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Abstract—Recent foundational work on leakage-abuse attacks
on encrypted databases has broadened our understanding of
what an adversary can accomplish with a standard leakage
profile. Nevertheless, all known value reconstruction attacks
succeed under strong assumptions that may not hold in the real
world. The most prevalent assumption is that queries are issued
uniformly at random by the client. We present the first value
reconstruction attacks that succeed without any knowledge about
the query or data distribution. Our approach uses the search-
pattern leakage, which exists in all known structured encryption
schemes but has not been fully exploited so far. At the core
of our method lies a support size estimator, a technique that
utilizes the repetition of search tokens with the same response to
estimate distances between encrypted values without any assump-
tions about the underlying distribution. We develop distribution-
agnostic reconstruction attacks for both range queries and k-
nearest-neighbor (k-NN) queries based on information extracted
from the search-pattern leakage. Our new range attack follows
a different algorithmic approach than state-of-the-art attacks,
which are fine-tuned to succeed under the uniformly distributed
queries. Instead, we reconstruct plaintext values under a variety
of skewed query distributions and even outperform the accuracy
of previous approaches under the uniform query distribution.
Our new k-NN attack succeeds with far fewer samples than
previous attacks and scales to much larger values of k. We
demonstrate the effectiveness of our attacks by experimentally
testing them on a wide range of query distributions and database
densities, both unknown to the adversary.

I. INTRODUCTION

In searchable encryption [15], [31], [41], a client encrypts a
privacy-sensitive data collection and outsources an encrypted
database to a server that can efficiently answer search queries
without ever decrypting the database. Known constructions
handle rich and expressive queries [17], [22] under the
definitional framework of structured encryption (STE) [13].
For an overview of the area, see the survey by Fuller et al. [23].

To strike a balance between efficiency and privacy, structured
encryption schemes reveal, by design, certain information
about the query and its corresponding response—this is the
so-called leakage. Despite cryptographic proofs guaranteeing
that nothing more is leaked but what the designer allowed, the
implications of the legitimately leaked information have not
been fully grasped yet. The first generation of leakage-based
attacks [8], [30], [45] focused on query reconstruction under
various assumptions. The next generation of attacks [27], [32],
[33], [34] supported plaintext value reconstruction by a server
answering expressive queries, e.g. range and k-NN, on a one-
dimensional database under strong assumptions about the query
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Fig. 1. Visual comparison between plaintext values of real-world private
geolocation dataset Spitz (in red) and values reconstructed by our attack
AGNOSTIC-RECONSTRUCTION-KNN on k-NN queries under a Gaussian
distribution and k = 10 (in black). Our attack achieves an approximate
reconstruction (1) under a non-uniform query distribution and (2) with half
the queries and larger k values compared to previous work [33].

and/or data distribution. In this paper, we take the next step
and demonstrate the first efficient reconstruction attacks for
range and k-NN queries where the adversary has no knowledge
about the query distribution or the underlying data.

A. Motivation and Approach

We overview the limitations of the four state-of-the-art
attacks supported by a theoretical analysis and experimental
evaluation [27], [32], [33], [34] and outline our new approach.

Uniform Query Distribution Assumption. The first value
reconstruction attack for range queries was proposed by
Kellaris-Kollios-Nissim-O’Neil (KKNO) [32]. It assumes that
queries are issued uniformly at random. Lacharité-Minaud-
Paterson (LMP) [34] studied the same problem for the special
case of dense databases—this is a simpler problem since
reconstructing order is equivalent to reconstructing values.
The work by Grubbs-Lacharité-Minaud-Paterson (GLMP) [27]
gives three reconstruction attacks for range queries under
different assumptions: attacks GENERALIZEDKKNO and
APPROXVALUE assume an underlying uniform query
distribution, extend the underlying ideas of KKNO, and
present a new analysis on the query complexity; attack
AOR-to-ADR does not assume uniform queries but assumes
that the attacker knows both the query distribution and
an approximation of the data distribution. Kornaropoulos-
Papamanthou-Tamassia (KPT) [33] propose reconstruction
attacks for k-nearest neighbor queries under the uniform query



TABLE I
ASSUMPTIONS OF STATE-OF-THE-ART VALUE RECONSTRUCTION ATTACKS AND OUR NEW ATTACKS

Value Reconstruction Query Type
Assumptions Exploited Leakage

Attack Algorithms Query Data Values in a Known Dense Search-Pattern Access-Pattern
Distribution Fixed Region Data Distribution Database Leakage Leakage

KPT [33] k-NN Uniform - - - - •
KKNO [32] Range Uniform - - - - •
LMP [34] Range Agnostic - - • - •

GLMP [27] GENERALIZEDKKNO Range Uniform - - - - •
GLMP [27] APPROXVALUE Range Uniform • - - - •
GLMP [27] AOR to ADR Range Known - • - - •

This Work k-NN & Range Agnostic - - - • •

distribution. The above attacks, summarized in Table I, set the
foundations for understanding the implications of leakage but
only succeed under strong assumptions that potentially do not
hold in the real world, e.g., uniform query distribution. Thus,
the following question still remains open:

“Is it possible to devise attacks that reconstruct an approxi-
mation of the plaintext values without any knowledge about
the query distribution or the data distribution?”

Our work answers this question in the affirmative and
presents reconstruction techniques that are query and data
distribution agnostic. The key to achieve such a generalization
lies in the search-pattern leakage which is revealed in all
known STE schemes [23] but has been overlooked so far. See
Figure 1 for an illustration of the quality of our reconstruction.

Fundamental Limitations of Current Range Attacks. A
natural approach for answering the above question would
be to extend existing algorithmic techniques to work for
arbitrary query distributions. To explore this possibility, we first
give a high-level intuition of the range reconstruction attacks
KKNO, GENERALIZEDKKNO, and APPROXVALUE. Through
the access-pattern leakage, which appears in the vast majority
of STE schemes, the attacker can see which and how many
queries return a given encrypted record. Assume the attacker
knows the space of possible plaintext values, e.g., values
from 0 to 100 representing attribute age. If range queries are
generated uniformly, the attacker expects values in the middle
(e.g. age = 50) to be returned more often than values towards
the ends (e.g. age = 1). Formally, the reference probability of a
value v captures the likelihood that value v will be returned in
a response to a query. It is defined as

∑
r∈Rv Pr[r], where Rv

is the set of ranges containing v and Pr[r] is the probability
of querying range r. Reference probabilities can be easily
pre-computed by an attacker who knows the query distribution.

The reference probability of plaintext values for two query
distributions is shown with histograms in Figure 2(b). Given
enough queries, the attacker computes the frequency of each
encrypted value and finds the closest match of each frequency to
a pre-computed reference probability. Each matched reference
probability corresponds to a plaintext value which is returned
as the reconstructed value. This frequency-analysis works well
for the uniform query case because the reference probabilities
(blue histogram) vary significantly over the universe of plaintext
values, therefore, one can accurately map the observed frequen-
cies to reference probabilities. However, there are fundamental
limitations when trying to extend this approach.

(a) (b)
Fig. 2. (a) Heatmap of the Span distribution of range queries on values
from 0 to 100, where the probability of query [a, b] is proportional to (N −
b+ a)25. (b) Reference probabilities of plaintext values under the uniform
query distribution (blue histogram) and Span query distribution (red histogram).
Reconstructing the values of an encrypted database, shown with solid bars,
from their empirical reference probabilities, is easy under the uniform query
distribution but hard under the Span query distribution.

For instance consider the Span range query distribution,
inspired by a realistic behavior from a client that issues “short
ranges”, depicted as a heatmap in Figure 2(a), where the lower
boundary of the range is on the Y -axis, the upper boundary
is on the X-axis and the color of each square denotes the
probability of issuing this query. One can visually confirm
that queries around the diagonal, i.e., queries with short span,
have brighter color, hence are more likely to be issued. The
reference probability for the Span query distribution is shown
with the red histogram in Figure 2(b). Note that the reference
probabilities of 60% of potential plaintext values differ by
less than 10−8, i.e., the middle part of the red histogram is
almost flat, and as a result, the adversary can not make an
accurate mapping from observed frequencies to reconstructed
plaintext values. Thus, the Span query distribution causes all
state-of-the-art attacks to fail.

More generally, one can define query distributions where
the reference probabilities are identical so no matter how many
queries are observed, the adversary cannot distinguish between
potential plaintext reconstructions in the information-theoretic
sense. Interestingly, the fact that frequency-based attacks fail
in “smooth” distributions is used as a form of mitigation by
Lacharité-Paterson [35], who introduce multiplicities in the
records and spread the frequency of among the copies. From
the above example we see that for range queries we need a
radically different reconstruction approach to generalize.

How Many Queries Return a Response? Taking a step
back to rethink reconstruction attacks, there is a piece of
information that has not been fully exploited to overcome the



uniform query assumption. This is the number of queries that
return a given response, r, among the possible range queries.
Let xr be the number of lower query boundaries that can
potentially return response r, and let yr be the number of upper
boundaries that can potentially return the same response, r.
The total number of queries that return response r is essentially
Nr = xr ·yr, but more importantly, both xr and yr are distances
between consecutive encrypted values. Therefore if we know
Nr for all r we could set up a system of equations containing
xr and yr and retrieve the distances between all values in the
database, effectively computing the values themselves.

However, the exact values of Nr are not available. Our
main approach lies in estimating Nr using search-pattern
leakage (which is part of all known constructions [23]) and then
setting up carefully-crafted optimization problems to retrieve
an estimation of the underlying distances/values.

Harnessing Search-Pattern Leakage. The search-pattern
leakage reveals to the adversary if two encrypted queries, called
search tokens, are generated from the same query. Interestingly
none of the aforementioned state-of-the-art attacks [27], [32],
[33], [34] utilize the search-pattern leakage, considering it
harmless. We argue that this leakage can be instead exploited.
Suppose that 103 observed search tokens (not-necessarily
distinct) return response r. If these 103 tokens are the same, we
can make a probabilistic argument that there aren’t that many
queries that return r. On the contrary, if all 103 are distinct,
then there are clearly at least 103 queries, and likely more, that
return r. More formally, the problem of estimating the number
of unseen outcomes from the frequency of observed outcomes is
called support size estimation and it has a rich history [5], [24],
[44]. We use non-parametric support size estimation techniques
that make no assumptions about the underlying distribution
to re-think reconstruction algorithms for encrypted databases.
Our techniques reconstruct very accurately for the challenging
case of “smooth” query distributions due to the fact that our
attacks are based on the number of possible queries that return
a response, a quantity that can be estimated even under flat
frequencies, as we demonstrate in our experiments.

