
A Complete and Optimized Key
Mismatch Attack on NIST Candidate

NewHope

Yue Qin1, Chi Cheng1(B), and Jintai Ding2

1 China University of Geosciences, Wuhan 430074, China
{qy52hz,chengchi}@cug.edu.cn

2 University of Cincinnati, Cincinnati 45219, USA
jintai.ding@gmail.com

Abstract. In CT-RSA 2019, Bauer et al. have analyzed the case when
the public key is reused for the NewHope key encapsulation mechanism
(KEM), a second-round candidate in the NIST Post-quantum Standard
process. They proposed an elegant method to recover coefficients rang-
ing from −6 to 4 in the secret key. We repeat their experiments but
there are two fundamental problems. First, even for coefficients in [−6,
4] we cannot recover at least 262 of them in each secret key with 1024
coefficients. Second, for the coefficient outside [−6, 4], they suggested
an exhaustive search. But for each secret key on average there are 10
coefficients that need to be exhaustively searched, and each of them has
6 possibilities. This makes Bauer et al.’s method highly inefficient. We
propose an improved method, which with 99.22% probability recovers all
the coefficients ranging from −6 to 4 in the secret key. Then, inspired
by Ding et al.’s key mismatch attack, we propose an efficient strategy
which with a probability of 96.88% succeeds in recovering all the coeffi-
cients in the secret key. Experiments show that our proposed method is
very efficient, which completes the attack in about 137.56ms using the
NewHope parameters.

Keywords: Post-quantum cryptography · Key exchange ·
Ring learning with errors · Key mismatch attack

1 Introduction

Currently, the standardization process of post-quantum cryptography algorithms
run by the NIST has completed the first round and the second round workshop
is scheduled to be held on August, 2019 [1]. As one of the most promising can-
didates for future post-quantum cryptography standard, the ring learning with
errors (Ring-LWE) based approaches have attracted a lot of attention due to the
provable security and high efficiency [13,15,17].

To construct DH-like key exchange schemes whose hardness are based on
the Ring-LWE problem, the key breakthrough is to use the error reconciliation
c© Springer Nature Switzerland AG 2019
K. Sako et al. (Eds.): ESORICS 2019, LNCS 11736, pp. 504–520, 2019.
https://doi.org/10.1007/978-3-030-29962-0_24

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-29962-0_24&domain=pdf
https://doi.org/10.1007/978-3-030-29962-0_24

A Key Mismatch Attack on NewHope 505

mechanism, which means that one party needs to send additional information
to help the other party agree on an exactly same key. The first paper proposing
this idea was attributed to Ding, Xie, and Lin [10]. Then, an authenticated key
exchange variant was proposed by Zhang et al. [19]. Peikert proposed a key
encapsulation mechanism (KEM) using a tweaked error correction mechanism
in [16], which is then reformulated by Bos et al. as a key exchange scheme
and inserted into the Transport Layer Security (TLS) protocol [6]. Later, a
further tweaked Ring-LWE based key exchange scheme, the NewHope-Usenix
[4], also attracts significant attention since Google has tested it in its browser
Chrome to get real-world experiences about the deployment of the post-quantum
cryptography. But the error reconciliation mechanism in the original NewHope-
Usenix was so complex that later Alkim et al. proposed a simplified variant called
the NewHope-simple [3], where the authors use the encryption-based approach to
transfer the keys. In the submission to the competition of NIST’s post-quantum
cryptography, the submitted NewHope [2] was based on NewHope-simple, and
in this paper we only consider the NewHope scheme with the encryption-based
approach.

Note that in the widely used Internet standards, the key reuse mode is com-
monly used. For example, in the recently released TLS 1.3 [18], there exists a
pre-shared key (PSK) mode in which the key can be reused. But the key reuse
in lattice-based key exchange could cause the key reuse attacks. Generally, the
key reuse attacks can be further divided into signal leakage attack and the key
mismatch attack. The main cause of the signal leakage attack is that if the key is
reused, the corresponding signal information used for exact key recovery reveals
information about the secret key. On the other side, the key mismatch attack
tries to recover the secret by querying a number of times whether the shared
keys generated by the two parties match or not.

Recently, a series of key reuse attacks on the reconciliation based approaches
have been proposed. Fluhrer first proposed the idea to exploit the leakage of
secret keys of Ring-LWE based key exchange when one participant’s public key
is reused [11]. Later, Ding et al. has developed a key leakage attack on [10], where
the reused keys leak information about the secret key [7]. In [9], a key mismatch
attack was proposed on the one pass case of [10], without using the information
leaked by the signal function. To thwart the proposed key leakage attack in case
the public key is required to be reused, in [12] a randomized method has been
proposed. Another related work is [14], in which Liu et al. proposed a signal
leakage attack against the reconciliation-based NewHope-Usenix key exchange
protocol [4].

Unlike the DH-like key exchange protocols, the NewHope KEM submitted to
the NIST [3] is based on the encryption rather than the reconciliation mechanism,
and newly designed Encode and Compress functions are used. Therefore, these
attacks proposed by Fluhrer [11], Ding et al. [7–9], or Liu et al. [14] cannot be
directly applied to the encryption-based NewHope key exchange protocol [2].
The main challenge for launching a key mismatch attack is that the Encode and
Decode functions in NewHope deal with four coefficients together, which makes
it hard to recover the secret key using the previous methods.

