
Symmetric-key Authenticated Key Exchange
(SAKE) with Perfect Forward Secrecy

Gildas Avoine1,2, Sébastien Canard3, and Löıc Ferreira3,1

1 Univ Rennes, INSA Rennes, CNRS, IRISA, France
2 Institut Universitaire de France

gildas.avoine@irisa.fr
3 Orange Labs, Applied Crypto Group, Caen, France
{sebastien.canard,loic.ferreira}@orange.com

Abstract. Key exchange protocols in the asymmetric-key setting are
known to provide stronger security properties than protocols in sym-
metric-key cryptography. In particular, they can provide perfect forward
secrecy, as illustrated by key exchange protocols based on the Diffie-
Hellman scheme. However public-key algorithms are too heavy for low-
resource devices, which can then not benefit from forward secrecy. In
this paper, we describe a scheme that solves this issue. Using a nifty
resynchronisation technique, we propose an authenticated key exchange
protocol in the symmetric-key setting that guarantees perfect forward se-
crecy. We prove that the protocol is sound, and provide a formal security
proof.

Keywords: Authenticated key agreement · Symmetric-key cryptogra-
phy · Perfect forward secrecy · Key-evolving.

1 Introduction

An authenticated key exchange (AKE) protocol executed between two parties
aims at authenticating the parties, and computing a fresh shared session key.
Well-known two-party authenticated key exchange protocols make use of dig-
ital signatures to provide authentication, and apply the Diffie-Hellman (DH)
scheme [20] to compute a shared session key. However, such protocols are too
heavy for low-resource devices. More suited protocols, solely based on symmetric-
key functions, have been proposed (e.g., [11, 15, 23, 27, 32, 33, 38, 39] to cite a
few), including widely deployed ones (e.g., in 3G/UMTS [2] and 4G/LTE [3]).
Such symmetric-key protocols are needed in various applications, ranging from
Wireless Sensor Networks (WSNs), Radio Frequency Identification (RFID) tags,
smart cards, Controller Area Networks (CANs) for vehicular systems, smart
home, up to industrial Internet of Things (IoT). Yet, existing symmetric-key
based protocols lack a fundamental security property usually provided by the
DH scheme: perfect forward secrecy (PFS) [21,25]. PFS is a very strong form of
long-term security which, informally, guarantees that future disclosures of some
long-term secret keys do not compromise past session keys. Not all public-key

2 G. Avoine, S. Canard, L. Ferreira

schemes are suitable to guarantee PFS. But, it is widely accepted that PFS can
only be provided by asymmetric schemes (at least regarding stateless protocols).
Indeed, in protocols based on symmetric-key functions, the two parties must
share a long-term symmetric key (which the session keys are computed from).
Therefore the disclosure of this static long-term key allows an adversary to com-
pute all the past (and future) session keys. In this paper, we introduce an AKE
protocol in the symmetric-key setting, and, yet, that does guarantee PFS.

1.1 Motivation of Our Approach

Symmetric-key based protocols do not provide the same security guarantees as
those based on asymmetric algorithms. In particular, they do not guarantee
forward secrecy. Nonetheless, (a few) attempts aim at proposing symmetric-key
protocols that incorporate forward secrecy, as illustrated by the following related
work.

Related Work. Dousti and Jalili [22] describe a key exchange protocol where
the shared master key is updated based on time. Their protocol requires perfect
synchronicity between the parties otherwise this leads to two main consequences.
Firstly, in order to handle the key exchange messages, the parties may use differ-
ent values of the master key corresponding to consecutive epochs, which causes
the session to abort. Secondly, this allows an adversary to trivially break forward
secrecy. Once a party deems the protocol run is correct and the session key can
be safely used (i.e., once the party “accepts”), the adversary corrupts its partner
(which still owns the previous, not updated yet, master key), and computes the
current session key. Furthermore, achieving perfect time synchronisation may be
quite complex in any context, in particular for low-resource devices. Contrary to
Dousti et al., the protocol we propose explicitly deals with the issue of updating
the master keys at both parties without requiring any additional functionality
(such as a synchronised clock).

In the RFID field, the protocol proposed by Le, Burmester, and de Medeiros
[31] aims at authenticating a tag to a server, and at computing a session key
in order to establish a secure channel (which they do not describe). The master
key is updated throughout the protocol run. To deal with the possible desyn-
chronisation between the reader and the tag, the server keeps two consecutive
values of the key: the current and the previous one. If the tag does not update
its master key (which happens when the last message is dropped), the server is
able to catch up during the next session. This implies that, in case of desyn-
chronisation, the server computes the session key from the updated master key,
whereas the tag still stores the previous value. Hence, an adversary that corrupts
the tag can compute the previous session key with respect to the server. In fact,
since the server always keeps the previous value of the master key, together with
the current one, the scheme is intrinsically insecure in strong security models
(i.e., models that allow the adversary to corrupt any of the partners, once the
targeted party accepts). Yet, Le et al. analyse their protocol in a model where
any server corruption is forbidden, and corrupting a tag is allowed only once it

SAKE: Symmetric-key AKE with Perfect Forward Secrecy 3

accepts. In our scheme, one of the party also keeps in memory (a few) samples
of a master key corresponding to different epochs (including a previous one).
Yet the disclosure of all these values does not compromise past session keys.
Furthermore, the (strong) security model we use allows the adversary to corrupt
either partner as soon as the targeted party accepts.

Brier and Peyrin [16] propose a forward secret key derivation scheme in a
client-server setting, that aims at improving a previous proposal [7]. In addition
to forward secrecy, another constraint is that the amount of calculation to com-
pute the master key (directly used as encryption key) on the server side must
be low. Their solution implies to store, on the client side, several keys in parallel
and to use a (short) counter, which is involved in the keys update. The keys
belong to a tree whose each leaf (key) is derived from the previous one and the
counter. The client must send the counter with the encrypted message for the
server to be able to compute the corresponding key. The main drawback of this
scheme is that the number of possible encryption keys is reduced. Increasing
that limit implies increasing the counter size and the number of keys stored in
parallel on the client side. Moreover, Brier et al. (as well as [7]) focus on forward
secrecy with respect to the client only. The server is deemed as incorruptible,
and is supposed to compute an encryption key only upon reception of a client’s
message (the secure channel is unidirectional, and the server does not need to
send encrypted messages to the client). Therefore, the scheme does not need
to deal with the issue of both parties being in sync (with respect to the key
computation), and providing forward secrecy. In addition, the purpose of Brier
et al. (as well as [7]) is not to provide mutual authentication. More generally
sending additional information in order to resynchronise (such as a sufficiently
large counter) is a simple (and inefficient) way to build a forward secret proto-
col. But this yields several drawbacks. Firstly, the size of such a counter must
be large enough in order to avoid any exhaustion. Secondly, sending the counter
(at least periodically) is necessary for the two parties to resynchronise, which
consumes bandwidth. Thirdly, resynchronisation may imply multiple updates of
the master keys at once (the scheme of Brier et al. and [7] aims at limiting that
amount of calculation, but it leads to a narrowed number of possible encryption
keys). Our scheme avoids all these drawbacks.

The more general question of forward security in symmetric cryptography
has been also investigated by Bellare and Yee [13]. They propose formal defini-
tions and practical constructions of forward secure primitives (e.g., MAC, sym-
metric encryption algorithm). Their constructions protect against decryption of
past messages, or antedated forgeries of messages (i.e., previously authenticated
messages are made untrustworthy). Their algorithms are based on key-evolving
schemes [9]. Nonetheless, Bellare et al. consider only algorithms (but not proto-
cols) and they do not deal with the issue of synchronising the evolution of the
shared key at both parties. That is, they propose out-of-context (non-interactive)
solutions with respect to our purpose.

Abdalla and Bellare [4] investigate a related question which is “re-keying”.
Their formal analysis shows that appropriate re-keying techniques “increase” the

4 G. Avoine, S. Canard, L. Ferreira

lifetime of a key. They consider re-keying in the context of symmetric encryption
(in order to thwart attacks based on the ability to get lots of encrypted messages
under the same key), and forward security (in order to protect past keys). Yet,
they confine their analysis to algorithms and not protocols. Hence, as Bellare et
al. [13], they do not treat the synchronisation issues that arise from evolving a
shared symmetric key.

The Signal messaging protocol [1] uses a key derivation scheme called “dou-
ble ratchet algorithm” [34]. This scheme combines a DH based mechanism with
a symmetric key-evolving mechanism (based on a one-way function). The first
mechanism provides an asymmetric ratchet, whereas the second provides a sym-
metric ratchet. The asymmetric ratchet is applied when a fresh DH share is
received (included in an application message) from the peer. The symmetric
ratchet is applied when a party wants to send several successive messages with-
out new incoming message from its partner. Thanks to the DH scheme, the
asymmetric ratchet is supposed to provide forward secrecy.4 Regarding the sym-
metric ratchet, each party is compelled to store the decryption keys of the not
yet received messages. This is due to the asynchronous nature of the Signal
protocol. Therefore, the symmetric ratchet in Signal does not provide forward
secrecy, as stated in their security analysis by Cohn-Gordon, Cremers, Dowling,
Garratt, and Stebila [18]: “old but unused receiving keys are stored at the peer
for an implementation dependent length of time, trading off forward security for
transparent handling of outdated messages. This of course weakens the forward
secrecy of the keys”. Consequently, Cohn-Gordon et al. choose not to model this
weakened property. In turn, Alwen, Coretti, and Dodis [6] incorporate the latter
in the security analysis of their “generalised Signal protocol”. But the crucial
difference in their notion of forward security is that, as soon as the receiver is
compromised, no more security can be provided. On the contrary, we tackle the
synchronisation issue, and solve it in our protocol. The security model we use
captures forward secrecy and allows corrupting a party and its partner as soon
as the targeted party “accepts” (i.e., deems the session key can be safely used).
With regard to Signal, our protocol can be compared to the asymmetric ratchet
(in synchronous mode), and yet does not implement asymmetric functions.

We stress that the goals of several of the aforementioned protocols are not the
same as ours. Nonetheless, the small number of existing symmetric-key proto-
cols that provide forward secrecy, and the lukewarm security level they achieve
illustrate that combining symmetric-key cryptography and (a strong form of)
forward secrecy is a non-trivial task.

1.2 Contributions

In this paper, we propose an AKE protocol, that we call SAKE, solely based on
symmetric-key functions. Not only does our protocol provide mutual authenti-
cation and key agreement, but it guarantees perfect forward secrecy. We attain

4 In Signal, the DH exchanges can be asynchronous. This impairs the forward secrecy
property usually ensured by this scheme.

SAKE: Symmetric-key AKE with Perfect Forward Secrecy 5

this very strong form of long-term security by using a key-evolving scheme. As
soon as two parties make a shared (symmetric) key evolve, a synchronisation
problem arises. We provide a simple and efficient solution to this issue. We do
not require using neither a clock, nor an additional resynchronising procedure.
Our solution is based on a second (independent) chain of master keys. These
keys allow tracking the evolution of the internal state, and resynchronising the
parties if necessary. The parties authenticate each other prior to updating their
master keys. Hence the possible gap is bounded (as we prove it), and each party
is always able to catch up in case of desynchronisation (of course, if the session
is correct and complete). Mutual authentication, key exchange (with forward
secrecy), and resynchronisation are done in the continuity of the protocol run.
In addition, the protocol we describe has the following characteristics.

– It is self-synchronising. That is, after a correct and complete session (and
whatever the internal state of the parties prior to the session), the two parties
involved in the protocol run share a new session key, and their internal state
is updated and synchronised.

