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Abstract
The concrete efficiency of secure computation has been the focus

of many recent works. In this work, we present concretely-efficient

protocols for secure 3-party computation (3PC) over a ring of inte-

gers modulo 2
ℓ
tolerating one corruption, both with semi-honest

andmalicious security. Owing to the fact that computation over ring

emulates computation over the real-world system architectures,

secure computation over ring has gained momentum of late.

Cast in the offline-online paradigm, our constructions present

the most efficient online phase in concrete terms. In the semi-honest

setting, our protocol requires communication of 2 ring elements per

multiplication gate during the online phase, attaining a per-party
cost of less than one element. This is achieved for the first time in

the regime of 3PC. In the malicious setting, our protocol requires
communication of 4 elements per multiplication gate during the

online phase, beating the state-of-the-art protocol by 5 elements.

Realized with both the security notions of selective abort and fair-

ness, the malicious protocol with fairness involves slightly more

communication than its counterpart with abort security for the

output gates alone.
We apply our techniques from 3PC in the regime of secure server-

aided machine-learning (ML) inference for a range of prediction

functions– linear regression, linear SVM regression, logistic re-

gression, and linear SVM classification. Our setting considers a

model-owner with trained model parameters and a client with a

query, with the latter willing to learn the prediction of her query

based on the model parameters of the former. The inputs and com-

putation are outsourced to a set of three non-colluding servers. Our

constructions catering to both semi-honest and the malicious world,

invariably perform better than the existing constructions.

1 INTRODUCTION
Secure Multi-Party Computation (MPC) [12, 38, 69], the holy grail

of secure distributed computing, enables a set ofnmutually distrust-

ing parties to perform joint computation on their private inputs,
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in a way that no coalition of t parties can learn more information

than the output (privacy) or affect the true output of the compu-

tation (correctness). While MPC, in general, has been a subject

of extensive research, the area of MPC with a small number of

parties in the honest majority setting [4, 18, 20, 35, 56] has drawn
popularity of late mainly due to its efficiency and simplicity. Fur-

thermore, most real-time applications involve a small number of

parties. Applications such as statistical and financial data analy-

sis [16], email-filtering [49], distributed credential encryption [56],

Danish sugar beet auction [17] involve 3 parties. Well-known MPC

frameworks such as VIFF [37], Sharemind [15] have been explored

with 3 parties. Recent advances in secure machine learning (ML)

based on MPC have shown applications with a small number of

parties [54, 55, 57, 64, 68]. MPCwith a small number of parties helps

solve MPC over large population as well via server-aided computa-

tion, where a small number of servers jointly hold the input data

of the large population and run an MPC protocol evaluating the

desired function.

With motivations galore, the specific problem of three-party

computation (3PC) tolerating one corruption has received phe-

nomenal attention of late [2, 4, 18, 21, 35, 41, 52, 56, 60, 60, 63].

Leveraging honest majority, this setting allows to attain stronger

security goals such as fairness (corrupt party receives the output

only if all honest parties receive output) which are otherwise im-

possible with dishonest-majority [23]. In this work, we revisit the

concrete efficiency of 3PC and to be specific, the efficiency of the

input-dependent computation.

The two typical lines of constructions that the regime of MPC

over small population offer are– high-throughput [2–4, 21, 35, 60],

and low-latency [18, 20, 39, 41, 56, 63] protocols. Relying on secret

sharing mechanism, the former category requires low communi-

cation overhead (bandwidth) and simple computations. Catering

to low-latency networks, this category takes a number of com-

munication rounds proportional to the multiplicative depth of the

circuit representing the function to be computed. On the other

hand, the other category, relying on garbled circuits, requires a

constant number of communication rounds and serve better in

high-latency networks such as the Internet. The focus of this work

is high-throughput 3PC.

Almost all high-throughput protocols evaluate a circuit that

represents the function f to be computed in a secret-shared fash-

ion. Informally, the parties jointly maintain the invariant that for



each wire in the circuit, the exact value over that wire is avail-

able in a secret-shared fashion among the parties, in a way that

the adversary learns no information about the exact value from

the shares of the corrupt parties. Upon completion of the circuit

evaluation, the parties jointly reconstruct the secret-shared func-

tion output. Intuitively, the security holds as no intermediate value

is revealed during the computation. The deployed secret-sharing

schemes are typically linear, ensuring non-interactive evaluation

of the linear gates. The communication is required only for the

non-linear (i.e.multiplication) gates in the circuit. The focus then

turns on improving the communication overhead per multiplica-

tion gate. Recent literature has seen a range of customized linear

secret-sharing schemes over a small number of parties, boosting

the performance for multiplication gate spectacularly [2, 35, 39].

In an interesting direction towards improving efficiency, MPC

protocols are suggested to be cast in two phases– an offline phase

that performs input-independent computation and an online phase

that performs fast input-dependent computation utilizing the offline

computation [6]. The offline phase, run in advance, generates ‘raw

material’ in a relatively expensive way to yield a blazing-fast on-

line phase. This is very useful in a scenario where a set of parties

agreed to perform a specific computation repetitively over a period

of time. The parties can batch together the offline computations

and generate a large volume of offline data to support the execution

of multiple online phases. Popularly referred as offline-online para-

digm [6], there are constructions abound that show effectiveness

of this paradigm both in the theoretical [6–9, 13, 22] and practical

[5, 24, 28–30, 44–46, 64] regime.

In yet another direction to improve practical efficiency, secure

computation for arithmetic circuits over rings has gained momen-

tum of late, while traditionally fields have been the default choice.

Computation over rings models computation in the real-life com-

puter architectures such as computation over CPU words of size

32 or 64 bits. In 3PC setting, the work of [15] supports arithmetic

circuits over arbitrary ringswith passive security, while [2] offers ac-

tive security. The works of [29, 33] improve online communication

over arbitrary rings with active security, yet fall back to computa-

tion over large prime-order fields in the offline phase. This forces

the developer to depend on external libraries for fields (which are

10×-100× slower) compared to the real-world system architectures

based on 32-bit and 64-bit rings.

1.1 Our Contribution
In this work, we follow the offline-online paradigm and propose

3PC constructions over a ring Z
2
ℓ (that include Boolean ring Z

2
1 )

with the most efficient online phase in concrete terms. Though the

focus lies on the online phase, the cost of offline phase is respected

and is kept in check. We present a range of constructions satisfying

semi-honest and malicious security. We apply our techniques for se-

cure prediction for a range of prediction functions in the outsourced

setting and build a number of constructions tolerating semi-honest

and malicious adversary. A common feature that all our construc-

tions exude is that function-dependent communication is needed

amongst fewer than three pairs in the online phase, yielding better

online performance. We elaborate on our contributions.

Secure 3PC. Our 3PC protocol with semi-honest security requires

communication of two elements per multiplication during the on-

line phase. The per-party online cost of our protocol is less than one

element per multiplication, a property achieved for the first time in

the 3PC setting. This improvement comes from the use of a form

of linear secret-sharing scheme inspired from the work of [39] that

allows offloading the task of one of the parties in the offline phase

and requires only two parties to talk to each other in the online

phase. This essentially implies that the evaluation of multiplication

gates in the online phase requires the presence of just two parties,

unlike the previous protocols [2, 4, 21, 35, 52] that insist all the

three parties be awake throughout the computation. One exception

is the case of Chameleon [64], where two parties perform the online

computation with the help of correlated randomness generated by

a semi-trusted party in the offline phase. Though the model looks

similar in the semi-honest setting, we achieve a stronger security

guarantee by allowing the third party to be maliciously corrupted.

Moreover, our multiplication protocol in the semi-honest setting

requires an online communication of 2 ring elements as opposed

to 4 of [64]. We achieve this 2× improvement while maintaining

the same offline cost (1 element) of [64].

For the malicious case, our protocol requires a total communica-

tion of four elements per multiplication during the online phase.

The state-of-the-art protocol over rings requires nine ring elements

per multiplication in the online phase. Lastly, we boost the security

of our malicious protocol to fairness without affecting its cost per

multiplication. The inflation inflicted is purely for the output gates

and to be specific for output reconstruction. The key contribution of

the fair protocol lies in constructing a fair reconstruction protocol

that ensures a corrupt party receives the output if and only if the

honest parties receive. The fair reconstruction does not resort to a

broadcast channel and instead rely on a new concept of ‘proof of

origin’ that tackles the confusion a sender can infuse in the absence

of broadcast channel by sending different messages to its fellow

parties over private channels.

In Table 1, we compare our work with the most relevant works.

The communication specifies the number of bits that needs to be

communicated per multiplication gate in the amortized sense.

Semi-honest Malicious

Ref. Offline Online Ref. Offline Online Fair?

[4] 0 3ℓ [2] 12ℓ 9ℓ ✗

This ℓ 2ℓ This 21ℓ 4ℓ ✓

Table 1: Concrete Comparison of our 3PC protocols

Secure ML Prediction. The growing influx of data makes ML a

promising applied science, touching human life like never before.

Its potential can be leveraged to advance areas such as medicine

[34], facial recognition [65], banking, recommendation services,

threat analysis, and authentication technologies. Many technology

giants such as Amazon, Microsoft, Google, Apple are offering cloud-

based ML services to their customers both in the form of training

platforms that train models on customer data and pre-trained mod-

els that can be used for inference, often referred as ‘ML as a Service

(MLaaS)’. However, these huge promises can only be unleashed



when rightful privacy concerns, due to ethical, legal or competitive

reasons, can be brought to control via privacy-preserving tech-

niques. This is when privacy-preserving techniques such as MPC

meets ML, with the former serving extensively in an effective way

both for secure training and prediction [27, 50, 53, 55, 57, 64, 68].

This has a huge impact on the efficiency

In this work, we target secure prediction where a model-owner

holding the model parameters enables a client to receive a predic-

tion result to its query as per themodel, respecting privacy concerns

of each other. Following the works of [54, 55, 57, 64, 68], we en-

vision a server-aided setting where the inputs and computation

are outsourced to a set of servers. We consider some of the widely

used ML algorithms, namely linear regression and linear support

vector machines (SVM) regression for regression task and logistic

regression and SVM classification for classification task [14, 32]. We

propose an efficient protocol for secure comparison that is an im-

portant building block for classification task. As emphasized below,

our technique allows attaining a constant round complexity for

classification tasks.

In Table 2, we compare our results with the best-known construc-

tion of ABY3 [55] that uses 3-server setting. As the main focus of

ABY3 is training, they develop an efficient technique for fixed-point

multiplication in shared fashion, tackling the overflow and accuracy

issues in the face of repeated multiplications. Such techniques can

be avoided for functions inducing circuit of multiplicative depth

one. Hence we compare with the version of ABY3 that skips this

and present below a consolidated comparison in terms of com-

munication. Following the works in the domain of server-aided

prediction, we only count the cost incurred by the servers to com-

pute the output in shared form from the inputs in shared form,

ignoring the cost for sharing the inputs and reconstructing the

output. ‘Reg’ denotes regression, ‘Class’ denotes classification and

‘Round’ denotes the number of online rounds. Here ℓ denotes the

size of the underlying ring Z
2
ℓ (in bits) and d denotes the number

of features. The values in Table 2 indicate that our protocol clearly

Ref. Param.

Semi-honest Malicious

Reg Class Reg Class

ABY3

Offline 0 0 12dℓ 12dℓ + 24ℓ

Online 3ℓ 9ℓ 9dℓ 9dℓ + 18ℓ

Round 1 log ℓ + 1 1 log ℓ + 1

This
Offline ℓ 5ℓκ 21dℓ ≈ 21dℓ + 5ℓκ + 2κ

Online 2ℓ ≈ ℓκ + 2ℓ 2dℓ + 2ℓ ≈ 2dℓ + ℓκ + 2ℓ

Round 1 3 1 3

Table 2: Concrete Comparison of Our ML Protocols

outperforms ABY3, in terms of online communication in all the

settings. In the semi-honest setting, this is achieved since we are

able to shift 33% of the overall communication to the offline phase.

In the malicious setting, online communication is further improved

because of our efficient dot-product protocol. Moreover, our con-

struction for secure comparison allows the classification protocols

to be round constant unlike ABY3 which requires log ℓ + 1 rounds.

