
Full Database Reconstruction with Access and
Search Pattern Leakage

Evangelia Anna Markatou and Roberto Tamassia

Brown University, Providence RI 02912, USA,
markatou@brown.edu, rt@cs.brown.edu

Abstract. The widespread use of cloud computing has enabled several
database providers to store their data on servers in the cloud and answer
queries from those servers. In order to protect the confidentiality of data
in the cloud, a database can be stored in encrypted form and all queries
can be executed on the encrypted database. Recent research results sug-
gest that a curious cloud provider may be able to decrypt some of the
items in the database after seeing a large number of queries and their
(encrypted) results. In this paper, we focus on one-dimensional databases
that support range queries and develop an attack that can achieve full
database reconstruction, inferring the exact value of every element in the
database. We consider an encrypted database whose records have values
from a given universe of N consecutive integers. Our attack assumes ac-
cess pattern and search pattern leakage. It succeeds after the attacker
has seen each of the possible query results at least once, independent of
their distribution. If we assume that the client issues queries uniformly at
random, we can decrypt the entire database with high probability after
observing O(N2 logN) queries.

1 Introduction

During the past decade, an increasing number of organizations have started to
outsource their computing infrastructure to cloud providers. This usually means
that they store their data in the cloud and run most of their applications, includ-
ing databases, in the cloud as well. Outsourcing data storage and computation to
the cloud has several advantages, including reliability, availability, and economies
of scale.

Unfortunately, outsourcing the IT infrastructure to the cloud has its draw-
backs as well. For example, an organization’s data may contain confidential in-
formation that should not be leaked to unauthorized third parties. Storing this
information outside the organization’s premises may be challenging, and in some
cases unfeasible, due to a multitude of business and regulatory constraints.

One way to deal with these restrictions and risks is to store data in the
cloud in encrypted form. Indeed, data leaks are no threat to encrypted data as
decryption is unfeasible without possession of the key. Besides malicious attacks,
encryption also protects data from “curious” eyes, including the cloud provider
itself.

Evangelia Anna Markatou and Roberto Tamassia

Unfortunately, even encrypted data is not safe from curious eyes when
searched upon. Indeed, previous work has demonstrated that an attacker who
monitors query results might be able to gain information about the data—even
when stored and transmitted in encrypted form. In particular, range queries
(queries that return database records with attribute values in a given interval)
are particularly susceptible, as they have the potential to leak information about
the data they access. Such information may include the order of the (encrypted)
records (i.e., which has larger and which has smaller value) as well as the actual
values of the (encrypted) records. This latter information essentially implies that
the database can be practically decrypted.

In this paper, we focus on encrypted one-dimensional databases that support
range queries on encrypted data. We assume an honest but curious attacker who
is able to monitor all (encrypted) queries and their (encrypted) results. We
develop an attack that can fully reconstruct the database after seeing enough
queries. The attack first reconstructs the order of all the (encrypted) database
elements and then reconstructs their values.

Our attack utilizes two common types of leakage, access pattern leakage and
search pattern leakage. Previous algorithms on the full database reconstruction
problem depend on access pattern leakage and on a client issuing queries from a
known distribution [8, 14], or only work on dense databases [18]. Also, some of
the previous work considers additional assumptions on the database, such as the
existence of points in particular intervals and/or a minimum distance between
such points [8]. However, it is unlikely that a client issues queries uniformly at
random in practical applications. Also, not all databases are dense. Finally, spe-
cial assumptions on nonempty intervals and minimum distance between points
may not hold.

We have developed a general attack on encrypted databases that achieves
full database reconstruction, recovering the exact values of all elements, after
seeing all possible query results.

1.1 Organization of the Paper

This paper presents an attack on encrypted databases that support range queries.
We assume that the attacker has observed all possible queries at least once. We
exploit access pattern leakage to achieve full ordering reconstruction (FOR),
that is, reconstruct the order of the database elements induced by their values
(but not the values themselves). Next, we exploit both access pattern leakage
and search pattern leakage to achieve full database reconstruction (FDR), that
is, we are able to reconstruct the exact value of all elements in the database.

After defining our model (Section 2) and reviewing related work (Section 3),
we present our algorithm for full ordering reconstruction in Section 4 and our al-
gorithm for full database reconstruction in Section 5. Finally, Section 6 concludes
the paper outlining directions for future work.

Full Database Reconstruction with Access and Search Pattern Leakage

1.2 Contributions

Previous attacks that achieve full database reconstruction (FDR) use access pat-
tern leakage and a client that issues queries according to a known distribution.
Our attack makes a different assumption. We do not assume that the client issues
queries in any particular distribution, but we do assume that the searchable en-
cryption scheme leaks the search pattern. Notably, typical searchable encryption
schemes do leak the search pattern.

We provide in Table 1 a comparison of our work with selected papers
[6, 8, 14, 18] on full database reconstruction (FDR) and full ordering recon-
struction (FOR) from range queries on one-dimensional encrypted databases.
For each approach, the table shows the assumptions on the leakage observed by
the attacker and knowledge of the query distribution by the attacker. Also, for
the scenario of a client that issues queries uniformly at random (a standard sce-
nario in the literature), the table shows the query complexity of FDR and FOR
attacks on various types of databases. As shown in the table, our method im-
proves or matches the query complexity reported in previous work, albeit under
different assumptions.

