
Feistel Structures for MPC, and More
Extended Version

Martin R. Albrecht1, Lorenzo Grassi2, Léo Perrin3, Sebastian Ramacher2,
Christian Rechberger2, Dragos Rotaru4,5, Arnab Roy4 and Markus

Schofnegger2 ∗

1 Royal Holloway, University of London, UK
2 IAIK, Graz University of Technology, Austria

3 Inria, Paris, France
4 University of Bristol, Bristol, UK

5 imec-Cosic, Dept. Electrical Engineering, KU Leuven.
martin.albrecht@royalholloway.ac.uk,lorenzo.grassi@iaik.tugraz.at,leo.perrin@

inria.fr,sebastian.ramacher@iaik.tugraz.at,christian.rechberger@tugraz.at,dragos.
rotaru@esat.kuleuven.be,arnab.roy@bristol.ac.uk,markus.schofnegger@tugraz.at

Abstract. We study approaches to generalized Feistel constructions with low-degree
round functions with a focus on x→ x3. Besides known constructions, we also provide
a new balanced Feistel construction with improved diffusion properties. This then
allows us to propose more efficient generalizations of the MiMC design (Asiacrypt’16),
which we in turn evaluate in three application areas. Whereas MiMC was not
competitive at all in a recently proposed new class of PQ-secure signature schemes,
our new construction leads to about 30 times smaller signatures than MiMC. In MPC
use cases, where MiMC outperforms all other competitors, we observe improvements
in throughput by a factor of more than 4 and simultaneously a 5-fold reduction
of preprocessing effort, albeit at the cost of a higher latency. Another use case
where MiMC already outperforms other designs, in the area of SNARKs, sees modest
improvements. Additionally, this use case benefits from the flexibility to use smaller
fields.
Keywords: Feistel · Multiplicative Complexity · Algebraic Attack · Secure Multiparty
Computation (MPC) · PQ-secure Signature Scheme · SNARKs

1 Introduction
Computing on Encrypted Data. Due to an increasing maturity of secure multi-party
computation, there are a couple of companies such as Partisia [64], Sepior [70], Sharemind
[22], Unbound [77] which try to incorporate MPC frameworks into large projects to offer
services where the companies do not need to know the user inputs to be able to compute
on them [10]. Since the complexity of these systems grows, one must be able to incorporate
encrypted databases with an MPC system to deal with data in transit or at rest.

For example, the trivial way of storing outputs to be later used is for each party in the
MPC engine to encrypt their share using a (different) symmetric key and post it to the
database. Later on, when the parties have decided to carry further computations on these
shares they simply decrypt the ciphertexts using their corresponding keys. Notice that for
a given shared secret there are N ciphertexts where N is the number of parties. This is
∗The sixth author was supported by the Defense Advanced Research Projects Agency (DARPA) and

Space and Naval Warfare Systems Center, Pacific (SSC Pacific) under contract No. N66001-15-C-4070.

mailto:martin.albrecht@royalholloway.ac.uk, lorenzo.grassi@iaik.tugraz.at, leo.perrin@inria.fr, sebastian.ramacher@iaik.tugraz.at, christian.rechberger@tugraz.at, dragos.rotaru@esat.kuleuven.be, arnab.roy@bristol.ac.uk, markus.schofnegger@tugraz.at
mailto:martin.albrecht@royalholloway.ac.uk, lorenzo.grassi@iaik.tugraz.at, leo.perrin@inria.fr, sebastian.ramacher@iaik.tugraz.at, christian.rechberger@tugraz.at, dragos.rotaru@esat.kuleuven.be, arnab.roy@bristol.ac.uk, markus.schofnegger@tugraz.at
mailto:martin.albrecht@royalholloway.ac.uk, lorenzo.grassi@iaik.tugraz.at, leo.perrin@inria.fr, sebastian.ramacher@iaik.tugraz.at, christian.rechberger@tugraz.at, dragos.rotaru@esat.kuleuven.be, arnab.roy@bristol.ac.uk, markus.schofnegger@tugraz.at

where cryptographic primitives such as block ciphers play an important role in storing
outputs from the MPC engine into an encrypted database: parties can engage in an MPC
protocol to compute an encryption of the share using a shared key. In this way, parties
jointly produce a single ciphertext rather than having N ciphertexts per stored share.

If one chooses AES as the underlying primitive for the encryption scheme then the
share conversions become the bottleneck of MPC procedures when the underlying engine
performs arithmetic modulo p. This is indeed the case for most of the frameworks such
as MP-SPDZ [7], SCALE-MAMBA [6], BDOZa [15], VIFF [36] and conversion to their
boolean counterpart with same security properties is an expensive task. Hence, for efficient
and secure computation of algorithms modulo p we would like a blockcipher over the same
field. Grassi et al. [45] give several constructions for lightweight pseudorandom functions
(PRFs) when evaluated in a prime field of large characteristic and concluded that among
various other options MiMC [4] is competitive, which is the starting point of our design as
well.

Besides database storage, MPC-friendly PRFs can cover other use-cases as well explored
in [45, 24]. These include searchable encryption, authenticated encryption, oblivious RAM
done in a distributed fashion using MPC and an efficient PRF.

Our Results. In this work, we continue the exploration of construction strategies for
constructions for symmetric cryptography which benefit MPC applications. In particular,
we continue with an old design idea by Nyberg and Knudsen [62] from the 1990s, in which
the round function of a Feistel network is the mapping x→ x3. Even though the idea was
abandoned soon after [49], recently it was shown that it can lead to efficient instantiations
for SNARKs [4] and in MPC protocols [45]: The MiMC design mentioned above.

In this paper we generalize this design approach. Our generalized MiMC (GMiMC) can
cope with prime fields while at the same time work on many field elements at once. For this
be drawn from old approaches in symmetric cryptography: Generalized Feistel networks
which generalize the approach taken the designers of the DES. Previous works [45, 67] did
not take into account how to optimize the number of multiplications for a higher number of
blocks and treated the PRF as a black-box when extending to more inputs. This is where
our constructions shine the most: if one chooses to encrypt multiple shares at once we can
amortize the number of multiplications per share resulting in a more efficient preprocessing
phase. We consider our work to be beneficial when there is a large number of blocks to
encrypt.

Similar to [62, 4], let’s start considering the case of a 2-branch Feistel MiMC, i.e. a
2-branch Feistel scheme where the round function is simply defined by the cubing map.
Even if an advantage of this Feistel approach seemed to be that inversion is as cheap as
a forward computation (which is not true for the case of an Even-Mansour MiMC), a
drawback of this construction is that, in a balanced Feistel scheme, twice the number of
rounds are required. This is motivated by the possibility to set up competitive Meet-in-the-
Middle algebraic attack, which is not possible in the case of an Even-Mansour MiMC. In
this work, we show that this conclusion does not hold for generalized Feistel constructions.
In particular, our analysis suggests that for unbalanced Feistel schemes with a contracting
round function we do not have to increase the number of rounds further for t > 2 branches
compared to t = 2 branches considered in [4]. Of course, this cannot hold for arbitrarily
large t, as eventually generic attacks on such Feistel schemes, i.e., attacks that do not
depend on the round function, become competitive. Still, for practical use cases we show
that a high number of branches can be meaningful, hence allowing for an up to 100-fold
improvement of multiplication-related metrics, which influence the performance of the
applications such as number of multiplications or the product of field size and number of
multiplications, compared to MiMC.

In order to effectively make use of a large number of branches t, we introduce a new

1

variant of the generalized Feistel network, which we call “Multi-Rotating Feistel network”,
that provides extremely fast diffusion. To the best of our knowledge, the first such variants
were proposed in [74], and later implemented in the block cipher Twine [75]. In those
cases, the simple rotation of the branches used between the calls to the Feistel functions is
replaced with a more sophisticated permutation. It permits the construction of a block
cipher operating on t = 2b branches, which provides full diffusion in 2b = 2 · log2(t) rounds
rather than t. This technique was recently generalized to a higher number of branches [30].
However, this last approach relies on expensive computer search that become infeasible
when the number of branches is higher than 30. It also implies the use of a different an
independently derived permutation for each number of branches.

We provide a general approach for building a generalized Feistel network operating on
an even number t of branches which provide full diffusion in 2 · log2(t) rounds, without the
restriction that t is a power of two or that it is smaller than a given threshold. In fact, our
argument for the diffusion relies only on pencil and paper rather than a complex computer
search meaning that we immediately “fill-in the blanks” left by [74] and [30] by providiung
permutation that allow a fast diffusion for all numbers of branches.

We show the performance of GMiMC in MPC applications based on secret sharing
techniques such as BDOZa [15], SPDZ [37] or VIFF [36]. Previous works [45, 67] did not
take into account how to optimize the number of multiplications per encrypted share and
treated the PRF as a black-box when extending to more inputs. We show that using
our construction one can choose to encrypt multiple shares at once thus amortizing the
number of multiplications per share and results in a more efficient preprocessing phase. We
consider our work to be beneficial when there is a large number of blocks to encrypt. From
a theoretical point of view two of our constructions are the first to avoid the linear increase
of time and data sent across the parties in the preprocessing phase with the number of
encrypted blocks (in Fp). Namely the cost per encrypted share if we encrypt more shares
in one go. Details can be found in Section 7.1.

Related Work. Recently, Agrawal et al. [2] considered the problem of parties jointly
computing a symmetric-key encryption using a distributed PRF with implications to
systems dealing with secret management [63] or enterprise network authentication. Our
approach is slightly different since it evaluates the block cipher inside the MPC engine.
This is useful when external clients send encrypted data to the computing parties and
wish to make abstraction of what the MPC engine inner workings are: number of players,
type of sharing scheme, etc. Using a block cipher takes the burden off the clients who just
encrypt their data, making them oblivious of the MPC engine details.

Other Applications. Basic cryptographic primitives that require a low number of
multiplications without compromising security have many applications. These primitives
can reduce the cost of countermeasures against various side-channel attacks [35, 46],
eliminate the ciphertext expansion in homomorphic encryption schemes [5, 57, 29, 42, 59],
help dealing with encrypted data in secure multi-party computation systems [5, 45, 67],
increase throughput or latency in SNARKs [4], and reduce the signature size of signature
schemes and (privacy-preserving) variants, e.g. ring and group signature schemes, based
on one-way functions from symmetric-key primitives and non-interactive zero-knowledge
proofs [31, 39, 23, 38, 50].

Research efforts are manifold and cover questions on finding circuits for concrete
mappings such as S-Boxes [28], foundational theoretical results on the complexity of PRGs,
PRFs, and cryptographic hashes [9, 8], and new ad-hoc designs of permutations, ciphers
and hash functions tailored for various multiplication-related metrics [5, 29, 57, 4].

Even though our main aim in this work is to consider MPC applications, we also
explore variants of our idea for a related use-case leading to a signature scheme, and a

2

zkSNARK use-case.

zkSNARK Use-Case. Our design approach can cover a wide-range of block-sizes and in
addition to instantiating block ciphers we can also instantiate cryptographic permutations
of large size. For this use-case we instantiate a permutation of more than 1000 bits. This
permutation is then, in a Sponge construction, turned into a hash function, over whose
circuit a proof is computed in a SNARK setting. This application pertains to Zerocash [13],
which recently found wider attention due to the Z.cash ICO (see https://z.cash). For
the expanding variant of the unbalanced Feistel approach, we measure an improvement by
a factor of around 1.2 compared to MiMC which in turn is about a factor two better than
the next best competitor.

This translates almost directly to a similar speed-up of “pour” performance in Zerocash
systems, a computationally expensive operation done by payment clients to spend coins.
However, the biggest advantage of our proposal in this setting is the flexibility of being
able to rely on many different field sizes by choosing different branch numbers, and hence
being able to take advantage of existing implementations with a fixed field size. Details
can be found in Section 7.2.

ZKBoo Use-Case. Finally, we consider signature schemes based on zero-knowledge
proofs of a preimage of a one-way function. It was recently shown that such schemes can
be viable alternatives [31, 32] when instantiated with symmetric primitives (to construct a
one-way function) that have a low number of multiplications. Public and private keys are
minimized, and the only hardness assumption required to prove security is the one-wayness
of the underlying function. Signature sizes strongly depend on the product of the number
of multiplications of the OWF and the size of the field in which the multiplications are
performed. The signature and verification times depend on the details of the scheme in
a less straight-forward way. The block size of the instantiations we are interested in is
around 256 bits. So far, LowMC was considered to be clearly the best choice for small
signatures and runtimes, and MiMC resulted in 10 times larger and hence unpractical
signature sizes. As we show in detail in Section 7.3, the picture is more complex and our
generalized MiMC can be much more efficient than the original MiMC and competitive
with LowMC. This is again due to the flexibility of being able to try many different field
sizes by choosing different branch numbers.

2 Description of Generalized MiMC
Notation. In a Feistel network, Xi−1 denotes the input to the branch i, where 1 ≤ i ≤ t.
Xt−1 and X0 denote the inputs to the leftmost and rightmost branches respectively. Xi ∈ F
for a finite field F. The block size (in bits) of the keyed Feistel permutation is denoted by
N , while n = dlog2 |F|e denotes the branch size (in bits). We write Fp for the finite prime
field of order p. We write F2q for any finite field of order 2q. The bit size of the key of a
block cipher is denoted by κ. In particular, through the paper we work with two different
cases (depending on the practical implementation), denoted as:

• the univariate case, for which the key-size is κ = n = dlog2 |F|e;

• the multivariate case, for which the key-size is κ = N = n · t = dlog2 |F|e · t .

2.1 The Block Cipher GMiMC
We construct “Generalized Feistel MiMC” (GMiMC) variants from several generalized
(unbalanced and balanced) Feistel networks, e.g., with contracting round function (CRF),

3

https://z.cash

FFFF · · ·

Figure 1: One round of a t-branch unbalanced Feistel network (UFN) with a contracting
round function (CRF).

F
· · ·

Figure 2: One round of a t-branch unbalanced Feistel network (UFN) with an expanding
round function (ERF).

expanding round function (ERF), Nyberg’s GFN and a new structure which we call Multi-
Rotating (MR). Each of the following constructions is a keyed permutation over F2n or
Fp. The three main parameters of the block ciphers are denoted by [κ, t, n]. For example,
GMiMCcrf [4n, 4, n] denotes the permutation GMiMC with CRF which has branch size n,
key size 4n and number of branches 4. The numbers of rounds for all constructions are
given in Table 3. The key schedule is linear and equal for all the proposed designs, and it
is discussed in the following. All round constants are chosen randomly and fixed.

The following constructions are defined over F2n . The description over Fp is obtained
by replacing the XOR-sum ⊕ with the corresponding sum + modulo p.

2.1.1 GMiMCcrf

An unbalanced Feistel network (UFN) with a contracting round function (CRF) can be
written as

(Xt−1, Xt−2, . . . , X0)← (Xt−2, Xt−3, . . . , Xt−1 ⊕ F (Xt−2, . . . , X0))

where Xi is the input to the i-th branch of the Feistel network and F (·) is a key-dependent
function in round j, cf. Figure 1. In GMiMCcrf we define the j-th round function as

F (xt−2, . . . , x0) :=
(⊕

i

xi ⊕ kj ⊕ cj

)3

where cj and kj are respectively the round constant and the key of the round j (for
1 ≤ j ≤ r).

2.1.2 GMiMCerf

An unbalanced Feistel network with an expanding round function (ERF) can be written as

(Xt−1, Xt−2, . . . , X0)← (Xt−2 ⊕ F (Xt−1), . . . , X0 ⊕ F (Xt−1), Xt−1)

4

F0 F1

Figure 3: One round of a 4-branch Nyberg Generalized Feistel Network (GFN).

where Xi is the input to the i-th branch of the Feistel network and F (·) is a key-dependent
function in round j, cf. Figure 2. In GMiMCerf the j-th round function is defined as

F (x) := (x⊕ kj ⊕ cj)3

where kj and cj are as in GMiMCcrf .

2.1.3 GMiMCNyb

A generalized Feistel network was proposed in [60] for an even number of branches and
can be written as

(Xt−1, . . . , X1, X0)← (Xt−2 ⊕ F0(Xt−1), Xt−3, . . . , X0 ⊕ Ft/2(X1), Xt−1
)

Each Fi(·) in the j-th round of GMiMCNyb is defined as

Fi(x) :=
(
x⊕ ki+j·t/2 ⊕ ci+j·t/2

)3,
where ci+j·t/2 are distinct constants in round j and ki+j·t/2 are round keys, cf. Figure 3.

2.1.4 GMiMCmrf

In [74], Suzaki and Minematsu introduced new variants of the GFN structure where
the linear mixing applied after the Feistel functions is a complex permutation rather
than a simple rotation. This allowed them to build GFNs operating on t = 2b branches
such that full diffusion is achieved in 2b rounds rather than the 2t rounds needed by a
Nyberg-style construction. They later used this approach to build the lightweight block
cipher Twine [75].

When the number of branches is not a power of 2, the authors of [30] proposed a
computer search that can find optimal permutations when the number of branches is not
too large, typically lower than 30.

Here, we introduce the Multi-Rotating structure for generalized Feistel networks, which
provides full diffusion as quickly as a Twine-like structure without the constraint that the
number of branches is a power of 2 or lower than a certain threshold. It is also conceptually
much simpler and thus easier in practice to apply to a larger number of branches. These
improvements come at the cost of the use of a different mixing layer in each round which,
to the best of our knowledge, has not been considered for a Feistel or generalized Feistel
structure so far. However, we note that previously, the Serpent designers (of SPN type)
considered using different mixing layers in each round in their design. In particular, they
considered using a different linear transformation for even and odd rounds (see [20, App.
A.6]), before settling for their current design.

To introduce the Multi-Rotating Feistel network structure, we first give a general
expression of its round function. A rotated Feistel round is a permutation Rs parameterized
by a rotation amount s which operates on an even number of branches and works as

5

F0

F1

F2

F3

Figure 4: One round Rs of an 8-branch Multi-Rotating Feistel network with a rotation by
s = 2.

follows:

(
Xt−1, . . . , X0

)
←
(
Xt/2−1 + F−s(Xt−1−g(s,0)), Xt/2−1 ⊕ F1−s(Xt−1−g(s,1)), . . . ,

X0 ⊕ Ft/2−1−s(Xt−1−g(s,t/2−1)), Xt−1, . . . , Xt/2
)
,

where the index of the function F (·) is taken modulo t/2 and g(s, i) = s + i mod t/2.
This process is summarized in Figure 4. Like in GMiMCNyb, each Fi in the j-th round of
GMiMCmrf is defined as

Fi(x) :=
(
x⊕ ki+j·t/2 ⊕ ci+j·t/2

)3,
where ci+j·t/2 are distinct constants in round j and ki+j·t/2 are round keys. By iterating
such rounds Rs for varying values of s we obtain a block cipher. An instance of such an
r-round block cipher is specified using the sequence {s0, ..., sr−1} of the r rotation amounts
used. As explained in Appendix B, it is possible to build a GFN with optimal diffusion by
choosing the sequence {sj}j<r carefully.

We build a GMiMCmrf instance operating on t branches using a sequence of rotations
{sj}0≤j<r where

s2` = 0, and s2`+1 = 2` (mod dlog2(t/2)e) . (1)

For instance, if t = 32, then log2(t/2) = 4 and this sequence can be written as {0, 1, 0, 2, 0, 4,
0, 8, 0, 1, 0, 2, 0, 4, 0, 8, 0, 1, ...}, i.e. it consists in as many repetitions as needed of the pattern
{0, 1, 0, 2, 0, 4, 0, 8} of length 2 log2(t/2) = 8.

To better understand the security of GMiMCmrf , we now investigate its diffusion. We
borrow our definition of diffusion from [74]: if a variable y intervenes in the expression
of an internal state word X then we say that X depends on y. If all output words of a
(round-reduced) block cipher depend on all input words, we say that this primitive provides
full diffusion.

The diffusion provided by GMiMCmrf using the sequence of rotations from Equation (1)
is quantified by the following Theorem, proved in Appendix B.