B. Our Contributions

The influential work by Kellaris et al. [32] posed as a
challenging open problem the task of plaintext reconstruction
for query distributions beyond the uniform. Another open
problem from [32] is the task of plaintext reconstruction for
short range queries since, as the authors highlight, these queries
are “typically observed in practice”. In this work, we resolve
these open problems by utilizing both the search-pattern and
the access-pattern leakage for range and k-NN queries on one-
dimensional databases by introducing attacks that are agnostic
to the query and the data distribution.
• Handling Unknown Query Distributions. We first de-

scribe how the adversary can achieve knowledge transfer from
statistics and learning theory to reconstruct encrypted databases.
By partitioning the multiset of observed token-response pairs
(t, r), the adversary can study each partition separately and
draw inferences about the number of possible tokens that

return r. We benchmark the state-of-the-art non-parametric
support size estimation techniques under various (unknown
to the adversary) query distributions. Our experiments indi-
cate that certain estimators are better under different query
distributions so we propose a new modular approach to pick
the best estimation for the sample in hand. We further derive
analytical expressions for known high-order non-parametric
estimators, which is of independent interest.
• A New Approach for Range Queries. Armed with

techniques for estimating the number of queries that return
a response, we develop a new machinery to approximately
reconstruct an encrypted database. On a high-level, each
estimation gives us information about two distances between
encrypted values. But these estimations are made independently
and with a different sample sizes. We propose an efficient new
algorithm, AGNOSTIC-RECONSTRUCTION-RANGE, that is
based on an unconstrained convex optimization problem so as
to piece together the above independent estimations and output
estimated distances between consecutive values of the database.
Our modeling gives higher weight to estimations made after
observing a larger number of queries. We test our attack
under a variety of query distributions and database densities,
and show it achieves reconstructions with good accuracy.
Also, AGNOSTIC-RECONSTRUCTION-RANGE outperforms
GENERALIZEDKKNO for the majority of tested setups under
the uniform query distribution, which is noteworthy because
our algorithm is unaware of how the queries are issued and
GENERALIZEDKKNO is fine-tuned for the uniform case.
• Revisiting k-NN Queries. For the problem of reconstruc-

tion from k-NN queries, we plug our support size estimators
into the KPT algorithm to derive an estimation of the length
of the Voronoi segments without relying on the uniform query
distribution. Even though in theory this direct application is
valid, due to the fact that for skewed query distributions the
estimations are less accurate than in the uniform case, our
initial experiments demonstrated that more often than not
the resulting collection of estimated lengths is not a Voronoi
diagram and thus KPT returns no reconstruction. To remedy
this problem, we propose a new and efficient approach via
formulating a constrained convex optimization problem that
discovers the minimum distortion of the estimated lengths so
as to force the lengths to become a valid Voronoi diagram.
The formulation of KPT appears as a set of constraints in
this new algorithm. Due to the minimum distortion insight,
our proposed AGNOSTIC-RECONSTRUCTION-KNN always
outputs a reconstruction as opposed to the all-or-nothing
approach of KPT. Furthermore, since we don’t explicitly build
the set of all possible solutions, our approach scales to larger k
compared with KPT. An illustration of a reconstruction for a
real-world dataset of privacy-sensitive geolocation is shown in
Figure 1. This reconstruction is achieved with half the queries
compared to KPT, under a Gaussian query distribution, and
with one-dimensional relative error of 0.08%.



II. BACKGROUND

A database is a collection DB of n records (idi, val(idi)),
i = 0, . . . , n− 1 where idi is a unique identifier and val(idi)
is a value from the universe [α, β]. We assume discrete values
so that α, β, and val(idi) are integers and denote with N =
β − α+ 1 the size of the universe. For the sake of simplicity
of the analysis, we assume that the mapping from records to
values is injective, that is, there is a single record in the database
associated with a value. We note though that our attacks can
be extended to the case of non-injective mapping from records
to values in which case the distance is 0 when consecutive
records correspond to the same value. We call density of the
database the percentage of values from the universe that are
assigned to records. E.g., the density assumption studied by
Lacharité et al. [34] corresponds to density 100%. A range
query consists of two values a ≤ b from the universe and its
response is the set of identifiers of the database records with
values within interval [a, b]. A k-NN query consists of a value
from the universe and its response is a set of k unordered
identifiers that are closest to the query point, where k is fixed
and decided at setup-time. We use the term query to refer to
the plaintext query parameter(s) and the term search token to
refer to the encrypted query parameter(s) that the client sends
to the server. We define access-pattern leakage as the set of
encrypted records that are retrieved as part of the response
to a token. We define search-pattern leakage as the ability
of the server to observe whether two tokens were generated
from the same plaintext query. Although there are response-
hiding STE schemes that minimize the access-pattern leakage
by imposing a storage overhead, the widely-used constructions
actually reveal the access-pattern for the sake of efficiency. To
the best of our knowledge, all structured encryption schemes
leak the search-pattern [23].

Assumptions. Our techniques have no knowledge about the
query distribution, data distribution, or access to any auxiliary
information about them. Our assumptions are as follows:

• Static Database. No updates, i.e., addition, deletions, take
place once the database is encrypted.
• Fixed Query Distribution. We assume that the adversary

issues independent and identically distributed (i.i.d.) queries
with respect to a fixed query distribution. We emphasize that
our adversary does not know any information about the family
or the parameters of the query distribution.
• Correctness. We consider schemes where the response

to the issued query is correct. We do not consider schemes
that return missing responses or false positive responses, e.g.,
Logarithmic-SRC [17] and “over-covers” from [22].
• One-dimensional Data Values. We do not address en-

crypted databases for high-dimensional data [14].
• Known Setup. We assume that the adversary knows the

number of encrypted values n, the size of the universe of
values N and the endpoints of the universe α, β.
• Injective Mapping of Search Tokens. We assume that

distinct queries, can be either a pair of values like the range
queries or a single value like the k-NN, map to distinct search

tokens. The injective mapping is satisfied, to the best of our
knowledge, by all known STE encryption schemes.

Order Reconstruction. There is a plethora of tech-
niques [27], [33], [34] in the literature that reconstructs the
order of the encrypted values using only the access-pattern
leakage. For simplicity of the exposition, we assume that the
adversary can successfully reconstruct the order by using the
appropriate algorithms from the above works and we instead
focus on the problem of reconstructing the plaintext values.
Thus, we treat the ordering as an input to our new value
reconstruction algorithms and our techniques are not affected
by how this ordering was constructed.

III. HOW TO EXPLOIT SEARCH-PATTERN LEAKAGE

In this section, we introduce our main tool to reconstruct
the plaintext values of an encrypted database without any
knowledge about the data or query distribution. Given a fixed
query distribution, the repetition of search tokens, i.e., search-
pattern leakage, reveals information about the total number of
search tokens that return a specific encrypted response. This
key observation relates our attack to the extensively studied
problem of estimating the support size of a distribution.

We first show how to partition token-response pairs and
interpret them as samples from the unknown query distribution.
Next, we benchmark two widely-used non-parametric estima-
tors under various query distributions. Finally, we propose
a new modular estimator for our attack. Since we obtain a
different estimator per encrypted response, the next section
shows how to glue the acquired estimations together to
reconstruct the encrypted database in its entirety.

A. Conditional Probability Distributions over the Leakage

In this subsection, we show how an adversary that is
given a multiset of m token-response pairs D = {(t1, r1),
. . . , (tm, rm)}, can partition the tokens and analyze each group
as a sample from a conditional probability distribution. By
conditioning on the information observed from the access-
pattern leakage, we group the information observed by the
search-pattern leakage.

Remark 1. Let D = {(t1, r1), . . . , (tm, rm)} be the multiset of
tokens and their corresponding response under an arbitrary to-
ken distribution. The mutliset of tokens with the same associated
response, i.e., Di := {tj |(tj , ri) ∈ D, ri ⊆ {id0, . . . , idn−1}},
is a sample from the conditional probability distribution
pT |R (T = t|R = ri).

Fig. 3. To observe response r = {id1, id2, id3} the start of the query range
must be in-between v0 and v1 and the end must be in-between v3 and v4.
Thus, the total number of queries that return r is (v1 − v0) · (v4 − v3).



Range Queries. We recall again our assumption that the
mapping from range queries to tokens is injective. However,
we note that our attack can be applied also to structured
encryption schemes that generate multiple tokens per query
with no false positives. In this scenario the attacker creates
a canonical ordering of the collection of tokens, e.g., by
lexicographical-ordering, and treats their concatenation as a
single token. Schemes with this property include the BRC
and URC token generation presented in [17], as well as the
cover selection approach presented in [22]. The partition of
the token-response pairs is performed with respect to a specific
response. Consider a database with values {v0, · · · , vn−1}
from a universe [α, β]. Since we do not consider schemes
with false positives, the number of distinct tokens that return
a given response r = {idi, · · · , idj} is equal the product
(vi − vi−1) · (vj+1 − vj), where v−1 and vn refer to α and β,
respectively. An example is depicted in Figure 3.

Remark 2. For the case of range queries on an encrypted
database the support size of the conditional distribution
pT |R (T = t|R = {idi, . . . , idj}), where 0 ≤ i ≤ j ≤ n − 1,
is the product of (1) the distance between values vi−1 and
vi and (2) the distance between values vj and vj+1, i.e.,
(vi − vi−1) · (vj+1 − vj).

k-NN Queries. A Voronoi diagram gives a natural partition
of the query space for k-NN queries. Specifically each segment
of the partition has the property that all the queries that land
inside the segment have the same k nearest neighbors, i.e., the
same response. It is known [33] that given a Voronoi diagram,
the endpoints of each Voronoi segment correspond to bisectors
between the values.

Fig. 4. Voronoi diagram of a database with 6 values v0, . . . , v5 and 2-NN
queries. Short vertical black lines indicate distinct queries and tall vertical
green lines indicate bisectors bi,i+2 for values vi and vi+2.

Figure 4 shows the Voronoi diagram for 2-NN queries on
a database DB with values v0, . . . , v5 from range [α, β]. The
bisectors of the diagram, bi,i+2, partition the query points into
intervals where queries yield the same response. E.g., all query
points between bisectors b1,3 and b2,4 yield response {v2, v3}.
In our scenario of an encrypted database, the response is a pair
of identifiers. Accordingly, we define the following partition
of query tokens for k-NN queries: a search token t belongs to
group Di if its response is {idi, . . . , idi+k−1}, for i ∈ [0, n−k].
We recall here our assumption of an injective mapping from
queries to tokens, i.e., we never map two distinct queries to the
same token. Therefore, the probability distribution on k-NN
queries transfers to the probability distribution on tokens.