Table 1. Comparison of approaches to full database reconstruction (FDR) and
full ordering reconstruction (FOR) from range queries on one-dimensional encrypted
databases. We compare our work with three relevant papers in the area by showing
the assumptions on the attacker’s capabilities and the query complexity of the attack
for the case of a client that issues queries uniformly at random, highlighting the best
asymptotic bounds. The query complexity is expressed in terms of the size of the uni-
verse of database elements, N . The following types of databases are considered: “Any”
refers to an arbitrary database, “Dense” refers to a dense database, which has at least
one record for each possible value, and “Any∗” refers to the assumption introduced
in [6, 8] that requires the existence of values in particular intervals and/or forces a
minimum distance between such points.

Previous Work This Paper

Kellaris et
al. [14]

Lacharité et
al. [18]

Grubbs et
al. [6, 8]

Assumptions

Access Pattern Leakage X X X X
Search Pattern Leakage X(only FDR)

Known Distribution X(only FDR) X(only FDR)

Database / Problem

Dense / FDR O(N2 logN) N logN+O(N) O(N logN) O(N logN)

Any / FOR O(N2 logN) O(N2 logN)

Any∗ / FOR O(N2 logN) O(N logN) O(N logN)

Any / FDR O(N4 logN) O(N4 logN) O(N2 logN)

Any∗ / FDR O(N4 logN) O(N2 logN) O(N2 logN)

Evangelia Anna Markatou and Roberto Tamassia

The main contributions of this paper are summarized as follows, where N
denotes the size of the universe of database elements:

1. We show that we can achieve FOR after O(N2 logN) uniformly-at-random
queries with high probability (1− 1/N2) (Theorem 1).

2. We show that we can achieve FOR in a dense database after O(N logN)
uniformly-at-random queries with high probability (1− 3/N3) (Theorem 2).

3. For datasets that have two data points in [N/4, 3N/4] and their distance
is larger than N/3, we show that we can achieve FOR after O(N logN)
uniformly-at-random queries with high probability (1− 3/N3) (Theorem 3).

4. We show that we can achieve FDR after O(N2 logN) distinct queries with
high probability (1− 1/N2) (Theorem 4).

Kellaris et al. [14] have shown that there exist datasets which cannot be
distinguished by attackers that observe significantly fewer than O(N4) queries
chosen uniformly at random. However this lower bound works for attacks that
use access pattern or communication volume leakage. We use an additional type
of leakage, search pattern leakage, which allows us to achieve faster attacks.

2 Model and Problem Statement

We consider a client that stores information on an encrypted database hosted
by a server. The client issues range queries to the server using tokens, and the
server returns responses to the queries.

We define a database as a collection of n records, where each record (r, x)
comprises a unique identifier, r, from some set R, and a value x = val(r) from
an interval of integers X = [1, ..., N], which is the universe of database values.
A database is called dense if for all x ∈ X, the database contains some record
(r, x) such that val(r) = x. Note that there may be multiple records with the
same value. A range query [a, b], where a ≤ b are integers, returns the set of
identifiers M = {r ∈ R : val(r) ∈ [a, b]}.

The adversarial model we consider is a persistent passive adversary who is
able to observe communication between the client and the server. The adversary
aims to recover value val(r) for each identifier, r, in the database. Note that the
adversary is not able to decrypt any observed encrypted data. The information
learnt by the adversary depends on some scheme-dependent leakage.

We examine two types of common leakage:

– Access Pattern Leakage: If whenever the server responds to a query, the
adversary observes the set of all matching identifiers, M , we say that the
scheme allows for access pattern leakage. We assume that the identifier r
reveals no information on val(r).

– Search Pattern Leakage: If the adversary can observe search tokens and de-
termine whether two tokens, t1 and t2, correspond to the same range query,
we say that the scheme allows for search pattern leakage. Note that we do not
assume that a token reveals the query the client issues. That is, the token

Full Database Reconstruction with Access and Search Pattern Leakage

does not indicate the range [a, b]. We just assume that the adversary can
distinguish whether two query ranges are the same or different by observing
the corresponding tokens.

In this paper, we consider the following two problems and present efficient
algorithms for them.

Problem 1 (Full Database Reconstruction). (FDR) Given a one-dimensional en-
crypted database that allows range queries, reconstruct the exact value of all
elements.

Problem 2 (Full Ordering Reconstruction). (FOR) Given a one-dimensional en-
crypted database that allows range queries, reconstruct the order of all elements’
values.

Our algorithms assume that the adversary knows the size of the universe of
database values, N . Our FOR algorithm, presented in Section 4, assumes access
pattern leakage while our FDR algorithm, presented in Section 5, assumes both
access pattern leakage and search pattern leakage.

3 Related Work

3.1 Context

In this line of research we assume an honest but curious adversary. For example,
this can be the cloud server. The server can easily observe all incoming and
outgoing traffic and may possibly be able to draw conclusions about the values
that exist in the database. We assume that the adversary is honest: she will not
try to change the protocol, alter data, inject faulty information, collude with
malicious users, etc. The adversary just monitors (encrypted) data.