506 Y. Qin et al.

In CT-RSA 2019, Bauer et al. have proposed a key mismatch attack on
NewHope [5]. As we know, the coefficients of the secret key in NewHope belong
to [−8, 8] due to the fact that they are selected from the centered binomial
distribution ψn

8 . The key observation of Bauer et al. is that in a secret key
with 1024 coefficients, 99.22% of them lie in [−6, 4]. From this observation, they
have proposed an elegant method, which is claimed to recover all the coefficients
belonging to [−6, 4] in the key.

However, their recovery is first incomplete. Through our experiments, for
each secret key with 1024 coefficients there are at least 262 coefficients in [−6, 4]
but cannot be recovered using their method. Second, for the coefficients outside
[−6, 4], i.e. those selected from {−8,−7, 5, 6, 7, 8}, they suggested an exhaustive
search. But for each secret key on average there are 10 coefficients that need
to be exhaustively searched, and each of them has 6 possibilities. The resulted
610 ≈ 6 × 107 possibilities make Bauer et al.’s method highly inefficient.

After analyzing the cause of the incomplete recovery, we propose an improved
method, which with 99.22% probability can recover all the coefficients ranging
from −6 to 4 in the secret key. Then, inspired by Ding et al.’s key mismatch
attack, we propose an efficient strategy which with a probability of 96.88% suc-
ceeds in recovering all the coefficients belonging to [−8, 8] in the secret key.
Recall that in NewHope four coefficients are encoded at a time. Through in-
depth analysis of the properties of the Decode function, we notice that it can
help us find the sum of the 4 coefficients. Since in a targeted quadruplet, there is
a 96.88% probability that only one coefficient belongs to {−8,−7, 5, 6, 7, 8}, and
the other 3 coefficients belong to [−6, 4]. The key idea of our strategy is that we
can first recover the 3 coefficients using our improved method, then recover the
remaining coefficient since the sum of the 4 coefficients is known. Experiments
show that our proposed method is very efficient, which completes the attack in
about 137.56 ms using the NewHope parameters.

2 The Ring-LWE Problem and NewHope KEM

Set Zq the ring with all coefficients are integers modulo q, then Zq[x] represents a
polynomial ring, where all the polynomials in Zq[x] are with coefficients selected
from Zq. Then, we can define the polynomial ring Rq = Zq[x]/(xn +1), in which
for every polynomial f(x) = a0 + a1x + · · · + an−1x

n−1 ∈ Rq, each coefficient
ai ∈ Zq (0 ≤ i ≤ n − 1) and the polynomial additions and multiplications are
operated modulo xn +1. All polynomials are in bold, and we treat a polynomial
c ∈ Rq the same with its vector form (c[0], · · · , c[n−1]), here c[i] (0 ≤ i ≤ n−1)
represents the ith coefficient of the polynomial c. The operation �x� represents
the maximum integer not exceeding x, and �x� = �x + 1

2�.
The schemes based on Ring-LWE enjoy certain advantages due to the fact

that there exists a quantum reduction which solves a hard problem in ideal
lattices in the worst-case to solving a Ring-LWE problem in the average-case,
as well as high efficiency even in resource-limited devices. Similar to the DH

A Key Mismatch Attack on NewHope 507

problems, there exist two versions of the Ring-LWE problem. The decision Ring-
LWE is to distinguish the pair (a, as + e) from randomly selected pair (x, y),
where a is randomly sampled from Rq and s, e are randomly selected according
to a error distribution. Similarly, the search Ring-LWE is to recover s with the
above pair (a, as + e).

Since in the submission to the competition of NIST’s post-quantum cryp-
tography, the submitted NewHope KEM was based on NewHope-simple, in the
remaining of this paper we refer to the encryption based approach when we use
NewHope. In NewHope, the polynomial ring Rq = Zq[x]/(xn + 1) is set with
q = 12289 and n = 1024 or n = 512. The selected error distribution in NewHope
is ψn

8 , which is a centered binomial distribution with parameter 8, and can be

easily sampled from computing
8∑

i=1

(bi − b′
i). Here bi and b′

i is randomly selected

from {0, 1}. The most important functions in the NewHope KEM are defined as
follows.

Definition 1. The Encode function can map each bit in ν′
B ∈ {0, 1}256 to four

bits in k, which is for i = 0, 1, . . . , 255,

k[i] = k[i + 256] = k[i + 512] = k[i + 768] =
⌊q

2

⌋
ν′
B [i]. (1)

Definition 2. The Decode function is designed to recover one bit of ν′
A ∈

{0, 1}256 from four bits in k′, i.e., ν′
A = Decode(k′) and

ν′
A[i] =

{
1 if m[i] < q,

0 otherwise,
(2)

where m[i] =
3∑

j=0

|k′[i + 256j] − ⌊
q
2

⌋ | for i = 0, 1, . . . , 255.

Definition 3. The Compression function Compress: Zq → Z8 is defined as c̄ =
Compress(c) and for i = 0, 1, . . . , 1023,

c̄[i] = �(c[i] · 8)/q� (mod 8). (3)

Definition 4. The Decompression function Decompress: Z8 → Zq is defined as
c′ = Decompress(c̄), which is for i = 0, 1, . . . , 1023,

c′[i] = �(c̄[i] · q)/8�. (4)

In Table 1, we describe the details of the NewHope KEM. Since in NewHope,
the number-theoretic transform (NTT) is used to speed up the polynomial mul-
tiplication, which has nothing to do with security. To simplify the security anal-
ysis of NewHope, in Table 1 we use ordinary multiplication instead of NTT. To
share a same key, the two participants Alice and Bob should share a common
a in advance, which is randomly selected from Rq. The NewHope key exchange
protocol consists of three parts:

508 Y. Qin et al.

Table 1. The NewHope KEM

Common parameter: a ←− Rq

Alice Bob

sA, eA
$←− ψn

8

PA ←− asA + eA
PA−−−−−−→ sB , eB , e′

B
$←− ψn

8

PB ←− asB + eB

νB
$←− {0, 1}256

ν′
B ← SHA3-256(νB)

k ←Encode(ν′
B)

c ←− PAsB + e′
B + k

c′ ← Decompress(c̄)
(PB ,c̄)←−−−−−−− c̄ ←− Compress(c)

k′ = c′ − PBsA SkB ←− SHA3-256(ν′
B)

ν′
A ←− Decode(k′)

SkA ← SHA3-256(ν′
A)

(1) Alice selects sA and eA uniformly at random from ψn
8 , and computes a

public key PA = asA + eA. Then Alice will send PA to Bob.
(2) After receiving PA sent by Alice, Bob will select sB , eB and e′

B uniformly
at random from ψn

8 , and compute a public key PB = asB + eB . Then Bob
will choose νB randomly from {0, 1}256 and compute ν′

B ← SHA3-256(νB),
k ←Encode(ν′

B), c ←− PAsB + e′
B + k and c̄ ←− Compress(c). Subsequently,

Bob will send PB and c̄ to Alice, and compute the shared key SkB
←− SHA3-

256(ν′
B).

(3) When Alice receives the PB and c̄ sent by Bob, she will calculate c′ ←
Decompress(c̄), k′ = c′ − PBsA, ν′

A ←− Decode(k′) and her shared key
SkA

← SHA3-256(ν′
A).

3 The Proposed Key Mismatch Attack

In this section, we will use the key mismatch method to assess the security of
the NewHope KEM when the public key is reused.

In a key mismatch attack, the adversary A is an active adversary who plays
the role of Bob, and we build an oracle O that simulates Alice in Table 1. We
assume that Alice’s public key PA is reused and A can query the oracle a number
of times. In Algorithm 1 we describe how the oracle works. To be specific, A
calculates PB , as well as c̄ and SkB

generated by using a selected ν′
B . By receiving

the input (PB , c̄, SkB
), the oracle will use PB and c̄ to calculate c′, k′, ν′

A, SkA

and checks whether SKA
= SKB

holds, if yes the oracle O will output 1 and 0
otherwise. Specifically, if O outputs 1, SkA

and SkB
match and ν′

A = ν′
B . If O

outputs 0, SkA
and SkB

mismatch and ν′
A 	= ν′

B . We can see that the adversary
can get useful information from the oracle by knowing whether the two keys SkA

and SkB
match or not, and further recover sA using these information.

A Key Mismatch Attack on NewHope 509

Algorithm 1. Oracle
Input: PB , c̄, SkB

Output: 1 or 0
1 c′ = Decompress(c̄);
2 k′ = c′ − PBsA ;
3 ν′

A ←− Decode(k′);
4 SkA ← SHA3-256(ν′

A);
5 if SkA = SkB then
6 Return 1;
7 else
8 Return 0;

The main challenge in launching a key mismatch attack against the NewHope
KEM is that, 4 coefficients of sA, for example sA[i], sA[i + 256], sA[i + 512], and
sA[i + 768] are encoded and decoded together, which makes it hard to decide
each of them.

3.1 Bauer et al.’s Method

In this subsection, we briefly introduce Bauer et al.’s method in [5]. They used
the key mismatch attack to recover Alice’s private key sA if Alice’s public key PA

is reused. Set S1= {−8,−7, . . . ,−1, 0, 1, . . . , 7, 8} and S2 = {−6,−5, . . . , 2, 3, 4}.
Their basic idea is to recover all the coefficients in S2. First of all, the adversary
A directly chooses ν′

B = (1, 0, · · · , 0). If A wants to recover the quadruplet
(sA[i], sA[i+256], sA[i+512], sA[i+768]), he will set his public key PB = � q

8�x−i

and c̄ =
3∑

j=0

((lj +4) mod 8)x256j , here each lj ranges from −4 to 3. Then he will

send (PB , c̄, SkB
) to the oracle O. When O receives (PB, c̄, SkB

), he will honestly
calculate c′,k′, ν′

A and SkA
. If SkA

= SkB
he will return 1 and 0 otherwise.

Finally, A will calculate the private key according to O’s output. Since each
quadruplet (l0, l1, l2, l3) corresponds to an output of O, the adversary A can
recover the coefficients of the private key if he can find outputs in a form like
1, · · · , 1, 0, · · · , 0, 1, · · · , 1 as (l0, l1, l2, l3) changes. Here this kind of form is
called a favorable case.

Specifically, if A wants to recover sA[i] in sA, he can first set each lj (j =
1, 2, 3) be randomly selected from −4 to 3, and then by letting l0 = −4, the
resulted output is a bit b0. Next A can increase l0 to −3, with the same lj (j =
1, 2, 3) the resulted output is another bit b1. Repeating the above processes until
l0 becomes 3, there will be 8 bits bj (j = 0, 1, · · · , 7). The above processes will
be repeated with different lj (j = 1, 2, 3) until A finds a favorable case. Then the
adversary A can recover the coefficients in S2 by recording the positions where
1 changes to 0 and 0 goes to 1 in the favorable case. A will repeat the above
processes until he recovers all the coefficients of sA that belongs to S2.