Theorem 1. Let Xi
j denote the word with index j at the input of round i, so that for

example X0
j denotes a plaintext word. Consider a GMiMCmrf instance operating on t

branches with the rotation sequence in Equation 1. If i ≥ 2dlog2(t)e, then Xi
j depends on

X0
j′ for any j, j′. The same is true in the backwards direction. In other words, GMiMCmrf

provides full diffusion after 2dlog2(t)e rounds.

For the following, we denote by Λ (t) the minimum number of rounds to achieve full
diffusion, that is Λ (t) = 2dlog2(t)e.

6

Possible Variants. Before going on, we refer to Appendix A for possible variants of the
GMiMC family of ciphers, e.g. using a round function defined by a different power exponent.
As for MiMC (see Section 5 of [4]), it turns out that the power exponent 3 is an optimal
choice also for the GMiMC family of ciphers.

2.1.5 Key Schedule

When |k| = n (i.e. the univariate case), then ki = k ∀i. The key schedule for the
multivariate case |k| = t× n is a little more complicated. Let k = k0||k1|| . . . ||kt−1, and
let M be a t× t matrix with elements in F2n or Fp that satisfies the following condition:

• M is invertible, that is there exists M−1;

• for each 1 ≤ i ≤ dR/te where R is the number of rounds, then1

M i[j, l] ≡ (M ×M ××M︸ ︷︷ ︸
i-th times

)[j, l] 6= 0

for all 0 ≤ j, l < t, where X[j, l] denotes the coefficient in row j and column l of the
matrix X.

For each 1 ≤ i ≤ dR/te let

[ki·t||ki·t+1|| . . . ||k(i+1)·t−2||k(i+1)·t−1]T = M × [k(i−1)·t||k(i−1)·t+1|| . . . ||ki·t−2||ki·t−1]T .

The second condition on M guarantees that each subkey depends linearly on all the first t
subkeys. This fact has an important consequence. Consider GMiMCcrf and/or GMiMCerf
instantiated with a key schedule that uses the subkeys cyclically, i.e. ki,j = k̂j·t/2+i (mod t).
If the attacker guesses t− 1 subkeys, then she can potentially skip both the first and the
last t− 1 rounds. Instead, in the case in which each subkey depends linearly on all the
first t subkeys, this strategy simply does not apply. As a result, the proposed key schedule
allows to save a certain number of rounds (approximately t − 1) w.r.t. a key schedule
that uses the subkeys cyclically. Similar argumentation - but on a smaller scale - holds for
GMiMCNyb and GMiMCmrf .

Remark - Round Constants. As for MiMC, we remark that also the key-schedule of
GMiMC consists of a round-constant addition. This is “hidden” in the definition of each
round function Fi(·), e.g. Fi(·) = (·⊕k⊕ci)3 for a random round-constant ci. We highlight
that it is possible to define an equivalent key-schedule where the round-constant addition is
already included in the key-schedule , e.g. k̂i := ki ⊕ ci where ki is defined by the previous
key-schedule.

2.2 Hash Function
To construct the hash function GMiMCHash, we use one of the structures, e.g. the
GMiMCerf , with fixed subkeys2, e.g. 0n·R, where R is the number of rounds. Denoting the
fixed key permutation as GMiMCπerf [κ, t, n], GMiMCHash is constructed by instantiating
a sponge construction [17] with GMiMCπerf [κ, t, log2 p]. The number of rounds of the
permutation GMiMC is chosen according to Table 1 - univariate case 2κ ' 2n ' p.

When the internal permutation P of an N -bit sponge function (composed of c-bit
capacity and r-bit bitrate – N = c+ r) is modeled as a randomly chosen permutation, it
has been proven by Bertoni et al. [17] to be indifferentiable from a random oracle up to

1If no matrix exists that satisfies the following condition, then one must choose a matrix M for which
the total number of zero coefficients for each M i is minimum.

2We emphasize that no key schedule is required in this case, since there is no secret-key material.

7

2c/2 calls to P. In other words, a sponge with a capacity of c provides 2c/2 collision and
2c/2 (second) preimage resistance. Given a permutation of size N and a desired security
level s, we can hash r = N − 2s bits per call to the permutation.

As usual, the message is first padded according to the sponge specification so that
the number of message blocks is a multiple of r, where r is the rate in sponge mode. For
GMiMCHash-l we use a GMiMC permutation where N = n · t = 4 · l + 1 and s = 2 · l.
For GMiMCHash-256 we thus use a GMiMC permutation with N = n · t = 1024 or 1025.
The rate and the capacity are chosen as 512 and 513 respectively. This choice allows for
processing the same amount of input bits as SHA-256 (512 bits) while at the same time
offering collision security nd preimage security of 256 bits. We highlight that while we
could use any of the GMiMC constructions, GMiMCerf turns out to be the most efficient
choice in several settings as shown in Section 7.2.

3 Security Analysis
As for any new design, it is paramount to present a concrete security analysis. In the
following, we provide an in-depth analysis of the security of the GMiMC family of block
ciphers. In particular, for each proposal we consider the maximum number of rounds that
can be attacked by the attacks currently present in the literature.

Important Remark. Due to our target applications, here we limit ourselves to provide
the number of rounds to guarantee security only in the following two scenarios:

• GMiMC instantiated over Fp such that the size of the prime is 128 bit or more (used
for applications like SNARKs and MPC);

• GMiMC instantiated over F2n in the low-data scenario (used for application like
PQ-Signature Scheme).

We stress that this choice is motivated by the fact that we focus on the scenario that are
useful for our applications. Thus, even if GMiMC can be instantiated over F2n , we do not
provide the number of rounds to guarantee security in this scenario.

Before going on, we remark that many (almost all) attacks work in the same way in
Fp and in F2n . One of the few exception to this fact is the higher-order differential attack.
More details on this fact are given in the following.

Security Analysis – GMiMC instantiated over Fp. Almost all the attacks are inde-
pendent of the fact whether (a) the size of the key is equal to the branch size κ = n
(equivalently, 2κ ' p for the Fp case) or (b) equal to κ = N = t · n (equivalently, 2κ ' pt
for the Fp case). Table 1 and Table 2 summarize the minimum number of rounds required
to guarantee the security against several possible attacks respectively in the first and in
the second case - we assume t > 2 in both cases. The number of rounds of GMiMC is then
chosen in order to provide security to all possible attack vectors.

Since the cryptanalysis strategy of the four proposals are very similar, in Sect. 3 the
following we give a complete analysis only for GMiMCcrf , while we refer to Appendix C–D
for the analysis of the other proposals. Starting from the results proposed in the following
section, in Section 6 we list the minimum number of rounds for each construction, together
with some useful observations for the possible applications like MPC, SNARKs and post-
quantum signature schemes.

Note: given the number of rounds of a distinguisher that is independent of the secret
key, we decided to add 2 rounds - in order to prevent key-guessing attack - for the univariate
case. For the multivariate case, we decided to add (t + 1) rounds - in order to prevent

8

Table 1: Minimum number of rounds required to provide security of GMiMC instantiated
over Fp against the corresponding attacks when 2κ ' 2n ' p — no restriction on data
complexity - and t > 2. We recall that Λ (t) := 2dlog2(t)e. For simplicity, 2·log3(2) = 1.262.

GMiMCcrf GMiMCerf

GCD
⌈
1.262 · log2(p)− 4 log3(log2(p))

⌉
+2t

⌈
1.262 · log2(p)− 4 · log3(log2(p))

⌉
+2t− 2

Interpolation
⌈
1.262 · log2(p)

⌉
+4t− 3

⌈
1.262 · log2(p)

⌉
+2t

Higher Order (in Fp) 2 + 4t+ d2 log3(t)e 2 + 2t+ d2 log3(t)e
(Trunc.) Differential 2 +

⌈
(t2 + t)× log2(p)

2(log2(p)−1)

⌉
2 +

⌈
(t2 + t)× log2(p)

2(log2(p)−1)

⌉
Impossible Diff. 3t− 1 2t

GMiMCNyb GMiMCmrf

GCD
⌈
1.262 · log2(p)− 4 log3(log2(p))

⌉
+t+ 2 d1.262 · log2(p)− 4 · log3(log2(p))e+ Λ (t) + 4

Interpolation
⌈
1.262 · log2(p)

⌉
+t+ 2

⌈
1.262 · log2(p)

⌉
+2Λ (t) + 4

Higher Order (in Fp) 2 + t+ d2 log3(t)e 2 + 2Λ (t) + d2 log3(t)e
(Trunc.) Differential 3t+ 2 3Λ (t) + 2
Impossible Diff. 2t 2Λ(t)

Table 2: Minimum number of rounds required to guarantee the security of GMiMC
instantiated over Fp against the corresponding attacks when 2κ ' 2N ' pt - no restriction
on data complexity - and t > 2. We recall that Λ (t) := 2dlog2(t)e. For simplicity,
2 · log3(2) = 1.262.

GMiMCcrf GMiMCerf

Guess + GCD
⌈
1.262 · log2(p)− 4 log3(log2(p))

⌉
+3t− 1

⌈
1.262 · log2(p)− 4 · log3(log2(p))

⌉
+3t− 3

Interpolation
⌈
1.262 · log2(p)

⌉
+5t− 4

⌈
1.262 · log2(p)

⌉
+3t− 2

Gröbner Basis d0.631 · log2(p) + 2 log3(t)e+ 4t− 3 d0.631 · log2(p) + 2 log3(t)e+ 4t− 5
Higher Order (in Fp) 1 + 5t+ d2 log3(t)e 1 + 3t+ d2 log3(t)e
(Trunc.) Differential 1 + t+

⌈
(t2 + t)× log2(p)

2(log2(p)−1)

⌉
1 + t+

⌈
(t2 + t)× log2(p)

2(log2(p)−1)

⌉
Impossible Diff. 4t− 2 3t− 1
“Generic” Attack 5t− 3 4t− 2

GMiMCNyb GMiMCmrf

Guess + GCD
⌈
1.262 · log2(p)− 4 log3(log2(p))

⌉
+t+ 3 d1.262 · log2(p)− 4 · log3(log2(p))e+ Λ (t) + 5

Interpolation
⌈
1.262 · log2(p)

⌉
+t+ 3

⌈
1.262 · log2(p)

⌉
+2Λ (t) + 5

Gröbner Basis
⌈
0.631 · log2(p) + 2 log3(t)

⌉
+t+ 2

⌈
0.631 · log2(p) + 2 log3(t)

⌉
+Λ (t) + 2

Higher Order (in Fp) 3 + t+ d2 log3(t)e 3 + 2Λ (t) + d2 log3(t)e
(Trunc.) Differential 3t+ 3 3Λ (t) + 3
Impossible Diff. 2t+ 1 2Λ(t) + 1
“Generic” Attack - -

key-guessing attack - for GMiMCcrf and GMiMCerf , and 3 rounds - in order to prevent
key-guessing attack - for GMiMCNyb and GMiMCmrf . This choice is supported by the
definition of the key-schedule, in particular by the fact that each subkey depends linearly
on all the first t subkeys (we refer to the previous section for details).

Security Analysis – GMiMCHash instantiated over Fp. For the hash function GMiM-
CHash case, the number of rounds of the inner permutation is chosen according to the
corresponding univariate case (referring to Table 1). This is due to the following considera-
tions. First, as we just recalled in the previous section, when the internal permutation P of
an N = c+r bit sponge function is modeled as a randomly chosen permutation, the sponge
hash function is indifferentiable from a random oracle up to 2c/2 calls to P . The numbers of
rounds of the univariate case is sufficient to guarantee security against any (secret-/known-
/chosen-) distinguisher which is independent of the key. Equivalently, this means that such

9

number of rounds guarantee that P does not present any non-random/structural property
(among the ones known in the literature3). It follows that the previous assumption is
satisfied. These and the fact that every key-recovery attack is meaningless in the hash
scenario support our choice to consider the univariate case in order to determine the
number of rounds of the inner permutation.

Before going on, we remark that the fact that P presents a non-random/structural
property does not imply an attack on the hash sponge function instantiated by P. To
have a concrete example, consider Keccak (SHA-3). A zero-sum distinguisher can be set
up for the full 24-round internal permutation that defines it - see for example [26, 43]. In
other words, the internal permutation that defines Keccak presents a non-random property,
that is it does not look like a pseudo-random permutation4. On the other hands, the best
practical collision attack cover (“only”) up to 6 rounds Keccak [66], which is still far from
threatening the security of the full 24-round Keccak family.

Security Analysis – GMiMC instantiated over F2n in the low-data scenario. For
some practical applications considered in the following, we also consider the case in which
the attacker has a limited access to data (e.g. 1 or 2 (plaintext, ciphertext) pairs). The
security analysis for this particular case is proposed in Sect. 5. As we are going to show,
due to the fact that the attacker can have access to few (plaintext, ciphertext) pairs, only
few attacks (e.g. the GCD one) apply to this case. We remark that all the attacks that we
are going to consider in this scenario work in the same way in F2n and Fp. As a result, we
mainly re-use the results proposed in the Sect. 4.

4 Security Analysis – GMiMC instantiated over Fp
4.1 Algebraic Attacks
In this section, we consider algebraic attacks against GMiMC. These attacks are particularly
relevant to applications which only make a limited number of (plaintext, ciphertext) pairs
available to the attacker.

A key datum for all these attacks is the degree reached in each of our constructions
after r rounds. Here we propose an analysis for the case of GMiMCcrf (similar for all other
constructions).

Grow of the Degree of GMiMCcrf . Consider the t-branch, univariate case for GMiMCcrf
and denote the branches by (Xt−1, . . . , X2, X1, X0). Given a known plaintext, the degree
di of the key in the branch Xi for i = 0, . . . , t− 1 after r rounds is

di =
{

3r−i if r > i,

0 otherwise.
(2)

Note that dt−1 = mini di.
Considering the t-branch multivariate case, the degrees of the t keys growth differently

in the t multivariate polynomials corresponding to the t branches of the Feistel network.
In round r, the polynomial of the leftmost branch has the least degrees, which are given by

di,j =
{

3r−(i−1)−j if r > i+ j − 1,
0 otherwise.

, (3)

3That is, we do not exclude that a non-random property can be discovered in the future.
4We also refer to [16] for a detailed discussion about this topic.

10

where j = t− 1 denotes the leftmost branch and the degree of variable ki in branch j is
di,j . For all (algebraic) attacks in the following, we only care of the minimum degree:

dt−1,t−1 = min
i

min
j
di,j = 3r−2t+2,

where 0 ≤ i ≤ t− 1 and 0 ≤ j < t.
Finally, the degree of each word of the plaintext in the t-branch is given by formula (3)

both for the univariate and multivariate cases.

4.1.1 Greatest Common Divisors

As for the original MiMC [4], an attack strategy is to compute Greatest Common Divisors
(GCD). In particular, given more than one known (plaintext, ciphertext) pair or working on
the output of different branches of a single known (plaintext, ciphertext) pair (as described
in the following), one can construct their polynomial representations and compute their
polynomial GCD to recover a multiple of the key5. Note that this is a known-plaintext
attack, and not a chosen-plaintext one.

Since interpolation attack is more efficient than GCD attack (from the attacker point
of view), we refer to Section 5.1 and Appendix C.4 for all details about GCD attack. For
each GMiMC family of block ciphers, we refer to Table 1 for the minimum number of
rounds that ensure security against the GCD attack.

Before going on, we remark that this is one of the few attacks that applies in the
low-data scenario, considered in one of the following applications (i.e. post-quantum
signatures). More details on this fact are given in the following.

4.1.2 Gröbner Bases

The natural generalization of GCDs to the multivariate case is the notion of a Gröbner
basis [34]. The attack proceeds like the GCD attack with the final GCD computation
replaced by a Gröbner basis computation. Due to the Feistel structure, we highlight that
it is possible to construct multivariate “meet-in-the-middle” polynomials – we denote their
degree as di in this subsection and define d = mini di.

Complexity For generic systems, the complexity of computing a Gröbner basis for a
system of N polynomials in V variables is

O
((

V +Dreg

Dreg

)ω)
(4)

operations over the base field F [19], where Dreg is the degree of regularity and 2 ≤ ω < 3
is the linear algebra constant. We note that the memory requirement of these algorithms
is of the same order as running time. The degree of regularity depends on the degrees of
the polynomials d and the number of polynomials N. When V = N, we have a simple
closed form [12]

Dreg = 1 +
N−1∑
i=0

(di − 1),

where di is the degree of the i-th polynomial fi in the polynomial system we are trying to
solve. In the over-determined case, i.e., V < N, the degree of regularity can be estimated
by developing the Hilbert series of an ideal generated by generic polynomials 〈f0, . . . , fN−1〉

5Improving the computational complexity of this attack using more pairs is an open problem. However,
since the cost is dominated by the size of the polynomials involved, it is not clear that significant
improvements are possible.

11

of degrees di. We stress that this analysis presumes that the polynomials considered here
behave like generic systems, which is in accordance with our practical experiments. Closed
form formulas for Dreg are known for some special cases, but not in general.

In particular, each plaintext/ciphertext pair – denoted by p, c ∈ (F2n)t where p ≡
(p0, ..., pt−1) and c ≡ (c0, ..., ct−1) – gives a system of t equations

∀i = 0, ..., t− 1 : ci = fi(p0, ..., pt−1, k0, ..., kt−1)

in t variables k0, ..., kt−1 (note that the key-schedule is linear), where fi are functions
of degree d. The introduction of new intermediate variables to reduce the degree of the
involved polynomials does not lead to a reduced solving time as this increases the number
of variables.

On the other hand, depending on parameter choices, the hybrid approach [18, 19] which
combines exhaustive search with Gröbner basis computations may lead to a somewhat
reduced cost. Following [18, 19], guessing ϕ ≤ t components of the key leads to a complexity
of O

(
pϕ ·

(V−ϕ+D′reg

D′reg

)ω)
, where D′reg ≤ Dreg is the degree of regularity for the system of

equation after substituting ϕ variables with their guesses. Noting, though, that guessing a
variable in a monomial reduces its degree and that guesses only affect a subset of rows in
the Macaulay matrix, we will more conservatively assume an overall cost of

O
(
pϕ ·

(
V− ϕ+D′reg − 1

D′reg − 1

)ω)
. (5)

Many known pairs Each new (plaintext, ciphertext) pair provides a new polynomial
while keeping the number of unknowns V = t constant. Thus, given that there are(
t+d
d

)
monomials of degree less than or equal to d in t unknowns, we may simply collect(

t+d
d

)
polynomials from the same number of known (plaintext, ciphertext) pairs. In this

over-determined case (that is, number of equations ne bigger than number of variables
nv), there is no closed formula to compute Dreg. By definition, the degree of regularity is
defined as the index of the first non-positive coefficient in

H(z) =
∏ne

i=1(1− zdi)
(1− z)nv

= (1− z3r)ne

(1− z)nv
= (1− z3r

)ne−nv · (1 + z + z2)nv ,

where ne is the number of equations, nv is the number of variables, and di = 3r is the
degree of the i-th equation. By simple observation, the index of the first non-positive
coefficient can not be smaller than d = 3r, since (1 + z+ z2)nv contains only positive terms.
Thus, the overall complexity becomes O(

(
t+d
d

)ω) with the hidden constant ≥ 1. Following
the method above, we expect D′reg = Dreg − 1 = d− 1 for the hybrid approach. Plugging
the (MiMT) degrees from the previous sections into d then produces the expected overall
solving time.

GMiMCcrf (Case: 2κ ' pt). To prevent the Gröbner basis attack, the minimum
number of rounds r must satisfy pϕ ·

(
t−ϕ+d−1
d−1

)ω ≥ pt, for all ϕ ∈ {0, . . . , t− 2} and where
the degree d is a function of the number of rounds r, that is, d = d(r). For our parameter
choices, this expression is minimized for ϕ = 0. We thus require(

t+ d

d

)ω
=
(
t+ 3r−2t+2

3r−2t+2

)ω
≈ pt.