Implementation. For 3PC, we implement our protocols over a

ring Z
2
32 and compare with the state-of-the-art protocols, namely

[4] in the semi-honest setting and [2] in the malicious setting. We

use latency (runtime) and online throughput as the parameters for

the comparison. The online throughput in LAN setting is computed

as the number of AES circuits computed per second in the online

phase. As an AES circuit requires more than a second in WAN

setting, we take a different measure which is the number of AND

gates per second. We observe that our protocols improve the online

throughput of the existing one by a factor of 1.05× to 1.51× over

various settings. For the WAN setting, this improvement translates

to computing additionalANDgates of the range 1.44 to 4.39millions

per second.

For secure prediction, we implement our work using MNIST [51]

dataset where d = 784 and with ℓ = 64 in both LAN and WAN set-

ting. We observe an improvement of 1.02× to 2.56× over ABY3 [55],

in terms of online throughput, over various settings for regression

algorithms. For classification algorithms, the improvement ranges

from 1.5× to 2.93×.

2 PRELIMINARIES AND DEFINITIONS
We consider a set of three parties P = {P0, P1, P2} that are con-
nected by pair-wise private and authentic channels in a synchro-

nous network. The function f to be evaluated is expressed as a

circuit ckt over an arithmetic ring Z
2
ℓ , consisting of 2-input addi-

tion and multiplication gates. The topology of the circuit is assumed

to be publicly known. The term D denotes the multiplicative depth

of the circuit, while I,O,A,M denote the number of input wires,

output wires, addition gates and multiplication gates respectively

in ckt. We use the notation wx to denote a wire w with value x
flowing through it. We use g = (wx ,wy ,wz ) to denote a gate in

the ckt with left input wire wx , right input wire wy and output

wire wz . In our protocols, we divide P into disjoint sets {P0} and
{P1, P2}, where P0 acts as a “distributor" to do the “pre-processing"

during the offline phase, which is utilized by the “evaluators" P1, P2
to evaluate ckt during the online phase. We use the superscripts

“s" and “m" to distinguish the protocols in the semi-honest and

malicious setting respectively. The protocols over boolean ring Z
2
1

can be obtained by replacing the arithmetic operations addition

(+) and multiplication (×) with XOR (⊕) and AND (·) respectively.

Below, we present the tools needed for our protocol.

2.1 Collision Resistant Hash
Consider a hash function family H = K × L → Y. The hash

function H is said to be collision resistant if for all probabilis-

tic polynomial-time adversaries A, given the description of Hk
where k ∈R K , there exists a negligible function negl() such that

Pr[(x1, x2) ← A(k) : (x1 , x2) ∧ Hk (x1) = Hk (x2)] ≤ negl(κ),
wherem = poly(κ) and x1, x2 ∈R {0, 1}m .

2.2 Shared Key Setup
To save communication between the parties, a one-time setup that

establishes pre-shared random keys for a pseudo-random function

(PRF) F is used. A similar setup has been used in the known proto-

cols in the 3PC setting [2, 35, 55]. Here F : 0, 1κ × 0, 1κ → X is a

secure PRF, with co-domain X being Z
2
ℓ . The set of keys are:



– One key shared between every pair– k01,k02,k12 for the parties
(P0, P1), (P0, P2), (P1, P2) respectively.

– One shared key amongst all– kP .

If parties P0, P1 wish to sample a random value r non-interactively,
they invoke Fk01 (id01) to obtain r , where id01 is a counter that the
parties update locally after every PRF invocation. The key used to

sample a value will be clear from the context (from the identities of

the pair that samples or from the fact that it is sampled by all) and

will be omitted. We model the key setup via a functionality Fsetup
that can be realized using any secure MPC protocol.

3 SHARING SEMANTICS
In this section, we explain two variants of secret sharing that are

used in this work. Both the variants operate over arithmetic (Z
2
ℓ )

and boolean (Z
2
1 ) rings.

[·]-sharing. A value v is said to be [·]-shared among parties P1, P2,
if the parties P1 and P2 respectively holds the values v1 and v2 such
that v = v1 + v2. We use [·]Pi to denote the [·]-share of party Pi for
i ∈ {1, 2}.

⟦·⟧-sharing. A value v is said to be ⟦·⟧-shared among parties

P0, P1 and P2, if

– there exists values λv,mv such that v = mv − λv.

– P0 holds λv,1 and λv,2.

– P1 and P2 hold (mv, λv,1) and (mv, λv,2) respectively.

We denote ⟦·⟧-share of the parties as ⟦v⟧P0 = (λv,1, λv,2), ⟦v⟧P1 =
(mv, λv,1) and ⟦v⟧P2 = (mv, λv,2). We use ⟦v⟧ = (mv, [λv]) to denote
the ⟦·⟧-share of v.

Linearity of the secret sharing schemes. Given the [·]-sharing of

x,y ∈ Z
2
ℓ and public constants c1, c2 ∈ Z2ℓ , parties can locally

compute [c1x + c2y]. To see this,

[c1x + c2y] = (c1x1 + c2y1, c1x2 + c2y2) = c1[x] + c2[y]

It is easy to see that the linearity trivially extends to ⟦·⟧-sharing
as well. That is, given the ⟦·⟧-sharing of x,y and public constants

c1, c2, parties can locally compute ⟦c1x + c2y⟧.
⟦c1x + c2y⟧ = (c1mx + c2my , c1[λx ] + c2[λy ])

= c1⟦x⟧ + c2⟦y⟧
The linearity property enables parties to locally perform the opera-

tions such as addition and multiplication with a public constant.

4 OUR 3PC PROTOCOL
We start with our 3PC protocol Πs

3pc that securely evaluates any

arithmetic circuit over Z
2
ℓ for ℓ ≥ 1, tolerating semi-honest adver-

saries.

4.1 3PC with semi-honest security
Our protocolΠs

3pc has three stages– input-sharing, circuit-evaluation,

and output-reconstruction. During input-sharing stage, each party

generates a random ⟦·⟧-sharing of its input. During the circuit-

evaluation stage, the parties evaluate ckt in a ⟦·⟧-shared fash-

ion. During the output-reconstruction stage, the parties recon-

struct the ⟦·⟧-shared circuit outputs. All the stages (except output-

reconstruction) can be cast in the offline and online phase, where

steps independent of the actual inputs can be executed in the of-

fline phase. At a high level, the [·]-sharing needed behind every

⟦·⟧-shared value in the online phase is precomputed, while the

⟦·⟧-sharing of values themselves are computed in the online phase.

We distinguish these steps as Offline and Online steps respectively.
While the Offline steps are executed only by the distributor P0, the
Online steps are executed only by the evaluators P1 and P2. We now

individually elaborate on each of the stages.

Input-sharing Stage. Protocol Πs
Sh(Pi , x) (Figure 1) allows party

Pi ∈ P, the designated party to give input x ∈ Z
2
ℓ to wire wx , to

⟦·⟧-share its input. In the offline step, parties locally sample λx ,1
and λx ,2 using their shared randomness such that parties P0 and
Pi learns the entire λx . In the online step, Pi computes mx using

λx and sends it to the evaluators.

Offline:

– If Pi = P0, parties P0, Pj for j ∈ {1, 2} locally sample a random

λx , j ∈ Z
2
ℓ .

– If Pi = P1, parties P0, P1 sample a random λx ,1 ∈ Z
2
ℓ while all the

parties in P sample a random λx ,2.
– If Pi = P2, parties P0, P2 sample a random λx ,2 ∈ Z

2
ℓ while all the

parties in P sample a random λx ,1.

Online: Pi sendsmx = x + λx to every Pj for j ∈ {1, 2} who then sets

⟦x⟧Pj = (mx , λx , j ).

Figure 1: Protocol Πs
Sh(Pi , x)

Circuit-evaluation Stage. Here parties evaluate each gate g in the

ckt in the topological order, where they maintain the invariant that

given inputs of g in ⟦·⟧-shared fashion, parties generate ⟦·⟧-sharing
for the output of g. If g is an addition gate (wx ,wy ,wz ), then this is

done locally using the linearity of ⟦·⟧-sharing, as per the protocol
ΠAdd (Figure 2).

Offline: P0, P1 set λz ,1 = λx ,1 + λy ,1, while P0, P2 set λz ,2 = λx ,2 +

λy ,2.

Online: P1 and P2 set mz = mx +my .

Figure 2: Protocol ΠAdd(wx ,wy ,wz )

If g = (wx ,wy ,wz ) is a multiplication gate, then given ⟦x⟧ =
(mx , [λx ]) and ⟦y⟧ = (my , [λy ]), the parties compute ⟦z⟧ by run-

ning the protocol Πs
Mul (Figure 3). During the offline phase, parties

generate λz for the gate output. In addition, P0 also [·]-shares the
product of the masks of the gate inputs (λxλy ), both of which are

known to P0 as a part of ⟦x⟧P0 and ⟦y⟧P0 . Online phase is exe-

cuted by {P1, P2}, where they locally generate [mz ], followed by

reconstructing mz .

Offline:

– P0 and P1 locally sample random λz ,1, γxy ,1 ∈ Z
2
ℓ , while P0 and P2

locally sample a random λz ,2 .



– P0 computes γxy = λx λy and sends γxy ,2 = γxy − γxy ,1 to P2.

Online:

– Pi for i ∈ {1, 2} locally computes [mz ]Pi = (i−1)mxmy−mx [λy ]Pi −
my [λx ]Pi + [λz ]Pi + [γxy ]Pi .

– P1, P2 mutually exchange their shares and reconstruct mz .

Figure 3: Protocol Πs
Mul(wx ,wy ,wz )

Output-reconstruction Stage. To reconstruct the output from

⟦y⟧, we observe that the missing share of party Pi , for i ∈ {0, 1, 2},
is held by the other two parties. Thus, one among the other two

parties can send the missing share to Pi , who then computes the

output as y = my − λy,1 − λy,2. We call the resultant protocol as

Πs
Rec.

We combine the aforementioned stages and present Πs
3pc in

Figure 4.

Pre-processing (Offline Phase):

– Input wires: For j = 1, . . . , I, corresponding to the circuit-input x j ,
parties execute the offline steps of the instance Πs

Sh(Pi , x j ).
– For each gate g in ckt in the topological order, execute the offline steps

of the instance Πs
Mul(wx j , wy j , wz j ) if g is the jth multiplication

gate where j ∈ {1, . . . ,M} or respectively the offline steps of the

instance ΠAdd(wx j , wy j , wz j ) if g is the jth addition gate where

j ∈ {1, . . . , A}.

Circuit Evaluation (Online Phase):

– Sharing Circuit-input Values: For j = 1, . . . , I, corresponding to the

circuit-input x j , party Pi executes the online steps of the instance
Πs
Sh(Pi , x j ), where Pi is the party designated to provide x j .

– Gate Evaluation: For each gate g in ckt in the topological order, P1, P2
execute the online steps of the instance Πs

Mul(wx j , wy j , wz j ) if g is
the jth multiplication gate where j ∈ {1, . . . ,M} or respectively
the online steps of the instance ΠAdd(wx j , wy j , wz j ) if g is the jth
addition gate where j ∈ {1, . . . , A}.

– Output Reconstruction: Let ⟦y1⟧, . . . , ⟦yO⟧ be the shared function

outputs, where for j = 1, . . . ,O, we have ⟦yj⟧P0 = [λyj ], ⟦yj⟧P1 =
(myj , [λyj ]P1 ) and ⟦yj⟧P2 = (myj , [λyj ]P2 ). The parties in P recon-

struct yj by executing the instance Πs
Rec(⟦yj⟧, P).

Figure 4: The semi-honest 3PC protocol Πs
3pc

Correctness and Security. We prove correctness and argue secu-

rity informally below.

Theorem 4.1 (Correctness). Protocol Πs
3pc is correct.

Proof. We claim that for every wire in ckt, the parties hold a

⟦·⟧-sharing of the wire value in Πs
3pc. The correctness then follows

from the fact that for the circuit-output wires, the corresponding

⟦·⟧-sharing is reconstructed correctly. The claim for circuit-input

wires follows from Πs
Sh, while for addition gates it follows from the

linearity of ⟦·⟧-sharing. Consider amultiplication gate (wx ,wy ,wz ),

evaluated as per Πs
Mul, where mx = x + λx , my = y + λy and

γxy = λxλy . We argue that mz as computed in online step of Πs
Mul

results in xy + λz and hence at the end of Πs
Mul, the parties hold⟦z⟧. This is because mz = mxmy − mxλy − myλx + λz + γxy =

(mx − λx )(my − λy ) + λz = xy + λz . The linearity of [·]-sharing

implies that P1 and P2 correctly compute a [·]-sharing of mz . �

The security is argued as follows. If P0 is corrupt, then the secu-

rity follows since P0 never sees the masked values over the inter-

mediate wires. If one of the evaluators is corrupt, then the security

holds since the corrupt evaluator knows only one of the shares of

the mask while the other share is picked at random. The detailed

security proof appear in Appendix B where we show our protocol

emulates the functionality F3pc for computing a 3-party function f
in the semi-honest setting as given in Figure 5.

