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Abstract. The combination of universal hashing and encryption is a
fundamental paradigm for the construction of symmetric-key MACs, dat-
ing back to the seminal works by Wegman and Carter, Shoup, and Bern-
stein. While fully sufficient for many practical applications, the Wegman-
Carter construction, however, is well-known to break if nonces are ever re-
peated, and provides only birthday-bound security if instantiated with a
permutation. Those limitations inspired the community to several recent
proposals that addressed them, initiated by Cogliati et al.’s Encrypted
Wegman-Carter Davies-Meyer (EWCDM) construction.
This work extends this line of research by studying two constructions
based on the sum of PRPs: (1) a stateless deterministic scheme that
uses two hash functions, and (2) a nonce-based scheme with one hash-
function call and a nonce. We show up to 2n/3-bit security for both
of them if the hash function is universal. Compared to the EWCDM
construction, our proposals avoid the fact that a single reuse of a nonce
can lead to a break.

Keywords: Symmetric-key cryptography · authentication · provable security
· permutation · beyond-birthday security · pseudorandom function · universal
hashing.

1 Introduction

Message Authentication Codes (MACs) aim to guarantee the authenticity
and integrity of submitted messages. So, a receiver can successfully determine
with high probability whether a given pair (m, t) of message and tag has been
generated by the legitimate sender and has been transmitted correctly or not.
MACs can be stateless deterministic, randomized, stateful; in general, one also
distinguishes nonce-based constructions where the sender is responsible to supply
a unique nonce to each message to be authenticated. Since cryptographically
secure randomness can be expensive to obtain in various settings, our focus is
on stateless and nonce-based constructions, hereafter.

While the primary goal of a MAC is unforgeability, indistinguishability from
random bits can be a valuable replacement goal to evaluate the security. If tags
are indistinguishable from random, they are also hard to forge.



The Wegman-Carter approach [35] is a popular and efficient paradigm for
constructing secure MACs. There, a given message is first compressed with a uni-
versal hash function before the result is processed by a cryptographically secure
random function. The initial approach added the hash hk′(m) of a given message
m to a key stream k to create a tag: t = hk′(m)⊕k; in practice, the key stream is
supposed to be computed from some secure pseudorandom function F (ν) from
some nonce ν. In [34], Shoup replaced the function F with a permutation, ad-
dressing the fact that there exist a number of standardized and well-analyzed
block ciphers. Bernstein later proved the security of Shoup’s construction, e.g.,
[3]. Bernstein’s well-known bound still ensures that the advantage for any adver-
sary that asks 2n/2 authentication queries [2] is bounded by 1.7qvℓ/2

n, where
qv is the number of verification queries and ℓ is the maximal message length,
usually in terms of elements of a ring or field used in h. Throughout this work,
we adopt the common way of referring to security bounds that are negligible up
to O(2n/2) blocks or queries as n/2 bits of security.

Despite its simplicity, one can identify two interesting directions of extend-
ing the Wegman-Carter construction. The first concerns the nonce requirement,
which is a well-known considerable risk: If a single nonce is repeated only once,
the security of the construction may collapse completely since the hash-function
key could leak. Secondly, even if nonces never repeat, its security is inherently
limited by Bernstein’s bound, which is of birthday-bound type. Recent works
showed that Bernstein’s bound is tight [22,28], which means that the original
construction cannot provide higher security.

An ongoing series of research aims to find constructions with higher secu-
rity guarantees that retained some security also under nonce reuse. As one of the
starting points, one could identify the proposal of the Encrypted Davies-Meyer
(EDM) and the Encrypted Wegman-Carter Davies-Meyer (EWCDM) modes by
Cogliati et al. [9]. While EDM is a PRP-to-PRF conversion method and therefore
restricted to inputs of n bits length, EWCDM supports nonce-based authenti-
cation for variable-input-length messages as does the original Wegman-Carter
construction. In EWCDM, a nonce ν is first processed by the Davies-Meyer
construction under a permutation π1; its result is XORed with the hash of a
message m and the sum is encrypted under a second independent permutation:
π2(π1(ν) ⊕ ν ⊕ hk′(m)). EDM misses the hash and uses ν as the only message
input. Its authors showed that both constructions provide at least 2n/3-bit se-
curity. Recently, Cogliati and Seurin [10] showed that one can use the same
permutation twice in EDM while retaining 2n/3-bit security.

Mennink and Neves [24] improved on EWCDM. They proved almost full (i.e.,
n-bit) security for EDM and EWCDM and they further proved the full n-bit se-
curity of a newly proposed dual, EDMD and EWCDMD. As a side effect, they
made Patarin’s Mirror Theory [30,31,32] easier to grasp for a broader audience.
Although Nandi [27] pointed out a slip in [24], which meant that the security of
the nonce-based version of its dual, EWCDMD, is still limited by the birthday
bound, the work by Mennink and Neves opened the gates for a wider study of
possible constructions. At CRYPTO’18, Datta et al. [13] extended this direc-
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tion of research by the Decrypted Wegman-Carter Davies-Meyer construction
(DWCDM), a single-key variant of EWCDM that employs the permutation in
both directions. The maximal security of their construction was capped by 2n/3
bits by design.

An alternative approach has been taken by Cogliati et al. [8]. They proposed
four generic constructions based on the composition of universal hashing and
a block cipher: Hash-as-Tweak (HaT), Nonce-as-Tweak (NaT), Hash-as-Key
(HaK), and Nonce-as-Key (NaK). They proved n-bit security for all construc-
tions in the ideal-permutation model (assuming a universal hash function). How-
ever, the former two constructions require a tweakable primitive, whereas the
latter two require message-dependent rekeying.

We can identify four desiderata for interesting MACs based on permutations
and universal hashing. In terms of security, the adversary’s advantage should re-
main negligible for ℓq ≫ 2n/2. In terms of simplicity, the number of calls to the
primitive(s) should be minimized. For efficiency, their calls should be paralleliz-
able, and frequent rekeying should be avoided. Last but not least, they should
support variable-length messages. So, inspite of recent advances, it remains an
interesting question how one can generally achieve those aspects for stateless
deterministic and/or nonce-based constructions.

Contribution. This work analyzes two constructions based on permutations
and universal hashing with the help of the Mirror Theory. Our first construction
is stateless deterministic whereas our second is nonce-based. We name them
HPxNP and HPxHP, according to the fact whether they employ a universal
hash function (HP) or a nonce (NP) as inputs to the permutation. Figure 1
illustrates them schematically. We show that both modes provide O(2n/3) bits
of security asymptotically.

Outline. Hereupon, we first cover briefly the necessary preliminaries used in
this work, including a brief recap of Patarin’s Mirror Theory. Thereupon, Sec-
tion 3 proposes our three constructions whose security is then analyzed in the
subsequent Sections 4 and 5. Section 6 concludes.

Remark 1. We note that the HPxHP construction is clearly not novel, but an
abstraction of a variety of existing double-lane MACs, e.g., 3kf9 [38], GCM-
SIV-2 [19], or PMAC+ [37]. However, in its abstract form, it has been studied
by Datta et al. [11] (the same authors already had studied the construction
in [12]) from a constructive view; in parallel to our work, Dutta et al. also
analyzed a variant of HPxNP with a single bit for domain separation in [16],
where they also showed O(q3/22n) bits of security. Recently, Leurent et al. [21]
also studied an attacking view. More precisely, Leurent et al. [21] proposed a
forgery attack with data complexity of O(23n/4) for such constructions. We also
take the constructive view, so that our derived security bound is also inherently
limited by the result by Leurent et al.; moreover, at the end of each analysis
section, we further discuss the effect of using 4-wise independent hash functions
for our constructions, with the positive result that the then-obtained security
bounds render their result inapplicable and lead to higher security.
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Fig. 1: Our proposed constructions. π1 and π2 represent two permutations over {0, 1}n,
h1 and h2 two universal hash functions, m a variable-length message, ν, ν1, and ν2

nonces of fixed length, and t the authentication tag.

2 Preliminaries

General Notations. We use calligraphic uppercase letters X ,Y for sets. We
write {0, 1}n for the set of bit strings of length n, and denote the concatenation
of binary strings x and y by x ‖ y and the result of their bitwise XOR by x⊕ y.
We write x և X to mean that x is chosen uniformly at random from the set X .
We consider Func(X ,Y) to be the set of all deterministic mappings F : X → Y
and Perm(X ) to be the set of all permutations over X . Given an event E, we
denote by Pr[E] the probability of E. For two integers n, k with n ≥ k ≥ 1, we

denote the falling factorial as (n)k
def
=

∏k−1
i=0 (n− i).