Since (
t+ d

d

)
= (d+ t)!

d! · t! ≥
∏t
i=1(d+ i)
tt

≥ (d/t)t,

12

where n! ≤ nn for each n ≥ 1, and, setting ω = 2, we obtain 2t log2(d/t) = 2t log2(3r−2t+2/t) ≈
log2(p) t or

r = 2t+ d1/2 log2(p) · log3 2− 2 + log3 te

. To thwart Meet-in-the-Middle attacks, this value is doubled.
To conclude, we emphasize that we use d(r) = 3r−2t+2 in order to compute the previous

number of rounds. Since 3r−2t+2 is the minimum of the degrees of the variables, it is
plausible that a lower number of rounds is sufficient to protect against Gröbner basis
attacks. Also, we reiterate that these attacks require roughly the same amount of memory
as elementary operations. The same consideration holds for the other ciphers of the
GMiMC family.

4.1.3 Interpolation Attack

As for the original MiMC, one of the most powerful attacks against the GMiMC family is
the interpolation attack, introduced by Jakobsen and Knudsen [49] in 1997. The strategy
of the attack is to construct a polynomial corresponding to the encryption function without
knowledge of the secret key. If an adversary can construct such a polynomial then for any
given plaintext the corresponding ciphertext can be produced without knowledge of the
secret key.

Let Ek : Fq → Fq be an encryption function. For a randomly fixed key k, the polynomial
P (x) representing Ek(x) – where x is the indeterminate corresponding to the plaintext –
can be constructed using the Vandermonde matrix6 - cost approximately of O(m2) - or
the Lagrange’s theorem7 - cost approximately of O(m · logm), where m is the number of
monomials.

This method can be extended to a key-recovery attack. The attack proceeds by simply
guessing the key of the final round, decrypting the ciphertexts and constructing the
polynomial for r − 1 rounds. With one extra (plaintext, ciphertext) pair, the attacker
checks whether the polynomial is correct.

Each output branch of a (balanced or unbalanced) Feistel network can be represented
as a multivariate polynomial where the variables are the inputs to each branch. If the
maximum degree of a single variate monomial in one of these output polynomials is low,
then an attacker can exploit this property to mount an attack on the block cipher.

Using this idea, we first briefly describe at high level generic attack(s) on the GMiMC
block ciphers, focusing on a t-branch Feistel network. Let us denote the t input branches as
xt−1, ..., x1 and x0 from left to right. Suppose the polynomials over the field representing
the output branches are denoted by Pi ∈ F2n [X] (i = 0, 1, ..., t − 1) and di denotes
the degree of the polynomial Pi. Working as in [49], the number of monomials of such
polynomial is well approximated by

∏t−1
i=0(di + 1). It follows that if the condition

t−1∏
i=0

(di + 1) ≈ 2N ' pt

6The interpolation polynomial P (x) = atxt + at−1xt−1 + ...+ a1x+ a0 interpolates the data points
(xi, yi) in the sense that P (xi) = yi for all i ∈ {0, 1, ..., t}, where Ek(xi) = yi for each i. By substituting
the first equation in here, one gets a system of linear equations in the coefficients aj . By solving this system
for aj , one can construct the interpolant polynomial P (x). If one re-writes this system in a matrix-vector
form, the matrix defined by the terms {xj

i}0≤i,j≤t is commonly referred to as a Vandermonde matrix, and
the cost to invert a (t+ 1)× (t+ 1) Vandermonde matrix (i.e. to construct the interpolation polynomial)
is O(t2).

7If the polynomial has degree d, we can find it using Lagrange’s formula P (x) =
∑d

i=0 yi ·∏
0≤j≤d,i6=j

x−xj

xi−xj
, where Ek(xi) = yi for i = 0, 1, . . . d.

13

is fulfilled, then the attacker requires the full code-book in order to construct the interpo-
lation polynomial8. As a result, such polynomial can not be used for a key-recovery attack
or for a forgery attack.

GMiMCcrf . As we have just seen in (3), the minimum degree of the output polynomials
for each branch (after r rounds) is lower bounded by 3r−2t+2. Due to the previous
discussion, GMiMCcrf is secure against interpolation attack if (3r−2t+2)t ≈ 2N ' pt.
Hence,

r ≥ log2(p)
log2 3 + (2t− 2)

rounds will be secure against the above-mentioned attacks. Conservatively, 2r + 2 rounds
will be secure against meet-in-the-middle attacks/distinguishers for the case 2κ ' p, while
2r + t+ 1 rounds will be secure against meet-in-the-middle attacks/distinguishers for the
case 2κ ' pt.

Remark - Interpolation and Forgery Attack. One may ask if a similar attack is mean-
ingful in the case of a permutation or/and in the case in which there is no secret material
(e.g. known-/chosen-key distinguisher).

Here P denotes a permutation or a cipher with a fixed known/chosen key. Assume it
is possible to construct the interpolation polynomial without using the full code-book. In
this case, such a polynomial can be exploited to set up a forgery attack on the permutation
P, which is instead not possible for a (pseudo-)random permutation.

This fact can have a potential consequence/effect in the case in which such permutation
P is used to set up an hash function based on the sponge construction. As proved in [17],
when the internal permutation P of an N = c + r bit sponge function is modeled as a
randomly chosen permutation, the sponge hash function is indifferentiable from a random
oracle up to 2c/2 calls to P. If the previous forgery (interpolation) attack can be used to
distinguish P from a randomly chosen permutation (that is, to highlight a non-random
property of P), then the result proposed in [17] does not apply to such a sponge function
instantiated by P.

In conclusion, in order to avoid such a distinguisher, it is sufficient that the number of
rounds of the inner permutation GMiMC - instantiated with a fixed key - of the sponge
construction is equal to the number of rounds necessary to prevent the interpolation attack
discussed in this section (equivalently, the number of rounds necessary to ensure that the
internal permutation has maximum degree).

4.1.4 Higher-Order Differential

Let A be an affine space. Higher-order differential attacks [53] exploit the fact that⊕
x∈A P (x) = 0 if the dimension of A is higher than the degree of P (·). In other words, a

higher-order differential attack can be mounted by choosing an affine space — like A —
of dimension d+ 1 (or, equivalently, of size 2d+1) if P has degree at most d. To thwart
higher-order differential attacks, the number of rounds must be chosen in order to ensure
that the algebraic degree of the GMiMC family of block ciphers is bigger than the biggest
subspace in F.

Higher-Order Differential in Fp versus Higher-Order Differential in F2N . Due to the
strategy exploited by the higher-order differential attack, there is a crucial difference
between the cases F2N and Fp.

8Due to the cost to construct the interpolation polynomial (approximately O (m logm) where m is the
number of monomials), we emphasize that the cost of such attack is higher than the cost of a brute-force
attack if condition (4.1.3) is satisfied)

14

As we have just seen, given a function f(·) of degree d, the sum over the outputs of
the function applied to all elements of a vector space V of dimension ≥ d+ 1 is zero. The
crucial point here is that the previous result holds if V is a (sub)space, and not only a
generic set of elements. While F2m is always a subspace of F2n for each m ≤ n, the only
subspaces of Fp are {0} and Fp. It follows that the biggest subspace of

(
Fp
)t has dimension

t, with respect to the biggest subspace of
(
F2n)t, which has dimension n · t = N .

This fact has an important impact on the higher-order differential attack: if a cipher
is instantiated over Fp, then a lower degree (and hence a smaller number of rounds) is
sufficient to protect it from the higher-order differential attack with respect to the number
of rounds required for the F2N case. In particular, it is sufficient that both the encryption
and the decryption functions9 have degree at most t, w.r.t. degree N for the Fp case.

Higher-Order Differential on GMiMC instantiated over Fp. Due to the analysis pro-
posed in 4.1.3, the minimum degree of GMiMCcrf after r > 2t−1 rounds is (at least) 3r−2t.
The condition 3r−2t ≥ t is satisfied by r ≥ 2t+ log3(t). Finally, we add 2 rounds to avoid
key-guessing attack for the univariate case and t+ 1 rounds for the multivariate case.

We refer to App. C.2 for all details about the other constructions.

Higher-Order Differential on GMiMC instantiated over F2n – Some Remarks. Since
we do not require GMiMC instantiated over F2n for our target applications, we stress that
we do not provide any claim about the minimum number of rounds necessary to protect
GMiMC w.r.t. an higher-order differential over F2n . For completeness, here we briefly
discuss this case.

In order to choose the number of rounds, one has to estimate the growth of the degree.
First of all, since the degree of the round function in its algebraic representation in F2n is
only 2, the algebraic degree of one round is 2 as well. Clearly, the algebraic degree of the
cipher after r rounds is bounded from above by 2r. However, a better and more realistic
upper bound can be evaluated by using the division property [76], introduced by Todo at
Eurocrypt 2015. As a main result, it turns out that the degree of the function – when it is
iterated – grows in a much smoother way than expected when it approaches the number
of variables. For instance, the degree of the composition of two functions G ◦ F (·) can
always be upper-bounded by deg(G ◦ F) ≤ deg(G) · deg(F). This trivial bound, however,
is often very little representative of the true degree of the permutation, in particular if we
are trying to estimate the degree after a high number of rounds. An analogous result for
SPN ciphers was previously found by e.g. Boura et al. [26].

While the (just cited) results proposed by Boura et al.work for SPN ciphers, no
equivalent results is given in the literature for Feistel constructions. Moreover, division
property is a useful tool to study the growth of the degree when one considers a single
cipher instantiated by fixed parameters n and t (or a “small” number of them), but it does
not provide a generic formula that can work for any possible choice of parameters n and
t. However, due to the scope of this work, the choice of the parameters depends on the
performance of the practical applications, and it cannot be done in advance. In conclusion,
a future open problem would be to determine a tight bound for the growth of the degree
for a generic Feistel construction, as the one provided in [26].

Zero-Sum Partitions and Sponge GMiMCHash. Here we briefly discuss how to apply
the previous analysis in the case of a sponge construction instantiated by one of the
GMiMC structures, e.g. the GMiMCerf , with a fixed key, e.g. 0κ. Since the key is fixed,

9Note that the attacker works at word level (i.e. with element of Fp) in the case of an higher order
differential attack instantiated over Fp. Instead, for the case F2n , the attacker can work both at word
level (i.e. with element of F2n) or at bit level (i.e. with element of F2).

15

the previous key-recovery attacks are meaningless. On the other hand, previous analysis
about the degree of GMiMC can be applied also in this scenario.

As showed in [17] and recalled in Section 2.2, when the internal permutation P of a
sponge function is modeled as a randomly chosen permutation, then the sponge construction
is indifferentiable from a random oracle up to 2c/2 calls to P. To apply such result, we
require that GMiMC does not present any non-random/structural property.

A possible distinguisher that can be set up in order to distinguish the permutation
GMiMCπ from a (pseudo-)random one is the one based on the zero-sum partition.

Definition 1 (Zero-sum Partition [25]). Let P be a permutation from F2n to F2n . A zero-
sum partition for P of size K = 2k � 2n is a collection of 2k disjoint sets {X1, X2, ..., Xk}
sets with the following properties:

• Xi = {xi1, ..., xi2n−k} ⊂ F2n for each i = 1, ..., k and
⋃2n−k

i=1 Xi = F2n ;

• for each i = 1, ..., 2k, the set Xi satisfies zero-sum [11]

2k⊕
j=1

xij =
2k⊕
j=1

P (xij) = 0.

A similar definition works also in the case of (Fp)t. Remember that if f is a k-degree
function on F2n , then

⊕
v∈V⊕a f(v) = 0 for any (k + 1)-dimension subspace V ⊆ F2n ,

where V ⊕ a is an arbitrary coset of a space V .
To avoid this distinguisher, it is sufficient that to double the number of rounds of

the permutation GMiMCπ - that is, GMiMC instantiated with a fixed key - given before
necessary to prevent the higher-order differential attack discussed in the previous section.
If this is not the case, a zero-sum partition on GMiMCπ can be mounted.

For completeness, we recall that, while it is known how to construct a zero-sum10

for a random permutation (see [11, 16] for details), there is no way – to the best of our
knowledge – to construct a zero-sum partition for a random permutation without using a
brute-force approach. In conclusion, in the case in which GMiMC is instantiated with a
lower number of rounds than the one determined by the higher-order differential attack,
the permutation GMiMC π does not look like a pseudo-random one.

Finally, we remark that a similar approach based on zero-sum partitions is largely used
in the literature to set up attack or to investigate the security of (the inner permutation
of) sponge hash functions (see e.g. Keccak [11, 25, 44], PHOTON [78], . . .).

4.2 Statistical Attacks
Here we consider statistical attacks against GMiMC. Unlike the algebraic analysis above,
statistical attacks do not explicitly consider the number of variables involved in the output
polynomials representing the (reduced-round) cipher.

Moreover, all statistical attacks that we are going to analyze work in the same way
both for the case in which GMiMC is instantiated over Fp or/and over F2n . For this reason,
in the following we do not study separately the two scenario.

4.2.1 Classical and Truncated Differential Cryptanalysis

Differential cryptanalysis and its variations are the most widely used techniques to analyze
symmetric-key primitives. The differential probability of any function over the finite field
F2n is defined as

Pr[α→ β] := |{x : f(x) + f(x+ α) = β}|/2n.
10We remark that for a zero-sum, it is sufficient to find a single set Z ≡ {zi}i s.t.

⊕
i
zi =

⊕
i
P (zi) = 0.

16

It is well known that the function f(x) = x3 is Almost Perfect Non-linear (APN) [61] and,
thus, has optimal differential probability over a prime field or F2n . For this function the
probability is bounded above by 2/2n or 2/|Fp|. In the following, we provide the minimum
number of rounds to guarantee security against this attack focusing on GMiMCcrf (the
analysis for the other cases is similar and it is given in App. D). A variant of classical
differential cryptanalysis is the truncated differential one [53], in which the attacker can
predict only part of the difference between pairs of texts.

As largely done in the literature, we assume that the cipher is secure against differential
attack if any (truncated) differential characteristic has probability lower than 2−N .

GMiMCcrf . In order to find the minimum number of rounds to protect the cipher
against differential attack, we look for the best possible (truncated) differential charac-
teristic. Consider an input difference11 of the form (0, . . . , 0,∆I ,∆I) where ∆I 6= 0. It is
straightforward to observe that such input difference does not active any S-Box in the first
r0 = t− 2 rounds (since the input difference is always zero), that is the output difference
after r0 rounds is (∆I ,∆I , 0, . . . , 0). After r1 = t− 1 round, we get an output difference
of the form (∆I , 0, ..., 0,∆I ⊕ fr1(∆I)), where fr1(·) denotes the r1-th round function.
Observe that ∆I ⊕ fr1(∆I) = 0 with prob. 2−n+1. Indeed, since an active (cubic) S-Box
maps its non-zero input difference to 2n−1 possible output differences each one with prob.
2−n+1, it follows that fr1(∆I) = ∆I with probability 2−n+1. Assume fr1(∆I) = ∆I . After
r2 = t rounds, we get an output difference of the form (0, ..., 0,∆I), while after r3 = t+ 1
rounds, we get an output difference of the form (0, ..., 0,∆I , f

r3(∆I)). Due to the previous
consideration, fr3(∆I) = ∆I with prob. 2−n+1.

As a result, the following (truncated) characteristic over t+ 1 rounds

(0, . . . , 0,∆I ,∆I)
Rt−2(·)−−−−−→
prob. 1

(∆I ,∆I , 0, . . . , 0) R(·)−−−−−−−−→
prob.≤2−n+1

(∆I , 0, . . . , 0) R(·)−−−−→
prob. 1

R(·)−−−−→
prob. 1

(0, . . . , 0,∆I)
R(·)−−−−−−−−−→

prob. ≤2−n+1
(0, . . . , 0,∆I ,∆I)

has an overall probability equal to 2−2n+2. Before going on, note that any other input
difference active at least one S-Box in the first t− 2 rounds. In other words, it seems not
possible to find a longer (truncated) characteristic with lower probability.

By iterating this (truncated) characteristic, it is possible to construct a (truncated)
differential characteristic over s · (t+ 1) with probability at most (2−2n+2)s. By simple
computation, (2−2n+2)s ≤ 2−N if and only if (2n− 2) · s ≥ N , that is s ≥ d N

2n−2e. As a
result, 2 + t · (t+ 1) · d n

2(n−1)e rounds are sufficient to provide security in the univariate
case, while 1 + t + t · (t + 1) · d n

2(n−1)e rounds are sufficient to provide security in the
multivariate case.

4.2.2 Impossible Differential Cryptanalysis

Impossible differential cryptanalysis was introduced by Biham et al. [21] and Knudsen [54].
This cryptanalytic technique exploits differentials occurring with probability 0. It has been
very successful against FNs and led to the best cryptanalysis against well known FN-based
block ciphers like CLEFIA and CAMELLIA [27].

The approach used in the following - and largely exploited in the literature - to construct
impossible differential is to combine two (truncated) differentials with prob. 1 that collide
in the middle.

11Here we work for simplicity in F2n . The same result applies immediately to Fp by considering an
input difference of the form (0, . . . , 0,∆I ,−∆I) where ∆I 6= 0.

17

GMiMCcrf . As first thing we look for a probability-one truncated differential in order
to construct impossible differentials for GMiMCcrf . A probability-one differential for a
maximum of t− 1 rounds of this UFN with t branches is described as follows:

(0, . . . , 0, α, α)→ (0, . . . , 0, α, α, 0)→ . . .→ (α, α, 0, . . . , 0).

A truncated differential with probability 1 exists for (t− 1) + (t− 1) = 2t− 2 rounds. This
is described as follows:

(0, . . . , 0, α, α) t−1 rounds−−−−−−−→ (α, α, 0, . . . , 0) t−1 rounds−−−−−−−→ (0, ∗, . . . , ∗).

This will allow us to attack 3t−3 rounds of the cipher, exploiting the differential just given
on 2t− 2 rounds and noting that (β, 0, . . . , 0) t−1 rounds−−−−−−−→ (0, ∗, . . . , ∗) with probability 1.
As a result, the (3t− 3)-rounds impossible differential used for the attack is given by

(0, . . . , 0, α) R2t−2(·)−−−−−→
prob. 1

(0, ∗, . . . , ∗) 6= (β, 0, . . . , 0) Rt−1(·)←−−−−−
prob. 1

(0, ∗, . . . , ∗)

for α, β 6= 0. Hence, the number of iterations to protect the cipher against such an attack
must be at least [(2t− 2) + (t− 1)] + 2 = 3t− 1 for the case κ = n. For the case κ = t · n,
the number of rounds must be at least [(2t− 2) + (t− 1)] + t+ 1 = 4t− 2.

4.2.3 Linear Cryptanalysis

Similar to differential attacks, linear attacks [56] pose no threat to the GMiMC family of
block ciphers instantiated with the same number of rounds previously defined for differential
cryptanalysis. This follows from the fact that the cubic function is almost bent, which
means that its maximum square correlation is limited to 2−n+1 (see [1] for details). As a
result, it offers the best possible resistance against linear cryptanalysis much like an APN
function provides optimal resistance against differential cryptanalysis.

4.2.4 “Generic” (MitM) Attacks

Recently, [47] proposed generic attacks on unbalanced Feistel ciphers based on the meet-
in-the-middle technique in the case in which the key size is the same as the block size,
i.e, κ = t n. In particular, that work analyzes two general classes of unbalanced Feistel
structures, namely contracting Feistel networks and expanding Feistel networks. In both
of the cases, they consider the practical scenario where the round functions are keyless
and known to the adversary. Such results improved the ones proposed in [65] for Feistel
networks with contracting or expanding round functions. In the following, we apply such
results on GMiMCcrf and GMiMCerf .

GMiMCcrf . Recently, in [47] an improved analysis was shown for the additive input to the
Feistel function. This analysis considers the round function F with input x1⊕· · ·⊕xt−1⊕ki
and implies that 5t− 4 rounds of the GMiMCcrf construction can be attacked when the
key size is the same as the block size12, i.e, κ = t · n. This attack has a data complexity of
2 7N

8 chosen plaintexts.

GMiMCerf For unbalanced Feistel networks with expanding round functions generic
attacks were shown [47] for 4t − 2 rounds. The attack has a data complexity of 2N−n
chosen plaintexts.

