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Abstract. The end-users communicating over a network path currently have no control
over the path. For a better quality of service, the source node often opts for a superior
(or premium) network path in order to send packets to the destination node. However,
the current Internet architecture provides no assurance that the packets indeed follow the
designated path. Network path validation schemes address this issue and enable each node
present on a network path to validate whether each packet has followed the specific path so
far. In this work, we introduce two notions of privacy – path privacy and index privacy –
in the context of network path validation. We show that, in case a network path validation
scheme does not satisfy these two properties, the scheme is vulnerable to certain practical
attacks (that affect the privacy, reliability, neutrality and quality of service offered by the
underlying network). To the best of our knowledge, ours is the first work that addresses
privacy issues related to network path validation. We design PrivNPV, a privacy-preserving
network path validation protocol, that satisfies both path privacy and index privacy. We
discuss several attacks related to network path validation and how PrivNPV defends against
these attacks. Finally, we discuss the practicality of PrivNPV based on relevant parameters.
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1 Introduction

Next-generation networks aim to provide more control over network paths to the end-users and
service providers. More command over network paths not only enables the end-users to select
paths themselves in order to get uninterrupted services, but also lets the service providers serve
their users in a more reliable manner. This helps to build a robust communication network where
packets traverse across the network in a fast and secure way.

Although higher control over network paths is desirable, the current Internet architecture does
not support such control over paths. For example, an end-user (source) may decide a superior (e.g.,
high-speed) network path for communicating with a service provider (destination), and she wishes
to pay higher for availing this path as per the service level agreement (SLA) with the corresponding
Internet service providers (ISPs). However, the current Internet provides no guarantees that the
packets would follow the same path as specified. Specifically, once a packet leaves the source
node, it is beyond the control of the source. So, the (possibly malicious) intermediate nodes can
forward the packets along a completely different (and inferior) path to reach the destination node.
Upon receiving the packets, the destination node has no means to verify whether the packets have
traversed through the specified superior path. On the other hand, in order to run their business
smoothly, honest intermediate nodes present on the network path would try to maintain a better
quality of service and detect a deviation from the correct execution of the protocol. To be precise,
every honest on-path node has a stake in enforcing the specified path to be followed by the packets
and discarding corrupted packets in order not to waste downstream resources further.

In order to verify whether packets have followed the network path specified by the source node,
network path validation (or path validation) schemes come into play [28,19]. In a path validation

? This is the authors’ version of the paper published in ACM Transactions on Internet Technology (the
final published version is available at ACM Digital Library).

https://dl.acm.org/doi/10.1145/3372046


protocol, the source node enforces the network path to be followed by all the nodes present on the
path in order to forward packets. Moreover, every on-path node can check whether the packets
have traversed through the specified path so far. This is typically achieved by enabling on-path
nodes to embed proofs in a packet such that downstream nodes can verify these proofs to validate
the path. On the other hand, a malicious on-path node can inject packets of its choice (with
the spoofed source) into the path. In a network protocol with source authentication, every node
present on a network path can validate whether a packet propagated along that path originates
from the designated source node. We note that path validation schemes require modifications in
the existing Internet routing logic for packets. However, they are essential for the next-generation
Internet architectures like SCION [47,31], NEBULA [2] and others [12].

In a path validation scheme, the source node and the destination node do not trust all the
intermediate nodes present on the path (otherwise, path validation would not be required at
all), and thus they do not want to leak additional information available from the network path
(e.g., their personal preferences while selecting the path) to these nodes. Existing path validation
schemes do not hide the network path from the intermediate nodes. As we will see shortly, revealing
the path to the (possibly malicious) intermediate nodes makes these schemes vulnerable to various
attacks. In this work, we introduce two privacy notions relevant to path validation: path privacy
and index privacy. The notion of path privacy states that an intermediate node cannot identify
other nodes present on the path. We note that a node can always identify its neighbor (predecessor
and successor) nodes as a packet comes from one of them and the node has to forward the packet
to the other. So, the notion of path privacy described in this work does not include the privacy
of neighbor nodes. However, our notion of path privacy preserves the privacy of all other on-path
nodes. On the other hand, the notion of index privacy states that an intermediate node cannot
learn its own index/node-index (or exact position) on the path.

Why are path privacy and index privacy important? We note that path privacy does
not guarantee index privacy in general. To be precise, we can find some cases where, in spite of
achieving path privacy, a path validation scheme leaks the index of an intermediate node to the
node itself. For example, we consider an n-hop network path where neighbor information of all n
nodes are encrypted and stored sequentially in the path variable (say, PATH). The source node
allows the i-th on-path node Ni to identify Ni−1 and Ni+1 by decrypting only the i-th ciphertext
of the sequence embedded in PATH. It is not hard to see that path privacy is protected in such
a scheme. However, the node Ni can easily identify its own index i from the sequence — which
prevents the scheme from satisfying index privacy. We now discuss some practical situations where
both path privacy and index privacy are crucial.

– Preserving source anonymity: In mobile crowd sensing [14], mobile nodes (e.g., smart-
phones) collect various types of data with the help of embedded sensors and send the data
to a server for analysis (e.g., measuring air pollution level, sensing traffic congestion in an
area). Similarly, in the eMbedded-Gateway-Cloud (MGC) model [24,25], a smartphone acts as
a gateway connecting embedded IoT devices to a cloud sever and sends the data collected from
IoT devices to the cloud server. For example, the smartphone collects data from low-power
wearable fitness trackers (or patient monitoring devices) and sends the collected real-time data
to a cloud server that provides utility services. In these situations, path validation without
path/index privacy may reveal sensitive information (e.g., physical location) of the source
node to possibly malicious on-path nodes.

– Protecting neutrality: In a path validation protocol without path privacy, knowledge of
the revealed path can be combined with external information — which helps a malicious node
to mount certain attacks. Let us consider the following example. Suppose the destination node
D is a service provider, and there are two consumer nodes S1 and S2 that send service-requests
to D. Let there be a malicious node (say, N) which is present on both paths S1 ∼ D and
S2 ∼ D. Without path privacy, N has the complete knowledge of both paths, and it can thus
identify the service provider D. Now, N sharing strong business relations with S1 (or S2) can
intentionally drop the requests sent by S2 (or S1) in order to favor S1 (or S2) with undue
advantages (e.g., better service quality). Similarly, an ISP can favor a particular destination
(e.g., a website for online shopping) by dropping packets destined to other nodes that provide



Fig. 1: A network path between the source node S and the destination node D.

similar services — which makes many end-users leave slow websites and switch to the fast
one [44,23,20].

– Preventing attacks that exploit index-information: As we have discussed above, path
privacy does not guarantee index privacy. In a path validation scheme without index privacy,
an intermediate node can derive non-trivial information from the knowledge of its own index
on the path. We consider the following example. Given the path-length n (including the source
and destination nodes), if the (n− 1)-th on-path node (say, N) knows its own index, then N
easily derives an additional piece of information that it is the pre-destination node (i.e., its
next-hop on the path is the destination node) — which does not protect anonymity of the
destination node D. Moreover, if N happens to be the pre-destination node for two or more
network paths ending at D (but originating from different source nodes), then N can selectively
forward the packets sent by a particular source node only (similar to the example described
above). Similar situation arises for the second on-path node which, given its node-index, can
easily identify its predecessor node as the source.

– Preventing identification of critical nodes: In a network, there exist critical nodes that
have large degrees (i.e., they are connected to many other nodes in the network and are likely
to be part of many network paths), and corruption/disruption of such nodes causes widespread
damages [36]. In the absence of path privacy, a network attacker compromising a single node
on a network path can identify all the on-path nodes. This helps the attacker to identify one
or more critical nodes in case it compromises multiple nodes each from a different network
path. Then, the attacker can attempt to corrupt such a critical node in order to maximize
its capability of designing efficient attack strategies that may potentially affect many other
network paths.

– Defending against an attacker having control over a small fraction of nodes: In
a network, multiple nodes can be compromised by a network attacker (or adversary), and
they can collude with each other to mount certain attacks [1,17]. Given that the attacker
can control a small fraction of on-path nodes in a path validation scheme with path privacy,
the whole path may be revealed to the attacker if the protocol does not satisfy index privacy.
For example, an attacker, having control over only three nodes (N2, N5 and N8) as shown in
Figure 1, can identify all nodes present on the network path S ∼ D (we note that each on-path
node knows its neighbors which the node receives a packet from or sends a packet to).

Our contribution: We summarize our major contributions to privacy-preserving path valida-
tion as follows.

