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Abstract

Non-malleable codes, introduced by Dziembowski, Pietrzak and Wichs in ICS 2010, have emerged
in the last few years as a fundamental object at the intersection of cryptography and coding theory.
Non-malleable codes provide a useful message integrity guarantee in situations where traditional error-
correction (and even error-detection) is impossible; for example, when the attacker can completely
overwrite the encoded message. Informally, a code is non-malleable if the message contained in a
modified codeword is either the original message, or a completely “unrelated value”. Although such
codes do not exist if the family of “tampering functions” F allowed to modify the original codeword
is completely unrestricted, they are known to exist for many broad tampering families F .

The family which received the most attention is the family of tampering functions in the so called
(2-part) split-state model: here the message x is encoded into two shares L and R, and the attacker is
allowed to arbitrarily tamper with each L and R individually.

Dodis, Kazana, and the authors in STOC 2015 developed a generalization of non-malleable codes
called the concept of non-malleable reduction, where a non-malleable code for a tampering family F
can be seen as a non-malleable reduction from F to a family NM of functions comprising the identity
function and constant functions. They also gave a constant-rate reduction from a split-state tampering
family to a tampering family G containing so called 2-lookahead functions, and forgetful functions.

In this work, we give a constant rate non-malleable reduction from the family G to NM, thereby
giving the first constant rate non-malleable code in the split-state model.

Central to our work is a technique called inception coding which was introduced by Aggarwal,
Kazana and Obremski in TCC 2017, where a string that detects tampering on a part of the codeword
is concatenated to the message that is being encoded.

∗Department of Computer Science and Center for Quantum Technologies, National University of Singapore. Email:
dcsdiva@nus.edu.sg.
†Center for Quantum Technologies, National University of Singapore. Email: obremski.math@gmail.com.



1 Introduction

Non-malleable codes, introduced by Dziembowski, Pietrzak and Wichs [DPW10], provide a useful mes-
sage integrity guarantee in situations where traditional error-correction (and even error-detection) is
impossible; for example, when the attacker can completely overwrite the encoded message. Informally,
given a tampering family F , a F-non-malleable code (E,D) encodes a given message x into a codeword
y ← E(x) in a way that, if y is modified into y′ = f(y) by some f ∈ F , then the message x′ = D(y′)
contained in the modified codeword y′ is either the original message x, or a completely “unrelated value”.
In other words, non-malleable codes aim to handle a much larger class of tampering functions F than
traditional error-correcting or error-detecting codes, at the expense of potentially allowing the attacker
to replace a given message x by an unrelated message x′ (and also necessarily allowing for a small “sim-
ulation error” ε). As shown by [DPW10], this relaxation still makes non-malleable codes quite useful
in a variety of situations where (a) the tampering capabilities of the attacker might be too strong for
error-detection, and, yet (b) changing x to unrelated x′ is not useful for the attack. For example, imagine
x being a secret key for a signature scheme. In this case, tampering which keeps x the same corresponds
to the traditional chosen message attack (covered by the traditional definition of secure signatures), while
tampering which changes x to an unrelated value x′ will clearly not help in forging signatures under the
original (un-tampered) verification key, as the attacker can produce such signatures under x′ by himself.

Split-State Model. Although such codes do not exist if the family of “tampering functions” F is
completely unrestricted [DPW10], they are known to exist for many broad tampering families F . One
such natural family is the family of tampering functions in the so called split-state model. Here the
k-bit message x is encoded into 2 shares y1, y2 of length n each, and the attacker is allowed to arbitrarily
tamper with each yi individually. The rate of such an encoding is naturally defined as τ = k

2n .
Non-malleable codes in this model could be interpreted as “non-malleable secret-sharing schemes”:

even if all the t message shares are independently tampered with, the recovered message is either x or
is unrelated to x. Non-malleable codes in the split-state model have received a lot of attention so far
so far [DPW10, LL12, DKO13, ADL14, CG14a, CG14b, Agg15, CGL16, Li17, Li18]. In addition, some
of the recent results [GPR16, GK18a, GK18b, ADN+18, BS18, SV18] have shown application of non-
malleable codes in the split-state model to other important problems like non-malleable commitments
and non-malleable secret sharing.

The known results can be summarized as follows. The first non-malleable code in the split-state
model against an information-theoretic adversary was constructed in [DKO13], who constructed a non-
malleable code for 1-bit messages in the split-state model. Following that [ADL14, Agg15, AB16] gave
the first information-theoretic construction supporting k-bit messages, but where the length of each share
n = O(k5). There was a plausible conjecture stated in [ADL14] about the non-malleability of the inner
product function under which one would get a 2-part split-state code with constant rate, i.e., n = O(k).

In [CG14a], it was shown that the notion of non-malleable codes in the split-state model is closely
related to the notion of non-malleable two-source extractors and using this insight, and the alternating
extraction protocol from [DP07], recent results [CGL16, Li17, Li18] have obtained improved constructions
of non-malleable codes in the split-state model. The most recent result [Li18] gives a construction with

rate c·log log log 1/ε
log log 1/ε for some constant c. This result has a constant rate if ε is a constant, but the rate

approaches 0 if ε is negligible in n, as is required for cryptographic applications. In particular, if we
choose ε = 2−n

Ω(1)
, then the rate is O( log logn

logn ).
The authors, along with Dodis and Kazana [ADKO15a] introduced the concept of non-malleable

reductions and, under a plausible conjecture, gave a series of reductions that results in constant rate
non-malleable codes in the split-state model 1

1A previous version of [ADKO15a] claimed a constant rate non-malleable codes in the split-state model. Unfortunately,
Li [Li17] found a mistake in the proofs of one of the lemmas in the paper, and though the lemma is believable, currently the
construction is secure only under a plausible conjecture.
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However, until this work, the problem of unconditionally constructing constant rate non-malleable
codes in the split-state model (with ε negligible in the size of the codeword) remains open.

In this paper we consider the strongest possible variant of non-malleable codes studied in the literature,
super strong non-malleable codes. This variant ensures that every non-identity tampering will either be
detected or the entire tampered codeword does not reveal any information about the secret message.

Our Result. In this work, we give a constant rate non-malleable code in the split-state model.

Theorem 1 (Main Result). There exists an efficient, information-theoretically secure ε-non-malleable
codes in the split-state model with shares of size O(k), where k is the length of the message, and ε =

2−k
Ω(1)

.

Our result is achieved by giving a (super-strong) non-malleable code against the tampering family G
containing 2-lookahead tampering functions and forgetful tampering functions. Combined with a non-
malleable reduction from the 2-split tampering family to G gives a non-malleable code in the split-state
model. For our construction, and a discussion of our proof techniques, we refer the reader to Section 4.