510 Y. Qin et al.

We have generated 1, 000 secret keys and repeated the experiments using
Bauer et al.’s method. Unfortunately, even for coefficients in [−6, 4] we cannot
recover at least 262 of them in each secret key with 1024 coefficients. What
makes the situation worse is that in some cases the recovered coefficients are
wrong and we cannot detect these cases using Bauer et al.’s method. Another
problem is that, for the coefficients outside [−6, 4], they suggested an exhaustive
search. But for each secret key on average there are 10 coefficients that need to
be exhaustively searched, and each of them has 6 possibilities. This makes Bauer
et al.’s method highly inefficient.

3.2 Our Improved Method

In this subsection, we propose an improved method to recover the coefficients
in S2.

First in Algorithm 2 we propose how to calculate τ1 and τ2, which play
an important role in our following recovery. We can also determine whether
b = (b0, . . . , b7) is a favorable case or not through the calculated τ1 and τ2.
In Bauer et al.’s method, there is only one kind of favorable case in the form
1, · · · , 1, 0, · · · , 0, 1, · · · , 1. In this case, we use Bauer et al.’s method to calculate
τ1 and τ2, which records the positions where 1 goes to 0 and 0 changes to 1,
respectively. Through experiments, we find that there is another favorable case
in the form 0, 0, · · · , 0, 1, · · · , 1, 0, · · · , 0. In this case, we use τ1 and τ2 to record
the positions where 0 goes to 1 and 1 changes to 0, respectively. The precise
definition of τ1 and τ2 can be found in Algorithm 2. If the output of Algorithm 2
is NULL, there is no favorable case, otherwise we can find a favorable case.

In Bauer et al.’s method, they assume that the value of τ = τ1 + τ2 is either
always even or always odd. But our experiments show that the value of τ can be
either even or odd, and this is also the reason why Bauer et al.’s method cannot
recover the coefficients completely. In order to find the relationship between τ
and each coefficient sA[i] ∈ [−6, 4], we generate 1000 secret keys, and record the
possible values of τ with different sA[i]. The results of the experiments are listed
in Table 2.

Then, in Algorithm 3 we propose how to recover all the coefficients in S2. The
main idea is that we repeat the processes in Algorithm 2 until we find enough
favorable cases. Of course if we can find more favorable cases, then the recovery
of coefficients can be more exact, but this needs more time and more queries.
To take a balance, in Algorithm 3, we try to get 50 favorable cases. Next, we
can use the data collected in these 50 favorable cases to recover the coefficients
in S2.

We use odd-number and even-number to record the times the odd and
even τ occurs, and the corresponding values of τ are stored in odd τ and
even τ , respectively. We can see from Table 2 that if the coefficient sA[i]
is odd, then odd-number is larger than the even-number, and vice versa.
Therefore, if even-number is larger than the odd-number, the corresponding

A Key Mismatch Attack on NewHope 511

Algorithm 2. Find-τ
Input: b
Output: τ

1 set τ = NULL, τ1 = NULL, τ2 = NULL ;
2 if b[0] = 1 then
3 for i := 1 to 6 do
4 if (b[i − 1] = 1) and (b[i] = 0) then
5 τ1 = i − 4;
6 if (b[i] = 0) and (b[i + 1] = 1) then
7 τ2 = i − 4;

8 end

9 else if b[0] = 0 then
10 for i := 1 to 6 do
11 if (b[i − 1] = 0) and (b[i] = 1) then
12 τ1 = i − 4;
13 if (b[i] = 1) and (b[i + 1] = 0) then
14 τ2 = i − 4;

15 end

16 τ = τ1 + τ2;
17 if τ > 0 and b[0] = 1 then
18 τ = τ − 8;
19 else if τ <= 0 and b[0] = 1 then
20 τ = τ + 8;
21 if τ is odd and τ1 �= NULL and τ2 �= NULL then
22 odd number = odd number +1;
23 odd τ = τ ;

24 else if τ is even and τ1 �= NULL and τ2 �= NULL then
25 even number = even number +1;
26 even τ = τ ;

27 else
28 τ = NULL;
29 end
30 Return τ ;

coefficient sA[i] is calculated as sA[i] = even τ . Otherwise, we calculate it as
sA[i] = odd τ .

Since we only get 50 favorable cases, there may exist the case one coefficient
is recovered to be another coefficient. For example when sA[i] = 3, the corre-
sponding odd-number and even-number are close. So if the recovered coefficient
is 3, we need to eliminate the case that we recover 4 to be 3. In order to solve
this problem, in our experiments we also record the possible values of τ for each
coefficient between −6 and 4. As shown in Table 3, the corresponding τs can
help us decide which one is correct. For example, when sA[i] = 4, the possible
values of τ are 3 and 4, but if sA[i] = 3, the corresponding values of τ are 2 and
3. Since 3 is odd, the recovered 3 must be calculated by odd τ . We can know
that odd τ = 3, and odd-number must be bigger than the even-number. We can

512 Y. Qin et al.

Table 2. The relationship between τ and sA[i] ∈ [−6, 4]

sA[i] Odd τ Even τ Favorable

cases

sA[i] Odd τ Even τ Favorable

cases

sA[i] Odd τ Even τ Favorable

cases

−6 0 2048 2048 −5 1408 0 1408 −4 0 1952 1952

136 1784 1920 1160 296 1456 152 1792 1944

−3 1408 0 1408 −2 0 2080 2080 −1 2176 0 2176

1312 232 1544 240 1824 2064 1808 320 2128

0 0 2080 2080 1 1472 0 1472 2 0 2048 2048

400 1656 2056 1344 512 1856 504 1328 1832

3 1408 0 1408 4 0 2048 2048

848 808 1656 520 1264 1784

Algorithm 3. Find-s-in-S2

Output: s (the coefficients in S2)
1 for k := 0 to 255 do

2 Set PB = � q
8
�x−k;

3 for j := 0 to 3 do
4 Set odd number = 0, even number = 0, count = 0;
5 while count < 50 do
6 (l0, l1, l2, l3) ← [−4, 3]4; b[8] ← 0;
7 for i := −4 to 3 do