– We introduce, for the first time, two notions of privacy in the context of path validation: path
privacy and index privacy. Path privacy ensures that an intermediate node cannot identify
other on-path nodes (except its neighbors). This notion also includes the anonymity of the



Table 1: Notations used
Notation Description Notation Description

S ∼ D network path S = N1 −N2 − · · · −Nn = D E symmetric-key encryption scheme

of length n with source S, destination D, MAC message authentication code

Ni = identity of i-th on-path node Π pseudo-random permutation

s1||s2 concatenation of strings s1 and s2 K key space of E,MAC and Π

H,H′, H1, H2 hash functions S space of session-identifiers

T timestamp M output space of H2

G = 〈g〉 g is a generator of the group G Zq, Fq finite field of prime order q

MPK public parameters of KGC MSK master secret key of KGC

PKi public key of Ni SKi secret key of Ni

ski anonymous key shared between S and Ni sk non-anonymous key shared between S and D

ids session-identifier P random pseudonym of source (per session)

pathE encrypted path rD random element associated with D (per session)

ri encrypted next-node info for Ni r′j ri such that j = Πsk(i)

CAF chained authentication field A array of verification fields

σ bit-string containing P, ids, T, rD A adversary

σ1 bit-string containing P, ids, T, rD, pathE σ2 short digest of σ1

payload payload in a packet dp short digest of (payload, σ)

source and destination nodes. On the other hand, index privacy guarantees that an interme-
diate node cannot learn its node-index on the path. These two notions are crucial for path
validation in order to prevent certain attacks as discussed above.

– We construct PrivNPV, a privacy-preserving network path validation protocol satisfying both
path privacy and index privacy. Moreover, the destination node in PrivNPV can check whether
the packets originate from the designated source node.

– Once the network path and keys are set up for a PrivNPV session, an on-path node has to
perform only (lightweight) symmetric-key cryptographic operations in order to validate and
process subsequent payload-packets.

– We analyze the security of PrivNPV based on various attacks. In addition to the attacks
relevant to path validation protocols (in general), we consider other possible attacks specific
to a privacy-preserving path validation protocol.

– Finally, we discuss the practicality of PrivNPV based on relevant parameters.

Organization: The rest of the paper is organized as follows. Section 2 describes the problem and
background related to this work. In Section 3, we discuss the challenges in constructing a privacy-
preserving path validation protocol and the techniques we employ to address these challenges.
We provide the detailed construction of PrivNPV, our privacy-preserving network path validation
protocol, and discuss its properties in Section 4. In Section 5, we analyze the security of PrivNPV.
We describe the practicality of PrivNPV in Section 6 and conclude the paper in Section 7.

2 Problem Definition and Background

2.1 Definition

A network path (or path) of length n between a source node S and a destination node D is an
ordered collection of nodes N1 = S,N2, N3, . . . , Nn−1, Nn = D such that packets sent by S traverse
the intermediate nodes N2, N3, . . . , Nn−1 in the same order to reach D. The i-th on-path node is
identified by its node-identifier Ni. We denote such a network path either by N1 −N2 − · · · −Nn
or simply by S ∼ D (omitting the intermediate nodes). For 2 ≤ i ≤ n− 1, the intermediate node
Ni has a predecessor node Ni−1 (the node which Ni receives a packet from) and a successor node
Ni+1 (the node which Ni sends a packet to) along the path. The source (or destination) node has
only a successor (or predecessor) node along the path. The source node S decides the network
path and lets D know the same. The notations we use in this paper are enlisted in Table 1. We
now describe some notions related to a privacy-preserving path validation protocol as follows.

Definition 1 (Path validation [28,19,4]). A network protocol is called a network path valida-
tion (or path validation) protocol if it satisfies both path enforcement and path verification defined
as follows.



1. A network protocol satisfies path enforcement if a source node S decides a network path S ∼ D
to communicate with a destination node D and every intermediate node on S ∼ D is directed
to follow that specific path in order to send packets from S to D.

2. A network protocol satisfies path verification if every node present on a network path S ∼ D
receives authenticated proofs (along with packets) from its upstream nodes, such that it can
verify whether the packets have so far traversed the path specified by S.

Path validation schemes assume that the source node knows the exact path a packet should
traverse in order to reach the designated destination node. Path validation can be used in both
inter- and intra-AS (autonomous system) scenarios. For either type of application scenario, we
need the corresponding routing protocol to find out the network topology and regulated forwarding
paths. For example, Kim et al. [19] assume that the source node has access to the information of
each node (along with the information of the AS it belongs to) present on the path. The source
node also knows which intermediate nodes along the path may opt for validating the path. They
argue that the routing information can be obtained from the Border Gateway Protocol (BGP) [34],
or the source node can be provided with this information by the respective ISPs. Similarly, for
intra-AS path validation, routing information can be obtained from mainstream Interior Gateway
Protocols (IGPs) like Open Shortest Path First (OSPF) protocol [27].

Definition 2 (Source authentication [19]). A path validation protocol satisfies source authen-
tication if a source node S authenticates each packet sent along a network path S ∼ D, such that
every node on the path can validate whether the packet originates from the designated source node
S.

Definition 3 (Path privacy). A path validation protocol satisfies path privacy if any intermedi-
ate node present on a network path S ∼ D cannot identify other nodes (except its predecessor and
successor nodes) on that path. In general, a set of intermediate nodes colluding with each other
cannot identify any other nodes unless those nodes are predecessor or successor to at least one of
the colluding nodes.

Definition 4 (Index privacy). A path validation protocol satisfies index privacy if any inter-
mediate node present on a network path S ∼ D cannot learn its node-index on that path.

Definition 5 (Privacy-preserving path validation). A path validation protocol is privacy-
preserving if it satisfies both path privacy and index privacy.

An intermediate node has to identify its neighbor nodes in order to forward (or receive) packets
correctly. Thus, the notion of path privacy defined above does not include the privacy of neighbor
nodes. The notions of path privacy and index privacy preserve the privacy of all other nodes
(including the anonymity of the source node S and the destination node D).

2.2 Related Work

Researchers have proposed various solutions to secure and verify network paths. We hereby discuss
key solutions and refer interested readers to a recent survey on path validation [4] for more details.
Secure routing protocols [18,15] are designed to find the best path (e.g., the shortest path) between
a source node and a destination node such that the path finding process is secure against certain
attacks. However, these protocols do not ensure that the path thus selected is actually followed by
the packets sent later. In source routing, the source node embeds the path in packet headers such
that the intermediate nodes know the exact path to be followed [40,43]. However, the intermediate
nodes are assumed to be honest and follow the path correctly — this assumption does not suffice
in practice where nodes present on the path can be malicious. Traceroute enables the intermediate
nodes either to mark a passing packet with their respective identifiers (packet marking) or to
store a packet-digest locally (packet logging). For packet marking, an intermediate node marks
packets either probabilistically [35,38] or deterministically [7,42] — these marks are later checked
by the destination node. In case of packet logging, the destination node asks for digests from the
intermediate nodes in order to retrieve the path followed [37]. However, these marks and digests
are not designed to be cryptographically secure — which makes them vulnerable to forgery. Path



enforcement enables the source node to embed the path directives in packet headers such that
every on-path node can forward those packets along the specified path [3,33,9]. Unlike source
routing, path directives are secure against malicious tampering. Path verification protocols [30,45]
are similar to traceroute protocols, except that the packet-marks (or packet-digests) in a path
verification protocol are cryptographically secure in that a malicious node cannot forge them.

Path validation protocols achieve both path enforcement and path verification. There exist a
few path validation schemes in the literature. All of them ensure path enforcement by including
path directives in the packets. ICING [28] embeds, in a packet, a verification field for each in-
termediate node. The source node initially populates these verification fields with authenticators.
As the packet passes through each intermediate node, the node verifies the proofs (that were
computed by its upstream nodes) present in its verification field. It also inserts proofs into each
of the verification fields corresponding to its downstream nodes. Thus, every on-path node can
verify whether a packet has traversed the path specified by the source node. In the origin and
path trace (OPT) protocol [19,46], each intermediate node lets the source and destination nodes
know a secret key generated for a session. Based on these keys, the source node later computes
message authentication codes (MACs)4 and embeds them in the corresponding verification fields
present in a packet-header. Each on-path node can check, using its verification field and a proof
sent by its predecessor node, if the packet has followed the designated path so far. These proofs
form a chain of MACs, and the destination node validates the path by verifying the proof sent
by its predecessor node. The design of the orthogonal sequence verification (OSV) [5,6] protocol
is similar to that of OPT, except that OSV uses orthogonal sequences to make the generation of
the verification fields and proofs faster.

Unlike the path validation schemes described above, alibi routing [22] addresses avoidance
routing, where it is validated if the packets have avoided traversing through certain forbidden
nodes (or a geographic region). The idea is to select a trusted node located far from a forbidden
node and enforce the packets traverse through this trusted node. If a packet passes through both
of the nodes, it encounters much higher latency compared to when it traverses through the trusted
node only — this difference in latency can be detected by the destination node.

Changes required in the current Internet architecture to incorporate path validation:
Path validation requires modifications in the existing Internet routing logic for packets, that are
necessary to achieve stronger security guarantees, i.e., path enforcement and path verification.
Path validation schemes demand more computational logic on routers which is required for parsing
packet headers and performing cryptographic operations. However, this computational logic can be
efficiently implemented in both software [28,19] and hardware [28]. On the other hand, the routing
protocol also needs to be updated — which can be done through firmware/software upgrade on
routers. In OPT [19], an autonomous system (AS) can announce its path validation functionality
within BGP update messages — which enables end-hosts to get the information required for
deciding a path.

On the possibility of extending similar protocols to achieve path/index privacy: We
now discuss whether the existing path validation schemes (or apparently similar protocols) can be
extended incrementally in order to design a path validation protocol with path/index privacy.