Other Related Work. If we relax the number of states to more than 2, or we restrict the adversary
to be computationally bounded, then there are known efficient constructions of non-malleable codes. In
particular, some recent results [CZ14, KOS17, KOS18, GMW18] obtain near optimal non-malleable codes
in the t split-state model where t is a constant greater than 2, and [AAG+16] gave a construction of a
rate 1 non-malleable code against computationally bounded adversaries.

Other results that look at an (enhanced) split-state model are Faust et al. [FMNV14] which consider
the model where the adversary can tamper continuously, and [ADKO15b], that considers the model where
the adversary, in addition to performing split-state tampering, is also allowed some limited interaction
between the two states.

There have been some results that have obtained non-malleable codes against continuous tampering
in the split-state model [AKO17, ADN+17]. In fact, some of our results rely on techniques developed
in [AKO17].

In addition to the already-mentioned results, several recent works [CCFP11, CCP12, CKM11, FMVW14,
AGM+14, AGM+15, BDSKM16, FHMV17, BDSKM18, BDSG+18] either used or built non-malleable
codes for various families F , but did not concentrate on the split-state model, which is our focus here.

The notion of non-malleability was introduced by Dolev, Dwork and Naor [DDN00], and has found
many applications in cryptography. Traditionally, non-malleability is defined in the computational setting,
but recently non-malleability has been successfully defined and applied in the information-theoretic setting
(generally resulting in somewhat simpler and cleaner definitions than their computational counter-parts).
For example, in addition to non-malleable codes studied in this work, the work of Dodis and Wichs [DW09]
defined the notion of non-malleable extractors as a tool for building round-efficient privacy amplification
protocols.

Finally, the study of non-malleable codes falls into a much larger cryptographic framework of providing
counter-measures against various classes of tampering attacks. This work was pioneered by the early works
of [ISW03, GLM+03, IPSW06], and has since led to many subsequent models. We do not list all such
tampering models, but we refer to [KKS11, LL12] for an excellent discussion of various such models.

2 Preliminaries

For a set T , let UT denote a uniform distribution over T , and, for an integer `, let U` denote uniform
distribution over ` bit strings. For any random variable A and any set A, we denote A|A∈A to be the
random variable A′ such that

∀a, Pr[A′ = a] = Pr[A = a | A ∈ A] .
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The statistical distance between two random variables A,B is defined by

∆(A ; B) =
1

2

∑
v

|Pr[A = v]− Pr[B = v]| .

We use A ≈ε B as shorthand for ∆(A,B) ≤ ε.

Lemma 2. For any function α, if ∆(A ; B) ≤ ε, then ∆(α(A) ; α(B)) ≤ ε.

The following is a simple result from [ADL14].

Lemma 3. Let X1, Y1 ∈ A1, and Y1, Y2 ∈ A2 be random variables such that ∆((X1, X2) ; (Y1, Y2)) ≤ ε.
Then, for any non-empty set A′ ⊆ A1, we have

∆(X2 | X1 ∈ A′ ; Y2 | Y1 ∈ A′) ≤
2ε

Pr(X1 ∈ A′)
.

The following is a slight variant of a similar simple lemma from [ADL14]. The proof is just a simple
application of triangle inequality.

Lemma 4. Let S be some random variable distributed over a set S, and let S1, . . . ,Sj be a partition
of S. Let φ : S → T be some function, and let D1, . . . , Dj be some random variables over the set T .
Assume that for all 1 ≤ i ≤ j,

∆ (φ(S)|S∈Si ; Di) ≤ εi.

Then
∆ (φ(S) ; D) ≤

∑
εi Pr[S ∈ Si] ,

for some random variable D ∈ T such that for all d Pr[D = d] =
∑

i Pr[S ∈ Si] · Pr[Di = d].

The min-entropy of a random variable W is H∞(W )
def
= − log(maxw Pr[W = w]), and the conditional

min-entropy of W given Z is H∞(W |Z)
def
= − log (Ez←Z maxw Pr[W = w|Z = z]).

Definition 5. We say that a function Ext : {0, 1}n × {0, 1}n → {0, 1}m is an (n, k,m, ε)-2-source
extractor if for all independent sources X,Y ∈ {0, 1}n such that min-entropy H∞(X) + H∞(Y ) ≥ k, we
have (Y,Ext(X,Y )) ≈ε (Y, Um), and (X,Ext(X,Y )) ≈ε (X,Um).

For n being an integer multiple of m, and interpreting elements of {0, 1}m as elements from F2m

and those in {0, 1}n to be from (F2m)n/m, we have that the inner product function is a good 2-source
extractor.

Lemma 6. For all positive integers m, n such that n is a multiple of m, and for all ε > 0, the inner
product function from two n-bit strings to an m-bit string is an efficient (n, n + m + 2 log

(
1
ε

)
,m, ε)

2-source extractor.

Definition 7. A function C : {0, 1}s×{0, 1}n → {0, 1}t is called an ε-almost universal hash function if
for any x, y ∈ {0, 1}n such that x 6= y,

Pr
R←{0,1}s

(C(R, x) = C(R, y)) ≤ ε

The following is a standard construction of a polynomial evaluation ε-universal hash function. The
parameters are from [DW09].

Lemma 8. For any n, t > 2 log n, there exists an efficiently computable 2−t/2-almost univeral hash
function C : {0, 1}s × {0, 1}n → {0, 1}t with s = 2t.
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3 Non-malleable Codes and Reductions

Definitions. In [ADKO15a], the notion of non-malleable codes w.r.t. to a tampering family F [DPW10]
was generalized to a more versatile notion of non-malleable reductions from F to G. The following
definitions are taken from [ADKO15a].

Definition 9 (non-malleable reduction). Let F ⊂ AA and G ⊂ BB be some classes of functions
(which we call manipulation functions). We will write:

(F ⇒ G, ε)

and say F reduces to G, if there exist an efficient randomized encoding function E : B → A, and an
efficient deterministic decoding function D : A → B, such that (a) for all x ∈ B, we have D(E(x)) = x,
and (b) for all f ∈ F , there exists G such that for all x ∈ B,

∆
(
D(f(E(x))) ; G(x)

)
≤ ε, (1)

where G is a distribution over G, and G(x) denotes the distribution g(x), where g ← G.
The pair (E,D) is called (F ,G, ε)-non-malleable reduction.

Intuitively, (F ,G, ε)-non-malleable reduction allows one to encode a value x by y ← E(x), so that
tampering with y by y′ = f(y) for f ∈ F gets “reduced” (by the decoding function D(y′) = x′) to
tampering with x itself via some (distribution over) g ∈ G.

In particular, the notion of non-malleable code w.r.t. F , is simply a reduction from F to the family
of “trivial manipulation functions” NMk defined below.