Let T be a random variable whose possible values are the
tokens for k-NN queries generated by the client under an

arbitrary token distribution. Let R be a random variable whose
possible values are the k-NN responses with respect to DB.

Remark 3. For the case of k-NN queries on an encrypted
database, the support size of the conditional distribution
pT |R (T = t|R = {idi, . . . , idi+k−1}) is also the length of the
corresponding Voronoi segment, i.e., bi,i+k − bi−1,i+k−1.

B. Estimate Support Size of Each Distribution

In this subsection, we show how to utilize the frequency
of the observed search tokens so as to estimate the total
number of search tokens that return a specific response r,
i.e., estimate the support size of a conditional probability
distribution with respect to r. In our approach, each response
has a different non-parametric estimator that is “fine-tuned” for
the specific conditional probability distribution. We focus on a
single response but in the next section, we describe how an
adversary can combine the estimations for different responses
to achieve approximate reconstruction of the entire encrypted
database. Furthermore, the estimation techniques described here
are applied to both range and k-NN queries. To comply with
the notation in the literature [44] on support size estimators,
in this subsection N denotes the support size of a single query
distribution, whereas in the rest of the paper N denotes the
size of the universe of values, i.e., N = β − α+ 1.

Formulation. We assume a conditional probability distribu-
tion pT |R with respect to response r that contains N distinct
search tokens observed with probabilities πi = (π0, . . . , πN−1).
The adversary does not know the support size N or probabili-
ties πi. The main question we address is:

Given a sample D of m search tokens (with mul-
tiplicities) from pT |R, what is the total number of
search tokens in pT |R with non-zero probability?

Let fi be the number of search tokens that are observed i
times in the sample. We briefly recall the terminology from [44].
The fingerprint of sample D is the vector F = (f1, f2, . . . , fm),
where |D| = m. Vector F is essentially the frequency of the
frequencies. Then we can express the total number of all
distinct search tokens as N = f0+

∑m
i=1 fi and the number of

observed search tokens as d =
∑m
i=1 fi. Similarly to [44], we

call the histogram of the query distribution Q over the elements
of pT |R the mapping hQ : (0, 1] → [0, N ], where hQ(π) is
the number of pT |R elements that occur in probability mass
function Q with probability π. Notice that the fingerprint is
defined according to a sample while the histogram is defined
according to the query distribution.

One Experiment Captures Multiple Distributions. We
call a distribution property symmetric, or label-invariant, if it
only depends on the histogram of the distribution. A symmetric
property does not depend on which outcome maps to which
probability. The next remark follows from Lemma 17 in [3].

Remark 4. The support size of pT |R is a symmetric property.
Jumping ahead, this important property comes into play

in our evaluation. When we fix the query distribution in
our experiments, we implicitly fix the conditional probability
distributions too. The symmetric property implies that from the



Fig. 5. An illustration of three query distributions with the same histogram.
The result of a support size estimation is the same in all three cases.

point of view of the estimator, it makes no difference which
token maps to which fixed probability value. Thus, the result
of an experiment would be the same for every assignment of
the chosen fixed probability values to tokens. As an example,
the three probability mass functions presented in Figure 5
have the same set of probabilities but different labelings. Since
the fingerprint is the same, the support size estimation on the
ordered “towers” on the left gives the same estimation as the
pmf in the middle or the bell-shaped pmf to the right.

Related Work. The problem of estimating the support size
of a distribution has appeared in several fields in different
forms. Examples include the estimations of the number of
English words Shakespeare knew [21], the number of species
in a population of plants or animals [7], and how many dies
were used on an ancient coin [42]. As reviewing this large body
of work is beyond the scope of this paper, we refer the reader
to the following surveys [5], [12], [24]. We note that naive
application of the estimators for the equiprobable case [29],
[36] to settings with varying probabilities has been shown to
give an estimation with negative bias [36].

In our work, instead of deploying parametric estimators that
assume an underlying family of distributions, we use a more
general non-parametric approach that is distribution agnostic.

The Jackknife Method. Resampling techniques are non-
parametric methods of statistical inference that draw repeated
subsamples from the original sample D. In this work we
are interested in the jackknife method originally proposed by
Quenouille in [40]. In certain scenarios it is not known how to
compute an efficient unbiased estimator of a statistic of interest
generally denoted as θ. Therefore given a biased estimator θ̂
for a statistic the jackknife approach estimates the bias via
sampling with replacement from D. An estimate of the bias
b̂iasJack can be used to correct the estimator as follows:

θ̂Jack = θ̂ − b̂iasJack.

The resampling approach of the jackknife is the following:
to form a new sample we leave one observation out so as to
create the subsample D(i) = (d1, . . . , di−1, di+1, . . . , dm). We
denote as θ̂(i) the estimation of θ that is computed based on
D(i). The term θ̂(.) denotes the average of all possible leave-
one-out estimations, i.e., θ̂(.) =

∑m
i=1 θ̂(i)/m. The jackknife

bias is defined as:

b̂iasJack = (m− 1)(θ̂(.) − θ̂) = (m− 1)(
1

m

m∑
i=1

θ̂(i) − θ̂).

The multiplicative term (m − 1) in the above expression is
rather counter-intuitive at first sight. One way to interpret this
term is to assume that for a fixed m the expected value of
the estimator θ̂ is the estimand plus a bias term of the form

bias = b1(θ)/m. In this case we get:

E[b̂iasJack] = (m− 1)

(
E[θ̂]− 1

m

m∑
i=1

E[θ̂(i)]

)

= (m− 1)

(
θ +

b1(θ)

m
− θ − b1(θ)

m− 1

)
=
b1(θ)

m
= bias

Therefore the expectation of the bias estimate is the true formula
of the bias. The above exposition concerns the first order
jackknife estimator since it corrects biases of the order O(1/m).
This approach can be generalized to formulate the k-th order
jackknife estimator that results in a bias of the order O(m−k−1).
There is an inherit trade-off between the bias and variance,
the higher the order of the jackknife estimator the smaller the
bias and the larger the variance. Our estimators come directly
from the work of Burnham and Overton [6], [7] and where
originally proposed for estimating animal populations. The
statistic that we are interested in is the total number of distinct
classes N . The initial biased estimator N̂ is the number of
distinct classes observed in sample D, i.e., N̂ = d =

∑m
i=1 fi.

The following expressions present the “bias-corrected” formula
of the originally biased estimator N̂ . The order of the jackknife
describes the level of bias correction applied. For a fixed sample
size m the jackknife estimator of order i is a simple linear
combination of the fingerprint F = (f1, . . . , fm). That is the
i-th order jackknife estimator can be expressed as:

N̂J(i) =
∑m
k=1 α

(i)
k fk, (1)

where α(i)
k coefficients are a function of the sample size m.

The jackknife estimators for N̂J(1), N̂J(2), and N̂J(3) are:

N̂J(1) = d+ m−1
m f1, N̂J(2) = d+ 2m−3

m f1 − (m−2)2
m(m−1)f2,

N̂J(3) = d+ 3m−6
m f1 − (3m2−15m+19)

(m−1)m f2 +
(m−3)3

(m−2)(m−1)mf3.

The derivation of the jackknife estimators N̂J(i) for i ∈ [4, 10]
appear in the Appendix, these analytical expressions may be
of independent interest since they have not appeared before.

Selection of the Jackknife Order. Since we have we have
the analytical expression of jackknife estimators N̂J(i), for
i ∈ [0, 10] an interesting question is how can we choose the
appropriate order i given what we observed so far? To tailor
the order of the jackknife estimator given the data in hand
we deploy the order-selection technique originally proposed
in [7] based on hypothesis testing. At a high-level this method
tests the null hypothesis Hi : E[N̂J(i+1) − N̂J(i)] = 0 against
H ′i : E[N̂J(i+1) − N̂J(i)] 6= 0 sequentially for i ≤ 10 and
choose the estimator N̂J(i′) such that Hi′ is the first null
hypothesis not rejected. We denote the above method for order
selection as JACKKNIFE-SELFTUNE.

The Valiant-Valiant Estimator. The work by Valiant and
Valiant [44] introduced a framework for rigorously estimating
the histogram of a discrete probability distribution from a
sample. Since we are using the estimator from [44] as is,
we limit our exposition into a high-level description of the
estimator and its guarantees and we refer the reader to the
original manuscript [44] for the detailed description. The
VALIANT-VALIANT estimator takes as an input a sample
from an unknown distribution, creates the fingerprint and then
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Fig. 6. Comparison of estimators JACKKNIFE-SELFTUNE and VALIANT-VALIANT with respect to their relative error in support size estimation.

computes a plausible histogram that might have produced the
observed fingerprint. Because there are numerous histograms
that explain equally well the observed fingerprint the authors
propose a method that picks the “simplest” among them.

Theorem 1. (Corollary 1.12 [44]) There exist absolute positive
constants ζ, γ such that for any 0 < ε < 1, there exists Nε such
that for any N > Nε, given a sample of search tokens D of size
m > γ

ε2
N

logN sampled from any query distribution π over the
domain of pT |R of size |pT |R| = N , the VALIANT-VALIANT

estimator outputs a N̂ such that
Pr(|N − N̂ | ≤ Nε) ≥ 1− e−N

ζ

,

provided none of the probabilities in π lie in (0, 1
N ).

It is worth noting that the above guarantees are bounds
on the convergence rate and not essential parameters for the
VALIANT-VALIANT estimator. The algorithm itself does not
depend on any of the above parameters and its only input is
a sample D of any size. An alternative way to interpret the
requirement that none of the probabilities in π lie in (0, 1

N )
is: the approximation guarantees only hold for all the search
tokens with probabilities that are larger than 1

N and as a result
there is no rigorous guarantee for detecting the tokens with
probabilities within (0, 1

N ).
Evaluation of the Estimators. We conduct experiments to

evaluate the performance of the estimators VALIANT-VALIANT
and JACKKNIFE-SELFTUNE. The only input that the two non-
parametric estimators take is a sample form an unknown query
distribution and based on the frequency of the search tokens
they estimate the support size. We compute the relative error
of the support size estimation under different settings:

• Query distribution. We deploy a discretized Beta probability
distribution Beta(α, β) defined under parameterizations that
take values α = 1 and β = {1, 2.5, 5, 10, 17}.