Extending ICING : In ICING [28], apart from the path variable (say, PATH) containing the whole
network path, a verification field is embedded in the packet for each on-path node. An intermediate
node (say, Ni) identifies each of its downstream nodes (i.e., Ni+1, Ni+2, . . .) from PATH and
inserts proofs πi,i+1, πi,i+2, . . . into the verification fields Vi+1, Vi+2, . . ., respectively. We note that
the proofs πi,i+1, πi,i+2, . . . are computed using the public keys of the corresponding downstream
nodes Ni+1, Ni+2, . . . — which requires Ni to identify these nodes. Similarly, the node Ni has
to identify its upstream nodes N1, N2, . . . , Ni−1 in order to verify the proofs π1,i, π2,i, . . . , πi−1,i

present in the verification field Vi. As each node has to know every other node present on the
path, path/index privacy cannot be achieved without making non-trivial changes in the design of
ICING.

4 Given a message and a secret key, a MAC scheme outputs a “digest” for the message. A MAC scheme
is secure if it is computationally hard to produce the digest for a message m, given that the digest for
m is not available already.



Extending OPT/OSV : OPT [19,46] involves a key setup phase where a special packet P circulates
along the path. In order to enable all nodes to identify their neighbors, P embeds the whole path
(in a variable PATH) in clear — thus neither path privacy nor index privacy is achieved in OPT.
To achieve path privacy, the whole path must not be given in clear, but there should be some
mechanism such that each node knows its successor node to forward packets. Let us consider
the scenario if PATH were not embedded in P . Even then, an intermediate node could learn its
index as follows. Each node in OPT appends its (encrypted and authenticated) secret key to P .
So, a node can simply count the number of such secret keys already appended to P in order to
get its own index. Lastly, in the OPT protocol, origin-path-verification (OPV) fields are included
in the header of a packet in order to enable validation. These fields are ordered according to the
node-indices, so that a node can identify and validate the corresponding OPV value — this reveals
respective indices of the nodes. In order to extend OPT to achieve path/index privacy, these issues
must be addressed — which requires substantial changes in the OPT design. We note that similar
issues arise in the orthogonal sequence verification (OSV) [5,6] protocol which borrows similar
design from OPT.

Using onion routing/Tor : In onion routing [41] and Tor [13], the source node encrypts packets
in a specific order (using several layers) such that each intermediate node can decrypt only one
layer and pass this partially decrypted packet to its next hop (information of the next node is
obtained from this partially decrypted packet). Finally, when the packet reaches the destination
node, the destination node decrypts the last layer of encryption to retrieve the original payload.
These techniques appear to be probable solutions for privacy-preserving network path validation.
However, onion routing/Tor provides neither path verification nor source authentication. In order
to achieve path verification, each intermediate node must obtain authenticated proofs [28,19]
from the upstream nodes, such that it can verify all the nodes on the path (up to that node)
using those proofs. We note that encryptions do not provide such authenticated proofs. It is not
straightforward to design such a privacy-preserving path validation protocol without revealing the
mapping between a proof and the node that generates it (and still enabling a downstream node to
verify whether the proof has been generated by that node). The key setup phase for transmitting
a packet through the Tor network is expensive due to O(n2) rounds of communication with n
Tor-routers (in order to set up a key with each Tor-router Ni, it requires communication between
pairs N1 − N2, N2 − N3, . . . , Ni−1 − Ni). As the number of routers in a typical Tor-circuit is
quite small (e.g., 3), this cost is not too high. However, this technique is not suitable for privacy-
preserving path validation where the number of on-path nodes can be large (say, 40). We note
that Catalano et al. [8] later reduced the number of communication rounds required for setup to
O(n). Along with other techniques, we exploit the anonymous key-agreement technique of [8] for
our privacy-preserving path validation scheme.

2.3 An Anonymous Key-Agreement Protocol

Catalano et al. [8] proposed a certificateless anonymous key-agreement protocol between nodes
present in a network. In this protocol, a node is associated with an identity (say, ID), and a trusted
party, called the Key Generation Center (KGC), issues a partial secret key pID associated with ID
to the node. In a one-way anonymous key-agreement protocol, a node is allowed to authenticate
itself, without revealing its identity, to another node. However, the former node is able to identify
the latter node that it authenticates itself to.

Let G = 〈g〉 be a multiplicative group of prime order q, where g is a generator of the group,
and H : {0, 1}∗ → Zq and H ′ : {0, 1}∗ → K be two hash functions, where K is the output space
of H ′. The KGC selects a random element x from Zq and sets y = gx ∈ G; it outputs the master
secret key MSK = x and the public parameters MPK = (q,G, g, y,H,H ′).

For a node with identity ID, the KGC verifies ID, selects a random elements aID ∈ Zq and sets
bID = gaID . The KGC uses the master secret key MSK = x to compute cID = aID+H(ID||bID)x
and sends the partial secret key pID = (bID, cID) to the node. Once the node gets pID from the
KGC, it selects a random element xID ∈ Zq and sets yID = gxID . The node outputs the public
key PKID = (bID, yID) and the secret key SKID = (cID, xID).

The identities and the corresponding public keys of all nodes are maintained in a public list so
that any node in the network can search for the credentials of another node in order to establish



a shared key anonymously. Suppose a node N1 wants to establish a shared key with another node
N2, such that N2 cannot identify N1. N1 selects a random element w ∈ Zq and sets P = gw as
its pseudonym. It gets N2’s public key PK2 = (b2, y2) from the public list of identities. Given
PK2, the node N1 computes the shared key sk2 ← H ′(z2,1||z2,2), where z2,1 = (b2y

H(N2||b2))w and
z2,2 = yw2 . On the other hand, given P and the secret key SK2 = (c2, x2), the node N2 computes
the shared key sk2 ← H ′(z2,1||z2,2), where z2,1 = Pc2 and z2,2 = Px2 . We note that the shared
keys computed by N1 and N2 are same as both of them compute the same values z2,1 = gwc2 and
z2,2 = gwx2 .

3 Challenges for Constructing a Network Path Validation Protocol
with Path/Index Privacy

In this section, we first discuss the challenges for constructing a path validation protocol with
path/index privacy. Then, we describe the techniques we use to address these challenges.

Challenges: We mention the design challenges as follows.

– The source node in existing path validation schemes embeds the whole network path in a
packet such that each on-path node can know the path and check, using proofs computed by
its upstream nodes, whether the packet has actually traversed that path. The main challenge
in designing a privacy-preserving path validation protocol is to hide the path from the inter-
mediate nodes with an assurance that these nodes still can validate the path (without knowing
it) and forward packets correctly.

– One possible way to achieve path privacy is to encrypt individual nodes present on the path so
that an intermediate node can decrypt only the ciphertext intended for it (to obtain validation
and forwarding information). This requires the source node and an intermediate node to
compute a unique shared session key such that the intermediate node can decrypt only the
ciphertext which was generated by the source node using the same key. However, the source
node has to then establish a separate secure channel for each of the intermediate nodes in order
to set up the corresponding session key — which demands much communication overhead
(especially, for a path with a large number of nodes).

– Even if the source node establishes a dedicated secure channel with an intermediate node in
order to set up a session key, source anonymity is still not preserved since setting up such
a channel requires the credentials (e.g., public key) of the source node to be known to the
intermediate node.

– We recall that path privacy does not guarantee index privacy, and a path validation protocol
achieving path privacy (but not index privacy) is still vulnerable to certain attacks as discussed
in Section 1. In order to achieve index privacy, the protocol must be designed in such a way
that intermediate nodes cannot learn their respective node-indices. To be precise, the order of
the ciphertexts must not reveal node-indices on the path.

Our approach to address the challenges: We adopt the following techniques to address
the preceding challenges. We provide the detailed construction of our privacy-preserving path
validation protocol satisfying both path privacy and index privacy in Section 4.

– In the setup phase of our path validation protocol, the session keys (shared between the
source node S and the intermediate nodes) are generated in such a way that S does not need
to form a dedicated secure channel for each intermediate node in order to communicate the
corresponding shared session key. Moreover, in order to not reveal the identity of S to the
intermediate nodes, we use a one-way anonymous key-agreement protocol [8], where S picks a
random pseudonym for a session and computes the session keys based on a secret associated
with this pseudonym and the respective public keys of the intermediate nodes. S embeds this
pseudonym in a setup-packet and sends it along the network path. An intermediate node
can compute the same session key using its secret key and the pseudonym embedded in the
setup-packet. In addition, the source node and the destination node agree upon another (non-
anonymous) session key that enables the destination node to authenticate the source node.



– The source node encrypts each node present on the path. The successor-node information for
an intermediate node N is encrypted in such a way that only N can decrypt its corresponding
ciphertext using its session key (on the other hand, N cannot decrypt the ciphertexts intended
for other nodes).