Definition 10. Let NMk denote the set of trivial manipulation functions on k-bit strings, which consists
of the identity function I(x) = x and all constant functions fc(x) = c, where c ∈ {0, 1}k.

We say that a pair (E,D) defines an (F , k, ε)-non-malleable code, if it defines a (F ,NMk, ε)-non-
malleable reduction.

The utility of non-malleable reductions comes from the following natural composition theorem that
was shown in [ADKO15a], which allows to gradually make our tampering families simpler and simpler,
until we eventually end up with a non-malleable code (corresponding to the trivial family NMk).

Theorem 11 (Composition). If (F ⇒ G, ε1) and (G ⇒ H, ε2), then (F ⇒ H, ε1 + ε2).

We will also need the following trivial observation.

Observation 1 (Union). Let (E,D) be an (F ,H, ε) and a (G,H, ε′) non-malleable reduction (resp.
transformation). Then (E,D) is an (F∪G,H,max(ε, ε′)) non-malleable reduction (resp. transformation).

Useful Tampering Families. We define several natural tampering families we will use in this work.
For this, we first introduce the following “direct product” operator on tampering families:

Definition 12. Given tampering families F ⊂ AA and G ⊂ BB, let F ×G denote the class of functions
h from (A×B)A×B such that

h(x) = h1(x1)‖h2(x2)

for some h1 ∈ F and h2 ∈ G and x = x1‖x2, where x1 ∈ A, x2 ∈ B.
We also let F1 := F , and, for t ≥ 1, F t+1 := F t ×F .

We can now define the following tampering families:
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• Sn = ({0, 1}n){0,1}
n

denote the class of all manipulation functions on n-bit strings.

• Given t > 1, Stn denotes the tampering family in the t-split-state model, where the attacker can
apply t arbitrarily correlated functions h1, . . . , ht to t separate, n-bit parts of memory (but, of
course, each hi can only be applied to the i-th part individually).

• FORt
n1,n2,...,nt

denotes forgetful family. It is applied to t parts of memory of length ni but the
output value can depend only on (t − 1) parts. More precisely: Let x ∈ {0, 1}n be a bit vector
and xi ∈ {0, 1}ni denote i-th block of n bits. For any h ∈ FORt

n1,n2,...,nt
there exist a subset

S ⊂ {1, 2, . . . , t} of size (t − 1) such that h(x) can be evaluated from xS . Besides that, it is not
restricted in any way.

• Finally, LA←t
n1,...,nt

, where n = n1 + · · ·+ nt denotes the class of lookahead manipulation functions l
that can be rewritten as l = (l1, . . . , lt), for li : {0, 1}n1+···+ni → {0, 1}ni , and where

l(x) = l1(x1)‖ . . . ‖lt(x1, . . . , xt)

for xi ∈ {0, 1}ni . In other words, if l(x1, . . . , xt) = y1, . . . , yt, then y1 depends on x1, and y2 depends
on both x1 and x2, and in general, yi depends on x1, . . . , xi.

Super Strong Non-malleable Codes. The following is a definition of a stronger variant of non-
malleable codes.

Definition 13. (Super Strong Non-Malleable Code.) We say that an encoding scheme (Enc :
M→ X ,Dec : X →M∪ {⊥}) is ε-super strong non-malleable against the tampering family F ⊆ XX if
for every functions f ∈ F and for every m0,m1 ∈M

SupStrTampf,gm0
≈ε SupStrTampf,gm1

where

SupStrTampf,gm =


X ← Enc(m),

output same if X = f(X)
else if Dec(f(X)) = ⊥ output ⊥

else output: f(X)


We will need an efficient construction of super strong non-malleable codes in the split-state model

from [AKO17, ADL14, Agg15]. Recall that in the proof of [AKO17], and [ADL14], the ambient space is
partitioned and it is shown that there are some partitions that are small, and for every other partition,
it is shown that the tampered codeword either decodes to the same message, or to ⊥, or the tampered
codeword reveals no information about the original message and this implies super strong non-malleability.

Theorem 14. There exists an efficient construction (Enc,Dec) of ε-super strong non-malleable codes in

the split-state model from {0, 1}7tto2 {0, 1}n × {0, 1}n with ε = 2−n
Ω(1)

, and n = O(t5). Moreover, for
any tampering functions f, g, the following hold

1. Dec(x, y) = h(Ext(x, y)), where Ext : {0, 1}n × {0, 1}n → Zp is a n + O(t) + 2 log 1/ε strong two-
source extractor, where p = 2O(t) is a prime. With probability at least 1 − ε, h(UZp) = ⊥, and for
every message m ∈ {0, 1}7t, Pr[h(UZp = m | h(UZp) 6= ⊥] = 1

27t .

2The constant 7 in this Theorem statement are chosen to match those required in our results. There is some freedom in
the choice of parameters in [?], and so the result of this theorem follows for an appropriate choice of t.
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2. Let L,R ⊂ {0, 1}n, such that for all ` ∈ L, f(`) 6= `,

|f−1(f(`)) ∩ L| × |g−1(g(r)) ∩R| ≤ 20.9n

and |L×R| ≥ 22n−t. Then, for any m ∈ {0, 1}7t, Pr[Dec(f(L), g(R)) 6= ⊥ | Dec(L,R) = m] = O(ε).

Note that the ”moreover” part of the statement above is not stated explicitly in [AKO17, ADL14],
but is immediate from the construction and proof. In particular, the statement (1) follows from the
fact that the first step of the decoding algorithm computes the inner product modulo a prime p, and an
appropriately chosen affine-evasive set S modulo p (with |S| ≤ ε·p) is partitioned into 27t sets S1, . . . , S27t ,
and the decoding algorithm outputs m if the inner product is in Sm and ⊥, otherwise. The statement
(2) follows from the fact that the proof proceeds by partitioning the ambient space {0, 1}n ×{0, 1}n into
sets of the form L ×R, and we show for each of these sets that either the codeword remains unchanged
after tampering (which is not possible since we assume f(`) 6= `), or the tampered codeword decodes to
⊥, or the tampered codeword is independent of the message. In the last case, the tampered codeword
decodes to ⊥ by (1), and the fact that Ext is a strong 2-source extractor.

4 Our constructions and the main result

It was shown in [ADKO15a] that

Theorem 15. For any q, there is an n = O(q) such that

(S2
n ⇒ LA←3

q,q,q × LA←3
q,q,q ∪ FOR6

q,q,q,q,q,q, 2
−Ω(q)) .

