
KeyForge:

Non-Attributable Email from Forward-Forgeable Signatures

Michael Specter
MIT

Sunoo Park
MIT & Harvard

Matthew Green
Johns Hopkins University

Abstract

Email breaches are commonplace, and they expose a wealth of personal, business, and po-
litical data whose release may have devastating consequences. Such damage is compounded by
email’s strong attributability: today, any attacker who gains access to your email can easily
prove to others that the stolen messages are authentic, a property arising from a necessary
anti-spam/anti-spoofing protocol called DKIM. This greatly increases attackers’ capacity to do
harm by selling the stolen information to third parties, blackmail, or publicly releasing intimate
or sensitive messages — all with built-in cryptographic proof of authenticity.

This paper introduces non-attributable email, which guarantees that a wide class of adver-
saries are unable to convince discerning third parties of the authenticity of stolen emails. We
formally define non-attributability, and present two system proposals — KeyForge and Time-
Forge — that provably achieve non-attributability while maintaining the important spam/spoofing
protections currently provided by DKIM. Finally, we implement both and evaluate their speed
and bandwidth performance overhead. We demonstrate the practicality of KeyForge, which
achieves reasonable verification overhead while signing faster and requiring 42% less bandwidth
per message than DKIM’s RSA-2048.

1 Introduction

Email is the world’s largest messaging scheme, used ubiquitously for personal, industry, and gov-
ernment communication. As such, it is a valuable target for attack: a user’s account represents a
trove of sensitive information, unauthorized access to which enables spam, fraud, blackmail, and
other abuse.

To help protect users from spam and fraud, the IETF developed a widely-adopted standard
called DomainKeys Identified Mail (DKIM) [16]. DKIM’s goal is to assure the receiving server
that each incoming message was really sent from the domain it appears to be from, enabling inter-
domain accountability in case of spam and easy detection of spoofed messages. DKIM’s protocol is
simple: the originating server cryptographically signs each outgoing email’s contents and metadata,
allowing the receiving server to verify the message after looking up the sending server’s public key
via DNS.

While DKIM was an important innovation that continues to be critical to the email ecosystem,
its design came with an unintended side-effect: namely, email thieves can credibly convince any third
party that stolen messages are authentic and unmodified via DKIM signatures from a reputable
service provider. This increases incentives to break into email accounts, as a successful attacker
can credibly (and anonymously) sell, publish, or use the stolen data for blackmail.

1



Email attributability has had real-world impact. For example, Wikileaks publicly asserts [65]
that it relies on DKIM signatures to confirm the veracity of their publications: Wikileaks lever-
aged DKIM to authenticate messages stolen from the Democratic National Committee (DNC) and
Hillary Clinton’s campaign chairman during the 2016 U.S. presidential election season [64]. Be-
cause of DKIM, any third party could easily confirm the legitimacy of these stolen messages using
public keys tied to Google and Microsoft’s email services, despite the information’s questionable
origin. Indeed, the practice of using DKIM to verify unauthorized email leaks has now become a
standard journalistic practice [55, 42], with the Associated Press releasing a software tool for this
purpose [5].

DKIM’s attributability problem has been recognized but unsolved for some time. Jon Callas, one
of the original authors of the DKIM RFC, has publicly stated that attributability is an unintended
design flaw of the protocol [18, 17], and has since suggested a number of ways to mitigate its
impact, but notes that proposals at the time of his writing were insufficient or impractical [19].
Other researchers also flagged the issue as early as 2004, e.g., Adida et al. [1], Unger et al. [60], and
Bellovin [8]; however, designing a practical, non-attributable DKIM replacement has remained an
open question.

It is alarming that an unintended result of an ubiquitous messaging protocol has produced
a scalable, by-default system for credible propagation of illicitly obtained private messages. The
specific DNC incident might well have happened with or without DKIM: for a high-value target,
interested parties would likely seek to verify the stolen emails in various ways, including non-
technical methods (e.g., journalistic corroboration, cross-checking timestamps, geolocation, etc).
But just the possibility of manual verification — a possibility that has existed since handwritten
letters — is a stark contrast from the easy, inbuilt attribution that has unintentionally become
ingrained in today’s email ecosystem.

Public figures are not the only victims of email breaches; new reports of email theft seem to
surface every few weeks. Astoundingly, all of Yahoo!’s 3 billion email accounts were compromised
in a 2013 breach [57]. Although Yahoo!’s users have been spared public dissemination of their mes-
sages, others (e.g., Sony and Stratfor), have been less fortunate [63, 62]. Attackers appear to have
diverse motives, ranging from financial gain — e.g., selling patient healthcare data gleaned from
emails [34] — to industrial espionage and monitoring political dissidents and foreign officials [29].

In light of the potential harm to users, it would be irresponsible to let DKIM’s unintended side-
effect of attributability remain unscrutinized: if attributability is to remain a feature of DKIM, it
should be as a result of a deliberate decision that takes into account the range of technically feasible
alternatives. With the above as motivation, we ask:

Is it possible to mitigate the potential harms of attributability in DKIM while maintain-
ing the system’s efficient spam and spoofing-resistance?

An initial intuition may be that attributability of stolen email is an unavoidable side-effect
given the indirect and decentralized nature of email: it is intuitively unclear how a recipient with
no communication to the sending server can be certain of a message’s origin without also gaining
the ability to convince a third party of the same. Under certain conditions, this intuition amounts
to an impossibility, as Perhaps surprisingly, our work shows that modern cryptography can rec-
oncile the apparently conflicting goals of spam protection and non-attributability. We construct
efficient protocols that achieve the important security guarantees that DKIM provides, while simul-
taneously guaranteeing non-attributability of stolen email. Further, we show that configurations of

2



our protocols are practical for deployment on the Internet today, achieving reasonable efficiency
and bandwidth overhead.

1.1 Key Ideas

There are two main ideas underlying our proposals: delayed universal forgeability and immediate
recipient forgeability.

Delayed universal forgeability. This approach ensures that signatures with respect to past
emails “expire” after a time delay ∆ and thereafter become forgeable by the general public (i.e.,
arbitrary outsiders or non-parties). This property ensures that no attribution will be credible after
the time delay has elapsed. We call this property delayed universal forgeability. As long as ∆ is
set larger than the maximum viable time for email latency, the signature will still be convincing to
the recipient at the time of receipt, thus maintaining the spam and spoofing-resistance of DKIM.