– It allows establishing an (virtually) unlimited number of sessions (as opposite
to protocols that make use of a predefined list of master keys, each being
used once only).

– The amount of calculation done by both parties in a single protocol run
is strictly bounded. In particular we avoid the need of sending additional
information in order to resynchronise, such as a (sufficiently large) counter
that keeps track of the evolution of the master keys, and the subsequent
drawbacks: periodically doing a great amount of computations at once (when
resynchronisation is necessary), and consuming bandwidth (to transmit the
additional data).

In addition, we provide a formal security proof for SAKE. We also present a
variant of SAKE (that we call SAKE-AM) which is an “aggressive mode” of
the protocol.5 This variant inverts the role of the initiator and the responder in
terms of calculations (in SAKE, the initiator performs – at most – two additional
MAC computations compared to the responder). Using SAKE and SAKE-AM
together results in an implementation (gathering all the aforementioned prop-
erties, starting with the forward secrecy property) that allows any party to be
either initiator or responder of a session, and such that the smallest amount of
calculation is always done by the same party. This is particularly convenient in
the context of a set of (low-resource) end-devices communicating with a central
server. In such a case, the end-device supports the smallest amount of calcula-
tion, whereas either the server or the end-device can initiate a session.

Furthermore, we elaborate on the differences between our approach and the
DH scheme (beyond the intrinsinc distinction between public-key and symmetric-
key cryptography).

5 The variant (with one message less) allows computing the synchronisation gap δ
earlier (with the first message). But the responder must wait for the third message
to confirm that value. In a sense, this variant is also more optimistic.

6 G. Avoine, S. Canard, L. Ferreira

1.3 Outline of the Paper

In Section 2 we detail the security model used to analyse the protocol we propose.
Our authenticated key exchange protocol in symmetric-key setting with forward
secrecy is described in Section 3. Formal proofs of soundness and security for the
protocol are presented in Section 4. The differences between our approach and
the DH scheme are highlighted in Section 5. Finally, we conclude in Section 6.

2 Security Model

Before describing our symmetric-key protocol in Section 3 (which is self-sufficient
and contains all the specifics required to understand the protocol), we present
in this section the security model that we employ to formally prove its security.

In a nutshell, we use the model for authenticated key exchange protocols
described by Brzuska, Jacobsen, and Stebila [17]. This model incorporates all
the features that are usually considered when analysing key agreement proto-
cols in the public-key setting (e.g., DH-based protocols with signature). In this
model, the adversary has full control over the communication network. It can
forward, alter, drop any message exchanged by honest parties, or insert new mes-
sages. Brzuska et al.’s model then captures adaptive corruptions but also perfect
forward secrecy. This appears in the definition of the security experiment.

2.1 Execution Environment

In this section, we present the security model for authenticated key exchange
protocols described by Brzuska et al. [17], and reuse the corresponding notations.

Parties. A two-party protocol is carried out by a set of parties P = {P0, . . . , Pn−1}.
Each party Pi has an associated long-term key Pi.ltk. The same long-term key
ltk is shared by a unique pair of parties (Pi, Pj). That is, Pi.ltk = Pj .ltk.6

Instances. Each party can take part in multiple sequential executions of the
protocol. We prohibit parallel executions of the protocol. Indeed, since the pro-
tocol we propose is based on shared evolving symmetric keys, running multiple
instances in parallel may cause some executions to abort (we elaborate more on
this in Section 5). This is the only restriction we demand compared to AKE
security models used in the public-key setting.

Each run of the protocol is called a session. To each session of a party Pi,
an instance πsi is associated which embodies this (local) session’s execution of
the protocol, and has access to the long-term key of the party. In addition, each
instance maintains the following state specific to the session.

– ρ: the role ρ ∈ {init, resp} of the session in the protocol execution, being
either the initiator or the responder.

6 Note that ltk can be a set of master keys (e.g., each one used by the party for a
different purpose).

SAKE: Symmetric-key AKE with Perfect Forward Secrecy 7

– pid: the identity pid ∈ P of the intended communication partner of πsi .

– α: the state α ∈ {⊥, running, accepted, rejected} of the instance.

– sk: the session key derived by πsi .

– κ: the status κ ∈ {⊥, revealed} of the session key πsi .sk.

– sid: the identifier of the session.

– b: a random bit b ∈ {0, 1} sampled at initialisation of πsi .

We put the following correctness requirements on the variables α, sk, sid and
pid. For any two instances πsi , π

t
j , the following must hold:

πsi .α = accepted⇒ πsi .sk 6=⊥ ∧πsi .sid 6=⊥ (1)

πsi .α = πtj .α = accepted ∧ πsi .sid = πtj .sid⇒


πsi .sk = πtj .sk
πsi .pid = Pj
πtj .pid = Pi

(2)

Adversarial queries. The adversary A is assumed to control the network, and
interacts with the instances by issuing the following queries to them.

– NewSession(Pi, ρ, pid): this query creates a new instance πsi at party Pi, hav-
ing role ρ, and intended partner pid.

– Send(πsi ,m): this query allows the adversary to send any message m to πsi .
If πsi .α 6= running, it returns ⊥. Otherwise πsi responds according to the
protocol specification.

– Corrupt(Pi): this query returns the long-term key Pi.ltk of Pi. If Corrupt(Pi)
is the ν-th query issued by the adversary, then we say that Pi is ν-corrupted.
For a party that has not been corrupted, we define ν = +∞.

– Reveal(πsi): this query returns the session key πsi .sk, and πsi .κ is set to
revealed.

– Test(πsi): this query may be asked only once throughout the game. If πsi .α 6=
accepted, then it returns ⊥. Otherwise it samples an independent key sk0

$←−
K, and returns skb, where sk1 = πsi .sk. The key skb is called the Test-
challenge.

Definition 1 (Partnership). Two instances πsi and πtj are partners if πsi .sid =
πtj .sid.

Definition 2 (Freshness). An instance πsi is said to be fresh with intended
partner Pj, if

(a) πsi .α = accepted and πsi .pid = Pj when A issues its ν0-th query,

(b) πsi .κ 6= revealed and Pi is ν-corrupted with ν0 < ν, and

(c) for any partner instance πtj of πsi , we have that πtj .κ 6= revealed and Pj is
ν′-corrupted with ν0 < ν′.

8 G. Avoine, S. Canard, L. Ferreira

Note that the notion of freshness incorporates a requirement for forward se-
crecy.

An authenticated key exchange protocol (AKE) is a two-party protocol satis-
fying the correctness requirements 1 and 2, and where the security is defined in
terms of an AKE experiment played between a challenger and an adversary. This
experiment uses the execution environment described above. The adversary can
win the AKE experiment in one of two ways: (i) by making an instance accept
maliciously, or (ii) by guessing the secret bit of the Test-instance.

Definition 3 (Entity Authentication (EA)). An instance πsi of a protocol
Π is said to have accepted maliciously in the AKE security experiment with
intended partner Pj, if

(a) πsi .α = accepted and πsi .pid = Pj when A issues its ν0-th query,

(b) Pi and Pj are ν- and ν′-corrupted with ν0 < ν, ν′, and

(c) there is no unique instance πtj such that πsi and πtj are partners.

The adversary’s advantage is defined as its winning probability:

advent-authΠ (A) = Pr[A wins the EA game].

Definition 4 (Key Indistinguishability). An adversary A against a protocol
Π, that issues its Test-query to instance πsi during the AKE security experiment,
answers the Test-challenge correctly if it terminates with output b′, such that

(a) πsi is fresh with some intended partner Pj, and

(b) πsi .b = b′.

The adversary’s advantage is defined as

advkey-indΠ (A) =

∣∣∣∣Pr[πsi .b = b′]− 1

2

∣∣∣∣ .
Definitions 3 and 4 allow the adversary to corrupt an instance involved in the

security experiment (once the targeted instance has accepted, in order to exclude
trivial attacks). Therefore, protocols secure with respect to Definition 5 below
provide perfect forward secrecy. Note that we do not allow the targeted instance
to be corrupted before it accepts. This security model does not capture key-
compromise impersonation attacks (KCI) [14] since that would allow trivially
breaking key exchange protocols solely based on shared symmetric keys.

Definition 5 (AKE Security). We say that a two-party protocol Π is a secure
AKE protocol if Π satisfies the correctness requirements 1 and 2, and for all
probabilistic polynomial time adversary A, advent-authΠ (A) and advkey-indΠ (A) are a
negligible function of the security parameter.

SAKE: Symmetric-key AKE with Perfect Forward Secrecy 9

2.2 Security Definitions of SAKE’s Building Blocks

In this section, we recall the definitions of the main security notions we use in
our results. The security definition of a pseudo-random function is taken from
Bellare, Desai, Jokipii, and Rogaway [8], and that of a MAC strongly unforgeable
under chosen-message attacks from Bellare and Namprempre [10]. We recall
also the definition of matching conversations initially proposed by Bellare and
Rogaway [11], and modified by Jager, Kohlar, Schäge, and Schwenk [28].

Secure PRF. A pseudo-random function (PRF) F is a deterministic algorithm
which given a key K ∈ {0, 1}λ and a bit string x ∈ {0, 1}∗ outputs a string
y = F (K,x) ∈ {0, 1}γ (with γ being polynomial in λ). Let Func be the set of all
functions of domain {0, 1}∗ and range {0, 1}γ . The security of a PRF is defined
with the following experiment between a challenger and an adversary A:

1. The challenger samples K
$←− {0, 1}λ, G

$←− Func, and b
$←− {0, 1} uniformly

at random.
2. The adversary may adaptively query values x to the challenger. The chal-

lenger replies to each query with either y = F (K,x) if b = 1, or y = G(x) if
b = 0.

3. Finally, the adversary outputs its guess b′ ∈ {0, 1} of b.

The adversary’s advantage is defined as

advprfF (A) =

∣∣∣∣Pr[b = b′]− 1

2

∣∣∣∣ .
Definition 6 (Secure PRF). A function F :{0, 1}λ×{0, 1}∗ → {0, 1}γ is said
to be a secure pseudo-random function (PRF) if, for all probabilistic polynomial

time adversary A, advprfF (A) is a negligible function in λ.

Secure MAC. A message authentication code (MAC) consists of two algorithms
(Mac,Vrf). The tagging algorithm Mac takes as input a key K ∈ {0, 1}k and a
message m ∈ {0, 1}∗ and returns a tag τ ∈ {0, 1}γ (with γ being polynomial
in k). The verification algorithm Vrf takes as input the key K, a message m,
and a candidate tag τ for m. It outputs 1 if τ is a valid tag on message m with
respect to K. Otherwise, it returns 0. The notion of strong unforgeability under
chosen-message attacks (SUF-CMA) for a MAC G = (Mac,Vrf) is defined with
the following experiment between a challenger and an adversary A:

1. The challenger samples K
$←− {0, 1}k, and sets S ← ∅.

2. The adversary may adaptively query values m to the challenger. The chal-
lenger replies to each query with τ = Mac(K,m) and records (m, τ): S ←
S ∪ {(m, τ)}.

3. Finally, the adversary sends (m∗, τ∗) to the challenger.

The adversary’s advantage is defined as

advsuf-cma
G (A) = Pr[Vrf(K,m∗, τ∗) = 1 ∧ (m∗, τ∗) /∈ S].