– Message authentication codes (MACs) are employed in a chained fashion [19], such that a
single incorrect MAC makes all the subsequent MACs in the chain invalid. To be specific, the
source node embeds in a packet a verification field for each on-path node. The MAC present in
the verification field corresponding to a particular on-path node takes as input another MAC
that is computed using the secret key of the predecessor node of that on-path node — which
forms a chain of MACs in the same order as that of the nodes present on the network path. So,
if the MAC computation is corrupted somewhere along the path (e.g., bypassing some honest
on-path nodes, or changing the order of MAC computations), the next honest on-path node
can detect the same as the MAC verification at its end will fail. Thus, an on-path node can
validate all MACs (computed by its upstream nodes) by verifying only the MAC sent by its
predecessor node.

– For each intermediate node N , the source node S embeds a verification field in the packet such
that N can check if all the upstream nodes have followed the protocol correctly. However,
in order to preserve index privacy, N must not learn its index from the list of verification
fields. To address this concern, we use a pseudo-random permutation5 (PRP) to shuffle the
verification fields. This shuffling is done by S using its secret key (that is not shared with any
of the intermediate nodes). Moreover, in order to let N correctly identify the verification field
intended for it, S encrypts N ’s permuted index using the session key shared with N . This can
be done in a similar way as described above for encrypting the successor-node information. In
fact, both of them are encrypted together in our path validation protocol, and an intermediate
node uses its session key to decrypt the corresponding ciphertext and obtains both information.

– Pseudo-random permutations (PRPs) are typically defined for large domains (e.g., 128-bit
AES). On the other hand, the number of nodes present on a network path is comparatively
much smaller (15–20, on an average). Thus, we need PRPs with small domains for our path
validation protocol. There exist a few small-domain PRP constructions in the relevant liter-
ature. Such a PRP (e.g., FastPRP [39] — which is efficient and can be applied to arbitrarily
small domains) is suitable for our path validation protocol.

4 PrivNPV: A Privacy-Preserving Network Path Validation Protocol

In this section, we describe PrivNPV, the first privacy-preserving network path validation protocol.
We assume that a source node S sets up a session with a destination node D, where S decides a
path of length n and lets D know the specified path. Figure 2 illustrates the steps performed by
the on-path nodes during the setup and payload-forwarding phases.

Long-Term Keys for Node-Identifiers: In order to achieve source anonymity in PrivNPV, we
use the anonymous key-agreement protocol [8] described in Section 2.3. We recall that the master
secret key and the public parameters of the KGC are MSK = x and MPK = (q,G, g, y,H,H ′),
respectively, where G is a multiplicative group of prime order q, g is a generator of G, and H,H ′ are
two hash functions. For ease of representation, as in [8,28], we describe our protocol considering G
as a multiplicative group. In practice, operations in G can be performed much more efficiently for
an (additive) elliptic curve group [21] than for a multiplicative group of the same order. Thus, for
efficiency reasons, G is typically realized as an elliptic curve group (over the finite field Fq) [8,28].
We note that multiplication and exponentiation operations in a multiplicative group are equivalent
to addition and scalar multiplication operations, respectively, in an additive group.

In order to enable S and D to establish a (non-anonymous) shared key also, we use Diffie-
Hellman key exchange protocol [11] as follows. In addition to the partial secret key pID (see
Section 2.3), the KGC issues another secret key uID to a node with identity ID. The node outputs
the public key PKID = (bID, yID, vID = guID ) and the secret key SKID = (cID, xID, uID).
Suppose N1 and N2 want to establish a non-anonymous shared key with each other. N1 and N2

5 A pseudo-random permutation over a domain D is computationally indistinguishable from a random
permutation over D.



Fig. 2: An overview of the steps performed by the on-path nodes in PrivNPV during: (a) the setup
phase and (b) a payload-forwarding phase.

compute H ′(vu1
2 ) and H ′(vu2

1 ) as their secret keys, respectively. Since vu1
2 = vu2

1 = gu1u2 , they
compute the same secret key.

The secret key-public key pair ((cID, xID), (bID, yID)) are used for anonymous key agree-
ment, and the secret key-public key pair (uID, vID) is used for non-anonymous key agreement. In
PrivNPV, the shared session keys obtained from these long-term keys are used to validate packets.

4.1 Setup Phase for Path and Keys

Suppose a source node selects a network path N1−N2−· · ·−Nn to communicate with a destination
node, where Ni is the publicly known identity associated with the i-th on-path node. We have
S = N1 as the source node, D = Nn as the destination node and N2, N3, . . . , Nn−1 as the
intermediate nodes. Let E = (KeyGene,Enc,Dec) be a secure symmetric-key encryption scheme
and MAC = (KeyGenm,MACS,MACV) be a secure message authentication code. Let Π be a secure
pseudo-random permutation (PRP) over the set of node-indices [1, n]. The schemes E ,MAC and
Π share the same key space K which is equal to the output space of H ′. Let S be the space
of session-identifiers. Let H1 : {0, 1}∗ → S and H2 : {0, 1}∗ → M be collision-resistant hash
functions,6 where M is the output space of H2. We refer to Section 6.1 for possible realization of
these cryptographic primitives.

Processing at the source node: Let T be the current timestamp. We assume that on-path
nodes in a session are loosely time synchronized (e.g., using the network time protocol (NTP) [26]).
The source node S selects a random element w ∈ Zq and sets P = gw as its pseudonym. For the
current session, S selects a random element rD ∈ {0, 1}128 for the destination nodeD and computes
a session-identifier ids = H1(P||T ||rD). The random element rD serves the purpose of generating
different session-identifiers for different destination nodes. S performs the following steps.

– For each i ∈ [2, n], S establishes a shared session key with the i-th on-path node Ni. It searches
Ni in the public list of identities in order to obtain Ni’s public key PKi = (bi, yi, vi). Given
ids, the source node S computes the following session keys

ski ← H ′(zi,1||zi,2||ids) for each i ∈ [2, n],

sk1 ← skn, sk ← H ′(vu1
n ||ids),

(1)

where zi,1 = (biy
H(Ni||bi))w and zi,2 = ywi for i ∈ [2, n]. The session key shared between S

and Ni for the particular session ids is ski. We note that S and D share two session keys skn
(using anonymous agreement) and sk (using non-anonymous agreement).

6 For a collision-resistant hash function, it is computationally hard to find two inputs whose hash values
are equal.
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Fig. 3: Initial structure of the setup-packet Ps.

– S encrypts the network path as pathE ← Encsk1(n||N1||N2|| · · · ||Nn−1||Nn). S takes a bit-
string σ1 = P||ids||T ||rD||pathE and computes a short digest σ2 = H2(σ1). S computes the
PRP Π over the set [1, n] (using the secret key sk) in order to obtain the permuted indices
Πsk(1), Πsk(2), . . . ,Πsk(n). Then, for each on-path node, S encrypts that node’s successor
information and its permuted index as

ri ← Encski(σ2||Ni+1||Πsk(i)) for each i ∈ [1, n− 1],

rn ← Encskn(σ2||N1||Πsk(n)).
(2)

– S shuffles the sequence R1 = {r1, r2, . . . , rn} of ciphertexts using Π (and the secret key sk) in
order to form another sequence R2 = {r′1, r′2, . . . , r′n} such that r′Πsk(i) = ri for each 1 ≤ i ≤ n.

We note that r′Πsk(i) is the ciphertext intended for the i-th on-path node.
– The source node S processes the setup-packet Ps as follows. S includes the bit-string σ1, the

sequence R2, an array A of verification fields and a chained authentication field CAF in Ps (see
Figure 3). S computes the initial CAF value as CAF1 = MACSsk1(σ2). Then, it sets N0 = Nn
and includes CAF = CAF1 and A[Πsk(1)] = MACSsk1(σ2||N0) in the packet Ps. For each
index i ∈ [2, n−1], S computes a CAF value CAFi = MACSski(CAFi−1) and sets A[Πsk(i)] =
MACSski(σ2||Ni−1||CAFi−1) in Ps. S also sets A[Πsk(n)] = MACSsk(σ2||Nn−1||CAFn−1) in
Ps. We note that, for any i ∈ [2, n − 1], the value CAFi is computed using MACS that takes
CAFi−1 and ski as input — which forms a chain of MACs which ensures that one invalid
MAC computation in this chain makes all the subsequent MACs invalid.

– Finally, S sends the setup-packet Ps to its successor node N2 on the path.

Processing at an intermediate node: The intermediate node Ni (2 ≤ i ≤ n − 1) processes
the incoming setup-packet Ps as follows.

– Ni parses the bit-string σ1 as P||ids||T ||rD||pathE and checks whether ids
?
= H1(P||T ||rD).

It also computes σ2 = H2(σ1).
– Given P and the secret key SKi = (ci, xi, ui), the node Ni computes the session key

ski ← H ′(zi,1||zi,2||ids), (3)

where zi,1 = Pci and zi,2 = Pxi . We note that, as both S and Ni compute the same values
zi,1 = gwci and zi,2 = gwxi , the session key ski computed in Eqn. 3 is same as that in Eqn. 1.

– Ni uses the session key ski to decrypt the elements of R2 = {r′1, r′2, . . . , r′n} one by one and
checks whether the plaintext thus obtained begins with σ2 = H2(σ1). Among these ciphertexts,
only one r′j is decrypted correctly (for some j ∈ [1, n]). We note that all other ciphertexts
present in R2 were originally encrypted (by S) using keys different from ski. Thus, decrypting
these other ciphertexts using ski produces random plaintexts that, with high probability, do
not begin with σ2.