Signatures that possess delayed universal forgeability retain all the unforgeability properties of
a standard signature scheme, until the set time ∆ has passed. Thus in cases where an attacker
gains access to email and shows it to a third party within ∆ time after the email was sent, a
third party will be convinced of the email’s authenticity. Effectively, delayed universal forgeability
protects against adversaries that compromise an email account by breaking in and taking a snapshot
(“after-the-fact attacks”), but not adversaries that fully control an email account and monitor its
email in real time (“real-time attacks”). After-the-fact attacks cover a broad range of realistic
attacks, for example, including many data breaches. Next, we discuss how we address real-time
attacks.

Immediate recipient forgeability. Suppose that the fact of access to a particular client account
implies the ability to forge messages from arbitrary other servers to that recipient only : that is,
the ability to obtain valid DKIM signatures on email content and metadata of one’s choice. We
call this immediate recipient forgeability. Importantly, the recipient constraint ensures the inability
to impersonate any other server for the purposes of email addressed to other recipients, thus
maintaining DKIM’s spam and spoofing-resistance. This undermines the credibility of attackers
claiming ongoing access to a particular email account and attempting to convince third parties of
the authenticity of emails supposedly sent to (and from) that account — even for real-time attacks,
which may publish allegedly-incoming emails immediately as they are received.

Recipient forgeability is weaker than universal forgeability in the following sense: published
emails credibly reveal that the attacker has gained access to some users’ key material, although not
that the email content is authentic. Thus, recipient forgeability is not enough by itself; the two
definitions are complementary and incomparable.

Combining both ideas. Our protocols attempt to achieve the “best of both worlds,” by providing
universal forgeability when possible, and falling back on immediate recipient forgeability when
necessary. Section 3 defines our threat model, discusses its limitations, and formalizes immediate
recipient forgeability and delayed universal forgeability.

1.2 Overview of Solutions

This paper constructs and evaluates two base protocols KeyForge and TimeForge, and two enhanced
variants KeyForge+ and TimeForge+ (which consist of the respective base protocol with a modified
signing algorithm and one additional sub-protocol). The two base schemes can be seen as two

3



different approaches to building a new type of signature scheme that we introduce: forward-forgeable
signatures (FFS).

Forward-forgeable signatures. An FFS is a digital signature scheme equipped with a method to
selectively disclose signature-invalidating “expiry information” for past signatures without similarly
damaging the public key for future signatures. Succinctness of FFS is a measure of efficiency of
disclosure. We present two constructions of FFS, which are the key building blocks of KeyForge
and TimeForge respectively. FFS may be of independent interest as a signature primitive for other
applications.

KeyForge. Our first proposal, KeyForge (§5.1), achieves delayed universal forgeability by publish-
ing signing keys after a delay ∆. KeyForge relies on an FFS based on hierarchical identity-based
signatures (HIBS), which achieves logarithmic succinctness. As a result, KeyForge can efficiently
distribute forging keys with minimal bandwidth.

TimeForge. Our second protocol, TimeForge (§5.2), assumes a publicly verifiable timekeeper
(PVTK) model in which a trusted timekeeper periodically issues publicly verifiable timestamps. In
a nutshell, the idea of TimeForge is to substitute each signature on a message m at time t with a
succinct zero-knowledge proof of the statement S(m) ∨ T (t+ ∆), where: S(m) denotes knowledge
of a valid signature by the sender on m and T (t+ ∆) denotes knowledge of a valid timestamp for a
time later than t+∆. Including T (t+∆) ensures delayed universal forgeability, while R(m) ensures
immediate recipient forgeability. TimeForge can be described as a forward-forgeable signature
scheme in the PVTK model.

KeyForge+/TimeForge+. The enhanced protocols (§5.4) consist of the respective base protocols
with the following modifications: (1) an additional protocol, called forge-on-request, that allows
parties to request forged emails addressed only to the requester herself under limited circumstances;
and (2) for multiple-recipient emails, a new signature is produced for each recipient domain (unlike
the base protocols and DKIM, which produce one signature per outgoing email).

Among our protocols, KeyForge is the most efficient and would necessitate the least change
to existing infrastructure. KeyForge+ and TimeForge+ are alternative approaches showing the
feasibility of addressing stronger threat models though at significant overhead (in fact, certain
overhead is unavoidable in the stronger threat model; see §3). TimeForge could become more
practical with advances in the fast-moving area of non-interactive proofs.

Summary of our Contributions.

1. We define non-attributability in store-and-forward email systems, and propose two system
designs — KeyForge (§5.1), and TimeForge (§5.2) — that achieve this goal.

2. We implement KeyForge and TimeForge and evaluate their signing, verification, and band-
width costs, and show that KeyForge has acceptable bandwidth and processing overhead
for practical deployment (§6).

3. We provide formal definitions for email non-attributability and prove that our constructions
realize them.

4. Of independent interest, we give provably secure constructions of a new cryptographic prim-
itive, succinct forward-forgeable signatures (FFS)in both the standard and PVTK models
(§4.3, §5.2).

4



2 Background on Email

MTA

MTA

MTA

MTA

MTA

MTA

Sender’s Server
(MSA)

Sender’s Client
(MUA)

Receiver’s Server
(MDA)

Receiver’s Client
(MUA)

Sender’s Domain Receiver’s Domain

Figure 1: Simplified email routing infrastructure

This section introduces basic terminology of mail routing (as defined in RFC 5598 [25]) and
describes how email infrastructure necessitates certain system requirements.

Figure 1 illustrates the architecture of email routing: an asynchronous routing protocol built on
top of TCP/IP. Users first establish a relationship with a trusted email service provider, called a
Mail Submission Agent (MSA) on the sender side and a Mail Delivery Agent (MDA) on the receiver
side. The MDA is responsible for various tasks including verifying the authenticity of incoming
messages.

The user’s email client is called a Mail User Agent (MUA). Email originates from an MUA, and
arrives at the user’s trusted MSA. Depending on the system’s configuration, the MSA may send
the message to intermediary Mail Transfer Agents (MTAs) it trusts. Eventually, an MTA performs
a DNS lookup for the receiving domain to discover which MTAs are authorized to process emails
for that domain. The email is then sent via SMTP to one of these MTAs. After a number of
hops depending on the sending and receiving organizations’ infrastructure, the email reaches the
receiver’s MDA, which is responsible for verifying the message for the receiver’s MUA.

2.1 Email Authentication

The IETF has developed a number of standards that allow domains to sign and verify incoming
and outgoing messages. Next, we overview the three that have seen appreciable adoption: DKIM,
SPF, and DMARC. Appendix B discusses a fourth, experimental protocol, ARC, and its potential
impact.