• Scale of support size. Chosen to be N = 105.
• Number of observed search tokens. Varying sample size.

We differentiate in our text between the α, β that denote the
boundaries of the universe of values, see Section II, from the
α, β used for the Beta probability distribution by characterizing
the latter as parameters of the distribution. Figure 7 shows
the tested parameterizations of the Beta distribution. Beta is
defined under continuous interval [0, 1] which we discretized
into N segments of equal length. Parameter β = 1 gives the
uniform distribution, parameter β = 2.5 gives an almost linear

1 20 40 60 80 100
Search Tokens 

0
0.01

0.025

0.05

0.1

0.15

Q
ue

ry
 P

ro
ba

bi
lit

y 
D

is
tri

bu
tio

n

Beta Distributions, Support Size N=100

=1, =1
=1, =2.5
=1, =5
=1, =10
=1, =17

Parametrizations

Fig. 7. Evaluation of the estimators is conducted under various query
distributions parameterized as a Beta probability mass function.

decay. For parameter β = 10, we have roughly a power law,
i.e., the Pareto principle, where roughly 80% of the mass is
distributed among 20% percent of the search tokens. This
behavior has been recorded in a lot of real-world phenomena.
To give some more concrete statistics, for parameters β =
2.5, 5, 10, 17 the percentages of search tokens that: (a) have
probability less than 1/N are 54%, 67%, 77%, 84% and (b)
have probability less than 1/N2 are 0.5%, 12%, 36%, 54%,
respectively. For each parametrization we tested 5·103 instances
and in Figures 6 and 8 we report the average absolute relative
error. We recall that even though our experiments are conducted
over a fixed family of distributions, e.g., the beta distribution,
by Remark 4 our observations apply to any permutation of
the probability mass “towers” and thus cover a wide range of
query distributions. Specifically a single benchmark covers all
the N ! possible assignments of probabilities to labels/queries.
As it can be seen in Figure 6 estimator JACKKNIFE-SELFTUNE
is more accurate than VALIANT-VALIANT in the majority of
the tested settings. The above measurements experimentally
confirm the guarantees of Theorem 1 since a sublinear number
of queries is enough to predict the existence of unobserved
search tokens except the ones that have probability less than
1/N . Another observation is that the maximum tested number
of observed search tokens, i.e., 500N , resulted in a relative
error that is close to the percentage of search tokens with
probability less than 1/N2.

Interestingly, for the case of uniform query distribution the
VALIANT-VALIANT estimator is significantly more accurate
when the number of samples is sublinear. Based on this
observation we propose a “modular-estimator” to achieve the
best of both worlds, an agnostic non-parametric estimator that
deploys (1) the VALIANT-VALIANT when the query distribution
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Fig. 8. Comparison of estimators under uniform query distribution.

is uniform and (2) the JACKKNIFE-SELFTUNE otherwise.
Modularity via Property Testing. Our estimator is Algo-

rithm 1 (MODULAR-ESTIMATOR). The work of Goldreich
and Ron [26] introduced a property testing [25] technique
called collision-probability tester that given a sample from an
unknown distribution it tests whether the sample originated
from a distribution that is ε-afar from the uniform over [1, N ].
Diakonikolas et al. [19] showed a tight upper bound on
the sample complexity of O(

√
N/ε2) which proves sample-

optimality. The collision-probability tester takes as parameters
the desired error ε the sample D and the support size N as an
input. Unfortunately, in our setup we do not know N therefore
in our algorithm we use the output of VALIANT-VALIANT
as an approximation N̂ to perform the collision-probability
tester. Our approach is modular in the sense that different
modules, i.e., estimators, are used for different “shapes” of
query distributions. For concreteness we chose 0.1 as the
threshold of the significance level of hypothesis testing, per
recommendation of [7], and a fixed error ε for the collision-
probability tester but these quantities can be tuned differently.

Algorithm 1: MODULAR-ESTIMATOR

Input: Multiset of m search tokens D sampled according to pT |R
Output: Estimation of the support size N̂

1 Deploy VALIANT-VALIANT estimator with input D and get N̂V ;
2 Compute number of collisions c← |{j < k : k ∈ [2,m], tj = tk}|;
3 Set the error parameter for the tester ε← 1/N̂V ;
4 if c/

(m
2

)
≤ (1 + 2ε2)/N̂V then // collision prob. tester

5 return N̂V since it passed the tester
6 end
// Deploy JACKKNIFE-SELFTUNE;

7 Set number of unique tokens based on fingerprint d←
∑m
i=1 fi;

8 for i← 1 to 9 do
9 Set bk ← α

(i+1)
k − α(i)

k , where α(i)
k is the k-th coefficient of the

jackknife estimator of order i, see Equation (1);
10 N̂J(i+1) − N̂J(i) ←

∑m
k=1 bkfk // Eq. (1);

11 v̂ar(N̂J(i+1) − N̂J(i)|d)← d
d+1

(∑m
k=1(bk)

2fk −
(N̂J(i+1)−N̂J(i))

2

d

)
;

12 Formulate the test statistic Ti ←
N̂J(i+1)−N̂J(i)√

v̂ar(N̂J(i+1)−N̂J(i)|d)
for the

null hypothesis Hi : E[N̂J(i+1) − N̂J(i)] = 0;
13 Since Ti follows approximately a standard distribution, we can

derive its corresponding two-sided significance level, denoted as Pi;
14 if Pi > 0.1 then
15 return N̂J(i) since the null hypothesis Hi is not rejected
16 end
17 end

IV. REVISITING DATA RECONSTRUCTION ATTACKS

In this section, we use the techniques from Section III to
develop new reconstruction attacks on encrypted databases

using both the search-pattern leakage and access-pattern
leakage. Our reconstruction algorithm for range queries (Sec-
tion IV-A) is significantly different from previous approaches.
Our reconstruction algorithm from k-NN queries (Section IV-B)
builds on previous work [33] but follows a different algorithmic
strategy so as to (1) reduce the number of required samples and
(2) scale for larger values of k. We experimentally demonstrate
the accuracy of our reconstruction algorithms under various
query distributions and densities of the database.

A. Reconstruction from Range Queries

Illustrative Example. We start by conveying the intuition of
our range attack with an application on a simple database with
only three values, {v0 = 7, v1 = 15, v2 = 20} from universe
[1, 30] shown in Figure 9. The distances between consecutive
pairs, Li = vi − vi−1, are L0 = 7, L1 = 8, L2 = 5, L3 = 11.

Fig. 9. Illustrative example of a database along with all the possible conditional
probability distributions and their corresponding support size.

For simplicity, we consider first the restrictive scenario where
the adversary has observed all possible range queries. In this
case, there is no need to estimate the number of range-queries
that return a specific response r′, it is enough to count the
number of unique queries that return r′. In other words, the
adversary knows the exact support size for every conditional
probability distribution pT |R (T |R = r′). From Remark 2, the
support size can be expressed as the product Li, Lj for the
appropriate pair i, j. The support sizes of all conditional
distributions of this example are illustrated in Figure 9.

To compute the n+1 unknowns L0, L1, L2, L3, the adversary
solves the following set of

(
n
2

)
equations:

L0 · L1 = 56 L1 · L2 = 40 L2 · L3 = 55

L0 · L2 = 35 L1 · L3 = 88 L0 · L3 = 77
(2)

One can apply the logarithmic function to transform the
products to sums, i.e., x0 = log(L0), x1 = log(L1), x2 =
log(L2), x3 = log(L3). Then, using elementary row operations
on the system of linear equations one can easily compute the
echelon form and show that the rank of the matrix is n+1, thus
there is a unique and exact reconstruction for the restrictive
scenario where the adversary has seen all possible queries.

We now consider the more realistic, general scenario of an
adversary who has observed a subset of all possible search
tokens, as issued by the client under a fixed query distribution
that is unknown to the adversary. From Observation 1, a
token-response pair, (t′, r′), can be seen as a sample from the
conditional probability distribution pT |R (T |R = r′). Thus, the
first step of the attack is to partition the observed search tokens



with respect to their returned responses, i.e., the conditional
distribution they belong to, using the method of Section III.

The result of this partition gives a collection of multisets of
search tokens. Each multiset is used to estimate the support
size of the corresponding distribution. We denote with L̂i,j
the estimation of the support size Li · Lj . We note here
that some estimations should play a more central role in the
overall reconstruction based on the fact that we have observed
more samples. For example, the support size estimation of
pT |R (T |R = r′) from a sample of size 10 is less trustworthy
than the support size estimation of pT |R (T |R = r′′) from a
sample of size 103. To capture this observation we model a
minimization problem, where the “importance” of an estimate
L̂i,j is expressed by a non-negative weight wi,j .

Algorithm 2: AGNOSTIC-RECONSTRUCTION-RANGE

Input: Multiset of range search tokens and their responses
D = {(t1, r1), (t2, r2) . . . , (tm, rm)}; ordering of the database
records I = (id0, . . . , idn−1); endpoints α and β of the
database universe; arbitrary positive constant ε

Output: Approximate reconstruction ṽ0, . . . , ṽn−1

1 for every unique response r in D do
2 Let idi ∈ r be the identifier of r with minimum rank in I;
3 Let idj ∈ r be the identifier of r with maximum rank in I;
4 Let Di,j+1 be the mulitset of all the pairs in D with response r;
5 Let weight wi,j+1 = max{ε, |Di,j+1|2};
6 Run Algorithm 1 (MODULAR-ESTIMATOR) on the multiset of

search tokens in Di,j+1 to output estimated support size L̂i,j+1;
7 end
8 Solve the system of linear equations below, obtained by setting the

partial derivatives of Eq. (3) equal to zero:
∑
j 6=0 2w0,j 2w0,1 . . . 2w0,n

2w0,1

∑
j 6=1 2w1,j . . . 2w1,n

. . . . . . . . . . . .
2w0,n 2w1,n . . .