A (complexity-theoretic) distinguisher A is an efficient adversary, i.e., an
efficient Turing machine that is given access to a number of oraclesO which it can
interact with. The task ofA is to distinguish between two worlds of oracles, one of
which is chosen at the beginning of the experiment uniformly at random. After its
interaction,A outputs a bit that represents a guess of the world thatA interacted
with. The distinguishing advantage between a real world P and an ideal world

O is given by ∆A (P ,O)
def
=

∣

∣Pr
[

AP ⇒ 1
]

− Pr
[

AO ⇒ 1
]∣

∣. Throughout this
work, we consider information-theoretic distinguishers, i.e., distinguishers that
are computationally unbounded, and that are limited only by the number of
queries they can ask to their available oracles. We assume that distinguishers
do not ask duplicate queries or queries to which they already can compute the
answer themselves from earlier queries, as is common. W.l.o.g., we limit our
interest to deterministic distinguishers since for each probabilistic distinguisher,
there exists a deterministic one with equal advantage that fixed a random tape
beforehand (cf. [1,7]).

We briefly recall the definitions for the advantage of distinguishing a construc-
tion from a random function (PRF) and from a random permutation (PRP),
respectively.
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Definition 1 (PRF Advantage). Let K, X , and Y be non-empty sets and let
F : K × X → Y and ρ և Func(X ,Y) and k և K. Then, the PRF advantage of

A w.r.t. F is defined as AdvPRF
F (A)

def
= ∆A (Fk, ρ).

A keyed permutation E : K × X → X is a family of permutation over X
indexed by a key K ∈ K.

Definition 2 (PRP Advantage). Let K and X be non-empty sets, E : K ×
X → X be a keyed permutation, and let π և Perm(X ) and k և K. Then, the

PRP advantage of A w.r.t. F is defined as AdvPRP
Ek

(A)
def
= ∆A (Ek, π).

To recall the necessary definitions for universal hashing, let X and Y denote
two non-empty sets, and H = {h : X → Y} be a family of hash functions h.

Definition 3 (Almost-Universal Hash Function [5]). We say that H is ε-
almost-universal (ε-AU) if, for all distinct x, x′ ∈ X , it holds that PrhևH[h(x) =
h(x′)] ≤ ε.

Almost-XOR-universal hash functions were introduced in [20]; the term, how-
ever, is due to Rogaway [33].

Definition 4 (Almost-XOR-Universal Hash Function [20,33]). Here, let
Y ⊆ {0, 1}n for some positive integer n. We say that H is ε-almost-XOR-
universal (ε-AXU) if, for all distinct x, x′ ∈ X and arbitrary ∆ ∈ Y, it holds
that PrhևH[h(x)⊕ h(x′) = ∆] ≤ ε.

Definition 5 (k-wise Independence [36]). We say that H is k-independent
if, for all pair-wise distinct x1, . . . xk ∈ X and all y1, . . . , yk ∈ Yk, it holds that
PrhևH[h(xi) = yi, for 1 ≤ i ≤ k] = 1/|Y|k.

2.1 H-coefficient Technique

The H-coefficients technique is a proof method due to Patarin, where we consider
the variant by Chen and Steinberger [7,29]. The results of the interaction of
an adversary A with its oracles are collected in a transcript τ . The oracles can
sample randomness prior to the interaction (often a key or an ideal primitive that
is sampled beforehand), and are then deterministic throughout the experiment
[7]. The task ofA is to distinguish the real worldOreal from the ideal worldOideal.
Let Θreal andΘideal denote the distribution of transcripts in the real and the ideal
world, respectively. A transcript τ is called attainable if the probability to obtain
τ in the ideal world – i.e. over Θideal – is non-zero. Then, the fundamental Lemma
of the H-coefficients technique, the proof to which is given in [7,29], states:

Lemma 1 (Fundamental Lemma of the H-coefficient Technique [29]).
Assume, the set of attainable transcripts can be partitioned into two disjoint
sets GoodT and BadT. Further assume that there exist ǫ1, ǫ2 ≥ 0 such that for
any transcript τ ∈ GoodT, it holds that

Pr [Θreal = τ ]

Pr [Θideal = τ ]
≥ 1− ǫ1, and Pr [Θideal ∈ BadT] ≤ ǫ2.

Then, for all adversaries A, it holds that ∆A (Oreal,Oideal) ≤ ǫ1 + ǫ2.
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2.2 Mirror Theory

We will combine the H-coefficient technique with Patarin’s Mirror Theory, which
allows us to lower bound the amount of good transcripts. Taking the ratio yields
then the probability to obtain a good transcript. In the following, we briefly
recall the necessary definitions according to the Mirror Theory according to [24]
that followed Patarin [30,31].

Remark 2. Mirror Theory became popular to a broader audience after its refor-
mulation by Mennink and Neves [24]. While the core ideas are not difficult to
understand, the proof by Patarin in [30] employed a recursive argument that
has been subject to intensive debates in the past, cf. [13,24]. The correctness of
the argument for the first recursion has been established, where Patarin showed
O(2n/3) bits of security for the sum of permutations [30]. Patarin’s proof had
to approximate the second recursion; a full proof would have to continue on for
many further recursions with an exponentional number of cases, which seems a
highly sophisticated task. Clearly, it is out of scope of this work.

Instead of relying on the assumptions of the full Mirror Theory, we follow
the line of e.g., [13,23] and consider it not for full n-bit security. In this work,
we require only up to O(2n/3) bits of security, thus, effectively relying only the
first recursion.

Mirror theory evaluates the number of possible solutions to a system of affine
equations of the form Pai

⊕Pbi = λi in a finite group. Let q ≥ 1 denote a number
of equations and r ≥ 1 a number of unknowns. Let P = {P1, . . . , Pr} represent
the set of r distinct unknowns and consider an equation system

E =
{

Pa1 ⊕ Pb1 = λ1, . . . , Paq
⊕ Pbq = λq

}

,

where ai, bi for 1 ≤ i ≤ q are mapped to {1, . . . , r} by a surjective index mapping
ϕ : {a1, b1, . . . , aq, bq} → {1, . . . , r}. Given a subset of equations I ⊆ {1, . . . , q},
the multiset MI is defined as MI =

⋃

i∈I{ϕ(ai), ϕ(bi)}.

Definition 6 (Circle-freeness). An equation system E is circle-free if there ex-
ists no subset of indices I ⊆ {1, . . . , q} of equations s.t. MI has even multiplicity
elements only.

So, no linear combination of equations is independent of the unknowns.

Definition 7 (Block-maximality). Let Q1, . . . ,Qs = {1, . . . , r} be a parti-
tioning of the r indices into s minimal so-called blocks s.t. for all equation indices
i ∈ {1, . . . , q}, there exists a single block index ℓ ∈ {1, . . . , s} s.t. the unknowns
of the i-th equation are contained in only this block: {ϕ(ai), ϕ(bi)} ⊆ Qℓ. Then,
the system of equations E is called ξ-block-maximal for ξ ≥ 2 if there exists no
i ∈ {1, . . . , s} s.t. |Qi| > ξ.

So, the unknowns can be partitioned into blocks of size at most ξ + 1 if E is
ξ-block-maximal.
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Definition 8 (Non-degeneracy). A system of equations E is non-degenerate
iff there is no I ⊆ {1, . . . , q} s.t. MI has exactly two odd multiplicity elements
and

⊕

i∈I λi = 0.

So, an equation system is non-degenerate if there is no linear combination of
one or more equations that imply Pi = Pj for distinct i, j and Pi, Pj ∈ P . The
central theorem of Patarin’s mirror theorem is then Theorem 2 in [24], which
itself is a brief form of Theorem 6 in [30].

Theorem 1 (Mirror Theorem [24]). Let ξ ≥ 2. Let E be a system of equa-
tions over the unknowns P that is (i) circle-free, (ii) ξ-block-maximal, and (iii)
non-degenerate. Then, as long as (ξ − 1)2 · r ≤ 2n/67, the number of solutions
s.t. Pi 6= Pj for all pairwise distinct i, j ∈ {1, . . . , r} is at least

(2n)r
(2n)q

.

A proof sketch is given in [24, Appendix A], and the details in [30]. An
updated proof had been given in [26].

Mennink and Neves described a relaxation wherein the condition that two
unknowns Pa and Pb must differ whenever a and b differ is released to the degree
that distinct unknowns must be pairwise distinct only inside their blocks. So, it
must hold for a 6= b that Pa 6= Pb when a, b ∈ Rj for some j ∈ {1, . . . , s} for a
given partitioning {1, . . . , r} =

⋃s
i=1 Ri.

Definition 9 (Relaxed Non-degeneracy). An equation system E is relaxed
non-degenerate w.r.t. the partitioning {1, . . . , r} =

⋃s
i=1 Ri iff there is no I ⊆

{1, . . . , q} s.t. MI has exactly two odd multiplicity elements and
⊕

i∈I λi = 0.