DKIM. DomainKeys Identified Mail (DKIM) is an IETF standard that requires an MSA to sign
outgoing email, and an MDA to verify that email by looking up the MSA’s public key in the DNS.
This procedure is described informally below:

1. Setup: The MSA generates a key pair and uploads the public key to the DNS in a TXT
record.

2. Sign: The MSA adds the location of its public key to the email’s metadata (or header),
as well as additional metadata needed for signature verification, then signs the email and
headers with its private key.1

3. Verify: On receipt, the MDA does a DNS lookup for the MSA’s public key, and uses it to
verify the signature.

1This usually includes a hash of the whole message, but the specification does allow for portions of the message
to go unsigned. This is not default behavior for most DKIM applications, and has seen limited use in practice.

5



SPF. The Sender Policy Framework (SPF) ensures that intermediary MTAs are permitted to send
and receive messages as a part of the domain. This solves a somewhat orthogonal problem to
DKIM: SPF provides little guarantee that the message has not been modified by an intermediary,
but instead provides spoofing protection by limiting what IP addresses are valid accepting MTAs.

DMARC. An SPF or DKIM failure as a result of a misconfiguration is indistinguishable from a
failure due to an attempted message spoofing, and neither DKIM nor SPF provide mechanisms
for alerting the sending domain that there has been a problem. DMARC solves this by adding a
DNS TXT record specifying to the receiver what it should do in the case of such failures (such as
quarantine, reject, or accept the message despite the failure), as well as providing an email address
to send aggregated statistics on such failures.

2.2 DKIM Replacement Constraints

This section overviews a number of demands on email, some of which are not common to many
other messaging systems. The combination of these demands means that achieving deniability and
security presents distinct challenges for email, different from other messaging contexts.

Indirectness by store and forward. Email routing is a store and forward protocol in which
messages are delivered indirectly via multiple hops, and routes, as well as the actual destination
addresses, are often not known in advance. To quote the SMTP RFC [38], “[i]t is sometimes difficult
for an SMTP server to determine whether or not it is making final delivery since forwarding or other
operations may occur after the message is accepted for delivery.” Obvious examples of indirectness
include mail forwarding (in which users configure their MDA to forward email received from an
account on one domain to another), and remailers (such as mailing lists, that act as MUAs initially);
however, there are other, less obvious, places in the ecosystem where this occurs.2

For example, many organizations leverage third-party MTAs that they do not own as an initial
hop between the Internet and the organization’s self-hosted MDA/MSA.3 These MTAs often provide
security benefits to the MDA, such as protection from spam, malicious attachments, or DDoS
attacks. While these intermediaries are allowed to quarantine messages or provide flow control to
the MDA, under DKIM, they cannot undetectably modify or spoof emails.

In summary, these constraints inhere in store-and-forward systems: (1) final-destination infor-
mation (e.g., addresses, keys) may be unknown to the sender, and (2) an MDA may not be certain
whether it is the final destination of a message.

Throughput and scalability. Email is an any-mesh ecosystem: any domain owner must be
able to set up the appropriate DNS records and interoperate with any other domain’s servers.
Further, larger domains may sign and verify hundreds to millions of emails per day, and throughput
requirements often increase over time. Therefore, beyond good constants on signing and verification
time, the service must scale: adding more resources should provide linear or better performance.

2Similarly, Mail Retrieval Agents (MRAs) like Getmail [23] behave like MUAs to an MDA, but may forward emails
on to an alternate, final MDA. Popular email services like Gmail provide services that download messages from other
domains via IMAP.

3Third-party MTAs are commonplace. We did an informal survey by scraping DNS MX records for the Alexa
top 150k. Surprisingly few, 31,615, have an MX record, and 10,260 use an obvious third-party hosting service
(e.g., Google’s MTAs), leaving 21,615 that potentially self-host. Of the last category, 31.4% (6,793) are using a
confirmed multi-hop third-party MTA. Raw results are in our repo in results.csv: https://github.com/keyforgery/
KeyForge.This is likely a conservative estimate, as few servers appear to have matching domain names.

6

https://github.com/keyforgery/KeyForge
https://github.com/keyforgery/KeyForge


Scalability in interconnection with other servers is crucial too.4

Such scalability requirements indicate that certain types of overhead that would be trivial in
other messaging contexts, (e.g., communication prior to sending a message or per-message round
trips between servers), are unlikely to be viable for email. For example, it would be difficult to
require the MDA to connect back to the original MSA for every email.

Long-lived public keys. One natural approach to short-lived signatures is to leverage corre-
spondingly short-lived keys and publish each secret key at the end of its lifetime, or use short key
sizes designed to be able to be brute-forced within the same period (see [19]). This approach has
been mentioned in passing outside of the context of email [12]. Unfortunately, too-frequent key
rotation entails practical problems that render this tactic unworkable for DKIM. Rotating keys
stored in DNS is an often manual process that introduces risk of misconfiguration that can cause
stability issues, and storing large amounts of key material that must be published, maintained,
and shared among several servers is organizationally difficult and increases risk of key theft. DNS
results are also often cached, so replacing an individual record is slow and can yield inconsistent
results. Finally, it is hard to bound the time for short keys to be broken by all threat actors.

Incremental deployment. Given the myriad existing email servers and the need for interoper-
ability, we consider the majority of the email ecosystem to be entrenched. It would be difficult to
require substantial changes to mail routing, and it is unrealistic that every actor would promptly
switch to a new scheme. Instead, it is far more realistic that DKIM could be replaced by incremen-
tally updating the signing algorithms.

2.2.1 Resulting System Requirements

The particular constraints of email, described earlier in §2.2, rule out many natural approaches
to non-attributability, including solutions that might be more feasible in other messaging environ-
ments. Since we treat email’s indirect, store-and-forward nature as an entrenched property of the
infrastructure, realistic proposals for email protocol modifications must not rely on sender use of
final-destination information, such as addresses or keys (“Requirement 1” or “R1”). Moreover,
due to the store-and-forward and scalability requirements, email protocols should avoid interac-
tive sender-receiver (MDA–MSA) communication whenever possible; in particular, we consider
roundtrip sender-receiver communication per email to be inviable (“R2”). Additionally, email
protocols must have long-lived public keys (“R3”).

