can distinguish Ft from a truly random function and/or an adversary
B2 that can distinguish Fd from a truly random function such that:

|Pr[E1]− Pr[E0]| ≤ Advprf
Ft,B1

(λ) + Advprf
Fd,B2

(λ)

≤ neg(λ). (19)

The event E1 occurs only when the newly picked label value was already picked earlier in G1. E1 occurs
in line 7 of modification 3, if the same label is generated for more than one keyword. Since, the labels are
picked uniformly at random in line 5 and the number of keywords, m, is a polynomial in security parameter,
by the birthday bound we can conclude that the probability that the two labels for map D are equal is at

most m2

2λ
, i.e., neg(λ).

Further, the key kw is picked uniformly at random (see line 5 of modification 2) and the number of
updates on T, say q, is a polynomial in security parameter. By the birthday bound we can conclude that the

probability that the two keys are equal is at most q2

2λ
, i.e., neg(λ). Therefore, only with negligible probability

the input to H1 is repeated. So, if E1 occurs in line 8 of modification 2, one can find collision in the hash
function H1. Since, H1 is collision resistant this happens with negligible probability. Therefore,

Pr[E1] ≤ neg(λ). (20)

From (18), (19) and (20), we get

Pr[DSSECorΠFP

A (λ) = 1] ≤ neg(λ). (21)

A.2 Security Proof

Theorem A.2. If Fd, Ft are secure PRFs and H1,H2 are hash functions modeled as random oracles outputting
2λ and µ bits respectively then ΠFP is FP-I secure (Definition 3.1).

Proof. We structure our proof using a sequence of games G0 to G4. G0 will compute a distribution identical to
RealΠFP

A (λ) and G4 will compute a distribution that can be simulated perfectly given L, i.e., its distribution

is identical to IdealΠFP

A,Sim(λ) and the intermediate games are hybrids.

Game G0: G0 is exactly identical to RealΠFP

A (λ).

Pr[RealΠFP

A (λ) = 1] = Pr[G0 = 1]. (22)

Game G1: In G1, every call to PRFs Ft and Fd are answered using tables Keyt and Keyd respectively. The
entries in table Keyt are referred by (w, ver) and entries in table Keyd are referred by w. If there exists an
adversary A that is able to distinguish between games G0 and G1, we can construct an adversary B1 that

33

Setup()

1. W,T,D← empty map

2. bad← false

3. return (EDB = (D, T),

stc = (kt, kd, W)) to (S,C)

Update(op, w, ind, stC;EDB)

UpdateC(op, w, ind, stC)

1. (verw, cw)←W[w]

2. if (verw, cw) = ⊥ then

3. verw ← 0, cw ← −1

4. cw ← cw + 1, kw ← Keyt[w, verw]

5. valr
$←− {0, 1}λ

6. if H1[kw, cw] 6= ⊥ then

7. bad← true, valr ← H1(kw‖cw)

8. Hash1[w, verw, cw]← valr

9. b← 0(op = add)/1(op = del)

10. pad← H2(kw‖cw)

11. e← b‖ind⊕ pad

12. W[w]← (verw, cw)

13. Send (valr, e) to S

Search(w, stC;EDB)

SearchC(w, stC) :

1. (verw, cw)←W[w]

2. if (verw, cw) = ⊥ then

3. return ∅
4. else

5. labelw ← Keyd[w]

6. if cw 6= −1 then

7. kw ← Keyt[w, verw]

8. for i = 0 to cw do

9. H1[kw, i]← Hash1[w, verw, i]

10. verw ← verw + 1, cw ← −1

11. W[w]← (verw, cw)

12. else

13. kw ← ⊥
14. Send (labelw, kw, cw) to S

H1(k‖c)

1. val← H1[k, c]

2. if val = ⊥ then

3. val
$←− {0, 1}λ

4. if ∃w, ver s.t. ver = W[w].verw ∧
k = Keyt[w, ver] ∧ c ≤W[w].cw then

5. bad← true, val← Hash1[w, ver, c]

6. H1[k, c]← val

7. return val

Figure 18: Games G2 and G′2 (Theorem A.2). G′2 includes the box code and G2 does not.

can distinguish Ft from a truly random function and/or an adversary B2 that can distinguish Fd from a truly
random function. Formally, there exist adversaries B1 and B2, such that

|Pr[G0 = 1]− Pr[G1 = 1]| ≤ Advprf
Ft,B1

(λ) + Advprf
Fd,B2

(λ)

≤ neg(λ). (23)

Game G2: In G2, instead of calling H1 to generate label in the Update protocol, we pick random strings.
Then, during the Search protocol, the random oracle H1 is programmed accordingly to ensure consistency.