– Ni obtains (Πsk(i), Ni+1) after decrypting r′j and checks if j
?
= Πsk(i). We note that the

ciphertext r′Πsk(i) ∈ R2 is same as ri ∈ R1.

– Let N ′i−1 be the node from which Ni has received the setup-packet Ps. Ni computes tempi =
MACSski(σ2||N ′i−1||CAF ) using the CAF value (which is CAF = CAFi−1 currently) from Ps.
If tempi = A[Πsk(i)], then Ni is convinced that all previous CAF values have been computed
correctly — which enables path verification by Ni. If the path is verified to be correct, Ni
computes CAFi = MACSski(CAF ) and sets CAF = CAFi in the setup-packet Ps.
We note that if Ni and Ni−1 have followed the protocol correctly, then Ni−1 = N ′i−1. Other-
wise, the order of the node-sequence has not been followed properly, and Ni computes MAC
on an incorrect input N ′i−1 6= Ni−1 (which is detected by the next honest node present on the
path).
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Fig. 4: Initial structure of a payload-packet Pp.

– If any preceding verification fails, the node Ni drops the setup-packet Ps. Otherwise, Ni stores
(ids, ski, Πsk(i), Ni−1, Ni+1) and sends the updated Ps to the next on-path node Ni+1.

Processing at the destination node: The destination node D processes the packet Ps as
follows.

– D parses the bit-string σ1 as P||ids||T ||rD||pathE and checks whether ids
?
= H1(P||T ||rD). It

computes the hash value σ2 = H2(σ1).
– Given P and the secret key SKn = (cn, xn, un), D computes the session keys

skn ← H ′(zn,1||zn,2||ids), sk1 ← skn, (4)

where zn,1 = Pcn and zn,2 = Pxn . As both S and D essentially compute the same values
zn,1 = gwcn and zn,2 = gwxn , the session key skn computed in Eqn. 4 is same as that in
Eqn. 1.

– D uses the session key sk1 to decrypt pathE to obtain the network path (and n). Given the
public key PK1 = (b1, y1, v1) of the source node N1 = S and its own secret key SKn =
(cn, xn, un), the destination node D computes the session key

sk ← H ′(vun
1 ||ids). (5)

As vu1
n = vun

1 = gu1un , the session key sk computed in Eqn. 5 is same as that in Eqn. 1.

– Let N ′n−1 be the node from which D has received Ps. D checks if Nn−1
?
= N ′n−1.

– D uses sk in order to compute Πsk(n) and temp = MACSsk(σ2||Nn−1||CAF ), where the
current CAF value present in Ps is CAF = CAFn−1. If temp = A[Πsk(n)], then D is convinced
that all previous CAF values have been computed correctly — which enables path verification
by D.

– If any preceding verification fails, D drops Ps. Otherwise, D stores (ids, sk,Πsk(n), Nn−1),
encrypts the string P||ids||T ||rD using sk and sends it to S as a confirmation. The path D ∼ S
need not be the same as S ∼ D (in reverse order), and it does not require any path validation.

4.2 Payload-Forwarding Phase

After the path and session keys are set up, S transmits payload-packets along the same path. The
payload embedded in a payload-packet contains the actual data that the source node S wants to
send to the destination node D through the decided network path. The payload can be in clear or
in an encrypted format (if S and D decide to hide the content of the payload). In the latter case,
S encrypts the payload using a key shared with D before putting it in the payload-packet.

Processing at the source node: Given ids, T and rD, the source node S proceeds as follows.

– S processes a payload-packet Pp as follows. It takes the bit-string σ = P||ids||T ||rD and
includes a short digest dp = H2(payload||σ) along with payload in Pp.
S includes an array A of verification fields and a chained authentication field CAF in Pp (see
Figure 4). S computes the initial CAF value as CAF1 = MACSsk1(dp). S sets N0 = Nn, and
it includes CAF = CAF1 and A[Πsk(1)] = MACSsk1(dp||N0) in the packet Pp. For each index
i ∈ [2, n − 1], S computes a CAF value CAFi = MACSski(CAFi−1) and sets A[Πsk(i)] =
MACSski(dp||Ni−1||CAFi−1) in Pp. S also sets A[Πsk(n)] = MACSsk(dp||Nn−1||CAFn−1) in
Pp. We note that, for any i ∈ [2, n − 1], the value CAFi is computed using MACS that takes
CAFi−1 and ski as input — which forms a chain of MACs which ensures that one invalid
MAC computation in this chain makes all the subsequent MACs invalid.

– Finally, S sends the payload-packet Pp to its successor node N2 on the path.



Table 2: Properties of path validation schemes

Schemes
Path Path Index Source/destination Source

validation privacy privacy anonymity authentication

ICING [28] 3 7 7 7 3

OPT [19,46] 3 7 7 7 3

OSV [5,6] 3 7 7 7 3

PrivNPV 3 3 3 3 3†

† Source authentication is done by the destination node only.

Processing at an intermediate node: The intermediate node Ni (2 ≤ i ≤ n − 1) processes
the incoming payload-packet Pp as follows.

– Ni parses σ as P||ids||T ||rD and checks whether dp
?
= H2(payload||σ).

– Ni stores the tuple (ski, Πsk(i), Ni−1, Ni+1) corresponding to ids (these values were com-
puted/obtained during the setup phase). Let N ′i−1 be the node from which Ni has received

the packet Pp. The intermediate node Ni checks whether Ni−1
?
= N ′i−1. Ni takes the CAF

value (which is CAF = CAFi−1 currently) from the incoming packet Pp and computes
tempi = MACSski(dp||Ni−1||CAF ). If tempi = A[Πsk(i)], then Ni is convinced that all previ-
ous CAF values have been computed correctly — which enables path verification by Ni. In that
case, Ni computes CAFi = MACSski(CAF ) and sets CAF = CAFi in the payload-packet Pp.

– If any preceding verification fails, Ni drops Pp. Otherwise, Ni sends the updated Pp to Ni+1.

Processing at the destination node: The destination node D processes the packet Pp as
follows.

– D parses σ as P||ids||T ||rD and checks if dp
?
= H2(payload||σ).

– We note that D stores (sk,Πsk(n), Nn−1) corresponding to ids (these values were computed
during the setup phase). Let N ′n−1 be the node from which D has received the packet Pp. D

checks whether Nn−1
?
= N ′n−1 and computes temp = MACSsk(dp||Nn−1||CAF ) using the CAF

value (which is CAF = CAFn−1 currently) from Pp. If temp = A[Πsk(n)], then D is convinced
that all CAF values have been computed correctly — which enables path verification by D.

– If any preceding verification fails, D drops the payload-packet Pp.

4.3 Properties of PrivNPV

We discuss the properties of PrivNPV as follows. Based on some of these properties, a comparison
among path validation schemes is given in Table 2.

– Path enforcement: During the setup phase, the source node enforces the path by embed-
ding, for each intermediate node Ni, the successor node Ni+1 in the ciphertext ri intended for
Ni (this encryption is done using the session key shared with Ni).

– Path verification: Every i-th on-path node (i ∈ [2, n]) can check, using ski (or sk), CAFi−1

and A[Πsk(i)], if a packet has traversed along the previous nodes mentioned in the path. This
is ensured by the chain of MACs computed according to the node-sequence. A single malicious
(incorrect or out-of-order) MAC computation makes the subsequent MACs invalid. Such a
mismatch in the MAC can be easily detected by the next honest intermediate node and D.
Path verification is enabled in both setup and payload-forwarding phases.

– Path privacy: PrivNPV achieves path privacy in that each intermediate node can identify
its predecessor and successor nodes only (instead of the whole path). This is ensured by
encrypting the neighbor information using that node’s session key. On the other hand, an
intermediate node cannot decrypt the ciphertexts intended for other nodes.
We note that the malicious intermediate nodes controlled by an attacker can combine their
knowledge (information about their respective predecessor and successor nodes) to identify



Fig. 5: The minimum number of intermediate nodes to compromise in order to reveal the whole
path in PrivNPV: (a) with path privacy (but without index privacy) and (b) with both path
privacy and index privacy.

parts of the network path. Suppose the attacker aims to identify the whole path by corrupting
the minimum number of intermediate nodes such that: 1) every honest on-path node (i.e.,
the source node, or the destination node, or an honest intermediate node) has at least one
malicious node as its neighbor, and 2) malicious nodes are located as far as possible from one
another. Figure 5(a) illustrates the situation for PrivNPV if it had achieved only path privacy
(without index privacy). In order to satisfy both conditions, the number of honest nodes in
between two successive malicious nodes can be at most two, and the attacker must corrupt
the nodes N2 and Nn−1. Thus, the attacker has to corrupt at least dn3 e intermediate nodes to
learn the whole network path.