In [24, Theorem 3], Mennink and Neves extend Theorem 1 to the following
relaxed form:

Theorem 2 (Relaxed Mirror Theorem [24]). Let ξ ≥ 2 and let {1, . . . , r} =
⋃s

i=1 Ri be a partition of the r indices. Let E be a system of equations over the
unknowns P that is (i) circle-free, (ii) ξ-block-maximal, and (iii) non-degenerate
w.r.t. the partition {1, . . . , r}. Then, as long as (ξ − 1)2 · r ≤ 2n/67, the number
of solutions s.t. Pi 6= Pj for all pairwise distinct i, j ∈ {1, . . . , r} is at least

NonEq(R1, . . . ,Rs; E)

(2n)q
,

where NonEq(R1, . . . ,Rs; E) is the number of solutions to P that satisfy Pa 6= Pb

for all a, b ∈ Rj for all 1 ≤ j ≤ s as well as all inequalities (the equalities released)
by E .

Mennink and Neves stress that the relaxed Theorem 2 is equivalent to Theo-
rem 1 for s = 1, i.e., when the equation system consists of a single block. More-
over, the number of solutions that are covered in the term NonEq(R1, . . . ,Rs; E)
can be lower bounded by (2n)|R1| ·

∏s
i=2 (2

n − (ξ − 1))|Ri|
since every variable is

in exactly one block which imposes at most ξ − 1 additional inequalities to the
other unknowns in its block.
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Remark 3. We consider PRF security in the information-theoretic setting, simi-
lar as [24]. The underlying permutations are secret and assumed to be drawn uni-
formly at random from Perm({0, 1}n). Our results generalize to the complexity-
theoretic setting. There, the permutations π1 and π2 are supposed to be instan-
tiated with a block cipher E under independent random secret keys k1 and k2,
Ek1 and Ek2 , respectively. The bounds from this paper can be easily adapted
to the complexity-theoretic setting by adding a term of 2 · AdvPRP

Ek
(q). The

term refers to twice the maximal advantage for an adversary A′ to distinguish
E : K × {0, 1}n → {0, 1}n keyed with a random key k և K from a random
permutation π, where A asks at most q queries. Note that we only employ the
forward direction of the permutation; therefore, PRP security suffices and we
do not need to consider the strong variant.

3 Constructions

Let n ≥ 1 be a positive integer, and let K denote a non-empty set. Let π1, π2 և

Perm({0, 1}n) be independently uniformly at random sampled permutations over
n-bit strings. Let H = {h | h : {0, 1}∗ → {0, 1}n} be a family of ε1-AXU hash
functions; for HPxHP, we will define and use instead H1 = {h1 | h1 : {0, 1}∗ →
{0, 1}n} be a family of ε1-AU hash functions, and H2 = {h2 | h2 : {0, 1}∗ →
{0, 1}n} be a family of ε2-AU hash functions. We require the hash functions
to be sampled independently uniformly at random. Usually, the hash function
instances are determined by sampling a hash key independently uniformly at
random for each instance.

Our first, nonce-based construction, HPxNP, is illustrated in Figure 1a.
It shares similarities with Minematsu’s Enhanced Hash-then-Mask construc-
tion [25] that had been analyzed further in [14,15]; however, Minematsu’s con-
struction used a function instead of a permutation and a per-message random
IV. In this construction, the message is hashed to an n-bit value h(m). For this
construction, we need H to be an ε-almost-XOR-universal family of hash func-
tions. An n-bit nonce ν is XORed to the hash u to obtain v := h(m)⊕ ν; v and
ν serve as inputs to the two calls to a permutation π1 and π2, respectively, and
yield x := π1(v) and y := π2(ν). Finally, the outputs of the permutation calls
are XORed and released as authentication tag: t := x⊕ y.

Our second construction, HPxHP, is illustrated in Figure 1b. It consists of
two parallel invocations of the hash functions on the input message m ∈ {0, 1}∗

that are hashed using h1 ∈ H1 and h2 ∈ H2, respectively, to two n-bit values
u and v. Those serve as inputs to the two calls to a permutation π1 and π2,
respectively and yield x := π1(u) and y := π2(v). Finally, the outputs of the
permutation calls are XORed and released as authentication tag: t := x⊕ y.

In practice, the permutations π1 and π2 will be instantiated with a secure
block cipher E under two independent keys k1 and k2. An intuitive choice for
the hash function is, for example, polynomial hashing. Let F2n be the Galois
Field GF (2n) with a fixed primitive polynomial p(x). For n = 128, the GCM
polynomial p(x) = x

128 + x
7 + x

2 + x+ 1 is a usual choice. The hash function is
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instantiated by sampling a hash key k և F2n . Given k and a messagem ∈ (F2n)
ℓ

of ℓ blocks, polynomial hashing is then defined as the sum of

hk(m)
def
=

ℓ
∑

i=1

kℓ+1−i ·mi,

where mi denotes the i-th message block and additions as well as multiplications
are in F2n .

It is well-known that for maximal message lengths of ℓ blocks (after padding),
polynomial hashing is ε-AXU for ε = ℓ/2n, and therefore also ℓ/2n-AU. Note
that polynomial hashing requires an injective padding to prevent trivial hash
collisions; a simple 10∗-padding works, but may extend messages by one block.

While the sum of a polynomial hash is sequential, computing the individ-
ual terms on a few cores in parallel is well-known at the cost of storing multiple
powers of the hash key. For instance, optimized instances of GCM parallelize the
computations of four (or eight) subsequent blocks k4 ·mi, k

3 ·mi+1, k
2 ·mi+2, and

k4 ·mi+3, before their results are summed, reduced by the modulus, and summed
to the sum of the previous blocks

∑i−1
j=1 k

jmj [17,18]. Thus, several hash multi-
plications, or two hash-function calls, or hashing and computing a permutation
are efficiently parallelizable as long as the platform is not too resource-restricted.
Note that a number of related hash functions exist with similar security proper-
ties; pseudo-dot-product hashing, BRW hashing, or combined approaches such
as [6] can half the number of necessary multiplications, and provide similar par-
allelizability. We refer the interested reader to an overview by Bernstein [4].

4 Security Analysis of HPxNP

First, we consider the construction HPxNP. Patarin’s approach [30] allows us to
obtain a bound of O(2n/3) bits of security. At the end of this section, we discuss
the implications of considering ξaverage instead, as was also suggested ibidem.

Theorem 3. Let n ≥ 1, ξ ≥ 2 be integers, and H = {h |h : {0, 1}∗ → {0, 1}n}
be a family of ε-AXU hash functions with h և H. For any nonce-respecting PRF
distinguisher A that asks at most q ≤ 2n/(67ξ2) queries, it holds that

AdvPRF
HPxNP[h,π1,π2](A) ≤

2q2 · ε

ξ2
+

(

q
2

)

· ε

2n
+

q

2n
.

Note that in this case, the optimal choice of ξ to obtain the best bound is
2n/6, assuming that ε ∈ O(2−n). Then, the bound in Theorem 3 is dominated
by the first term of O(q2/24n/3 + q2/22n + q/2n), while the number of queries is
allowed to be q ≤ 22n/3. Other values for ξ reduce either the security bound or
the number of queries.

The remainder of this section is devoted to show Theorem 3. Here, A makes
q construction queries (νi,mi), for 1 ≤ i ≤ q, that are stored together with
the query results ti in a transcript τ = {(νi,m1, t1), . . . , (νq,mq, tq)}. In both
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worlds, the oracle samples h at the beginning uniformly at random from all hash
instances. A sees the results ti after each query. We employ a common method
to alleviate the proof: after the adversary finished its interaction with the oracle,
but before outputting its final decision bit, A is given the hash-function instance
h so that it can compute the values u1, . . . , uq itself. Clearly, this only makes the
adversary stronger, but spares the need to discuss security internals of the hash
function.

Let 1 ≤ r ≤ 2q and consider the set P = {P1, . . ., Pr} of r unknowns. We
consider a system of q equations

E = {Pa1 ⊕ Pb1 = t1, Pa2 ⊕ Pb2 = t2, . . . , Paq
⊕ Pbq = tq},

where Pai
:= xi = π1(h(mi) ⊕ νi) and Pbi := yi = π2(νi). We further define an

index mapping ϕ : {a1, b1, . . . , aq, bq} → {1, . . . , r}. For all i, j ∈ {1, . . . , q}:

– ϕ(ai) 6= ϕ(aj) ⇔ h1(mi)⊕ νi 6= h1(mj)⊕ νj .
– ϕ(bi) 6= ϕ(bj) since νi 6= νj .
– ϕ(ai) 6= ϕ(bj) since both permutations π1 and π2 are independent.

The index mapping ϕ has a range of size qx + qy, where qx = |{xi, . . . , xq}| ≤ q
and qy = |{ν1, . . . , νq}| = q.

4.1 Bad Transcripts

ϕ only exposes collisions of the form ϕ(ai) = ϕ(aj) or equivalently xi = xj . We
define the following bad events:

– bad1: there exist ξ distinct equation indices i1, i2, . . . , iξ ∈ {1, . . . , q} s.t.
xi1 = xi2 = . . . = xiξ where ξ is the threshold given in Theorem 3.