Table Hash1 and H1 are used to simulate the random oracle H1, the entries in the table Hash1 are referred
by (w, ver, c) and in the table H1 by (k, c).

Figure 18 formally describes G2, and an intermediate game G′2. In G′2, H1 is never programmed to two
different values for the same input, thus, ensuring consistency. Instead of storing the randomly picked value
in table Hash1 at position (w, verw, cw), it first checks whether H1 is already programmed at value (kw, cw)
which can happen if there was a query to the random oracle H1 with input (kw‖cw). If the check is true, the
value H1(kw‖cw) is stored in Hash1[w, verw, cw] else the randomly picked value is stored in Hash1[w, verw, cw].
The random oracle when needed in the Search protocol in line 9 or by an adversary’s query to the random
oracle H1 in line 5 is lazily programmed in G2, so that the outputs are consistent throughout.

The only difference between game G1 and G′2 is how we model the random oracle H1. The outputs of H1

is perfectly indistinguishable in both these games, therefore,

Pr[G′2 = 1] = Pr[G1 = 1]. (24)

Let us denote the event ‘the flag bad is set to true’ in G′2 by E1. The games G′2 and G2 are also perfectly iden-
tical unless the event E1 occurs, and we can apply identical-until-bad technique to bound the distinguishing
advantage between G′2 and G2.

|Pr[G′2 = 1]− Pr[G2 = 1]| ≤ Pr[E1]. (25)

34

Setup()

1. W,T,D← empty map

2. u← 0

3. Update, STs← empty table

4. STs[w][0]← −1, ∀w ∈W

5. return (EDB = (D, T),

stc = (W)) to (S,C)

Update(op, w, ind, stC;EDB)

UpdateC(op, w, ind, stC)

1. Append (u, op, ind) to Update[w]

2. Hash1[u]
$←− {0, 1}2λ

3. Hash2[u]
$←− {0, 1}µ

4. Send (Hash1[u],Hash2[u]) to S

5. u← u + 1

Search(w, stC;EDB)

SearchC(w, stC) :

1. Append u to STs[w]

2. (empty, verw, cw

{indw,c, H1,w,c, H2,w,c}0≤c≤cw)←
GetData(Update, STs,Hash1,Hash2)

3. if empty = true then

4. return ∅
5. else

6. labelw ← Keyd[w]

7. if cw 6= −1 then

8. kw ← Keyt[w, verw]

9. for i = 0 to cw do

10. H1(kw, i)← H1,w,i

11. H2(kw, i)← H2,w,i ⊕ indw,i

12. else

13. kw ← ⊥
14. Send (labelw, kw, cw) to S

15. u← u + 1

GetData(Update, STs,Hash1,Hash2)

1. if Update[w] = ⊥
2. empty← true

3. else

4. empty← false

5. verw ← −1

6. for i = 1 to |STs[w]| − 1 do

7. if ∃ u, op, ind s.t. (u, op, ind) ∈
Update[w] ∧ u > STs[w][i− 1] ∧
u < STs[w][i] then

8. verw ← verw + 1

9. cw ← −1

10. ul← |STs[w]| − 1

11. Bufw ← ∅
12. for u = STs[w][ul − 1]

to STs[w][ul] do

13. if ∃ op, ind s.t. (u, op, ind)

∈ Update[w] then

14. cw ← cw + 1

15. b← 0(op = add)/1(op = del)

16. indw,cw ← b‖ind
17. H1,w,cw ← Hash1[u]

18. H2,w,cw ← Hash2[u]

19. return (empty, verw, cw,

{indw,c, H1,w,c, H2,w,c}0≤c≤cw)

Figure 19: Game G4 (Theorem A.2)

The event E1 occurs in line 7 of Update protocol and in line 5 of H1 algorithm. The former captures the fact
that adversary has already queried random oracle H1 at input (kw‖cw) and the latter captures the fact that
the adversary queries random oracle H1 on a valid input (k‖c) and the value k is not currently revealed to
adversary. Since, the value kw is picked uniformly at random, the probability with which event E1 occurs is
negligible. Using (24) and (25), we can conclude:

|Pr[G1 = 1]− Pr[G2 = 1]| ≤ neg(λ). (26)

Game G3: In G3, what we did for H1 in game G2, we do for H2. Using the same arguments, we can conclude:

|Pr[G2 = 1]− Pr[G3 = 1]| ≤ neg(λ). (27)

Game G4: In G4 (see Figure 19), we abstract out the information that needs to be simulated by the simulator
in order to output transcripts identical to G3. Using GetData algorithm in G4, one keeps track of the randomly
generated label and pad differently than in G3. In Search protocol, the random oracles are programmed
identically to that in G3. Queries to random oracles H1 and H2 can be simulated by outputting random
values.