10 G. Avoine, S. Canard, L. Ferreira

Definition 7 (SUF-CMA). A message authentication code G = (Mac,Vrf)
with Mac:{0, 1}k × {0, 1}∗ → {0, 1}γ is said to be strongly unforgeable under
chosen-message attacks (SUF-CMA) if, for all probabilistic polynomial time ad-
versary A, advsuf-cma

G (A) is a negligible function in k.

Matching conversations. Let Ti,s be the sequence of all (valid) messages sent
and received by an instance πsi in chronological order. For two transcripts Ti,s
and Tj,t, we say that Ti,s is a prefix of Tj,t if Ti,s contains at least one message,
and the messages in Ti,s are identical to the first |Ti,s| messages of Tj,t.

Definition 8 (Matching Conversations). We say that πsi has a matching
conversation to πtj, if

– πsi has sent all protocol messages and Tj,t is a prefix of Ti,s, or
– πtj has sent all protocol messages and Ti,s = Tj,t.

Remark 1. Defining matching conversations as per Definition 8 means that we
use a post-specified session identifier sid equal to the first five or four messages
of the protocol that we describe in Section 3.

3 Our Symmetric-key AKE Protocol with Perfect
Forward Secrecy

In this section we describe our main protocol. Although all the calculations are
based on shared master keys, forward secrecy is guaranteed by using a key-
evolving scheme. More precisely, we use two types of keys: one to compute the
session keys, the other to authenticate messages and resynchronise when neces-
sary. This second type of keys allows tracking the master keys evolution, and
limit the gap (in terms of keys update) between both parties. Mutual authenti-
cation, key exchange, and synchronised update of the master keys are done in
the same session.

3.1 Key Concepts

The protocol allows two parties A (initiator) and B (responder) to mutually
authenticate and compute a shared session key. It is based on two types of
master keys: a derivation master key K and an authentication master key K ′.
The protocol makes use of symmetric-key functions only. Each pair of parties
(A, B) shares distinct master keys. The main lines of the protocol are as follows:
the two parties exchange pseudo-random values rA, rB . These two values are
used to

– authenticate each other: each party sends back the value it has received in a
message that is MAC-ed with the authentication master keyK ′. For instance,
if B receives rA it replies with rB‖τB where τB = MAC(K ′, B‖A‖rB‖rA).

SAKE: Symmetric-key AKE with Perfect Forward Secrecy 11

– Compute a session key: a pseudo-random function KDF is keyed with the
derivation master key K and uses the pseudo-random values as input. That
is, sk ← KDF(K, f(rA, rB)). Function f is deliberately left undefined. For
instance, f(rA, rB) can be equal to the concatenation or the bitwise addition
of rA and rB .7

Providing forward secrecy. The shared key K is used to compute the session
keys. If this key remains unchanged throughout all sessions, its disclosure allows
computing all past (and future) session keys. To solve this issue we apply a
key-evolving technique. We update the master key such that a previous master
key cannot be computed from an updated one. Each of the two parties involved
in a session updates its own copy of the derivation master key K with a non-
invertible function update: K ← update(K). Hence this protects past sessions in
case the (current value of) master key K is revealed. Each party authenticates its
peer prior to updating the derivation master key. If the master key is updated
throughout the session, it may happen that one of the two involved parties
update its master key whereas the other do not. This leads to a synchronisation
problem.

K′0 K′1 K′2 K′3 · · ·

K0 K1 K2 K3 · · ·

sk0 sk1 sk2 sk3

update

update

K
D
F

Fig. 1: Master key chains in SAKE. At epoch j, the initiator stores four keys:
K = Kj , and K ′j−1, K ′j , K

′
j+1. The responder stores two keys: K = Kj and

K ′ = K ′j . An illustration with j = 2 corresponds to the keys surrounded by the
blue dashed box.

The synchronisation problem. If two parties use a different key K, they are ob-
viously not able to compute a shared session key. Hence they must resynchronise
first. More fundamentally, if a party initiates a session with some derivation mas-
ter key K, and its partner stores a master key corresponding to an earlier epoch,
then an adversary that corrupts the partner can compute past session keys with
respect to the initiator, hence trivially break forward secrecy. Therefore, it is of

7 The function f must be chosen such that the security of KDF is not impaired. We
assume here that the cryptographic functions used are ideal (investigating this topic
is beyond the scope of this paper).

12 G. Avoine, S. Canard, L. Ferreira

paramount importance that the parties know if the master key of its partner has
actually been updated. We provide a solution to both issues in the continuity of
a single session. In particular, no extra procedure is needed in order for a desyn-
chronised party to catch up. We avoid the need of sending additional information
in order to resynchronise, such as a (sufficiently large) counter that keeps track
of the evolution of the master keys, and the subsequent drawbacks: periodically
doing a great amount of computations at once (when resynchronisation is nec-
essary), and consuming bandwidth (to transmit the additional data). We base
our solution on the second master key K ′ used to authenticate the messages
exchanged during a session. The solution is to update K ′ at the same time as
K. Therefore the evolution of K ′ follows that of K. The party that receives the
first authenticated message uses the MAC tag to learn which epoch the sender
belongs to. Of course, K ′ can also be desynchronised in the same way as K. This
is why, whereas one party (responder B) stores only one sample of the key K ′,
the other party (initiator A) stores several samples of the authentication master
key K ′ corresponding to several consecutive epochs. We prove that only three
keys K ′j+1, K ′j , K

′
j−1, corresponding respectively to the next, the current, and

the previous epochs, are sufficient in order for A and B to resynchronise. The
initiator (A) is the one able to deal with the synchronisation issue, and conse-
quently tells B how to behave. Each party “accepts” only after it has received
a confirmation (final MAC-ed messages) that its partner has already updated
its own master keys. In such a case, the party ending in accepting state deems
that the fresh session key can be safely used. Otherwise (in particular when the
parties are desynchronised), the session key is discarded.

Since two independent master keys are used (authentication and session key
derivation), one can safely maintain a copy of K ′ corresponding to an earlier
epoch (K ′j−1) without risk of threatening forward secrecy. Only one sample of
the derivation master key K is kept: the most up-to-date.

3.2 Description of the Protocol

The protocol is depicted by Figure 2. We call it Symmetric-key Authenticated
Key Exchange (SAKE). The parameter δAB computed by A corresponds to the
gap between A and B with respect to the evolution of the master keys. We prove
that δAB ∈ {−1, 0, 1} (see Section 4.1). That is, A can only be either one step
behind, or in sync, or one step ahead to B. During a session, A uses the keys
K ′j , K

′
j−1, K ′j+1 (by order of likelihood) and the first message (mB) sent by B

to learn δAB . The message mB is computed with the current value K ′ of B.
Therefore mB indicates the current synchronisation state of B. Then A informs
B. One bit ε is enough (message mA) because B takes two behaviours only: if
δAB ∈ {−1, 0} (ε = 0), and if δAB = 1 (ε = 1). A and B behaves as follows.

– If A is in sync with B (δAB = 0), A computes the new session key, and
updates its master keys. Then, upon reception of mA, B does the same.

– If A is in advance (δAB = 1), A waits for B to resynchronise (i.e., B updates
its master keys a first time), and to proceed with the regular operations (i.e.,

SAKE: Symmetric-key AKE with Perfect Forward Secrecy 13

B computes the new session key, and updates its master keys a second time).
Then, once A receives a confirmation that B is synchronised (message τ ′B),
A performs the regular operations as well (session key computation, master
keys update). Since A waits for B to resynchronise before proceeding, the
gap between the parties is bounded (as proved in Section 4.1).

– If A is late (δAB = −1), it resynchronises (i.e., it updates its master keys a
first time), and then performs the regular operations (session key computa-
tion, master keys update). Then (upon reception of message mA), B applies
the regular operations.

Once a correct and complete session ends, three goals are achieved in the same
protocol run: (i) the two parties have updated their master keys, (ii) they are
synchronised (which stems in particular from the fact that the gap between A
and B is bounded, i.e., |δAB | ≤ 1), and (iii) they share a new session key. In
other words, the protocol is self-synchronising.

The session can be reduced from five to four messages in some cases. Indeed,
regarding the synchronisation state, in two cases (when δAB ∈ {−1, 0}, that is
ε = 0), A and B are synchronised, and share a session key once B has received
message mA and executed the subsequent operations. Therefore, in such a case,
the session can end upon reception of message τ ′B by A. More precisely

– if δAB = 1 (ε = 1), then A accepts upon reception of τ ′B , and B accepts
upon reception of τ ′A;

– if δAB ∈ {−1, 0} (ε = 0), then A accepts upon reception of τ ′B , and B accepts
upon reception of mA.

Although this does not appear explicitly in Figure 2, a party aborts the
session if it receives a message computed with an invalid identity. For the re-
sponder B, an invalid identity corresponds to an initiator party A it does not
share master keys with. For an initiator A, the particular case B = A, among
other possibilities, yields an error (i.e., each party must have a distinct identity).

Remark 2. Since K ′j+1 and K ′j can be computed from K ′j−1, it is also possible
to store only K ′j−1, and to compute the two other keys when necessary during
the session.

Remark 3. Alternatively, the three authentication keys K ′j−1, K ′j , K
′
j+1 can be

replaced by two local counters cA, cB (respectively stored by A and B) that
keep track of the evolution of the derivation master key K, with one static
authentication master key K ′.8 On the initiator’ side, the MAC verifications are
then done with consecutive values of the counter j−1, j, j+1. On the overall, the
sequence of operations and the computations are similar to that of SAKE. This
means mainly replacing function x 7→ MAC(K ′j , x) with x 7→ MAC(K ′, j‖x). This
alternative implies the storage of two keys and one counter: K, K ′ and cA/cB ,
instead of two keys only: K and K ′j−1/K ′ (and, on the initiator’ side only, one
or two additional calls to update in order to compute K ′j and, possibly, K ′j+1).

8 This alternative has been suggested by anonymous reviewers of Crypto 2019.

14 G. Avoine, S. Canard, L. Ferreira

Remark 4. With respect to the security model presented in Section 2, the long-
term key of A and B corresponds respectively to A.ltk = (K,K ′j−1) and B.ltk =
(K,K ′). We could have allowed the authentication master key K ′j−1/K ′ to be
disclosed prior to the start of the session. This would not impair the forward
secrecy of the derivation master key K. Nonetheless, knowing the authentication
master key an adversary could desynchronise a legitimate party so that the party
could not catch up anymore. Hence our choice to include both master keys in
the response to a Corrupt-query.

3.3 Notations

For the sake of clarity, we use the following notations in Figure 2:

– kdf corresponds to: sk ← KDF(K, f(rA, rB))
– updA corresponds to

1. K ← update(K)
2. K ′j−1 ← K ′j
3. K ′j ← K ′j+1

4. K ′j+1 ← update(K ′j+1)
– updB corresponds to

1. K ← update(K)
2. K ′ ← update(K ′)

Moreover, verif(k,m, τ) denotes the MAC verification function that takes as
input a secret key k, a message m, and a tag τ . It outputs true if τ is a valid
tag on message m with respect to k. Otherwise, it returns false.

Before the first session between A and B, the master keys are initialised as
follows9:

– K and K ′ are uniformly chosen at random.
– K ′j−1 ←⊥
– K ′j ← K ′

– K ′j+1 ← update(K ′)

3.4 SAKE-AM: a Variant of SAKE

From SAKE, we can derive an aggressive variant that allows any party to be
either initiator or responder, and such that the smallest amount of calculation
is always done by the same party.