Given that data are stored in an encrypted form, one might be tempted
to think that it is not possible to decrypt them unless the decryption key can
be found. Unfortunately, this is not the case. If the database supports range
queries, an adversary who monitors the traffic is able to find some information
about the records observed. For example, one piece of information that can be
easily found is that all the results of a range query belong in the same range (by
definition) and are, in one way or another, “close” to each other. By observing
queries for a very long time, one might be able to infer which records are likely
to be in proximity of each other (e.g., those that frequently occur together in
query results) and which records are likely to be more distant from each other
(e.g., those which do not frequently occur together in query results).

Despite the availability of this approximate proximity information, the reader
will notice that all these records (whether nearby to or far-away from each other)
are still encrypted. Thus, the adversary might be able to know that encrypted(2)
is close to encrypted(3), but she can not know that the values observed are ac-
tually 2 and 3 as the adversary only sees encrypted(2) and encrypted(3). To

Evangelia Anna Markatou and Roberto Tamassia

be able to “break” the encryption, most of the literature makes some extra as-
sumptions, which usually relate to the query distribution. One frequent such
assumption made by several papers is that all range queries are issued uni-
formly at random by the client. That is, there are N(N + 1)/2 possible queries (
[1, 1], ..., [1, N], [2, 2], ..., [2, N], ..., [N − 1, N], [N,N]), and each one of them is is-
sued with probability 2

N(N+1) . Note that even though all queries are issued with

the same probability, some elements are queried more than others. Specifically,
elements close to the middle of the database are queried more than elements
towards the endpoints.

Our approach does not depend on the query distribution. Instead, we exploit
search pattern leakage, a common leakage of searchable encryption schemes. This
leakage allows us determine whether two search tokens correspond to the same
query. For example, suppose there are 100 distinct queries that all return {a},
and 4 distinct queries that all return {b}. We can tell that the unoccupied space
surrounding a is larger than the unoccupied space surrounding b.

3.2 Previous Results

In the following review of previous work in the area, we denote with N is the
size of the universe (interval) of database values.

A seminal paper by Kellaris, Kollios, Nissim, and O’Neill [14] is the first sys-
tematic study of the problems of full ordering reconstruction and full database
reconstruction from range queries. They prove that full database ordering can
be done with O(N2 logN) queries. This attack assumes that the adversary ob-
serves the answers to all possible queries. Thus, based on the coupon collector
problem, the assumption holds with high probability after O(N2 logN) queries.
They also show that full database reconstruction can be done with high proba-
bility after observing O(N4 logN) queries. Our work differs from [14] in the use
of data structures, Namely, we maintain the partial order of observed identifiers
in a PQ tree [1]. As we observe more queries, we gain more information about
the ordering of the identifiers, which is efficiently maintained in the PQ-tree.
Eventually, once we observe all queries, we have a fully ordered set (up to reflec-
tion). With respect to query complexity, for full database ordering, we match
the O(N2 logN) bound of [14]. Also, we achieve full reconstruction after seeing
O(N2 logN) queries, while the approach by [14] needs Ω(N4 logN) queries. We
obtain this improvement thanks to our assumption of search pattern leakage,
which allows us to count the distinct queries that have been issued, while the
method of [14] is based on the statistical properties of the query distribution.

Lacharité, Minaud and Paterson [18] focus on the reconstruction of a dense
database, i.e., a database for which there exists at least one record for each pos-
sible value in the universe of values, [1, N]. Using this density assumption, they
achieve an impressive speedup in the query complexity of the attack. Indeed, they
achieve full database reconstruction from access pattern leakage after observing
O(N logN) uniformly at random queries. We are able to match this bound by
using a datastructure called a PQ tree[1]. Note that neither their method nor
ours assumes knowledge of the query distribution by the adversary.

Full Database Reconstruction with Access and Search Pattern Leakage

The recent work by Grubbs, Lacharité, Minaud and Paterson [6, 8] presents
a comprehensive approach to database reconstruction. They generalize the
problem by introducing a new approximate way of reconstruction, called ε-
approximate database reconstruction (ε-ADR). In this model, ε is the error the
attack is allowed to have in the reconstruction. That is, for each original value x,
the reconstructed value is in the interval [x−εN, x+εN]. Note that full database
reconstruction (FDR) is the special case of ε-ADR achieved by setting ε = 1/N .
Regarding data structures, our use of PQ-trees is similar to theirs. To compare
our FDR attack to theirs, we set the approximation parameter ε in their ε-ADR
model equal to 1/N and consider the standard scenario of queries issued uni-
formly at random. They achieve FDR on an arbitrary database with O(N4 logN)
queries using access pattern leakage. Instead, we obtain FDR with O(N2 logN)
queries using both access pattern leakage and search pattern leakage. They fur-
ther achieve FDR with O(N2 logN) queries under the additional assumption
that the database has a record with value in the interval [0.2N, 0.3N].

Regarding ordering reconstruction, they are able to achieve FOR with
O(N logN) queries under the following additional assumption on the database
values: there are two values in range [N/4, 3N/4] and their distance is larger
than N/3. Note that this implies that FDR can also be achieved in dense
databases with O(N logN) queries.