F3pc interacts with the parties in P and the adversary S and is parame-

terized by a 3-ary function f , represented by a publicly known arithmetic

circuit ckt over Z
2
ℓ .

Upon receiving the input x1, . . . , xI from the respective parties in P,

where each xi ∈ Z
2
ℓ , the functionality computes (y1, . . . , yO) = f (x1,

. . . , xI) and sends y1, . . . , yO to the parties in P.

Figure 5: Functionality F3pc

Theorem 4.2. Πs
3pc requires one round with communication of

M ring elements during the offline phase. In the online phase, Πs
3pc

requires one round with communication of at most 2I ring elements in
the Input-sharing stage,D rounds with communication of 2M ring ele-
ments for circuit-evaluation stage and one round with communication
of 3O elements for the output-reconstruction stage.

Proof. During the offline phase, the [·]-shares of every λ are

generated non-interactively. For the multiplication gates, generat-

ing [·]-sharing ofγxy values requires one round and communication

ofM elements. During the online phase, generating the ⟦·⟧-sharing
of circuit-inputs requires one round. For each input of P0, generat-
ing the ⟦·⟧-sharing requires a communication of 2 elements, while

the same for P1/P2 requires one element. So, the Input-sharing

phase needs one round and communication of at most 2I elements.

Evaluating the addition gates is free, while the same for each multi-

plication gate requires one round and communication of 2 elements

to reconstruct the mz value. Hence the circuit-evaluation phase

needs D rounds and communication of 2M elements. Reconstruct-

ing the circuit-outputs require one round and communication of

3O elements. �

4.2 3PC with malicious security
In this section, we describe our maliciously secure 3PC protocol

Πm
3pc that securely evaluates any arithmetic circuit over Z

2
ℓ . Similar

to Πs
3pc, protocol Π

m
3pc has three stages– input-sharing, circuit-

evaluation and output-reconstruction.

Input Sharing and Output Reconstruction Stages. We begin with

the sharing and reconstruction protocols in the malicious setting,

which can readily replace Πs
Sh and Πs

Rec in Πm
3pc to help obtain

maliciously-secure input sharing and output reconstruction stage.

In the malicious setting, we need to ensure that the shares pos-

sessed by the honest parties are consistent. By consistent shares,

we mean that the common share possessed by the honest parties

should be the same. In protocol Πs
Sh, the λ-shares will be consis-

tent since they are generated non-interactively. But, if a corrupt P0
owns a value x and wants to create an inconsistent ⟦x⟧-sharing,



he can send two different versions of mx to P1 and P2. To detect

this inconsistency, P1, P2 exchange H(mx ) and abort if there is a
mismatch. The parties can exchange a combined hash for all the

wires where P0 is the owner and thus the cost reduces to two hash

values in the amortized sense. We call the resultant protocol as Πm
Sh.

For reconstruction, let ⟦y⟧ be a sharing to be reconstructedwhere
⟦y⟧P0 = (λy,1, λy,2), ⟦y⟧P1 = (m′y , λ′y,1) and ⟦y⟧P2 = (m′′y , λ′y,2)
(the distinction in the notation is done to differentiate the shares

held by each party). Protocol Πm
Rec(⟦y⟧,P) (Figure 6) enables each

honest party in P to either compute y or output ⊥.

Online:

– P0 and P2 send λy ,2 and H(λ′y ,2) respectively to P1.
– P0 and P1 send λy ,1 and H(λ′y ,1) respectively to P2.
– P1 and P2 send m′y and H(m′′y ) respectively to P0.

Pi for i ∈ {0, 1, 2} abort if the received values mismatch. Else Pi sets
y = my − λy ,1 − λy ,2.

Figure 6: Protocol Πm
Rec(⟦y⟧,P)

Now the input sharing and output reconstruction stages in Πm
3pc are

similar to those in Πs
3pc apart from protocols Πs

Sh and Πs
Rec being

replaced with Πm
Sh and Πm

Rec respectively.

Circuit Evaluation Stage. Protocol ΠAdd remains secure in the

malicious setting as well since it involves local operations only. The

challenge lies in turning the multiplication protocol Πs
Mul to one

that tolerates malicious behaviour. We start with the observation

that Πs
Mul suffers in two mutually-exclusive ways in the face of

one malicious corruption, each under different corruption scenario.

When P0 is corrupt, the only possible violation in Πs
Mul comes in

the form of sharing γxy , λxλy during the offline phase. When

P1 (or P2) is corrupt, the violation occurs when a wrong share of

mz is handed over to the fellow honest evaluator during the online

phase, causing reconstruction of a wrong mz . While the attacks

are quite distinct in nature following the asymmetric roles played

by the two sets {P0} and {P1, P2} in Πs
Mul, our novel construction

solves both issues at the same time via checking product-relation

of a single ⟦·⟧-shared triple. We start with the technique to tackle a

corrupt evaluator (P1 or P2) during the online phase. To identify if

an incorrect mz is reconstructed by an honest evaluator, say P1, he
can seek the help of P0 as follows: P1 can send mx ,my to P0, who
can then compute mz , as P0 already has knowledge of λx , λy and

λz from the offline phase and send back to P1. Note that sending
mx ,my in clear to P0 breaks privacy of the scheme and hence P1
sends padded version of the same to P0, namelym⋆

x = mx +δx and

m⋆
y = my +δy . P0 then computesm⋆

z = −m
⋆
x λy −m

⋆
y λx +λz+2γxy .

Note that,

m∗z = −m
⋆
x λy −m

⋆
y λx + λz + 2γxy

= −(mx + δx )λy − (my + δy )λx + λz + 2γxy

= (mz −mxmy ) − (δxλy + δyλx − γxy )

= (mz −mxmy ) − χ

Assuming that P0 knows χ = δxλy + δyλx − γxy , he can then

compute m∗z + χ and send it back to P1. Given the knowledge

of mx ,my , P1 can verify the correctness of mz . The case for a

honest P2 follows similarly. Now we describe how to enable P0

obtain χ = δxλy + δyλx − γxy . First of all, note that revealing

χ in clear to P0 leads to breach of privacy. Because, P0 knows

λx , λy ,γxy from the offline phase and he receivesmx +δx ,my +δy
during the online phase. With this information, P0 can deduce a

relation between mx and my . Hence, we tweak the value of χ
to δxλy + δyλx + δz − γxy incorporating a random mask δz . To
generate χ , in the offline phase, parties P1, P2 locally sample random

elements δx , δy , δz ∈ Z2ℓ , compute a [·]-sharing of χ and sends

the shares to P0. Let [χ ]Pi = χi for i ∈ {1, 2}. P0 locally adds the

[·]-shares and obtains χ . In the above step, a corrupt evaluator can

introduce an error while computing the [·]-share of χ , affecting
the correctness of the protocol. Thus, it is crucial to ensure the

correctness of χ computed by P0.
To summarize, we now have two issues to tackle in the offline

phase– (i) as we pointed out earlier, during the offline phase, a

corrupt P0 can incorrectly share γxy ; (ii) a corrupt evaluator can
send a wrong [·]-share of χ to P0. Towards tackling these, once P0
obtains the value χ , parties locally compute ⟦·⟧-shares of values
a = δx − λx , b = δy − λy and c = (δz + δxδy ) − χ as follows:

⟦a⟧P0 = (λx ,1, λx ,2), ⟦b⟧P0 = (λy,1, λy,2), ⟦c⟧P0 = (χ1, χ2)⟦a⟧P1 = (δx , λx ,1), ⟦b⟧P1 = (δy , λy,1), ⟦c⟧P1 = (δz + δxδy , χ1)⟦a⟧P2 = (δx , λx ,2) ⟦b⟧P2 = (δy , λy,2) ⟦c⟧P2 = (δz + δxδy , χ2)

Now (⟦a⟧, ⟦b⟧, ⟦c⟧) is a multiplication triple (c = ab) if and only if

P0 shares γxy correctly (when it is corrupt) and P0 reconstructs χ
correctly (when one of the evaluators is corrupt). This is because,

ab = (δx − λx )(δy − λy ) = δxδy + λxλy − δxλy − δyλx

= (δxδy + δz ) − (δxλy + δyλx + δz − γxy )

= (δxδy + δz ) − χ = c

We first recall the two standard components needed to check the

validity of a multiplication triple– i) a tool for generating ⟦·⟧-shared
random multiplication triple and ii) a technique to check securely

the product relation of a ⟦·⟧-shared triple, given a valid ⟦·⟧-shared
multiplication triple (often referred to as sacrificing technique).

With a lot of constructions specifically available for the former one

[2, 35], we choose to model it as an ideal functionality Ftrip and

use it for our purpose without going into the details. For the latter

component, we quickly recall the known protocol.

– Parties locally compute ⟦ρ⟧ = ⟦a⟧ − ⟦d⟧ and ⟦σ ⟧ = ⟦b⟧ − ⟦e⟧.
– Parties reconstruct ρ and σ by executing Πm

Rec(⟦ρ⟧, P) and
Πm
Rec(⟦σ ⟧, P) respectively.

– Parties locally compute ⟦τ ⟧ = ⟦c⟧ − ⟦f⟧ − σ ⟦d⟧ − ρ⟦e⟧ − σ ρ .
– Parties reconstruct τ by executing Πm

Rec(⟦τ ⟧, P) and output ⊥, if

τ , 0.

Figure 7: Protocol Πprc to check product-relation of a triple

Ftrip, by now a standard functionality [2, 35], allows to generate

a set of ⟦·⟧-sharing of multiplication triples over P, each of which,

say (d, e, f) satisfies the following– i) d, e and f are random and

private and ii) f = de. In Appendix A.1, we present an instantiation

of this functionality, namely Πtrip (Figure 16), using the techniques

proposed by [2, 35].

Protocol Πprc [22, 35] (‘prc’ stands for product-relation check)

takes a pair of ⟦·⟧-shared random and private triples as input, say



(a, b, c) and (d, e, f), over Z
2
ℓ , verifies if the former is a multiplica-

tion triple or not and nothing beyond, given the latter is a valid

triple. The protocol appears in Figure 7 and its properties in Ap-

pendix A.2.

By exploiting the definition of ⟦·⟧-sharing, we reduce the cost of
Πprc to just 2, instead of 3, instances of Π

m
Rec, in an amortized sense.

Recall that the goal of the third invocation of Πm
Rec inside Πprc is

to reconstruct ⟦τ⟧ = (mτ , [λτ ]), followed by checking if τ = 0. It

follows that τ = 0 if and only if mτ − λτ = 0 implying mτ = λτ .
Hence checking τ = 0 is equivalent to checking ifmτ = λτ ,1 +λτ ,2,
which can be translated to three pair-wise checks – (i) P0 and P1 can

verify if mτ − λτ ,1
?

= λτ ,2; (ii) P1 and P2 can verify if mτ − λτ ,2
?

=

λτ ,1; (iii) P0 and P2 can verify if mτ − λτ ,2
?

= λτ ,1. Parties in P can

mutually perform the above checks for all the instances of Πprc
together at the end by exchanging hash of all the required values.

Offline :

– Parties P0, P1 locally sample random λz ,1, γxy ,1 ∈ Z
2
ℓ , while P0, P2

locally sample a random λz ,2. P0 locally computes γxy = λx λy and

sends γxy ,2 = γxy − γxy ,1 to P2.
– Parties execute Πtrip to generate triple (⟦d⟧, ⟦e⟧, ⟦f⟧).
– Parties P1, P2 locally sample random δx , δy , δz ∈ Z

2
ℓ and compute

[δz ] non-interactively.
– Pi for i ∈ {1, 2} computes [χ ]Pi = δx [λy ]Pi + δy [λx ]Pi + [δz ]Pi −
[γxy ]Pi and sends [χ ]Pi to P0, who computes χ .

– Parties locally compute the ⟦·⟧-shares of the values a = δx − λx , b =
δy − λy and c = (δz + δxδy ) − χ .

– Parties execute Πprc on (⟦a⟧, ⟦b⟧, ⟦c⟧) and (⟦d⟧, ⟦e⟧, ⟦f⟧).
Online :

– Pi for i ∈ {1, 2} locally computes [mz ]Pi = (i−1)mxmy−mx [λy ]Pi −
my [λx ]Pi + [λz ]Pi + [γxy ]Pi . P1, P2 mutually exchange their shares

and reconstruct mz .