Notably, none of the following approaches adhere to both the above requirements: interactive
zero-knowledge proofs (violate R2); ring signatures (proposed for email non-attributability in [2, 12])
(violate R1); designated-verifier signatures (violate R1); short-lived keys with publication of secret
keys after use (violate R3); and — importantly — systems based on deniable authenticated key
exchange (DAKE) (which violates R2), such as OTR or Signal [12, 59, 60]. Indeed, both the
OTR paper [12, §6] and a recent DAKE paper [59, §6.6] dedicate a full subsection to discussing the
heightened challenges of non-attributability for email as compared to other messaging environments,
and note that their proposals are not adequate for email due to its asynchronous, non-interactive,
store-and-forward nature. (Table 3, Appendix A breaks down differences between email and other
messaging schemes, and where our solutions fit in, in more detail.)

Finally, we note that the simple approach of relying on MDAs to delete DKIM header informa-
tion after receipt is flawed not only because it fails to address our threat models (§3), which require

4The IETF standard for DMARC [39] states that pre-sending agreements is a poor scalability choice for this
reason. See also [58].

7



security against malicious or compromised recipients, but also because it violates Requirement 1:
relying on MDAs for deletion is untenable given that MDAs may not know if they are the final
endpoint (and if not, the signatures must be kept for later verification).

Summary. A viable non-attributable replacement for DKIM must have: (1) compatibility with
indirect, store-and-forward communication (in particular, no reliance on sender knowledge of final
destination addresses or keys); (2) no requirement of sender-receiver interaction per email; (3)
long-lived public keys; (4) no required behavior for MDAs that depends on whether they are the
final destination; (5) little impact on other parts of the email ecosystem; and (6) good systems
properties allowing for incremental, scalable deployment.

In addition, a non-attributable DKIM replacement must have universal forgeability, and should
have recipient forgeability whenever feasible.

3 Model and Security Definitions

This section presents threat models and formal definitions of email non-attributability.

Notation. “PPT” means “probabilistic polynomial time.” |S| denotes the size of a set S. [n]
denotes the set {1, . . . , n} of positive integers up to n, and P(·) denotes powerset. ≈c denotes
computational indistinguishability. τ ||e denotes the result of appending an additional element e to
a tuple τ .

3.1 Model

Time We model time in discrete time-steps and assume fairly consistent (say, within 3 mins) local
clocks. This is realistic given NTP [15].

Synchrony ∆̂ is an upper bound on the time required for email delivery. Our parameter settings
depend on ∆̂, and our evaluation sets ∆̂ at 15 minutes (see § 5.1.1).

DNS Our model assumes all parties and algorithms have access to DNS and can update their own
DNS records.

Publication We assume each party has a method of publishing persistent, updatable information
retrievable by all other parties and algorithms. This could be via DNS or another medium, such
as posting on a website.

3.2 Threat Models

We are concerned with attacks that disclose private communications obtained at the MDA (whether
because the MDA is compromised or because it is malicious).

We consider two threat models, defined below. KeyForge and TimeForge achieve security
against Threat Model 1, which targets scenarios where attackers may gain access to an email server
but are unlikely to maintain access for extended periods. The enhanced protocols KeyForge+ and
TimeForge+ achieve security against Threat Model 2, the stronger of the two threat models, which
is necessary in settings where attackers’ access may likely remain undetected for extended periods
(e.g., advanced persistent threats).

8



Threat Model 1. (After-the-fact attacks) In this model, the recipient is presumed honest at the
time of email receipt, but is later compromised by an attacker that takes a snapshot of all stored
email content.

Threat Model 2. (Real-time attacks) In this model, the recipient may be malicious at the time of
email receipt, with ongoing and immediate intent to disclose received email content to third parties.

Ruling out trivial solutions. A trivial and uninteresting way to achieve non-attributability, in
either threat model, is not to sign emails at all. Of course, this is undesirable as it would undermine
the spam- and spoofing-resistance for which DKIM was designed. Providing these guarantees is an
implicit requirement throughout this paper. Moreover, since our threat models consider malicious
receiving servers, any non-attributability that relies on receiving-server behavior — such as DKIM
header deletion upon receipt — is unsatisfactory.

Preventing real-time attacks requires interaction. Any store-and-forward email protocol
that both (1) allows recipients to verify the sending domain’s identity and (2) is secure against
real-time attacks (Threat Model 2) must be interactive, as more formally detailed in Claim 1, Ap-
pendix C. Informally, in the store-and-forward model, a non-interactive protocol transcript (consist-
ing of a single message from the sender), cannot depend on final-destination recipient information,
so any operations (such as verification or forgery) that the verifier can run must also be executable
by others. This also relates to the intuitive idea that someone who receives a single message m
convincing them of the message’s origin must also be able to use m to convince others of the same.

In contrast, security against after-the-fact attacks (Threat Model 1) is possible non-interactively,
as KeyForge and TimeForge exemplify. KeyForge+ and TimeForge+ augment KeyForge and Time-
Forge with an interactive (two-message) protocol, which adds significant overhead and complexity
to the non-interactive base protocols. Claim 1 shows that this overhead is, in a sense, unavoidable.
The overhead of our constructions is furthermore minimal in certain respects: just two rounds of
interaction, and the protocols do not require interaction on email receipt, but rather, introduce the
possibility of interaction by an additional protocol (details in §5.4).

What’s outside our threat models? While Threat Model 2 considers powerful real-time adver-
saries, it too has limits. Definitionally, and unsurprisingly, no deniability is possible against a global
passive adversary that can be sure of observing all traffic as it flows over the network. As already
mentioned, our threat models are not designed to provide non-attributability against adversaries
directly observing email traffic, but rather against those to whom the adversaries might try to pass
the stolen emails on.

Our threat models focus on attacks at the receiving server (MDA), because we believe this
covers a wide, though not exhaustive, range of attack scenarios of interest. This notably excludes
malicious intermediaries (MTAs). Even though our threat models do not focus on MTA-based
attacks, our protocols KeyForge+ and TimeForge+ do provide a partial non-attributability guar-
antee against malicious intermediaries (as discussed in §3.3). Nonetheless, malicious intermediaries
pose a legitimate concern not fully addressed by this work; achieving stronger non-attributability
guarantees against MTAs could be interesting future research.5

5 It is also unclear how effective local MTA-based attacks would be to compromise entire email accounts; such
attacks’ effectiveness would likely depend on email routing configurations at the servers involved. By entire-account
compromise we mean learning all stored emails and/or all real-time emails for a single account over an extended
period, as opposed to learning only occasional emails from scattered accounts. Entire-account compromise would
be useful to target particular accounts, or to obtain a relatively complete picture of compromised accounts (e.g., for
identity theft). In contrast, MDA-based attacks provide a direct way to compromise entire accounts.