Note that Grubbs et al. [6, 8] as well as Lacharité et al. [18] are also able
to achieve approximate database reconstruction assuming access to an auxil-
iary distribution for the database values. Our work focuses on exact database
reconstruction, not approximate, and thus this result is less relevant.

There have been plenty of attacks on different types of leakage as well. Ko-
rnaropoulos, Papamanthou and Tamassia [15] developed an approximate recon-
struction attack utilizing leakage from k-nearest neighborhood queries. Grubbs,
Lacharité, Minaud, and Paterson [7] utilize volume leakage from responses to
range queries to achieve full database reconstruction. Grubbs, Ristenpart, and
Shmatikov [10] present a snapshot attack that can break the claimed security
guarantees of encrypted databases. While most of the above attack papers as-
sume that the client issues queries uniformly at random, in recent work, Ko-
rnaropoulos, Papamanthou and Tamassia [16, 17] develop distribution-agnostic
reconstruction attacks from range and k-nearest neighbor (k-NN) queries using
search pattern leakage.

There are also attacks on property-revealing-encryption schemes (which re-
veal more information than we assume) and attacks that assume a more active
adversary [2, 5, 9, 11, 19, 20].

4 Full Ordering Reconstruction

In this section, we present our algorithm for full ordering reconstruction, which
infers the order of the database records by value. The algorithm uses access
pattern leakage, but not search pattern leakage.

Evangelia Anna Markatou and Roberto Tamassia

4.1 Approach

The ordering reconstruction algorithm is based on the following observation.
Suppose we have two query responses, M1 and M2, each consisting of the set of
identifiers of a query response. Let B = M1∩M2, A = M1−B, and C = M2−B.
We have M1 = A ∪ B and M2 = B ∪ C, where A and C are disjoint. as shown
in Figure 1.

A C

B

Fig. 1. Intersection and differences between two range query responses, M1 and M2,
where B = M1 ∩M2, A = M1 −B, and C = M2 −B.

Then, there can be only two correct (partial) orderings of the elements in M1

and M2 by value: (i) A, followed by B, followed by C or (ii) C, followed by B,
followed by A, as illustrated in Figure 2.

CBA

or

ABC

Fig. 2. The two possible ordering of the elements in the query responses M1 = A∪B
and M2 = B ∪ C from Figure 1.

The above observation serves as a building block of our algorithm for ordering
the elements of the database. That is, every time we see two query results that
have a non-empty intersection, we know that there are two ordering possibilities:
the one reflection of the other. Suppose now that we see a query result M3 =
B ∪ A1 and that A1 ∪ A2 = A. Then, we refine the ordering as follows: A1

followed by A2, followed by B, followed by C, or C followed by B, followed by
A1, followed by A2. It seems that most query results we see have the potential
to refine this partial ordering, possibly until the point where all elements will
have been ordered.

Full Database Reconstruction with Access and Search Pattern Leakage

Although keeping and maintaining this partial ordering may seem compli-
cated, fortunately, Booth and Lueker [1] designed a data structure that does
just that: maintains a partial ordering of a set of elements. The data structure
is called a PQ tree.

PQ Trees A PQ tree is a data structure that can efficiently store all permissible
permutations of a set of elements.

A PQ tree is built from three types of nodes, P nodes, Q nodes, and leaf
nodes:

1. Leaf node. A leaf node stores a single element and has no children.
2. P node. The children of a P node can assume any ordering. (Similar to a

set.)
3. Q node. The children of a Q node can assume only the ordering they are in,

or the reverse order. (Similar to an ordered list.)

To use a PQ tree, one first creates a root P node that contains all elements as
children leaf nodes. Then, the PQ tree can consume sets of elements that need to
be contiguous and modify itself to represent these requirements, by reorganizing
the leaf nodes in P and Q nodes as appropriate. The order is fully reconstructed
if the PQ tree contains one Q node, whose children are all leaves.

Each range response is essentially a set of identifiers that are all contigu-
ous. The PQ tree can consume these range responses to identify all permissible
permutations of the ordering of the identifiers.

4.2 Algorithm

We show in Algorithm 1 our method for full ordering reconstruction. Similarly to
[3] and [8], we use PQ trees [1] to store the partial ordering of the set of database
elements. The adversary initializes a PQ tree. Then, it feeds it sets of identifiers
as answers to queries are observed. For each answer set, M , the PQ tree updates
the partial order of the identifiers seen so far in time proportional to the size
of M by means of operation update(M) The details of operation update can be
found in [1].

Note that in this work, much like all previous papers, we are not concerned
with the computational complexity of the algorithms we use (as long as it is
within reasonable polynomial bounds), but with the number of queries needed
to achieve the database order/value reconstruction necessary. At every point the
adversary has access to all allowable permutations of the identifiers using the
PQ-tree.

Algorithm 1 Full Ordering Reconstruction

1: Initialize an empty PQ-tree, T
2: while a new answer set M is observed do
3: T.update(M)

Evangelia Anna Markatou and Roberto Tamassia

4.3 Query Complexity Analysis

The query complexity of our FOR algorithm is summarized in the following
theorem.