– bad2: There exist query indices i 6= j, i, j ∈ {1, . . . , q} s.t. (vi, ti) = (vj , tj).

Let us consider bad1 first. Since h is ε-AXU, the expected amount of collisions is
q2 ·ε. Unfortunately ε-AXU is not strong enough to allow for statements regarding
multicollisions, i.e. we cannot make a statement on the probability that three or
more input values collide. Considering the maximal block size ξ, the worst case
would be that all collisions occur in the same hash value. If there exists a block
of size (ξ + 1), this block contains ξ2 collisions. Let #Colls(q) be the random
variable that counts the collisions in h. By Markov’s Inequality, the probability
that there are more than

(

ξ
2

)

collisions in h is at most:

Pr

[

#Colls1(q) ≥

(

ξ

2

)]

≤
E(C)
(

ξ
2

) =

(

q
2

)

· ε
(

ξ
2

) ≤
2q2ε

ξ2
.

For bad2, recall that the ideal world samples the tags independently uniformly
at random. Since h is ε-AXU, it follows for some distinct pair i, j ∈ {1, . . . , q}:

Pr [vi = vj ∧ ti = tj ] ≤

(

q
2

)

· ε

2n
.

It follows from the sum of both probability for bad1 and bad2 that

Pr [τ ∈ BadT |Θideal = τ ] ≤
2q2 · ε

ξ2
+

(

q
2

)

· ε

2n
.
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4.2 Ratio of Good Transcripts

Lemma 2. The system of equations is (i) circle-free, (ii) ξ-block-maximal and
(iii) relaxed non-degenerate with respect to the partitioning into R1⊔R2, where
R1 =def {ϕ(a1), . . . , ϕ(aq)} and R2 =def {ϕ(b1), . . . , ϕ(bq)}.

Proof. The proof relies on the fact that ϕ(bi) 6= ϕ(bj) and ϕ(ai) 6= ϕ(bj) for any
i 6= j. For any I ⊆ {1, . . . , q} the corresponding multiset MI has at least |I| odd
multiplicity elements and therefore the system of equations E is (i) circle-free.

(ii) If E were not ξ-block-maximal, then there must be an ordering I =
{i1, . . . , iξ} s.t. ϕ(ai1) = . . . = ϕ(aiξ ). This is equivalent to a ξ-fold collision
xi1 = . . . = xiξ , which contradicts the assumption that τ is a good transcript.

(iii) Suppose that E would be relaxed degenerate. Then, there would exist
a minimal subset I ⊆ 1, . . . , q that has exactly two odd multiplicity elements
corresponding to the same oracle and s.t.

⊕

i∈I ti = 0. If |I| = 1, MI would
have two elements from different oracles. If |I| = 2 and ti1 = ti2 , then we would
know that xi1 6= xi2 since νi1 6= νi2 , i.e. yi1 6= yi2 . Therefore, we have four odd
multiplicity elements. If |I| ≥ 3, there would exist at least three odd multiplicity
elements. So, E cannot be relaxed degenerate, which concludes the proof.

Lemma 3. Let τ ∈ GoodT and q ≤ 2n/(67ξ2). Then, it holds that

Pr [Θreal = τ ]

Pr [Θideal = τ ]
≥ 1−

q

2n
.

Proof. The probability to obtain a good transcript τ consists of that for obtain-
ing the tags t1, . . . , tq, and the hash-function outputs h(mi). The probability to
obtain the latter is given in both worlds by |H|−1. The bound in Lemma 3 is
determined by the ratio of the respective probabilities. This term appears in the
real world as well as in the ideal world and cancels out eventually. Hence, we
ignore it for the remainder of the analysis. The probability of obtaining the rest
of the transcript, i.e., the tags ti, in the ideal world is then given by

Pr [ t1, . . . , tq|Θideal] =
1

(2n)q

since the outputs ti are sampled independently and uniformly at random from
{0, 1}n in the ideal world. In the real world, the probability is given by

Pr [Θreal = τ ] ≥
NonEQ(R1,R2;E)

2nq · (2n − qx)! · (2n − qy)!

(2n!)2

=
NonEQ(R1,R2; E)

2nq(2n)qx(2
n)qy

.

Remember that qy = q since all νi are distinct. To lower bound NonEQ(R1,R2; E),
note that we have (2n)qx choices for {Pj | j ∈ R1} and at least (2n− 1)q possible
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choices for {Pj | j ∈ R2}, as every index in R2 is in a block with exactly one
unknown from R1. Thus

Pr [Θreal = τ ] ≥
(2n − 1)q(2

n)qx
2nq(2n)q(2n)qx

=
1

2nq

(

1−
q

2n

)

.

Hence, we obtain the ratio as in Lemma 3.

4.3 Using ξaverage

In [30], Patarin suggests that one can potentially consider the average instead of
the maximal block size for the sum of permutations in the Mirror Theory. More
precisely, Generalization 2 of [30, Section 6] suggests that:

“The theorem Pi⊕Pj is still true if we change the condition ξmaxα ≪ 2n

by ξaverage ≪ 2n.”

The bottleneck in our bound is the event bad1; bad2 as well as the good tran-
scripts do not consider ξ at all and the respective terms become significant only
for q approaching 2n. Upper bounding the block size is necessary to ensure the
condition q ≤ 2n/(67ξ2max). Using a universal family of hash functions only al-
lows for a very crude upper bound of the maximal block size that limits us at a
security level of around 22n/3 queries.

If we could use the average block size as suggested by Patarin, we are limited
by the condition q ≤ 2n/(67ξ2average); then, bad1 would no longer be necessary
and would significantly improve the bound. The following theorem would yield
an upper bound on the expected average block size ξaverage.

Theorem 4. For any q ≤ 2n and ε ≤ 1, we expect that ξaverage ≤ (q − 1)ε+ 2.

The proof is deferred to Appendix A, but we will briefly sketch the idea for
ε = 2−n: For q ≪ 2n, the expected amount of collisions q2/2n is in O(q). For
q = 2n, the expected amount of collisions is 2n−1. In the worst case (regarding the
average), the collisions are uniformly distributed, i.e. h(m1) = h(m2), h(m3) =
h(m4), . . . , h(m2n−1) = h(m2n). This pattern corresponds to the case that every
block were of size 3 and hence the average is 3 as well. Any other pattern would
not increase the average block size. The proof will consider the more general case
for ε. From Theorem 4, we obtain

q ≤
2n

67((q − 1)ε+ 2)2
.

We note that the use of ξaverage implies the need to employ the stronger form
of the Mirror Theory, that assumes that the iterated proof suggested by Patarin
holds. Both the stronger form of the Mirror Theory and the Generalization 2
[30] are subject to their own analysis.
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5 Security Analysis of HPxHP

The analysis of HPxHP shares many similarities with that of HPxNP, but
differs in certain key points. Regarding the maximum block size, a hash collision
(considering the hashes separately) may occur now on one of both sides, i.e., there
may be a collision in h1(m) = h1(m

′) or in h2(m) = h2(m
′), which increases the

block size and effectively doubles the probability of obtaining a hash collision.3

Further, since collisions may occur on both sides, it is possible to obtain a circle.
Using a universal hash function, we can obtain security up to O(22n/3)

queries, matching the security bound of earlier analyses. Increasing the strength
of the hash function and using a k-wise independent hash function, it is possible

to obtain security up to O(2
(n−1)k

k+1 ) queries. Putting stronger requirements on
the family of hash functions increases its size and therefore the length of the
key. We still find this result interesting since recent results [21] provided attacks
with a query complexity of O(23n/4). If we demand stronger properties from
the hash function, our security level exceeds the complexity by the known at-
tacks. Again, we provide an analysis with a universal hash function and ξmax

first. Thereupon, we will argue about the necessary proof changes to adapt to
stronger hash-function families.

Theorem 5. Let n ≥ 1, ξ ≥ 2 be integers and H1 and H2 be ε1 and ε2-AU
families of hash functions, respectively, and let h1 և H1 and h2 և H2 be
sampled independently uniformly at random. Let ε =def max{ε1, ε2}. For any
PRF distinguisher A that asks at most q ≤ 2n/(67ξ2) queries, it holds that

AdvPRF
HPxHP[h1,h2,π1,π2](A) ≤

4q2ε

ξ2
+ 3 · (qε)2 + q3ε2 +

ξ · q

2n − ξ
.

For ξ = 2n/6, and assuming an optimal ε = O(2−n), the bound in Theo-
rem 5 has the form of O(q2/24n/3 + q2/22n + q3/22n + q/25n/6) for q ∈ O(22n/3)
queries. So, it is dominated by the first term. The remainder of this section con-
tains the proof of Theorem 5. Consider a deterministic distinguisher A that has
access to either HPxHP[h1, h2, π1, π2] or ρ, which chooses the outputs given
to A uniformly at random. A makes q construction queries mi that are stored
together with the query results ti in a transcript τ = {(m1, t1), . . . , (mq, tq)}. In
both worlds, the oracle samples h1 and h2 at the beginning independently and
uniformly at random from their hash families. A sees the results ti after each
query. Again, we make the adversary stronger by defining that the hash keys
are revealed to the adversary after it finished its interaction with the oracle, but
before outputting its final decision bit.