12For completeness, we mention that according to the same analysis proposed in [47], for a fixed number
of branches, if the key size is increased, then more rounds can be attacked. However, this case is not
considered in our work.

18

4.2.5 Other Attacks

We claim that GMiMC instantiated using the number of rounds of the univariate case13
is secure in the known- and chosen-key model. In particular, such permutation is used
in order to construct the hash function using the sponge construction. We recall that
the (required) indifferentiable of the internal permutation of a sponge function from a
random oracle - for a fixed key - is equivalent to the security of GMiMC in the known-
and chosen-key model.

Finally we explicitly state that we do not have claims in related-key model as we do
not consider it to be relevant for the intended use case.

4.3 Quantum Improvements

In a post-quantum setting, the cost of exhaustive key search is square rooted by Grovers’
algorithm. Statistical attacks remain unchanged (except perhaps their computational
part). The quantum interpolation attack gives no significant advantage to the adversary
since the attack requires d/2 queries, where d is the degree of the polynomial [33]. It is
not clear that Grover’s algorithm can help to improve the GCD attack. The attack cost
O(d · log2 d) operations on inputs of size d. Thus, even with the square root reduction the
attacker will still need to write the inputs of size d as classically; a similar argument holds
for Gröbner basis attacks.

Finally, since we are here interested in post-quantum security of classical schemes and
not in the security of symmetric primitives running on a quantum computer themselves,
better attacks are known using Simon’s algorithm [41].

5 Security Analysis – GMiMC instantiated over F2n in the
Low-Data Attacks

For some practical applications considered in the following, we also consider the case in
which the attacker has a limited access to data (e.g. 1 or 2 (plaintext, ciphertext) pairs).
Here we consider this particular case. Due to the limited access to data, not all attacks
work in this scenario. In particular, among all attacks present in the literature, only two
of them apply for the case of low-data complexity, which are the GCD attack and its
generalization as a Gröbner Basis attack. We emphasize that statistical attacks – like
differential, linear, . . . – and other algebraic attacks – like interpolation and higher-order
differential – are not competitive in this setting.

Gröbner Basis Analysis – Case: κ = t ·n. As explained in Section 4.1.2, the complexity
of computing a Gröbner basis for a system of N polynomials in V variables is of

(
Dreg+V
Dreg

)
operations over the base field F [19], where Dreg is the degree of regularity. As already
pointed out, closed-form formulas for Dreg are known only for some special cases (e.g. when
V = N), but not in general.

In the low-data scenario, we use the SageMath code [73] in Appendix G to estimate
Dreg, and so the complexity of the Gröbner Basis attack on GMiMC. In the low-data
case, this analysis shows that in general the Gröbner basis attack does not outperform the
GCD attack that we are going to recall.

13The number of rounds in this case is given considering the number of rounds of any possible distinguisher
- which is independent of the secret key - in the MitM scenario plus a secure margin. Since the key is fixed
in the known- and chosen-key model, this number of rounds provides the security in these scenarios.

19

5.1 Security Analysis — GCD Attacks
Since the GCD attack is one of the few attacks that work in the low-data scenario, here
we recall the idea of such an attack.

Given more than one known (plaintext, ciphertext) pair or working on the output of
each branches of a single known (plaintext, ciphertext) pair (as described below), one
can construct their polynomial representation. The idea of the GCD attack is simply to
compute their polynomial Greatest Common Divisors (GCD) to recover a multiple of the
key.

Two-pair case. Denote by E(k, x) the encryption of x under key k. For a pair
(x, y) ∈ F2N , E(K,x)− y denotes a univariate polynomial in Fq[K] corresponding to (x, y).
Note that in our case the polynomial E(K,x)− y can be constructed conceptually easily
from the encryption process, but writing down E(K,x) − y becomes computationally
expensive as the number of rounds increases. Indeed, writing down E(K,x)− y requires
not only large computational resources but also an exponential (in r) amount of memory.

Consider now two such polynomials E(K, p1)− c1 and E(K, p2)− c2, with ci = E(k, pi)
for i = 1, 2 and for a fixed but unknown key k. It is clear that these polynomials share
(K − k) as a factor. Indeed, with high probability the greatest common divisor will be
(K − k). Thus, by computing the GCD of the two polynomials, we can find the value of k.

One-pair case. Since we are working with a Feistel construction, we can also set up
a GCD computation among the branches of the Feistel cipher. In other words, let
p := (pt−1, . . . , p1, p0) and c := (ct−1, . . . , c1, c0). For each component, the attacker
constructs the interpolation polynomial

ci = Ei(K, (pt−1, . . . , p1, p0)) ∀i = 0, . . . , t− 1,

where K is the secret variable. The analysis then proceeds as above, working on different
words of the same texts (instead of working on different texts). Thus, it is possible to
perform the GCD among the branches also in the case in which the attacker knows only 1
(plaintext, ciphertext) pair.

Meet-in-the-Middle. Due to the Feistel structure, a Meet-in-the-Middle variant of the
GCD attack can be performed. That is, instead of constructing polynomials expressing
ciphertexts as polynomials in the plaintext and the key, we can construct two polynomials
G′(K,xi) and G′′(K, yi) expressing the state in round r/2 as a polynomial in the key and
the plaintext or ciphertext respectively. Then, considering G′(K,x0) − G′′(K, y0) and
G′(K,x1)−G′′(K, y1), we can apply a GCD attack on polynomials with lower degree than
before (approximately half).Hence, the number of rounds must be double to thwart this
variant of the attack.

Complexity. It is well-known that the complexity for finding the GCD of two polyno-
mials of degree d is O (M(d) log2 d), where M(d) is the cost of multiplying two degree-d
polynomials. The best (known) complexity for M(d) is O(d log2 d) using an FFT. Thus,
we expect a GCD computation to cost O

(
d log2

2 d
)
, where the hidden constant is greater

than 1. In order to estimate the computational cost of such an attack, we have to estimate
the degree of K in E(K,x)− y, which depends on the number of rounds r. To derive an
estimate for the required number of rounds, we will target

d log2
2 d ≈ 2κ = 2n, (6)

where 2κ denotes the computational cost of a brute-force attack and κ = n denotes the
number of key bits.

20

GMiMCcrf . Case: κ = n. The condition 3r−t+1 log2(3r−t+1) ≈ 2n is fulfilled14 when
r ' t− 1 + n · log3 2− 2 log3 n. Thus, the number of rounds must be approximately

r =
⌈
2t+ 2n · log3 2− 4 · log3 n

⌉
to thwart the Meet-in-the-Middle variant.

Multivariate Case: κ = t · n. To extend these attacks to the multivariate case,
i.e. κ = t ·n, the attacker may guess (t−1) ·n bits of the key, and then perform the previous
GCD attack on a univariate polynomial. We note, however, that in the multivariate
case we are targeting a complexity of 2t n operations and are performing 2(t−1)n GCD
computations. Thus, each GCD computation has a “budget” of 2n operations. On the
other hand, guessing permits to shave off up to (t− 1) rounds. Thus, the number of rounds
required in the multivariate case is slightly higher than in the univariate case. Of course,
this trade-off changes when 2tn � 2λ, where λ is the targeted security level.

As a result, the number of rounds must be approximately

r = 3t+
⌈
2n · log3 2− 4 · log3 n− 1

⌉
to thwart the Meet-in-the-Middle variant. For each GMiMC family of block ciphers, we
refer to Table 1 for the minimum number of rounds that ensure security against the GCD
attack.

6 Parameter-Space Exploration
We compare the effects of different parameters in our Feistel-based constructions with
block size N . In Table 3 we compare several parameters of the generalized constructions.

To simplify the notations, we denote the number of rounds necessary to protect the
cipher from Interpolation attack, Gröbner basis attack, Higher-Order differential attack and
(Truncated) Differential attack respectively by RInt, RGröbner, RHighOrd, RTDiff. Moreover,
let Λ (t) := 2dlog2(t)e.

For the following, we denote by α the number of multiplication that must be performed
to compute x3 for an arbitrary x, i.e. α = 1 for x ∈ F2n (where x2 is linear in F2n) and
α = 2 for x ∈ Fp (for prime p).

GMiMCcrf vs GMiMCerf . GMiMCcrf and GMiMCerf are quite similar — only one
multiplication is performed at each round. By our analysis, it turns out that GMiMCerf is
always more efficient than GMiMCcrf , since it always requires a lower number of rounds
to be secure. For this reason, we only consider GMiMCerf for the following practical
applications.

GMiMCNyb vs GMiMCmrf . GMiMCNyb and GMiMCmrf are quite similar — t/2 mul-
tiplications are performed at each round. By our previous analysis, it turns out that
GMiMCmrf is always more efficient than GMiMCNyb, since it always requires a lower num-
ber of rounds to be secure. For this reason, we only consider GMiMCmrf for the following
practical applications.

Remark. As pointed out in the introduction, Feistel MiMC requires approximately double
the number of rounds of MiMC. However, we found that the number of rounds does not
grow linearly with the number of branches. For a concrete example, the cases of GMiMCerf
with t · log2 p ≈ 256 and t · log2 p ≈ 1024 fixed are depicted in Fig. 5 and Fig. 7.

14Note that the solution of y = x · log2(x) is well approximated by x = y/ log2(y).

21

Table 3: Comparing the parameters of the GMiMC keyed permutation in different modes -
no restriction on data complexity. For simplicity, we use the notation n and N to denote
respectively the cases log2 p and t · log2 p.

Branches Security round (R) #mult #mult ·|F|

(κ bits)

EM [4] 1 n ≡ N log3(2) · n+ 1 α ·R N · α ·R

Feistel [4] 2 n 2 · log3(2) · n+ 1 α ·R N
2 · α ·R

Feistel 2 N
⌈
2 · log3(2) · n

⌉
+3 α ·R N

2 · α ·R

GMiMCcrf t ≥ 3
n max

{
RInt, RHighOrd, RTDiff

}
α ·R N

t · α ·R
N max

{
RInt, RGröbner, RHighOrd, RTDiff

}
GMiMCerf t ≥ 3

n max
{
RInt, RHighOrd, RTDiff

}
α ·R N

t · α ·R
N max

{
RInt, RGröbner, RHighOrd, RTDiff

}
GMiMCNyb t = 2t′ ≥ 4

n max
{
RInt, RHighOrd, RTDiff

}
t
2 · α ·R

N
2 · α ·R

N max
{
RInt, RGröbner, RHighOrd, RTDiff

}
GMiMCmrf t = 2t′ ≥ 4

n max
{
RInt, RHighOrd, RTDiff

}
t
2 · α ·R

N
2 · α ·R

N max
{
RInt, RGröbner, RHighOrd, RTDiff

}

It is possible to observe the minimum number of rounds is obtained by choosing the
number of branches t not too “small” and not too “big” (e.g. 6 ≤ t ≤ 18). As a result, for
this range of values of t, GMiMCerf results to be as competitive as MiMC or even more for
the applications that we have in mind. Similar results can be obtained for other values of
t · log2 p and for all other GMiMC ciphers proposed here (we focus on GMiMCerf since it
results to be the most competitive one for the practical applications that we are studying
in this paper).

6.1 MPC/SNARK/PQ Signature Applications
In this section, we are interested to optimize the two GMiMC ciphers previously selected
with respect to different metrics:

SNARK: minimize total number of “operations” (i.e. sum, multiplication with/without
constant, square, ...) – case κ = log2 p (we recall that SNARK applications use the
hash function GMiMCHash, where the number of rounds of the inner permutation is
given by the univariate case);

PQ Signature: minimize total number of multiplications × field size – case κ = N in
low-data scenario;

MPC: motivated by real life applications, our goal is to reduce the total runtime. The
main bottleneck of a protocol ran on top of SPDZ-framework is the triple generation
mechanism which is given by the number of (parallel) multiplications. Hence the
goal is to minimize/optimize both the total number of operations (as for SNARKs)
and the total number of (parallel) multiplications (where note that the two metrics
coincide for GMiMCcrf and GMiMCerf).

22

Figure 5: Number of Branches versus Number of Rounds – GMiMCerf with t · log2 p ≈ 256
fixed.

Figure 6: Number of Branches versus Number of Rounds – GMiMCerf with t · log2 p ≈ 1024
fixed.

Figure 7: Number of Branches versus Number of Rounds of different attacks – GMiMCerf
with t · log2 p ≈ 1024 fixed. “Statistical Attacks” include Truncated diff., Impossible Diff.
and Linear Diff. “Algebraic Attacks” include GCD attack, Interpolation attack, Gröbner
Basis and Higher-Order Diff.

23

Remark. We remark that computing x3 requires 2 multiplications in Fp and a single
multiplication in F2n (since x2 is linear in F2n).

Focusing on F2n , the cost of performing one multiplication in F2n using a fast Fourier
transform is approximately O(n · logn) bit-wise XORs (that is, approximately β · n · logn
for some constant β), while the cost of one addition is n bit-wise XORs. As a result, a
good approximation of this number is given by

number of rounds ×
(
A+ N

β · n · log(n)

)
, (7)

where

GMiMCcrf ,GMiMCerf : A = 1 and GMiMCNyb,GMiMCmrf : A = t/2

since for each round A multiplication(s) and (approximately) n · t bit-wise XOR-sums are
performed - remember that (1st) a single multiplication is necessary to compute x3 in F2n

and (2nd) the ratio between the cost of 1 multiplication and 1 addition is 1/ log(n). It
follows that when the total number of multiplications is higher than the total number
of additions (e.g. MiMC, GMiMCNyb or GMiMCmrf), it is reasonable to approximate the
total number of operations by the total number of multiplications. When the total number
of additions is much higher than the total number of multiplications, one must take care
of both these two numbers to compute the total cost. Finally, in the PQ signature case,
we primarily consider the total number of multiplications (and not of generic operations),
since this metric determines both the signature size and the number of pseudo-randomly
generated field elements required for signing.

Similar results can be obtained as well also for the case Fp. Here the cost of 1 multipli-
cation can be approximated as O(logb(p)2) word sum-operations (that is, approximately
β · logb(p)2 for some constant15 β) where b is the word size of the processor [58]. Thus a
good approximation for the total number of operations for the case Fp is given by

number of rounds ×
(

2 · A+ t

β · [log2(p)]2

)
, (8)

where p ≈ 2n, A is defined as before, and the factor 2 counts for the two multiplications
required to compute cubes in Fp (instead of a single one).

6.1.1 SNARK — Number of “Operations”

First of all, for SNARKs applications we only consider the case Fp. The reason of this
choice is the fact that we cannot use the property that squaring is linear in F2n for a more
efficient implementation in this setting, since the cubes have to be represented as rank-1
constraint (see Section 7.2 for more details). We remark that similar consideration has
been made for MiMC when used for SNARK applications (see [4, Section 6.1]).

Having said that and focusing only on the case κ = n, for the following it is interesting
to observe that for each N fixed, it is possible to minimize the total number of “operations”
by adjusting the parameters t and n. Both for the case of GMiMCmrf and GMiMCerf ,
this number corresponds to the total number of multiplications. In GMiMCerf , a good
approximation of this number is given by formula (8).

Focusing on the case N = 1024 - used in the following application, it turns out that
GMiMCerf is more efficient in this setting. Consider e.g. the case Fp. As showed in Fig.
8, it turns out that the best choice for GMiMCerf is n = 103 and t = 10. The number

15For our practical implementation of the the SNARKs application in Section 7.2, the value of β is well
approximated by β ≈ 1.75/322 based on the multiplication and reduction algorithms used by NTL. This
number is consistent with the complexity discussion of Karatsuba multiplication and Barrett reduction
and Schoolbook multiplication for small fields, respectively, in [58, Chapter 5].

24

Figure 8: SNARK in Fp - Comparison of the number of operations for GMiMCerf and
GMiMCmrf for different values of p (N = log2 p · t = 1024).

of total operations for this choice of parameters is ≈ 403. In GMiMCmrf , the number of
multiplications is given by R × t (where R is the number of rounds and 2 × (t/2) = t
multiplications in Fp are performed in each round), which means that the total number of
operations is (at least)

max
{

1.262 ·N+4t+2t · log2(t), 4+4t2 +4t · log2(N), 2t+ 6t · n · log2 t

n− 1

}
≥ 1.262 ·N ≈ 1293,

that is approximately three times more. As a result, for the case N = 1024, GMiMCerf is
(much) more efficient than GMiMCmrf .

6.1.2 PQ Signatures — Number of Multiplications × Field Size (Low-Data Scenario)

Focusing only on the case κ = N = t · n in F2n (analogous for Fp), for the following it is
interesting to observe that for N fixed, it is possible to minimize the product “numbers of
multiplications × branch size” by adjusting the parameters t and n. This metric is the
most interesting one, since it determines both the signature size and the size of the random
tapes. Remember that the PQ signature is implemented in the low-data scenario only
(which means that e.g. the differential attack does not apply). We give the best choice of t
and n for this metric:

GMiMCerf With respect to the general scenario, in this case there is no closed-form
formula to compute the number of rounds necessary to guarantee security. Combining
the results provided by the GCD attack and the one provided by the SageMath code
given in Appendix G (in order to estimate Gröbner Basis attack), the number of
rounds to provide security is16 R ≥

⌈
1.262 · n − 4 · log3(n)

⌉
+3t + 3 and the best

choice is

n = 3, R · n ≥
⌈
1.262 · n2 − 4 · log3(n) · n

⌉
+3N + 3n ≥ 3N + 9,

where note that the number of multiplications is equal to the number of rounds in
F2n (while it is double in Fp).

GMiMCmrf Since the number of multiplications in F2n is given by R · t/2, it follows
that17

R · t2 · n ≥
⌈
0.631 ·N · n

⌉
+N · Λ (t) + N

2 ,

which is higher than the corresponding number for GMiMCerf . Indeed, since Λ (x) =
2 log2(x), the best choice is to minimize n (that is, to choose n = 3). It follows

16More details on the number of rounds in this scenario are provided in Appendix F.
17We use the number of rounds provided by the GCD attack for the given estimation. Note that the

real number of rounds is not lower than the number of rounds of the GCD attack.

25

that R · t2 · n ≥ N · (2.4 + 2 log2(N/3)) = O(N log(N)) (vs O(N) for the case of
GMiMCerf).
In more detail, for n = 3: N · (2.4 + 2 log2(N/3))︸ ︷︷ ︸

GMiMCmrf

≥ 3N + 9︸ ︷︷ ︸
GMiMCerf

for each N ≥ 7.

As a result, it follows that GMiMCerf is more efficient in this setting (analogous for Fp).

6.1.3 MPC — Number of (parallel) Multiplications

As for SNARKs applications, also for MPC applications we only consider the case Fp.
In MPC the number of communication rounds is equal to the number of multiplications

- that is α · R where α and R are defined as before - for all the proposed designs. In
particular, note that for GMiMCNyb and GMiMCmrf the t/2 multiplications can all be
executed in parallel. On the other hand, these parallel multiplications are not “costless”:
the effect of these t/2 multiplications per round is reflected in the throughput metric.

When n is fixed, GMiMCmrf requires a lower number of rounds (for both encryption
and MPC communications) than GMiMCerf . However, GMiMCmrf has significantly less
throughput (Section 7.1) compared to GMiMCerf due to a lower number of multiplications.

7 Application and Implementation
In this section we present various implementation results.

7.1 MPC Setting
We have benchmarked the protocols using the SPDZ framework, which provides active
security against multiple malicious parties [52]. To compute a circuit with secret shared
inputs in SPDZ, there are two generic phases. The first step is to produce random Beaver
triples, also called the pre processing phase, which is independent of the inputs and can be
done in advance. The second step is the online phase, which consumes a triple whenever
there is a multiplication between shared values. Additions of secret values and scalar
multiplications are (almost) for free in SPDZ. The protocols ran across two computers
with Intel i7-4790 CPUs at 3.60GHz and 16GB of RAM connected via a 1 GB/s LAN
network and an average round-trip time of 0.3 ms (see Table 4). In our setting, both keys
and messages are secretly shared among the two parties and each experiment was averaged
among five executions with at least 1000 block cipher calls.