– P1 sends m⋆
x = mx + δx ,m⋆

y = my + δy to P0, while P2 sends

H(m⋆
x | |m

⋆
y ) to P0. P0 outputs⊥, if the received values are inconsistent.

– P0 computes m⋆
z = −m

⋆
x λy − m⋆

y λx + λz + 2γxy + χ and sends

H(m⋆
z ) to both P1 and P2.

– Pi for i ∈ {1, 2} abort if H(m⋆
z ) , H(mz −mxmy + δz ).

Figure 8: Protocol Πm
Mul(wx ,wy ,wz ):

With the building blocks set, we present our maliciously-secure

multiplication protocol Πm
Mul in Figure 8. Note that the use of hash

function improves the amortized cost in the online phase of Πm
Mul–

(i) P2 can send a single hash of all the m⋆
x and m⋆

y values for all

the instances of Πm
Mul to P0 in the end of the circuit-evaluation; (ii)

P0 can send a single hash of all the m⋆
z values for all the instances

of Πm
Mul to the evaluators at the end of the circuit-evaluation. The

former step can be coupled with the communication of (m⋆
x ,m

⋆
y )

by P1 to P0. Party P1 sending to P0 attributes to the increase of the

communication cost per multiplication gate in the malicious setting,

compared to the semi-honest setting. On the positive note, coupling

the above communication for all the multiplication gates together

results in a couple of rounds overhead compared to the semi-honest

protocol. As a consequence, the latency of the malicious protocol

remains as good as the semi-honest protocol.

The correctness of the protocol Πm
Mul is stated in Lemma 4.3.

Lemma 4.3 (Correctness). In the protocol Πm
Mul, the following

holds: During the offline phase, if P0 is corrupt and [·]-shares γxy ,
λxλy , then the honest evaluators output ⊥. On the other hand, if one
of the evaluators is corrupt and enforces the honest P0 to obtain an
incorrect χ , then the honest parties output ⊥. During the online step,
if one of the evaluators is corrupt and enforces the honest evaluator
to obtain an incorrect mz , then the honest evaluator outputs ⊥

Proof. For correctness, first consider the case when P0 is corrupt
and [·]-shares γxy , λxλy during offline step. Let γxy = λxλy + ∆
where ∆ is the error introduced by P0. Now,

c = (δxδy + δz ) − (δxλy + δyλx + δz − (γxy − ∆))

= (δx − λx )(δy − λy ) − ∆ = a − ∆ , a

and thus (a, b, c) is not amultiplication triple. Then, fromLemmaA.1,

honest evaluators output ⊥.

Second, we consider the case when one of the evaluators, say P1,
sends χ1 + ∆ to P0 who reconstructs χ ′ = χ + ∆. Then, the value

c = (δxδy + δz ) − χ ′ = (δxδy + δz ) − (χ + ∆)

= (δxδy + δz ) − (δxλy + δyλx + δz − γxy ) − ∆

= (δx − λx )(δy − λy ) − ∆ = a − ∆ , a

and hence (a, b, c) is not a multiplication triple. Thus, similar to the

previous case, honest parties output ⊥.

Lastly, we consider the case, when one of the evaluators, say P1, is
corrupt and during online step sends [mz ]P1+∆ for some non-zero∆
during the reconstruction, so that P2 reconstructsmz +∆, instead of
mz . In this case, the honest P0 would have χ = δxλy+δyλx+δz−γxy
from offline step. Moreover, during online step, P0 correctly learns

m⋆
x = mx +δx andm⋆

y = my +δy . Furthermore, γxy = λxλy holds.

It then follows that m⋆
z received by P2 from P0 will be different

from mz + ∆ −mxmy + δz locally computed by P2 and hence P2
will output ⊥. �

The informal privacy argument of Πm
Mul is as follows. We first

consider the case when P0 is corrupt, where ⟦x⟧, ⟦y⟧ and ⟦z⟧ are
defined by the shares of P1, P2. The privacy for this case follows

from the fact that P0 does not learn anything aboutmx ,my andmz ,

neither during the offline step, nor during the online step. Clearly,

the communication between P0 and P1, P2 during offline step is

independent of mx ,my and mz . Moreover, the value χ reveals

nothing about δx and δx since it is paddedwith a random δz . During
the online step, P0 learnsm⋆

x andm⋆
y , which reveals nothing about

mx ,my , as δx and δy remains random and private for P0. We next

consider the case when one of the evaluators, say P1 is corrupt. The
privacy for this case follows from the fact that λx , λy , λz and γxy
remains private from the view point of P1. On the other hand, no

additional information is revealed from m⋆
z during the online step,

as adversary will already know that m⋆
z = mz −mxmy + δz .

We present a detailed security proof for our 3PC protocol Πm
3pc

in Appendix C, showing that it emulates the functionality F Abort
3pc

as given in Figure 9.

FAbort3pc interacts with the parties in P and the adversary S and is parame-

terized by a 3-ary function f , represented by a publicly known arithmetic

circuit ckt over Z
2
ℓ .



Input: Upon receiving the input x, . . . , xI from the respective parties

in P, do the following: if (Input, ∗) message was received from Pj cor-
responding to x j , then ignore. Otherwise record x ′j = x j internally. If
x ′j , Z2ℓ , consider x

′
j = abort.

Output to adversary: If there exists j ∈ {1, . . . , I} such that x ′j =
abort, send (Output, ⊥) to all the parties. Else, send (Output, (y1, . . . ,
yO)) to the adversary S, where (y1, . . . , yO) = f (x ′

1
, . . . , x ′I ).

Output to selected honest parties: Receive (select, {I }) from adver-

sary S, where {I } denotes a subset of the honest parties. If an honest

party belongs to I , send (Output, ⊥), else send (Output, (y1, . . . , yO)).

Figure 9: Functionality F Abort
3pc

We now prove the communication complexity of protocol Πm
3pc

below.

Theorem 4.4. Protocol Πm
3pc has the following complexities.

Input-sharing Stage: It is non-interactive during the offline phase
and requires one round and an amortized communication of at most
2I ring elements during the online phase.
Circuit-evaluation Stage: AssumingM = 2

20 and a statistical
security parameter s = 40, in the amortized sense, evaluating each
multiplication gate requires 4 rounds and communication of 21
ring elements in the offline phase, while the online phase needs 1
round with a communication of 4 ring elements.
Output-reconstruction Stage: It requires one round and an
amortized communication of 3O ring elements.

Proof. The complexity for the Input-sharing Stage follows from

Theorem 4.2 and the fact that the cost of Πm
Sh reduces to that of Πs

Sh
in an amortized sense due to the use of the hash function. During

the circuit-evaluation stage, the addition gates need no interac-

tion, as usual. For a multiplication gate, the offline communication

include– (i) sending a share of [γxy ] to P2; (ii) the amortized cost of

generating one shared triple via Ftrip; (iii) the cost of reconstruct-

ing χ towards P0 and lastly (iv) the cost of one Πprc. The first one

requires one round and communication of one element. The second

one requires 3 rounds and an amortized communication of 9B − 6
ring elements, where B = s

log
2
M , using the techniques of [2] (see

Appendix A.1), where s is the statistical parameter dictating the

performance of underlying cut-and-choose technique. Assuming

M = 2
20
, s = 40, this ensures that generating a single multiplication

triple require 3 rounds and an amortized communication of 12 ring

elements. The third one requires one round and communication

of two elements. The fourth and last one requires one round and

an amortized communication of 6 elements as part of the two un-

derlying instances of Πm
Rec. This sums up to communication of 21

elements per multiplication gate.

The total number of rounds for evaluating the multiplication

gates during the offline phase turns to be 4 as follows: P0 can

send the share of [γxy ] to P2 and in parallel, the parties can start

generating a shared triple via Ftrip; while the former requires one

round, the latter requires three rounds. Once the share of [γxy ] is
available with P2, party P1 and P2 can reconstruct χ towards P0,
requiring one round, which overlaps with the second round of the

instantiation of Ftrip. Once the third round of the instantiation of

Ftrip is over, the parties execute the instance of Πprc, which requires

one additional round.

During the online phase, evaluating a multiplication gate re-

quires one round and communication of two elements for the re-

construction ofmz . Also, P1 needs to sendm⋆
x andm⋆

y values to P0
per instance, which requires just one round for all the multiplication

gates and communication of 2 ring elements per gate. Summing

up, evaluating a multiplication gate in the online phase requires an

amortized round complexity of 1 and communication of 4 elements.

The output-reconstruction phase requires one round and an

amortized communication of 3O elements, as the cost of Πm
Rec re-

duces to Πs
Rec in an amortized sense due to the use of the hash

function. �

4.3 Achieving Fairness
We boost the security of Πm

3pc from abort to fairness via a fair

reconstruction protocol ΠfRec that substitutes Π
m
Rec for the recon-

struction of the circuit outputs. To fairly reconstruct ⟦y⟧, the pair
{P0, P1} commit their common share λy,1 to P2 and likewise the

pair P0, P2 commit their common share λy,2 to P1 in the offline

phase. In the online phase, the evaluator pair {P1, P2} commit their

common information my to P0. In all the three cases, shared ran-

dom (PRF) key is used to derive the randomness for preparing the

commitments. As a result, each pair should prepare an identical

commitment ideally. The recipient in each case can abort when

the received commitments do not match. If no abort happens, P0
signals P1 and P2 to start opening the commitments which will help

the parties to get their missing share and reconstruct the output.

As there is at least one honest party in each pair of (P0, P1), (P0, P2)
and (P1, P2), the opened value of the honest party from each pair is

used for reconstructing y. Lastly, if the protocol aborts before, then
none receive the output maintaining fairness.

A very subtle issue arises in the above protocol in the absence of

broadcast channel. A corrupt P0 can send distinct signals to P1 and
P2 (abort to one and continue to the other), breaching unanimity

in the end. To settle this, we make the pair {P0, P1} to commit

a value r1 chosen from their common random source to P2 and

likewise the pair P0, P2 to commit a common value r2 to P1 in the

offline phase. In the online phase, when P0 signals abort to P1, it
sends the opening of r2 along. Similarly, when P0 signals abort

to P2, it sends the opening of r1 along. Now an evaluator, say P1
on receiving the abort can convince P2 that it has indeed received

abort from P0, using r2 as the proof of origin for the abort message.

Because the only way P1 can secure r2 is via P0. Put differently, a
corrupt P1 cannot simply claim that it received abort from P0, while
P0 is really instructed to continue. A single pair of (r1, r2) can be

used as a proof of origin for multiple instances of reconstruction

running in parallel. Protocol ΠfRec(⟦y⟧,P) is formally presented in

Figure 10.

Offline:

– Parties P0, P1 locally sample a random r1 ∈ Z
2
ℓ , prepare and send

commitments of λy ,1 and r1 to P2. Similarly, parties P0, P2 sample r2
and send commitments of λy ,2 and r2 to P1 The randomness needed

for both commitments are sampled from the PRF key-setup.

– P1 (resp. P2) aborts if the received commitments mismatch.

Online:



– P1, P2 compute a commitment ofmy using randomness sampled from

their PRF key-setup and send it to P0.
– If the commitments do not match, P0 sends (abort, o1) to P2, while

he sends (abort, o2) to P1 and aborts, where oi denotes opening

information for the commitment of ri . Else P0 sends continue to

both P1 and P2.
– P1, P2 exchange the messages received from P0.
– P1 aborts if he receives either (i) (abort, o2) from P0 and o2 opens

the commitment of r2 or (ii) (abort, o1) from P2 and o1 is the correct
opening information of r1. The case for P2 is similar to that of P1

– If no abort happens, parties obtain their missing share of a as fol-

lows:

– P0, P1 open λy ,1 towards P2.
– P0, P2 open λy ,2 towards P1.
– P1, P2 open my towards P0.

– Parties reconstruct the value y using missing share that matches with

the agreed upon commitment.

Figure 10: Protocol ΠfRec(⟦y⟧,P)
The complexity of ΠfRec is stated below. The commitment can

be implemented via a hash function H() e.g. (c,o) = (H(x | |r ),
x | |r ) = Com(x ; r ), whose security can be proved in the random-

oracle model (ROM) [43]. We do not include the cost of commitment

and opening of r1 and r2, as they will get amortized away over many

instances of ΠfRec.

Lemma 4.5. Protocol ΠfRec requires one round and an amortized
communication of 4 commitments in the offline phase. ΠfRec requires
four rounds and an amortized communication of at most 2 commit-
ments and 6 opening of commitments in the online phase.