9



Finally, we note that our definitions do not necessarily provide non-attributability against ad-
versaries that can preconfigure the receiving server with custom secure hardware (see also §3.3).
We consider such attacks outside our threat model: i.e., we assume servers are compromised after
physical setup.

We conclude this section with additional context and explanation for our modeling choices.

Client-server trust. Email clients rely heavily on their email servers. A malicious email server
could easily and undetectably misbehave in many essential functions: e.g., drop incoming emails,
modify outgoing emails (since typically, emails are not signed client-side), or falsify content and
metadata of incoming emails (since typically, clients do not perform DKIM verification themselves).
Since client-server trust is very high in practice, this paper treats the client and server as a single
entity, and relatedly, our threat models do not consider malicious behavior by MSAs that aims to
undermine non-attributability of their own clients’ emails. (One might also argue such malicious
behavior would quickly lose an MSA its clients.)

Evidence-based credibility. In a system where credibility is based on reputation rather than
evidence — that is, where certain parties’ statements are taken on faith, or believed simply because
of who they are even without supporting evidence — a “reputable” party with the ability to
eavesdrop on the communication channel would be able to undermine non-attributability by keeping
traffic logs. Our model assumes mutually distrustful parties: i.e., that no party is taken simply
on its word as just described. In other words, credibility in our model is evidence-based and not
reputation-based.

Systemic attributability vs. attributability by choice. The goal of non-attributability is
to empower users to choose whether or not their messages are attributable, to disincentivize email
theft and misuse in contrast to attributability-by-default (see §1). We are not concerned with pre-
venting attributability when correspondents desire it: e.g., for business transactions or contracts,
correspondents may intentionally sign messages to ensure they are binding. Attribution by journal-
istic investigation is also outside our threat model: confirmation of selected documents by careful
investigation is possible even with handwritten letters, but the current systemic attributability fa-
cilitates scalable, malicious attribution far beyond the handful of high-profile messages that might
be published after arduous manual verification.

3.3 Defining Non-Attributability

We define email non-attributability as a game involving an email protocol Email, adversary A,
simulator S, and distinguisher D. For any email server S with internal state s, Emails(S,R,m, µ, t)
denotes the information that recipient R receives when S legitimately sends at time t an email
message m with metadata µ to R. For simplicity, our notation leaves implicit that parties other
than the sender participate in transmission and may affect the information received by R (e.g., the
MTAs); however, the final received information Emails(S,R,m, µ) should be thought to contain
any modifications made en route between S and R. While this definition refers to “internal state
s” for generality, the state s can essentially be thought of as secret key material.

Intuitively, we require indistinguishability between a legitimate email Emails(S,R,m, µ, t) and a
“fake” email that was created without access to the sending server at all: that is, without knowing
s. To model this, we consider a simulator S that “aims” to create such an email without knowing
s, and our security definition requires Emails(S,R,m, µ, t) be indistinguishable from S’s output.

10



Next, we give two formal definitions of non-attributability. Recipient non-attributability (Defini-
tion 1) considers a simulator that has access to a particular recipient’s email server, and is required
to output email from any sender to that recipient. ∆-universal non-attributability (Definition 2) is
a stronger definition whose simulator is required to output email from any sender to any recipient
while having access to neither the sender’s nor the receiver’s email server.

In other words, if an adversary publishes an email allegedly authored by an honest party,
Definition 1 guarantees that the victim can credibly argue that, granting that the attacker indeed
broke into her correspondent’s account, the attacker’s allegations inherently lack credibility because
by the very fact of such access, he could have forged arbitrary emails between them. Definition 2
gives the stronger guarantee that anyone can forge past emails after some delay ∆: so after ∆, any
allegations are even less credible and the email accounts may not have been compromised at all.
The two definitions are complementary and incomparable.

Definition 1 (Recipient non-attributability). Email is non-attributable for recipients if there is
a PPT simulator S such that for any sender S and recipient R, for any email message m and
metadata µ,

Emails(S,R,m, µ, t) ≈c SR(S,m, µ) ,

where the superscript R denotes that S has the capability of sending outgoing mail as R through
R’s email server.

Definition 2 (∆-universal non-attributability). For ∆ ∈ N, an email protocol Email is ∆-strongly
non-attributable if there is a PPT simulator S such that for any sender S (with internal state s)
and recipient R, for any email message m, metadata µ, and timestamp t, the following holds at
any time ≥ t+ ∆:

Emails(S,R,m, µ, t) ≈c S(S,R,m, µ, t) .

Definitions 1 and 2 serve to ensure that no attacker can credibly claim to a third party6 that
he is providing her with authentic emails: the third party is in the role of distinguisher.

Note that Definition 2 is inviable if ∆ < ∆̂. Otherwise, the spam- and spoofing-resistance
provided by DKIM would be undermined, since any outsider could use the simulator in real time
to send spam email indistinguishable to the recipient from email actually sent by an honest party.

Relation to the threat models. ∆-universal non-attributability achieves non-attributability
against after-the-fact attacks (Threat Model 1) for all emails sent and received at least ∆ before
the server is compromised.

Combining recipient non-attributability and ∆̂-universal non-attributability (Definitions 1 and
2)yields non-attributability against real-time attacks (Threat Model 2). A real-time attacker with
ongoing access to an email server can easily make the fact of his access evident by immediately
publishing all emails he sees (within time ∆̂ of receipt), but will be unable to convince third parties
of any given email’s authenticity since the fact of his access to the server allows him to forge emails
in real time, under Definition 1. For allegedly compromised emails from more than ∆̂ ago, an
attacker’s credibility is even lower, since for such past timestamps anyone with internet access can
generate seemingly validly signed emails, even without breaking into any email server at all, under
Definition 2.

6E.g., the general public (if the allegedly stolen emails are released publicly) or a specific interested party (such
as a potential buyer or disseminator of the information).

11



Necessity of recipient forgeries. It may seem a counterintuitive or risky design choice to enable
real-time email forgery in any part of the system. If forgery is restricted only to recipients forging
emails to themselves, as in our definition, there is no spam/spoofing vulnerability — but given
the choice, one might avoid introducing any forging capability at all, in the interest of a simpler
and easier-to-analyze system. However, some sort of real-time forging capability by recipients is
definitionally necessary to achieve non-attributability against real-time attacks: if the recipient
cannot forge in real time, then any third party to whom a recipient server passes emails in real
time must be convinced of the emails’ authenticity.