For a complete measurement of an MPC protocol, one needs to have in mind both pre-
processing and online phases. The pre-processing phase cost is determined by the number
of shared multiplications. Performance of the online phase is given by the multiplicative
depth of the circuit to be evaluated as well as the number of openings (whenever a party
reveals a secret value). For the online phase we give measurements in terms of latency
and throughput. Latency indicates the minimum time spent for computing one encrypted
Fp block, whereas throughput shows the maximum Fp objects that can be encrypted in
parallel per second. Since the only non-linear operation we use in our block ciphers is
x 7→ x3, this is done with three openings and two Beaver triples (for details see [67]). We
instantiate each block cipher with 4 and 16 input blocks/branches, where each block lies
in Fp and p ≈ 2128. Note that for GMiMC constructions in MPC we have used an n-bit
key. For a fair comparison with previous evaluations of MiMC in SPDZ, the online phase
runs on a single thread.

The preprocessing column denotes the amount of time required to generate the triples
for a single block cipher evaluation (4 or 16 encrypted blocks) in a two party SPDZ protocol.
The figures for this column were estimated using the recent protocol by Keller et al. [51]

26

Table 4: Two-party costs for MiMC and GMiMC over a LAN network. Protocols ran
across two computers with commodity hardware connected via a 1 GB/s LAN network
and an average round-trip time of 0.3 ms.

Mode Online cost Prep/block(ms)

#Branch
/ #Block

(MPC)
Rounds

Openings Latency
(ms)/Fp

Throughput
Fp/s

GMiMCcrf

4

178 534 3.65 15026 2.96

GMiMCerf 172 516 3.55 15669 2.86

GMiMCNyb 169 507 3.44 9131 5.63

GMiMCmrf 175 525 3.62 8194 5.83

MiMC 4 blocks 73 876 1.58 9965 4.86

GMiMCcrf

16

238 714 1.21 39247 0.99

GMiMCerf 208 624 1.06 49006 0.86

GMiMCNyb 181 543 0.88 8605 6.03

GMiMCmrf 183 549 1.02 8440 6.1

MiMC 16 blocks 73 3504 0.47 10780 4.86

which is the fastest known protocol for SPDZ triples. We used the LowGear protocol with
computational security 128 and 64 bit statistical security.

Experiments (Table 4) show that GMiMCcrf and GMiMCerf have a very fast pre-
processing phase because they perform a low number of multiplications. A big advantage of
these two is how well they scale in terms of triples used, since they require one multiplication
per cipher iteration. This is in contrast with MiMC, where increasing the number of
blocks to be encrypted by a factor of c results in c times more multiplications. We stress
that these two constructions are first to our knowledge which avoid the linear increase
of pre-processing data with the number of blocks. To give an example of this behavior
consider the case of 16 blocks for the preprocessing column (Table 4) for GMiMCerf is 5.5
times smaller than MiMC: 0.86ms vs. 4.86ms.

Perhaps unexpectedly, GMiMCcrf and GMiMCerf have a higher online throughput
compared to the rest of the variants, although they result in a larger number of rounds.
The reason is that fewer openings - or multiplications in our case - means less data sent
between the parties so we can batch more executions in parallel. Thus in a LAN network
the number of rounds has a minor impact.

7.2 SNARKs
The rank-1 constraints in SNARK is defined [14] as a system of bilinear equations over a
field F. The number of rank-1 constraints for a function contributes to the efficiency of
the SNARK algorithm [4]. In this setting we count the number of multiplications required
to generate the values of witness variables [14].

GMiMCcrf The rank-1 constraints are as follows:
t−1∑
i=0

Xi + U + kr + Cr = 0, U · U = Y , U · Y +Xt−1 = Z,

27

Table 5: Comparison of MiMC with GMiMCerf (with different numbers of branches) in
SNARK in Fp when the block size is 1024 bits.

MiMC [4] GMiMCerf

(t, log2(p), R) (1, 1024, 646) (2, 513, 647) (4, 256, 332) (8, 128, 178) (16, 64, 141)

constraint generation 4.553 ms 5.077 ms 4.735 ms 4.732 ms 8.057 ms

witness generation 1.079 ms 0.639 ms 0.388 ms 0.296 ms 0.449 ms

total time 5.632 ms 5.716 ms 5.123 ms 5.028 ms 8.507 ms

#additions 646 1293 996 1246 2115

#multiplications 1293 1293 664 356 282

where kr and Cr are round keys and round constants respectively. For GMiMCcrf
Hash the round keys are constant. The number of multiplication for GMiMCcrf Hash
is 2 per round. Therefore the total number of multiplications is 2R where R is the
number of rounds in the block cipher GMiMCcrf . Each round also requires t− 1 field
additions.

GMiMCerf The rank-1 constraints can be constructed from the following equations:

Xt−1 + U + kr + Cr = 0, U · U = Y , U · Y +Xi = Zi for 0 ≤ i ≤ t− 2,

where kr and Cr are round keys and round constants respectively. For GMiMCerfHash
the round keys are constant. The number of multiplications and additions are 2 and
t− 1 per round respectively. Note that GMiMCerf has t− 1 rank-1 constraints per
round whereas GMiMCcrf has 2 constraints.

GMiMCNyb For the keyed permutation the rank-1 constraints are as follows:

Xi + Ui + ki,r + Ci,r = 0, Ui · Ui = Yi, Ui · Yi +Xi+t−1 = Zi,

where Ci,r is the round constant to the i-th function in round r. Note that in each
round there are t/2 functions in the Nyberg mode and for each function we get the
above-mentioned constraints. For GMiMCNybHash the round keys are constants.
The number of multiplications per round is 2 · t/2 = t. Hence the total number of
multiplications is t ·R.

GMiMCmrf This constructions also uses t/2 different functions per round and the con-
straints for it can be obtained in a similar way.

We have implemented the GMiMCcrf and GMiMCerf in a SNARK setting using NTL [71]
for the GMiMC permutation and hash function. We compared the performance with
MiMC. For N ≈ 1024-bit (prime) block size GMiMCerf [N, t, n], where t = 8, shows some
improvement over MiMC-1025. For hashing a single message block, GMiMCHash-256 is
more than 1.2 times faster than MiMCHash-256 and is significantly (> 12 times) faster
than SHA-256. We stress that in comparison with MiMCHash the primary advantage of
GMiMCerfHash is that it can be used over 256 bit or smaller field size. For all the field
operations we have used the NTL together with the gf2x library. All the computations
were performed on a system having an Intel Core i7-4790 with 3.6 GHz processor with 16
GB memory. We took the average time over ≈ 2000 iterations.

Note that the number of constraints for GMiMCHash-256 with fixed key permutation
is only one more than the number of constraints for GMiMCerf . Hence the time taken by
the hash function and the permutation with fixed key are the same (in Table 5).

28

7.3 Post-Quantum Signatures
Picnic [31] is a new class of digital signature schemes which derive their security entirely
from the security of symmetric-key primitives, have extremely small key pairs, and are
highly parameterizable. The construction is based on a one-way function f , where for the
secret key x the image y = f(x) is published as the public key. A signature on a message
is then obtained from a non-interactive zero-knowledge proof of the relation y = f(x),
that incorporates the message in the challenge generation. This proof uses ZKB++, a
Σ-protocol for statements over general circuits made non-interactive. When instantiating
f with LowMC [5, 3], trying to reduce the signature size by reducing the number of
multiplication gates comes at the cost of a more expensive linear layer, which leads to
a runtime vs. signature size trade-off. Since the security proofs in [31] only require a
block cipher with a reduced data complexity of 1, the overall performance can be greatly
improved as this fact allows to choose LowMC instances with less rounds. For the 128-bit
PQ security level (i.e., 256-bit block size and key size) a good trade-off can be found by
using 10 S-Boxes and 38 rounds, resulting in a view size of 1140 bits.

We implemented the signature scheme using GMiMCerf with key size and block size of
≈ 256 bits to build the one-way function. We consider instances with a data complexity of
1. The reduction steps of the modular multiplications were accelerated by using special
prime moduli and irreducible polynomials of special form for prime fields and binary fields,
respectively: generalized Mersenne primes [72] were used for prime fields and trinomials
and pentanomials with middle terms close to each other [69] were used for binary fields.

In Table 6, we compare the circuit runtimes (i.e., runtimes without protocol overheads
such as pseudo-random number sampling and the computation of commitments) of MiMC
and GMiMCerf with different numbers of branches benchmarked on an Intel Core i7-
4790 with 3.6 GHz. We also include the view size required per repetition of ZKB++,
and numbers for one two instances of LowMC using optimizations for the round key
computations and linear layer [40]. Measuring only the circuit runtimes allows us to
obtain a more accurate comparison in terms of computation time and view size, which are
both directly related to the total runtime of the protocol and to the final signature size,
respectively. Furthermore, the time required for pseudo-random number sampling – the
dominating cost of the protocol overhead – is also reduced by making the view size smaller.

Instantiations using F2n tend to perform better than the comparable parameterizations
in Fp for mainly two reasons: in F2n additions do not require reductions, the cubing
operation can be implemented with only one multiplication. In any case, even for very
small fields with the smallest view sizes but slower signing and verification, GMiMCerf
performs significantly better in terms of view size and runtime than MiMC. Compared
to LowMC, choosing an instance over F23 allows us to beat the smallest signatures sizes
obtainable using LowMC with one S-Box by 306 bits in terms of view size. We also note
that both signing and verification times are smaller when using instances providing a good
trade-off (i.e., setting n = 17 or n = 33), and view sizes can be kept small too by using the
fact that squaring is linear in binary fields.

Ring Signatures

Continuing the work on signatures, ring signature scheme solely relying only on symmetric-
key primitives can be constructed by proving an authentication path in a Merkle tree in
zero-knowledge [39, 23]. Hence collision-resistant hash functions with low multiplicative
complexity are of interest for this application and requires a cipher also secure in the full
data setting, so we consider GMiMCerf over Fp.

MiMC based hashes incur a view size of more than a million bits per hash function
evaluation, which is larger than a LowMC based hash by a factor of about 1000. With
GMiMC we can change the field size and are thus able to obtain much better numbers.

29

Table 6: Comparison of MiMC with GMiMCerf and LowMC [5] when the block size is
≈ 256 bits in the context of ZKB++. In LowMC-(N,m,R), N denotes the block size, m
is the number of S-Boxes, and R denotes the number of rounds. Runtimes given for Sign
and Verify are for the circuit computations only.

Scheme (n, t, R) Sign Verify View size

MiMC [4] (256, 1, 162) 333.97 ms 166.28 ms 83456 bits

(272, 1, 172) 92.45 ms 46.32 ms 94112 bits

GMiMCerf over Fp (3, 86, 261) 97.32 ms 72.06 ms 1566 bits

(4, 64, 196) 62.35 ms 45.16 ms 1568 bits

(16, 16, 62) 7.59 ms 5.13 ms 1984 bits

(32, 8, 55) 4.95 ms 3.05 ms 3520 bits

(64, 4, 81) 11.78 ms 6.85 ms 10368 bits

(136, 2, 163) 67.51 ms 35.21 ms 44336 bits

GMiMCerf over F2n (3, 86, 261) 16.06 ms 10.76 ms 783 bits

(17, 16, 63) 3.73 ms 2.30 ms 1071 bits

(33, 8, 56) 3.34 ms 2.29 ms 1848 bits

LowMC-(256, 10, 38) - 3.74 ms 3.52 ms 1140 bits

LowMC-(256, 1, 363) - 9.55 ms 7.12 ms 1089 bits

When aiming for the same security level (N ≈ 256) with GMiMCerf and using the
Davies-Meyer transformation, which is sufficient for this application18, we achieve a very
competitive view size in comparison to of 5184 bits with n = 32 for one hash function
evaluation. Additionally the GMiMC based hash comes close to a LowMC based hash, with
its view sizes being larger by a factor of ≤ 5 (with n = 32), and significantly outperforms
any MiMC based instantiation.

8 Discussion
One key take-away of this work is that, when it comes to building structures in symmetric
cryptography with low multiplicative complexity, balanced Feistel networks are not the
best strategy. We provided a new and optimal (in some sense) variant of the GFN and yet
we still cannot beat the ERF variant.

This observation is surprising, and thus interesting: Unbalanced Feistel networks, which
appeared no later than the late 1980s, do not have a great track record in the academic
literature and in recent designs. As an illustration, consider that among all the lightweight
block cipher designs listed on the CryptoLux lightweight block cipher wiki19, 7 are Type-II
GFNs and 10 are balanced Feistel networks, whereas none is of the UFN or ERF type.

And yet exactly those types turn out to be the best in our setting. We can even make
a parallel with MiMC itself: Its structure is strongly related and building up on a design
from the mid 1990s, which in recent textbooks [55, Section 8.4] was even shown as an
example of how not to design a cipher. Despite this fact, it has turned out to be very
good in many applications where multiplicative complexity matters. It may well be that
the same is true with our work: Cryptographers had lost interest in the UBF or never
considered it a reasonable option and yet it is the best in several of our specific use cases.

18See [23] for a more detailed comparison of the various hash function constructions for this application.
19https://www.cryptolux.org/index.php/Lightweight_Block_Ciphers

30

https://www.cryptolux.org/index.php/Lightweight_Block_Ciphers

This of course raises one question: What are other known but out-of-fashion structures
which might be very suitable for MPC, SNARKs, PQ signatures or related applications?

References
[1] M. A. Abdelraheem, M. Ågren, P. Beelen, and G. Leander, “On the distribution of

linear biases: Three instructive examples,” in CRYPTO 2012, ser. LNCS, R. Safavi-
Naini and R. Canetti, Eds., vol. 7417. Springer, Heidelberg, Aug. 2012, pp. 50–67.

[2] S. Agrawal, P. Mohassel, P. Mukherjee, and P. Rindal, “Dise: Distributed symmetric-
key encryption,” Cryptology ePrint Archive, Report 2018/727, 2018, accepted at CCS
2018 - https://eprint.iacr.org/2018/727.

[3] M. Albrecht, C. Rechberger, T. Schneider, T. Tiessen, and M. Zohner, “Ciphers for
MPC and FHE,” Cryptology ePrint Archive, Report 2016/687, 2016, http://eprint.
iacr.org/2016/687.

[4] M. R. Albrecht, L. Grassi, C. Rechberger, A. Roy, and T. Tiessen, “MiMC: Efficient
encryption and cryptographic hashing with minimal multiplicative complexity,” in
ASIACRYPT 2016, Part I, ser. LNCS, J. H. Cheon and T. Takagi, Eds., vol. 10031.
Springer, Heidelberg, Dec. 2016, pp. 191–219.

[5] M. R. Albrecht, C. Rechberger, T. Schneider, T. Tiessen, and M. Zohner, “Ciphers
for MPC and FHE,” in EUROCRYPT 2015, Part I, ser. LNCS, E. Oswald and
M. Fischlin, Eds., vol. 9056. Springer, Heidelberg, Apr. 2015, pp. 430–454.

[6] A. Aly, M. Keller, E. Orsini, D. Rotaru, P. Scholl, N. Smart, and T. Wood, “Scale-
mamba v1.3 : Documentation,” 2018, https://homes.esat.kuleuven.be/~nsmart/
SCALE/.

[7] N. Analytics, “MP-SPDZ,” 2019, https://github.com/n1analytics/MP-SPDZ.

[8] B. Applebaum, N. Haramaty, Y. Ishai, E. Kushilevitz, and V. Vaikuntanathan,
“Low-Complexity Cryptographic Hash Functions,” in 8th Innovations in Theoretical
Computer Science Conference – ITCS 2017, ser. LIPIcs, vol. 67. Schloss Dagstuhl -
Leibniz-Zentrum fuer Informatik, 2017, pp. 7:1–7:31.

[9] B. Applebaum, Y. Ishai, and E. Kushilevitz, “Cryptography in NC0,” SIAM J.
Comput., vol. 36, no. 4, pp. 845–888, 2006.

[10] D. W. Archer, D. Bogdanov, L. Kamm, Y. Lindell, K. Nielsen, J. I. Pagter, N. P.
Smart, and R. N. Wright, “From keys to databases – real-world applications of
secure multi-party computation,” Cryptology ePrint Archive, Report 2018/450, 2018,
https://eprint.iacr.org/2018/450.

[11] J.-P. Aumasson and W. Meier, “Zero-sum distinguishers for reduced Keccak-f and
for the core functions of Luffa and Hamsi,” 2009, presented at the Rump Session of
Cryptographic Hardware and Embedded Systems - CHES 2009, https://131002.net/
data/papers/AM09.pdf.

[12] M. Bardet, J. Faugere, B. Salvy, and B. Yang, “Asymptotic behaviour of the index of
regularity of quadratic semi-regular polynomial systems,” in The Effective Methods in
Algebraic Geometry Conference (MEGA), 2005, pp. 1–14.

31

https://eprint.iacr.org/2018/727
http://eprint.iacr.org/2016/687
http://eprint.iacr.org/2016/687
https://homes.esat.kuleuven.be/~nsmart/SCALE/
https://homes.esat.kuleuven.be/~nsmart/SCALE/
https://github.com/n1analytics/MP-SPDZ
https://eprint.iacr.org/2018/450
https://131002.net/data/papers/AM09.pdf
https://131002.net/data/papers/AM09.pdf

[13] E. Ben-Sasson, A. Chiesa, C. Garman, M. Green, I. Miers, E. Tromer, and M. Virza,
“Zerocash: Decentralized anonymous payments from bitcoin,” in 2014 IEEE Sym-
posium on Security and Privacy. IEEE Computer Society Press, May 2014, pp.
459–474.

[14] E. Ben-Sasson, A. Chiesa, D. Genkin, E. Tromer, and M. Virza, “SNARKs for C:
Verifying program executions succinctly and in zero knowledge,” in CRYPTO 2013,
Part II, ser. LNCS, R. Canetti and J. A. Garay, Eds., vol. 8043. Springer, Heidelberg,
Aug. 2013, pp. 90–108.

[15] R. Bendlin, I. Damgård, C. Orlandi, and S. Zakarias, “Semi-homomorphic encryption
and multiparty computation,” in EUROCRYPT 2011, ser. LNCS, K. G. Paterson,
Ed., vol. 6632. Springer, Heidelberg, May 2011, pp. 169–188.

[16] G. Bertoni, J. Daemen, M. Peeters, and G. Van Assche, “Note on zero-sum distin-
guishers of Keccak-f,” http://keccak.noekeon.org/NoteZeroSum.pdf.

[17] ——, “On the indifferentiability of the sponge construction,” in EUROCRYPT 2008,
ser. LNCS, N. P. Smart, Ed., vol. 4965. Springer, Heidelberg, Apr. 2008, pp. 181–197.

[18] L. Bettale, J.-C. Faugere, and L. Perret, “Hybrid approach for solving multivariate
systems over finite fields,” Journal of Mathematical Cryptology, vol. 3, no. 3, pp.
177–197, 2009.

[19] L. Bettale, J. Faugère, and L. Perret, “Solving polynomial systems over finite fields:
improved analysis of the hybrid approach,” in International Symposium on Symbolic
and Algebraic Computation, ISSAC’12. ACM, 2012, pp. 67–74.

[20] E. Biham, R. Anderson, and L. Knudsen, “Serpent: A new block cipher proposal,” in
FSE 1998, 1998, pp. 222–238.

[21] E. Biham, A. Biryukov, and A. Shamir, “Cryptanalysis of Skipjack reduced to 31
rounds using impossible differentials,” in EUROCRYPT’99, ser. LNCS, J. Stern, Ed.,
vol. 1592. Springer, Heidelberg, May 1999, pp. 12–23.

[22] D. Bogdanov, S. Laur, and J. Willemson, “Sharemind: A framework for fast privacy-
preserving computations,” in ESORICS 2008, ser. LNCS, S. Jajodia and J. López,
Eds., vol. 5283. Springer, Heidelberg, Oct. 2008, pp. 192–206.

[23] D. Boneh, S. Eskandarian, and B. Fisch, “Post-quantum group signatures from
symmetric primitives,” IACR Cryptology ePrint Archive, vol. 2018, p. 261, 2018.