8 lj = i; c̄ =
∑3

h=0((lh + 4) mod 8)x256∗h;
b[i] = Oracle(PB , c̄, SkB);

9 end
10 t =Find-τ(b);
11 if t �= NULL then
12 count = count +1

13 end
14 if odd number >= even number then
15 temps = odd τ ;
16 test(temps);

17 else if even number > odd number then
18 temps = even τ ;
19 test(temps);

20 end

21 end

22 end
23 s[k + j ∗ 256] = temps;
24 Return s

see that in the two cases the odd τs are the same, but the even τs are differ-
ent, so we can distinguish them according to the value of even τ . Specifically,
if even τ = 2 we can determine that the recovered coefficient is correct. But if
even τ = 4, we make sure that the recovered coefficient is wrong, which should
be 4. Similarly we can correct most of the errors using this method, and finally
with a high probability we can recover all the coefficients in S2.

A Key Mismatch Attack on NewHope 513

Table 3. sA[i] and the possible τs

sA[i] 4 3 2 1 0 −1 −2 −3 −4 −5 −6

τ 3 4 2 3 1 2 0 1 0 1 −2 −1 −3 −2 −4 −3 −5 −4 −6 −5 −7 −6

Table 4. The distribution of the coefficients in a quadruplet

S1 = {−8, −7, . . . , −1, 0, 1, . . . , 7, 8}
S2 = {−6, −5, . . . , 2, 3, 4} S1–S2 = {−8, −7, 5, 6, 7, 8}
4 coefficients in S1

100%

4 coefficients in S2 Others

95.84% 4.16%

3 coefficients in S2 2 coefficients in S2

1 coefficient in S1–S2 2 coefficients in S1–S2

98.50% 1.47%

1 coefficient in S2 0 coefficient in S2

3 coefficients in S1–S2 4 coefficients in S1–S2

0.03% 0%

3.3 The Complete Attack

After recovering all the coefficients that belongs to S2, the remaining problem is
how to recover the coefficients in S1–S2. In Table 4, we have analyzed and listed
the distribution of the coefficients in a quadruplet through our experiments. We
have generated 106 keys following the centered binomial distribution, and then
taken an average. We can see that all the coefficients are in set S1, and the
probability that all the coefficients of the quadruplet are in S2 is 95.84%. In the
remaining 4.16% quadruplets, there is at least 1 coefficient that belongs to S1–S2.
Our key observation is that, with 98.50% probability there is only 1 coefficient
that belongs to S1–S2, while the other 3 coefficients are in S2 in the remaining
quadruplets.

Without loss of generality, we assume that sA[i+256], sA[i+512] and sA[i+
768] are in S2 and sA[i] is in S1–S2. Using our improved method in Algorithms 2
and 3, we can recover sA[i+256], sA[i+512] and sA[i+768]. Then, our strategy
is that if we can compute the sum of these four coefficients, we can recover sA[i]
by eliminating sA[i + 256], sA[i + 512] and sA[i + 768] from the sum. In the
following, we describe the complete attack.

To launch the attack, the adversary A will deliberately select the parameters
sB and eB to calculate the public key PB , as well as the parameter ν′

B to
calculate c̄. For each integer i in 0, 1, · · · , 255, if A wants to recover sA[i], sA[i+
256], sA[i + 512], sA[i + 768], he will choose sB and e′

B to be 0 in Rq, and an eB

514 Y. Qin et al.

of which coefficients are all zero, except that eB [512] = h1. Here h1 increases
from 0 to q − 1. Instead of randomly selecting νB to calculate ν′

B, the adversary
A will directly set all coefficients of ν′

B as 0 except that ν′
B [i] = 1.

As A sets sB = 0, correspondingly now the public key is PB = asB + eB =
eB . According to the definition of the Encode function, we have

k = Encode(ν′
B) =

⌊q

2

⌋
xi +

⌊q

2

⌋
xi+256 +

⌊q

2

⌋
xi+512 +

⌊q

2

⌋
xi+768,

and the resulted c = PAsB + e′
B + k = k.

Then, since c̄[i] = �(c[i] · q)/8� mod 8, if c[i] =
⌊
q
2

⌋
, then c̄[i] = 4, according

to the above analysis and the definition of the Compress function

c̄ = Compress(c) = Compress(k) = 4xi + 4xi+256 + 4xi+512 + 4xi+768.

After that A will send (PB , c̄, SkB
) to O, who will then calculate

c′ =Decompress(c̄) =
⌊q

2

⌉
xi +

⌊q

2

⌉
xi+256 +

⌊q

2

⌉
xi+512 +

⌊q

2

⌉
xi+768, (5)

as well as
k′ = c′ − PBsA = c′ − eBsA. (6)

Finally SkA
= SHA3 − 256(Decode(k′)).

In the following, we propose our method to recover the exact value of sA[i]
in an efficient way.

The adversary A chooses the parameters as described above, and the com-
plete attack consists of four steps.

Step 1: In this step, the adversary A uses our improved method in Algorithm 2
to recover all the coefficients belonging to S2.