5 PRIVACY PRESERVING MACHINE
LEARNING

We apply our techniques for 3PC developed so far to the regime of

ML prediction for a range of prediction functions– linear regres-

sion, logistic regression, linear SVM classification, and linear SVM

regression.

5.1 The Model
A model-owner M, holding a vector of trained model parameters,
would like to offer ML prediction service to a client C holding a

query vector as per certain prediction function. In the server-aided

setting, M and C outsource their respective inputs in shared fash-

ion to three untrusted but non-colluding servers {P0, P1, P2} who
perform the computation in shared fashion via techniques devel-

oped for our 3PC protocols and reconstruct the output to the client

alone. The client learns the output and nothing beyond. We as-

sume a computationally bounded adversary A, who can corrupt

at most one of the servers {P0, P1, P2} and one of {M, C} in either

semi-honest or malicious fashion. The security against an A cor-

rupting parties in both sets {P0, P1, P2} and {M, C} semi-honestly

and likewise maliciously reduces to the semi-honest and respec-

tively malicious security of our 3PC protocols. Adversarial machine

learning [61, 62, 67] that includes attacks launched by a client to

learn the model using its outputs, lies outside the scope of this

work. Following the existing literature on server-aided secure ML

[36, 42, 58, 59], we do not count the cost of M and C making their

inputs available in secret-shared form amongst the servers and the

cost of reconstructing the output to the client. We assume that the

inputs are available to the servers in a secret-shared form and focus

on efficient computation of a prediction function on the shared

inputs to obtain shared outputs.

5.2 Notations
For a vector ®a, ai denotes the ith element in the vector. For two vec-

tors ®a and ®b of length d , their scalar dot product is ®a⊙®b =
∑d
i=1 aibi .

The definitions of [·]-sharing and ⟦·⟧-sharing are extended in a nat-

ural way for the vectors. A vector ®a = (a1, . . . , ad ) is said to be [·]-

shared, denoted as [®a], if each ai is [·]-shared. We use the notations

[®a]P1 and [®a]P2 to denote the vector of [·]-shares of P1 and P2 re-
spectively, corresponding to [®a]. Similarly, a vector ®a = (a1, . . . , ad )
is said to be ⟦·⟧-shared, denoted as ⟦®a⟧, if each ai is ⟦·⟧-shared.
We use the notation

−→
λa and

−→ma to denote the vector of masks and

vector of masked values corresponding to ⟦®a⟧. Finally, we note that
the linearity of [·] and ⟦·⟧-sharings hold even over vectors.

5.3 Fixed Point Arithmetic
We represent decimal values as ℓ-bit integers in signed 2’s com-

plement representation with the most significant bit representing

the sign bit and x least significant bits representing the fractional

part. For our purpose, we choose ℓ = 64 and x = 13, keeping

i = ℓ − x − 1 = 50 bits for the integral part of the value. We

then treat these ℓ-bit strings as elements of Z
2
ℓ . A product of two

numbers from this domain would lead to expanding x to 26 and

yet leaving 37 bits for the integer part which keeps the accuracy

unaffected. As the prediction functions of our concern require mul-

tiplication of depth one, the prediction function output values have

the above format. Noticeably, since SecureML [57] and ABY3 [55]

need to do multiplication in sequence multiple times for the task

of training, they propose a new method of truncation to maintain

a representation invariant across the sequential products. This is

necessary to keep accuracy in check in their works.

5.4 Protocols for ML
We begin with some of the building blocks required.

Secure Dot Product. Given the ⟦·⟧-shares of d element vectors ®p
and ®q, the goal of a secure dot-product is to compute ⟦·⟧-sharing
of ®p ⊙ ®q. Using ΠMul naively to compute the product of each com-

ponent would require a communication complexity that is linearly

dependent on d in both the offline and online phase. In the semi-
honest setting, following the literature [19, 25, 31, 55, 64], we make

the communication of Πdp independent of d as follows: during the

offline phase, P0 [·]-shares only γpq =
−→
λp ⊙

−→
λq , instead of each

individual λpi λqi . During the online phase, instead of reconstruct-

ing each mpiqi separately to compute mu where u = ®p ⊙ ®q, the
evaluators P1, P2 locally compute [mu] and then reconstruct mu.

We call the resultant protocol as Πs
dp (Figure 11).

Offline : P0, P1 sample random λu,1, γpq,1 ∈ Z
2
ℓ , while P0, P2 sample

random λu,2 ∈ Z
2
ℓ . P0 locally computes γpq =

−→
λp ⊙

−→
λq , sets γpq,2 =

γpq − γpq,1 and sends γpq,2 to P2.



Online :

– Pi for i ∈ {1, 2} locally computes [mu]Pi =
∑d
j=1

(
(i − 1)mpjmqj −

mpj [λpj ]Pi −mqj [λpj ]Pi
)
+ [γpq]Pi + [λu]Pi .

– P1 and P2 mutually exchange [mu] to reconstruct mu.

Figure 11: Protocol Πs
dp

Due to the extra checks we introduce for tolerating a maliciously

adversary in our multiplication protocol, the optimization done

above for semi-honest protocol in the offline phase does not work.

As a result, we resort to d invocations of our multiplication protocol.

Invoking Theorem 4.4, our protocol for dot product then needs to

communicate 21d ring elements in the offline phase. However, we

improve the online cost from 4d (as per Theorem 4.4) to 2d + 2 as
follows. The parties execute the online stage of protocol Πs

dp. In

parallel, P1 sends m⋆
pi ,m

⋆
qi for i ∈ {1, . . . ,d} to P0, while P2 sends

the corresponding hash to P0. Instead of sending m⋆
piqi for each

piqi , P0 can “combine" all the m⋆
piqi values and send a single m⋆

u

to P1, P2 for verification. In detail, P0 can compute m⋆
u =

∑d
j=1m

⋆
uj

and send a hash of the same to both P1 and P2, who can then cross

check with a hash ofmu−
∑d
j=1(mpjmqj −δuj ). We call the resultant

protocol as Πm
dp and the communication complexity is given below.

Lemma 5.1. Πs
dp requires communication of one ring element dur-

ing the offline step and communication of two ring elements in online
step. Πm

dp requires communication of 21d ring elements during the
offline step and communication of 2d + 2 ring elements in online step.

Secure Comparison. Comparing two arithmetic values is one of

the major hurdles in realizing efficient secure ML algorithms. Given

arithmetic shares ⟦u⟧, ⟦v⟧, parties wish to check whether u < v,
which is equivalent to checking if a < 0, where a = u−v. In the fixed-
point arithmetic representation, this task can be accomplished by

checking the msb(a). Thus the goal reduces to generating boolean-

shares of msb(a) given the arithmetic-sharing ⟦a⟧.
Towards this SecureML [57] uses a garbled circuit that takes

⟦u⟧, ⟦v⟧ as the input and computes ⟦u⟧ < ⟦v⟧ directly as the output.
Later ABY3 [55] proposed an optimized Parallel Prefix Adder (PPA)

to compute the MSB of a = u − v from ⟦a⟧, but it takes 1 + log(ℓ)
rounds. To obtain a constant-round protocol, we transit to the

garbled domain to evaluate the optimized PPA and compute the

MSB of a. Let P0, P1 be the garblers and P2 be the evaluator. The
garbling scheme uses the optimization techniques of Free-XOR and

half gates.

In the semi-honest setting, parties use a garbled circuit GC =
(u1, u2, u3) with inputs u1, u2 ∈ Z2ℓ , u3 ∈ {0, 1} and output y =
msb(u1 − u2) ⊕ u3. The underlying circuit of the GC can be instan-

tiated using the optimized PPA of ABY3 that has 2ℓ AND gates for

two ℓ-bit inputs. Let u1 = ma, u2 = λa, and u3 = r where r denotes
a random bit sampled by P0, P1 together. During the offline phase,

P0 garbles and sendsGC to P2 along with keys for input u2 and the
decoding information. Also, P1 executes Π

s
Sh on r to generate ⟦r⟧B.

During the online phase, P1 sends the keys corresponding to input

u1 to P2 who evaluates the circuit to obtain y = msb(a) ⊕ r in clear.

P2 then executes Πs
Sh on y to generate ⟦y⟧B. Parties then locally

compute ⟦msb(a)⟧B = ⟦y⟧B ⊕ ⟦r⟧B.

In the malicious setting, a garbled circuit of the form GC =
(u1, u2, u3, u4, u5) with inputs u1, u2, u3 ∈ Z2ℓ , u4, u5 ∈ {0, 1} and
output y = msb(u1 − u2 − u3) ⊕ u4 ⊕ u5 is used. Let u1 = ma,

u2 = λa,1 and u2 = λa,2. During the offline phase, P0, P1 together
garblesGC . P1 sendsGC to P2 along with the decoding information,

while P0 sends a hash of the same to P2. P0, P1 samples random bit

r1. P1 executes Πm
Sh on r1 to generate ⟦r1⟧B. P0 helps in verifying

the sharing performed by P1. Similar steps are executed by P0, P2
to generate ⟦r2⟧B. Since the value u2 = λa,1 is known to both the

garblers, the same can be integrated in the GC itself and hence

there is no need to communicate the garbled keys for the same. For

the input u3, P0, P1 prepare commitments corresponding to both

the keys and sends to P2. In addition, P0 opens the correct commit-

ment towards P2 who abort if the received values are inconsistent.

Similar steps are done for inputs u4 and u5 to enable P2 obtain the

corresponding keys for the same.

During the online phase, P0, P1 enable P2 obtain the key corre-

sponding to u1 = ma in a way similar to that of u3. P2 evaluates
the circuit to obtain y = msb(a) ⊕ r1 ⊕ r2 in clear. P2 then sends y
along with a hash of the corresponding key to P1 who verifies the

correctness of y. Note that a corrupt P2 cannot change the value y as
it will result in breaking the authenticity of the underlying garbling

scheme. To see this, if P2 needs to change y, then he has to guess the
key corresponding to the changed value. P2 then executes Πm

Sh on y

to generate ⟦y⟧B. P1 helps in verifying the sharing performed by P2.

Parties then locally compute ⟦msb(a)⟧B = ⟦y⟧B ⊕ ⟦r1⟧B ⊕ ⟦r2⟧B.
We use Πs

BitExt and Πm
BitExt to denote the secure comparison

protocol in the semi-honest and malicious setting respectively.

Lemma 5.2. Πs
BitExt requires one round and a communication of

5ℓκ bits during the offline step, while it requires two rounds and
communication of ℓκ + 2 bits during the online step. Πm

BitExt requires
three rounds and an amortized communication of 5ℓκ + 2κ + 2 bits
during the offline step, while it requires two rounds and an amortized
communication of ℓκ + 2 bits during the online step.

5.5 ML Prediction Functions and Abstractions
We consider four prediction functions – two from regression cate-

gory with real or continuous value as the output and two from clas-

sification type with a bit as the output. The inputs to the functions

are vectors of decimal values. We provide a high-level overview of

the functions below andmore details can be found in [54, 55, 57].

◦ Linear Regression: Model M owns a d-dimensional model pa-

rameter ®w and a bias b, while client C has a d-dimensional query

vector ®z. C obtains flinr
(
( ®w, b), ®z

)
= ®w⊙®z+b, where ®w⊙®z denotes

the dot-product of ®w and ®z.
◦ SVM Regression: M holds {α j ,yj }

k
j=1, d-dimensional support

vectors {®xj }kj=1 and bias b, while Pc holds a d-dimensional query

®z. C obtains fsvmr
(
({α j ,yj , ®xj }kj=1), ®z

)
=
∑k
j=1 α jyj (®xj ⊙ ®z) + b.

◦ Logistic Regression: The inputs of M and C are similar to linear

regression. M needs to provide an additional input t in the range

[0, 1]. C obtains flogr
(
( ®w, b, t), ®z

)
= sign(( ®w ⊙ ®z + b) − ln ( t

1−t )),

where sign(·) returns the sign bit of its argument. Since the values

are represented in 2’s complement representation, sign() returns
the most significant bit (MSB) of its argument.



◦ SVM Classification: The inputs of M and C remain the same as

in SVM regression. But the output to C changes to fsvmc
(
({α j ,

yj , ®xj }kj=1), ®z
)
= sign(

∑k
j=1 α jyj (®xj ⊙ ®z) + b).

6 IMPLEMENTATION AND BENCHMARKING
In this section, we provide empirical results for our 3PC and secure

prediction protocols. We start with the description of the setup

environment– software, hardware, and network.