Other inherent model constraints. A practical consequence of recipient non-attributability is
that a recipient R’s email server can, unknown to R, create fraudulent messages that appear to be
legitimate emails from any sender to R, and deliver them to R. As discussed §3.2, the current email
system necessitates heavy client-server trust. In this context, recipient non-attributability does not
meaningfully increase the trust a client places in her email server. For example, email servers in
the current system could (and often do) omit DKIM headers when delivering emails to clients: this
effectively implies the ability to deliver fake messages.

Also, we note that both definitions allow for strong, persistent attackers to convince others of
the very fact that they have ongoing access to a particular email account. The definitions guarantee
that even so, such attackers cannot make credible claims about email contents, since they gain the
ability to falsify emails by the very fact of their access. That attackers with ongoing access can
prove their access is unavoidable since universal forgeability is incompatible with spam resistance
for too small ∆, as discussed above.

Adversarial secure hardware at recipient. The requirement of spam- and spoofing-resistance
means that any simulator S satisfying Definition 1 must use the recipient R’s secret state r: in
order to prevent spam, real-time forgery must be limited to messages whose recipient is the forger
herself. This suggests that recipient non-attributability would lose meaning in an extreme situation
where every use of r can be monitored and attested to, since then an attacker could prove that S
was never invoked on r. This might be plausible assuming secure hardware, e.g., by generating and
monitoring all uses of r within a secure enclave (as suggested in [33]) — but even then, such an
attack would likely only be feasible by the unlikely attacker who has designed her recipient email
server with this unlikely configuration from its very setup. We note this possibility for completeness,
but such attacks are outside our threat models, as mentioned earlier in §3.

Malicious intermediaries and traffic logging. Although our threat models focus on malicious
recipient servers (as discussed earlier in §3), Definition 1 actually provides a meaningful, though
limited, guarantee against malicious intermediaries (MTAs) as well. If a malicious MTA were to
log all traffic and publish it in real time (perhaps even timestamped in a trustworthy way for future
reference), in a system with immediate recipient forgeability, observers of the publications would
still be unconvinced of: (1) whether any email the MTA claims is genuine (unforged) is really
genuine, since the MTA could have omitted evidence of forgery, and (2) whether the MTA omitted
any genuine emails from its publications.

Why (sometimes) settle for weaker non-attributability? KeyForge and TimeForge achieve
only non-attributability against after-the-fact attacks, and their enhanced versions KeyForge+ and
TimeForge+ are non-attributable against both after-the-fact and real-time attacks. Yet we consider
KeyForge to be our main protocol and the most realistic proposal for deployment. In practice,
the enhanced protocols’ (unavoidable) interactivity and other overhead would often be compelling

12



reasons to prefer the simpler base protocols except in contexts where addressing real-time attacks
(or malicious intermediaries) is of particular heightened concern.

Relation to deniability definitions in other contexts. The cryptographic literature features
many works on deniability of signatures and authentication, including (but not at all limited to) [37,
27, 54, 44, 26]. Our constructions could be seen as a practical instantiation of a deniable signature
scheme subject to tight systems-based requirements.

Cryptographic deniability definitions tend to come in two flavors: denying communication con-
tent, or denying having participated in communication at all. Deniable encryption [22] does the
former, whereas deniable authentication generally does the latter. Our recipient-forgeability is of
the former flavor, whereas our universal forgeability is of the latter.

4 Forward-Forgeable Signatures

4.1 Definition

Definition 3 formalizes forward-forgeable signatures (FFS). They are a new primitive that this
paper introduces, and are an essential building block for our proposed protocols. Informally, FFS
are signature schemes equipped with a method to selectively “expire” past signatures by releasing
expiry information that makes them forgeable. In an FFS, each signature is made with respect
to a tag τ , which is an arbitrary string. Expiry information can be released with respect to any
tag or set of tags. In our context, the tag can be thought to be a timestamp: i.e., each email is
signed with respect to the current time τ , and at some later time τ + ∆, the signer may publish
expiry information for τ . FFS have correctness and unforgeability requirements similar to standard
signatures, as well as a new requirement, forgeability on expiry, that has no analogue in standard
signatures.

The correctness requirement of FFS is the same as that of standard signatures. The unforgeabil-
ity requirement is modified to include an expiry oracle: that is, unforgeability of signatures w.r.t.
non-expired tags must hold even in the presence of arbitrary, adversarially chosen expirations. The
forgeability on expiry requirement is a feature of FFS that has no analogue in standard signatures.

Definition 3 (FFS). A forward-forgeable signature scheme (FFS) Σ is implicitly parametrized by
message space M and tag space T , and consists of five algorithms

Σ = (KeyGen,Sign,Verify,Expire,Forge)

satisfying the following syntax and requirements.

Syntax:
• KeyGen(1κ) takes as input a security parameter7 1κ and outputs a key pair (vk, sk).

• Sign(sk, τ,m) takes as input a signing key sk, a tag τ ∈ T , and a message m ∈ M, and
outputs a signature σ.

• Verify(vk, τ,m, σ) takes as input a verification key vk, a tag τ ∈ T , a message m ∈M, and
a signature σ, and outputs a single bit indicating whether or not σ is a valid signature with
respect to vk, m, and τ .

7Technically, all five algorithms take 1κ as an input, and M and T may be parametrized by κ. For brevity, we
leave this implicit except in KeyGen.

13



• Expire(sk, T ) takes as input a signing key sk and a tag set T ⊆ T , and outputs expiry info
η.

• Forge(η, τ,m) takes as input expiry info η, a tag τ ∈ T , and a message m ∈M, and outputs
signature σ.

Required properties:
1. Correctness: For all m ∈M, τ ∈ T , there is a negligible function ε such that for all κ,

Pr

[
(vk, sk)← KeyGen(1κ)
σ ← Sign(sk, τ,m)
b← Verify (vk, τ,m, σ)

: b = 1

]
≥ 1− ε(κ) .

2. Unforgeability: For any PPT A, there is a negligible function ε such that for all κ ∈ N,

Pr

 (vk, sk)← KeyGen(1κ)
(τ,m, σ)← ASsk,Esk (vk)
b← Verify (vk, τ,m, σ)
b′ = τ /∈ Q′E ∧ (τ,m) /∈ QS

: b = b′ = 1


≤ ε(κ) ,

where Ssk and Esk respectively denote oracles Sign(sk, ·, ·) and Expire(sk, ·), QS and QE

denote the sets of queries made by A to the respective oracles, and Q′E =
⋃
T∈QE

T .