Theorem 1. Using access pattern leakage, Algorithm 1 reconstructs the order
of the database identifiers with respect to their values after observing 2.1N2 logN
uniformly at random issued queries, with probability greater than 1−1/N2, where
N is the size of the universe of database values.

Proof. There are N(N+1)/2 possible queries. Given that queries come uniformly
at random, the probability that a given query is not issued after 2.1N2 logN
queries is (

1− 2

N(N + 1)

)2.1N2 logN

≤ 1

e4 logN
≤ 1

N4
.

By Union Bound, the probability that at least one query is not issued after
2.1N2 logN queries is at most

N(N+1)/2∑
i=1

1

N4
≤ N(N + 1)

2N4
≤ 1

N2
.

Thus, after 2.1N2 logN queries, all queries will have been issued with prob-
ability greater than 1− 1

N2 .
ut

Note that Algorithm 1 works with any query distribution—not just with
uniform ones. In the theorem above, we have made the assumption that the client
issues queries uniformly at random so as to be able to compare our results with
the results previously reported in the literature which make this assumption.

4.4 Lower Bound

Lemma 1. Let A be an adversary that can reconstruct the order of the records
with only access to access pattern leakage. If the client queries ranges uniformly
at random, then adversary A needs to observe Ω(N2) queries before successfully
completing the reconstruction in expectation.

Proof. We are going to base our proof on a database that is difficult to recon-
struct. Suppose we have the following database:

1 2 N − 1 N

K L M N

The only element values in it are 1,2, N − 1 and N . That is we have one small
cluster at 1,2 and one small cluster at N − 1, and N .

Full Database Reconstruction with Access and Search Pattern Leakage

Given that adversary A only has access to access pattern leakage, the possible
sets A can observe are:

{K}, {L},{M}, {N}
{K,L}, {L,M}, {M,N}
{K,L,M},{L,M,N}

{K,L,M,N}

Given that the queries come uniformly at random, A will be able to tell that K
and L are clustered together and that M and N are also clustered together rel-
atively quickly. What drives this lower bound is that one of {L,M}, {K,L,M},
and {L,M,N} is necessary in order to glue the two clusters together.

Note that there are O(N2) possible queries. The only query that returns
{L,M} is [2, N −1], the only query that returns {K,L,M} is [1, N −1], and the
query that returns {L,M,N} is [2, N].

The probability that a random query is either one of those is 3
O(N2) = 1

O(N2) .

Thus, Adversary A has to observe at least Ω(N2) queries to access one of the
necessary results in expectation.

ut

4.5 Dense Databases

For dense databases, reconstructing the ordering of the elements corresponds
to a full reconstruction of the database (up to reflection). In this setting, Algo-
rithm 1 matches the best previously known complexity for dense full database
reconstruction [6, 8, 18].

Theorem 2. Suppose an attacker uses Algorithm 1 to reconstruct a dense
database. Then, the attacker can reconstruct the database after the client is-
sues 8.2N logN + 4 logN uniformly at random queries with probability greater
than 1− 3

N3 , where N is the size of the database.

Proof. First, let’s split the database in two equal parts, A and B.

0 NN/2

A B

By Lemma 2, after 4.1N logN uniformly at random queries, for each value
a ∈ A, the client issues a query [a, b], for some b ∈ B with high probability.

Let’s look at the first 2 records in A, rA1
and rA2

. By Lemma 2, the attacker
will see some response that contains {rA1 , rA2 ,}, and a response that con-
tains {rA2 ,}. Note that {rA1 , rA2 ,} contains all records in A, and {rA2 ,}
contains all elements in A besides rA1

.

0 rA1
rA2 NN/2

Evangelia Anna Markatou and Roberto Tamassia

Given the two responses the PQ tree will be able to at least tell that rA1
is

to the left (or to the right) of rA2
and all the other elements in A.

Similarly, given some rAk
, and rAk+1

, the attacker sees responses
{rAk

, rAk+1,}, and a response that contains {rAk+1
,}. When she updates

the PQ tree with the responses, the PQ tree will again be able to tell that rAk

is to the left (or to the right) of rAk+1
and all the other elements in A higher

than rAk+1
.

In this way, the attacker can order all elements in A, and get

rA1
− rA2

−− rAmax
.

The attacker knows this order, but doesn’t know if rA1 or rAmax is the smallest
element. Using a similar argument, accompanied by Lemma 3, the attacker can
order all elements in B.

rB1 − rB2 −− rBmax .

With only the above information, the PQ tree will be equivalent to one whose
root will have two children P nodes. The first P node will contain the elements
in A and the second P node will contain the elements in B.

It remains to show that the PQ tree can connect the two together. According
to Lemma 4, the client will issue some query [a, b], which is not of the form
[N/2 − i,N/2 + i + 1], and starts in A − {1} and ends in B − {N}. As the
database is dense, this query will result to a set S that contains some records
from A and some records from B. Importantly, this query doesn’t query 1 or N ,
and breaks the symmetry if all other queries were of the form [N/2−i,N/2+i+1].
Because the query returns only a subset of A and a subset of B, the PQ tree is
able to deduce that rAmax and rB1 are contained in S, and thus must be next
to each other. Thus, the PQ tree will return the following order:

rA1
− rA2

−− rAmax
− rB1

− rB2
−− rBmax

.