Network & Hardware Details. We have experimented both in a

LAN (local) and a WAN (cloud) setting. In the LAN setting, our ma-

chines (P0, P1, P2) are equipped with Intel Core i7-7790 CPU with

3.6 GHz processor speed and 32 GB RAM. In the WAN setting, we

use Microsoft Azure Cloud Services with machines located in South

East Asia (P0), North Europe (P1) and North Central US (P2). We

used Standard E4s v3 instances, where machines are equipped with

32 GB RAM and 4 vcpus. Every pair of parties are connected by

bi-directional communication channels in both the LAN and WAN

setting, facilitating simultaneous data exchange between them. We

consider a LAN with 1Gbps and a WAN with 25Mbps channel

bandwidth. We measured the average round-trip time (rtt) for com-

municating 1 KB of data between P0-P1, P1-P2 and P0-P2 in both the
setting. In the LAN setting, the average rtt turned out to be 0.47ms .
In the WAN setting, the rtt between P0-P1, P1-P2 and P0-P2 are

201.928ms , 81.736ms and 229.792ms respectively. We use a TCP-IP

connection between each set of parties.

Software Details. Our code follows the standards of C++11. We

implemented our protocols in both semi-honest and malicious set-

ting, using ENCRYPTO library [26]. We used SHA-256 to instantiate

the hash function. We use multi-threading to facilitate efficient com-

putation and communication among the parties. For benchmarking,

we use the AES-128 [1] circuit. For ML prediction, since the code

for ABY3 [55] was not available, we implemented their protocols

in our framework for benchmarking. We run each experiment 20

times and report the average for our measurements.

Parameters for Comparison. All our constructions are compared

against their closest competitors which are implemented in our

environment for a fair comparison. We consider five parameters

for comparison– latency (calculated as the maximum of the run-

time of the parties or servers in case of secure prediction) in both

LAN and WAN, total communication complexity and throughput

of the online phase over LAN and WAN. For 3PC over LAN, the

throughput is calculated as the number of AES circuits that can

be computed per second. As an AES evaluation takes more than a

second in WAN, we change the notion of throughput in WAN to

the number of AND gates that can be computed per second. For

the case of secure prediction, throughput is taken as a number of

queries that can be processed per second in LAN and per minute

in WAN. For simplicity, we use online throughput to denote the

throughput of the online phase. The discrepancy across the bench-

marking parameters for LAN and WAN comes from the difference

in rtt (order of microseconds for LAN and milliseconds for WAN).

6.1 Experimental Results
6.1.1 Results for 3PC. In Table 3, we compare our 3PCs over the

boolean ring (Z2 ) both in semi-honest and malicious setting with

their closest competitors [4] and [2] respectively in terms of latency

and communication.

Protocol Work

LAN Latency (ms) WAN Latency (s) Communication (KB)

Offline Online Offline Online Offline Online

Semi-honest

[4] 0 254.8 0 8.96 0 1.99

This 0.48 254.8 0.23 3.19 0.66 1.33

Malicious

[2] 1.44 260.72 0.71 9.42 8.06 6.06

This 2.37 248.38 0.88 3.57 10.72 2.69

Table 3: Comparison of Our 3PC with [4] and [2]

Note that Table 3 does not include the runtime and commu-

nication for input-sharing and output-reconstruction phases. We

provide the runtime and communication of our protocol for the

aforementioned phases in Table 4. For benchmarking, we let P0 own
48 out of the 128 input wires of AES while P1 and P2 own 40 wires

each. The table provides benchmarking for the fair reconstruction

phase as well, which sees an increase in the latency for the online

phase due to increased round complexity.

Phase Protocol

LAN Latency (ms) WAN Latency (s) Comm. (KB)

Offline Online Offline Online Offline Online

Input

Sharing

Semi-honest 0

0.47

0

0.23

0.01 0.02

Malicious 0.47 0.23 0.02 0.03

Output

Reconstruction

Semi-honest

0 0.47 0 0.23 0

0.05

Malicious 0.09

Fair Output

Reconstruction

Malicious 0.47 1.91 0.23 0.77 0.25 0.19

Table 4: Benchmarking for Input Sharing andOutput Recon-
struction Phases of Our 3PC Protocol

In the semi-honest setting, we observe that the online latency

for [4] and our protocol remain same over LAN. This is because

both protocols require the same number of rounds of interaction

during the online phase and the rtt among every pair of parties

remain the same. Over WAN, our protocol outperforms [4] in terms

of online latency. We observe that this improvement comes from

the asymmetry in the rtt among the parties. In detail, our protocol

has only one pair amongst the three pairs of parties to communicate

for most of the rounds in the online phase. Thus, when compared

with existing protocols, we have an additional privilege where we

can assign the roles of the parties effectively across the machines

so that the pair of parties having the most communication in the

online phase is assigned the lowest rtt. As a result, the time taken by

a single round of communication comes down to the minimum of

the rtts among all the pairs, as opposed to the maximum. Thus we

achieve a gain of (maximum rtt)/(minimum rtt) in time per round
of communication, compared to the existing protocols.

In Figure 12, we compare the online latency of our protocols with

their competitors, for a varying multiplicative depth (that dictates

the round complexity). The same plot applies to both the semi-

honest setting and malicious setting, as they differ by a single round

and its impact vanishes with the growing number of rounds. It is
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Figure 12: Plot of Online Latency against Multiplicative
Depth for 3PC Protocols

clear from the plot that the impact of rtt becomes more visible with

the increase in the number of online rounds, leading to improved

efficiency.

Setting

Semi-honest Malicious

[4] This Improv. [2] This Improv.

LAN 3296.7 3296.7 1× 3221.85 3381.91 1.05×

WAN 8.71 M 13.1 M 1.51× 2.9 M 4.34 M 1.50×

Table 5: Comparison of 3PC Online Throughput

Now, we compare the online throughput for 3PC over both LAN

(#AES/sec) and WAN (#AND/sec) setting and the results appear in

Table 5 (‘M’ denotes million and ‘Improv.’ denotes improvement).

Table 5 shows that our protocol’s online throughput is clearly better

than that of its competitors. This is mainly because of the improve-

ment in online communication, though the asymmetry in our proto-

col has a contribution to it. In the semi-honest setting, our protocol

is able to effectively push around 33% of the total communication

to the offline phase, resulting in an improved online phase. In the

malicious setting, our protocol reduces online communication by a

factor of 2.25× with an increase in the offline phase by a factor of

1.75×, when compared with the state-of-the-art protocols.

6.1.2 Results for Secure Prediction. We benchmark our ML proto-

cols that cover regression functions (linear and SVM) and classifi-

cation functions (logistic and SVM) over a ring Z
2
64 . We report our

performance for MNIST database [51] that has d = 784 features

and compare our results with ABY3 [55] (with the removal of extra

tools as mentioned in the introduction). The comparison of latency

and communication appears below.

Regression. For regression, the servers compute ⟦·⟧-shares of
the function ®w ⊙ ®z + b, given the ⟦·⟧-shares of ⟦ ®w⟧, ⟦®z⟧ and ⟦b⟧.
This is computed by parties executing secure dot-product on ⟦ ®w⟧
and ⟦®z⟧, followed by locally adding the result with ⟦·⟧-shares of
b. Here we provide benchmarking for two regression algorithms,

namely Linear Regression and Linear SVM Regression. Though the

aforementioned algorithms serve a different purpose, we observe

that their underlying computation is same from the viewpoint of

the servers, apart from the values ®w, ®z and b being different as

mentioned in Section 5.5. Thus we provide a single benchmark,

capturing both the algorithms and the results appear in Table 6.

Setting Work

Semi-honest Malicious

Offline Online Offline Online

LAN

(ms)

ABY3 0 0.62 1.61 1.56

This 0.52 0.61 2.56 1.07

WAN

(s)

ABY3 0 0.23 0.72 0.70

This 0.23 0.09 1.1 0.44

Comm.

(KB)

ABY3 0 0.02 73.5 55.13

This 0.01 0.01 128.63 12.27

Table 6: Comparison of Latency and Communication for Re-
gression Protocols

In the semi-honest setting, similar online latency for both proto-

cols over LAN can be justified by the similar rtt among parties. Over

WAN, the asymmetry in the rtt among the parties (as mentioned

for the case of 3PC) adds benefit to our protocol. In the malicious

setting, the result is further improved, since we require one less

round when compared with ABY3 in the online phase.

Setting

Semi-honest Malicious

ABY3 This Improv. ABY3 This Improv.

LAN 0.645 M 0.656 M 1.02× 0.007 M 0.010 M 1.5×

WAN 0.104 M 0.267 M 2.56× 0.010 M 0.016 M 1.5×

Table 7: Online Throughput of Regression Protocols

We now provide an online throughput comparison of our re-

gression protocols over LAN (queries/sec) and WAN (queries/min)

setting and the result appear in Table 7.We observe that the through-

put was further boosted in the malicious setting because of our

efficient dot-product protocol (Section 5.4) with which we could im-

prove the online communication by a factor of 4.5×when compared

to ABY3.



In Figure 13, we present a comparison of online throughput

(#queries/sec for LAN and #queries/min for WAN) against the num-

ber of features in the malicious setting, for a number of features

varying from 500 to 2500. Since the online communication cost

is independent of the feature size in the semi-honest setting, we

omit to plot the same. The plot clearly shows that our protocol

for regression outperforms ABY3 in terms of online throughput.

The reduction in throughput with the increase in feature size for

both ours as well as ABY3’s can be explained with the increase in

communication for higher feature sizes.
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Figure 13: Plot of Online Throughput against Multiplicative
Depth for Regression Protocols

Classification. For classification, the servers compute ⟦·⟧B-shares
of the function sign( ®w⊙®z+b), given the ⟦·⟧-shares of ⟦ ®w⟧, ⟦®z⟧ and
⟦b⟧. Towards this, parties first execute secure dot-product on ⟦ ®w⟧
and ⟦®z⟧, followed by locally adding the result with ⟦b⟧. Then parties
execute secure comparison protocol on the result obtained from

the previous step to generate the boolean share of sign( ®w ⊙ ®z + b).
Here we consider two classification algorithms, namely Logistic

Regression and Linear SVM Classification. Similar to the case with

Regression, both algorithms share the same computation from the

server’s perspective and thus we provide a single benchmark. The

results appear in Table 8 and the online throughput comparison

appears in Table 9.

Setting Work

Semi-honest Malicious

Offline Online Offline Online

LAN

(ms)

ABY3 0 3.48 1.63 4.42

This 0.54 1.58 2.57 2.53

WAN

(s)

ABY3 0 1.61 0.72 2.08

This 0.23 0.55 1.1 0.98

Comm.

(KB)

ABY3 0 0.07 73.7 55.3

This 0.01 0.04 129 12.4

Table 8: Comparison of Latency and Communication for
Classification Protocols

Setting

Semi-honest Malicious

ABY3 This Improv. ABY3 This Improv.

LAN 0.115 M 0.253 M 2.2× 0.007 M 0.010 M 1.5×

WAN 0.015 M 0.044 M 2.93× 0.010 M 0.016 M 1.5×

Table 9: Online Throughput of Classification Protocols

In this case, we observe that our protocol outperforms ABY3

in all the settings. This is mainly due to our Secure Comparison

protocol (Section 5.4) where we improve upon both communication

and rounds in the online phase. The effect of this improvement

becomes more visible for applications where the secure comparison

is used extensively. Similar to Regression, in Figure 14, we provide

below a comparison of online throughput (#queries/sec for LAN

and #queries/min for WAN) against the number of features in the

malicious setting.

6.2 Restricted Bandwidth Setting
We observe that the asymmetry of our constructions further comes

to our advantage for throughput. That is, while a drop in bandwidth

between any pair of parties significantly affects the throughput of

the existing protocols, the throughput of ours does not get affected

much as long as the drop occurs between the pair(s) of parties

handling a low volume of data. The purpose of this setting is to

show that for setups with varying bandwidths among the servers,

our protocol has an advantage in choosing the roles of the servers

whereas existing works cannot.

To demonstrate this positive impact, we test the throughput of

our ML constructions in a modified network setting where the

bandwidth between one of the pairs, namely P0 and P2 is restricted
to 100Mbps (instead of 1Gbps) in LAN and 10Mbps (instead of

25Mbps) in WAN setting. This restriction significantly drops the

throughput of the existing constructions as they need all the pairs

to communicate equally, while ours remain unaffected. The cut-

down on bandwidth does not make any difference in latency (that

is measured for one execution) and communication complexity. We

provide a comparison of throughput in the malicious setting in

Table 10.
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Figure 14: Plot of Online Throughput against Multiplicative
Depth for Classification Protocols

Setting

Regression Classification

ABY3 This Improv. ABY3 This Improv.