∑
j 6=n 2wj,n



x0
x1
. . .
xn

 =


∑
j 6=0 2w0,j log(L̂0,j)∑
j 6=1 2w1,j log(L̂1,j)

. . .∑
j 6=n 2wn,j log(L̂n,j)


9 Compute the approximated lengths as L0 = 2x0 , . . . , Ln = 2xn ;

10 Scale L0, . . . , Ln so as
∑n
i=0 Li = β − α+ 1;

11 Let v−1 = α− 1;
12 for i = 0, · · · , n− 1 do
13 Let ṽi = ṽi−1 + Li;
14 end
15 return ṽ0, . . . , ṽn−1;

Reconstruction Algorithm. The goal of the proposed
optimization is to assign values to the lengths L0, . . . , Ln
so as to minimize the weighted sum of squared errors. One
option for the error function e is the difference between the two
terms, i.e., e1(Li, Lj) = (Li ·Lj−L̂i,j). Another option for the
error function is the logarithm of the ratio, i.e., e2(Li, Lj) =
log
(
(Li · Lj)/L̂i,j

)
= log(Li)+ log(Lj)− log(L̂i,j). If there

is no sample to feed to the estimator to produce L̂i,j , we assign
default value L̂i,j = 1, therefore the ratio in e2 is well-defined
since the denominator takes positive non-zero values. Notice
that both e1 and e2 output 0 when the product of the unknowns
is equal to the estimated quantity L̂i,j . From experiments, we
found that the error function of the e2(Li, Lj) (log of ratio)
has superior reconstruction quality in the majority of the cases
compared to the error function e1(Li, Lj). For simplicity, we
define new unknowns xi = log(Li) for i ∈ [0, n], which yields

the following final unconstraint optimization problem:

min
x0,...,xn

n∑
i=0

n∑
j=i+1

wi,j(xi + xj − log(L̂i,j))
2 (3)

We set weight wi,j = max{ε, |Di,j |}, where ε is an arbitrarily
small positive value and |Di,j | is the number of tokens used
for estimation L̂i,j . The values x0, . . . , xn obtained from the
solution of (3) are mapped to lengths as Li = 2xi . As a
final step, we scale the derived lengths L0, . . . , Ln to sum
to N = β − α+ 1 (total range of the database values).

Theorem 2. The unconstrained quadratic optimization problem
of Equation (3) with constant values wi,j , L̂i,j , and unknown
values xi, is a convex function and has a unique solution.

The proof of Theorem 2 is in the Appendix. We derive the
partial derivative with respect to xi as:

∂f

∂xi
=

∑
j 6=i

2wi,j

xi +
∑
j 6=i

(2wi,j)xj −

∑
j 6=i

2wi,j log(L̂i,j)

 .

We find the global minimum by setting all partial derivatives
equal to zero. Our reconstruction method from range queries,
RANGE-RECONSTRUCTION, is shown in Algorithm 2.

Comparison with Attack GENERALIZEDKKNO [27].
We first compare the accuracy of the reconstruction of our
attack, AGNOSTIC-RECONSTRUCTION-RANGE, to the accu-
racy of the state-of-the-art reconstruction attack GENERAL-
IZEDKKNO, which is the most general (i.e., with fewest
assumptions, e.g. only uniform queries) of the three attacks
proposed by Grubbs et al. [27]. In this experiment, we generate
Q = 104 range queries uniformly at random from the universe
[α, β] = [1, 103]. We randomly generate the values of the
encrypted DB under various database densities. To assess the
quality of the reconstruction, we use the mean square error
(MSE) and the mean of absolute error (MAE) between the
original and the reconstructed database. We note here that MSE
gives a higher penalty to reconstructed values with larger error.
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Fig. 11. Comparison between GENERALIZEDKKNO and our attack,
AGNOSTIC-RECONSTRUCTION-RANGE, under the uniform query distribution.

Recall that our algorithm is (1) not tailored to work well
on a specific query or data distribution and (2) distribution
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Fig. 10. Performance of our attack, AGNOSTIC-RECONSTRUCTION-RANGE, under parameterizations of query distributiona Short-Ranges and Value-
Centered.

agnostic, i.e., does not need to know the data/query distribution.
Hence, we would expect GENERALIZEDKKNO to have an
inherent advantage in this experiment since it is specifically
designed for uniform queries. The results of the experiment,
shown in Figure 11, indicate that this is not the case: in terms
of MSE, GENERALIZEDKKNO is 2.5× to 17× worse than
our AGNOSTIC-RECONSTRUCTION-RANGE for densities from
20% to 90%, and in terms of MAE GENERALIZEDKKNO is
comparable with our AGNOSTIC-RECONSTRUCTION-RANGE
for densities from 15% to 75%.

We explain the experimental results as follows. The MAE
quality metric is a first order statistic, therefore the large errors
of GENERALIZEDKKNO are not penalized enough in the
bottom plot of Figure 11. To explain why the performance of
GENERALIZEDKKNO deteriorates, we note that this algorithm
essentially maps the observed frequency to an expected
frequency if the record were to have a fixed value. For
dense databases, several records will appear together in many
responses and as a result, will have very similar (if not identical)
frequencies. This implies that multiple records map to the
same plaintext value. The experiments confirm this behavior
as GENERALIZEDKKNO tends to map multiple records to
the same reconstructed value. To explain the outperformance
of GENERALIZEDKKNO in the sparse regime, recall that the
support size of each conditional distribution is the product of a
pair of distances between database values. When the database is
sparse, such distances are larger, hence the support size grows
quadratically with the distance. Thus, the adversary needs to
see more samples than the tested ones to increase accuracy.

Evaluation on Short Range Queries. In practical data
analysis applications, focused short range queries are more
likely to occur than exploratory long range queries. Also, a
client who often issues long range queries would have limited
benefits from outsourcing the database. Motivated by this

observation, we have conducted experiments on short range
queries. First, we explain how we generate short range query
distributions and then we report on the experimental results.

Let |R| be the number of all possible range responses.
Specifically we generate a query distribution that we call Short-
Ranges(α, β) as follows: Generate a Beta(α, β) distribution
and discretize into |R| equally spaced intervals. Recall that
the cardinality of the universe of values is N . Then process
the discretized values from left-to-right and add “noise” by
multiplying each probability with a random number from [0, 1]
divided by |R|. After applying a normalization step, assign
in batches the “noisy” Beta(α, β) probabilities to queries as
follows: assigns the first N probabilities to queries whose
range is a single value; assign the next N − 1 probabilities
to queries whose range spans two values; continue up to the
range query spanning the entire universe. This process gives
higher probability to short range queries. The higher the value
of parameter β, the larger the gap between the probabilities
of short and long range queries. To understand how different
Short-Ranges is from the uniform we note that for N = 103,
the mean length of a sampled range query under the uniform is
333, which corresponds to 33% of the universe size. The query
distributions Short-Ranges(1,3), Short-Ranges(1,5), and Short-
Ranges(1,20) have mean length of 142, 90, and 23, which
correspond to 14.2%, 9%, and 2% of the universe, respectively.

In this evaluation, we chose parameter β = {3, 5, 20} and
N = 103. The upper row of Figure 10 shows the heatmap of the
probability distribution for these three parameterizations but for
a smaller universe. The Y -axis, resp. X-axis, corresponds to the
lower boundary, resp. upper boundary, and the coloring of each
square represents the probability of issuing this range query. As
one can see the “bright” high-probability areas are around the
diagonal. The MSE plot in Figure 10 shows the behavior
of AGNOSTIC-RECONSTRUCTION-RANGE under different



database densities. The distribution Short-Ranges(1,20) is a
case where one would expect the reconstruction algorithm to be
challenged due to the fact that only a few records are returned
in each response. Interestingly, our reconstruction in Short-
Ranges(1,20) is significantly better than the other distributions.
To explain this, recall that the length of the range queries is
really small which implies that the adversary only observes a
small number of responses. So even though the majority of
the total

(
N+1
2

)
conditional probability distributions will not

observe any query the small number of conditional distributions
that are “active” will observe enough samples to get a very
accurate estimation of their corresponding support size. The
final step of the formulated convex optimization problem in
Equation (3) combines the accurate estimations efficiently to
derive the overall assignment of reconstructed values.

Evaluation on Queries Centered Around a Value. In this
experiment we focus on range queries that are centered around a
given value. Consider the real-world scenario of an encrypted
database with medical data and assume that the client is a
researcher who analyzes the medical profile of adolescents with
asthma symptoms. We expect the majority of range queries
issued by the client on the age attribute to have values within
or near range [13, 19] since this is the population of interest.

Inspired by the above scenario, we generate query distribu-
tions that we call Value-Centered(α, β), i.e., tailored to contain
a specific value of the encrypted database. Similar to the
generation process of the Short-Ranges query distributions,
we discretize a beta pdf and multiply each probability of the
pmf with a random number from [0, 1] divided by |R| and as
a final step, we normalize. The difference from the previous
experiment is how we assign the resulting probabilities to range
queries. For Value-Centered we choose uniformly at random
a value v′1 of the underlying database. Processing again the
probabilities-to-be-assigned from left to right, we assign the
first batch of probabilities to the range queries that return
the chosen value v′1. As the next step, we sample without
replacement another value v′2 from the database and assign
the next batch of probabilities to the ranges that return v′2.
This process continues until we have processed all n database
values and we finally assign the remaining probabilities to the
remaining range queries. The lower row of Figure 10 shows
the heatmap of these distribution. The “bright rectangles” show
that the range queries are “centered” around the value on
the upper left corner of the rectangle. The ranges generated
with Value-Centered(1,3) better explore the universe of values
which allows our reconstruction attacks to achieve the smallest
reconstruction error. The case of Value-Centered(1,10) assigns
most of the high probabilities to a subset of the ranges that
contain a single value therefore the majority of the universe is
rarely explored. We report here that 14 out of the 120 runs of
the Value-Centered(1,10) were unsuccessful because the queries
did not explore the universe sufficiently. In general the query
distribution Value-Centered(α, β) is makes the reconstruction
more challenging than the previous distribution, a fact that is
also supported by the observed MSE which is 100× larger
than the previous experiment. This reconstruction error can

potentially be reduced by adding a small set of queries of
exploratory nature scattered over the universe of values.

B. Reconstruction from k-NN Queries

In this subsection, we first discuss the limitations of the
reconstruction attack ATTACKUNORDERED from k-NN queries
by Kornaropoulos et al. [33]. Next, we introduce our method,
which is scalable and supports reconstructions beyond uniform
query distributions. Finally, we present experiments about the
performance of our attack on synthetic and real-world datasets.

The two new ingredients of our reconstruction algorithm
are: (1) use of support size estimators to compute an estimate
of the length of each Voronoi segment without any knowledge
about the underlying query distribution; and (2) formulation
of an optimization problem that outputs a minimal distortion
of the estimated lengths to transform them to a valid Voronoi
diagram and thus become geometrically consistent. Previously
proposed ATTACKUNORDERED [33] outputs no reconstruction
in case the estimated lengths of the Voronoi segments are not
geometrically consistent a case that we observed in most of
our experiments when the query distribution is skewed.