Thus, we conclude by Union Bound, that after 8.2N logN + 4 logN queries
the attacker can reconstruct the dense database with probability greater than
1− 3

N3 .
ut

Below, we prove the Lemmas used above.

Lemma 2. After 4.1N logN uniformly at random queries, for each value a ∈ A,
the client issues a query [a, b], for some b ∈ B with probability greater than 1− 1

N3 .

Proof. Let’s look at one value a ∈ A. There are N/2 values b ∈ B. The proba-
bility that a single query issued is of the form [a, b] is

N/2

N(N + 1)/2
=

1

N + 1
.

Full Database Reconstruction with Access and Search Pattern Leakage

After 4.1N logN queries, the probability that no query is of the desired form
is (

1− 1

N + 1

)4.1N logN

≤ 1

e4 logN
≤ 1

N4
.

Now, let’s look at every a ∈ A. After 4.1N logN queries, by Union Bound
the probability that for at least one a the client doesn’t issue a query of the form
[a, b] is less than

N · 1

N4
≤ 1

N3
.

ut

Lemma 3. After 4.1N logN uniformly at random queries, for each value b ∈ B,
the client issues a query [a, b], for some a ∈ A with probability greater than 1− 1

N3 .

The proof follows similarly to Lemma 2.

Lemma 4. After 4 logN uniformly at random queries, the client issues a query
[a, b] that is not of the form [N/2 − i,N/2 + i + 1], for some a ∈ A − {1},
b ∈ B − {N}, and i ∈ [1, N/2), with probability greater than 1− 1

N3 .

Proof. There are N/2 − 1 desirable queries that start on each a ∈ A − {1}, as
one of them is not of the desired form. Thus, there are (N

2 − 1)(N
2 − 1) queries

of desired form.
Thus, the probability that a query issued is not of the form [N/2− i,N/2 +

i+ 1] is
(N
2 − 1)(N

2 − 1)
N(N+1)

2

≤ 1

4
,

for N > 8. Thus, the probability that after 3 logN issued queries the client only
issued undesirable queries is less than(1

4

)4 logN

≤ 1

N3
.

ut

4.6 Databases with Special Properties

Grubbs et al. [8] assume that the database contains two records a, b ∈
[N/4, 3N/4], such that b − a ≥ N/3, and there are at least three records in
the database, at least 1 apart.

Theorem 3 shows that Algorithm 1 matches Grubbs et al. [8] query complex-
ity.

Theorem 3. Suppose an attacker uses Algorithm 1 to reconstruct a database
similar to the one in [8]. Then, the attacker can reconstruct the database after
the client issues 14.4N logN uniformly at random queries with probability greater
than 1− 3

N3 , where N is the size of the database.

Evangelia Anna Markatou and Roberto Tamassia

Proof. Similarly to the proof of Theorem 2, the attacker will be able to recon-
struct the order of the two halves in the database after 8.2N logN queries. It
remains to show that she can combine them together successfully.

Like [8], we assume that the database contains two records a, b ∈ [N/4, 3N/4],
such that b− a ≥ N/3. Thus, a ∈ A and b ∈ B.

a ba0 N

Like [8], we also assume that there is at least one more point in the database.
This point c can be in one of three intervals, in [0, val(a)], [val(a), val(b)], or in
[val(b), N].

1. c ∈ [0, val(a)]

a bc a0 N

In this case, the attacker knows that a and c are in A, and b is in B. To
resolve the ordering, the attacker needs to observe set {a, b}, in order to
determine that c is not between a and b.

Note that even if a and c were right next to each other there are at least
N/4 possible queries that return {a, b}.

2. c ∈ [val(a), val(b)]

a bca0 N

Without loss of generality, let’s assume that the attacker knows that c
is in B. In order to resolve this, the attacker has to observe some query
that returns {a, c}. No matter how close a and c are, there are at least
N/4 queries that return {a, c}. They are of the form [x, val(c)], where
x ∈ [0, val(a)].

3. c ∈ [val(b), N]

a b ca0 N

This is similar to the first item. There are at least N/4 queries that return
a query whose result is {a, b}.

Full Database Reconstruction with Access and Search Pattern Leakage

In all cases above, there are at least N/4 queries that can resolve the ordering.
The probability that none of the queries issued after 6.2N logN queries is of the
desired form is(

1− N/4

N(N + 1)/2

)6.2N logN

=
(

1− 1

2(N + 1)

)6.2N logN

≤ 1

e3.1 logN

≤ 1

N3

Thus, after 14.4N logN queries the adversary will successfully reconstruct the
order of the database with probability greater than 1− 3

N3 .
ut

5 Full Database Reconstruction

In this section, we present our algorithm for full database reconstruction, which
infers the values of the database records. The algorithm uses both access pattern
leakage and search pattern leakage. It assumes that Algorithm 1 for full ordering
reconstruction has been already executed, hence the attacker knows the ordering
of the n database records by value, r1, r2, · · · , rn. By using search pattern leak-
age, the attacker counts the number of distinct queries observed until this count
reaches N(N + 1)/2, where N is the size of the universe of database elements.
This occurs when the attacker has seen all possible queries.

5.1 Example

Suppose the server is hosting a database with records r1, r2, r3, and r4, as shown
in Figure 3.