So, now we construct (super-strong) non-malleable codes for the tampering family LA←3
q,q,q×LA←3

q,q,q ∪
FOR6

q,q,q,q,q,q. In Section 4.1, we give a super-strong non-malleable code against 2-lookahead tampering
family, and in Section 4.2, we show how to extend it to include the forgetful tampering family.

4.1 A super-strong non-malleable code against 2-lookahead tampering

Theorem 16. There exists a 2−k
Ω(1)

-super strong non-malleable code for k-bit messages against the
tampering family LA←3

100k,25k,5k × LA←3
100k,25k,5k.

Construction. Our construction (E,D) depicted in Figure 4.1 that achieves the above result is as
follows.

Encoding : Given m ∈ {0, 1}k, we do the following.

• Let Ext3 be the inner product function from F5
2k
× F5

2k
→ F2k . Let A,B be chosen uniformly

at random from {0, 1}5k.

• Let Ext2 be the inner product function from F25
2k
× F25

2k
→ F2k . Sample X,Y ∈ {0, 1}25k

uniformly at random, conditioned on z := Ext2(X,Y ) = m⊕ Ext3(A,B).

• Let σ1, σ2 be 2t-bit strings sampled uniformly at random for an appropriately chosen t =
Θ(k1/5).

• Let C : {0, 1}2t × {0, 1}60k → {0, 1}t be a 2−t/2-almost universal hash function as defined in
Lemma 8. Also, let z = z1‖z2 where |z1| = 2t.

• Let s = σ1, σ2, c1 := C(σ1, X‖Y ‖A‖B), c2 := z1 ⊕ σ2.

• Let L,R := Enc(s), where (Enc,Dec) be a super strong non-malleable code in the split state
model given by Theorem 14 from {0, 1}7t to {0, 1}n × {0, 1}n where n = 100k.
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• Output (L,X,A) as the first part of the codeword, and (R, Y,B) as the second part.

Decoding : Given (L,X,A), (R, Y,B) we do the following.

• Compute s = Dec(L,R), and z = Ext2(X,Y ).

• If s = ⊥, output ⊥, else let s = σ1, σ2, c1, c2.

• If z1 6= c2 ⊕ σ2, where z1 is the first 2t bits of z, or c1 6= C(σ1, X‖Y ‖A‖B), output ⊥.

• Else output z ⊕ Ext3(A,B).

! " #

$ % &

Dec !, $ = [-, Checks2 ", %, #, &, 3 ] 3 = Ext8(", %) Message = 3 + Ext?(#, &)

Arrows represent 
the direction of 
the tampering.
L is tampered first, 
then X given X,L etc.

First blocks of the lookaheads.
@AB is the decoder of [ADL]+[AKO]

Second blocks. Third blocks.

Dotted lines separate blocks of lookahead

Figure 1: The decoding algorithm D.

Intuition behind the construction. Before giving an overview of the proof, we look at a few tam-
pering scenarios to give the intuition behind the construction.

Scenario 1: Adversary leaves L,R unchanged.
Then we can retrieve the original checks for X,Y, Z,A,B, and we know that adversary won’t be able to
come up with choice of X ′, Y ′, Z ′, A′, B′ such that the checks remain fulfilled. There is a technicality:
adversary tampers with X,A after seeing L and with Y,B after seeing R, but we choose the lengths of
the elements appropriately so we can model everything as a small leakage from L and R and the secrecy
of checks is preserved i.e. X,X ′, Y, Y ′, Z, Z ′, A,A′, B,B′ together do not reveal any information about
the random seeds σ1, σ2, and thus chance that checks of original and tampered parts of the codeword will
collide is negligible.

Scenario 2: Adversary tampers with L,R.
In this case by super-strong nmc properties we get that after the decoding both random seeds σ′1, σ

′
2

and corresponding checks values c′1, c
′
2 are independent of original values, but we can not exclude that

adversary knows both σ′1, σ
′
2 and c′1, c

′
2 (e.g., if he completely overwrote L,R by something unrelated).

Now we have two sub-scenarios:
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Scenario 2.1: Adversary lost some information about X or Y .
What we mean is that X can not be fully recovered from L′, X ′ or Y from R′, Y ′ then by Ext2 extractor
properties adversary has lost all information about Z and, as a consequence, lost all information about
the secret message.

Scenario 2.2: Adversary preserved information about X and Y .
We know that σ′1, σ

′
2 and c′1, c

′
2 are controlled by adversary but completely independent of original checks.

We also know that X ′ and Y ′ have to have high min-entropy else they wouldn’t carry information about
X,Y . We would like to say that adversary can not produce X ′ that has the same check as X but there
are few issues with this reasoning. First of all the new seeds σ′1, σ

′
2 are not random but controlled by

adversary. Although the adversary commits to those checks before seeing and tampering with X and Y ,
we can only guarantee that X ′ has high min-entropy not that it is uniform, and thus the adversary can
pick the distribution of X ′ such that it always fulfils fixed checks. This is where the check on Z comes
into play. We can argue that X ′, Y ′ are high-entropic even given L′, R′ thus Z ′ = Ext2(X ′, Y ′) is close
to uniform. Notice that the check for Z (or Z ′) has the following property, for any fixing of σ′2 and c′2,
the probability that for U uniform U + σ′2 = c′2 is negligible. Since, as we just discussed, Z ′ is close to
uniform and independent of σ′2 and c′2 the probability that Z ′ + σ′2 = c′2 is negligible3.

Scenario 2.2′: Imagine we are in scenario 2.2 but we do not have parts A,B i.e. message is simply Z
instead of Z + Ext3(A,B).
Notice that in the previous scenario we couldn’t guarantee independence of Z and Z ′ we only knew
that Z ′ is close to uniform. Now, however, if message is simply Z we do have a problem. Remember
that in a tampering experiment adversary picks two messages m0,m1 and has to distinguish which one
of them was encoded. If Z = mb and Z ′ is not independent of Z (indeed it is possible that Z ′ = Z)
then even the check on Z will not save us. Adversary could overwrite L,R with L′, R′ encoding checks
σ′1, σ

′
2, and c′1, c

′
2 = m0 + σ′2 and tamper X,Y in such a way that X ′, Y ′ fulfil the first check while

preserving Ext2(X ′, Y ′) = Ext2(X,Y ) (such tampering can not be excluded without showing very strong
non-malleable properties of inner-product). Now the output of tampering experiment will be same if
encoded message was m0 and ⊥ if encoded message was m1. To summarise A,B are used only to make
Z ′ independent of the message and uniform even given checks, so that we can detect this tampering.

Proof overview. Given a message m ∈ {0, 1}k, let E(z) = (L,X,A), (R, Y,B). Let f1, g1 : {0, 1}100k →
{0, 1}100k, f2, g2 : {0, 1}125k → {0, 1}25k, and f3, g3 : {0, 1}130k → {0, 1}5k be arbitrarily chosen functions,
and let

L′ = f1(L), R′ = g1(R), X ′ = f2(L,X), Y ′ = g2(R, Y ), A′ = f3(L,X,A), B′ = g3(R, Y,B) .