– Index privacy: Due to the use of the PRP Π, the index of any intermediate node present
on the path is not revealed from the sequence R2 of shuffled ciphertexts.
Figure 5(b) illustrates a situation for PrivNPV with both path privacy and index privacy,
where an attacker attempts to identify the whole path by corrupting the minimum number of
intermediate nodes. In order to satisfy both conditions mentioned above, the number of honest
nodes in between two successive malicious nodes can be at most one, and the attacker must
corrupt the nodes N2 and Nn−1. Thus, the attacker has to corrupt at least dn2 e intermediate
nodes to learn the whole network path. We observe that index privacy increases this bound
from dn3 e to dn2 e.

– Source and destination anonymity: Due to path privacy and index privacy, source
anonymity and destination anonymity are preserved in PrivNPV. For each session, S = N1

chooses a random pseudonym P that is sufficient for an intermediate node to compute the
shared session key. An intermediate node can only identify the source node by P and the
destination node D = Nn by a random element rD. However, the identity of S (or D) is not
revealed to any intermediate node; even N2 (or Nn−1) cannot identify if its predecessor (or
successor) node is the source (or destination) node. We note that the destination node D can
identify S and authenticate if a packet originates from S.

In addition to source and destination anonymity, PrivNPV achieves unlinkability across mul-
tiple sessions in the sense that an intermediate node present on two or more network paths for
these sessions cannot link if the packets from these paths are generated by the same source
node or destined to the same destination node. This follows from the fact that the source node
selects a random pseudonym P and a random element rD for each session.

– Source authentication: The destination node D derives the shared key sk using the public
key of S. During the setup/payload-forwarding phase, D validates the MAC value computed
using sk and stored at A[Πsk(n)]. Therefore, source authentication is done implicitly by D.
In case a malicious node attempts to spoof a source, this MAC authentication fails.

– Symmetric-key cryptography: The payload-forwarding phase in PrivNPV involves only
(fast) symmetric-key primitives — that results in fast computation at each node. The setup



phase requires public-key primitives (for computing shared session keys). However, we note
that public-key operations are necessary for two parties generating a shared key without
establishing a dedicated channel between them.

5 Security of PrivNPV

5.1 Security Assumptions

A computationally-bounded network attacker is considered to be an adversary A in privacy-
preserving path validation. We assume that A is Byzantine (i.e., it can deviate from the protocol
in an arbitrary and malicious fashion) and can corrupt some intermediate nodes (these nodes can
collude in order to mount certain attacks collectively). The adversarial model and attacks are
similar to those described in the existing path validation schemes [28,19,4]. We assume that A has
no control over the end-hosts (i.e., S and D are considered to be honest). Otherwise, as both of
them have the complete knowledge of the path, A is always able to know the path — which is not
possible to prevent by any means. However, this assumption is rational as the end-hosts may not
want to reveal the path to intermediate nodes whom they do not trust. Moreover, A may attempt
to identify the honest on-path nodes or to learn the index of a node it controls. We require the
following assumptions for PrivNPV to be secure.

– The hash functions H and H ′ used for key agreement are assumed to be random functions [8].
The encryption scheme E , the MAC scheme MAC and the PRP Π used in PrivNPV are secure.
The hash functions H1 and H2 are collision-resistant.

– Each node is identified by its identity/node-identifier (e.g., Ni), and the Key Generation Center
(KGC) issues a partial secret key to the node based on its identity. The public key of each
node is included in a public list available to all nodes in the network. In PrivNPV, we consider
G to be an elliptic-curve group [21] over the finite field Fq, where q is a 160-bit prime. Thus,
the size of each secret key in Zq (and the corresponding public key in G) is 160 bits.

5.2 Security Analysis: Possible Attacks and Defenses

We discuss the possible attacks an adversary A can mount on a privacy-preserving path validation
scheme and how PrivNPV defends against them.

– Path-revealing attack: A malicious intermediate node tries to learn the network path
partially or fully. We note that it can always identify its predecessor and successor nodes.
Defense: In PrivNPV, as the path is encrypted, an intermediate node cannot identify the
on-path nodes except its neighbors. A malicious intermediate node, without having the secret
session key of an honest node, cannot decrypt the ciphertext intended for that honest node.
We note that an attacker can compromise some of the intermediate nodes and learn parts of
the network path from the neighbor information of those nodes. However, as we have discussed
in Section 4.3, the attacker has to compromise at least dn2 e intermediate nodes in PrivNPV in
order to learn the whole network path of length n.

– Index-revealing attack: A malicious intermediate node can attempt to learn its index on
the network path to mount certain attacks similar to that described in Section 1.
Defense: The source node in PrivNPV shuffles the ciphertexts using the pseudo-random
permutation Π. As an intermediate node does not know the secret key sk for Π, it cannot
learn its node-index on the network path. Moreover, as PrivNPV satisfies both path privacy
and index privacy, a malicious intermediate node (even N2 or Nn−1) cannot identify S and D
only from the random pseudonym P and the random element rD, respectively.

– Counterfeit attack: In a counterfeit attack, A aims to propagate an incorrect packet so
that the packet passes verification. This type of attacks includes packet-alteration attacks
(modifying a packet) and packet-injection attacks (injecting a packet of A’s choice). Packet-
injection attacks also include replay attacks where A injects older packets into the path.
Defense: In a packet-alteration attack, a malicious intermediate node tries to alter a packet
without being noticed by the next honest on-path node. In PrivNPV, these attacks are pre-
vented by using short digests (σ2 in the setup phase and dp in the payload-forwarding phase).



The digest σ2 = H2(σ1) is used as an input to the encryption operations (see Eqn. 2), and
dp = H2(payload||σ) is included in the packet itself (see Figure 4). These digests are com-
puted using a collision-resistant hash function — which ensures that tampering with the input
would produce a different digest. Moreover, these digests are fed as input to MAC compu-
tations. Thus, an incorrect value of a digest would produce a different MAC value (despite
having the corresponding secret key) — an honest node can easily detect this anomaly (as the
MACs are chained) and drop the packet. Similarly, as all MAC, encryption and PRP opera-
tions need secret keys, it is hard for a malicious node to tamper with CAF , the verification
fields of A or the permuted ciphertexts (embedded in a packet) without being detected by an
honest node.

In a packet-injection attack, a malicious node S′ in the network tries to impersonate another
node S as the source node and inject a packet (of its choice) along a network path. In PrivNPV,
the destination node D authenticates the source node S using the shared session key derived
from the public key of S. Therefore, the only possibility of successfully mounting such an
attack is to guess/compute the secret key of S — which is hard for the malicious node S′.
Replay attacks are prevented in PrivNPV by embedding the session-identifier and timestamp
in the packet (in an authenticated fashion) which can be validated by every node on the path.

– Denial-of-service (DoS) attack: In a DoS (or distributed DoS) attack, the adversary tries
to make the on-path nodes perform memory-intensive and/or computation-intensive work.
Replay attack (injecting older packets into the path) is one such example which not only
increases traffic in the network but also enhances redundant computation (e.g., verification)
for an honest node.

Defense: In PrivNPV, each intermediate node Ni stores only (ids, ski, Πsk(i), Ni−1, Ni+1)
corresponding to a session — this small amount of storage rules out memory exhaustion of an
intermediate node. In terms of computational overhead, the intermediate nodes in PrivNPV
need to perform only a small number of symmetric-key cryptographic operations in a payload-
forwarding phase (see Table 3). For each payload-packet Pp, these symmetric-key operations
can be performed efficiently. However, in the setup phase, an intermediate node has to perform
some computation-intensive work (e.g., it has to perform expensive exponentiation operations
and n

2 decryption operations on an average) — which may help the adversary to effectively
mount DDoS attacks on one or more intermediate nodes. In case such an attack occurs in the
setup phase and the source node S does not get a confirmation (from the destination node
D) of receiving the valid setup-packet Ps after a predefined timeout period, S decides a new
network path to communicate with D.

As we have discussed earlier, replay attacks are hard to mount in PrivNPV.

– Coward attack: The adversary performs a coward attack when the attack is less likely to
be detected. For example, it can mount any attack mentioned above when the path validation
protocol is not being executed (e.g., when the key setup is not done, or when packets are being
sent without authentication in order to achieve fast propagation).

Defense: Due to the additional computational burden needed for verification, the path-
validation procedure may be invoked only when there are anomalies regarding packet loss
(or delay), or when the source node and the destination node set up a new network path to
be followed for communication [4]. After these issues are resolved (or the setup is done), every
packet transmitted onwards is not checked for validation — which the adversary can utilize to
mount some of the attacks mentioned above. In this scenario, it is hard to detect such attacks.
Among the existing path-validation schemes, only OPT [19] addresses this issue by executing
the path validation probabilistically (i.e., for random packets). Thus, the adversary fails to
predict when a validation would be run — which makes it execute the protocol correctly all
the time. We can also use this method in PrivNPV in order to prevent such coward attacks.
On the other hand, path validation may be applied only to specific packets that are required
to follow a specific path chosen by the source node. However, in order to ensure validation of
all the packets, authentication (and verification) must be enabled for each of them. In that
case, PrivNPV is still practical as only a few (efficient) symmetric-key cryptographic opera-
tions needed to be performed in the payload-forwarding phase (see Table 3 for the number of
cryptographic operations performed by the nodes).