[24] D. Boneh, Y. Ishai, A. Passelègue, A. Sahai, and D. J. Wu, “Exploring crypto dark
matter,” in Theory of Cryptography Conference. Springer, 2018, pp. 699–729.

[25] C. Boura and A. Canteaut, “A zero-sum property for the keccak-f permutation with
18 rounds,” in ISIT. IEEE, 2010, pp. 2488–2492.

[26] C. Boura, A. Canteaut, and C. D. Cannière, “Higher-Order Differential Properties of
Keccak and Luffa,” in Fast Software Encryption - FSE 2011, ser. LNCS, vol. 6733.
Springer, 2011, pp. 252–269.

[27] C. Boura, M. Naya-Plasencia, and V. Suder, “Scrutinizing and improving impossible
differential attacks: Applications to CLEFIA, Camellia, LBlock and Simon,” in
ASIACRYPT 2014, Part I, ser. LNCS, P. Sarkar and T. Iwata, Eds., vol. 8873.
Springer, Heidelberg, Dec. 2014, pp. 179–199.

32

http://keccak.noekeon.org/NoteZeroSum.pdf

[28] J. Boyar, R. Peralta, and D. Pochuev, “On the multiplicative complexity of Boolean
functions over the basis (cap, +, 1),” Theor. Comput. Sci., 2000.

[29] A. Canteaut, S. Carpov, C. Fontaine, T. Lepoint, M. Naya-Plasencia, P. Paillier, and
R. Sirdey, “Stream ciphers: A practical solution for efficient homomorphic-ciphertext
compression,” in FSE 2016, ser. LNCS, T. Peyrin, Ed., vol. 9783. Springer, Heidelberg,
Mar. 2016, pp. 313–333.

[30] V. Cauchois, C. Gomez, and G. Thomas, “General diffusion analysis: How to find
optimal permutations for generalized type-ii feistel schemes,” IACR Transactions on
Symmetric Cryptology, vol. 2019, no. 1, pp. 264–301, Mar. 2019. [Online]. Available:
https://tosc.iacr.org/index.php/ToSC/article/view/7404

[31] M. Chase, D. Derler, S. Goldfeder, C. Orlandi, S. Ramacher, C. Rechberger, D. Sla-
manig, and G. Zaverucha, “Post-quantum zero-knowledge and signatures from
symmetric-key primitives,” in ACM CCS 17, B. M. Thuraisingham, D. Evans,
T. Malkin, and D. Xu, Eds. ACM Press, Oct. / Nov. 2017, pp. 1825–1842.

[32] ——, “The Picnic Signature Algorithm Specification,” 2017, https://github.com/
Microsoft/Picnic/blob/master/spec.pdf.

[33] A. M. Childs, W. van Dam, S. Hung, and I. E. Shparlinski, “Optimal quantum
algorithm for polynomial interpolation,” in ICALP, ser. LIPIcs, vol. 55. Schloss
Dagstuhl - Leibniz-Zentrum fuer Informatik, 2016, pp. 16:1–16:13.

[34] D. A. Cox, J. Little, and D. O’Shea, Ideals, varieties, and algorithms - an intro-
duction to computational algebraic geometry and commutative algebra (2. ed.), ser.
Undergraduate texts in mathematics. Springer, 1997.

[35] J. Daemen, M. Peeters, G. Van Assche, and V. Rijmen, “Nessie Proposal: NOEKEON,”
2000, http://gro.noekeon.org/Noekeon-spec.pdf.

[36] I. Damgård, M. Geisler, M. Krøigaard, and J. B. Nielsen, “Asynchronous multiparty
computation: Theory and implementation,” in PKC 2009, ser. LNCS, S. Jarecki and
G. Tsudik, Eds., vol. 5443. Springer, Heidelberg, Mar. 2009, pp. 160–179.

[37] I. Damgård, V. Pastro, N. P. Smart, and S. Zakarias, “Multiparty computation from
somewhat homomorphic encryption,” in CRYPTO 2012, ser. LNCS, R. Safavi-Naini
and R. Canetti, Eds., vol. 7417. Springer, Heidelberg, Aug. 2012, pp. 643–662.

[38] D. Derler, S. Ramacher, and D. Slamanig, “Generic double-authentication preventing
signatures and a post-quantum instantiation,” in ProvSec 2018, ser. LNCS, J. Baek,
W. Susilo, and J. Kim, Eds., vol. 11192. Springer, Heidelberg, Oct. 2018, pp. 258–276.

[39] ——, “Post-Quantum Zero-Knowledge Proofs for Accumulators with Applications to
Ring Signatures from Symmetric-Key Primitives,” in Post-Quantum Cryptography –
PQCrypto 2018, ser. LNCS, vol. 10786. Springer, 2018, pp. 419–440.

[40] I. Dinur, D. Kales, A. Promitzer, S. Ramacher, and C. Rechberger, “Linear equiv-
alence of block ciphers with partial non-linear layers: Application to lowmc,” in
EUROCRYPT, 2019, (accepted).

[41] X. Dong, Z. Li, and X. Wang, “Quantum cryptanalysis on some generalized Feistel
schemes,” Cryptology ePrint Archive, Report 2017/1249, 2017, https://eprint.iacr.
org/2017/1249.

33

https://tosc.iacr.org/index.php/ToSC/article/view/7404
https://github.com/Microsoft/Picnic/blob/master/spec.pdf
https://github.com/Microsoft/Picnic/blob/master/spec.pdf
http://gro.noekeon.org/Noekeon-spec.pdf
https://eprint.iacr.org/2017/1249
https://eprint.iacr.org/2017/1249

[42] Y. Doröz, A. Shahverdi, T. Eisenbarth, and B. Sunar, “Toward practical homomorphic
evaluation of block ciphers using prince,” in FC 2014 Workshops, ser. LNCS, R. Böhme,
M. Brenner, T. Moore, and M. Smith, Eds., vol. 8438. Springer, Heidelberg, Mar.
2014, pp. 208–220.

[43] M. Duan and X. Lai, “Improved zero-sum distinguisher for full round Keccak-f
permutation,” Chinese Science Bulletin, vol. 57, no. 6, pp. 694–697, 2012.

[44] ——, “Improved zero-sum distinguisher for full round Keccak-f permutation,” Chinese
Science Bulletin, vol. 57, no. 6, pp. 694–697, 2012.

[45] L. Grassi, C. Rechberger, D. Rotaru, P. Scholl, and N. P. Smart, “MPC-friendly sym-
metric key primitives,” in ACM CCS 16, E. R. Weippl, S. Katzenbeisser, C. Kruegel,
A. C. Myers, and S. Halevi, Eds. ACM Press, Oct. 2016, pp. 430–443.

[46] V. Grosso, G. Leurent, F.-X. Standaert, and K. Varici, “LS-designs: Bitslice encryption
for efficient masked software implementations,” in FSE 2014, ser. LNCS, C. Cid and
C. Rechberger, Eds., vol. 8540. Springer, Heidelberg, Mar. 2015, pp. 18–37.

[47] J. Guo, J. Jean, I. Nikolic, and Y. Sasaki, “Meet-in-the-middle attacks on classes of
contracting and expanding Feistel constructions,” IACR Trans. Symm. Cryptol., vol.
2016, no. 2, pp. 307–337, 2016, http://tosc.iacr.org/index.php/ToSC/article/view/576.

[48] D. Hankerson, A. J. Menezes, and S. Vanstone, Guide to Elliptic Curve Cryptography.
Secaucus, NJ, USA: Springer-Verlag New York, Inc., 2003.

[49] T. Jakobsen and L. R. Knudsen, “The interpolation attack on block ciphers,” in
FSE’97, ser. LNCS, E. Biham, Ed., vol. 1267. Springer, Heidelberg, Jan. 1997, pp.
28–40.

[50] J. Katz, V. Kolesnikov, and X. Wang, “Improved non-interactive zero knowledge
with applications to post-quantum signatures,” in ACM CCS 18, D. Lie, M. Mannan,
M. Backes, and X. Wang, Eds. ACM Press, Oct. 2018, pp. 525–537.

[51] M. Keller, V. Pastro, and D. Rotaru, “Overdrive: Making SPDZ Great Again,” in
Advances in Cryptology – EUROCRYPT 2018, ser. LNCS, vol. 10822. Springer, 2018,
pp. 158–189.

[52] M. Keller, P. Scholl, and N. P. Smart, “An architecture for practical actively secure
MPC with dishonest majority,” in ACM CCS 13, A.-R. Sadeghi, V. D. Gligor, and
M. Yung, Eds. ACM Press, Nov. 2013, pp. 549–560.

[53] L. R. Knudsen, “Truncated and higher order differentials,” in FSE’94, ser. LNCS,
B. Preneel, Ed., vol. 1008. Springer, Heidelberg, Dec. 1995, pp. 196–211.

[54] ——, “DEAL - A 128-bit Block Cipher,” Technical Report, Department of Informatics,
Bergen, Norway, 1998.

[55] L. R. Knudsen and M. J. B. Robshaw, The Block Cipher Companion. Springer
Publishing Company, Incorporated, 2011.

[56] M. Matsui, “Linear cryptanalysis method for DES cipher,” in EUROCRYPT’93, ser.
LNCS, T. Helleseth, Ed., vol. 765. Springer, Heidelberg, May 1994, pp. 386–397.

[57] P. Méaux, A. Journault, F.-X. Standaert, and C. Carlet, “Towards stream ciphers for
efficient FHE with low-noise ciphertexts,” in EUROCRYPT 2016, Part I, ser. LNCS,
M. Fischlin and J.-S. Coron, Eds., vol. 9665. Springer, Heidelberg, May 2016, pp.
311–343.

34

http://tosc.iacr.org/index.php/ToSC/article/view/576

[58] N. E. Mrabet and M. Joye, Guide to Pairing-Based Cryptography. Chapman &
Hall/CRC, 2016.

[59] M. Naehrig, K. E. Lauter, and V. Vaikuntanathan, “Can homomorphic encryption
be practical?” in Proceedings of the 3rd ACM Cloud Computing Security Workshop,
CCSW 2011, 2011, pp. 113–124.

[60] K. Nyberg, “Generalized Feistel networks,” in ASIACRYPT’96, ser. LNCS, K. Kim
and T. Matsumoto, Eds., vol. 1163. Springer, Heidelberg, Nov. 1996, pp. 91–104.

[61] K. Nyberg and L. R. Knudsen, “Provable Security Against Differential Cryptanalysis,”
in Advances in Cryptology - CRYPTO 1992, ser. LNCS, vol. 740. Springer, 1992, pp.
566–574.

[62] ——, “Provable security against a differential attack,” Journal of Cryptology, vol. 8,
no. 1, pp. 27–37, Dec. 1995.

[63] I. S. M. S. Overview., “https://gist.github.com/maxvt/
bb49a6c7243163b8120625fc8ae3f3cd.”

[64] Partisia, “https://partisia.com/.”

[65] J. Patarin, V. Nachef, and C. Berbain, “Generic attacks on unbalanced Feistel schemes
with contracting functions,” in ASIACRYPT 2006, ser. LNCS, X. Lai and K. Chen,
Eds., vol. 4284. Springer, Heidelberg, Dec. 2006, pp. 396–411.

[66] K. Qiao, L. Song, M. Liu, and J. Guo, “New Collision Attacks on Round-Reduced
Keccak,” in Advances in Cryptology – EUROCRYPT 2017, ser. LNCS, vol. 10212,
2017, pp. 216–243.

[67] D. Rotaru, N. P. Smart, and M. Stam, “Modes of operation suitable for computing on
encrypted data,” IACR Trans. Symm. Cryptol., vol. 2017, no. 3, pp. 294–324, 2017.

[68] R. Safavi-Naini and R. Canetti, Eds., CRYPTO 2012, ser. LNCS, vol. 7417. Springer,
Heidelberg, Aug. 2012.

[69] M. Scott, “Optimal irreducible polynomials for GF(2m) arithmetic,” Cryptology
ePrint Archive, Report 2007/192, 2007, http://eprint.iacr.org/2007/192.

[70] Sepior, “https://sepior.com/.”

[71] V. Shoup, “Number Theory Library 5.5.2 (NTL),” http://www.shoup.net/ntl/.

[72] J. A. Solinas, “Generalized mersenne numbers,” NSA, Tech. Rep., 1999.

[73] W. Stein et al., Sage Mathematics Software Version 8.0, The Sage Development Team,
2017, http://www.sagemath.org.

[74] T. Suzaki and K. Minematsu, “Improving the generalized Feistel,” in FSE 2010, ser.
LNCS, S. Hong and T. Iwata, Eds., vol. 6147. Springer, Heidelberg, Feb. 2010, pp.
19–39.

[75] T. Suzaki, K. Minematsu, S. Morioka, and E. Kobayashi, “twine : A lightweight
block cipher for multiple platforms,” in SAC 2012, ser. LNCS, L. R. Knudsen and
H. Wu, Eds., vol. 7707. Springer, Heidelberg, Aug. 2013, pp. 339–354.

[76] Y. Todo, “Structural Evaluation by Generalized Integral Property,” in Advances in
Cryptology - EUROCRYPT 2015, ser. LNCS, vol. 9056. Springer, 2015, pp. 287–314.

35

https://gist.github.com/maxvt/bb49a6c7243163b8120625fc8ae3f3cd
https://gist.github.com/maxvt/bb49a6c7243163b8120625fc8ae3f3cd
https://partisia.com/
http://eprint.iacr.org/2007/192
https://sepior.com/
http://www.shoup.net/ntl/
http://www.sagemath.org

[77] Unbound, “https://www.unboundtech.com/.”

[78] Q. Wang, L. Grassi, and C. Rechberger, “Zero-Sum Partitions of PHOTON Permu-
tations,” in Topics in Cryptology - CT-RSA 2018, ser. LNCS, vol. 10808, 2018, pp.
279–299.

36

https://www.unboundtech.com/

Appendices
A Variants of the GMiMC family of ciphers
In this section, we briefly discuss different variants of GMiMC and we also explain some
possible choices of the round function. Since the analysis is very similar to the one proposed
in [4], we refer to that paper for all the details and we limit ourselves here to recall the
main points.

A.1 A Permutation Round Function
The four GMiMC ciphers proposed in this paper are all based on the Feistel construction.
As is well known, a Feistel construction has the nice property that decryption can easily
be realized by using the encryption function with reversed order of round constants and
subkeys. In other words, the same round functions are used for both encryption and
decryption, that is, it is not necessary that the round function is a permutation. On the
other hand, we have chosen to deal with a permutation round function in order to prevent
attacks due to internal collisions.

For example, because of internal collisions in the round function, a truncated trail
with only one active branch per round would be possible. This would be particularly
undesirable in GMiMCerf . Indeed, the difference in a given branch may propagate to the
others only every t rounds. If this difference hits an inner collision of the round function,
the attacker can extend their trail by another t− 1 rounds for free.

A.2 Different Round Functions
As for MiMC and considering the case F2n , one may also consider a round function of the
form

F (x) = (x⊕ k ⊕ c)d

for generic exponents d.
First of all, we recall that d must be different from a power of 2 in order to introduce

non-linearity in the cipher20. Referring to the analysis proposed in MiMC, the best choices
for exponents d seem to be d = 2r − 1 for integer r. It is simple to observe that the
degree of the encryption function increases faster when d increases. It follows that the
number of rounds can be reduced if one chooses d > 3. On the other hand, since the
number of multiplications for each round increases (one round requires approximately
dr/2e multiplications to compute xd for d = 2r − 1, as shown in detail in [4]), the total
number of multiplications does not change. In conclusion, the choice of an exponent of the
form 2r − 1 different from 3 seems not to offer any advantage.

B Diffusion in GMiMCmrf

In this section, we investigate the diffusion provided by GMiMCmrf . Diffusion is very
fast in such a structure — much like in a GFN with a complex branch permutation as
investigated in [74] and used for example to build the lightweight block cipher Twine [75].
In particular, the number of rounds needed to achieve full diffusion increases with the
logarithm of the number of branches rather than linearly, as would be the case if a constant
rotation were used.

In this section, we prove that the number of rounds needed to achieve full diffusion for
a t-branch Multi-Rotating Feistel network is equal to 2 log2 t− 1, i.e., we prove Theorem 1.

20Remember that the square operation is linear in each field F2n .

37

We use slightly different notations in this part. The internal state is denoted by V ij
for 0 ≤ j < t/2 and for −1 ≤ i, where V i corresponds to the words that are input to
the non-linear part of the round function in round i. The plaintext therefore consists
of V 0||V −1 = V 0

0 ||...||V 0
t/2−1||V

−1
0 ||...||V

−1
t/2−1, the input of round i is V i||V i−1, and the

output of round i is V i+1||V i. This is summarized in Figure 9.

V i V i−1

≫ si ⊕

V i+1 V i

Figure 9: The notations used to study the Multi-Rotating Feistel network.

It is easy to track the propagation of V 0
0 and V −1

0 throughout the rounds. In Figure 10a,
we show the subsets Ii of {0, ..., t/2− 1} which correspond to the indices j such that V ij
depends on V 0

0 . Note that Ii can be obtained via the simple induction

Ii+1 = Ii−1 ∪ (si + Ii) ,

where si + Ii is the set obtained by adding si (modulo t/2) to all elements in Ii. In
Figure 10b, we show the same quantity except that we consider words which depend on
V −1

0 rather than V 0
0 .

Using the expression of si, we deduce that I2`+1 = I2`−1 ∪ (2` + I2`), which we rewrite
using that I2` = I2`−2 ∪ (0 + I2`−1) to obtain

I2i+1 = I2`−1 ∪
(
2` + (I2`−2 ∪ I2`−1)

)
⊆ I2`−1 ∪ (2` + I2`−1) .

As a consequence, if j ∈ I2`−1, then both j and j + 2` are in I2`+1. A simple induction
shows that if j ∈ I1, then I2dlog(t/2)e+1 contains j+

∑dlog(t/2)e
i=0 αi2i for all binary sequences

{αi}0≥i. Thus, all elements of {0, ..., t/2 − 1} are in I2dlog(t/2)e+1. The same argument
holds if the sets Ii track the propagation of V −1

0 instead.
As a consequence, 2dlog(t/2)e+ 2 = 2dlog2(t)e rounds provide full diffusion.
Note that this argument does not actually require that s2`+1 = 2` mod dlog2(t/2)d, merely

that the exponents of the non-zero rotation amounts are all distinct in each subsequence
of length 2dlog2(t/2)e. This is the case when these exponents are incremented one by one
(as in our construction), but it is also the case if they are decremented one by one instead.
This last situation is equivalent to running our Multi-Rotating Feistel network structure
backwards, meaning that its inverse has the same diffusion properties.

C Security Analysis
C.1 Interpolation Attack
GMiMCerf . Working as in Sect. 4.1.3, the minimum degree of the output polynomials for
each branch is lower bounded by 3r−(t−1) (after r ≥ t rounds). Due to the argumentation
proposed in Sect. 4.1.3, GMiMCerf is secure against interpolation attack if

(3r−(t−1))t ≈ 2N ' pt.

Hence, r ≈ log2(p)
log2 3 + (t − 1) rounds will be secure against the above-mentioned attacks.

Conservatively, 2r+ 2 rounds will be secure against meet-in-the-middle attacks/distinguish-
ers for the case 2κ ' p, while 2r + t+ 1 rounds will be secure against meet-in-the-middle
attacks/distinguishers for the case 2κ ' pt.

38

I−1 = {}I0 = {0}

+0 ∪

{0}
+1 ∪

{0, 1}
+0 ∪

{0, 1}
+2 ∪

{0, 1, 2, 3}
∪+0 ∪

{0, 1, 2, 3}
∪+4 ∪

I6 = {0, 1, 2, 3, 4, 5, 6, 7}I5 = {0, 1, 2, 3}
(a) The propagation of V 0

0 .

I−1 = {0}I0 = {}

+0 ∪

{0}
+1 ∪

{1}
+0 ∪

{0, 1}
+2 ∪

{1, 2, 3}
∪+0 ∪

{0, 1, 2, 3}
∪+4 ∪

I6 = {1, 2, 3, 4, 5, 6, 7} I5 = {0, 1, 2, 3}

(b) The propagation of V −1
0 .