Let 1 ≤ r ≤ 2q and consider the set P = {P1, . . ., Pr} of r unknowns. Again,
we consider a system of q equations

E = {Pa1 ⊕ Pb1 = t1, Pa2 ⊕ Pb2 = t2, . . . , Paq
⊕ Pbq = tq},

3 Technically speaking, there is a total of q(q − 1)/2 of input pairs. When bounding
the probability of a collision we used q2 instead, ignoring the factor 1/2.
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where Pai
:= xi = π1(h1(mi)) and Pbi := yi = π2(h2(mi)). We further define an

index mapping ϕ : {a1, b1, . . . , aq, bq} → {1, . . . , r}; ϕ maps equal permutation
outputs xi = xj that occur for any i 6= j (from equal hash values ui = uj) to the
same unknown Pk; similarly, ϕ maps equal permutation outputs yi = yj that
occur for any i 6= j (from equal hash values vi = vj) to the same unknown Pℓ.
For all i, j ∈ {1, . . . , q}, it holds that

– ϕ(ai) 6= ϕ(aj) ⇔ h1(mi) 6= h1(mj).

– ϕ(bi) 6= ϕ(bj) ⇔ h2(mi) 6= h2(mj).

– ϕ(ai) 6= ϕ(bj) since both permutations π1 and π2 are independent.

In the real world, the transcript has collisions in the values xi = xj or yi = yj for
i 6= j, when the corresponding hash values ui = uj or vi = vj collide. A collision
in xi and xj corresponds to a collision in ϕ(ai) and ϕ(aj) and a collision in yi
and yj corresponds to a collision in ϕ(bi) and ϕ(bj). Multi-collisions in the range
values of π1 and π2 correspond to blocks in the mirror theory. To upper bound
the size of the largest block Qk, we need to consider a special type of collision
between two queries i and j. In this setting, we say that two queries i and j
collide if h1(mi) = h1(mj) and/or

4 h2(mi) = h2(mj). The probability for such
a collision to happen is ε1 + ε2 ≤ 2ε.

We define an event bad1 if there exists a ξ-multi-collision in any subset of
queries {i1, . . . , iξ+1} ⊆ {1, . . . , q}, where ξ is the threshold in Theorem 5. We
need to consider four more events that render a transcript to be bad:

– bad1: There exists a subset I ⊆ {1, . . . , q} of size |I| = ξ, s.t. for each pair
of distinct indices i, j ∈ I, it holds that ϕ(ai) = ϕ(aj) and/or ϕ(bi) = ϕ(bj);
ξ is the threshold in Theorem 5.

– bad2: There exist i 6= j, i, j ∈ {1, . . . , q} s.t. (ui, vi) = (uj , vj) and ti 6= tj .

– bad3: There exist i 6= j, i, j ∈ {1, . . . , q} s.t. (ui, ti) = (uj , tj) and vi 6= vj .

– bad4: There exist i 6= j, i, j ∈ {1, . . . , q} s.t. (vi, ti) = (vj , tj) and ui 6= uj .

– bad5: There exists a subset I ⊆ {1, . . . , q} s.t. MI contains only elements of
even multiplicity.

If an attainable transcript τ is not bad, we define τ as good. We denote by GoodT

and BadT the sets of good and bad transcripts, respectively. In the H-coefficient
technique, the probability that a transcript is bad is analyzed solely for the ideal
world. The bound in Theorem 5 follows then from Lemma 1 and Lemmas 4–6.

5.1 Bad Transcripts

Lemma 4. Let ξ ≥ 1 denote the threshold from Theorem 5. It holds that

Pr [τ ∈ BadT|Θideal = τ ] ≤
4q2ε

ξ2
+ 3 · (qε)2 + q3ε2.

4 To avoid confusion, by ’and/or’ we actually mean the logical ’or’.
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Proof. In the following, we upper bound the probability that a transcript is
bad. Most of the time, we can upper bound the probabilities of the individual
bad events to occur and will simply take the sum of their probabilities. We will
postpone the discussion of the first bad event to the end and begin with the
second bad event.

For the second bad event, it holds that h1 and h2 are both ε-AU and indepen-
dent. We drop the condition ti 6= tj since it only decreases the probability and
an upper bound suffices for our purpose. The probability that both hash values
collide simultaneously for two queries is at most

Pr [bad2] ≤

(

q

2

)

ε2 ≤
q2ε2

2
.

For the third and fourth bad events, the probabilities can be formulated similarly.
To upper bound bad3, the probability that ui = uj is again at most ε for a fixed
pair of distinct query indices i 6= j. Since the outputs ti and tj are sampled
uniformly at random and independently from the hash values, we can again
neglect the requirement vi 6= vj and obtain the same upper bound for bad3 as
for bad2 when we use ε ≥ 2−n. A similar argument holds for bad4.

When upper bounding the probability of bad5, we are limited by the hash
function. We consider all 3-tuples (ma,mb,mc) such that h1(ma) = h1(mb) and
h2(mb) = h2(mc). This event can be bounded by

(

q
3

)

ε2, which also excludes the
occurrence of a circle. Thus, it holds that Pr [bad5] ≤ q3ε2. Double-collisions that
are small circles by themselves are excluded by bad2.

Now, we will consider bad1. As in the analysis of HPxNPwe will upper bound
the maximal block size for the individual hash functions. We will then condition
bad1 on ¬bad5 to ensure that no collisions in h1 are connected to collisions in h2.
The hash functions are both ε-almost-universal. Again, the worst case regarding
block maximality would be that all collisions occur in the same block of size ξ+1.
Such a block would have

(

ξ
2

)

collisions. Let #Colls1(q) denote a random variable
for the number of collisions between h1(mi) = h1(mj) for 1 ≤ i, j ≤ q and i 6= j.
Using Markov’s Inequality, we obtain an upper bound for the probability that

Pr

[

#Colls1(q) ≥

(

ξ

2

)]

≤
E [#Colls1(q)]

(

ξ
2

) ≤
2q2ε

ξ2
.

We can derive a similar argument using a random variable #Colls2(q) for the
number of collisions between collisions h2(mi) = h2(mj), So, the probability to
obtain a block of size ξ is upper bounded by

Pr [bad1|¬bad5] ≤
4q2ε

ξ2
.

Our bound in Lemma 4 follows from summing up the obtained terms.

5.2 Good Transcripts

It remains to upper bound the ratio of probabilities to obtain a good transcript
in both worlds. To upper bound it in the real world, we will use the Relaxed
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Mirror Theory. We show that a good transcript fulfills all the properties needed
by the Relaxed Mirror Theorem.

Lemma 5. Let τ ∈ GoodT. Let E be the system of q equations corresponding
to (ϕτ ,m1, . . . ,mq). Then, E is (i) circle-free, (ii) ξ-block-maximal, and (iii)
relaxed non-degenerate w.r.t. the partitioning {1, . . . , r} = R1∪R2, where R1 =
{ϕ(ai), . . . , ϕ(aq)} and R2 = {ϕ(bi), . . . , ϕ(bq)}.

Proof. We defined τ to be a good transcript; hence, no bad event has occurred,
which implies that the transcript is (i) circle-free since we excluded bad5 here.

(ii) If E were not ξ-block-maximal, there would exist a minimal subset Q ⊆
{1, . . . , r} with |Q| ≥ ξ + 1 so that there exists some i ∈ {1, . . . , q} for which
either {ϕ(ai), ϕ(bi)} ⊆ Q or {ϕ(ai), ϕ(bi)} ∩ Q = ∅. The latter event does not
violate the block-maximality, so we can focus on the former statement.

Assuming that E were not ξ-block-maximal, we can define a subset of indices
I ⊂ {1, . . . , q} for which it holds that {ϕ(ai), ϕ(bi)} ⊆ Q for all i ∈ I. Then,
we can define an ordered sequence of the indices in I to i1, . . . , iξ s.t. it would
have to hold for all pairs of subsequent indices ij , ij+1, for 1 ≤ j < ξ that
ϕ(ai) = ϕ(aj) and/or ϕ(bi) = ϕ(bj). This is equivalent to our definition of bad1
and would therefore violate our assumption that τ is good. Hence, every good

transcript τ is ξ-block-maximal.
(iii) Assume that τ would be relaxed degenerate. This would imply there

exists a subset I ⊆ {1, . . . , q} such that the multiset MI has exactly two odd
multiplicity elements from a single set R1 or R2 and the tags of the elements
corresponding to I sum up to zero, i.e.

⊕

i∈I

ti =
⊕

i∈I

π1(h1(mi)) ⊕ π2(h2(mi)) = 0.