Step 2: In this step, the adversary A wants to decide m1 = |sA[i]| + |sA[i +
256]| + |sA[i + 512]| + |sA[i + 768]|. First, A sets all the coefficients of eB as 0,
except eB [512] = h1. From Eqs. 5, 6 and � q

2� = 6145, we have

k′ = c′ − eBsA
= [6145 − (−sA[i + 512]eB [512])]xi + [6145 − (−sA[i + 768]eB [512])]xi+256

+ (6145 − sA[i]eB [512])xi+512 + (6145 − sA[i + 256]eB [512])xi+768

= [6145 − (−sA[i + 512]h1)]xi + [6145 − (−sA[i + 768]h1)]xi+256

+ (6145 − sA[i]h1)xi+512 + (6145 − sA[i + 256]h1)xi+768.

The last equation holds since x1024 = −1 in Rq. So, for i = 0, 1, . . . , 255, accord-
ing to the Decode function we have

m =
3∑

j=0

|k′[i + 256j] − 6145|

= |1 + sA[i + 512]h1| + |1 + sA[i + 768]h1| + |1 − sA[i]h1| + |1 − sA[i + 256]h1|
= 1 + sA[i + 512]h1 + 1 + sA[i + 768]h1 + sA[i]h1 − 1 + sA[i + 256]h1 − 1
= (sA[i] + sA[i + 256] + sA[i + 512] + sA[i + 768])h1.

A Key Mismatch Attack on NewHope 515

Algorithm 4. Find-m1

Input: i
Output: m1

1 for h1 := 0 to q − 1 do
2 eB = 0, set eB [512] = h1; PB = eB ;
3 ν′

B = 0, set ν′
B [i] = 1 ;

4 k ←Encode(ν′
B); c̄ = Compress(k);

5 SkB ←− SHA3-256(ν′
B); v = Oracle(PB , c̄, SkB) ;

6 if v = 1 then
7 m1 = �(q + 2)/h1	;
8 break;

9 else
10 continue;

11 end
12 Return m1

Algorithm 5. Full-recovery
Output: s′ (All the coefficients in S1)

1 s′ ← Find-s-in-S2();
2 for i := 0 to 255 do
3 for j := 0 to 3 do
4 if s′[i + 256 ∗ j] < −6 or s′[i + 256 ∗ j] > 4 then
5 break;

6 end
7 m1 = Find-m1(i);
8 for k := 0 to 3 do
9 if k �= j then

10 m1 = m1 - |s′[i + 256 ∗ k]|;
11 end
12 if s′[i + 256 ∗ j] < 0 then
13 s′[i + 256 ∗ j] = −m1;
14 else
15 s′[i + 256 ∗ j] = m1;

16 end
17 Return s′

Then the adversary let h1 change from 1 to q, at the beginning m < q,
Decode(k′[i]) = 1 and the oracle O will output 1. As h1 increases, correspond-
ingly m also increases until it reach the point that m ≥ q. Now the output of O
becomes 0. By recording the value of h1 when the output of O changes, we can
know that here m roughly equals q, and A can calculate m1 = � q

h1
� by setting

m = m1h1 = q.
It should be noted that with m1 = |sA[i+256]|+ |sA[i+512]|+ |sA[i+768]|,

if A can determine that sA[i] = 0, then A will skip Step 3.
The main processes of Step 2 is shown in Algorithm 4.

516 Y. Qin et al.

Step 3: In this step, the adversary A tries to determine the sign of sA[i]. In Step
1, if sA[i] is outside [−6, 4], then sA[i] will be recovered to an incorrect value,
but its sign is correct. So, we can directly determine the sign of sA[i] according
to this. There are only two special cases when sA[i] = 8 or sA[i] = −8 then the
correct sign of sA[i] is opposite to that recovered in Step 1.

Step 4: The adversary A verifies whether the private key he recovered is correct
by calculating the distribution of PA−asA. Since a and PA are public, if A gets
the correct private key, then the distribution is the same as that of eA, which
should follow the centered binomial distribution.

4 Experiments

In this section, we show the efficiency of our proposed attack. All our implemen-
tations are done on a MacBook Air, which is equipped with an Intel Core i7
processor at 2.7 GHz and an 8 GB RAM.

First of all, we want to show the advantage of our proposed Algorithm 2
in recovering coefficients belonging to S2 = {−6,−5, . . . , 2, 3, 4}. To make our
experiment more convincing, we use the code the designers of NewHope submit-
ting to the NIST [2] to generate 1000 secret keys. Then we implement Bauer
et al.’s method to recover the coefficients belonging to S2. Unfortunately, using
Bauer et al.’s method we cannot even recover all the coefficients belonging to
S2 in every secret key. In other words, in every secret key with 1024 coefficients,
there are at least 262 coefficients in S2 that cannot be recovered.

On the other side, when we use our method as shown in Algorithm 2, in 992
keys we can recover all the coefficients belonging to S2, and in the remaining 8
keys there are at most 2 coefficients that cannot be recovered. Then, by using
Algorithms 2 and 4 together we can recover all the coefficients belong to S1 =
{−8,−7, . . . , 6, 7, 8}. In our experiment, we also generate 1, 000 secret keys. The
result is, in 969 keys we recover all the coefficients in S1. Thus the probability
of successfully recovering the whole secret key is 96.9%.

In our proposed method, first we implement our proposed Algorithms 2 and
3 to recover the coefficients belonging to S2. Then we will use Algorithm 4 to
calculate m1 = |sA[i]| + |sA[i + 256]| + |sA[i + 512]| + |sA[i + 768]|, and get the
absolute value of the coefficient that belonging to S1–S2. For example, if we do
not know sA[i], we can have |sA[i]| = m1−|sA[i+256]|−|sA[i+512]|−|sA[i+768]|.
Finally, we will follow the Step 3 to decide the sign of sA[i] and verify whether
the recovered is correct using the method in Step 4.