LAN 0.001 M 0.010 M 15× 0.001 M 0.010 M 15.01×

WAN 0.004 M 0.016 M 3.75× 0.004 M 0.016 M 3.75×

Table 10: Online Throughput of ML Protocols in the Mali-
cious Setting under Restricted Bandwidth

The comparison of online throughput (#queries/sec for LAN

while #queries/min for WAN) against the number of features in the

malicious setting for classification protocols appear in Figure 15.

7 CONCLUSIONS
In this work, we presented efficient protocols for the three party

setting (3PC) tolerating at most one corruption. We applied our

results in the domain of secure machine learning prediction for a

range of functions – Linear Regression, Linear SVM Regression,

Logistic Regression, and Linear SVM classification. The theoretical

improvements over the state-of-the-art protocols were backed up

by an extensive benchmarking.
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Figure 15: Plot of Online Throughput against Multiplicative
Depth for Classification Protocols in the Malicious Setting
under Restricted Bandwidth

Open Problems. Our techniques are tailor-made for 3PC with

1 corruption. Extending these techniques to the case of an arbitrary

Q(2) adversary structure [66] is left as an open problem.
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A BUILDING BLOCKS FOR MALICIOUS
SECURITY

A.1 Instantiating Ftrip
Here, we present a protocol Πtrip (Figure 16) that instantiate func-

tionality Ftrip over Z
2
ℓ , inspired by the works of [2, 35]. The tech-

niques of [2, 35] work for any underlying linear secret-sharing

scheme. We avoid the detailed security proof for Πtrip, which can

be easily derived from [2, 35]. We begin with a sub-protocol Πrand,

used in Πtrip. Protocol Πrand allows the parties to generate a ran-

dom and private ⟦·⟧-shared value v. Towards this, parties P0, P1

https://github.com/encryptogroup/ENCRYPTO_utils
http://yann.lecun.com/exdb/mnist/


locally sample λv,1, P0, P2 sample λv,2 while parties P1, P2 sample

mv. The value v is defined as v = mv − λv,1 − λv,2.

If a party obtains ⊥ during any stage of the protocol or did not receive

an expected message, then it outputs ⊥ and abort.

– GeneratingMultiplicationTriplesOptimistically: LetM = BN+
C . The parties execute 2M instances of Πrand to generate {(⟦dk ⟧,
⟦ek ⟧)}k=1, . . .,M . For k = 1, . . . , BN +C , the parties execute Πs

Mul on

⟦dk ⟧ and ⟦ek ⟧ to obtain ⟦fk ⟧. Let ®D = [(⟦dk ⟧, ⟦ek ⟧, ⟦fk ⟧)]k=1, . . .,M .

– Cut and Bucket: Here the parties perform the first verification by

opening C triples, and then randomly divide the remainder into buck-

ets as follows.

– The parties generate a random permutation π over {1, . . . , BN +
C } and permute the elements of ®D according to π .

– The parties publicly reconstruct each of the first C triples in ®D (by

executing Πs
Rec(⟦·⟧, P) and output ⊥, if any of these C triples is

not a multiplication triple.

– The remaining BN triples in ®D are arranged into buckets B1, . . . ,

BN , each containing B triples.

– Check Buckets: The parties initialize a vector ®d of length N . Then,

for k = 1, . . . , N , the parties do the following:

– Let {(⟦dk , j⟧, ⟦ek , j⟧, ⟦fk , j⟧)}j=1, . . .,B denote the B shared triples

in the bucket Bk .
– For j = 2, . . . , B , the parties executeΠprc on (⟦dk ,1⟧, ⟦ek ,1⟧, ⟦fk ,1⟧)

and (⟦dk , j⟧, ⟦ek , j⟧, ⟦fk , j⟧).
– The parties set (⟦dk ,1⟧, ⟦ek ,1⟧, ⟦fk ,1⟧) as the k th entry of

®d .

The parties output
®d .

Figure 16: Protocol to generate N random and private ⟦·⟧-shared
multiplication triples

Following the technique of [35], protocol Πtrip generates N in-

dependent ⟦·⟧-shared random and private multiplication triplets

over Z
2
ℓ at one go. Informally, the parties first optimistically gen-

erate BN + C shared random triples, followed by deploying the

cut-and-choose technique. NamelyC triples from the set of BN +C
triples are randomly selected and opened to check if they are mul-

tiplication triples. The remaining BN triples are randomly grouped

into N buckets, each containing B triples. In each bucket, parties

check if the first triple is a multiplication triple without opening

it using the protocol Πprc (Figure 7), by deploying the remaining

B − 1 triples in the bucket, one by one. If any of these verifications

fail, then the parties abort, else they consider the first triple in each

of the N buckets as the final output. Following [35], it follows that

except with an error probability of at most
1

N B−1 , if any of the N

output triplets is not a multiplication triplet, then the honest parties

abort the protocol.

In their follow-up work [2], the authors have shown how to

reduce the error probability of cut-and-choose technique from

1

N B−1 to
1

N B , thus reducing the bucket size B to
s

log
2
N to attain a

statistical-security of 2
−s
. The idea behind their improvement is as

follows: if the array of multiplication triples from the offline phase

is randomly shuffled after all multiplication gates are evaluated

(optimistically), then adversary can successfully cheat only if the

random shuffle happens to match correct triples with correctly

evaluated multiplication gates and incorrect triples with incorrectly

evaluated multiplication gates.

We observe that the above modification is applicable in our

context as well. Following [2], the parties can postpone verification

of offline step of all the instances of Πm
Mul. Once the offline step of

all the instances of Πm
Mul corresponding to all the multiplication

gates in the circuit is executed, the parties can randomly shuffle

the set of triples. The parties can then use the ith triple from the

reshuffled set to perform the pending verification corresponding to

the offline step of the ith instance of Πm
Mul. Notice that unlike [2],

in our context, the reshuffling of the set of triples happens in the

offline phase itself. Excluding the cost of generating the random

permutation π in the protocol of Figure 16, the amortized cost of

generating a single multiplication triple will be as follows: there will

be 2B instances of Πrand followed by B instances of Πs
Mul, followed

by B − 1 instances of Πprc.

A.2 Properties of Πprc

Lemma A.1 (Correctness [22, 35]). Let (⟦d⟧, ⟦e⟧, ⟦f⟧) be ⟦·⟧
sharing of random and private values d, e and f, such that f = de.
Moreover, let (⟦a⟧, ⟦b⟧, ⟦c⟧) be ⟦·⟧ sharing of a, b and c, such that
c = ab+∆, where ∆ ∈ Z

2
ℓ . Then the following hold in Πprc: If ∆ , 0,

then every honest Pi outputs ⊥.

Proof. In Πprc, during the reconstruction of ρ, σ and τ , protocol
Πm
Rec ensures that no two honest parties output two different non-⊥

values. Now, in order to show the correctness, it suffices to show

that τ = 0 iff ∆ = 0. Note that,

τ = c − f − σd − ρe − σρ

= c − de − (b − e)d − (a − d)e − (b − e)(a − d)

= c − ab = ∆

It is straightforward from the protocol step that every honest party

outputs ⊥ if ∆ , 0. �

The privacy of Πprc requires it to maintain the privacy of a, b
and c. Note that the values ρ and σ reveal nothing about a and b, as
d, e are random and private. The privacy now follows since τ = ∆
and independent of a, b and c.

B 3PCWITH SEMI-HONEST SECURITY
Here we prove that Πs

3pc securely realizes the standard ideal-world

functionality F3pc (Figure 5) for securely evaluating any arith-

metic circuit over Z
2
ℓ . Our proof works in the Fsetup-hybrid model.

Fsetup interacts with the parties in P and the adversary S who may

corrupt one of the parties.

Fsetup picks randomkeysk01, k02, k12, kP ∈ {0, 1}κ and sends (k01, k02),
(k01, k12) and (k02, k12) to P0, P1 and P2 respectively. In addition, Fsetup
sends kP to all the parties.

Figure 17: Functionality Fsetup (semi-honest)

We first consider the simple case, when P0 is corrupted. Intuitively,
the security follows from the fact, that P0 does not see the messages

exchanged between P1, P2 during the online phase, who actually

perform the circuit-evaluation. So in essence, this is equivalent to

P1, P2 using the preprocessing done by a trusted third party to do

the circuit-evaluation (in the semi-honest setting, even a corrupt

P0 will do the pre-processing honestly).



Theorem B.1. Protocol Πs
3pc securely realizes the functionality

F3pc against a static, semi-honest adversary A in the Fsetup-hybrid
model, who corrupts P0.

Proof. LetA be a real-world semi-honest adversary corrupting

the distributor P0 during the protocol Πs
3pc. We present an ideal-

world adversary (simulator) Ss3pc for A in Figure 18 that simulates

messages for corrupt P0. The only communication to P0 is during
the output-reconstruction stage in the online phase. Ss3pc can easily

simulate thesemessages, with the knowledge of function output and

the masks corresponding to the circuit-output wires.

The simulator plays the role of the honest parties P1, P2 and simulates

each step of Πs
3pc to corrupt P0 as follows and finally outputs A’s output.

Offline Phase: Ss3pc emulates Fsetup and gives k01, k02 and kP to P0.

In addition, Ss3pc on behalf of P2 receives γxy ,2 from A for every multi-

plication gate g = (wx , wy , wz ). From these, it learns the λ-masks for

all the wires in ckt.

Online Phase: On input {xi }’s, the inputs of corrupt P0 and the func-

tion output (y1, . . . , yO), Ss3pc simulates the output-reconstruction stage

to A as follows. For every yj , it computes myj = yj + λyj and sends

it to A, on the behalf of P1. Here λyj is the mask corresponding to the

output yj which Ss3pc can compute since he learns the entire λ-masks

during the offline phase.

Figure 18: Simulator Ss3pc for the case of corrupt P0

The proof now simply follows from the fact that simulated view

and real-world view of the adversary are computationally indistin-

guishable. �

We next consider the case, when the adversary corrupts one of

the evaluators. Without loss of generality, we consider the case of

a corrupt P1 and the case of a corrupt P2 is handled symmetrically.

Intuitively, the security, in this case, follows from the fact that

each λ-mask is random (from the properties of the underlying PRF)

and the one share that is learned by corrupt P1 for each mask

leaks nothing about them and hence the masked values reveal no

additional information about the actual values over the wires.

Theorem B.2. Protocol Πs
3pc securely realizes the functionality

F3pc against a static, semi-honest adversary A in the Fsetup-hybrid
model, who corrupts P1 (and similarly P2).

Proof. LetA be a real-world semi-honest adversary corrupting

the evaluator P1 during the protocol Π
s
3pc. We now present the steps

of the ideal-world adversary (simulator) Ss3pc for A for this case in

Figure 19. At a high level, Ss3pc itself does the honest pre-processing

on the behalf of P0 and will simulate the entire circuit-evaluation,

assuming the circuit-inputs of P0 and P2 to be 0. In the output-

reconstruction stage, it “adjusts" the shares of circuit-output values

on the behalf of P2 so that A sees the same function output as in

the real-world protocol.

The simulator plays the role of the honest parties P0, P2 and simulates

each step of the protocol Πs
3pc to corrupt P1 as follows and finally outputs

A’s output.

Offline Phase: Ss3pc emulates Fsetup and gives k01, k12 and kP to P1.

Ss3pc chooses a random key k02. With these, Ss3pc, on the behalf of P0,
executes the offline steps of the instances of Πs

Sh, Π
s
Mul and ΠAdd for

circuit-inputs, multiplication and addition gates respectively. In the pro-

cess, it learns the masks for each wire in the ckt and γ -values for each
multiplication gate.

Online Phase:

– Sharing Circuit-input Values: For every circuit-input x j that P0 inputs,
Ss3pc sets x j = 0 and simulates the messages of P0 as part of the online
steps of Πs

Sh(P0, x j ).The inputs owned by P2 are simulated similarly.

– Gate Evaluation: The simulator simulates the evaluation of each gate

g according to the topological order. No simulation is needed for an

addition gate. If g is a multiplication gate, then the simulator simulates

the messages of P2 as part of the online steps of the corresponding
instance of Πs

Mul.