3. Forgeability on expiry: For all m ∈ M, T ⊆ T , for any τ ∈ T , for any “distinguisher”
algorithm D, there is a negligible function ε such that for all κ,

Pr


(vk, sk)← KeyGen(1κ)
σ0 ← Sign(sk, τ,m)
η ← Expire(sk, T )
σ1 ← Forge(η, τ,m)
b← {0, 1}
b′ ← D(σb, η)

: b = b′

 ≤ 1/2 + ε(κ) .

That is, D must not be able to distinguish whether a signature was produced using Sign or
Forge, even in the presence of the expiry information η.

The forgeability on expiry property requires computational indistinguishability between a sig-
nature produced using Sign and a signature produced using Forge on valid expiry information.
In particular, when combined with the correctness property, this implies that any such signature
produced with Forge must appear to be a valid signature, i.e., cause Verify to output 1.

FFS in the publicly verifiable timekeeper model Recall the publicly verifiable timekeeper
(PVTK) model,8 where a reliable timekeeper periodically issues publicly verifiable timestamps. In
this model, expiration may occur “automatically”: signers need not publish additional expiry infor-
mation for signatures to become forgeable after a delay. Thus, the algorithm Expire is unnecessary,
and Forge need not take input η. In §5.2, we construct FFS in the PVTK model.

Difference with forward-secure signatures Both FFS and FSS yield a system of short-lived
secret keys all corresponding to one long-lived public key. However, the definitions differ in two
main ways, described below and depicted in Figure 2.

8Mentioned in § 1.2; discussed further in § 5.2.

14



1. Forward-secure signatures require that past keys cannot be computed from future keys,
whereas forward-forgeable signatures require that future keys cannot be computed from
past keys.

2. Forward-secure signatures are designed to prevent compromise of past signatures by com-
promising a later secret key. All FSS secret keys are short-lived and each secret key must
be derivable based solely on the previous short-lived secret key. Forward-forgeable signa-
tures, in contrast, may have persistent “master secret key” material used to generate each
short-lived key.

sk1 sk2 sk3 sk4 . . .Forward-secure:

sk1 sk2 sk3 sk4msk . . .Forward-forgeable:

Figure 2: Forward-secure vs. forward-forgeable signatures

4.2 Succinctness

Next, we define succinctness of FFS, a measure of the efficiency of disclosure in terms of the size of
expiry info per tag expired. Concretely, in our application, succinctness measures how expiry info
scales as more non-attributable emails are exchanged over time. KeyForge uses a construction of
FFS based on hierarchical identity-based signatures (§4.3), which achieves logarithmic succinctness.

Definition 4. Let z : N→ N. Let S ⊂ P(T ) be a set of sets of tags. A forward-forgeable signature
scheme Σ is (S, z)-succinct if for any T ∈ S, there is a negligible function ε such that for all κ,

Pr
(vk,sk)←KeyGen(1κ)

[∣∣Expire(sk, T )
∣∣ ≤ z(|T |)] ≥ 1− ε(κ) .

Remark 1. Definition 4 is a worst-case definition: it guarantees the size of expiry information with
overwhelming probability. In certain applications, an average-case definition may be appropri-
ate instead, i.e., defining succinctness by bounding the size on expectation. We use a worst-case
definition since it is stronger than an average-case definition, and our construction achieves it.

4.3 FFS Construction from (Hierachical) IBS

We first outline a simple FFS construction BasicFFS based on identity-based signatures (IBS) [56],
as a stepping stone to our main construction from hierarchical IBS (HIBS). The next paragraph
assumes familiarity with standard IBS terminology; readers unfamiliar with IBS may skip to the
main construction which is explained formally with explicit syntax definitions.

Let tags in the FFS correspond to identities in the IBS. BasicFFS.KeyGen outputs IBS master
keys. The BasicFFS signing and verification algorithms for tag τ respectively invoke the IBS signing
and verification algorithms for identity τ . BasicFFS.Expire outputs the secret key for each input tag
τ ∈ T , and BasicFFS.Forge uses the appropriate secret key from the expiry information to invoke

15



the IBS signing algorithm. This simple solution has linear succinctness. By leveraging hierarchical
IBS (HIBS), our main construction achieves logarithmic succinctness, as described next.

Definition 5. A hierarchical identity-based signature scheme HIBS is parametrized by message
spaceM and identity space I = {I`}`∈N, and consists of four algorithms HIBS = (Setup,KeyGen, Sign,Verify)
with the following syntax.

• Setup(1κ) takes as input a security parameter9 and outputs a master key pair (mvk,msk).

• KeyGen(sk~id, id) takes as input a secret key sk~id for a tuple of identities ~id = (id1, . . . , id`) ∈
I1 × · · · × I` and an additional identity id ∈ I`+1 and outputs a signing key sk ~id′ where
~id′ = (id1, . . . , id`, id). The tuple may be empty (i.e., ` = 0): in this case, sk() = msk.

• Sign(sk~id,m) takes as input a signing key sk~id and a message m ∈ M, and outputs a
signature σ.

• Verify(mvk, ~id,m, σ) takes as input master verification key mvk, tuple of identities ~id, mes-
sage m ∈ M, and signature σ, and outputs a single bit indicating whether or not σ is a
valid signature with respect to mvk, ~id, and m.

A depth-L HIBS is a HIBS where the maximum length of identity tuples is L, i.e., the identity
space is I = {I`}`∈[L].

Definition 6. For an identity space I = {I`}`∈N, we say ~id is a level-` identity if ~id ∈ I1×· · ·×I`.
For any `′ > `, let ~id be a level-` identity and ~id′ be a level-`′ identity. We say that ~id′ is a sub-
identity of ~id if ~id is a prefix of ~id′. If moreover `′ = `+ 1, we say ~id′ is a immediate sub-identity
of ~id.

Deriving subkeys Given a master secret key of a HIBS, it is possible to derive secret keys
corresponding to level-` identities for any `, by running KeyGen ` times. By a similar procedure,
given any secret key corresponding to a level-` identity ~id, it is possible to derive any “subkeys”
thereof, i.e., secret keys for sub-identities of ~id. For our construction, it is useful to name this
(simple) procedure: we define HIBS.KeyGen? in Algorithm 1. We write the randomness ρ1, . . . , ρ`
of HIBS.KeyGen? explicitly.

Algorithm 1 HIBS.KeyGen?

Input: sk, `, ~id = (id1, . . . , id`′) . Require: ` ≤ `′
Randomness: ρ1, . . . , ρ`′

for j = `+ 1, . . . , `′ do
sk ← HIBS.KeyGen(sk, idj ; ρj)

return sk

HIBS security requirements Definition 5 gives only syntax and not security requirements. For
a formal security definition, see, e.g., [30]. Informally, an HIBS must satisfy the following:

• Correctness: For any identity tuple ~id, an honestly produced signature w.r.t ~id must verify
as valid w.r.t. ~id.