1 N

r1 r2 r3 r4

l0 l1 l2 l3 l4

Fig. 3. Example of a database with four records with values in the interal [1, N].

At this stage we assume that the attacker has already found the order of the
records (up to reflection) and now is trying to determine the distances between
consecutive records, denoted
l0 (distance between 1 and r1),
l1 (distance between r1 and r2),
l2 (distance between r2 and r3),
l3 (distance between r3 and r4), and
l4 (distance between r4 and N).

To determine l0 and l1 we focus on all the possible range queries that return
(only) r1 as a response. These queries are as follows:

Evangelia Anna Markatou and Roberto Tamassia

[1, l0], [1, l0 + 1], . . . , [1, l0 + l1 − 1]

[2, l0], [2, l0 + 1], . . . , [2, l0 + l1 − 1]

· · ·
[l0, l0], [l0, l0 + 1], . . . , [l0, l0 + l1 − 1]

The number of the above queries is l0 · l1. In other words, there exist exactly
l0 · l1 distinct queries that all return r1 as a response. Similarly, we can show
that there exist exactly l1 · l2 distinct queries that return r2 as a response, and
so on.

The above result can be generalized for query answers comprising two records.
For example, there exist exactly l0 ·l2 distinct queries that return the pair {r1, r2}
as a response.

Once all queries have been seen, the attacker can count how many queries
return each possible response. For example, let us assume that the attacker has
seen exactly q1 different queries which have returned as a result only r1. Let us
also assume that the attacker has seen exactly q2 different queries which have
returned as a result only r2. Finally, let us also assume that the attacker has
seen exactly q12 different queries which have returned as a result a set containing
both r1 and r2.

This implies that the following equations hold:

l0 · l1 = q1

l1 · l2 = q2

l0 · l2 = q12

By solving the above set of three equations, the attacker can find the values of
distances l0, l1 and l2. Once these three have been determined, the attacker can
easily compute the remaining distances l3 and l4 in a similar way, thus achieving
full reconstruction of the database values.

Note that search pattern leakage is instrumental for this algorithm. The
attacker has to calculate the query counts (i.e., the qi constant terms in the
system of equations) precisely and can do so only by determining whether two
tokens correspond to the same query.

5.2 Algorithm

The above example generalizes to any number of database records as follows. Let
us assume that the attacker has determined the full ordering of the records of a
database of size n, denoted r1, r2, . . . , rn. Let us also assume that the number of

Full Database Reconstruction with Access and Search Pattern Leakage

distinct queries which return as a result only record ri is qi and the the number
of distinct queries which return as a result only the pair or records {r1, r2} is q12.

The attacker builds the following system of n+ 1 equations over variables li,
i = 0, . . . , n.

l0 · l1 = q1

l1 · l2 = q2

. . . (1)

ln−1 · ln = qn

and

l0 · l2 = q12

In the above system, the meaning of the variables is as follows:

– l0 denotes the distance between 1 and r1;
– for i = 1, . . . , n− 1, li denotes the distance between records ri and ri+1; and
– ln denotes the distance between rn and N .

One way to solve this system of equations is to first solve the subsystem

l0 · l1 = q1, l1 · l2 = q2, and l0 · l2 = q12

for l0, l1 and l2. Then, since the remaining equations are of the form li · li+1 =
qi+1, for i ≥ 2, one can just solve for li+1 one by one using the recovered values,
starting with i = 2.

The resulting method for full database reconstruction is shown in Algo-
rithm 2.

Algorithm 2 Full Reconstruction

1: Run Algorithm 1 until the answers to all possible distinct queries have been
observed

2: Let order be the ordered list of records returned by Algorithm 1
3:

4: for i in range [1, n] do
5: r = order [i]
6: Let qi be the number of distinct queries that returned response {r}
7: Create equation li−1 · li = qi
8:

9: Let q12 be the number of distinct queries that returned response
{order[1], order[2]}

10: Create equation l0 · l2 = q12
11:

12: Solve the resulting system of equations
13: Return li, i ∈ [0, n]

Evangelia Anna Markatou and Roberto Tamassia

5.3 Analysis

Theorem 4. After receiving 2.1N2 logN queries issued uniformly at random,
Algorithm 2 will succeed in a full reconstruction of the database with probability
greater than 1− 1/N2, where N is the size of the universe of database values.

Proof. Similarly to the proof of Theorem 1 we can show that after 2.1N2 logN
uniformly at random issued queries with probability greater than 1− 1/N2, the
attacker will observe all queries at least once.

Then, the attacker can solve the system of equations (1) to determine the
distances between all record values and thus fully reconstruct the database. ut

6 Conclusions

In this paper, we have presented an attack that reconstructs the values of an
encrypted database from access pattern leakage and search pattern leakage. As
in previous constructions, complete exact reconstruction requires observing a
large number of queries and bounds on the query complexity of the attack are
proved for a uniform query distribution. Recently, a reconstruction method has
been presented whose efficiency does not rely on assumptions about the query
distribution [17], which opens an interesting research direction. Also, in response
to attack papers on searchable encryption, there is an interesting body of work
that focuses on leakage reduction (e.g., [4, 12, 13]). Another promising avenue
for future work is developing methods to attack the above improved schemes.