Recall that ϕ(ai) 6= ϕ(aj) if and only if h1(mi) 6= h1(mj), ϕ(bi) 6= ϕ(bj) if and
only if h2(mi) 6= h2(mj) and ϕ(ai) 6= ϕ(bj) for any choice of i and j. An element
ϕ(ai) has even multiplicity in MI if there is an even amount of inputs that collide
in h1(mi). And similarly an element ϕ(bi) has even multiplicity in MI if there
is an even amount of inputs that collide in h2(mi). If there is an even amount of
queries that collide in a hash value, one can easily see that these elements will
cancel out in the above sum.

For simplicity, assume, there exists a subset I ⊆ {1, . . . , q} with exactly two
odd multiplicity elements from R1 and even multiplicity elements only from R2.
All elements from R2 cancel out in the sum above. and all even multiplicity
elements from R1 cancel out as well. Let the two odd multiplicity elements from
R1 have multiplicity 2n1+1 and 2n2+1, where n1, n2 ≥ 0. In total, 2n1 and 2n2

terms will cancel out and what remains is π1(h1(mi)) ⊕ π1(h1(mj)) = 0 where
ϕ(ai) 6= ϕ(aj). However, this event cannot occur since ϕ(ai) 6= ϕ(aj) implies
that h1(mi) 6= h1(mj); thus the system cannot be relaxed degenerate.

Lemma 6. Let τ ∈ GoodT and q ≤ 2n/(67ξ2). Then, it holds that

Pr [Θreal = τ ]

Pr [Θideal = τ ]
≥ 1−

ξ · q

2n − ξ
.
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Proof. The probability to obtain a good transcript τ consists of that for obtain-
ing the tags t1, . . . , tq, and the hash-function outputs ui and vi. The probability
to obtain the latter is given in both worlds by Pr [(h1, h2) | (h1, h2) և H1 ×H2].
The bound in Lemma 6 is determined by the ratio of the respective probabilities.
This term appears in the real world as well as in the ideal world and cancels out
eventually. Hence, we ignore it for the remainder of the analysis. The probability
for the tags ti in the ideal world is then given by Pr[t1, . . . , tq|Θideal] = 1/(2n)q

since the outputs ti are sampled independently and uniformly at random from
{0, 1}n in the ideal world.

In the real world, the situation is more complex and a little more work is
necessary. We denote by qx := |{π1(h1(mi)) | i ∈ {1, . . . , q}}| the amount of
distinct values for π1 and similarly we denote by qy := |{π2(h2(mi)) | i ∈
{1, . . . , q}}| the amount of distinct values for π2. The number of solutions to the
qx+qy unknowns is at least NonEQ(R1,R2; E)/2nq. There are (2n−qx)! possible
choices for the remaining output values of π1 and (2n − qy)! possible choices for
the remaining output values of π2. Thus, we can lower bound

Pr [Θreal = τ ] ≥
NonEQ(R1,R2;E)

2nq · (2n − qx)! · (2n − qy)!

(2n!)2
=

NonEQ(R1,R2; E)

2nq(2n)qx(2
n)qy

.

We will use the obvious lower bound for NonEQ(R1,R2; E) and we obtain

Pr [Θreal = τ ] ≥
(2n)qx(2

n − ξ)qy
2nq(2n)qx(2

n)qy
=

1

2nq
·
(2n − ξ)qy
(2n)qy

.

We can immediately see that

Pr [Θreal = τ ]

Pr [Θideal = τ ]
≥

(2n − ξ)qy
(2n)qy

.

We can further reformulate the expression (2n − ξ)qy/(2
n)qy to

(2n − qy)(2
n − qy − 1) · · · (2n − qy − (ξ − 1))

(2n)(2n − 1)(2n − 2) · · · (2n − (ξ − 1))
=

ξ−1
∏

i=0

2n − i− qy
2n − i

.

This can be reformed to and upper bounded by

ξ−1
∏

i=0

(

1−
qy

2n − i

)

≥

(

1−
q

2n − ξ

)ξ

≥ 1−
ξ · q

2n − ξ
,

where the final inequality is Bernoulli’s.

5.3 Using k-wise Independent Hash Functions

In contrast to the analysis of HPxNP, for HPxHP, we find ξ not only in the
analysis of bad1, but also in that of bad5 plus in the bound for the good tran-
scripts. For the same reasons as in HPxNP, bad1 and bad5 cap the bound at
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around q = 22n/3. Using the average block size would not work here since it
would not affect the bound of bad5. However, we can increase the security bound
of HPxHP with stronger, k-wise independent hash functions. For even k, this
allows to obtain a bound of q = 2kn/(k+1) since such hash functions yield bet-
ter bounds for circles of sizes ≥ k. Since circles always contain an even amount
of queries, there would be no benefit of an uneven values k. Leurent et al. re-
quired a 4-circle that is expected after 23n/4 queries for their attack. Using a
4-independent hash function, the first 4-circle occurs after 2n queries on average.
So, we can obtain a security bound that exceeds the complexity of Leurent et
al.’s attack. For simplicity, we will consider 4-wise independent hash functions
first and illustrate the changes to the security bound of HPxHP. Thereupon,
we extend our analysis to larger values of k. For space limitations, we defer the
proofs of Lemma 7 and 8 to Appendix C.

Lemma 7. Let H1 and H2 be independent 4-wise independent hash functions.
Let ξ ≥ 7. Then

Pr [bad1|¬bad2] ≤
2
(

q
4

)

23n
(

ξ
4

) +
16q5

24n
.

We find two interesting points here: (1) Raising the requirement of the hash
functions to 4-wise independence yields a 4-circle after 2n queries on average
instead of after 23n/4 queries as in the attack by Leurent et al.. Thus, a security
level of 24n/5 can be obtained. (2) We cannot show yet if it is possible to consider
ξaverage instead of ξmax. If we can consider the average block size instead of the
maximum block size, the upper bound of circles is the bottleneck. Vice versa, it
seems that attacks on the HPxHP-type of MACs must exploit the occurrence of
circles. We can formulate the following lemma to bound the probability of bad5.

Lemma 8. Let H1 and H2 be independent 4-wise independent hash functions.
Then Pr [bad5|¬bad2 ∧ ¬bad1] ≤ q4/24n.

6 Conclusion

We presented two MAC constructions that are provably secure to up to O(22n/3)
queries; HPxHP avoids nonces at the price of two independent hash-function
evaluations; HPxNP trades one hash-function call for the use of a nonce.

Our results add to the works that demonstrate the usefulness of Patarin’s
Mirror Theory for such constructions. We indicated that considering the average
instead of the maximal block size in the Mirror Theory would greatly increase
the security of one of our constructions. Though, a deeper study of Patarin’s
theory is required to derive the consequences of this replacement, which is out
of the scope of this work.

Leurent et al.’s generic distinguisher on constructions similar to HPxHP
with a data complexity of O(23n/4) queries exploited the occurrence of circles in
the underlying hash functions. So, there is still a gap between the best security
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bound and their attack. We studied that stronger, k-wise independent hash
functions decreased the probability of circles where we indicate that it can raise
the security level above the bound of O(23n/4).

We can imagine that the security level of our constructions is higher than
2n/3 bits. For example, the bottleneck in our proof of HPxNP is the bound for
the maximal block size as long as the hash function family is “only” universal. A
stronger hash function helps here; plus, it may as well be possible to consider the
average block size and obtain O(2n) security. However, this needs to be verified.
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Changelog

2019-01-07: We refined the formulation of Theorem 2 and revised the variables
of bad2 in the analysis of HPxNP.

A Analysis of ξaverage

In the following, we show Theorem 4. We restate it to help the reader.

Theorem 6. For any q ≤ 2n and ε ≤ 1, we expect that ξaverage ≤ (q − 1)ε+ 2.

Proof Sketch. Note that we argue about an upper bound on the expected average
block size. To use this argument in a proper security proof, we would also need to
bound the amount of collisions such that after q queries no more than q collisions
occur. This can be done quite comfortably using Markov’s Inequality.

We recall that ξaverage is the average block size of non-empty blocks of equa-
tions. More formally, we define 2n bins i ∈ {0, . . . , 2n−1}, where each bin i repre-
sents the n-bit value i that the hash values u = h(m) can take. Over q queries, we
define the number of non-empty bins by B =def |{i : ∃j ∈ {1, . . . , q} s.t. uj = i}|.
We denote by ℓi the load of the i-th bin, i.e., the number of queries u = h(m)
that were equal to i, all over q queries, for 1 ≤ i ≤ q. The average bin load over
all non-empty bins is given by

ℓaverage
def
=

1

B

2n−1
∑

i=0

ℓi =
q

B

since the sum of all bin loads must yield q. We denote by bi the block size that
corresponds to bin i in our proof since a block contains all variables corresponding
to tuples (u, ν) with u = i plus the ℓi disjoint nonces. So, bi =

def ℓi + 1 if ℓi > 0
and bi =def 0 if ℓi = 0, i.e., if bin i is empty. It follows from our definitions
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above that ξaverage = ℓaverage + 1. In total, we expect
(

q
2

)

ε collisions which are
distributed over all bins, i.e.,

#Colls =

(

q

2

)

ε =

2n−1
∑

i=0

(

ℓi
2

)

. (1)

To show the claim, our goal is to maximize ξaverage, which is equivalent to max-
imize ℓaverage, which again is equivalent to minimizing B, i.e., the number of
non-empty bins.