In SAKE the initiator A owns the three keys K ′j+1, K ′j , K
′
j−1, and the re-

sponder B does the lightest computations. In this variant B owns the three keys,
and A does the smallest amount of calculation. The main idea is to skip the first
SAKE message A‖rA. Hence the roles between the two parties are swapped.
This leads to other minor changes in message format compared to SAKE. De-
spite these differences, the messages and the calculations are essentially the same

9 During the first protocol run, A needs only K′j to verify message mB .

SAKE: Symmetric-key AKE with Perfect Forward Secrecy 15

A B
(K,K′j+1,K

′
j ,K

′
j−1) (K,K′)

rA
$←− {0, 1}λ

A‖rA−−−−−−−−→

rB
$←− {0, 1}λ

τB ← MAC(K′, B‖A‖rB‖rA)
mB ← rB‖τB

mB←−−−−−−−−
if (verif(K′j , B‖A‖rB‖rA, τB) = true)

δAB ← 0
K′ ← K′j ; kdf; updA; ε← 0

else if (verif(K′j−1, B‖A‖rB‖rA, τB) = true)
δAB ← 1
K′ ← K′j−1; ε← 1

else if (verif(K′j+1, B‖A‖rB‖rA, τB) = true)
δAB ← −1
K′ ← K′j+1; updA; kdf; updA; ε← 0

else

abort

τA ← MAC(K′, ε‖A‖B‖rA‖rB)
mA ← ε‖τA

mA−−−−−−−−→
if (verif(K′, ε‖A‖B‖rA‖rB , τA) = false)

abort
if (ε = 1)

updB
kdf; updB
τ ′B ← MAC(K′, rB‖rA)

τ ′B←−−−−−−−−
if (ε = 0)

K′ ← K′j
if (verif(K′, rB‖rA, τ ′B) = false)

abort
else if (ε = 1)

K′ ← K′j+1

if (verif(K′, rB‖rA, τ ′B) = false)
abort

kdf; updA

τ ′A ← MAC(K′, rA‖rB)

τ ′A−−−−−−−−→
if (verif(K′, rA‖rB , τ ′A) = false)

abort

Fig. 2: SAKE protocol

16 G. Avoine, S. Canard, L. Ferreira

as in SAKE. This variant remains a sound and secure AKE protocol (according
to Definition 5).10 We call this variant SAKE in aggressive mode (SAKE-AM).

This can be applied in the context of industrial IoT when a set of end-
devices (e.g., sensors, actuators) communicate with a central server. When the
end-device wants to initiate a communication, protocol SAKE-AM is launched.
Otherwise (the server is initiator), SAKE is used (see Figure 3). Therefore, the
end-device always does the lightest computations.

End-device [A] Back end [B]
(K,K′) (K,K′j+1,

K′j ,K
′
j−1)

A‖rA‖τA−−−−−−−−−−→
compute δBA

ε‖rB‖τB←−−−−−−−−−−
τ ′A−−−−−−−−−−→[
τ ′B←−−−−−−−−−−

]

(a) End-device is initiator (SAKE-AM)

End-device [B] Back end [A]
(K,K′) (K,K′j+1,

K′j ,K
′
j−1)

A‖rA←−−−−−−−−−−
rB‖τB−−−−−−−−−−→

compute δAB
ε‖τA←−−−−−−−−−−
τ ′B−−−−−−−−−−→[
τ ′A←−−−−−−−−−−

]

(b) Back end is initiator (SAKE)

Fig. 3: Symmetric-key authenticated key exchange with forward secrecy between
a low-resource end-device and a back-end server. Both parties may initiate the
session. In some cases, the last message can be skipped.

4 Security and Soundness for SAKE

In this section we prove that (i) SAKE is sound, and (ii) it is a secure AKE
protocol according to Definition 5.

4.1 Soundness of SAKE

We want to show that SAKE is sound, which essentially means that, once a
correct session is complete, both parties have updated their respective internal
state, are synchronised, and share the same (new) session key. We call a “benign”

10 The proofs of soundness and security for SAKE-AM are essentially the same as for
SAKE (see Section 4.2). They are given in Appendix B.

SAKE: Symmetric-key AKE with Perfect Forward Secrecy 17

adversary an adversary that faithfully forwards all messages between an initiator
A and a responder B.

Lemma 1. Let A and B be respectively the initiator and the responder of a
SAKE session. Let δAB be the gap between A and B with respect to the evolution
of the master keys of both parties. The following conditions always hold:

1. δAB ∈ {−1, 0, 1}, and
2. whatever the synchronisation state between A and B at the beginning of a

session (i.e., whatever A and B are synchronised or not), when that session
completes in presence of a benign adversary, then
(a) A and B have updated their master keys at least once, and
(b) A and B are synchronised (with respect to their master keys), and
(c) A and B share the same session key.

In order to prove Lemma 1, we use the following notations. The messages
exchanged during a session are numbered in a natural way:

1−−−−−→
2←−−−−−

A
3−−−−−→ B

4←−−−−−
5−−−−−→

The notation “(iA, iB)” means that, when the session ends, the last valid message
received by A is message of index iA, and the last valid message received by B is
message of index iB . We call a (iA, iB)-session a session where the last message
received by A is message iA, and the last message received by B is message iB .
By convention iA = 0 means that no message has been received by A.

It may happen that A send a first message which is not received by B. B
cannot know if it has missed a first message. But this is of no consequence
regarding the synchronisation between A and B (A may simply run the protocol
anew). Therefore we do not use the value iB = 0 (it is equivalent to iB = 5). At
initialisation (i.e., before the first run of the protocol), (iA, iB) is set to (4, 5).
Since A sends message i ∈ {3, 5} only upon reception of a valid message i − 1,
and B sends message j ∈ {2, 4} only upon reception of a valid message j − 1,
the only possible values for (iA, iB) are as listed in Table 1.

Proof. We prove Lemma 1. We first prove item 1.
Let cA (resp. cB) be a (virtual) monotonically increasing counter initialised

to 0 that follows the evolution of the master keys held by A (resp. B). That is,
cA (resp. cB) is increased each time the master keys K, K ′j+1, K ′j , K

′
j−1 (resp.

K, K ′) are updated. The parameter δAB corresponds to the gap between A and
B with respect to the evolution of their master keys, hence δAB = cA − cB .

18 G. Avoine, S. Canard, L. Ferreira

Table 1: Possible values for (iA, iB) in SAKE

iA

iB
1 3 5

0 3 7 7

2 3 3 7

4 7 3 3

The different possible sessions are listed in Table 1. We prove item 1 by
constructing iteratively Table 2b.

Before the first session, A and B are synchronised. That is δAB = cA−cB = 0,
and (cA, cB) = (i, i) (with i = 0). Therefore, A can validate τB (in message mB)
with the same key K ′j = K ′ as B. Hence A computes δAB = 0, and ε = 0.
Consequently, if one carries out the protocol run starting with δAB = 0 and
ε = 0, for each possible value (iA, iB), one eventually gets the following:

– (cA, cB) = (i, i) and δAB = 0 after a (0, 1)-session,
– (cA, cB) = (i+ 1, i) and δAB = 1 after a (2, 1)-session,
– (cA, cB) = (i+ 1, i+ 1) and δAB = 0 after a (2, 3)-session,
– (cA, cB) = (i+ 1, i+ 1) and δAB = 0 after a (4, 3)-session,
– (cA, cB) = (i+ 1, i+ 1) and δAB = 0 after a (4, 5)-session.

This corresponds to the first column of Tables 2b and 2a. As we can see, the only
possible values for δAB after any session are 0 and 1. δAB = 0 has already been
investigated. Hence, starting with δAB = 1 (i.e., (cA, cB) = (i + 1, i)), we look
for all the values δAB may have when the session ends, considering any possible
session.

(cA, cB) = (i+ 1, i) means that A is in advance with respect to B. In such a
case, A succeeds in validating τB with K ′j−1 (and, indeed, finds δAB = 1). Then
A uses δAB = 1 and ε = 1. If one carries out the protocol run using these two
values, one gets:

– (cA, cB) = (i+ 1, i) and δAB = 1 after a (0, 1)-session,
– (cA, cB) = (i+ 1, i) and δAB = 1 after a (2, 1)-session,
– (cA, cB) = (i+ 1, i+ 2) and δAB = −1 after a (2, 3)-session,
– (cA, cB) = (i+ 2, i+ 2) and δAB = 0 after a (4, 3)-session,
– (cA, cB) = (i+ 2, i+ 2) and δAB = 0 after a (4, 5)-session.

This corresponds to the second column of Table 2b. This shows that a third
value is possible for δAB , which is −1 (i.e., (cA, cB) = (i, i+ 1)).

Then we restart the protocol with all possible sessions, assuming that (cA, cB) =
(i, i + 1) at the beginning of the run. This means that A is one step late with
respect to B. In such a case, A succeeds in validating τB with key K ′j+1 (and,
indeed, finds δAB = −1). Then A uses δAB = −1 and ε = 0. If one carries out
the protocol run using these two values, one gets:

– (cA, cB) = (i, i+ 1) and δAB = −1 after a (0, 1)-session,

SAKE: Symmetric-key AKE with Perfect Forward Secrecy 19

– (cA, cB) = (i+ 2, i+ 1) and δAB = 1 after a (2, 1)-session,
– (cA, cB) = (i+ 2, i+ 2) and δAB = 0 after a (2, 3)-session,
– (cA, cB) = (i+ 2, i+ 2) and δAB = 0 after a (4, 3)-session,
– (cA, cB) = (i+ 2, i+ 2) and δAB = 0 after a (4, 5)-session.

We end with three possible values for δAB (third column of Table 2b): −1, 0 and
1, that have already been explored. This proves that, whatever the sequences of
sessions, the only possible values for δAB are in {−1, 0, 1}.

Table 2: Possible values for δAB and (cA, cB) among all sequences of sessions in
SAKE

(a) Possible values for (cA, cB)

session
(cA, cB)

(i, i) (i+ 1, i) (i, i+ 1)

(0, 1) (i, i) (i+ 1, i) (i, i+ 1)

(2, 1) (i+ 1, i) (i+ 1, i) (i+ 2, i+ 1)

(2, 3) (i+ 1, i+ 1) (i+ 1, i+ 2) (i+ 2, i+ 2)

(4, 3) (i+ 1, i+ 1) (i+ 2, i+ 2) (i+ 2, i+ 2)

(4, 5) (i+ 1, i+ 1) (i+ 2, i+ 2) (i+ 2, i+ 2)

(b) Possible values for δAB

session
δAB

0 1 −1

(0, 1) 0 1 −1

(2, 1) 1 1 1

(2, 3) 0 −1 0

(4, 3) 0 0 0

(4, 5) 0 0 0

Now we prove item 2 of Lemma 1.
We know that δAB ∈ {−1, 0, 1}. For each possible value of δAB at the begin-

ning of the session, the last line of Table 2b indicates the value of that parameter
after a correct and complete session (i.e., a (4, 5)-session). As we can see, A and
B are always synchronised (i.e., δAB = 0) in such a case whatever the value of
δAB when the session starts. Furthermore, the session key computation imme-
diately precedes the last update of the derivation master key K. Hence, when a
correct and complete session ends, A and B use the same derivation master key
K to compute the session key. Therefore, using the same values rA, rB , A and
B compute the same session key.

In addition, Table 2a shows that, whatever the synchronisation state between
A and B (i.e., cA and cB) at the beginning of the session, after a correct and
complete session, A and B have updated their internal state at least once (as
the last line of the table, corresponding to a (4, 5)-session, indicates). ut

The diagram depicted by Figure 4 represents all the possible sequences of
sessions with SAKE.