Also, let z′, z′1, z
′
2, σ
′
1, σ
′
2, c
′
1, c
′
2 be the corresponding tampered values.

As is the case with almost all proofs for non-malleable code constructions, our proof proceeds by first
partitioning the ambient space {0, 1}130k × {0, 1}130k depending on the functions f1, g1, f2, g2, f3, g3. We
then argue that for each partition, as long as the partition is large enough, conditioned on the random
variables L,X,A,R, Y,B being restricted to be in that partition, we can show that either the codeword
remains unchanged after tampering, or D((L′, X ′, A′), (R′, Y ′, B′)) = ⊥ with high probability, or the
tampered codeword is almost independent of the message m, (i.e., it reveals no information about the
message m).

We first consider the partition where L′, R′ = L,R. In this case, notice that if X,Y,A,B are changed
then with high probability, C(σ1, X‖Y ‖A‖B) 6= C(σ1, X‖Y ‖A‖B), and so the decoding algorithm outputs
⊥ with high probability. On the other hand, if X,Y,A,B are unchanged, then the decoder outputs same.

3To be precise, we are not checking if Z′ = c′2 − σ′2 but only if some short prefix of Z′ is equal to c′2 − σ′2, which is still
unlikely given that Z′ and thus also its prefix are uniform.
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For the formal proof, we need to deal with the dependence between various random variables, and the
detailed proof can be found in Lemma 19.

We next consider the partition where H∞(L′) + H∞(R′) � n, and L′, R′ 6= L,R. In this case, by
Theorem 14, we have that Dec(L′, R′) = ⊥ with high probability.

This leaves us with the partitions where one of H∞(L|L′) or H∞(R|R′) (say H∞(L|L′)) is at least
0.45n. Notice that here we are using the fact that for an appropriate choice of partitions, we have
that H∞(L′) + H∞(L|L′) ≈ n for L chosen uniformly from that partition. This in particular means
that H∞(L|L′, X ′, A′) ≥ 45k − 25k − 5k > 0.15n. Thus, again using the observation that Dec(L,R)
is a deterministic function of a strong two-source extractor h(Ext(L,R)), we have that Dec(L,R) is
independent of L′, R′, X ′, Y ′, A′, B′, X, Y,A,B. At this point, we can fix L,R, thereby fixing L′ = `′, R′ =
r′.

Thus, X ′, Y ′ are deterministic functions of X,Y , respectively. Now we further partition the space
{0, 1}25k×{0, 1}25k based on the functions f2, g2. First we consider the case where H∞(X ′)+H∞(Y ′)�
26k. In this case, by using the fact that inner product is a strong 2-source extractor, and noting that
X,Y , and hence X ′, Y ′ is independent of the message m, we have that z′ (and hence z′1 is close to uniform
and independent of the message m, and `′, r′. Thus, the probability that σ′2 = c′2 ⊕ z′1 is negligible, and
hence the decoding algorithm outputs ⊥ with high probability.

The only remaining case is when one of H∞(X|X ′) or H∞(Y |Y ′) (say H∞(X|X ′)) is at least 10k,
in which case H∞(X|X ′, A′) ≥ 5k, and hence by the strong extractor property of the inner product, we
have that z is independent of X ′, Y ′, A′, B′ and hence is independent of the tampered codeword (since
we already fixed L′, R′). The tampered codeword is thus independent of the message.

4.2 A super strong non-malleable code secure against 2-lookahead and forgetful tam-
pering

Theorem 17. There is an 2−k
Ω(1)

-super-strong non-malleable code for k−O(k1/5)-bit messages against
the tampering family LA←3

125k,25k,5k × LA←3
125k,25k,5k ∪ FOR6

125k,25k,5k,125k,25k,5k.

Construction. Our construction (E∗, D∗) depicted in Figure 4.2 that achieves the above result is as
follows.

! "# $

% &# '

Dec !, % = [., Checks3 "4, "#, &4, &#, $, ', 5 ]
5 = Ext#(", &)

0#=||Message = 5 + ExtC($, ')

First blocks of the lookaheads.
DEF is the decoder of [ADL]+[AKO]

Second blocks. Third blocks.

"4

&4

" = "4 + "#
& = &4 + &#

Figure 2: The decoding algorithm D∗.
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Encoding : Given a message m∗ ∈ {0, 1}k−2t, let m = 02t‖m∗. Let X,A, Y,B, σ1, σ2, z, z1, z2, c2 be as in
the encoding of E(m), where E is the encoding algorithm from Section 4.1. Choose X1, Y1 uniformly
at random from {0, 1}25k, and let X2 = X ⊕ X1, Y2 = Y ⊕ Y1. Let C : {0, 1}2t × {0, 1}110k →
{0, 1}t be a 2−t/2-almost universal hash function as defined in Lemma 8. Let s = σ1, σ2, c1 :=
C(σ1, X1‖X2‖Y1‖Y2‖A‖B), c2, and let Enc(s) = L,R. Output the three parts of the first lookahead
as ((L,X1), X2, A, and the three parts of the second lookahead as (R, Y1), Y2, B.

Decoding : Given ((L,X1), X2, A), ((R, Y1), Y2, B), compute Dec(L,R) = s, and Ext2(X1 ⊕ X2, Y1 ⊕
Y2) = s. Output ⊥ if s = ⊥, else let s = σ1, σ2, c1, c2. If c1 6= C(σ1, X1‖X2‖Y1‖Y2‖A‖B) or
c2 ⊕ z1 6= c2, output ⊥, else output z ⊕ Ext3(A,B).

We now give a simple argument that shows that this construction is secure against the tampering
family LA←3

125k,25k,5k×LA←3
125k,25k,5k ∪FOR6

125k,25k,5k,125k,25k,5k if the construction given in Theorem 16 is

secure against the tampering family LA←3
100k,25k,5k × LA←3

100k,25k,5k.