– Output Reconstruction: For j = 1, . . . , O let [λyj ] = (λyj ,1, λyj ,2) be
the sharing, available with the simulator and letmyj be the simulated

masked output, corresponding to yj , available with A. On input

{xi }’s, the inputs of corrupt P1 and the function output (y1, . . . , yO),
as part of online steps of the instance Πs

Rec([λyj ]), the simulator sends

myj − λyj ,1 − yj as the share of λyj , on the behalf of P2 to A.

Figure 19: Simulator Ss3pc for the case of corrupt P1

It is easy to see that the simulated view and the real-world view

of the adversary are computationally indistinguishable. �

C 3PCWITH MALICIOUS SECURITY
Here we prove that Πm

3pc securely realizes the standard ideal-world

functionality F Abort
3pc (Figure 9) for securely evaluating any arith-

metic circuit over Z
2
ℓ with selective abort. Our proof works in

{Fsetup, Ftrip}-hybrid model.

Fsetup interacts with the parties in P and the adversary S. Fsetup picks

random keys k01, k02, k12, kP ∈ {0, 1}κ .
Output to adversary: If S sends abort, then send (Output, ⊥) to all

the parties. Otherwise, send (Output, yi ) to the adversary S, where

yi = (ki1, ki2, kP ) when P0 is corrupt and yi = (k0i , k12, kP ) when
Pi ∈ {P1, P2 } is corrupt.
Output to selected honest parties: Receive (select, {I }) from
adversary S, where {I } denotes a subset of the honest parties. If an
honest party Pi belongs to I , send (Output, ⊥), else send (Output, yi ).
Here yi = (ki1, ki2, kP ) when Pi = P0 and yi = (k0i , k12, kP ) when
Pi ∈ {P1, P2 }

Figure 20: Functionality Fsetup (malicious)

Since the protocol Πm
3pc differs from Πs

3pc mainly in three protocols

– sharing (Πm
Sh), reconstruction (Πm

Rec) and multiplication (Πm
Mul)

protocols, we provide the details of simulation for the same. We

begin with the case, when P0 is corrupted.

Theorem C.1. In {Fsetup, Ftrip}-hybrid model, Πm
3pc securely re-

alizes the functionality F Abort
3pc against a static, malicious adversary

A, who corrupts P0.

Proof. Let A be a real-world malicious adversary corrupting

P0 during Πm
3pc. We present an ideal-world adversary (simulator)

Sm3pc for A, who plays the roles of honest P1, P2 and simulates the



messages received by P0 during the protocol. The simulation is

similar as in the semi-honest setting, where the simulator simu-

lates P1, P2 with random inputs and keeps track of all the values

that the parties (both honest and corrupt) are supposed to hold.

Based on this, the simulator can find out whether the corrupt P0
is sending an incorrect message(s) in any of the sub-protocols and

accordingly simulates honest parties aborting the protocol. The

simulator initializes a Boolean variable flag = 0, which indicates

whether the honest parties abort during the simulation. Similar

to the semi-honest setting, Sm3pc invokes the simulator Smsetup and

learns the shared keys among P0-P1 and P0-P2, namely k01 and k02
and the key kP . From the shared keys, it learns the λ-masks for

all the wires in ckt. The details of Sm3pc for the offline phase is as

follows:

– Offline Step of the instances Πm
Sh and Πm

Rec: Here the simulator

has to simulate nothing, as the offline phase involves no commu-

nication.

– Offline Step of the instances Πm
Mul(wx j ,wy j ,wz j ): The simulator

receives γx jyj ,2 from A on behalf of P2. Simulator then picks

random δx j , δyj and δzj and their [·]-shares on behalf of P1, P2
and honestly simulates the messages of P1, P2 as per the protocol
Πm
Mul. Namely, the simulator learns fromA the inputs withwhich

P0 wants to call Ftrip. If the input of P0 to Ftrip is ⊥, then the

simulator sets flag = 1, else the simulator plays the role of Ftrip
honestly with the inputs received on behalf of P0 and generates

a ⟦·⟧-sharing of a randomly chosen multiplication triplet (d, e, f).
On behalf of P1, P2, the simulator sends to A the [·]-shares of

χ . For the instance of Πprc, the simulator honestly simulates

the messages of P1, P2 towards P0. Moreover, the simulator sets

flag = 1, if it finds that γx jyj , λx j λyj .

The details of Sm3pc for simulating the messages of the online

phase are as follows. Informally, the simulator extracts the circuit-

inputs of P0 from the masked circuit-inputs which P0 sends to

the evaluators since the simulator will know the corresponding

mask. The simulator then sets the circuit-inputs of P1, P2 to some

arbitrary values and simulates the steps of the online phase. During

the evaluation of multiplication gates, P0 receives versions of m⋆
x

andm⋆
y , which can be easily simulated as the simulator has selected

them. Finally, while simulating the public reconstruction of ⟦·⟧-
shared circuit-outputs, the simulator adjusts the shares of P1, P2, so
that P0 receives the same output as it would have received in the

execution of the real-world protocol. As done in the simulation of

the offline phase, the simulator keeps track of all the values that

the corrupt P0 possess and sets flag = 1 if it finds that P0 is sending
an inconsistent value during the simulated execution.

– Online Step of the instances Πm
Sh(Pi , x j ): If Pi = P0, then the sim-

ulator receives mx j and m′x j from A on behalf of P1 and P2 re-

spectively. The simulator sets flag = 1 if it finds that mx j , m′x j ,
else it extracts the inputs x j of P0 as x j = mx j − λx j , where λx j
is the mask which the simulator learnt during the offline step. If

Pi ∈ {P1, P2}, then nothing needs to be simulated as P0 does not
receive any message as a part of online step of such instances

of Πm
Sh(Pi , x j ). For such instances, the simulator sets x j = 0 and

accordingly computes the simulated ⟦x j⟧.

– Online Step of the instances Πm
Mul(wx j ,wy j ,wz j ): The simula-

tor honestly performs the steps of P1, P2 for this instance and
computes the simulated ⟦zj⟧. On behalf of P1, the simulator

sends m⋆
x j = mx j + δx j and m⋆

yj = myj + δyj to A, while he

sends hash of the same to A on behalf of P2. The simulator

receives H(m⋆
zj ) and H(m⋆

z′j
) from A on behalf of P1 and P2 re-

spectively. The simulator sets flag = 1 if H(m⋆
zj ) , H(m⋆

z′j
) or if

H(m⋆
zj ) , H(mzj −m

⋆
x jm

⋆
yj + δzj ).

– Obtaining function outputs: If flag is set to 1 during any step of the
simulation till now, then the simulator sends ⊥ to F Abort

3pc , which

corresponds to the case that in the real-world protocol, the honest

parties abort before reaching to the output-reconstruction stage,

implying that no party receives the output. Else the simulator

sends inputs {x j } extracted on behalf of P0 to F
Abort
3pc and receives

the function outputs y1, . . . ,yO.

– Simulating the instances of Πm
Rec(⋆,P) during the output- recon-

struction: For j = 1, . . . ,O, let [λyj ] = (λyj ,1, λyj ,2) be the [·]-

shared mask, corresponding to the jth circuit-output, available

with the simulator. Then as a part of the jth instance of Πm
Rec, the

simulator sendsyj +λyj andH(yj +λyj ) toA on behalf of P1 and
P2 respectively. Moreover, the simulator receives H(λy′j ,i ) from
A on behalf of Pi for i ∈ {1, 2}. The simulator initializes the set

I to �. If H(λy′j ,i ,1) , H(λyj ,i ,1) then the simulator includes Pi

to the set I . The simulator then sends the set I to F Abort
3pc and

terminates.

The proof now follows from the fact that simulated view and real-

world view of a corrupt P0 are computationally indistinguishable.

�

We next consider the case, when the adversary corrupts one of

the evaluators, say P1.

Theorem C.2. In the {Fsetup, Ftrip}-hybrid model, Πm
3pc securely

realizes the functionality F Abort
3pc against a static, malicious adversary

A, who corrupts P1.

Proof. The correctness follows similar to Theorem C.1. We

now focus on privacy. Let A be a real-world malicious adversary

corrupting the evaluator P1 during the protocol Π
m
3pc. We present

an ideal-world adversary (simulator) Sm3pc for A, who plays the

roles of honest P0, P2 and simulates the messages received by P1
during the protocol. Sm3pc invokes the simulator Smsetup and learns

the shared keys among P1-P0 and P1-P2, namely k01 and k12 and
the key kP . In addition, Sm3pc chooses a random key k02. The details

of Sm3pc for the offline phase is as follows:

– Offline Step of the instances Πm
Sh and Πm

Rec: Here the simulator

has to simulate nothing, as the offline phase involves no commu-

nication.

– Offline Step of the instances Πm
Mul(wx j ,wy j ,wz j ): On behalf of P0,

the simulator computes γx jyj = λx j λyj . In addition, simulator

learns γx jyj ,1 that A computes, for the shared key k01. With

these, simulator computes γx jyj ,2 = γx jyj −γx jyj ,1. On behalf of

P2, simulator computes δx j , δyj , δzj ,1 and δzj ,2 using the key k12.
The simulator receives from A, the input with which P1 wants



to call Ftrip. If this input is ⊥, then the simulator sets flag = 1.

Else the simulator itself honestly performs the steps of Ftrip and

generates ⟦·⟧-sharing of a random multiplication triplet (d, e, f).
The simulator then receives χ1 from A on behalf of P0. The
simulator then computes ⟦a⟧, ⟦b⟧, ⟦c⟧ and honestly executes the

steps of Πprc on behalf of P0, P2. Moreover, the simulator sets

flag = 1, if χ1 , δx j λyj ,1 + δyj λx j ,1 + δzj ,1 − γx jyj ,1, else the
simulator computes χ = χ1 + χ2.

The details of Sm3pc for simulating the messages of the online phase

are as follows.

– Online Step of the instances Πm
Sh(Pi , x j ): If Pi = P0, then on behalf

of P0, the simulator sets x j = 0 and sends mx j = 0 + λx j to A.

Then on behalf of P2, the simulator receives H(mx ′j ) from A,

which P1 wants to send to P2; the simulator sets flag = 1 if it

finds that H(mx ′j ) , H(mx j ). If Pi = P1, then on behalf of P2, the

simulator receives mx j from A, which P1 wants to send to P2
and extract the input x j = mx j − λx j of P1. If Pi = P2, then the

simulator sets x j = 0 and sends mx j = 0 + λx j to A on behalf of

P2.

– Online Step of the instances Πm
Mul(wx j ,wy j ,wz j ): On behalf of

P2, the simulator honestly sends the [·]-share of mzj to A. Then

on behalf of P2, the simulator receives from A the [·]-share of

mzj , which P1 wants to send to P2. The simulator checks if this

share is correct and accordingly sets flag = 1. The simulator

then receives m⋆
x j and m⋆

yj from A on behalf of P0, which P1

wants to send to P0. The simulator sets flag = 1, if it finds that

m⋆
x j , mx j + δx j or m

⋆
yj , myj + δyj . On behalf of P0, the

simulator sends m⋆
zj = −λyj ·m

⋆
x j − λx j ·m

⋆
yj + δzj + 2γx jyj + χ

to A.

– Obtaining function outputs: If flag is set to 1 during any step of

the simulation till now, then the simulator sends ⊥ to F Abort
3pc .

Else the simulator sends inputs x j extracted on behalf of P1 to

F Abort
3pc and receives the function outputs y1, . . . ,yO.

– Simulating the instances of Πm
Rec(⋆,P) during the output- recon-

struction: For j = 1, . . . ,O, let (λyj ,1,myj ) be the share of P1
available with the simulator, as a part of the simulated output

sharing ⟦yj⟧. Then as a part of Πm
Rec(⟦yj⟧,P), on behalf of P2 and

P0, the simulator sendsmyj −λyj ,1−yj andH(myj −λyj ,1−yj ) re-
spectively toA, which ensures thatA reconstructsmyj −λyj ,1−
(myj − λyj ,1 − yj ) = yj . On behalf of P0 and P2 respectively, the
simulator receives my′j and H(λ′yj ,1) from A, which P1 wants to

send to P0 and P2 respectively as a part of Πm
Rec(⟦yj⟧,P). The

simulator initializes the set I to �. The simulator includes P0 to I
if it finds that my′j , myj . Similarly, the simulator includes P2 to

I , if it finds that H(λ′yj ,1) , H(λyj ,1). The simulator then sends

the set I to F Abort
3pc and terminates.

It is easy to see that the simulated and real-world views of the

adversary are computationally indistinguishable. �
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