4.2 Security of SAKE

In order to prove that the protocol SAKE is a secure AKE protocol, we use
the execution environment described in Section 2.1. We define the partnering
between two instances with the notion of matching conversations. That is, we

20 G. Avoine, S. Canard, L. Ferreira

0 1

−1

(0, 1)
(2, 3)
(4, 3)
(4, 5) (2, 1)

(4, 3)
(4, 5)

(0, 1)
(2, 1)

(2
, 3

)

(2
, 1

)

(2,
3)

(4,
3)

(4,
5)

(0, 1)

Fig. 4: Diagram of SAKE. The circled values correspond to the gap δAB , and
each edge to a (iA, iB)-session.

define sid to be the transcript, in chronological order, of all the (valid) messages
sent and received by an instance during the key exchange, but, possibly, the last
one (see Definition 8). Furthermore, we choose the function update to be a PRF,
that is update : K 7→ PRF(K,x) for some (constant) value x.

Theorem 1. The protocol SAKE is a secure AKE protocol, and for any prob-
abilistic polynomial time adversary A in the AKE security experiment against
SAKE

advent-authSAKE (A) ≤ nq
(

(nq − 1)2−λ + (q + 1)advprfupdate(B) + 2advsuf-cma
MAC (C)

)
advkey-indSAKE(A) ≤ nq

(
(q − 1)advprfupdate(B) + advprfKDF(D)

)
+ advent-authSAKE (A)

where n is the number of parties, q the number of instances (sessions) per party,
λ the size of the pseudo-random values (rA, rB), and B is an adversary against
the PRF-security of update, C an adversary against the SUF-CMA-security of
MAC, and D an adversary against the PRF-security of KDF.

We give a sketch proof of Theorem 1. The complete proof is given in Ap-
pendix A.

Proof. We proceed through a sequence of games between a challenger and an
adversary A. First we consider the entity authentication experiment. We use the
following hops.

Game 0 corresponds to the entity authentication security experiment de-
scribed in Section 2.1.

In Game 1, the challenger aborts if there exists an instance that chooses a

SAKE: Symmetric-key AKE with Perfect Forward Secrecy 21

random value rA or rB that is not unique. There is at most n × q random val-
ues, each uniformly drawn at random in {0, 1}λ. Therefore, the two games are

equivalent up to a collision term nq(nq−1)
2λ

.
In Game 2, the adversary targets a single instance π. This is equivalent to

guessing the targeted instance, hence implies a security loss equal to 1
nq .

In Game 3, the challenger aborts if the initiator (resp. responder) instance π
ever receives a message mB (resp. mA), but no instance having a matching con-
versation to π has output that message. Here, we reduce the probability of this
event to the security of the functions MAC (used to compute the MAC tags) and
update (used to update the MAC key). Hence we evaluate the overall security
loss.

By assumption, the genuine value of the MAC key K ′ (i.e., the value used
during the first session between two same parties) is uniformly chosen at random.
Then K ′ (and K) is updated throughout the session with the function update. If
K ′ is random, we can rely on the pseudo-randomness of update(·) = PRF(·, ·). In
turn, since PRF(K ′, ·) can be replaced with a truly random function, its output
(updated K ′) is random. Therefore, one can rely upon the pseudo-randomness of
the function update keyed with this new value K ′, and so forth. Each transition
(i.e., each update of K ′) implies a loss equal to advprfupdate(B) corresponding to the
ability of an adversary B to distinguish update from a random function.

On the initiator side, if the initiator party Pi is synchronised with the respon-
der Pj (δAB = 0), Pi updates its master keys once (upon reception of mB). If Pi
is in advance (δAB = 1), it updates its keys at most once (if a valid message τ ′B
is received). If Pi is late (δAB = −1), it updates its keys twice. Yet, in that case,
Pi did not update its keys during the previous session. Therefore, on average, Pi
updates its keys at most once per session. Hence, when the u-th session starts,
Pi has updated its keys at most u− 1 times on average, and, upon reception of
τ ′B , Pi updates the keys at most two times.

This is similar regarding the responder Pj . A responder instance at Pj ac-
cepts only if the two messages mA and τ ′A are valid. Upon reception of a valid
message mA, the keys are updated once (ε = 0) or twice (ε = 1). In the latter
case, the keys have not been updated during the previous session. This means
that the keys are updated on average at most once per session. Therefore, when
the u-th session starts, Pj has updated its keys at most u− 1 times on average,
and, upon reception of mA, the keys are updated at most two times.

Since there is at most q sessions per party, this implies a security loss at most
(q − 1)advprfupdate(B). Then we reduce the probability of the adversary A to win
this game to the ability of an adversary C to forge a valid tag τB (resp. τA).
Hence an additional factor advsuf-cma

MAC (C).
In Game 4, the challenger aborts if the targeted instance π ever receives a

valid message τ ′B (resp. τ ′A), but no instance having a matching conversation to π
has output that message. As explained above, between the reception of message
mB (resp. mA) and message τ ′B (resp. τ ′A), the MAC key K ′ is updated at most
twice. Here, we reduce the probability of the adversary to win this game to the
security of the MAC function used to compute the message τ ′B (resp. τ ′A). In turn

22 G. Avoine, S. Canard, L. Ferreira

we rely on the randomness of the MAC key, hence on the security of the function
update used to update the MAC key K ′. Therefore this implies a security loss at
most 2advprfupdate(B). Then we reduce the probability of the adversary A to win
this game to the ability of an adversary C to forge a valid tag τ ′B (resp. τ ′A).

Hence an additional factor advsuf-cma
MAC (C).

To that point, the only way for the adversary to make π accept maliciously
is to send a valid message τ ′B (resp. τ ′A) different from all the messages sent
by all the instances. However, in such a case, the challenger aborts. Hence the
adversary has no chance to win.

Now we prove the key indistinguishability security.

Game 0 corresponds to the key indistinguishability experiment described in
Section 2.1.

In Game 1, the challenger aborts the experiment and chooses b′ ∈ {0, 1}
uniformly at random if there exists an instance that accepts maliciously. In other
words, in this game we make the same modifications as in the games performed
during the entity authentication proof. Hence a loss advent-authSAKE (A).

In Game 2, the adversary interacts with a single instance. This is equivalent
to guessing the targeted instance, hence implies a security loss equal to 1

nq .
In Game 3, we reduce the advantage of the adversary to win this game to

the security of the function KDF used to compute the session key. That is, we
rely upon the pseudo-randomness of the KDF function. This is possible if the
key K used to compute the session key is random. The genuine value of K is
uniformly chosen at random by assumption. Then K is updated with update
at most once per session on average. Therefore, when the u-th session starts,
K has been updated at most u − 1 times already. Therefore we must take into
account the successive losses due to the key update with respect to the pseudo-
randomness of update. Since there is at most q sessions per party, this loss is at
most (q− 1)advprfupdate(B). Then we reduce the ability of A to win to the security

of KDF. Hence an additional factor advprfKDF(D), corresponding to the advantage
of an adversary D to distinguish KDF from a random function. To that point,
the adversary can do no better than guess. ut

5 Comparison with the DH paradigm

The protocol SAKE is based on shared master keys and apply symmetric-key
functions only. In particular it does not require the application of any kind of
DH-like scheme. Yet it provides a strong form of forward secrecy. Despite this
result, our protocol differs from a DH scheme in several ways beyond the intrinsic
distinction between public-key and symmetric-key cryptography.11

Concurrent executions. Our protocol does not allow parallel executions. Indeed,
since it is based on shared evolving symmetric keys, running multiple instances in

11 The same holds regarding the variant SAKE-AM.

SAKE: Symmetric-key AKE with Perfect Forward Secrecy 23

parallel may cause some sessions to abort. A way to relax this restriction is that
each party use separate master keys for concurrent executions. On the contrary,
the DH scheme allows an (virtually) unlimited number of parallel executions.

KCI attacks. The ephemeral DH scheme (when using safe parameters) is resis-
tant against KCI attacks [14], whereas our protocol is not (due to the dependency
between the (updated) master keys).12 Moreover if an adversary succeeds in get-
ting the key K ′ (or K ′j), she can compute the subsequent key (corresponding to
K ′j+1). Hence the adversary can forge a message mB in SAKE that brings the
initiator to update its master keys twice consecutively. Therefore, that party is
desynchronised with respect to an honest partner, with no possibility to resyn-
chronise.

Note that KCI attacks affect also the static DH scheme (when a party uses
a fixed DH share, whereas the other generates a fresh ephemeral one [26]).

Another consequence of the dependency of the master keys in SAKE, is that
once the keys are revealed, an adversary can passively compromise all subse-
quent session keys. This is not the case in general with ephemeral DH. Yet, this
is also true regarding non-DH public-key protocols (e.g., TLS-RSA), but also
ephemeral DH (in some pathological cases) when small, fixed public parameters
are used [5].

Post-quantum setting. Now a probable benefit of our protocol compared to the
DH scheme is that, since it is based on symmetric-key functions, it can likely
survive in a post-quantum world (with a suitable choice of the primitives, in
particular whose key length is large enough [24]). On the contrary, the DH scheme
is known to be insecure in such a context [30,35,36]. Yet, we observe that there
exists a post-quantum variant of the original DH scheme [19,29], but it is based
on larger parameters and heavier computations than SAKE. Moreover this post-
quantum variant does not provide entity authentication.

Computations. The DH scheme implies heavier computations (modular expo-
nentiations, elliptic curve point multiplication) than SAKE which is solely built
on symmetric-key functions. In practice, SAKE is likely more suitable to be im-
plemented on constrained devices which have limited computational (and com-
munication) capabilities.

6 Conclusion

We have described SAKE, an authenticated key exchange protocol in the sym-
metric-key setting. Although this protocol is solely based on symmetric-key al-
gorithms, it provides perfect forward secrecy without requiring any additional
procedure (e.g., resynchronisation phase) or functionality (e.g., shared clock).

12 When a party Pi’s long-term secret key is disclosed, an adversary can impersonate
Pi to other parties. In the same context, a key compromise impersonation (KCI)
allows the adversary to impersonate other parties to Pi.

24 G. Avoine, S. Canard, L. Ferreira

The underlying idea is to make the shared master keys evolve. We solve the
synchronisation problem that stems from this evolving principle with an elegant
and efficient solution.

SAKE guarantees that, whatever the synchronisation state of the involved
parties prior to the session, both parties share a new session key, and their inter-
nal state is updated and synchronised, once a correct session is complete: SAKE
is self-synchronising. As in the public-key setting, our protocol allows an (virtu-
ally) unlimited number of sessions. Furthermore, we prove that SAKE is sound,
and provide a formal proof of its security in a strong model.

Finally, we describe SAKE-AM, a variant of our protocol, which, used in
conjunction with SAKE, results in an implementation that gathers all the afore-
mentioned properties (starting with forward secrecy). This implementation al-
lows any party to be initiator or responder of a session, such that the smallest
amount of calculation is always done by the same party. This is particularly
convenient in the context of IoT where a set of (low-resource) end-devices com-
municates with a back-end server.

To the best of our knowledge, this is the first protocol with perfect forward se-
crecy in the symmetric-key setting that is comparable to the DH scheme, beyond
the intrinsic distinction between public-key and symmetric-key cryptography.