Overview of ATTACKUNORDERED [33]. An insight from
[33] is that even when the adversary observes all the possible
queries, or else knowns the exact length of each Voronoi
segment, it is impossible to achieve exact reconstruction of the
encrypted database (see Theorem 2 in [33]). This is because
there are arbitrarily many value assignments that have the same
Voronoi diagram which implies that the reconstruction error
comes from the combination of (1) the length estimation errors
and (2) the choice of a reconstruction among the many valid
ones. First, ATTACKUNORDERED estimates the length of a
Voronoi segment LEN({idi, . . . , idi+k−1}) as the frequency of
a response {idi, . . . , idi+k−1} multiplied by the size of the
universe of queries. This simple estimator is accurate under the
assumption that the queries are generated uniformly at random.
As shown in [33], any set of values that implies the observed
Voronoi diagram satisfies three families of constrains:
• ordering constraints, i.e., vi < vi+1,
• bisector constrains, i.e., (vi + vj)/2 = bi,j , and
• boundary constraints, i.e., α < v0 and vn−1 < β.

All the above constrains form a feasible region F of potential
reconstructions, which is geometrically expressed as a k-
dimensional convex polytope.

Limitations of ATTACKUNORDERED [33]. We identify
here some limitations of the approach in [33] and later show
how to overcome them. The length estimation in ATTACK-
UNORDERED can be performed solely with the access-pattern
leakage, hence even though the adversary observes a wealth
of information from the search-pattern, this information is
not utilized. Also, algorithm ATTACKUNORDERED provides
rigorous guarantees about the quality of the reconstruction, but
this precision comes with a price. The experiments of [33]
show that for a successful reconstruction, it is preferable to
have (1) a large number of queries and (2) a small number of
neighgbors returned, k. Finally, the number of queries must
be large enough so as the estimated lengths are so accurate



that they define a Voronoi diagram without any modification.
As an example, to achieve a reconstruction on the real-world
Spitz dataset, the experiments in [33] observed more than 250
million queries. The proposed approach in this paper achieves
a reconstruction on the same dataset with 2.5 million queries,
a 100× smaller sample size. Overall, the exact approach of
ATTACKUNORDERED [33] either succeeds with great accuracy
or fails and outputs nothing. Additionally the technique in [33]
requires the explicit computation of the feasible region by
computing the vertices of the feasible region F which requires
time that is linear to the number of vertices of F . We note that
a k-dimensional convex polytope has O(2k) vertices, therefore
such an approach does not scale well to larger k values. Our
new approach overcomes both of the above limitations and
utilizes the search-pattern leakage.

Our Reconstruction Algorithm. Algorithm 3 (AGNOSTIC-
RECONSTRUCTION-KNN ) outlines our attack from k-NN
queries. A key insight is the use of the search-pattern leakage
to estimate the length of each Voronoi segment without any
knowledge about the query distribution. We build on the attack
in [33] and extend it into two new directions. Instead of
expecting a number of queries large enough to accurately
estimate a valid Voronoi diagram, we compute the minimum
distortion for each estimated length so as the new “augmented”
set of lengths comprise a valid Voronoi diagram. We achieved
this by adding distortion variables to the offset variables of
[33] and introducing a convex optimization problem where
the feasible region formulation from [33] forms the set of
inequality constraints and the objective function expresses the
minimization of the distortion. Finally, in order to scale to larger
values of k, we don’t require the explicit construction of the
feasible region and instead output an arbitrary reconstruction
from the feasible region of the augmented Voronoi diagram.

Observation 1 from Section III shows that an adversary
with a sample D of search tokens and their responses can
partition D with respect to each of the n − k + 1 possible
responses and form a collection of samples from the conditional
probability distributions. From Remark 3 we know that the
support size of a conditional probability distribution is the
length of the corresponding Voronoi segment. Our algorithm
deploys the MODULAR-ESTIMATOR to acquire an estimation of
the length of each Voronoi segment without any assumptions
about the query distribution, see Lines 2-6 in AGNOSTIC-
RECONSTRUCTION-KNN. After this step the estimated lengths,
i.e., column vector l̂ = (L̂0, . . . , L̂n−k) is treated as constant.

We define one distortion variable δi per estimated length
L̂i, for i ∈ [0, n − k]. We derive the value assignment of
these variables by solving a quadratic minimization problem
where the objective function is the sum of the squares of δi, i.e.,
min

∑n−k
i=0 δ

2
i . This design choice captures our goal to compute

the smallest possible distortion. We follow the footsteps
of [33] and express the space of valid reconstructions with
respect to offsets ξi from bisectors. Overall, the optimization
formulation has n−k+1 unknowns for the distortion variables
~δ = (δ0, . . . , δn−k) and k unknowns for the offset variables
~ξ = (ξ0, . . . , ξk−1), so a total of n+ 1 unknowns. The above

objective function can be written as ~xTM~x, where ~x is the
column vector from the concatenation of ~δ and ~ξ, and M is an
all-zero matrix except the first n− k+1 elements of the main
diagonal which have value 1. Since the matrix M is positive
semidefinite, the objective function is a convex function.

Additionally the assignment of ~δ and ~ξ should be such
that the collection of augmented lengths, i.e., L̂i + δi for
i ∈ [0, n− k], forms a Voronoi diagram. To express this goal
we form four type of linear constraints for the optimization
problem. The first type of constraints is the ordering constraints.
These constraints can be written as A·[~δ, ~ξ]T ≤ B·l̂, where A is
(n−1)×(n+1) matrix of constants and B is (n−1)×(n−k+1)
matrix of constants. These matrices can be derived from the
analytical formulas of Lemma 1 in the Appendix. The second
type of constraints is the boundary constraints which guarantee
that α < v0 and vn−1 < β, see Lemma 2 in the Appendix for
the analytical formula. The third type of constraints guarantees
that the offsets are positive, i.e., ξ ≥ 0. Finally the fourth type
of constraints is an equality constraint that guarantees that the
augmented lengths sum to N , i.e.,

∑n−k
i=0 (L̂i + δi) = N .

Algorithm 3: AGNOSTIC-RECONSTRUCTION-KNN
Input: A multiset of k-NN search tokens and their responses

D = {(t1, r1), (t2, r2) . . . , (tm, rm)}, the ordering of the
records I = (id0, . . . , idn−1), as well as α, β,N

Output: Approximate Reconstruction ṽ0, . . . , ṽn−1

1 Compute the left-to-right ordering S of the responses, i.e., the Voronoi
segments, using the ordering I of the records.;

2 for every ri in S from left-to-right do
3 Define Di as the mulitset with tokens from D with response ri;
4 Call MODULAR-ESTIMATOR with input the multiset of tokens Di

and store the estimated support size as L̂i;
5 end
6 Define the vector of estimated lengths l̂← (L̂0, . . . , L̂n−k);
7 Solve the following convex optimization problem with unknowns the

vector of distortions ~δ and the vector of offsets ~ξ:

min
~δ,~ξ

n−k∑
i=0

δ2i

s.t. A ·
[
~δ
~ξ

]
≤B · l̂, (ordering constraint)

aTl ·
[
~δ
~ξ

]
≤bl · l̂, (lower boundary constraint)

aTu ·
[
~δ
~ξ

]
≤bu · l̂, (upper boundary constraint)

~ξ ≥0, (positive offsets constraint)
~δT l̂ =N, (sum of augmented lengths)

where A and B are matrices of constant terms derived from the ordering
constraints of Lemma 1, al, bl are vectors of constant terms for the lower
boundary constraint derived from Lemma 2, and au, bu are vectors of
constant terms for the upper boundary constraint derived from Lemma 2;

8 From the distortion vector ~δ returned from the optimization problem and
the estimated lengths l̂ we compute the augmented Voronoi diagram;

9 Given the above Voronoi diagram and the offset vector ~δ returned from
the optimization problem we derive the reconstructed database by
substituting on the formulas of Lemma 5 in [33];

10 return ṽ0, . . . , ṽn−1;

Evaluation on the Spitz Dataset. In this experiment, we
evaluate the performance of AGNOSTIC-RECONSTRUCTION-
KNN on a public real-world data set (also used in [33])



(a) (b) (c) (d)
Fig. 12. Real-world dataset Spitz of a privacy-sensitive geolocation trace: (a) data for Otober 1-31, 2009; (b) mapping of the points to a Hilbert curve which
reduces the 2D data to 1D; (c) query distribution under attack, which consists of a permutation of a discretized Beta(α, β) distribution; (d) another query
distribution under attack, which is a Gaussian centered at the city of Hannover, Germany.
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Fig. 13. Absolute relative error of AGNOSTIC-RECONSTRUCTION-KNN for
varying query distributions on the Spitz dataset.

containing the geolocation of politician Malte Spitz.1 As in [33],
we consider the geolocation data for the period October 1 to
31, 2009 and reduce the 2D data to 1D by deploying a Hilbert
curve of order 8. The resulting discretized curve has universe of
size N = 65536 and the dataset has size n = 258. The data is
shown on a super-imposed map in Figure 12(a) and its mapping
on a Hilbert curve is in Figure 12(b). The deployed query
distribution is a discretized beta for varying parameters, similar
to the experiments of the previous subsection but without any
noise, i.e., permuted over the universe of queries. We illustrate
this Permuted-Beta(α, β) query distribution with a heatmap
on the superimposed data in Figure 12(c). Finally we test a
Gaussian query distribution with mean centered at the city of
Hannover in Germany and it is illustrated in Figure 12 (d).

The number of queries that the adversary observed is set
to Q = 25 · 105 which is 100× smaller sample size than the
experiments conducted in [33]. Each attack was mounted 50
times and Figure 13 presents the average absolute relative
error. Due to the new design of our reconstruction attack we
were able to scale it to k = 50 an experiment that is not
feasible from the approach followed in [33]. As it is expected
the power-law like distribution Permuted-Beta(1,10) is the
hardest to reconstruct due to the skewness and the sample size.
Nevertheless the relative error ranges from 15% to 20% in this
challenging scenario. The reconstruction under the Gaussian
query distribution is accurate across all values of k.