We first argue security against lookahead tampering. Let the tampering functions be f1, g1 : {0, 1}125k →
{0, 1}100k, f2, g2 : {0, 1}125k → {0, 1}25k, f3, g3 : {0, 1}150k → {0, 1}25k, f4, g4 : {0, 1}155k → {0, 1}5k, such
that

L′1 = f1(L,X1), X ′1 = f2(L,X1), X ′2 = f3(L,X1, X2), A′ = f4(L,X1, X2, A) ,

and
R′1 = g1(R, Y1), Y ′1 = g2(R, Y1), Y ′2 = g3(R, Y1, Y2), B′ = g4(R, Y1, Y2, B) ,

We condition on X1 = x, Y1 = y, and then we define the functions f∗1 , f
∗
2 , f

∗
3 as

f∗1 (L) = f1(L, x), f∗2 (L,X) = f2(L, x)⊕ f3(L, x,X ⊕ x), f∗3 (L,X,A) = f4(L, x,X ⊕ x,A) ,

and similarly define g∗1, g
∗
2, g
∗
3, which is an attack in LA←3

100k,25k,k ×LA←3
100k,25k,5k against the construction

from Theorem 16. With this change, the proof is almost identical to that of Theorem 16. The only slight
difference from the proof of Theorem 16 is that here the tampering experiment does not output same if
L′ = L,R′ = R,X ′ = X,Y ′ = Y,A′ = A,B′ = B, but X ′1 6= X1 or Y ′1 6= Y1. However, in this case, the
decoder outputs ⊥ with high probability.

The non-malleability against the forgetful family is immediate from the fact that Ext2,Ext3 are strong
2-source extractors and losing one of A,B,X1, X2, Y1, Y2 loses information about the message m. The
only subtlety here is that if the adversary loses information about, say X2, the adversary still knows z1

given L,R, but since m = 02t‖m∗, learning z1 does not reveal any information about m∗.
The detailed proof is in Section 6.

4.3 Final result via a non-malleable reduction from [ADKO15a]

Setting q = 125k in Theorem 18, and padding the required number of 0’s as a prefix to each part of the
codeword, we obtain the following

Theorem 18. There is an 2−q
Ω(1)

-super-strong non-malleable code for k−O(k1/5)-bit messages against
the tampering family LA←3

q,q,q × LA←3
q,q,q ∪ FOR6

q,q,q,q,q,q.

Theorem 1 then follows from Theorem 11 and Theorem 15.

5 Proof of Theorem 16

We now prove Theorem 16. Given a message z ∈ {0, 1}k, let E(z) = (L,X,A), (R, Y,B). Let f1, g1 :
{0, 1}100k → {0, 1}100k, f2, g2 : {0, 1}125k → {0, 1}25k, f3, g3 : {0, 1}125k → {0, 1}5k be arbitrarily chosen
functions, and let

L′ = f1(L), R′ = g1(R), X ′ = f2(L,X), Y ′ = g2(R, Y ), A′ = f3(L,X,A), B′ = g3(R, Y,B) .

Also, let z′, z′1, σ
′
1, σ
′
2, c
′
1, c
′
2 be the corresponding tampered values.
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5.1 f1 and g1 are identity functions

The following lemma considers the case when f1(L) = L, and g1(R) = R.

Lemma 19. Let L be the set of all ` ∈ {0, 1}n such that f1(`) = `, let R be the set of all r ∈ {0, 1}n
such that g1(r) = r. Then, if L ×R ≥ 22n−t, then

SupStrTampf,gm0
|L0∈L,R0∈R ≈2−t/3 SupStrTampf,gm1

|L0∈L,R0∈R ,

where E(mb) = Lb, Xb, A,Rb, Yb, B for b = 0, 1, in the first step of the corresponding SupStrTamp experi-
ment.

Proof. For b ∈ {0, 1}, let L′b = f1(Lb), R
′
b = g1(Rb), X

′
b = f2(Lb, Xb), Y

′
b = g2(Rb, Yb), A

′
b = f3(Lb, Xb, A), B′b =

g3(Rb, Yb, B) be the corresponding tampered codeword of Enc(mb). Let σ1, σ2 be sampled uniformly and
independently of everything else from {0, 1}2t. Also, let L̃, R̃ be sampled uniformly from L,R respectively.
Then,

H∞(L̃|f2(L̃,Xb), f3(L̃,Xb, A)) + H∞(R̃) ≥ 2n− t− 30k .

Thus,

∆
(
Ext(L̃, R̃) ; UZp | Xb, Yb, A,B, f2(L̃,Xb), g2(R̃, Yb), f3(L̃,Xb, A), g3(R̃, Yb, B)σ1, σ2

)
≤ 2−34k .

Conditioning on D(Ext(L̃, R̃)) = σ1, σ2, C(σ1, Xb‖Yb‖A‖B), σ2 ⊕ z1, where z1 is the first 2t bits of
Ext2(Xb, Yb) (respectively, D(UZp) = σ1, σ2, C(σ1, Xb‖Yb‖A‖B), σ2 ⊕ z1) and using Lemma 3, we have
that

Xb, Yb, A,B, f2(Lb, Xb), g2(Rb, Yb), f3(Lb, Xb, A), g3(Rb, Yb, B) (2)

≈2−33k Xb, Yb, A,B, f2(L̃,Xb), g2(R̃, Yb), f3(L̃,Xb, A), g3(R̃, Yb, B) .

Now we assume that we fix A = α, and B = β. Let φ(`, x) be a binary function such that φ(`, x) = 1 if
f2(`, x) = x and f3(`, x, α) = α, and 0, otherwise. Similarly, let ψ(r, y) be a binary function such that
ψ(r, y) = 1 if g2(r, y) = y and g3(r, y, β) = β, and 0, otherwise.

Notice that by the inequality 3, by introducing an additional statistical distance of 2−33k, we may
assume that the probability that the corresponding SupStrTamp experiment outputs same with probability

Pr[f2(L̃,Xb) = Xb ∧ g2(R̃, Yb) = Yb ∧ f3(L̃,Xb, α) = α ∧ g3(L̃, Yb, β) = β] ,

and by the almost universality of C, we have that the corresponding SupStrTamp experiment outputs ⊥
with probability at least

Pr[f2(L̃,Xb) 6= Xb ∨ g2(R̃, Yb) 6= Yb ∨ f3(L̃,Xb, α) 6= α ∨ g3(L̃, Yb, β) 6= β]− 2−t/2 .

Thus, upto a statistical distance of at most 2−33k + 2−t/2, the output of the SupStrTamp experiment is
determined by the functions φ(L̃,Xb), ψ(R̃, Yb).

Now, let X̃, Ỹ be uniform in {0, 1}25k independent of everything else. Then, by the strong 2-source
extractor property of the inner product, we have that

Ext2(X̃, Ỹ ), φ(L̃, X̃), ψ(R̃, Ỹ ) ≈2−11k Uk, φ(L̃, X̃), ψ(R̃, Ỹ ) .

Conditioning Ext2(X̃, Ỹ ) = mb (respectively, Uk = mb) and applying Lemma 3, we get that

φ(L̃,X0), ψ(R̃, Y0) ≈2−10k φ(L̃,X1), ψ(R̃, Y1) .