References

1. Signal, https://signal.org/
2. 3rd Generation Partnership Project: Technical Specifications 33, available via

http://www.3gpp.org/DynaReport/33-series.htm
3. 3rd Generation Partnership Project: Technical Specifications 35, available via

http://www.3gpp.org/DynaReport/35-series.htm
4. Abdalla, M., Bellare, M.: Increasing the lifetime of a key: a comparative anal-

ysis of the security of re-keying techniques. In: Okamoto, T. (ed.) Advances in
Cryptology – ASIACRYPT 2000. Lecture Notes in Computer Science, vol. 1976,
pp. 546–559. Springer, Heidelberg, Germany, Kyoto, Japan (Dec 3–7, 2000).
https://doi.org/10.1007/3-540-44448-3 42

5. Adrian, D., Bhargavan, K., Durumeric, Z., Gaudry, P., Green, M., Halderman, J.A.,
Heninger, N., Springall, D., Thomé, E., Valenta, L., VanderSloot, B., Wustrow,
E., Zanella-Béguelin, S., Zimmermann, P.: Imperfect forward secrecy: How Diffie-
Hellman fails in practice. In: Ray, I., Li, N., Kruegel, C. (eds.) ACM CCS 2015: 22nd
Conference on Computer and Communications Security. pp. 5–17. ACM Press,
Denver, CO, USA (Oct 12–16, 2015). https://doi.org/10.1145/2810103.2813707

6. Alwen, J., Coretti, S., Dodis, Y.: The Double Ratchet: Security Notions, Proofs,
and Modularization for the Signal Protocol. Cryptology ePrint Archive, Report
2018/1037 (2018), https://eprint.iacr.org/2018/1037

7. American National Standards Institute: ANSI X9.24-1:2009 Retail Financial Ser-
vices Symmetric Key Management Part 1: Using Symmetric Techniques (2009)

8. Bellare, M., Desai, A., Jokipii, E., Rogaway, P.: A concrete security treatment
of symmetric encryption. In: 38th Annual Symposium on Foundations of Com-
puter Science. pp. 394–403. IEEE Computer Society Press, Miami Beach, Florida
(Oct 19–22, 1997). https://doi.org/10.1109/SFCS.1997.646128

SAKE: Symmetric-key AKE with Perfect Forward Secrecy 25

9. Bellare, M., Miner, S.K.: A forward-secure digital signature scheme. In: Wiener,
M.J. (ed.) Advances in Cryptology – CRYPTO’99. Lecture Notes in Computer
Science, vol. 1666, pp. 431–448. Springer, Heidelberg, Germany, Santa Barbara,
CA, USA (Aug 15–19, 1999). https://doi.org/10.1007/3-540-48405-1 28

10. Bellare, M., Namprempre, C.: Authenticated encryption: Relations among notions
and analysis of the generic composition paradigm. Journal of Cryptology 21(4),
469–491 (Oct 2008). https://doi.org/10.1007/s00145-008-9026-x

11. Bellare, M., Rogaway, P.: Entity authentication and key distribution. In: Stinson,
D.R. (ed.) Advances in Cryptology – CRYPTO’93. Lecture Notes in Computer
Science, vol. 773, pp. 232–249. Springer, Heidelberg, Germany, Santa Barbara,
CA, USA (Aug 22–26, 1994). https://doi.org/10.1007/3-540-48329-2 21

12. Bellare, M., Rogaway, P.: Code-based game-playing proofs and the secu-
rity of triple encryption. Cryptology ePrint Archive, Report 2004/331 (2004),
http://eprint.iacr.org/2004/331

13. Bellare, M., Yee, B.S.: Forward-security in private-key cryptography. In: Joye,
M. (ed.) Topics in Cryptology – CT-RSA 2003. Lecture Notes in Computer Sci-
ence, vol. 2612, pp. 1–18. Springer, Heidelberg, Germany, San Francisco, CA, USA
(Apr 13–17, 2003). https://doi.org/10.1007/3-540-36563-X 1

14. Blake-Wilson, S., Johnson, D., Menezes, A.: Key agreement protocols and their
security analysis. In: Darnell, M. (ed.) 6th IMA International Conference on Cryp-
tography and Coding. Lecture Notes in Computer Science, vol. 1355, pp. 30–45.
Springer, Heidelberg, Germany, Cirencester, UK (Dec 17–19, 1997)

15. Boyd, C., Mathuria, A.: Protocols for Authentication and Key Establishment. In-
formation Security and Cryptography, Springer (2003)

16. Brier, E., Peyrin, T.: A forward-secure symmetric-key derivation protocol -
how to improve classical DUKPT. In: Abe, M. (ed.) Advances in Cryptol-
ogy – ASIACRYPT 2010. Lecture Notes in Computer Science, vol. 6477,
pp. 250–267. Springer, Heidelberg, Germany, Singapore (Dec 5–9, 2010).
https://doi.org/10.1007/978-3-642-17373-8 15

17. Brzuska, C., Jacobsen, H., Stebila, D.: Safely exporting keys from secure channels:
On the security of EAP-TLS and TLS key exporters. In: Fischlin, M., Coron,
J.S. (eds.) Advances in Cryptology – EUROCRYPT 2016, Part I. Lecture Notes in
Computer Science, vol. 9665, pp. 670–698. Springer, Heidelberg, Germany, Vienna,
Austria (May 8–12, 2016). https://doi.org/10.1007/978-3-662-49890-3 26

18. Cohn-Gordon, K., Cremers, C., Dowling, B., Garratt, L., Stebila, D.: A Formal
Security Analysis of the Signal Messaging Protocol. In: 2017 IEEE European Sym-
posium on Security and Privacy (EuroS&P). pp. 451–466. IEEE (April 2017).
https://doi.org/10.1109/EuroSP.2017.27

19. Costello, C., Longa, P., Naehrig, M.: Efficient algorithms for supersingular isogeny
Diffie-Hellman. In: Robshaw, M., Katz, J. (eds.) Advances in Cryptology –
CRYPTO 2016, Part I. Lecture Notes in Computer Science, vol. 9814, pp. 572–
601. Springer, Heidelberg, Germany, Santa Barbara, CA, USA (Aug 14–18, 2016).
https://doi.org/10.1007/978-3-662-53018-4 21

20. Diffie, W., Hellman, M.E.: New directions in cryptography. IEEE Transactions on
Information Theory 22(6), 644–654 (1976)

21. Diffie, W., van Oorschot, P.C., Wiener, M.J.: Authentication and authenticated
key exchanges. Designs, Codes and Cryptography 2(2), 107–125 (Jun 1992)

22. Dousti, M.S., Jalili, R.: FORSAKES: A forward-secure authenticated key exchange
protocol based on symmetric key-evolving schemes. Cryptology ePrint Archive,
Report 2014/123 (2014), http://eprint.iacr.org/2014/123

26 G. Avoine, S. Canard, L. Ferreira

23. GlobalPlatform: GlobalPlatform – Card Specification – Ver-
sion 2.3.1 (March 2018), reference GPC SPE 034. Available via
https://www.globalplatform.org/specificationscard.asp

24. Grover, L.K.: A fast quantum mechanical algorithm for database search. In: 28th
Annual ACM Symposium on Theory of Computing. pp. 212–219. ACM Press,
Philadephia, PA, USA (May 22–24, 1996). https://doi.org/10.1145/237814.237866

25. Günther, C.G.: An identity-based key-exchange protocol. In: Quisquater, J.J., Van-
dewalle, J. (eds.) Advances in Cryptology – EUROCRYPT’89. Lecture Notes in
Computer Science, vol. 434, pp. 29–37. Springer, Heidelberg, Germany, Houthalen,
Belgium (Apr 10–13, 1990). https://doi.org/10.1007/3-540-46885-4 5

26. Hlauschek, C., Gruber, M., Fankhauser, F., Schanes, C.: Prying Open Pandora’s
Box: KCI Attacks Against TLS. In: Proceedings of the 9th USENIX Conference
on Offensive Technologies. WOOT’15, USENIX Association (2015)

27. International Organization for Standardization: ISO/IEC 11770-2 – Information
technology – Security techniques – Key Management – Part 2: Mechanisms using
Symmetric Techniques (2008)

28. Jager, T., Kohlar, F., Schäge, S., Schwenk, J.: On the security of TLS-DHE
in the standard model. Cryptology ePrint Archive, Report 2011/219 (2011),
http://eprint.iacr.org/2011/219

29. Jao, D., De Feo, L.: Towards quantum-resistant cryptosystems from supersingular
elliptic curve isogenies. In: Yang, B.Y. (ed.) Post-Quantum Cryptography - 4th In-
ternational Workshop, PQCrypto 2011. pp. 19–34. Springer, Heidelberg, Germany,
Tapei, Taiwan (Nov 29 – Dec 2 2011). https://doi.org/10.1007/978-3-642-25405-5 2

30. Kaliski Jr., B.S.: A Quantum “Magic Box” for the Discrete Loga-
rithm Problem. Cryptology ePrint Archive, Report 2017/745 (2017),
https://eprint.iacr.org/2017/745

31. Le, T.V., Burmester, M., de Medeiros, B.: Universally composable and forward-
secure RFID authentication and authenticated key exchange. In: Bao, F., Miller, S.
(eds.) ASIACCS 07: 2nd ACM Symposium on Information, Computer and Com-
munications Security. pp. 242–252. ACM Press, Singapore (Mar 20–22, 2007)

32. Park, T., Shin, K.G.: LiSP: A Lightweight Security Protocol for Wireless Sensor
Networks. ACM Trans. Embed. Comput. Syst. 3(3), 634–660 (August 2004)

33. Perrig, A., Szewczyk, R., Tygar, J., Wen, V., Culler, D.E.: SPINS: Security Pro-
tocols for Sensor Networks. Wireless Networks 8(5), 521–534 (September 2002)

34. Perrin, T., Marlinspike, M.: The Double Ratchet Algorithm (2016),
https://signal.org/docs/specifications/doubleratchet/, Revision 1, 20/11/2016

35. Proos, J., Zalka, C.: Shor’s Discrete Logarithm Quantum Algorithm for Elliptic
Curves. Quantum Info. Comput. 3(4), 317–344 (Jul 2003)

36. Shor, P.W.: Algorithms for quantum computation: Discrete logarithms and fac-
toring. In: 35th Annual Symposium on Foundations of Computer Science. pp.
124–134. IEEE Computer Society Press, Santa Fe, NM, USA (Nov 20–22, 1994).
https://doi.org/10.1109/SFCS.1994.365700

37. Shoup, V.: Sequences of games: a tool for taming complexity in se-
curity proofs. Cryptology ePrint Archive, Report 2004/332 (2004),
http://eprint.iacr.org/2004/332

38. Sornin, N., Luis, M., Eirich, T., Kramp, T.: LoRaWAN Specification (July 2016),
LoRa Alliance, version 1.0

39. ZigBee Alliance: ZigBee specification, available via
http://www.zigbee.org/download/standards-zigbee-specification/

SAKE: Symmetric-key AKE with Perfect Forward Secrecy 27

A Extended Security Proof for SAKE

In this section, we give a proof of Theorem 1. That is, SAKE is a secure AKE
protocol according to Definition 5.

Proof. In order for an initiator instance πsi at some party Pi to accept, two
valid messages (i.e., with valid MAC tags) must be received by πsi (mB and τ ′B).
We reduce the security of the MAC function to the (in)ability to forge a valid
output. Therefore we use the fact that the key K ′ is random. By assumption,
the genuine value of K ′ (i.e., the value used during the first session between
two same parties) is uniformly chosen at random. Yet K ′ (and K) is updated
throughout the session with the function update. If K ′ is random, we can rely
on the pseudo-randomness of update = PRF(·, ·). In turn, since PRF(K ′, ·) can
be replaced with a truly random function, its output (updated K ′) is random.
Therefore, one can rely upon the pseudo-randomness of the function update
keyed with this new value K ′, and so forth. Each transition (i.e., each update

of K ′) implies a loss equal to advprfupdate(B) corresponding to the ability of an
adversary B to distinguish update from a random function.