From the above experiments, we also find that in each secret key with
1024 coefficients, the most possible number of coefficients that belongs S1–S2

is between 7 and 15. In the following, we set T the number of coefficients in
S1–S2.

A Key Mismatch Attack on NewHope 517

Fig. 1. Comparison of queries between different T

Table 5. Queries needed in recovering coefficients in S2 and S1–S2

T 7 8 9 10 11 12 13 14 15

Queries S2 879,246 879,458 879,829 879,396 881,418 879,181 878,118 883,281 882,896

Queries S1–S2 1,764 1,795 2,269 2,094 2,319 3,167 2,583 2,988 3,346

Total queries 881,010 881,254 882,098 881,490 883,738 882,348 880,701 886,269 886,242

In Fig. 1, we report the average number of queries for recovering coefficients
in S2 and S1–S2 when T ranges from 7 to 15. The specific queries is given in
Table 5. We can see that the number of queries used in recovering coefficients
in S2 is almost 365 times more than the number of queries required to recover
the coefficients in S1–S2. The reason is when recovering a coefficient in S2, we
need to find 50 favorable cases, which need a large number of queries. We can
also observe that as T increases from 7 to 15, the average number of queries
for recovering coefficients in S2 is between 878, 118 and 883, 281. It does not
increase a lot as T increases. This is because when we recover coefficients in S2,
we need to randomly generate (l0, l1, l2, l3) to get the favorable cases. Since the
number of favorable cases is fixed at 50, the number of queries is almost the same.
On average the number of needed queries is 879, 725. On the other side, as T
increases, the number of queries for recovering coefficients in S1–S2 will increase.
When we recover a coefficient in S1–S2, we need to use the Algorithm 4. Larger T
means that there are more coefficients that cannot be recovered by Algorithm 2,
and more queries are needed.

When T increases from 7 to 15, the average time for recovering coefficients
in S2 and S1–S2 is shown in Fig. 2, and the specific data is given in Table 6.
We can see that the time required to recover coefficients in S2 occupies 99% of
the total time, since a lot of time is spent on looking for the 50 favorable cases
when we recover the coefficient in S2. We can also observe that as T increases,

518 Y. Qin et al.

Fig. 2. The average time (ms) between different T

Table 6. Average time (ms) needed in recovering coefficients in S2 and S1–S2

T 7 8 9 10 11 12 13 14 15

Time S2 137.08 137.27 137.25 137.09 137.45 137.29 137.08 137.99 137.04

Time S1–S2 0.16 0.16 0.20 0.19 0.20 0.28 0.23 0.22 0.28

Total Time 137.24 137.43 137.45 137.29 137.66 137.58 137.31 138.21 137.33

the average time for recovering coefficients in S2 is between 136 ms and 138 ms,
which is almost the same due to our above analysis.

Compared with using an exhaustive research to find coefficients in S1–S2,
our proposed method is much more efficient. In the exhaustive search experi-
ment the best strategy is to search each element in the order {5, 6, 7,−7, 8,−8}.
Then, we can verify whether the recovered private key is correct by calculating
the distribution of e′

A = PA − asA. If we get a correct private key, then the
distribution of e′

A is the same as that of eA, which follows the centered binomial
distribution. As an example, when T = 12, if we use an exhaustive search the
required time is about 1.91 h. From this perspective, our proposed attack is very
efficient.

5 Conclusion

In this paper, we have analyzed the security of NewHope when the public key
is reused. We developed Bauer et al.’s method and proposed a complete and
efficient key mismatch attack on NewHope. Since these kinds of lattice-based
key exchange schemes are widely believed to replace the DH key exchange in
the quantum age, their resistance to misuse situations are of high importance.
It is worth noting that the NewHope KEM submitted to NIST is CPA secure,

A Key Mismatch Attack on NewHope 519

which is then transformed into CCA-secure using Fujisaki-Okamoto transforma-
tion. Therefore, the proposed key mismatch attack does not harm the NewHope
designers’ security goals. But our results show that when designers who b ase
their approaches on the lattice-based key exchange should be careful to avoid
the public key reuse, which is common in the design with DH key exchange
approaches.

Acknowledgments. The work presented in this paper was supported in part by the
National Natural Science Foundation of China under Grant no. 61672029. Jintai Ding
would like to thank the partial support of USA Air Force and NSF.

References

1. Alagic, G., et al.: Status report on the first round of the NIST post-quantum cryp-
tography standardization process. US Department of Commerce, National Institute
of Standards and Technology (2019). https://nvlpubs.nist.gov/nistpubs/ir/2019/
NIST.IR.8240.pdf. Accessed 26 Feb 2019

2. Alkim, E., et al.: Newhope: algorithm specification and supporting documenta-
tion. Submission to the NIST post-quantum cryptography standardization project
(2017). https://newhopecrypto.org/data/NewHope 2018 12 02.pdf. Accessed 27
Feb 2019

3. Alkim, E., Ducas, L., Pöppelmann, T., Schwabe, P.: Newhope without reconcilia-
tion. IACR Cryptology ePrint Archive 2016, 1157 (2016). https://www.cryptojedi.
org/papers/newhopesimple-20161217.pdf. Accessed 17 Feb 2019

4. Alkim, E., Ducas, L., Pöppelmann, T., Schwabe, P.: Post-quantum key exchangea
new hope. In: 25th USENIX Security Symposium (USENIX Security 2016), pp.
327–343 (2016)