Since 2−t/2 + 2−33k + 2−10k < 2−t/3, we get the desired result.
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5.2 f1 is far from being bijective

Lemma 20. Let L be the set of all ` ∈ {0, 1}n such that f1(`) 6= L, and |f−1
1 f1(`) ∩ L| ≥ 245k, and R

be a subset of {0, 1}n such that L ×R ≥ 22n−t. Then

SupStrTampf,gm0
|L0∈L,R0∈R ≈2−t SupStrTampf,gm1

|L0∈L,R0∈R ,

where E(mb) = Lb, Xb, A,Rb, Yb, B for b = 0, 1, in the first step of the corresponding SupStrTamp experi-
ment.

Proof. Let L̃, R̃, X̃, Ỹ be sampled uniformly from L,R, {0, 1}25k, {0, 1}25k respectively. Let σ1, σ2 be
sampled uniformly and independently of everything else from {0, 1}2t. Also, let M = Ext3(A,B) ⊕
Ext2(X̃, Ỹ ). Let

L̃′ = f1(L̃), R̃′ = g1(R̃), X̃ ′ = f2(L̃, X̃), Ỹ ′ = g2(R̃, Ỹ ), A′ = f3(L̃, X̃, A), B′ = g3(R̃, Ỹ , B) .

Now, let Dec(L̃′, R̃′) = σ′1‖σ′2‖c′1‖c′2 if Dec(L̃′, R̃′) 6= ⊥. Also, let z̃′ = Ext2(X̃ ′, Ỹ ′), and let z̃′1 be the

first 2t bits of z̃′. For any message m, Tm to be a random variable that depends on L̃′, R̃′, X̃ ′, Ỹ ′, A′, B′

conditioned on Ext2(X̃, Ỹ )⊕A⊕B = m and is ⊥ if Dec(L̃′, R̃′) = ⊥, or one of c′1 = C(σ′1, X̃
′‖Ỹ ′‖A′‖B′),

or c′2 = z̃′1 ⊕ σ′2 does not hold. Otherwise, Tm = L̃′, R̃′, X̃ ′, Ỹ ′, A′, B′.
Since

H∞(L̃|L̃′, X̃ ′, A′) + H∞(R̃) ≥ 45k − 25k − 5k + n− t = 15k + n− t .
Thus,

∆
(
Ext(L̃, R̃) ; UZp | X̃, Ỹ , A,B, L̃′, R̃′, X̃ ′, Ỹ ′, A′, B′, σ1, σ2

)
≤ 2−7k .

Conditioning on h(Ext(L̃, R̃)) = σ1, σ2, C(σ1, X̃‖Ỹ ‖A‖B), σ2⊕z1, where z1 is the first 2t bits of Ext2(X̃, Ỹ )
(respectively, h(UZp) = σ1, σ2, C(σ1, X̃‖Ỹ ‖A‖B), σ2⊕z1) and M = m, and using Lemma 3, we have that,
for any message m0,

∆(SupStrTampf,gm0
|L0∈L,R0∈R ; Tm0) ≤ 2−6k . (3)

Thus, it is sufficient to show that ∆ := ∆(Tm0 ; Tm1) is small. For this, we bound ∆ for every choice
of L̃ = ` and R̃ = r. We denote this as ∆`,r. Since L̃′ = f1(L̃), R̃′ = g1(R̃) is a deterministic function of

L̃, R̃, this fixes Dec(L̃′, R̃′) = Dec(f1(`), g1(r)). If Dec(L̃′, R̃′) = ⊥, then we have that

∆`,r = 0 .

We now consider the case when Dec(L̃′, R̃′) 6= ⊥. Using a slight abuse of notation, we let f2(X̃) = f2(`, X̃),
g2(Ỹ ) = g2(r, Ỹ ). We partition {0, 1}25k × {0, 1}25k into X0 × Y0, X0 × Y1, X1 × Y0, and X1 × Y1, where

X0 = {x ∈ {0, 1}25k | |f−1
2 (f2(x))| ≥ 210k} ,

Y0 = {y ∈ {0, 1}25k | |g−1
2 (g2(y))| ≥ 210k} ,

X1 = {0, 1}20k \ X0, and Y1 = {0, 1}20k \ Y0. Let us introduce two claims needed to finish the proof.

Claim 21. If |X0 × Y0| ≥ 249k, then

∆
(
Tm0 |X̃∈X0,Ỹ ∈Y0

; Tm1 |X̃∈X0,Ỹ ∈Y0

)
≤ 2−0.5k+1 .

Proof. Let X∗, Y ∗ be uniform in X0,Y0, respectively. Then, H∞(X∗|f2(`,X∗), f3(`,X∗, A)) ≥ 5k, and
also H∞(Y ∗) ≥ 24k. Thus, by the strong 2-source extractor property of the inner product,

∆(Ext2(X∗, Y ∗) ; Uk | A,B, f2(`,X∗), g2(r, Y ∗), f3(`,X∗, A), g3(r, Y ∗, B)) ≤ 2−1.5k .

Conditioning on Ext2(X∗, Y ∗) = mb ⊕ Ext3(A,B) (respectively Uk = mb), and using Lemma 3, and
noting that Tmb

is a deterministic function of f2(`,X∗), g2(r, Y ∗), f3(`,X∗, A), g3(r, Y ∗, B) conditioned
on Ext2(X∗, Y ∗) = mb ⊕ Ext3(A,B), we obtain the desired result.
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Similarly, since we only used that one of f2, g2 has a large preimage, we have that if |X0×Y1| ≥ 249k,
then

∆
(
Tm0 |X̃∈X0,Ỹ ∈Y1

; Tm1 |X̃∈X0,Ỹ ∈Y1

)
≤ 2−0.5k+1 ,

and If |X1 × Y0| ≥ 249k, then

∆
(
Tm0 |X̃∈X1,Ỹ ∈Y0

; Tm1 |X̃∈X1,Ỹ ∈Y0

)
≤ 2−0.5k+1 .

We now show a similar result for X1 × Y1.

Claim 22. If |X1 × Y1| ≥ 249k, then

∆
(
Tm0 |X̃∈X1,Ỹ ∈Y1

; Tm1 |X̃∈X1,Ỹ ∈Y1

)
≤ 2−2t+2 .

Proof. Let X∗, Y ∗ be uniform in X1,Y1, respectively. In this case, H∞(f2(X∗)) + H∞(g2(Y ∗)) ≥ 49k −
10k − 10k = 29k. Thus,

∆(Ext2(f2(X∗), g2(Y ∗)) ; Uk) ≤ 2−1.5k .