Figure 10: Diffusion in GMiMCmrf .

GMiMCNyb. Let t = 2 · t′. We use a set of (plaintext, ciphertext) pairs to do the
interpolation analysis. Working as before, after r > 2 rounds, the minimum degree of the
output polynomials will be 3r−1 = dj for some branch j (even j). In order to get the
maximum degree 3r−1 = p, the number of rounds must satisfy r ≈ log2(p)

log2 3 + 1. For securing
the cipher against MITM-type attacks/distinguishers, we use 2r rounds. Finally, we add t
rounds to provide full diffusion and avoid key-guessing.

In the case 2κ = pt, we have to add 1 more round in order to prevent the combination
of the interpolation attack and the brute-force one.

GMiMCmrf . As explained in Appendix B, after r = 1 + Λ (t) + dlog2(p)/ log2(3)e rounds,
all output branches have a maximum degree in all input branches and all key words. Thus,
as for n-bit security, using R = 2r = 2 + 2Λ (t) + 2dlog2(p)/ log2(3)e rounds is sufficient
for GMiMCmrf to provide log2(p) bits of security against interpolation attacks.

In the case 2κ = pt, we have to add 1 more round in order to prevent the combination
of the interpolation attack and the brute-force one.

C.2 Higher-Order Differential in Fp
GMiMCerf . Using the same analysis proposed in Sect. 4.1.4 and due to the analysis
proposed in App. C.1, the minimum degree of GMiMCerf after r > t rounds is (at least)
3r−t. The condition 3r−t ≥ t is satisfied by r ≥ t+ log3(t). In order to avoid distinguishers
on GMiMCHash, we simply double this number of rounds. Finally, we add 2 rounds
in order to avoid key-guessing attack for the univariate case and t + 1 rounds for the
multivariate case.

39

GMiMCNyb. Using the same analysis proposed in Sect. 4.1.4 and due to the analysis
proposed in App. C.1, the minimum degree of GMiMCNyb after r > t rounds is (at least)
3r−1. The condition 3r−1 ≥ t is satisfied by r ≥ 1+log3(t). In order to avoid distinguishers
on GMiMCHash, we simply double this number of rounds. Finally, we add t rounds in
order to avoid key-guessing attack for the univariate case and in order to provide full
diffusion. One more round is added for the multivariate case.

GMiMCmrf . Using the same analysis proposed in Sect. 4.1.4 and due to the analysis
proposed in App. C.1, the minimum degree of GMiMCerf after r > Λ (t) rounds is (at
least) 3r−Λ(t). The condition 3r−Λ(t) ≥ t is satisfied by r ≥ Λ (t) + log3(t). In order to
avoid distinguishers on GMiMCHash, we simply double this number of rounds. Finally,
we add 2 rounds in order to avoid key-guessing attack for the univariate case and 3 rounds
for the multivariate case.

C.3 Gröbner Basis Analysis
To prevent the Gröbner basis attack, the minimum number of rounds r must satisfy

2κn ·
(
t− κ+ d− 1

d− 1

)ω
≥ 2t n

for all κ ∈ {0, . . . , t− 2} and where the degree d is a function of the number of rounds r,
that is, d = d(r). For our parameter choices, this expression is minimized for κ = 0.

As explained in the main text, in the following we limit ourselves to consider only the
case 2κ = pt (for the case 2κ = p, the Gröbner basis attack is equivalent to a GCD attack).

GMiMCerf . After r ≥ t rounds21, the minimum degree of a variable in the output
polynomials is 3r−t.

To prevent the Gröbner basis attack, we require(
t+ d

d

)ω
=
(
t+ 3r−t

3r−t

)ω
≈ pt.

Using Stirling’s approximation of the binomial when t � d, we approximate
(
t+d
d

)
by

(d/t)t = 2t log2(d/t) and, setting ω := 2, obtain

2t log2(d/t) = 2t log2(3r−t/t) ≈ log2(p) · t or r = dt+ 1/2 log2(p) · log3 2 + log3 te .

Due to the same argumentation given in Section C.4, this number of rounds must be
incremented by a factor of t− 3, that is, the minimum number of rounds is approximately
given by r = d2t+ 1/2 log2(p) · log3 2 + log3 t− 3e. To thwart Meet-in-the-Middle attacks,
this value is doubled.

GMiMCNyb. To prevent the Gröbner basis attack, we require(
t+ d

d

)ω
=
(
t+ 3r−1

3r−1

)ω
≈ pt.

Using Stirling’s approximation of the binomial when t � d, we approximate
(
t+d
d

)
by

(d/t)t = 2t log2(d/t) and, setting ω := 2, obtain

2t log2(d/t) = 2t log2(3r−1/t) ≈ log2(p) · t or r =
⌈

1 + log3 2
2 log2(p) + log3 t

⌉
.

To thwart Meet-in-the-Middle attacks, this value is doubled. Moreover, t rounds are added
to guarantee full diffusion.

21For our goal, we do not need all the details regarding the degree for r < t.

40

GMiMCmrf . The minimum degree of a variable Ki (for some 0 ≤ i ≤ t − 1) in the
output polynomials is 3r−Λ(t) after r(> Λ (t)) rounds (where we recall that the number of
branches t is even).

To prevent the Gröbner basis attack, we require(
t+ d

d

)ω
=
(
t+ 3r−Λ(t)

3r−Λ(t)

)ω
≈ pt.

Using Stirling’s approximation of the binomial when t � d, we approximate
(
t+d
d

)
by

(d/t)t = 2t log2(d/t) and, setting ω := 2, obtain

2t log2(d/t) = 2t log2(3r−Λ(t)/t) ≈ log2(p) · t or r =
⌈

Λ (t) + 1
2 log2(p) · log3 2 + log3 t

⌉
.

To thwart Meet-in-the-Middle attacks, this value is doubled.

C.4 GCD Attacks in F2n – Low-Data Scenario
GMiMCerf . Case: κ = n. The degree di of Xi for i = 0, . . . , t− 1 after r rounds is

di =


3r if r > 0 and i 6= t− 1,
3r−1 if r > 1 and i = t− 1,
0 otherwise.

Note that dt−1 = mini di. The condition 3r−1 log2(3r−1) ≈ 2n is fulfilled when r '
1 + n · log3 2− 2 log3(n).

Consideration. In order to compute the final number of rounds for GMiMCerf , one
must take care of another attack. Let Xr

i be the output of the i-th branch after r rounds.
Assume t ≥ 3 and consider the output of two branches, e.g. the output of the branches in
position 1 — denoted by Xr

1 — and 2 — denoted by Xr
2 . By definition

Xr
i = Xr−1

i−1 ⊕ (Xr−1
t ⊕ k ⊕ c)3,

where i = 1, 2, k is the secret key (remember that we are working in the case κ = n) and c
is the round constant. Note that Xs

j is a function of the key k, that is, Xs
j = Xs

j (k). It is
simple to observe that

Xr
1 ⊕Xr

2 = Xr−1
0 ⊕ (Xr−1

t ⊕ k ⊕ c)3 ⊕Xr−1
1 ⊕ (Xr−1

t ⊕ k ⊕ c)3 = Xr−1
0 ⊕Xr−1

1 ,

that is, Xr
1 ⊕Xr

2 is still a function of k, but the degree of such a function is lower than
the degree of the functions that define Xr

1 and Xr
2 .

Moreover, observe that ifGCD(f(k), g(k)) = GCD(h(k), g(k)), then alsoGCD(f(k), g(k)) =
GCD(h(k), g(k)) = GCD(f(k) + h(k), g(k)). Thus, instead of computing the GCD be-
tween two (randomly chosen) outputs of GMiMCerf , the best choice for the attacker —
due to previous considerations — is to compute GCD(Xt−1 ⊕Xt−2, Xt−2 ⊕Xt−3). To
prevent this attack, it is sufficient to increment the number of rounds by t − 3, that is,
r ' t+ n · log3 2− 2 log3(n)− 2.22

22For completeness, we mention another possible strategy to prevent this attack. Instead of incrementing
the number of rounds, one possibility is to use a different constant for each branch of each round. In other
words, consider GMiMCerf as defined in Section 2.1 for the case κ = n (a similar argument holds also for
the case κ = t · n). The expanding round function (ERF) can be re-written as

(X(j+1)
t−1 , X

(j+1)
t−2 , . . . , X

(j+1)
0)← (X(j)

t−2 + Ft−2(X(j)
t−1), . . . , X(j)

0 + F0(X(j)
t−1), X(j)

t−1),

41

As a result, the number of rounds must be approximately

r =
⌈
2n · log3 2− 4 · log3(n) + 2t− 2

⌉
to thwart the Meet-in-the-Middle variant23.

Case: κ = t · n. The idea, once again, is simply to guess the first t− 1 round keys (i.e.,
(t− 1) · n bits of the key) and to apply the (univariate) GCD attack described previously.
Using the previous strategy, it turns out that the number of rounds must be approximately

r =
⌈
2n · log3 2− 4 · log3(n) + 3t− 3e

to thwart the Meet-in-the-Middle variant.

GMiMCNyb. Case: κ = n. Consider the t-branch case with t = 2 · t′. Since we are
working in the univariate case, all the functions Fi are equal, i.e., F1 = F2 = · · · = Ft,
and they all depend on the same key. The degree di of Xi for i = 0, . . . , t− 1 after r ≥ 2
rounds is

di =
{

3r−1 if i even (i mod 2 = 0)
3r if i odd (i mod 2 = 1)

As a result, the minimum degree after r ≥ 2 rounds is 3r−1. The condition 3r−1 log2(3r−1) ≈
2n is fulfilled when r ' 1 + n · log3 2 − 2 log3(n). Thus, the number of rounds must be
approximately

r =
⌈
2 + t+ 2n · log3 2− 4 log3(n)

⌉
to thwart the Meet-in-the-Middle variant, and to avoid key-guessing attack (we actually
add t rounds in order to guarantee full diffusion).

Case: κ = t · n. Using the previous strategy and guessing the first t− 1 round keys
(which corresponds to skipping one round), it turns out that the number of rounds must
be approximately

r =
⌈
3 + t+ 2n · log3 2− 4 log3(n)

⌉
to thwart the Meet-in-the-Middle variant.

GMiMCmrf . Case: κ = n. After Λ (t) + 1 = 2dlog2(t)e + 1 rounds, each word in the
internal state depends on all words in the input and on all words in the key — even if it
has only one word. As a consequence, the degree in both input variables and key variables
of each output branch is at least equal to 3r−(Λ(t)+1), where r is the total number of
rounds of the structure. As a consequence, to be sure that each branch has the highest
degree in both input and key variables, it is necessary to keep iterating the (2Λ (t) + 2)-
round Multi-Rotating Feistel network with rotation sequence s = {0, 1, 0, 2, 0, 4, ...} until

where the round function is defined as

Fi(x) := (x+ k + cj)3, and

where the random constants ci are different for each branch.
This strategy allows to prevent the given attack without increasing the number of rounds. On the

other hand, since our final goal is to minimize the total number of multiplications, this strategy is less
efficient than the one proposed in the main text. Indeed, let r′ = 1 + n · log3 2− 2 log3(n). The strategy
proposed in the main text requires r′ + (t− 3) multiplications, while the one just given requires r′ · (t− 1)
multiplications, where r′ + (t− 3) < r′ · (t− 1) for each t ≥ 3 (and r′ ≥ 1).

23We note that this attack crucially depends on separating monomials per round. In particular, if the
degree of the target polynomial � 2n, then this condition does not hold as modular reductions modulo
x2n − 1 happen.

42

3r−Λ(t)−1 ≥ 2n − 2, which is true if r >
⌈

n
log2(3)

⌉
+ Λ (t) + 1− 2 log3(n). To thwart the

Meet-in-the-Middle variant:

r ≥ 2
⌈

n

log2(3)

⌉
+ 2 · Λ (t) + 4− 4 log3(n).

Case: κ = t · n. Using the previous strategy and guessing the first t − 1 round-keys
(which corresponds to skipping one round), it turns out that the number of rounds must
be approximately

r = 2
⌈

n

log2(3)

⌉
+ 2 · Λ (t) + 5− 4 log3(n)

to thwart the Meet-in-the-Middle variant.

D Security Analysis — Statistical Attacks
Unlike the algebraic analysis above, statistical attacks do not explicitly consider the number
of the variables involved in the output polynomials representing the (reduced-round) cipher.

D.1 Classical and Truncated Differential Cryptanalysis
GMiMCerf . In order to find the minimum number of rounds to protect the cipher against
differential attack, we look for the best possible (truncated) differential characteristic.
Consider an input difference of the form (0, . . . , 0,∆I) where ∆I 6= 0. It is straightforward
to observe that such input difference does not active any S-Box in the first r0 = t − 1
rounds (since the input difference is always zero), that is the output difference after r0
rounds is (∆I , 0, 0, . . . , 0). After r1 = t round, we get an output difference of the form
(fr1(∆I), ..., fr1(∆I),∆I), where fr1(·) denotes the r1-th round function. Observe that
∆I = fr1(∆I) with prob. 2−n+1. Indeed, since an active (cubic) S-Box maps its non-zero
input difference to 2n−1 possible output differences each one with prob. 2−n+1, it follows
that fr1(∆I) = ∆I with probability 2−n+1. Assume fr1(∆I) = ∆I , that is an output
difference of the form (∆I , ...,∆I). After r2 = t+ 1 rounds, we get an output difference
of the form (∆I ⊕ fr2(∆I), ...,∆I ⊕ fr2(∆I),∆I). Due to the previous consideration,
fr2(∆I) = ∆I with prob. 2−n+1.

As a result, the following (truncated) characteristic over t+ 1 rounds

(0, . . . , 0, 0,∆I)
Rt−1(·)−−−−−→
prob. 1

(∆I , 0, 0, . . . , 0) R(·)−−−−−−−−→
prob.≤2−n+1

(∆I ,∆I , . . . ,∆I)
R(·)−−−−−−−−−→

prob. ≤2−n+1

R(·)−−−−−−−−−→
prob. ≤2−n+1

(0, . . . , 0,∆I)

has an overall probability equal to 2−2n+2. Before going on, note that any other input
difference active at least one S-Box in the first t− 1 rounds. In other words, it seems not
possible to find a longer characteristic with lower probability.

By iterating this (truncated) characteristic, it is possible to construct a differential
characteristic over s · (t+ 1) with probability at most (2−2n+2)s. By simple computation,
(2−2n+2)s ≤ 2−N if and only if (2n − 2) · s ≥ N , that is s ≥ d N

2n−2e. As a result,
2 + t · (t+ 1) · d n

2(n−1)e rounds are sufficient to provide security in the univariate case, while
1 + t+ t · (t+ 1) · d n

2(n−1)e rounds are sufficient to provide security in the multivariate case.

GMiMCNyb. First of all, note that any input difference of the form (0,∆I , 0, . . . ,∆I),
where ∆I 6= 0, does not activate any S-Box in the first round. Working as in the previous

43

case, it is possible to prove that the following (truncated) characteristic over 3t/2 = 3t′
rounds (where t = 2t′)

(∆, 0, . . . , 0) R3t′ (·)−−−−→ (∆′, 0, . . . , 0)

has probability 2(t−1)·(−n+1), where in general ∆ 6= ∆′.
By iterating this characteristic, it is possible to construct a differential characteristic

over s · (3t′) with probability at most (2(t−1)·(−n+1))s. As a result, (2(t−1)·(−n+1))s ≤ 2−N
if and only if (t− 1) · (n− 1) · s ≥ 2N , that is s ≥ 2 (since N ≥ 2(n+ t− 1) due to the
fact that n · (t − 2) ≥ 2(t − 1) for each n ≥ 3). As a result, 2 + 3t rounds are sufficient
to provide security in the univariate case, while 3 + 3t rounds are sufficient to provide
security in the multivariate case.

GMiMCmrf . Using the same argumentation provide before for GMiMCNyb, it follows
that 2 + 3Λt rounds are sufficient to provide security in the univariate case, while 3 + 3Λt
rounds are sufficient to provide security in the multivariate case.

For the following, we also prove the following proposition.

Proposition 1. There cannot be any truncated differential trail covering i ≥ 4 rounds of
the GMiMCmrf instance with less than i active S-Boxes.

Proof. We simply observe that any truncated trail involving 1 active branch will activate
at least 4 S-Boxes over the next 4 rounds.

Figure 11 illustrates the case where the unique active branch is an input of the Feistel
function. We consider, without loss of generality, the case where this branch has index 0,
and we track the set Ai of the indices j such that the branch with index j which is input
to the Feistel functions is active.

i = 2` This case is illustrated in Figure 11a. This truncated trail propagates with
probability 1 for 3 rounds, activating 4 S-Boxes along the way. During the third
round, one cancellation may occur so that 1 or 2 S-Boxes are active in the fourth
round. In total, 5 or 6 S-Boxes are active.

i = 2`+ 1 This case is illustrated in Figure 11b. This truncated trail propagates with
probability 1 for 4 rounds, activating 7 S-Boxes along the way.

We now consider the case where the unique active branch is not input to a Feistel
function in the first round, so that we can skip one round without any active S-Box.

i = 2` This case is illustrated in Figure 12a. This truncated trail propagates with
probability 1 for 3 rounds, activating 3 S-Boxes along the way. During the third
round, one cancellation may occur so that 1 or 2 S-Boxes are active in the fourth
round. In total, 4 or 5 S-Boxes are active.

i = 2`+ 1 This case is illustrated in Figure 12b. This truncated trail propagates with
probability 1 for 4 rounds, activating 4 S-Boxes along the way.

As we have seen, each of the 4 possible cases where a unique branch is active in the
input yields at least 4 active S-Boxes during the next 4 rounds. It is thus impossible to
cover i ≥ 4 rounds without activating at least i S-Boxes.

In practice, as shown in Section 6, the bound on q is smaller than the one needed to
prevent GCD attacks unless t is very large and n very small. As a result and working as in
the GMiMCNyb case, a truncated differential with probability 1 exists for Λ(t) = 2 log2(t)
rounds.

44

Ai−1 = {}Ai = {0}

≫ 0 ⊕

{0}
≫ 2` ⊕

{0, 2`}
≫ 0 ⊕

{(0), 2`}
≫ 2`+1 ⊕

(a) i = 2`.

Ai−1 = {}Ai = {0}

≫ 2` ⊕

{2`}
≫ 0 ⊕

{0, 2`}
≫ 2`+1 ⊕

{2`, 2`+1, 2` + 2`+1}
≫ 0 ⊕

(b) i = 2`+ 1.

Figure 11: Truncated differentials in GMiMCmrf with 1 active branch (on the left) in the
input.

Ai−1 = {0}Ai = {}

≫ 0 ⊕

{0}
≫ 2` ⊕

{0, 2`}
≫ 0 ⊕

{(0), 2`}
≫ 2`+1 ⊕

(a) i = 2`.

Ai−1 = {0}Ai = {}

≫ 2` ⊕

{0}
≫ 0 ⊕

{0}
≫ 2`+1 ⊕

{0, 2`+1}
≫ 0 ⊕

(b) i = 2`+ 1.

Figure 12: Truncated differentials in GMiMCmrf with 1 active branch (on the left) in the
input.

D.2 Impossible Differential Cryptanalysis

As done in Section 4.2, we construct an impossible differential by combining two (truncated)
differentials that do not match in the middle.

GMiMCerf . A probability-one differential exists for a maximum of t− 1 rounds of the
cipher, which is given as follows:

(0, . . . , 0, α)→ (0, . . . , 0, α, 0)→ . . . (α, 0, . . . , 0).

45

This differential can be extended to a probability-one truncated differential for t rounds as
follows:

(0, . . . , 0, α) t−1 rounds−−−−−−−→ (α, 0, . . . , 0) 1 round−−−−−→ (∗, ∗, . . . , ∗, α).