We have to show two aspects that ℓaverage is largest if the distribution of balls
is closest possible to uniform while maintaining the expected number of collisions.
We can observe that the average block size decreases whenever we would move a
ball from one bin to another so that the load of both diverges. Given two disjoint
bin indices i, j ∈ {0, . . . , 2n − 1} with loads ℓi and ℓj , respectively. W.l.o.g., we
assume that ℓi ≥ ℓj. We have that

#Colls =

(

ℓi
2

)

+

(

ℓj
2

)

+

((

q

2

)

ε−

(

ℓi
2

)

−

(

ℓj
2

))

def
=

(

ℓi
2

)

+

(

ℓj
2

)

+R.

We move a ball from bin j to bin i and obtain new loads ℓ′i = ℓi+1 and ℓ′j = ℓj−1.
We obtain that

#Colls′ =

(

ℓ′i
2

)

+

(

ℓ′j
2

)

+R = #Colls+ ℓi − ℓj + 1 ≥ #Colls+ 2.

So, whenever we move a ball such that the resulting bin loads diverge more,
the number of collisions used up by those bins increases. Hence, we have less
collisions remaining for the remaining bins, which implies that the balls in the
remaining bins have to be moved:

– either from some bin i′ to j′ such that ℓi′ − ℓj′ ≥ ℓi − ℓj,
– or between multiple bins,
– or balls have to be moved to previously empty bins.

It is easy to see that this configuration is optimal when the individual non-empty
bin loads diverge as little as possible. This is given by having B non-empty bins
of the same load ℓi s. t.

(

ℓi
2

)

· B =

(

q

2

)

ε.

Since q = B · ℓi, we obtain ℓi = (q− 1)ε+1. It follows that the maximal average
block size is ξaverage = (q − 1)ε+ 2.

B Relation to The Attack by Leurent et al.

The attacks in [21] exploit that 4-circles may occur after 23n/4 queries if the hash
functions are universal, and the messages are constructed in a dedicated manner.
We briefly recall the attack by Leurent et al. [21] here.
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Attack Description. Leurent et al. considered MACs with 2n bits of internal
state that can be abstracted to HPxHP. They searched for four-tuples (x, y, z, t)
such that they build a 4-circle as:



















h1(x) = h1(y)

h2(x) = h2(t)

h1(t) = h1(z)

h2(y) = h2(z).

Such a tuple can be efficiently verified since it must hold that their corresponding
authentication tags sum to zero: tx ⊕ ty ⊕ tz ⊕ tt = 0n. Since practical instances
of such MACs (e.g., PMAC+, 3kf9, Sum-ECBC) hash the message block-wise,
they further employ two distinct prefixes p0 and p1, such that |p0| = |p1| and
the prefixes end at the block boundary:

x = p0 ‖ x∗, y = p1 ‖ y∗, z = p0 ‖ z∗, t = p1 ‖ t∗.

So, the prefixes lead to differences ∆ = h1(p0)⊕h1(p1) and ∇ = h2(p0)⊕h2(p1).
Considering only four-tuples (x∗, y∗, z∗, t∗) with x∗⊕y∗⊕z∗⊕t∗ = 0n, they could
translate the problem of finding a solution to the rank-four equation system to
the problem of finding a solution to the following rank-three system:



















h1(x) = h1(y)

h2(x) = h2(t)

h1(t) = h1(z)

h2(y) = h2(z).

⇔











h1(x) = h1(y)

h2(x) = h2(t)

h1(t) = h1(z),

with x∗⊕y∗ = z∗⊕t∗ = ∆ and x∗⊕t∗ = y∗⊕z∗ = ∇, From x∗⊕y∗⊕z∗⊕t∗ = 0n, it
followed then that h2(x) = h2(y) also holds. Leurent et al. propose data-efficient
algorithms for this 4-sum problem, i.e., finding four-tuples with data complexity
of O(23n/4) queries.

C Analysis of HPxHP with 4-wise-independent Hash

Functions

In the following, we show Lemma 7 and 8. We restate both briefly prior to the
proofs to help the reader.

Lemma 9. Let H1 and H2 be independent 4-wise independent hash functions.
Let ξ ≥ 7. Then

Pr [bad1|¬bad2] ≤
2
(

q
4

)

23n
(

ξ
4

) +
16q5

24n
.

Proof. The analysis of the maximal block size forHPxHP is a little more delicate
than that of HPxNP, because we can have collisions on either side, i.e. in the
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inputs of π1 or in the inputs of π2. We will aim to bound the probability of blocks
of size 7 among the queries, i.e., {(ui1 , vi1), . . . , (ui7 , vi7 )}, for pairwise distinct
i1, . . . , i7 ∈ {1, . . . , q}. For simplicity, we reindex them as {(u1, v1), . . . , (u7, v7)},
hereafter. W.l.o.g., we consider them in an order s. t. ui = ui+1 or vi = vi+1

holds for each 1 ≤ i < 7. We exclude collisions of the form (ui, vi) = (uj , vj)
since those are already covered by bad2.

For such blocks, we consider sub-blocks of 5 queries (our actual interest)
and upper bound their probability. However, not in all cases, we can obtain a
satisfying bound; therefore, we will consider 7-blocks at some points. We identify
all possible collision patterns and bound their probability accordingly before we
can make a final statement on the maximal block size.

The left side of Figure 2 illustrates the possible patterns of 5-chains. We can
encode the possible hash-collisions patterns by four-bit strings (a1, a2, a3, a4),
where ai = 0 if ui = ui+1 and ai = 1 if vi = vi+1. It is easy to see that we can
obtain at most 16 such patterns indexed from (0000) = 0 through (1111) = 15.
Moreover, the Variants (8) through (15) are symmetric to their counterparts (0)
through (7). So, it suffices to bound the probability of the latter. Our claim
follows.

Variant (0): u1 = u2 = u3 = u4 = u5. 4-wise independence unfortunately
does not allow a better bound than q4/23n for this case. Instead, we allow large
collisions in one hash function as long as they are not connected to collisions
in the other hash function. This will allow us to bound the probability of large
blocks as we did in the analyses before.

For a single hash function, assume that the largest block has size of ξ. This
block contains

(

ξ
4

)

4-collisions. Let #4Colls1(q) denote a random variable for the
number of 4-collisions in the outputs of h1. Again, Markov’s Inequality allows
us to upper bound the probability that there are more than

(

ξ
4

)

4-collisions in
one hash function by:

Pr

[

#4Colls1(q) ≥

(

ξ

4

)]

≤
E [#4Colls1(q)]

(

ξ
4

) =

(

q
4

)

23n ·
(

ξ
4

) ≈
q4

23n · ξ4
.

For ξ = 2n/10, this term allows for up to 217n/20 queries while the condition
q · ξ2 = 2n/67 is fulfilled for up to O(24n/5) queries. We can derive a similar
argument using a random variable #4Colls2(q) for the number of 4-collisions in
the outputs of h2, So, the probability to obtain a block of size ξ in this case is
also approximately at most 2q4/23nξ4. In the remainder, we will show that we
can upper bound the probability of blocks to a size of ξ ≥ 7 if they connect
collisions in h1 with collisions in h2 with a probability of q5/24n.

Variant (1): u1 = u2 = u3 = u4 and v4 = u5. From 4-wise independence, it
holds that the probability for u1 = . . . = u4 is at most

∑

u1∈{0,1}n

Pr [h1(m1) = h1(m2) = h1(m3) = h1(m4) = u1] · Pr [v4 = v5]

≤ (2n · 2−4n) · 2−n = 2−4n.
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Fig. 2: Structure Graphs of hash-value pairs (ui, vi) in blocks of size 5 – 7. Each pair
of horizontal dots denotes a pair (ui, vi). An edge describes that two hash values are
equal, e.g., Variant (2) represents the case that u1 = u2 = u3, v3 = v4, and u4 = u5.

Since there are at
(

q
5

)

such 5-tuples, this variant has probability at most q5/24n.
An analogous argument can be formulated for Variant (7). For their complexity,
we will consider variants (2) and (4) at the end, and proceed with Variant (3)
next.

Variant (3): u1 = u2 = u3, v3 = v4 = v5. From 4-wise independence, it holds

∑

u1∈{0,1}n

∑

u4∈{0,1}n

Pr [h1(m1)=h1(m2)=h1(m3)=u1, h1(m4)=u4]

≤ 22n · 2−4n=2−2n.

Since the outputs of h2 are independent from h1, it holds independently

∑

v3∈{0,1}n

∑

v2∈{0,1}n

Pr [h2(m3)=h2(m4)=h2(m5)=v3, h2(m2)=v2]

≤ 22n · 2−4n = 2−2n.