Evaluation on Synthetic Dataset. We generated synthetic
databases under varying densities and query distributions for

1www.zeit.de/datenschutz/malte-spitz-data-retention

N = 103 and k = {2, 5, 10, 20, 50}. Figure 14 shows the
average of the mean absolute error of 100 repetitions with Q =
105. Note that for sparse databases, the distances between the
values are larger, hence the offset variables have “more room”
to deviate, which increases the size of the feasible region
and as a result, the number of possible valid reconstructions.
Another factor that increases the size of the feasible region
is the increase of the value k, an intuition confirmed by the
MAE for k = 50 even for the uniform case Permuted-Beta(1,1)
which is easier to reconstruct. For densities larger than 20%,
the reconstruction is usually within a distance of 20 from the
plaintext value for all the tested query distributions.
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Fig. 14. Performance of AGNOSTIC-RECONSTRUCTION-KNN for varying
query distributions on synthetic data.



V. RELATED WORK

For encrypted single-keyword search [4], [9], [11], [15], [23],
[31], [41], [43] the access pattern leakage of some leakage
profiles is vulnerable to query recovery attacks, as opposed to
the encrypted values. Specifically, Islam et al. [30], Cash et
al. [8], and Zhang et al. [45] give query-recovery attacks under
various assumptions. Encrypted systems with more expressive
queries [39] rely on different cryptographic primitives, e.g.,
order-preserving encryption, and are vulnerable to data-recovery
attacks [20], [28], [38] using only the setup leakage. In terms
of efficiency there is a series of works [1], [2], [10], [16], [18]
that study how the locality of searchable encryption affects
the overall efficiency. We review in Section I state-of-the-
art plaintext reconstruction attacks from from range queries
[27], [32], [34] and from k-NN queries [33]. Recent work
improves the asymptotic complexity of reconstruction from
range queries under uniform query distribution using search
pattern leakage [37].

VI. DISCUSSION & OPEN PROBLEMS

The proposed attacks of this work are applied successfully
to a wide range of realistic query distributions but it is worth
noting that there exist distributions where our attacks fail to
reconstruct. For example, the leakage observed in case all the
probability mass is assigned to a single query is not enough to
reconstruct the entire database. A similarly problematic case
appears when the client issues queries that touch plaintext
values from the first half of the universe, i.e. [0, N/2], then
the adversary would never see any leakage associated with
the other half, i.e. [N/2, N ], and therefore fail to reconstruct
the entire database. We leave as an open problem the task
of characterizing the family of query distributions that are
vulnerable to our proposed attacks. Another open problem
is to analyze whether similar attacks can be mounted to the
leakage derived from querying high-dimensional data. All the
known attacks on ranges concern the quadratic scheme where
the inverted index contains an entry for every possible range
query. There exist constructions [17], [22] with much better
storage efficiency than the quadratic scheme that also leak
significantly less information. An open problem is to study
whether it is possible to develop efficient reconstruction attacks
for these advanced constructions for range queries. Moving on
to schemes with strictly less leakage, the so-called response-
hiding schemes store multiple copies of the same plaintext so
as not to reveal that a record participates in multiple responses,
i.e., they hide the overlap of records between responses via
paying storage overhead. These schemes are immune to all
the previous attacks as well as the attacks proposed in this
work, an open problem is to analyze whether there exist any
reconstruction attack for these schemes.

VII. CONCLUSION

This paper gives the first attacks on range queries and
k-NN queries on encrypted databases that reconstruct the
plaintext values without any knowledge about the query or the
data distribution. Before our attacks, it was unclear whether

such a general leakage-based reconstruction is possible as all
previous approaches [27], [32], [33], [34] relied either on the
uniform query distribution assumption or the assumption that
the adversary knows both the query and the data distribution.
These strong assumptions of previous attacks have given the
false impression about their applicability and as a result,
leakage-abuse attacks have been characterized in the past
as “of theoretical interest”. The power and the generality of
our reconstruction techniques, which overcome these strong
assumptions, lie in the synergetic analysis of both the access-
pattern and the search-pattern leakage. Experimental results
demonstrate that an attacker can achieve accurate reconstruction
under a wide variety of skewed query distributions and under
various database densities without parametrizing the algorithms
and without access to any auxiliary information.
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IX. APPENDIX

Proof of Theorem 2: We first show that the function in
equation (3) is convex. Notice that the inner functions, i.e. (xi+
xj−log(L̂i,j)), can be interpreted as convex functions, i.e. strict
equality in the definition of convexity, and their composition
with the quadratic function, i.e. (xi+xj− log(L̂i,j))

2, output a
convex function. Furthermore it is known that the non-negative
weighted sum of convex function preserves convexity which
means that the function of (3) is convex. Due to convexity of (3)
every local minima is global. The next step is to show that there
exists a unique solution. Notice that the following matrix of
coefficients M derived from the partial derivatives, also appears
in Line 8 of Algorithm Agnostic-Reconstruction-Range, and
is symmetric.

M =


∑
j 6=0 2w0,j 2w0,1 . . . 2w0,n

2w0,1

∑
j 6=1 2w1,j . . . 2w1,n

. . . . . . . . . . . .
2w0,n 2w1,n . . .

∑
j 6=n 2wj,n


If we show that ~yTM~y > 0 for all vectors ~y 6= 0, then the

matrix is positive definite which implies that there is a unique
solution. We want to show ~yTMy > 0. Thus:

~yTMy > 0⇒ 2~yT 1
2My > 0⇒ ~yT 1

2My > 0⇒

~yT ·


∑
j 6=0 w0,j w0,1 . . . w0,n

w0,1

∑
j 6=1 w1,j . . . w1,n

. . . . . . . . . . . .
w0,n w1,n . . .

∑
j 6=n wj,n

 · ~y > 0⇒

[
y0

(∑
j 6=0 w0,j

)
+
∑
j 6=0 yjw0,j . . . yn

(∑
j 6=n wj,n

)
+
∑
j 6=n yjwj,n

]
· ~y > 0⇒

∑n
i=0

(
y2i

(∑
j 6=i wi,j

)
+ yi

∑
j 6=i yjwi,j

)
> 0⇒

∑
0≤i<j≤n

(
wi,j(y

2
i + y2j )

)
+
∑

0≤i<j≤n (2yiyjwi,j) > 0⇒∑
0≤i<j≤n wi,j

(
y2i + y2j + 2yiyj

)
> 0⇒∑

0≤i<j≤n wi,j (yi + yj)
2
> 0

, which is true since wi, j is always positive.
On the derivation of the Jackknife Estimators. Let m

be the number of queries, k be the order of the jackknife
estimator, d be the number of observed distinct queries, and
F = (f1, . . . , fm) be the fingerprint of sample D of queries.
The formulation of the bias corrected jackknife estimator N̂J(k)
of order k is given by:

λm−j = d−
(
m
j

)−1∑j
t=1

(
m−t
j−t
)
ft,

N̂J(k) =
1
k!

(
mkd+

∑k
j=1(−1)j

(
k
j

)
(m− j)kλm−j

)
.



Proof of Lemma 2. We replace every Li with the term
Li + δi so as to consider the distortion variables δ0, . . . , δn−k
we get: ξ0 − δ0 ≤ L0

Lower Boundary Constraint: Using Lemma 5 from [33]:
α < v0 ⇒ α ≤ b0,k − ξ0 ⇒ ξ0 ≤ b0,k − α
⇒ ξ0 ≤ Len({id0, . . . , idk−1})⇒ ξ0 ≤ L0

Upper Boundary Constraint:

• if k ≤ n − 1 < 2k: Using Lemma 5 from [33] we get,
vn−1 = b(n−1) mod k,(n−1) mod k+k + ξ(n−1) mod k ⇒
vn−1 = b(n−1) mod k,n−1 + ξ(n−1) mod k ⇒

vn−1 =

α+

n−k−1∑
j=0

Len(idj , . . . , idj+k−1)

+ ξ(n−1) mod k ⇒

vn−1 =

α+

n−k−1∑
j=0

Lj

+ ξ(n−1) mod k

The upper boundary constraint is vn−1 < β.
vn−1 < β ⇒α+

n−k−1∑
j=0

(Li + δi)

+ ξ(n−1) mod k < β ⇒

ξ(n−1) mod k +

n−k−1∑
j=0

δi < β − α−
n−k−1∑
j=0

Li ⇒

ξ(n−1) mod k +

n−k−1∑
j=0

δi <

n−k∑
j=0

Li −
n−k−1∑
j=0

Li ⇒

ξ(n−1) mod k +

n−k−1∑
j=0

δi < Ln−k

• if 2k ≤ n − 1: Using Lemma 5 from [33] we get,
vn−1 = (−1)b(n−1)/k−1c(b(n−1) mod k,((n−1) mod k)+k + ξ(n−1) mod k)+

+

b(n−1)/kc∑
j=2

(−1)j+b(n−1)/kc2b((n−1) mod k)+(j−1)k,((n−1) mod k)+jk ⇒

vn−1 = (−1)b(n−1)/k−1cξ(n−1) mod k+

+ (−1)b(n−1)/k−1cb(n−1) mod k,((n−1) mod k)+k+

+

b(n−1)/kc∑
j=2

(−1)j+b(n−1)/kc2b((n−1) mod k)+(j−1)k,((n−1) mod k)+jk ⇒

vn−1 = (−1)b(n−1)/k−1cξ(n−1) mod k+

+ (−1)b(n−1)/k−1c(α+

(n−1) mod k∑
j=0

Len(idj , . . . , idj+k−1))+

+

b(n−1)/kc∑
j=2

2(−1)j+b(n−1)/kc ·


((n−1) mod k)

+(j−1)k∑
m=0

Len(idm, . . . , idm+k−1)

⇒
vn−1 = (−1)b(n−1)/k−1cξ(n−1) mod k+

+ (−1)b(n−1)/k−1c(α+

(n−1) mod k∑
j=0

Lj)+

+

b(n−1)/kc∑
j=2

2(−1)j+b(n−1)/kc ·


((n−1) mod k)

+(j−1)k∑
m=0

Lm


The upper boundary constraint is vn−1 < β.

vn−1 < β ⇒
(−1)b(n−1)/k−1cξ(n−1) mod k+

+(−1)b(n−1)/k−1c(α+

(n−1) mod k∑
j=0

(Lj + δj)+

+

b(n−1)/kc∑
j=2

2(−1)j+b(n−1)/kc ·


((n−1) mod k)

+(j−1)k∑
m=0

(Lm + δm)

 < β ⇒

(−1)b(n−1)/k−1cξ(n−1) mod k + (−1)b(n−1)/k−1c
(n−1) mod k∑

j=0

δj+

+

b(n−1)/kc∑
j=2

2(−1)j+b(n−1)/kc ·


((n−1) mod k)

+(j−1)k∑
m=0

δm


< β − (−1)b(n−1)/k−1cα− (−1)b(n−1)/k−1c

(n−1) mod k∑
j=0

Lj

−
b(n−1)/kc∑

j=2

2(−1)j+b(n−1)/kc ·


((n−1) mod k)

+(j−1)k∑
m=0

Lm


Proof of Lemma 1: The proof is derived from Lemma 8

in [33] by substituting Li with (Li + δi) for i ∈ [0, n− k].