This probability-one differential allows us to construct an impossible differential for 2t− 2
rounds, as depicted below:

(0, . . . , 0, α) Rt−1(·)−−−−−→
prob. 1

(α, 0, . . . , 0) 6= (0, . . . , 0, β) Rt−1(·)←−−−−−
prob. 1

(β, 0, . . . , 0)

for α, β 6= 0. Conservatively, 2t rounds will be secure against meet-in-the-middle attack-
s/distinguishers for the case κ = n, while (2t− 2) + (t+ 1) = 3t− 1 rounds will be secure
against meet-in-the-middle attacks/distinguishers for the case κ = t · n.

GMiMCNyb There exists a probability-one truncated differential for a maximum of t− 1
rounds of this construction (with t = 2t′ branches). This is described as follows:

(0, α, 0, ..., 0)→ (α, 0, 0, ..., 0)→ (∗, 0, ..., 0, α)→ (∗, 0, ..., 0, α, ∗)→ ...→ (∗, 0, ∗, ..., ∗)

where α 6= 0.
Using the probability-one truncated differentials similarly as described above, we can

construct impossible differentials for GMiMCNyb. This will allow us to attack 2(t − 1)
rounds of the cipher. Hence, the number of iterations to protect the cipher against such
attacks must be at least 2t for the case κ = n, and 2t+ 1 for the case κ = t · n.

GMiMCmrf . As shown in Theorem 1, one call to GMiMCmrf with rotation sequence
{0, 1, 0, 2, 0, 4, ...} provides full diffusion after Λ(t) = 2 log2(t) rounds. The same holds if
one works in the decryption mode of GMiMCmrf .

As a result, using the probability-one truncated differentials described above, we can
construct impossible differentials for GMiMCNyb that cover 2 · (Λ(t) − 1) rounds of the
cipher. Hence, the number of iterations to protect the cipher against such attacks must be
at least 2 · Λ(t) for the case κ = n, and 2 · Λ(t) + 1 for the case κ = t · n.

E Field Arithmetic
Here we present an example of how Generalized Mersenne primes (or Solinas primes) are
used to implement the signature scheme. Let p64 = 264 − 28 − 1 be the prime number
used for modular arithmetic in a 64-bit prime field. Note that gcd(p64 − 1, 3) = 1, which
is a requirement in order for f(x) = x3 to be a permutation. The idea of the reduction
method is based on the fact that p64 can be represented as f(t) = t8 − t− 1, where t = 28.
By calculating the residues of t15, t14, . . . , t8 (mod f(t)) and storing their coefficients as
rows in a (n× n)-matrix X where n = 8, following holds for i = 0, 1, . . . , 7:

t8+i ≡
7∑
j=0

(X[i, j]× tj) (mod f(t)).

Now let r = (r15‖r14‖ . . . ‖r0) be the result of a multiplication of two 64-bit integers, where
each ri is a 8-bit quantity. Then

r =
15∑
i=0

(ri × ti) ≡
7∑
i=0

(zi × ti) (mod f(t)),where

(z0 . . . z7) = (r0 . . . r7) + (r8 . . . r15) ·X.

46

With p64 = t8 − t− 1 we have

15∑
i=0

(ri × 28i) ≡
7∑
i=0

(zi × 28i) (mod p64).

This method uses (log2(t))-bit parts of r and in order to reduce the number of steps, in
most cases it is wise to choose f(t) such that the number of bits is maximized. A more
detailed description of how these equations are used to achieve a constant-time reduction
algorithm for a specific prime number is given in [72].

For example, let p65(z) = z65 + z4 + z3 + z + 1 be the irreducible polynomial used
for computations in a 65-bit binary field. The degree of p65 is odd, which again makes
f(x) = x3 a permutation. Given a (2k − 1)-bit product r of two k-bit polynomials, where
k = 65, following equations hold:

z65 ≡ z4 + z3 + z + 1 (mod p65(z)),
z66 ≡ z5 + z4 + z2 + z (mod p65(z)),

...
z128 ≡ z67 + z66 + z64 + z63 (mod p65(z)).

The coefficients of z65, z66, . . . , z128 are stored in the most significant 64 bits of the product
and can be reduced by adding them consecutively to bits 4, 3, 1, and 0 of r. Reduction is
performed one word at a time, starting from the most significant word, which means that
some of r’s most significant 64 bits need to be added to themselves first. This method is
further described in [48], where examples are given for reduction polynomials recommended
by NIST.

F GMiMCerf - Number of Rounds in Low-Data Scenario
In Section 6, we propose the formula

r ≥
⌈
1.262 · n− 4 · log3(n)

⌉
+3t+ 3

in order to compute the number of rounds of GMiMCerf in the low-data scenario. Here we
give more argumentation about this fact. We emphasize that we focus on PQ signature
applications, and that the previous formula has been derived by combining the results
provided by the GCD attack and the one provided by the SageMath code provided in
Appendix G (in order to estimate Gröbner Basis attack)24.

Our results are summarized in the previous table, where we highlight the minimum
number of rounds in order to protect GMiMCerf against the GCD attack, the Gröbner
Basis attack and against a generic attack (using the previous formula). Since we consider
GMiMCerf for PQ signature applications in the low-data scenario for N = 128, 192, 256,
we limit ourselves to focus on these cases and we highlight the parameter “Total Number
of Multiplications (≡ number of rounds r) × Field Size (≡ branch size n)”. We emphasize
that this parameter is minimal when the branch size n is minimized (that is, n = 3).

24The results provided by the Sage function proposed in Appendix G are only based on the degree of
the considered function. For the particular case of GMiMCerf , it is crucial to add 2t− 6 rounds due to the
attack described in detail in Appendix C.4.

47

Table 7: Number of rounds for GMiMCerf in the low-data scenario. n denotes the branch
size, t denotes the number of branches (N = n × t), “r (GCD)” denotes the minimum
number of rounds to guarantee security against the GCD attack, “r (Gröbner)” denotes
the minimum number of rounds to guarantee security against the Gröbner Basis Attack,
and “Number of Rounds r” denotes the minimum number of rounds to provide security
against any attack. For PQ signature applications, we also highlight the parameter “Total
Number of Multiplications × Field Size”, and we emphasize the minimum value for each
N .

N n t r (GCD) r (Gröbner) Number of Rounds r r× t

128
3 43 126 129 132 396

5 26 76 78 82 410

9 15 46 47 52 414

192
3 64 189 192 195 585

5 39 115 117 121 605

9 22 67 68 73 657

256
3 86 255 258 261 783

5 52 154 156 160 800

9 29 88 89 94 846

48

G Low-Data Gröbner Basis Attack
The following SageMath code returns the complexity of the Gröbner Basis attack on
GMiMC. Such a function is especially used in the low-data attacks in order to estimate
Dreg.
"""
Parameter estimation for Groebner basis attacks on GMiMC
"""

Nicked from LWE Estimator

from collections import OrderedDict

class Cost:
"""
Algorithms costs .
"""

def __init__ (self , data=None , ** kwds):
"""

: param data: we call ‘‘OrderedDict (data)‘‘

"""
if data is None:

self.data = OrderedDict ()
else :

self.data = OrderedDict (data)

for k, v in kwds. iteritems ():
self.data[k] = v

def str(self , keyword_width =None , newline =None , round_bound =2048 , compact = False):

format_strings = {u"beta": u"%s: %4d", u"d": u"%s: %4d",
"b": "%s: %3d", "t1": "%s: %3d", "t2": "%s: %3d",
"l": "%s: %3d", "ncod": "%s: %3d", "ntop": "%s: %3d", " ntest ": "%s: %3d"}

d = self.data
s = []
for k in d:

v = d[k]
kk = k
if keyword_width :

fmt = u"%%% ds" % keyword_width
kk = fmt % kk

if not newline and k in format_strings :
s. append (format_strings [k]%(kk , v))

elif ZZ (1)/ round_bound < v < round_bound or v == 0 or ZZ (-1)/ round_bound > v > -round_bound :
try:

if compact :
s. append (u"%s: %d" % (kk , ZZ(v)))

else :
s. append (u"%s: %8d" % (kk , ZZ(v)))

except TypeError :
if v < 2.0 and v >= 0.0:

if compact :
s. append (u"%s: %.6f" % (kk , v))

else :
s. append (u"%s: %8.6f" % (kk , v))

else :
if compact :

s. append (u"%s: %.3f" % (kk , v))
else :

s. append (u"%s: %8.3f" % (kk , v))
else :

t = u"%s2 ^%.1f" % ("-" if v < 0 else "", log(abs(v), 2).n())
if compact :

s. append (u"%s: %s" % (kk , t))
else :

s. append (u"%s: %8s" % (kk , t))
if not newline :

if compact :
return u", ".join(s)

else :
return u", ".join(s)

else :
return u"\n".join(s)

def reorder (self , first):
keys = list (self.data)
for key in first :

keys.pop(keys. index (key))
keys = list (first) + keys
r = OrderedDict ()
for key in keys:

r[key] = self.data[key]
return Cost(r)

def filter (self , keys):
r = OrderedDict ()
for key in keys:

r[key] = self.data[key]
return Cost(r)

def repeat (self , times , select =None , lll=None):
TODO review this list

49

do_repeat = {
u"rop": True ,
u"red": True ,
u" babai ": True ,
u" babai_op ": True ,
u" epsilon ": False ,

u"mem": False ,
u" delta_0 ": False ,
u"beta": False ,
u"k": False ,
u" D_reg ": False ,
u"t": False ,
u"m": True ,
u"d": False ,
u"|v|": False ,
u" amplify ": False ,
u" repeat ": False , # we deal with it below
u"c": False ,

}

if lll and self["red"] != self["rop"]:
raise ValueError (" Amplification via LLL was requested but ’red ’ != ’rop ’")

if select is not None:
for key in select :

do_repeat [key] = select [key]

ret = OrderedDict ()
for key in self.data:

try:
if do_repeat [key]:

if lll and key in ("red", "rop"):
ret[key] = self[key] + times * lll

else :
ret[key] = times * self[key]

else :
ret[key] = self.data[key]

except KeyError :
raise NotImplementedError (u"You found a bug , this function does not know about ’%s’ but should ."%key)

ret[u" repeat "] = times * ret.get(" repeat ", 1)
return Cost(ret)

def __rmul__ (self , times):
return self. repeat (times)

def combine (self , right , base=None):
""" Combine ‘‘left ‘‘ and ‘‘right ‘‘.

: param left: cost dictionary
: param right : cost dictionary
: param base: add entries to ‘‘base ‘‘

"""
if base is None:

cost = Cost ()
else :

cost = base
for key in self.data:

cost[key] = self.data[key]
for key in right :

cost[key] = right .data[key]
return Cost(cost)

def __add__ (self , other):
return self. combine (self , other)

def __getitem__ (self , key):
return self.data[key]

def __setitem__ (self , key , value):
self.data[key] = value

def __iter__ (self):
return iter (self.data)

def values (self):
return self.data. values ()

def __str__ (self):
return self.str(compact =True)

def __repr__ (self):
return self.str(newline =True , keyword_width =12)

Parameter estimation

@cached_function
def have_magma ():

try:
magma (1)
return True

except TypeError :
return False

def degree_of_regularity (n, D):
"""
Degree of regularity estimation .

: param n: number of variables ‘n > 0‘

50

: param D: tuple of ‘(d,m)‘ pairs where ‘m‘ is number polynomials and ‘d‘ is a degree
: param omega : linear algebra exponent , i.e. matrix - multiplication costs ‘O(n^ omega)‘ operations .

"""

m = sum(m_ for D_ ,m_ in D)

if m <= n:
regular sequence case
Theorem 3 in http :// magali . bardet .free.fr/ Publis / bardet_et_all_MEGA05 .pdf.
return sum(m_ *(D_ -1) for D_ , m_ in D) + 1

prec = 8192

if have_magma ():
R = magma . PowerSeriesRing (QQ , prec)
z = R.gen (1)
coeff = lambda f, d: f. Coefficient (d) # noqa

else :
R = PowerSeriesRing (QQ , "z", prec)
z = R.gen ()
coeff = lambda f, d: f[d] # noqa

s = 1
for d, m in D:

s *= (1-z**d)**m

s = s / (1-z)**n

for dreg in range (prec):
if coeff (s, dreg) < 0:

return dreg
else :

return prec

def gb_cost (n, dreg , omega =2):
"""
Estimate the complexity of computing a Groebner basis .

: param n: number of variables ‘n > 0‘
: param dreg: presumed degree of semi - regularity
: param omega : linear algebra exponent , i.e. matrix - multiplication costs ‘O(n^ omega)‘ operations .

"""
return binomial (n + dreg , dreg)** omega

def estimate (n, l, t, d, m=Infinity , omega =2, target_security_level =None):
""" Estimate cost of breaking GMiMC using GBs.

: param n: bit -size of base field
: param l: number of elements in the key , the key size - n*l
: param t: number of branches in the Feistel network
: param d: degree of *meet -in -the - middle * polynomials
: param m: number of known pairs >= 1
: param omega : linear algebra constant

"""
best = None

for kappa in range (l)[:: -1]:
if m is Infinity or l- kappa <= 1:

dreg = min(d, 2**n)
else :

dreg = degree_of_regularity (l-kappa , ((d,m*t) ,(2**n,l)))
if kappa :

dreg -= 1
current = Cost ()
if l- kappa > 1:

current ["rop"] = 2**(n* kappa) * gb_cost (l-kappa , dreg , omega)
elif l- kappa == 1:

current ["rop"] = 2**(n* kappa) * d*log(d ,2)**2
else :

current ["rop"] = 2**(n* kappa) * d # guessing

current [" kappa "] = kappa
current ["d"] = d
current ["D_{reg}"] = dreg
if get_verbose () >= 2:

print current .str ()
if best is None or current ["rop"] < best["rop"]:

best = current
if target_security_level and best["rop"] < 2** target_security_level :

break

return best

def estimate_erf (n, t, r, l=None , m=1, omega =2, target_security_level =None):
if l is None:

l = t
if (r//2 - t) >= 0:

d = ZZ (3)**(r//2 - t)
else :

d = 1
ret = estimate (n=n, l=l, t=t, d=d, m=m, omega =omega , target_security_level = target_security_level)
ret["n"] = n
ret["t"] = t
ret["r"] = r
ret["n*r"] = n*r
return ret

def find_r_est (n, t, security_level , m=1, omega =2):
for r in range (2*t+2, 2*t+32 , 2):

51

current = estimate_erf (n=n, t=t, r=r, m=m, omega =2, target_security_level = security_level)
if get_verbose () >= 1:

print current .str ()
if current ["rop"] > 2** security_level :

return current

N = 128 (low data), assuming one pair

"""
print find_r_est (n=3, t=43 , security_level =128)
print find_r_est (n=5, t=26 , security_level =128)
print find_r_est (n=9, t=15 , security_level =128)
print find_r_est (n=17 , t=8, security_level =128)
print find_r_est (n=33 , t=4, security_level =128)
"""

"""
print find_r_est (n=3, t=64 , security_level =192)
print find_r_est (n=5, t=39 , security_level =192)
print find_r_est (n=9, t=22 , security_level =192)
print find_r_est (n=17 , t=12 , security_level =192)
print find_r_est (n=33 , t=6, security_level =192)
"""

"""
print find_r_est (n=3, t=86 , security_level =256)
print find_r_est (n=5, t=52 , security_level =256)
print find_r_est (n=9, t=29 , security_level =256)
print find_r_est (n=17 , t=16 , security_level =256)
print find_r_est (n=33 , t=8, security_level =256)
"""

Experimental Verification

class GMiMC (object):
def __init__ (self , q, l, t, r, rf , s=0 x1337):

"""

: param q: order of base field
: param l: number of elements in the key
: param t: number of branches
: param r: number of rounds
: param rf: round function
: param s: seed used to generate round constants

"""
self.K = GF(q, "a")
self.R = PolynomialRing (self.K, l, "k")
self.kv = self.R.gens ()
self.l, self.t, self.r = l, t, r
self.rf = rf

with seed(s):
if rf in (GMiMC .crf , GMiMC .erf):

self.c = tuple ([self.K. random_element () for _ in range (self.r)])
elif rf in (GMiMC .nyb , GMiMC .mrf):

self.c = tuple ([tuple ([self.K. random_element () for _ in range (self.t //2)]) for _ in range (self.r)])
else :

raise ValueError

@staticmethod
def crf(state , k, c, i, final =False , reverse = False):

l = len(k)

state = list (state)
state [0] += (sum(state [1:]) + k[i%l] + c[i])**3

if not final and not reverse :
state = vector (state [1:] + [state [0]])

elif not final and reverse :
state = vector ([state [-1]] + state [: -1])

else :
state = vector (state)

return state

@staticmethod
def erf(x, k, c):

R = parent (x[0])
raise NotImplementedError

@staticmethod
def nyb(state , k, c, j, final =False , reverse = False):

l = len(k)

state = list (state)
t = len(state)

for i in range (t //2):
state [i] += (state [t-i -1] + k[(j*(t//2) + i)%l] + c[j][i])**3

if not final and not reverse :
state = vector ([state [-1]] + state [: -1])

elif not final and reverse :
state = vector (state [1:] + [state [0]])

else :
state = vector (state)

return state

@staticmethod

52

def mrf(x, k, c):
R = parent (x[0])
raise NotImplementedError

def __call__ (self , p, k):
l = len(self.kv)
state = p

for i in range (self.r):
state = self.rf(state , k, self.c, i, final =(i == self.r -1))

return state

def polynomial_system (self , m=2):
k = vector ([self.K. random_element () for i in range (self.R. ngens ())])

r2 = self.r//2

F = []

field = []
for k_ in self.kv:

field . append (k_ ** self.K. order () - k_)

for i in range (m):
p = vector (self.K, [self.K. random_element () for i in range (self.t)])
c = self(p, k)

lhs = p

for i in range (r2):
lhs = self.rf(lhs , self.kv , self.c, i)
lhs = vector ([f. reduce (field) for f in lhs])

rhs = c
for i in range (r2 , self.r)[:: -1]:

rhs = self.rf(rhs , self.kv , self.c, i, final =(i == r2), reverse =True)
rhs = vector ([f. reduce (field) for f in rhs])

F. extend (list (rhs -lhs))

F. extend (field)

return Sequence (F)

def gb_experiment (q, l, t, r, rf , m, s=0 x1337):
gmimc = GMiMC (q=q, l=l, t=t, r=r, rf= GMiMC .nyb , s=s)
F = gmimc . polynomial_system (m=m)
print "# polynomials : %3d"%len(F),
print ", degrees :",
for i in range (F. maximal_degree ()):

c = len ([f for f in F if f. degree () == i+1])
if c:

print "%d: %d,"%(i+1, c),
print "D_{reg }: %2d"%(F. ideal (). degree_of_semi_regularity ())
F = F. ideal (). interreduced_basis ()
print "# polynomials : %3d"%len(F),
print ", degrees :",
for i in range (F. maximal_degree ()):

c = len ([f for f in F if f. degree () == i+1])
if c:

print "%d: %d,"%(i+1, c),
print "D_{reg }: %2d"%(F. ideal (). degree_of_semi_regularity ())
return F

53

	Introduction
	Description of Generalized MiMC
	The Block Cipher GMiMC
	Hash Function

	Security Analysis
	Security Analysis – GMiMC instantiated over Fp
	Algebraic Attacks
	Statistical Attacks
	Quantum Improvements

	Security Analysis – GMiMC instantiated over F2n in the Low-Data Attacks
	Security Analysis — GCD Attacks

	Parameter-Space Exploration
	MPC/SNARK/PQ Signature Applications

	Application and Implementation
	MPC Setting
	SNARKs
	Post-Quantum Signatures

	Discussion
	Variants of the GMiMC family of ciphers
	A Permutation Round Function
	Different Round Functions

	Diffusion in GMiMC-MRF
	Security Analysis
	Interpolation Attack
	Higher-Order Differential in Fp
	Gröbner Basis Analysis
	GCD Attacks in F2n – Low-Data Scenario

	Security Analysis — Statistical Attacks
	Classical and Truncated Differential Cryptanalysis
	Impossible Differential Cryptanalysis

	Field Arithmetic
	GMiMC-ERF - Number of Rounds in Low-Data Scenario
	Low-Data Gröbner Basis Attack