The transcripts outputted by Update protocol is identical to that of Update protocol in G3, as we output
fresh random strings in the Update protocol.

Next, we describe the Search protocol in G4. Based on tables Update and STs, the value of the follow-
ing components: empty, verw, cwand {indw,c, H1,w,c, H2,w,c}0≤c≤cw is determined using GetData algorithm.
Flag empty is set to 1 if Update is empty. verw is the count of searches for which there was an update
on map T corresponding to keyword w after the previous search. The loop in line 6 of GetData deter-
mines the number of times version number is updated, i.e., value of verw. Here, cw denotes the count of

35

updates on map T corresponding to keyword w after the previous search. {indw,c}0≤c≤cw are the docu-
ment identifier values along with operation bit that have been added to T after the previous search op-
eration and the values {H1,w,c, H2,w,c}0≤c≤cw are used to simulate the random oracles consistently with
the response given at the time of update queries. The loop in line 12 of GetData computes the values of
cw and {indw,c, H1,w,c, H2,w,c}0≤c≤cw . As the value of components are computed correctly and consistently
w.r.t. previous queries, the transcripts of Search protocol is identical to that of Search protocol in G3.
Therefore, we conclude that:

Pr[G4 = 1] = Pr[G3 = 1]. (28)

Simulator Sim: Finally, we construct a simulator that given the leakage profile L simulates game G4 correctly.
It is easy to see that, Sim can simulate Update protocol correctly. Instead of using keyword w, Sim uses the
counter w=min sp(w) uniquely mapped from w using LSearch in simulating the Search protocol (line 6 and
line 8). In line 2 of Search protocol, Sim uses sp(w) and Hist(w) instead of STs and Update as input to
the GetData algorithm. Thus, Sim is able to produce transcripts of output of Search and Update protocols
identical to G4. Hence, we conclude that:

Pr[IdealΠFP

A,Sim(λ) = 1] = Pr[G4]. (29)

By connecting all the games, we conclude∣∣∣Pr[Real
ΠFP
A (λ) = 1]− Pr[Ideal

ΠFP
A,Sim(λ) = 1]

∣∣∣ ≤ neg(λ).

B Security Proof of ΠBP-prime

Theorem B.1. If Fd, Ft are secure PRFs, E is RCPA secure and H1 is a hash function modeled as random
oracle outputting 2λ bits then ΠBP-prime is BP-I secure (Definition 3.5).

Proof. We structure our proof using a sequence of games G0 to G4. G0 will compute a distribution identical
to RealΠBP-prime

A (λ) and G4 will compute a distribution that can be simulated perfectly given L, i.e., its

distribution is identical to IdealΠBP-prime
A,Sim (λ) and the intermediate games are hybrids.

Game G0: G0 is exactly identical to RealΠBP-prime
A (λ).

Pr[RealΠBP-prime
A (λ) = 1] = Pr[G0 = 1]. (30)

Game G1: In G1, every call to PRF Ft and Fd are answered using tables Keyt and Keyd respectively. The
entries in table Keyt are referred by (w, ver) and entries in table Keyd are referred by w. If there exists an
adversary A that is able to distinguish between games G0 and G1, we can construct an adversary B1 that
can distinguish Ft from a truly random function and/or an adversary B2 that can distinguish Fd from a truly
random function. Formally, there exists adversaries B1 and B2, such that

|Pr[G0 = 1]− Pr[G1 = 1]| ≤ AdvprfFt,B1
(λ) + AdvprfFd,B2

(λ)

≤ neg(λ). (31)

Game G2: In G2, instead of calling H1 to generate label in the Update protocol, we pick random strings.
Then, during the Search protocol, the random oracle H1 is programmed accordingly, to ensure consistency.

Table Hash1 and H1 are used to simulate the random oracle H1, the entries in the table Hash1 are referred
by (w, ver, c) and in the table H1 by (k, c).