Let z∗1 be the first 2t bits of Ext2(f2(X∗), g2(Y ∗)). Notice that (X∗, Y ∗) and Ext3(A,B) ⊕ Ext2(X∗, Y ∗)
are independently distributed. Thus, independent of the message, the probability that z∗1 ⊕ σ′2 = c′2 is
at most 1

22t + 1
22k . This implies that the probability that Tmb

6= ⊥ is at most 1
22t + 1

21.5k . The result
follows.

Thus, for any i, j ∈ {0, 1}, we have that

Pr[X̃ ∈ Xi, Ỹ ∈ Yj ] ·∆
(
Tm0 |X̃∈Xi,Ỹ ∈Yj ; Tm1 |X̃∈Xi,Ỹ ∈Yj

)
≤ 2−2t+2 ,

and by Lemma 4, this implies that the statistical distance is at most 4 · 2−2t+2) ≤ 2−2t+4. Combining
with inequality 3, we get the desired result.

5.3 Partitioning the space and finishing the proof

We now prove Theorem 16. For this, we partition {0, 1}n × {0, 1}n depending on the functions f1, g1.
Define Lid to be the set of all ` ∈ {0, 1}n such that Lbij to be the set of all ` in L′ = {0, 1}n \Lid such that
|f−1

1 (f1(`)) ∩ Lid| is at most 20.45n (i.e., the function has few preimages, and is close to being a bijective
function), and Lffb to be the remaining set of all ` in L′ = {0, 1}n \ Lid such that |f−1

1 (f1(`)) ∩ Lid|
is greater than 20.45n (i.e., the function has many preimages, and is far being a bijective function). We
similarly define the partitions Rid,Rbij ,Rffb based on the function g1.

Together, the above partitions define 9 partitions for the space {0, 1}n × {0, 1}n. By Lemma ??, we
have that if Lid × Rid is at least 22n−t then the desired statistical distance for L,R restricted to be in
Lid ×Rid is at most 2−t/3. Also, by Theorem 14, if L×R (where L×R is one of Lid ×Rbij , Lbij ×Rid,
or Lbij ×Rbij) is at least 22n−t then the desired statistical distance for L,R restricted to be in Lid ×Rid

is at most 2−k
Ω(1)

. Finally, by Lemma 20, we have that if L×R (where one or both of L and R are Lffb
and Rffb, respectively) is at least 22n−t then the desired statistical distance for L,R restricted to be in

Lid ×Rid is at most 2−k
Ω(1)

.
The result then follows from Lemma 4.
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6 Proof of Theorem 18

We now give a simple argument that shows that this construction is secure against the tampering family
LA←3

125k,25k,5k ×LA←3
125k,25k,5k ∪FOR6

125k,25k,5k,125k,25k,5k if the construction given in Theorem 16 is secure

against the tampering family LA←3
125k,25k,5k × LA←3

125k,25k,5k.
We first argue security against lookahead tampering. The proof for this is essentially identical to

that of Theorem 16, as explained below. Let the tampering functions be f1, g1 : {0, 1}125k → {0, 1}100k,
f2, g2 : {0, 1}125k → {0, 1}25k, f3, g3 : {0, 1}150k → {0, 1}25k, f4, g4 : {0, 1}155k → {0, 1}5k, such that

L′1 = f1(L,X1), X ′1 = f2(L,X1), X ′2 = f3(L,X1, X2), A′ = f4(L,X1, X2, A) ,

and
R′1 = g1(R, Y1), Y ′1 = g2(R, Y1), Y ′2 = g3(R, Y1, Y2), B′ = g4(R, Y1, Y2, B) ,

We condition on X1 = x1, Y1 = y1, and we will argue that the statistical distance between the SupStrTamp
for the message m0 and that for the message m1 conditioned on the fixing of X1, Y1 is small. We define
the functions f∗ = (f∗1 , f

∗
2 , f

∗
3 ) as

f∗1 (L) = f1(L, x1), f∗2 (L,X) = f2(L, x1)⊕ f3(L, x1, X ⊕ x1), f∗3 (L,X,A) = f4(L, x1, X ⊕ x1, A) ,

and similarly, we define g∗ = (g∗1, g
∗
2, g
∗
3). Notice that in the proof of Theorem 16, we partitioned the

space and for each space, we showed that the super strong tampering experiment either outputs same,
or decodes to ⊥, or the tampered codeword is independent of the original message. Notice that if the
super-strong tampering experiment for the coding scheme of Theorem 16 for the tampering functions
f∗, g∗ outputs ⊥, or is independent of the message, then so is the case for the corresponding tampering
experiment in the current construction for the functions f = (f1, f2, f3, f4), g = (g1, g2, g3, g4). Thus, the
only case where the tampering experiment differs is the case when f∗1 (L) = g∗1(R), in which case from the
proof of Lemma 19, with high probability, the output is same or ⊥, depending on the boolean random
variables φ(L,X), and φ(R, Y ), where φ(`, x) = 1 if f2(`, x) = x and f3(`, x, α) = α, and 0, otherwise
and ψ(r, y) = 1 if g2(r, y) = y and g3(r, y, β) = β, and 0, otherwise.

In order for the proof to go through, we need to change the definition to φ(`, x) = 1, if f∗2 (`, x) = x,
f∗3 (`, x, α) = α, and f2(`, x1) = x1, and similarly redefine ψ(r, y). The rest of the proof remains the same.

In order to argue security against forgetful tampering, consider the case where the adversary loses in-
formation about one ofA orB (sayA), but knows L,R,X1, X2, Y1, Y2, B. We assume thatA,B,X1, X2, Y1, Y2

are uniformly distributed and L,R is computed as in the E∗ given A,B,X1, X2, Y1, Y2. In this case, since
H∞(A|C(σ2, X1‖X2‖Y1‖Y2‖A‖B)) ≥ 5k − t, and thus we have that

∆(Ext3(A,B) ; Uk | B,X1, X2, Y1, Y2, L,R) ≤ 2−1.5k .

For any message m∗, we have that Ext3(A,B)⊕Ext2(X1, X2) = m∗ (respectively Uk⊕Ext2(X1, X2) = m),
and using Lemma 3, we have that upto statistical distance 2−0.5k, B,X1, X2, Y1, Y2, L,R are independent
of the message m.

Similarly, if the adversary loses information about one of X2 or Y2 (say X2), then a similar ar-
gument shows that z2 is uniform and independent of A,B,X1, Y1, Y2, L,R, and hence conditioning on
(z1‖z2)⊕ Ext3(A,B) = 02t‖m∗, which implies that upto statistical distance 2−Ω(k), m∗ is independent of
A,B,X1, Y1, Y2, L,R.

Losing one of (L,X1) or (R, Y1) (say (L,X1)) is clearly worse for the adversary, and so the adversary
cannot distinguish between the tampered codeword of any two messages. The result follows.
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