If Pi is synchronised with the responder (δAB = 0), Pi updates its master
keys once (upon reception of mB). If Pi is in advance (δAB = 1), it updates its
keys at most once (if a valid message τ ′B is received). If Pi is late (δAB = −1),
it updates its keys twice. Yet, in that case, Pi did not update its keys during
the previous session. Therefore, on average, Pi updates its keys at most once per
session. Hence, when the u-th session starts, Pi has updated its keys at most
u− 1 times on average, and, upon reception of τ ′B , Pi updates the keys at most
two times.

This is similar regarding the responder. A responder instance πtj at some
party Pj accepts only if the two messages mA and τ ′A are valid. Upon reception
of a valid message mA, the keys are updated once (ε = 0) or twice (ε = 1). In
the latter case, the keys have not been updated during the previous session. This
means that the keys are updated on average at most once per session. Therefore,
when the u-th session starts, Pj has updated its keys at most u − 1 times on
average, and, upon reception of mA, the keys are updated at most two times.

We can now proceed with the proof. We proceed through a sequence of
games [12, 37], where each consecutive game aims at reducing the challenger’s
dependency on the functions MAC, update and KDF. We first prove the entity
authentication security. Let Ei be the event that the adversary win the entity
authentication experiment in Game i.

Game 0. This game corresponds to the entity authentication security experiment
described in Section 2.1. Therefore

Pr[E0] = advent-authSAKE (A)

Game 1. In this game, we add an abort rule. The challenger aborts if there exists
any instance that chooses a random value rA or rB that is not unique. There

28 G. Avoine, S. Canard, L. Ferreira

is at most n × q random values, each uniformly drawn at random in {0, 1}λ.
Therefore the probability that at least two random values be equal is at most
nq(nq−1)

2λ
. Hence

Pr[E0] ≤ Pr[E1] +
nq(nq − 1)

2λ

Game 2. In this game, we add an abort rule. The challenger tries to guess which
instance will be the first to accept maliciously. If the guess is wrong, the game
is aborted. The number of instances is at most nq. Therefore

Pr[E2] = Pr[E1]× 1

nq

Game 3. Let π be the instance targeted by the adversary. In this game, we add
an abort rule. The challenger aborts the experiment if π, behaving as an ini-
tiator (resp. responder) instance, ever receives a valid message mB (resp. mA)
but no instance having a matching conversation to π has output that message.
We reduce the probability of this event to the security of the functions MAC
and update. As explained above, when the u-th session starts, the master keys
have been updated at most u − 1 times already. The genuine value of K ′ is
uniformly chosen at random. In order to be able to replace, during the current
session, the key used to compute the MAC tag in mA (resp. mB) with a random
value, one must rely upon the pseudo-randomness of the function update that
outputs (the new value of) K ′. In turn, this relies upon the (previous) key K ′

being random (and on the pseudo-randomness of update). Therefore, in order to
replace K ′ with a random value one must take into account the successive losses
advprfupdate(B), each corresponding to the ability of an adversary B to distinguish
the function update (keyed with a different key K ′) from a random function.

Since there is at most q sessions, this loss is at most (q − 1)advprfupdate(B). Then
we reduce the probability of the adversary A to win this game to the ability of
an adversary C to forge a valid tag τB (resp. τA).

Therefore, we replace each function update(K ′) = PRF(K ′, x) (keyed with a
different key K ′ throughout the, at most, q − 1 successive sessions established,
prior to that current session, by the same party that owns π) with truly ran-

dom functions Fupdate
0 , . . ., Fupdate

q−2 . Moreover, if an instance uses the same key
K ′ = K ′i, 0 ≤ i < q − 1, to key update, then we replace update with the cor-

responding random function Fupdate
i . Since, to that point, the key K ′ = K ′q−1

used to compute the authentication tag τB (resp. τA) is random, we reduce the
ability of A to win to the security of the MAC function. Hence

Pr[E2] ≤ Pr[E3] + (q − 1)advprfupdate(B) + advsuf-cma
MAC (C)

Game 4. In this game, we add an abort rule. The challenger aborts the experi-
ment if π ever receives a valid message τ ′B (resp. τ ′A), but no instance having a
matching conversation to π has output that message. Between the message mB

(resp. mA) being received by π, and the message τ ′B (resp. τ ′A) being received by

SAKE: Symmetric-key AKE with Perfect Forward Secrecy 29

π, the master keys are updated at most twice. We reduce the probability of the
adversary to win this game to the security of the MAC function used to compute
the message τ ′B (resp. τ ′A). In turn we must rely on the randomness of the MAC
key, hence on the security of the function update used to update the MAC key
K ′ (recall that, due to Game 3, the current key K ′ is random). Therefore

Pr[E3] ≤ Pr[E4] + 2advprfupdate(B) + advsuf-cma
MAC (C)

To that point, the only way for the adversary to make π accept maliciously
is to send a valid message τ ′B (resp. τ ′A) different from all the messages sent by
all the instances. However, in such a case, the challenger aborts. Therefore

Pr[E4] = 0

Collecting all the probabilities from Game 0 to Game 4, we have that

advent-authSAKE (A) = Pr[E0]

≤ nq(nq − 1)

2λ
+ Pr[E1]

=
nq(nq − 1)

2λ
+ nq × Pr[E2]

≤ nq(nq − 1)

2λ
+ nq

(
Pr[E3] + (q − 1)advprfupdate(B) + advsuf-cma

MAC (C)
)

≤ nq(nq − 1)

2λ
+ nq

(
Pr[E4] + (q + 1)advprfupdate(B) + 2advsuf-cma

MAC (C)
)

=
nq(nq − 1)

2λ
+ nq

(
(q + 1)advprfupdate(B) + 2advsuf-cma

MAC (C)
)

= nq
(

(nq − 1)2−λ + (q + 1)advprfupdate(B) + 2advsuf-cma
MAC (C)

)
Now we prove the key indistinguishability security. Let E′i be the event that

an adversary win the key indistinguishability experiment in Game i, and advi =
Pr[E′i]− 1

2 .

Game 0. This game corresponds to the key indistinguishability experiment de-
scribed in Section 2.1. Therefore

Pr[E′0] =
1

2
+ advkey-indSAKE(A) =

1

2
+ adv0

Game 1. In this game, we add an abort rule. The challenger aborts the experi-
ment and chooses b′ ∈ {0, 1} uniformly at random if there exists an instance that
accepts maliciously. In other words, in this game we make the same modifications
as in the games performed during the entity authentication proof. Hence

adv0 ≤ adv1 + advent-authSAKE (A)

30 G. Avoine, S. Canard, L. Ferreira

Game 2. In this game, we add an abort rule. The challenger tries to guess which
instance is targeted by the adversary. If the guess is wrong, the game is aborted.
The number of instances is at most nq. Therefore

adv2 = adv1 ×
1

nq

Game 3. Let π be the instance targeted by the adversary. We reduce the ad-
vantage of the adversary to win this game to the security of the function KDF
used to compute the session key. That is, we rely upon the pseudo-randomness
of the KDF function. This is possible if the key K is random. The genuine value
of K is uniformly chosen at random by assumption. Then K is updated with
update at most once per session on average. Therefore, when the u-th session
starts, K has been updated at most u − 1 times already. Therefore we must
take into account the successive losses due to the key update with respect to the
pseudo-randomness of update. Since there is at most q sessions per party (i.e.,

per original key K), this loss is at most (q − 1)advprfupdate(B). Hence we replace
each function update(K) = PRF(K,x) (keyed with a different key K throughout
the, at most, q − 1 successive sessions established, prior to that current session,
by the same party that owns π) with truly random functions Gupdate

0 , . . ., Gupdate
q−2 .

Moreover, if an instance uses the same key K = Ki, 0 ≤ i < q−1, to key update,
then we replace update with the corresponding random function Gupdate

i . Since,
to that point, the key K = Kq−1 used to compute the session key is random, we
reduce the ability of A to win to the security of KDF. Therefore

adv2 ≤ adv3 + (q − 1)advprfupdate(B) + advprfKDF(D)

To that point the session key is random, therefore the adversary has no
advantage in guessing whether π.b = b′. That is

adv3 = 0

Collecting all the probabilities from Game 0 to Game 3, we have that

advkey-indSAKE(A) = adv0

≤ advent-authSAKE (A) + adv1

= advent-authSAKE (A) + nq × adv2

≤ advent-authSAKE (A) + nq
(
adv3 + (q − 1)advprfupdate(B) + advprfKDF(D)

)
= advent-authSAKE (A) + nq

(
(q − 1)advprfupdate(B) + advprfKDF(D)

)
ut

B Soundness and Security for SAKE-AM

In this section we prove the soundness and security of the protocol SAKE-AM.
Figure 5 depicts the protocol. For the sake of clarity, we use the following nota-
tions:

SAKE: Symmetric-key AKE with Perfect Forward Secrecy 31

– kdf corresponds to: sk ← KDF(K, f(rA, rB))
– upd′A corresponds to

1. K ← update(K)
2. K ′ ← update(K ′)

– upd′B corresponds to
1. K ← update(K)
2. K ′j−1 ← K ′j
3. K ′j ← K ′j+1

4. K ′j+1 ← update(K ′j+1)

B.1 Soundness of SAKE-AM

Lemma 2. Let A and B be respectively the initiator and the responder of a
SAKE-AM session. Let δBA be the gap between B and A with respect to the
evolution of the master keys of both parties. The following conditions always
hold:

1. δBA ∈ {−1, 0, 1}, and
2. whatever the synchronisation state of A and B at the beginning of a ses-

sion (i.e., whatever A and B are synchronised or not), when that session
completes in presence of a benign adversary, then
(a) A and B have updated their master keys at least once, and
(b) A and B are synchronised (with respect to their master keys), and
(c) A and B share the same session key.

We prove Lemma 2. We use again the (virtual) monotonically increasing
counters cA and cB maintained respectively by A and B. Counter cA (resp. cB)
is incremented each time A (resp. B) updates its master keys.

Proof. We first prove item 1 of Lemma 2.
The different possible sessions are listed in Table 3. We prove item 1 by con-

structing iteratively Table 4b.