Figure 20 formally describes G2, and an intermediate game G′2. In G′2, H1 is never programmed to two
different values for the same input, thus, ensuring consistency. Instead of storing the randomly picked value
in table Hash1 at position (w, verw, cw), it first checks whether H1 is already programmed at value (kw, cw)

36

Setup()

1. ke ← E .Gen()

2. W,T,D← empty map

3. bad← false

4. return (EDB = (D, T),

stc = (ke, kt, kd,W)) to (S,C)

Update(op, w, ind, stC;EDB)

UpdateC(op, w, ind, stC)

1. (verw, cw)←W[w]

2. if (verw, cw) = ⊥ then

3. verw ← 0, cw ← −1

4. cw ← cw + 1

5. kw ← Keyt[w, verw]

6. valr
$←− {0, 1}λ

7. if H1[kw, cw] 6= ⊥ then

8. bad← true, valr ← H1(kw‖cw)

9. Hash1[w, verw, cw]← valr

10. b← 0 (op=add)/ 1 (op=del)

11. e← E .Enc(ke, b‖ind)

12. W[w]← (verw, cw)

13. Send (valr, e) to S

Search(w, stC;EDB)

Round 1

SearchC(w, stC) :

1. (verw, cw)←W[w]

2. if (verw, cw) = ⊥ then

3. return ∅
4. else

5. labelw ← Keyd[w]

6. if cw 6= −1 then

7. kw ← Keyt[w, verw]

8. for i = 0 to cw do

9. H1[kw, i]← Hash1[w, verw, i]

10. verw ← verw + 1

11. cw ← −1

12. W[w]← (verw, cw)

13. else

14. kw ← ⊥ //No need of round 2

15. Send (labelw, kw, cw) to S

Round 2

SearchC(w, stC) :

16. Receive (PSetw,AList) from S

17. (verw, cw)←W[w]

18. AuxSet← PSetw

19. for c← 0 to |AList| do
20. (b‖ind)← E .Dec(ke,AList[c])
21. if b = 0

22. AuxSet← AuxSet ∪ {ind}
23. else

24. AuxSet← AuxSet \ {ind}
25. return AuxSet

H1(k‖c)

1. val← H1[k, c]

2. if val = ⊥ then

3. val
$←− {0, 1}λ

4. if ∃w, ver s.t. ver = W[w].verw ∧
k = Keyt[w, ver] ∧ c ≤W[w].cw then

5. bad← true, val← Hash1[w, ver, c]

6. H1[k, c]← val

7. return val

Figure 20: Games G2 and G′2 (Theorem B.1). G′2 includes the box code and G2 does not.

which can happen if there was a query to the random oracle H1 with input (kw‖cw). If the check is true, the
value H1(kw‖cw) is stored in Hash1[w, verw, cw] else the randomly picked value is stored in Hash1[w, verw, cw].
The random oracle when needed in the Search protocol in line 9 or by an adversary’s query to random oracle
H1 in line 5 is lazily programmed in G2, so that the outputs are consistent throughout.

The only difference between game G1 and G′2 is how we model the random oracle H1. The outputs of H1

is perfectly indistinguishable in both these games, therefore,

Pr[G′2 = 1] = Pr[G1 = 1]. (32)

Let us denote the event ‘the flag bad is set to true’ in G′2 by E1. The games G′2 and G2 are also perfectly iden-
tical unless the event E1 occurs, and we can apply identical-until-bad technique to bound the distinguishing
advantage between G′2 and G2.

|Pr[G′2 = 1]− Pr[G2 = 1]| ≤ Pr[E1]. (33)

The event E1 occurs in line 8 of Update protocol and in line 5 of H1 algorithm. The former captures the fact
that the adversary has already queried random oracle H1 at input (kw‖cw) and the latter captures the fact
that the adversary queries random oracle H1 on a valid input (k‖c) and the value k is not currently revealed
to adversary. Since, the value kw is picked uniformly at random, the probability with which event E1 occurs
is negligible. Using (32) and (33), we can conclude:

|Pr[G1 = 1]− Pr[G2 = 1]| ≤ neg(λ). (34)

Game G3: In G3, instead of computing ciphertexts corresponding to actual op bit ‘b’ and document identifier
ind, we replace them with randomly chosen ciphertexts from the ciphertext space. We also store the plaintext-
ciphertext pairs in order to simulate the view of round 2 of the Search protocol correctly. If there exists an

37

Setup()

1. W,T,D← empty map

2. u← 0

3. Update, STs← empty table

4. STs[w][0]← −1, ∀w ∈W

5. return (EDB = (D, T), stc = (ke, W))

to (S,C)

Update(op, w, ind, stC;EDB)

UpdateC(op, w, ind, stC)

1. Append (u, op, ind) to Update[w]

2. Hash1[u]
$←− {0, 1}2λ

3. e
$←− C

4. Send (Hash1[u], e) to S

5. u← u + 1

GetDatar1(Update, STs,Hash1)

1. if Update[w] = ⊥
2. empty← true

3. else

4. empty← false

5. verw ← −1

6. for i = 1 to |STs[w]| − 1 do

7. if ∃ u, op, ind s.t. (u, op, ind) ∈
Update[w] ∧ u > STs[w][i− 1]