– Out-of-order traversal: One or more malicious nodes (controlled byA) can send the packet
through all (or some) of the specified nodes but not in the order decided by the source. It
includes the case where an honest node on the path is bypassed by the malicious nodes.
Defense: In PrivNPV, the CAF values must be computed in the same order as that of the
nodes present on the network path. These values form a chain of MACs, where each MAC
in the chain is computed from its previous MAC using the session key of the corresponding
on-path node. For an out-of-order traversal that involves at least one honest node N , the
CAF value of N cannot be computed correctly without its session key — which makes all
subsequent CAF values incorrect. This is detected by the next honest on-path node.

Finally, we mention some issues that path validation does not address well in general [28,19].
They remain unresolved in PrivNPV as well.

– An out-of-order traversal, that involves only some nodes controlled by A, may not be detected
in a path validation scheme (e.g., A, having control over the nodes Ni, Ni+1, Ni+2, Ni+3, can
always make a packet traverse through Ni−Ni+2−Ni+1−Ni+3 or Ni−Ni+3, and it can still
generate correct CAF values using the session keys of these nodes).

– In a path-detour attack, a malicious intermediate node (say, Ni) sends a packet through an
unspecified path Ni−N ′1−N ′2−· · ·−N ′l −Ni+1 (where the detour nodes are N ′1, N

′
2, . . . , N

′
l ).

If Ni and Ni+1 collude with each other, they can always produce correct CAF values — which
makes such an attack hard to detect.

– Path validation does not ensure the delivery of a packet to the destination node D. A node
can drop a packet maliciously. On the other hand, if a packet fails verification at an honest
node, the node drops it to avoid wasting downstream resources.

– D cannot identify the exact node where a packet (if any) has been dropped or corrupted.
– Some of the intermediate nodes in a path validation scheme may fail to respond permanently or

temporarily due to various reasons (e.g., accidentally or under the influence of certain attacks).
This may result in packet losses at the destination node D. This issue can be addressed by
borrowing ideas from the reliable data-transmission mechanisms of the Transmission Control
Protocol (TCP) [32]. The packet losses can be detected by associating sequence numbers with
the packets sent along S ∼ D and by enabling S to receive an acknowledgment from D for each
of these packets. For a temporary disruption, the source node detects the same (e.g., based on
duplicate acknowledgments or a timeout parameter) and retransmits the lost packets along
the same path. On the other hand, in case some of the intermediate nodes fail permanently,
recovery techniques like finding alternative path dynamically can be applied. However, as
the source node in a path validation scheme initially fixes the network path and packets are
allowed to traverse that particular path only, these recovery techniques are not suitable for
path validation. This requires the source node to decide another path (and set up session keys
with the nodes on this path) in order to further communicate with the destination node —
which increases the complexity of the path validation protocol significantly.

6 Practicality of PrivNPV

6.1 Realization of Cryptographic Primitives

The AES-128 block cipher [29] can be used for symmetric-key primitives in PrivNPV as follows.
The encryption scheme E can be instantiated using AES-128 in cipher-block-chaining (CBC) mode;
the MAC scheme MAC can be realized as CMAC-AES; the PRP Π can be constructed using
FastPRP [39] (FastPRP uses AES-128 to generate required pseudo-random bits). For the initial
key agreement, G is taken to be an elliptic curve group over Fq, where q is a 160-bit prime. Thus,
for the node Ni, each component of PKi = (bi, yi, vi) and SKi = (ci, xi, ui) is 160-bit long. The
output space for the hash function H is {0, 1}160. The output space for each of the hash functions
H ′, H1, H2 is {0, 1}128, that is, S = K =M = {0, 1}128. We can use SHA-256 for computing the
hashes and truncate the 256-bit outputs to 128-bit values. We take the identity of a node (e.g., Ni)
to be an element of {0, 1}128. Based on these possible instantiations, each of the following elements
is 16-byte long: ids, σ2, dp, CAF, sk, sk2, sk3, . . . , skn−1, skn, A[1], A[2], . . . , A[n], N1, N2, . . . , Nn.



Table 3: Number of cryptographic operations performed by the source node S, an intermediate
node N and the destination node D during different phases of PrivNPV/OPT/ICING, respectively

Operations
Setup phase Payload-forwarding phase

S N D S N D

Exponentiation 3n− 1/0/ ∼ 2/0/ ∼ 3/0/ ∼ 0/0/n 0/0/n 0/0/n

Hash 2n+ 1/1/ ∼ 3/0/ ∼ 4/1/ ∼ 1/2/n+ 1 1/0/n+ 1 1/0/n+ 1

PRP (Π) 1/0/ ∼ 0/0/ ∼ 1/0/ ∼ 0/0/0 0/0/0 0/0/0

Encryption/
n+ 2/0/ ∼ n†/1/ ∼ 2/n− 2/ ∼ 0/0/0 0/0/0 0/0/0

decryption

MAC 2n− 1/0/ ∼ 2/0/ ∼ 1/0/ ∼ 2n− 1/2n− 2/‡ 2/2/‡ 1/n+ 1/‡
PRF 0/2/ ∼ 0/1/ ∼ 0/3/ ∼ 0/0/4n 0/0/n+ 3 0/0/n+ 3

Authenticated
0/2/ ∼ 0/0/ ∼ 0/2/ ∼ 0/0/0 0/0/0 0/0/0

encryption/decryption

Signature
0/0/ ∼ 0/1/ ∼ 0/n− 2/ ∼ 0/0/0 0/0/0 0/0/0

generation/verification

∼ ICING does not consider a separate setup phase for a session. Each packet in ICING carries a
payload along with authentication information.
† In the worst case, an intermediate node in PrivNPV tries to decrypt n − 1 ciphertexts before it
finds the ciphertext intended for it (an intermediate node finds the corresponding ciphertext after n

2

decryption operations, on an average).
‡ MAC computations in ICING use pseudorandom functions (PRFs) and hash functions; we have thus
added the respective counts to that of the corresponding operations.

As Π operates over [1, n], we have Πsk(1), Πsk(2), . . . ,Πsk(n) ∈ {0, 1}dlog2 ne. A timestamp T
is typically represented using 4 bytes. Each of the ciphertexts r1, r2, . . . , rn is 64-byte long (after
padding the plaintexts appropriately).

6.2 Storage Overhead per Packet

The storage overhead for the setup-packet Ps per on-path node is roughly attributed to an element
of A (the list of verification fields) and an element of R2 (the sequence of shuffled ciphertexts).
Thus, the storage overhead for Ps (per on-path node) is around 80 bytes. On the other hand, the
storage overhead for a payload-packet Pp (per on-path node) is due to an element of A — which
accounts for 16 bytes.

6.3 Computation per Node

Table 3 shows cryptographic operations (to be performed by the source node S, an intermedi-
ate node N and the destination node D) during the setup and payload-forwarding phases of
PrivNPV/OPT/ICING. From Table 3, we make the following observations regarding PrivNPV.

– Most of the computations are done in the setup phase.
– Only a few symmetric-key operations need to be performed in the payload-forwarding phase.
– During the setup phase, S has to perform some of the cryptographic operations for each on-

path node (i.e., the number of times each of these operations to be performed by S grows
linearly with the path-length n).

– The number of times any cryptographic operation to be performed by D is independent of n.
This holds for an intermediate node also, except that it has to perform n

2 decryption operations
(on an average) in the setup phase.

Estimation of time required per node: We estimate the time required by the source node S, an
intermediate node N and the destination node D in different phases of a PrivNPV session as
follows. The (additive) elliptic curve group G is defined over the finite field Fq for a 160-bit



Fig. 6: Time required for performing cryptographic operations in: (a) the setup phase and (b) the
payload-forwarding phase. (c) Storage required at the source S, an intermediate node N and the
destination D.

prime q. According to the benchmarks given in [16], an exponentiation operation (or, equivalently,
a scalar multiplication operation in the additive group) takes around 0.75 milliseconds when
evaluated on a 1.83 GHz Intel Core 2 Duo processor. FastPRP [39] requires around n log n pseudo-
random bits that are generated by encrypting non-negative integers using AES-128 with the
secret key sk. For example, for n = 20, Π requires around 100 bits which can be obtained by
invoking AES-128 once (i.e., AES-128sk(0)); for n = 40, it requires around 240 bits which can
be obtained by invoking AES-128 twice (i.e., AES-128sk(0) and AES-128sk(1)). For symmetric-
key cryptographic primitives involved in PrivNPV, we consider the widely used cryptographic
benchmarks [10] evaluated on a 1.83 GHz Intel Core 2 Duo processor: each hashing takes 0.55
microseconds (using SHA-256), each encryption/decryption takes 0.56 microseconds (using 128-
bit key AES-CBC) and each MAC operation takes 0.56 microseconds (using CMAC-AES) —
assuming 64-byte inputs for these primitives. Figure 6(a) and Figure 6(b) show the time required
for performing cryptographic operations in the setup and payload-forwarding phases, respectively,
for varying path-length n.