5. Bauer, A., Gilbert, H., Renault, G., Rossi, M.: Assessment of the key-reuse
resilience of NewHope. In: Matsui, M. (ed.) CT-RSA 2019. LNCS, vol. 11405, pp.
272–292. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-12612-4 14

6. Bos, J.W., Costello, C., Naehrig, M., Stebila, D.: Post-quantum key exchange for
the TLS protocol from the ring learning with errors problem. In: 2015 IEEE Sym-
posium on Security and Privacy, pp. 553–570. IEEE (2015)

7. Ding, J., Alsayigh, S., Saraswathy, R., Fluhrer, S., Lin, X.: Leakage of signal func-
tion with reused keys in RLWE key exchange. In: 2017 IEEE International Con-
ference on Communications (ICC), pp. 1–6. IEEE (2017)

8. Ding, J., Cheng, C., Qin, Y.: A simple key reuse attack on LWE and ring LWE
encryption schemes as key encapsulation mechanisms (KEMS). Cryptology ePrint
Archive, Report 2019/271 (2019). https://eprint.iacr.org/2019/271. Accessed 21
Apr 2019

9. Ding, J., Fluhrer, S., Rv, S.: Complete attack on RLWE key exchange with reused
keys, without signal leakage. In: Susilo, W., Yang, G. (eds.) ACISP 2018. LNCS,
vol. 10946, pp. 467–486. Springer, Cham (2018). https://doi.org/10.1007/978-3-
319-93638-3 27

10. Ding, J., Xie, X., Lin, X.: A simple provably secure key exchange scheme based
on the learning with errors problem. IACR Cryptology EPrint Archive 2012, 688
(2012). https://eprint.iacr.org/2012/688.pdf. Accessed 26 Feb 2019

https://nvlpubs.nist.gov/nistpubs/ir/2019/NIST.IR.8240.pdf
https://nvlpubs.nist.gov/nistpubs/ir/2019/NIST.IR.8240.pdf
https://newhopecrypto.org/data/NewHope_2018_12_02.pdf
https://www.cryptojedi.org/papers/newhopesimple-20161217.pdf
https://www.cryptojedi.org/papers/newhopesimple-20161217.pdf
https://doi.org/10.1007/978-3-030-12612-4_14
https://eprint.iacr.org/2019/271
https://doi.org/10.1007/978-3-319-93638-3_27
https://doi.org/10.1007/978-3-319-93638-3_27
https://eprint.iacr.org/2012/688.pdf

520 Y. Qin et al.

11. Fluhrer, S.R.: Cryptanalysis of ring-LWE based key exchange with key share reuse.
IACR Cryptology ePrint Archive 2016, 85 (2016). http://eprint.iacr.org/2016/
085. Accessed 18 Feb 2019

12. Gao, X., Ding, J., Li, L., Liu, J.: Practical randomized rlwe-based key exchange
against signal leakage attack. IEEE Trans. Comput. 67(11), 1584–1593 (2018)

13. Lindner, R., Peikert, C.: Better key sizes (and attacks) for LWE-based encryp-
tion. In: Kiayias, A. (ed.) CT-RSA 2011. LNCS, vol. 6558, pp. 319–339. Springer,
Heidelberg (2011). https://doi.org/10.1007/978-3-642-19074-2 21

14. Liu, C., Zheng, Z., Zou, G.: Key reuse attack on newhope key exchange protocol.
In: Lee, K. (ed.) ICISC 2018. LNCS, vol. 11396, pp. 163–176. Springer, Cham
(2019). https://doi.org/10.1007/978-3-030-12146-4 11

15. Lyubashevsky, V., Peikert, C., Regev, O.: On ideal lattices and learning with errors
over rings. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 1–23.
Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-13190-5 1

16. Peikert, C.: Lattice cryptography for the internet. In: Mosca, M. (ed.) PQCrypto
2014. LNCS, vol. 8772, pp. 197–219. Springer, Cham (2014). https://doi.org/10.
1007/978-3-319-11659-4 12

17. Regev, O.: On lattices, learning with errors, random linear codes, and cryptogra-
phy. J. ACM (JACM) 56(6), 34:1–40 (2009)

18. Rescorla, E.: The transport layer security (TLS) protocol version 1.3. Technical
report (2018). http://www.rfc-editor.org/info/rfc8446. Accessed 26 Feb 2019

19. Zhang, J., Zhang, Z., Ding, J., Snook, M., Dagdelen, Ö.: Authenticated key
exchange from ideal lattices. In: Oswald, E., Fischlin, M. (eds.) EUROCRYPT
2015. LNCS, vol. 9057, pp. 719–751. Springer, Heidelberg (2015). https://doi.org/
10.1007/978-3-662-46803-6 24

http://eprint.iacr.org/2016/085
http://eprint.iacr.org/2016/085
https://doi.org/10.1007/978-3-642-19074-2_21
https://doi.org/10.1007/978-3-030-12146-4_11
https://doi.org/10.1007/978-3-642-13190-5_1
https://doi.org/10.1007/978-3-319-11659-4_12
https://doi.org/10.1007/978-3-319-11659-4_12
http://www.rfc-editor.org/info/rfc8446
https://doi.org/10.1007/978-3-662-46803-6_24
https://doi.org/10.1007/978-3-662-46803-6_24

	A Complete and Optimized Key Mismatch Attack on NIST Candidate NewHope
	1 Introduction
	2 The Ring-LWE Problem and NewHope KEM
	3 The Proposed Key Mismatch Attack
	3.1 Bauer et al.'s Method
	3.2 Our Improved Method
	3.3 The Complete Attack

	4 Experiments
	5 Conclusion
	References