∧ u < STs[w][i] then

8. verw ← verw + 1

9. cw ← −1

10. ul← |STs[w]| − 1

11. for u = STs[w][ul − 1] to

STs[w][ul] do

12. if ∃ op, ind s.t. (u, op, ind)

∈ Update[w] then

13. cw ← cw + 1

14. H1,w,cw ← Hash1[u]

15. return (empty, verw, cw,

{H1,w,c}0≤c≤cw)

Search(w, stC;EDB)

Round 1

SearchC(w, stC) :

1. Append u to STs[w]

2. (empty, verw, cw, {H1,w,c}0≤c≤cw)←
GetDatar1(Update, STs,Hash1)

3. if empty = true then

4. return ∅
5. else

6. labelw ← Keyd[w]

7. if cw 6= −1 then

8. kw ← Keyt[w, verw]

9. for i = 0 to cw do

10. H1[kw, i]← H1,w,i

11. else

12. kw ← ⊥
13. Send (labelw, kw, cw) to S

Round 2

SearchC(w, stC) :

14. Receive (PSetw,AList) from S

15. AuxSet←
GetDatar2(PSetw,Update, STs)

16. return AuxSet

17. u← u + 1

GetDatar2(PSetw,Update, STs)

1. AuxSet← PSetw

2. ul← |STs[w]| − 1

3. for u = STs[w][ul − 1] to

STs[w][ul] do

4. if ∃ op, ind s.t. (u, op, ind)

∈ Update[w] then

5. if op = add then

6. AuxSet← AuxSet ∪ {ind}
7. else

8. AuxSet← AuxSet \ {ind}
9. return AuxSet

Figure 21: Game G4 (Theorem B.1)

adversary A that is able to distinguish between games G2 and G3, we can construct an adversary B that
breaks the RCPA security of E .

Game G4: In G4 (see Figure 21), we abstract out the information that needs to be simulated by the simulator
in order to output transcripts identical to G3. Using GetDatar1 and GetDatar2 algorithms in G4, one keeps
track of label differently than in G4. In Search protocol, the random oracle is programmed identically to that
in G4. Queries to random oracle H1 can be simulated by outputting random values.

As we output fresh random strings in Update protocol, the transcripts of Update protocol is identical to
that of Update protocol in G3.

Next, let us describe the Search protocol in G4. Based on tables Update and STs, the value of following
components: empty, verw, cw and {H1,w,c}0≤c≤cw are determined using GetDatar1 algorithm. Flag empty
is set to 1 if Update is empty. verw is the count of searches for which there was an update on map T
corresponding to keyword w after the previous search. The loop in line 6 of GetDatar1 determines the
number of times version number is updated, i.e., value of verw. Here, cw denotes the count of updates on
map T corresponding to keyword w after the previous search and the values {H1,w,c}0≤c≤cw are used to
simulate the random oracle consistently with the response given at the time of update queries. The loop in
line 11 of GetDatar1 computes the values of cw, and {H1,w,c}0≤c≤cw . Given PSetw, STs and Update, we
determine the current set of documents matching the keyword w, i.e., AuxSet=DB(w) in GetDatar2 which is
then used to simulate the output of round 2 of Search protocol. As the value of components are determined

38

correctly and consistently, the transcripts of Search protocol is identical to that of Search protocol in G3.
Therefore, we conclude that:

Pr[G4 = 1] = Pr[G3 = 1]. (35)

Simulator Sim: Finally, we construct a simulator that given the leakage profile L simulates game G4 correctly.
Sim can simulate Update protocol correctly as in G4. Instead of using keyword w, Sim uses the counter w=min
sp(w) uniquely mapped from w using LSearch in simulating the Search protocol (line 6 and line 8). In line 2
of Search protocol, Sim uses sp(w) and Updates(w) instead of STs and Update as input to the GetDatar1
algorithm. Note that in GetDatar1, we only use the timestamps of the search and update queries in order to
perform the simulation. Also, the output of GetDatar2 (line 15) is the current set of documents matching the
keyword w, i.e., DB(w) which is a part of leakage profile, LSearch. Thus, Sim is able to produce transcripts
of output of Search and Update protocols identical to G4. Hence, we conclude that:

Pr[IdealΠBP-prime
A,Sim (λ) = 1] = Pr[G4]. (36)

By connecting all the games, we conclude∣∣∣Pr[Real
ΠBP-prime
A (λ) = 1]− Pr[Ideal

ΠBP-prime
A,Sim (λ) = 1]

∣∣∣ ≤ neg(λ).

39