We obtain that the upper bound on the probability of this variant is 2−4n for a
fixed 5-tuple, and at most q5/24n over all such 5-tuples.

Variant (5): u1 = u2, v2 = v3, u3 = u4, v4 = v5. From our assumption
that bad2 is not set, it holds that u1 6= u4 and v2 6= v5. Since h1 and h2 are
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independent, it holds that the probability for this constellation is at most

∑

u1∈{0,1}n

∑

u4∈{0,1}n

Pr [h1(m1) = h1(m2) = h1(m3) = u1, h1(m4) = u4]

·
∑

v2∈{0,1}n

∑

v4∈{0,1}n

Pr [h2(m2) = h2(m3) = v2, h2(m4) = h2(m5) = v4]

≤ (22n · 2−4n) · (22n · 2−4n),

and therefore at most q5/24n over all 5-tuples.

Variant (6): u1 = u2, v2 = v3 = v4, u4 = u5. Again, from our assumption
that bad2 is not set, it holds that u1 6= {u3, u4} and v2 6∈ {v1, v5}. Since h1 and
h2 are independent, it holds that the probability for this constellation is at most

∑

v1∈{0,1}n

∑

v2∈{0,1}n

Pr [h2(m1) = v1, h2(m2) = h2(m3) = h2(m3) = v2]

·
∑

u1∈{0,1}n

∑

u4∈{0,1}n

Pr [h1(m1) = h1(m2) = u1, h1(m4) = h1(m5) = u4]

≤ (22n · 2−4n) · (22n · 2−4n),

and therefore at most q5/24n over all 5-tuples.

Variant (2): u1 = u2 = u3, v3 = v4, u4 = u5. While we could upper bound

Pr [u2 = u3, v3 = v4, u4 = u5] ≤ q4 · 2−3n

in a straight-forward manner for this constellation, it would be inferior to our
desired bound. Hence, we extend it further to six-query variants (2.1), where
we add the condition h1(m5) = h1(m6) = u5 = u6; and (2.2), where we add
h2(m5) = h2(m6) = v5 = v6. One can observe that constellation (2.2) contains
Variant (5). So, the probability for the subset of queries (m2, . . . ,m6) to form
the collisions as shown can be derived from there to be at most q5/24n over all
such 5-tuples.

Since we cannot find a good bound for (2.1) yet, we extend it further. We
define Variant (2.1.1) to add a seventh query to the block such that h1(m6) =
h1(m7). From 4-wise independence, it holds that the probability for u4 = . . . =
u7 is at most

∑

u4∈{0,1}n

Pr [h1(m3) = h1(m4) = h1(m5) = h1(m6) = u4] · Pr [v3 = v4]

≤ (2n · 2−4n) · 2−n = 2−4n.

So, the probability for Variant (2.1.1) is at most q5/24n. For Variant (2.1.2), we
can observe that it contains Variant 9, which is axially symmetric to Variant 6.
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Thus

∑

u3∈{0,1}n

∑

u4∈{0,1}n

Pr [h1(m3) = u3, h1(m4) = h1(m5) = h1(m6) = u4]

·
∑

v3∈{0,1}n

∑

v6∈{0,1}n

Pr [h2(m3) = h2(m4) = v3, h2(m6) = h2(m7) = m6]

≤ (22n · 2−4n) · (22n · 2−4n)

and therefore at most q5/24n over all 5-tuples (m3, . . . ,m7). So, for all extensions,
the probability of a 7-query block from Variant (2) is upper bounded by q5/24n.

Variant (4): u1 = u2, v2 = v3, u3 = u4 = u5. By relabeling the indices of the
queries we can see that this variant is the same as Variant (2).

Lemma 10. Let H1 and H2 be independent 4-wise independent hash functions.
Then

Pr [bad5|¬bad2 ∧ ¬bad1] ≤
q4

24n

Proof. The analysis of bad5 can then be conducted as follows, where we restrict
our attention to bad5 conditioned on ¬bad2 and ¬bad1. So, we concern chains
of even lengths, such that no collisions (ui, vi) = (uj , vj) has occurred. Hence,
bad2 already covers the probability of 2-chains. A 4-chain is a 4-tuple of pair-
wise disjoint query indices (i1, i2, i3, i4) such that there exists an ordering of the
indices s. t. h1(mi1 ) = h1(mi2), h2(mi2) = h2(mi3), h1(mi3) = h1(mi4), and
h2(mi4) = h2(mi1 ) hold. For simplicity, we reindex those queries to (1, 2, 3, 4)
and reindex their corresponding hash values. It holds that

∑

u1∈{0,1}n

∑

u3∈{0,1}n

Pr [h1(m1) = h1(m2) = u1, h1(m3) = h1(m4) = u3]

·
∑

v1∈{0,1}n

∑

v2∈{0,1}n

Pr [h2(m1) = h2(m4) = v1, h2(m2) = h2(m3) = v2]

≤ (22n · 2−4n)2 = 2−4n,

and over
(

q
4

)

such tuples, we obtain an upper bound of q4/24n.
A 6-chain is a 6-tuple of pairwise disjoint query indices (i1, . . . , i6) such that

there exists an ordering of the indices s. t. h1(mi1) = h1(mi2), h2(mi2) =
h2(mi3), h1(mi3) = h1(mi4 ), h2(mi4) = h2(mi5), h1(mi5) = h1(mi6), and
h2(mi6) = h2(mi1 ). Again, we simply reindex them to (1, . . . , 6). One can ob-
serve that there is a sub-structure that corresponds to Variant (5) in our proof
of Lemma 7. By conditioning on ¬bad1 we do not need to add this term to the
above bound. It is easy to see that every chain of eight or more queries must
contain at least one of those sub-structures and can be bounded accordingly. Our
claim in Lemma 8 follows.
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C.1 Extension to k-independence for Even k

Lemma 11. Let H1 and H2 be independent k-wise independent hash functions.
Then

Pr [bad1|¬bad2] ≤
2
(

q
k

)

2(k−1)n ·
(

ξ
k

) +
qk+1

2(n−1)k
.

We can extend the argument above to obtain a security of up to O(2
(n−1)k

k+1 )
queries with a k-independent family of hash function. Instead of considering
5-collisions as the base in the proof of Lemma 7, we consider k-collisions in
the following. We can index all such (k + 1)-collision patterns by a k-bit string
(x1, . . . , xk) of k variables. Again, each string denotes a collision pattern between
a k-tuple of disjoint queries with indices (i1, . . . , ik); So, each bit xi = 0 repre-
sents that h1(mi) = h1(mi+1) and xi = 1 indicates that h2(mi) = h2(mi+1)
holds. We denote h1(mi) = ui and h2(mi) = vi, for 1 ≤ i ≤ k. Again, we exclude
cases where (ui, vi) = (uj , vj) for i 6= j.

The probability of almost all collision patterns from such k-bit strings can be
easily upper bounded by qk+1/2nk. Since we have at most 2k such patterns, we
can upper bound the probability of their union by 2kqk+1/2nk = qk+1/2(n−1)k.

The only exceptions are represented by the patterns

– (010 · · · 0), (0010 · · ·0), . . . , (0 · · · 010),
– and their counterparts (101 · · ·1), (1101 · · ·1), . . . , (1 · · · 101).

Hence, we will allow these bad collision patterns and consider extensions thereof.
We focus on those bit strings with hamming weight one since an analog argument
holds for their counterparts.

Extending one of those weight-one patterns by a 1-bit on either side will
produce a subpattern that has already been excluded. Moreover, we can extend
any of the weight-one patterns above to a string of k − 2 zeros followed by a
1 followed by another k − 2 zeros. This extended 2(k − 1)-bit string encodes a
collision pattern between 2k − 1 queries and is still allowed. However, beyond
this point, any further extension will yield an excluded subpattern. Hence, the
maximal block size for blocks connecting collisions on the left side with colli-
sions on the right side is 2k. We define the 0-1-variable #kColls1(q) to be 1 if
there exists a chains of k-collisions of hashes from a single hash function, that
are not connected to collisions in the second hash functions. Clearly, it can be
upper bounded from a similar argument as before for 4-wise independent hash
functions:

Pr

[

#kColls1(q) ≥

(

ξ

k

)]

≤
E [#kColls1(q)]

(

ξ
k

) =

(

q
k

)

2(k−1)n ·
(

ξ
k

) ≈
qk

2(k−1)n · ξk
.

Lemma 12. Let H1 and H2 be independent k-wise independent hash functions.
Then

Pr [bad5|¬bad2 ∧ ¬bad1] ≤

k/2
∑

i=1

( q

2n

)2i

.
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It remains to exclude circles up to a size of k. Larger circles are excluded by

the pattern (010 . . .010). Circles up to a size of k can be excluded by
∑k/2

i=1

(

q
2n

)2i
.
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