Table 3: Possible values for (iA, iB) in SAKE-AM

iA

iB
1 3

0 3 7

2 3 3

4 7 3

Before the first session, A and B are synchronised. That is δBA = cB−cA = 0,
or (cB , cA) = (i, i) (with i = 0). Therefore, B can validate τA with the same key
K ′j = K ′ as A. Hence δBA = 0, and ε = 0. Consequently, if one carries out
the protocol run with δBA = 0 and ε = 0, for each possible value (iA, iB), one
eventually gets the following:

32 G. Avoine, S. Canard, L. Ferreira

A B
(K,K′) (K,K′j+1,K

′
j ,K

′
j−1)

rA
$←− {0, 1}λ

τA ← MAC(K′, A‖B‖rA)

mA ← A‖rA‖τA
mA−−−−−−−−→

if (verif(K′j , A‖B‖rA, τA) = true)
δBA ← 0
K′ ← K′j ; kdf; upd

′
B ; ε← 0

else if (verif(K′j−1, A‖B‖rA, τA) = true)
δBA ← 1
K′ ← K′j−1; ε← 1

else if (verif(K′j+1, A‖B‖rA, τA) = true)
δBA ← −1
K′ ← K′j+1; upd′B ; kdf; upd′B ; ε← 0

else

abort

rB
$←− {0, 1}λ

τB ← MAC(K′, ε‖B‖A‖rB‖rA)
mB ← ε‖rB‖τB

mB←−−−−−−−−
if (verif(K′, ε‖B‖A‖rB‖rA, τB) = false)

abort

if (ε = 1)
upd′A

kdf; upd′A
τ ′A ← MAC(K′, A‖B‖rA‖rB)

τ ′A−−−−−−−−→
if (ε = 0)

K′ ← K′j
if (verif(K′, A‖B‖rA‖rB , τ ′A) = false)

abort
else if (ε = 1)

K′ ← K′j+1

if (verif(K′, A‖B‖rA‖rB , τ ′A) = false)
abort

kdf; upd′B

τ ′B ← MAC(K′, rB‖rA)

τ ′B←−−−−−−−−
if (verif(K′, rB‖rA, τ ′B) = false)

abort

Fig. 5: SAKE-AM protocol

SAKE: Symmetric-key AKE with Perfect Forward Secrecy 33

– (cB , cA) = (i+ 1, i) and δBA = 1 after a (0, 1)-session,
– (cB , cA) = (i+ 1, i+ 1) and δBA = 0 after a (2, 1)-session,
– (cB , cA) = (i+ 1, i+ 1) and δBA = 0 after a (2, 3)-session,
– (cB , cA) = (i+ 1, i+ 1) and δBA = 0 after a (4, 3)-session.

This corresponds to the first column of Tables 4b and 4a. As we can see, the
only possible values for δBA after any session are 0 and 1. Hence, we explore all
the values δBA may have with any possible session if δBA = 1 (i.e., (cB , cA) =
(i+ 1, i)) when the session starts.

(cB , cA) = (i+ 1, i) means that B is in advance with respect to A. In such a
case, B succeeds in validating τA with K ′j−1 (and, indeed, finds δBA = 1). Then
B uses δBA = 1 and ε = 1. If one carries out the protocol run using these two
values, one gets:

– (cB , cA) = (i+ 1, i) and δBA = 1 after a (0, 1)-session,
– (cB , cA) = (i+ 1, i+ 2) and δBA = −1 after a (2, 1)-session,
– (cB , cA) = (i+ 2, i+ 2) and δBA = 0 after a (2, 3)-session,
– (cB , cA) = (i+ 2, i+ 2) and δBA = 0 after a (4, 3)-session.

This corresponds to the second column of Table 4b. This shows that a third
value is possible for δBA, which is −1.

Then we restart the protocol with all possible sessions, assuming that (cB , cA) =
(i, i + 1) at the beginning of the run. This means that B is one step late with
respect to A. In such a case, B succeeds in validating τA with key K ′j+1 (and,
indeed, finds δBA = −1). Then B uses δBA = −1 and ε = 0. If one carries out
the protocol run using these two values, one gets:

– (cB , cA) = (i+ 2, i+ 1) and δBA = 1 after a (0, 1)-session,
– (cB , cA) = (i+ 2, i+ 2) and δBA = 0 after a (2, 1)-session,
– (cB , cA) = (i+ 2, i+ 2) and δBA = 0 after a (2, 3)-session,
– (cB , cA) = (i+ 2, i+ 2) and δBA = 0 after a (4, 3)-session.

We end with two possible values for δBA (third column of Table 4b): 0 and 1,
that have already been explored. This proves that, whatever the sequences of
sessions, the only possible values for δBA are in {−1, 0, 1}.

Now we prove item 2 of Lemma 2.
We know that δBA ∈ {−1, 0, 1}. For each possible value for δBA at the

beginning of the session, the last line of Table 4b indicates the value of that
parameter after a correct session (i.e., a (4, 3)-session). As we can see, A and B
are always synchronised (i.e., δBA = 0) in such a case whatever the value of δBA
when the session starts. Furthermore, the session key computation immediately
precedes the last update of the derivation master key K. Hence, when a correct
and complete session ends, A and B use the same key K to compute the session
key. Therefore, under the assumption that A and B both use the same values
rA, rB , they do compute the same session key.

In addition, Table 4a shows that, whatever the synchronisation state of A
and B (i.e., cA and cB) at the beginning of the protocol, after a correct session,
A and B have updated their internal state at least once (as the last line of the
table, corresponding to a (4, 3)-session, indicates). ut

34 G. Avoine, S. Canard, L. Ferreira

Table 4: Possible values for δBA and (cB , cA) among all possible sequences of
sessions in SAKE-AM

(a) Possible values for (cB , cA)

session
(cB , cA)

(i, i) (i+ 1, i) (i, i+ 1)

(0, 1) (i+ 1, i) (i+ 1, i) (i+ 2, i+ 1)

(2, 1) (i+ 1, i+ 1) (i+ 1, i+ 2) (i+ 2, i+ 2)

(2, 3) (i+ 1, i+ 1) (i+ 2, i+ 2) (i+ 2, i+ 2)

(4, 3) (i+ 1, i+ 1) (i+ 2, i+ 2) (i+ 2, i+ 2)

(b) Possible values for δBA

session
δBA

0 1 −1

(0, 1) 1 1 1

(2, 1) 0 −1 0

(2, 3) 0 0 0

(4, 3) 0 0 0

The diagram depicted by Figure 6 represents all the possible sequences of
sessions for SAKE-AM.

0 1

−1

(2, 1)
(2, 3)
(4, 3)

(0, 1)

(2, 3)
(4, 3)

(0, 1)
(2
, 1

)

(0
, 1

)

(2,
1)

(2,
3)

(4,
3)

Fig. 6: Diagram of SAKE-AM. The circled values correspond to the gap δBA,
and each edge to a (iA, iB)-session.

B.2 Security of SAKE-AM

With the following theorem, we claim that SAKE-AM is a secure AKE protocol
according to Definition 5.

Theorem 2. The protocol SAKE-AM is a secure AKE protocol, and for any
probabilistic polynomial time adversary A in the AKE security experiment against
SAKE-AM

advent-authSAKE-AM (A) ≤ nq
(

(nq − 1)2−λ + (q + 1)advprfupdate(B) + 2advsuf-cma
MAC (C)

)
advkey-indSAKE-AM (A) ≤ nq

(
(q − 1)advprfupdate(B) + advprfKDF(D)

)
+ advent-authSAKE-AM (A)

SAKE: Symmetric-key AKE with Perfect Forward Secrecy 35

where n is the number of parties, q the number of instances (sessions) per party,
λ the size of the pseudo-random values (rA, rB), and B is an adversary against
the PRF-security of update, C an adversary against the SUF-CMA-security of
MAC, and D an adversary against the PRF-security of KDF.

Proof. We first prove the entity authentication security.

Game 0. This game corresponds to the entity authentication security experiment
described in Section 2.1. Therefore

Pr[E0] = advent-authSAKE-AM (A)

Game 1. In this game, we add an abort rule. The challenger aborts if there exists
any instance that chooses a random value rA or rB that is not unique. There
is at most n × q random values, each uniformly drawn at random in {0, 1}λ.
Therefore the probability that at least two random values be equal is at most
nq(nq−1)

2λ
. Hence

Pr[E0] ≤ Pr[E1] +
nq(nq − 1)

2λ

Game 2. In this game, we add an abort rule. The challenger tries to guess which
instance will be the first to accept maliciously. If the guess is wrong, the game
is aborted. The number of instances is at most nq. Therefore

Pr[E2] = Pr[E1]× 1

nq

Game 3. Let π be the instance targeted by the adversary. In this game, we add
an abort rule. The challenger aborts the experiment if π, behaving as a responder
(resp. initiator), ever receives a valid message mB (resp. mA) but no instance
having a matching conversation to π has output that message. We reduce the
probability of this event to the security of the functions MAC and update. When
the u-th session starts, the master keys have been updated at most u−1 times al-
ready. The genuine value of K ′ is uniformly chosen at random. In order to be able
to replace, during the current session, the key used to compute the MAC tag in
mA (resp. mB) with a random value, one must rely upon the pseudo-randomness
of the function update that outputs (the new value of) K ′. In turn, this relies
upon the (previous) key K ′ being random (and on the pseudo-randomness of
update). Therefore, in order to replace K ′ with a random value one must take

into account the successive losses advprfupdate(B), each corresponding to the ability
of an adversary B to distinguish the function update (keyed with a different key
K ′) from a random function. Since there is at most q sessions, this loss is at

most (q − 1)advprfupdate(B). Then we reduce the probability of the adversary A to
win this game to the ability of an adversary C to forge a valid tag τB (resp. τA).

Therefore, we replace each function update(·) = PRF(·, ·) (keyed with a dif-
ferent key K ′ throughout the, at most, q−1 successive sessions established, prior

36 G. Avoine, S. Canard, L. Ferreira

to that current session, by the same party that owns π) with truly random func-

tions Fupdate
0 , . . ., Fupdate

q−2 . Moreover, if an instance uses the same key K ′ = K ′i,
0 ≤ i < q − 1, to key update, then we replace update with the corresponding
random function Fupdate

i . Since, to that point, the key K ′ = K ′q−1 used to com-
pute the authentication tag τB (resp. τA) is random, we reduce the ability of A
to win to the security of the MAC function. Hence

Pr[E2] ≤ Pr[E3] + (q − 1)advprfupdate(B) + advsuf-cma
MAC (C)

Game 4. In this game, we add an abort rule. The challenger aborts the experi-
ment if π ever receives a valid message τ ′B (resp. τ ′A), but no instance having a
matching conversation to π has output that message. Between the message mB

(resp. mA) being received by π, and the message τ ′B (resp. τ ′A) being received by
π, the master keys are updated at most twice. We reduce the probability of the
adversary to win this game to the security of the MAC function used to compute
the message τ ′B (resp. τ ′A). In turn we must rely on the randomness of the MAC
key, hence on the security of the function update used to update the MAC key
K ′ (recall that, due to Game 3, the current key K ′ is random). Therefore

Pr[E3] ≤ Pr[E4] + 2advprfupdate(B) + advsuf-cma
MAC (C)

To that point, the only way for the adversary to make π accept maliciously
is to send a valid message τ ′B (resp. τ ′A) different from all the messages sent by
all the instances. However, in such a case, the challenger aborts. Therefore

Pr[E4] = 0

Collecting all the probabilities from Game 0 to Game 4, we have that

advent-authSAKE-AM (A) = Pr[E0]

≤ nq(nq − 1)

2λ
+ Pr[E1]

=
nq(nq − 1)

2λ
+ nq × Pr[E2]

≤ nq(nq − 1)

2λ
+ nq

(
Pr[E3] + (q − 1)advprfupdate(B) + advsuf-cma

MAC (C)
)

≤ nq(nq − 1)

2λ
+ nq

(
Pr[E4] + (q + 1)advprfupdate(B) + 2advsuf-cma

MAC (C)
)

=
nq(nq − 1)

2λ
+ nq

(
(q + 1)advprfupdate(B) + 2advsuf-cma

MAC (C)
)

= nq
(

(nq − 1)2−λ + (q + 1)advprfupdate(B) + 2advsuf-cma
MAC (C)

)
The reasoning and the bound for the key indistinguishability security are the

same as that of SAKE (see Appendix A).
ut