In practice, the path-length n is small (e.g., 15–20, on an average). Thus, the per-session com-
putational cost for each node is low (e.g., for n = 20, the nodes S, N , D take around 44.31,
1.51, 2.25 milliseconds, respectively, in the setup phase and 22.95, 1.67, 1.11 microseconds, respec-
tively, in the payload-forwarding phase). The computational cost in the setup phase (one-time per
session) is predominated by expensive public-key operations. However, we note that public-key
operations are necessary for a pair of nodes computing a shared key without establishing a dedi-
cated channel between them. Once the network path and session keys are set up for a session, S
typically transmits many payload-packets. As the computational cost in each payload-forwarding
phase is small (in the order of microseconds), these payload-packets are processed fast at each
on-path node.

6.4 Storage per Node

Along with the specified network path, the source node S in a PrivNPV session (identified by
ids) stores the following: P, ids, T , rD, the keys (sk, sk2, sk3, . . . , skn) and the permuted in-
dices (Πsk(1), Πsk(2), . . . ,Πsk(n)) — which accounts for total 576 + n(128 + dlog2 ne) bits. For
example, this storage is around 405 bytes for n = 20. The destination node D stores a tuple
(ids, sk,Πsk(n), Nn−1). For example, D stores around 49 bytes for n = 20. Each intermediate
node Ni (2 ≤ i ≤ n−1) stores a tuple (ids, ski, Πsk(i), Ni−1, Ni+1). Thus, for a path of length 20,
each intermediate node stores around 65 bytes. Figure 6(c) shows the storage required at different
on-path nodes for varying n.

6.5 Comparison among Path Validation Schemes

In this section, we compare the PrivNPV protocol with ICING [28] and OPT [19] based on
certain parameters. Unlike ICING and OPT, the PrivNPV protocol offers privacy of the path
being validated. However, such privacy comes at a cost. For some of these parameters, PrivNPV



Table 4: Storage and communication overhead required in path validation schemes

S N D

ICING (per session) n+ 1 2 2n+ 1

Storage OPT (per session) n+ 2 0 n+ 2

(in terms of number PrivNPV (per session) 2n+ 4 5 4

of items stored) ICING (long term) 0 ≤ 400, 000 0

OPT (long term) 1 1 2

PrivNPV (long term) 3 3 3

Number of packets ICING 4n+ 4

communicated during OPT 2

key setup in a session PrivNPV 2

has an extra overhead compared to ICING and OPT. PrivNPV enjoys similar efficiency for the
rest of the parameters.

We recall that ICING is designed based on aggregate MACs and self-certifying names. Each
node in the network locally computes a unique public/private key pair. It then broadcasts the
public key (self-certifying name) to other nodes. Given the public key of a node, another node
computes a shared key using its private key and stores the shared key at its end. In addition
to the specified path, each ICING packet contains a verification field for each on-path node. An
intermediate node identifies each of its downstream nodes from the path and inserts authenticated
proofs (MACs) into the respective verification fields. We note that the verification field for a
particular node contains a single MAC that is an aggregation of the MACs computed by all of
its upstream nodes. Each node verifies the MAC in its verification field, inserts MACs in the
verification fields for its downstream nodes, and forwards the packet to its successor node. MAC
computations in ICING are done using pseudorandom functions (PRFs) and hash functions.

In the key setup phase of OPT, the source node sends a packet along the path. Each interme-
diate node computes a secret key (by applying a pseudorandom function on the session-identifier)
and puts it in the packet in an encrypted and authenticated format. The destination node decrypts
these secret keys, checks their authenticity, performs authenticated encryption on them and sends
them to the source node. The source node performs authenticated decryption and sets these se-
cret keys as session keys shared with the corresponding intermediate nodes. Later, while sending
a packet, the source node embeds in the packet a chain of MACs computed using the session keys
such that the intermediate nodes can validate the path using these MACs.

We compare PrivNPV with ICING and OPT as follows. Storage overheads per payload-packet
(per on-path node) are 42, 16 and 16 bytes for ICING, OPT and PrivNPV, respectively. In order
to process packets, each node needs some (long-term/per-session) storage. Table 4 shows the
comparison in terms of storage required for different nodes (the figures for ICING/OPT are taken
from [19]). In PrivNPV, each node Ni has to store its long-term secret key SKi = (ci, xi, ui).
Per-session storage for the source node S in PrivNPV is higher as it stores all the permuted node-
indices in order to populate the verification fields later. The destination node D has to store only
a tuple of four elements for a PrivNPV session. An intermediate node N in PrivNPV needs a
little extra amount of storage (compared to ICING/OPT) for its session key, permuted index and
neighbor information.

The computational overhead in PrivNPV (compared to ICING and OPT) is due to exponen-
tiation, encryption/decryption operations and PRP computations (see Table 3). This overhead is
attributed to path/index privacy offered by PrivNPV. For a source node S transmitting a large
number of payload-packets in a session, the amortized cost for these operations is reduced signifi-
cantly (e.g., for O(n) packets transmitted in a session, the cost per packet is constant). Therefore,
this overhead is practical and justified.

In a PrivNPV session, S lets each node Ni know its permuted index and successor node by
embedding the ciphertext ri in Ps — this requires sending one packet to D along S ∼ D. In case
Ps passes the verification at D, D encrypts the string P||ids||T ||rD using sk and sends it to S as
a confirmation. We note that, in addition to per-session communication, PrivNPV nodes joining



the network need to communicate with the KGC initially in order to obtain their respective secret
key-public key pairs and to include their identities (along with the public keys) in a public list.

6.6 Hiding Path-Length

An intermediate node in PrivNPV can infer the path-length n from the size of A (or R2). One
possible way to hide the actual path-length is to pad the path by adding dummy fields (for dummy
intermediate nodes) in A and R2. As an intermediate node on the actual path derives its next-node
from its respective ciphertext, these dummy nodes are never traversed. Similarly, S puts random
elements into the dummy fields of A and R2 (which are never checked/decrypted by any node).
This hides the path-length to some extent (e.g., its upper bound is still revealed). If all paths are
padded to be of length n = nmax (say) in order to minimize leakage further, then nmax should be
large enough to accommodate the paths consisting of a large number (say, 40) of intermediate
nodes. However, for such a large nmax, this length-hiding routing becomes inefficient (compared to
that without padding) in case the path consists of a few (say, less than 5) intermediate nodes.

7 Conclusion and Future Work

Network path validation enables a source node to enforce packets to traverse along a specified
network path, such that every on-path node can check if the packets have followed that path
so far. In this work, we have addressed certain privacy concerns that may arise in network path
validation. We have introduced two privacy notions: path privacy and index privacy. These notions
are crucial to preserve privacy of on-path nodes in a path validation scheme and to defend against
certain attacks mounted by a network attacker. Path privacy and index privacy also provide
source anonymity and destination anonymity in the presence of malicious intermediate nodes
controlled by the attacker. We have constructed PrivNPV, the first privacy-preserving network
path validation protocol, that exploits mostly lightweight cryptographic operations in order to
achieve both path privacy and index privacy. PrivNPV also enables the destination node to verify
if the packets are indeed generated by the source node. We have analyzed the security of PrivNPV
where we have considered, in addition to attacks related to path validation schemes, other possible
attacks specific to privacy-preserving path validation. Finally, we have discussed the practicality
of PrivNPV and compared PrivNPV with existing path validation schemes based on storage,
communication and computational overhead required. We mention some future research directions
related to privacy-preserving network path validation.

– Network path validation schemes are designed for next-generation Internet architecture that
is more secure and robust than the current Internet, and the ability of each on-path node to
validate the network path comes at a cost of reduced efficiency attributed to the cryptographic
primitives used in these schemes. Thus, the latency incurred by packet processing in PrivNPV
does not reach the line rate of the current Internet — which demands further investigation
whether we can design a privacy-preserving network path validation scheme with lower latency
that copes up with the line rate of the current Internet.

– As we have discussed in Section 5.2, a malicious intermediate node in a path validation scheme
can drop or corrupt a packet, and the destination node cannot identify the exact node where
a packet (if any) has been dropped or corrupted. If an intermediate node in a path validation
scheme corrupts a packet, the next honest on-path node can inform the source/destination
node about the probable location of the corruption (e.g., by sending another packet to the
source/destination node). On the other hand, for a malicious packet drop, it is hard for the
source/destination node to get notified about the probable location of the packet drop since
the next honest on-path node never receives the packet. Unfortunately, for a privacy-preserving
path validation scheme with path privacy (e.g., PrivNPV), the aforementioned technique does
not work for packet corruption due to source/destination anonymity. It appears to be non-
trivial to come up with techniques in order to address the issue for a privacy-preserving path
validation scheme like PrivNPV.



– PrivNPV employs a trusted Key Generation Center (KGC) for one-way anonymous key agree-
ment, such that an intermediate node can compute a session key shared with the source node
without knowing the actual identity of the source. This shared key helps the intermediate
node to validate if a packet has traversed through the specified path so far. On the other
hand, PrivNPV (like many other protocols relying on trusted third parties) is vulnerable to
certain attacks if the KGC is compromised by an attacker. In that case, the attacker can
attempt to learn the session keys and the network paths followed by packets, or to tamper
with the public parameters published by the KGC. However, without such a trusted third
party, it seems to be quite challenging to generate shared session keys while preserving source
anonymity.
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