7 Acknowledgments

We would like to thank Thibaut Bagory, Paul Grubbs, Marie-Sarah Lacharité,
Brice Minaud, and Kenneth G. Paterson and for their helpful comments and
suggestions on a previous version of this paper.

References

[1] Booth, K.S., Lueker, G.S.: Testing for the consecutive ones property, interval
graphs, and graph planarity using PQ-tree algorithms. Journal of Computer
and System Sciences 13(3), 335–379 (1976)

[2] Cash, D., Grubbs, P., Perry, J., Ristenpart, T.: Leakage-abuse attacks
against searchable encryption. In: Proc. ACM Conf. on Computer and Com-
munications Security, CCS (2015)

[3] Dautrich, Jr., J.L., Ravishankar, C.V.: Compromising privacy in precise
query protocols. In: Proc. Int. Conf. on Extending Database Technology,
EDBT (2013)

[4] Demertzis, I., Papadopoulos, S., Papapetrou, O., Deligiannakis, A., Garo-
falakis, M.: Practical private range search revisited. In: Proc. ACM Int.
Conf. on Management of Data, SIGMOD (2016)

Full Database Reconstruction with Access and Search Pattern Leakage

[5] Durak, F.B., DuBuisson, T.M., Cash, D.: What else is revealed by order-
revealing encryption? In: Proc. ACM Conf. on Computer and Communica-
tions Security, CCS (2016)

[6] Grubbs, P., Lacharité, M., Minaud, B., Paterson, K.G.: Learning to recon-
struct: Statistical learning theory and encrypted database attacks. In: IEEE
Symp. on Security and Privacy, pp. 513–529 (2019)

[7] Grubbs, P., Lacharité, M.S., Minaud, B., Paterson, K.G.: Pump up the
volume: Practical database reconstruction from volume leakage on range
queries. In: Proc. ACM Conf. on Computer and Communications Security,
CCS (2018)

[8] Grubbs, P., Lacharité, M.S., Minaud, B., Paterson, K.G.: Learning to recon-
struct: Statistical learning theory and encrypted database attacks. Cryptol-
ogy ePrint Archive, Report 2019/011 (2019), https://eprint.iacr.org/
2019/011

[9] Grubbs, P., McPherson, R., Naveed, M., Ristenpart, T., Shmatikov, V.:
Breaking web applications built on top of encrypted data. In: Proc. ACM
Conf. on Computer and Communications Security, CCS (2016)

[10] Grubbs, P., Ristenpart, T., Shmatikov, V.: Why your encrypted database is
not secure. In: Proc. Workshop on Hot Topics in Operating Systems, HotOS
(2017)

[11] Grubbs, P., Sekniqi, K., Bindschaedler, V., Naveed, M., Ristenpart, T.:
Leakage-abuse attacks against order-revealing encryption. In: 2017 IEEE
Symp. on Security and Privacy, SP (2017)

[12] Kamara, S., Moataz, T.: Computationally volume-hiding structured encryp-
tion. In: Advances in Cryptology, EUROCRYPT (2019)

[13] Kamara, S., Moataz, T., Ohrimenko, O.: Structured encryption and leakage
suppression. In: Advances in Cryptology, CRYPTO (2018)

[14] Kellaris, G., Kollios, G., Nissim, K., O’Neill, A.: Generic attacks on secure
outsourced databases. In: Proc. ACM Conf. on Computer and Communi-
cations Security, ACM (2016)

[15] Kornaropoulos, E.M., Papamanthou, C., Tamassia, R.: Data recovery on
encrypted databases with k-nearest neighbor query leakage. In: Proc. IEEE
Symp. on Security and Privacy, pp. 245–262, SP (2019)

[16] Kornaropoulos, E.M., Papamanthou, C., Tamassia, R.: The state of the
uniform: Attacks on encrypted databases beyond the uniform query dis-
tribution. Cryptology ePrint Archive, Report 2019/441 (2019), https:

//eprint.iacr.org/2019/441

[17] Kornaropoulos, E.M., Papamanthou, C., Tamassia, R.: The state of the
uniform: Attacks on encrypted databases beyond the uniform query distri-
bution. In: Proc. IEEE Symp.on Security and Privacy, SP (2020), to appear

[18] Lacharité, M.S., Minaud, B., Paterson, K.G.: Improved reconstruction at-
tacks on encrypted data using range query leakage. In: Proc. IEEE Symp.
on Security and Privacy, SP (2018)

[19] Pouliot, D., Wright, C.V.: The shadow nemesis: Inference attacks on effi-
ciently deployable, efficiently searchable encryption. In: Proc. ACM Conf.
on Computer and Communications Security, CCS (2016)

https://eprint.iacr.org/2019/011
https://eprint.iacr.org/2019/011
https://eprint.iacr.org/2019/441
https://eprint.iacr.org/2019/441

Evangelia Anna Markatou and Roberto Tamassia

[20] Zhang, Y., Katz, J., Papamanthou, C.: All your queries are belong to us: The
power of file-injection attacks on searchable encryption. In: Proc. USENIX
Security Symposium (2016)

	Full Database Reconstruction with Access and Search Pattern Leakage