Lemma 1. The ordering constraint vi < vi+1 can be expressed as a function of A) the offsets ξ = (ξ0, . . . , ξk−1), B) the
distortion of each Voronoi segment δ = (δ0, . . . , δn−k), and C) the lengths of a subset of Voronoi segments L0, . . . , Ln−k.
Specifically by using Lemma 8 from [33] we get the following cases:
• if 0 ≤ i < k − 1, then vi < vi+1 can be written as:

− ξi + ξi+1 − δi+1 < ci,i+1, where ci,i+1 = Li+1

• if i = k − 1, then vi < vi+1 can be written as:
− ξk−1 − ξ0 +

∑
1≤l≤k−1

δl < ck−1,k, where ck−1,k = −
∑

1≤l≤k−1

Ll

• if k ≤ i < 2k − 1, then vi < vi+1 can be written as:
ξi mod k − ξi mod k+1 − δi mod k+1 < ci,i+1, where ci,i+1 = Li mod k+1

• if i = 2k − 1, then vi < vi+1 can be written as:
ξk−1 + ξ0 − δk −

∑
1≤l≤k

δl < c2k−1,2k, where c2k−1,2k = Lk +
∑

1≤l≤k

Ll

• if 2k ≤ i < n− 1 and (i+ 1) mod k 6= 0, then vi < vi+1 can be written as:
(−1)bi/k−1c(ξi mod k − ξ(i+1) mod k)− (−1)bi/k−1c(δ(i+1) mod k)−

∑
2≤j≤bi/kc

(−1)j+bi/kc2(δi mod k+(j−1)k+1) < ci,i+1

, where ci,i+1 = (−1)bi/k−1cL(i+1) mod k +
∑

2≤j≤bi/kc

(−1)j+bi/kc2Li mod k+(j−1)k+1

• if 2k ≤ i < n− 1 and (i+ 1) mod k = 0, then vi < vi+1 can be written as:
(−1)bi/kc+1(ξi mod k + ξ(i+1) mod k)− (−1)bi/kc+1

( ∑
1≤l≤k

δl
)
− (−1)bi/kc+1(δk)−

∑
2≤j≤bi/kc

(−1)j+bi/kc2(δjk) < ci,i+1

, where ci,i+1 = (−1)bi/kc+1

 ∑
1≤l≤k

Ll

+ (−1)bi/kc+1Lk +
∑

2≤j≤bi/kc

(−1)j+bi/kc2Ljk

The first three cases the term ci,i+1 consists of the length of a single Voronoi segment. For the fourth case the term ci,i+1

is a linear combination of 2k − 1 length terms. For the fifth case the term ci,i+1 is a linear combination of at most
b(n− 1)/kc length terms. Finally for the last case ci,i+1 is a linear combination of at most b(n− 1)/kc+k length terms.

Lemma 2. The boundary constraints α < v0 and vn−1 < β can be expressed as a function of A) the offsets ξ =
(ξ0, . . . , ξk−1), B) the distortion of each Voronoi segment δ = (δ0, . . . , δn−k), and C) the lengths of a subset of Voronoi
segments L0, . . . , Ln−k. Specifically we have the following cases
• for the lower boundary

ξ0 − δ0 ≤ cl, where cl = L0

• for the upper boundary
-if k ≤ n− 1 < 2k:

ξ(n−1) mod k +

n−k−1∑
j=0

δi < cu, where cu = Ln−k

-if 2k ≤ n− 1:

(−1)b(n−1)/k−1cξ(n−1) mod k + (−1)b(n−1)/k−1c
(n−1) mod k∑

j=0

δj +

b(n−1)/kc∑
j=2

2(−1)j+b(n−1)/kc ·


((n−1) mod k)

+(j−1)k∑
m=0

δm

 < cu

, where cu = β − (−1)b(n−1)/k−1cα− (−1)b(n−1)/k−1c
(n−1) mod k∑

j=0

Lj −
b(n−1)/kc∑

j=2

2(−1)j+b(n−1)/kc ·


((n−1) mod k)

+(j−1)k∑
m=0

Lm





Jackknife Estimators.
N̂J(4) =d+

4m− 10

m
f1 −

6m2 − 36m+ 55

(m− 1)m
f2 +

4m3 − 42m2 + 148m− 175

m(m− 1)(m− 2)
f3 −

(m− 4)4

(m− 3)(m− 2)(m− 1)m
f4

N̂J(5) =d+
5m− 15

m
f1 −

10m2 − 70m+ 125

m(m− 1)
f2 +

10m3 − 120m2 + 485m− 660

m(m− 1)(m− 2)
f3 −

(m− 4)5 − (m− 5)5

m(m− 1)(m− 2)(m− 3)
f4 +

(m− 5)5

(m− 4)(m− 3)(m− 2)(m− 1)m
f5

N̂J(6) =d+
6m− 21

m
f1 −

15m2 − 120m+ 245

m(m− 1)
f2 +

20m3 − 270m2 + 1230m− 1890

(m− 2)(m− 1)m
f3 −

15m4 − 300m3 + 2265m2 − 7650m+ 9751

(m− 3)(m− 2)(m− 1)m
f4

+
(m− 5)6 − (m− 6)6

(m− 4)(m− 3)(m− 2)(m− 1)m
f5 −

(m− 6)6

(m− 5)(m− 4)(m− 3)(m− 2)(m− 1)m
f6

N̂J(7) =d+
7m− 28

m
f1 +

−21m2 + 189m− 434

m(m− 1)
f2 +

35m3 − 525m2 + 2660m− 4550

(m− 2)(m− 1)m
f3 +

−35m4 + 770m3 − 6405m2 + 23870m− 33621

(m− 3)(m− 2)(m− 1)m
f4

+
21m5 − 630m4 + 7595m3 − 45990m2 + 139867m− 170898

(m− 4)(m− 3)(m− 2)(m− 1)m
f5 +

(m− 7)7 − (m− 6)7

(m− 5)(m− 4)(m− 3)(m− 2)(m− 1)m
f6

+
(m− 7)7

(m− 6)(m− 5)(m− 4)(m− 3)(m− 2)(m− 1)m
f7

N̂J(8) =d+
8m− 36

m
f1 +

−28m2 + 280m− 714

(m− 1)m
f2 +

56m3 − 924m2 + 5152m− 9702

(m− 2)(m− 1)m
f3 +

−70m4 + 1680m3 − 15260m2 + 62160m− 95781

(m− 3)(m− 2)(m− 1)m
f4+

+
56m5 − 1820m4 + 23800m3 − 156520m2 + 517608m− 688506

(m− 4)(m− 3)(m− 2)(m− 1)m
f5 +

−28m6 + 1176m5 − 20650m4 + 194949m3 − 1029028m2 + 2920008m− 343615

(m− 5)(m− 4)(m− 3)(m− 2)(m− 1)m
f6+

+
(m− 7)8 − (m− 8)8

(m− 6)(m− 5)(m− 4)(m− 3)(m− 2)(m− 1)m
f7 +

(−1)(m− 8)8

(m− 7)(m− 6)(m− 5)(m− 4)(m− 3)(m− 2)(m− 1)m
f8

N̂J(9) =d+
9m− 45

m
f1 +

−36m2 + 396m− 1110

(m− 1)m
f2 +

84m3 − 1512m2 + 9198m− 18900

(m− 2)(m− 1)m
f3+

+
(1/120)(m− 9)9 − (1/24)(m− 8)9 + (1/12)(m− 7)9 − (1/12)(m− 6)9 + (1/24)(m− 5)9 − (1/120)(m− 4)9

(m− 3)(m− 2)(m− 1)m
f4+

+
(1/24)(m− 9)9 − (1/6)(m− 8)9 + (1/4)(m− 7)9 − (1/6)(m− 6)9 + (1/24)(m− 5)9

(m− 4)(m− 3)(m− 2)(m− 1)m
f5+

+
(1/6)(m− 9)9 − (1/2)(m− 8)9 + (1/2)(m− 7)9 − (1/6)(m− 6)9

(m− 5)(m− 4)(m− 3)(m− 2)(m− 1)m
f6 +

(1/2)(m− 9)9 − (m− 8)9 + (1/2)(m− 7)9

(m− 6)(m− 5)(m− 4)(m− 3)(m− 2)(m− 1)m
f7+

+
−(m− 8)9 + (m− 9)9

(m− 7)(m− 6)(m− 5)(m− 4)(m− 3)(m− 2)(m− 1)m
f8 +

(m− 9)9

(m− 8)(m− 7)(m− 6)(m− 5)(m− 4)(m− 3)(m− 2)(m− 1)m
f9

N̂J(10) =d+
10m− 55

m
f1 +

−45m2 + 540m− 1650

(m− 1)m
f2 +

120m3 − 2340m2 + 15420m− 34320

(m− 2)(m− 1)m
f3 +

−210m4 + 5880m3 − 62370m2 + 296940m− 535227

(m− 3)(m− 2)(m− 1)m
f4

+
252m5 − 9450m4 + 142800m3 − 1086750m2 + 4164510m− 6427575

(m− 4)(m− 3)(m− 2)(m− 1)m
f5

+
−210m6 + 10080m5 − 202650m4 + 2184000m3 − 13306545m2 + 43453200m− 59411605

(m− 5)(m− 4)(m− 3)(m− 2)(m− 1)m
f6

+
120m7 − 7140m6 + 182700m5 − 2606100m4 + 22380120m3 − 115700130m2 + 333396850m− 413066170

(m− 6)(m− 5)(m− 4)(m− 3)(m− 2)(m− 1)m
f7 +

−(1/2)(m− 10)10 + (m− 9)10 − (1/2)(m− 8)10

m(m− 1)(m− 2)(m− 3)(m− 4)(m− 5)(m− 6)(m− 7)
f8

+
(m− 9)10 − (m− 10)10

m(m− 1)(m− 2)(m− 3)(m− 4)(m− 5)(m− 6)(m− 7)(m− 8)
f9 +

−(m− 10)10

m(m− 1)(m− 2)(m− 3)(m− 4)(m− 5)(m− 6)(m− 7)(m− 8)(m− 9)
f10