9Technically, all four algorithms take 1κ as an input, and M and I may be parametrized by κ. For brevity, we
leave this implicit except in Setup.

16



• Unforgeability: For any PPT adversary A with access to a KeyGen(msk, ·, ·) oracle, the

probability that A outputs a valid signature w.r.t. an identity ~id /∈ Q must be negligible,
where Q is the set of all sub-identities of identities A has queried to the oracle.

Algorithm 2 Compress

Input: I = {I`}`∈[L], T ⊆ I1 × · · · × I`
// Remove redundant sub-identities
for all τ ∈ T do

if ∃τ ′ ∈ T s.t. τ ′ is a prefix of τ then
T = T \ {τ}

// Replace identities with prefix identities where possible
for ` = L− 1, . . . , 1 do

for all ~τ = (τ1, . . . , τ`) ∈ I1 × · · · × I` do
// X represents all level-(`+ 1) sub-identities of ~τ
X = {(τ1, . . . , τ`, τ

′)}τ ′∈I`+1

if X ⊆ T then
T = T \X
T = T ∪ {(τ1, . . . , τ`)}

return sk

Succinctly representing expiry information Given any set T of tuples of identities, the simplest
way to make signatures with respect to T forgeable would be to release the secret key corresponding
to each ~id ∈ T , much as in BasicFFS:

η =
{
sk~id = HIBS.KeyGen?(msk, 0, ~id)

}
~id∈T

. (1)

However, leveraging the hierarchical nature of HIBS, η can often be represented more succinctly
than (1). Based on the fact that Algorithm 1 allows the derivation of any subkey, we make two

optimizations. First, before computing (1), we delete from T any ~id ∈ T that is a sub-identity of

some ~id′ ∈ T . Secondly, if there is any ~id′ = (id1, . . . , id`) ∈ I1×· · ·×I` such that every immediate

subkey of ~id′ is in T , i.e.,

∀id`+1 ∈ I`+1, (id1, . . . , id`, id`+1) ∈ T ,

then all sub-identities of id′ can be removed from T and replaced by id′ before computing (1). Such
replacement is permissible only when every possible subkey of id′ is derivable from T : otherwise,
adding id′ to T would implicate additional subkeys beyond those originally in T .

These two optimizations yield an algorithm Compress, which takes as input a set of identity
tuples T , and outputs a (weakly) smaller set of identity tuples T ′ such that knowledge of the secret
keys corresponding to T ′ enables computing valid signatures with respect to exactly the identity
tuples in T . HIBS security guarantees that even given T ′, signatures for identity tuples not in T
remain unforgeable. Next, we describe how Compress works using a tree-based representation of
identity tuples.

Tree representation It is convenient to think of identity tuples represented graphically in a tree.
A node at depth ` represents a tuple of ` identities (considering the root node to be at depth 0).

17



The set of all depth-` nodes corresponds to the set of all `-tuples of identities. The branching factor
at level ` is |I`+1|. Given a secret key for a particular node (i.e., identity tuple), the secret keys of
all its descendant nodes are easily computable using HIBS.KeyGen?. (The secret key for the root
node is the master secret key.) In this language, Compress simply takes a set T of nodes and returns
the smallest set T ′ of nodes such that (1) all nodes in T are descendants of some node in T ′ and (2)
no node not in T is a descendant of any node in T ′. Figure 3 gives an illustration of the Compress
algorithm on a small example tree.

Compress7−−−−−→
Figure 3: Example application of Compress

Our construction of FFS based on HIBS follows. It makes use of Algorithms 1 and 2, which
were just defined.

Construction 1. Let HIBS be a depth-L HIBS10 with message space M and identity space I =
{I`}`∈[L]. Let O be a random oracle,11 and for any tuple ~τ = (τ1, . . . , τ`), let ~O(~τ) = (O(τ1), . . . ,O(τ`)).
For ` ∈ [L], define T` = I1 × · · · × I`. We construct a FFS Σ with message space M and tag space
T =

⋃
`∈[L] T`, as follows.

• Σ.KeyGen(1κ): output (vk, sk)← HIBS.Setup(1κ).

• Σ.Sign(sk, ~τ = (τ1, . . . , τ`),m): let

sk~τ = HIBS.KeyGen?(sk, 0, ~τ ; ~O(~τ))

and output σ ← HIBS.Sign(sk~τ ,m).

• Σ.Verify(vk, ~τ ,m, σ): output b← HIBS.Verify(vk, ~τ ,m, σ).

• Σ.Expire(sk, T ): let T ′ = Compress(I, T ); output

η =
{

(~τ , sk~τ ) : sk~τ = HIBS.KeyGen?(sk, 0, ~τ ; ~O(~τ))
}
τ∈T ′

.

• Σ.Forge(η, τ,m): if there exists skτ ′ such that (τ ′, skτ ′) ∈ η and τ ′ is a prefix of τ , let ` be
the length of τ ′, let

sk~τ = HIBS.KeyGen?(skτ ′ , `, ~τ ; ~O(~τ))

and output σ ← HIBS.Sign(sk~τ ,m); otherwise, output ⊥.

Theorem 1. If HIBS is a secure HIBS, Construction 1 instantiated with HIBS is a forward-forgeable
signature scheme.

10The depth need not be finite, but we consider finite L for simplicity.
11The construction is presented in the random oracle model for simplicity, but does not require a random oracle:

the random oracle can be replaced straightforwardly by a pseudorandom function (PRF) where the PRF key is made
part of the HIBS secret key.

18



Proof. Correctness and unforgeability of Construction 1 follow directly from correctness and un-
forgeability of the underlying HIBS. The FFS requirement of forgeability on expiry moreover fol-
lows from the correctness requirement of the HIBS: the Forge algorithm of Construction 1 invokes
HIBS.Sign using a secret key sk~τ which is guaranteed (by construction of HIBS.KeyGen?) to be the
secret key corresponding to identity tuple τ . The validity of HIBS.Sign invoked on a valid secret
key corresponding to identity tuple τ is guaranteed by the correctness of the HIBS.

Lemma 1 (Logarithmic succinctness). Let HIBS be a depth-L HIBS with message space M and
identity space I = {I`}`∈[L]. For each ` ∈ L, let �` be a total order on I`. Let TL = I1 × · · · × IL.
For i ∈ |TL|, let τi denote the ith element of TL in the lexicographic order induced by {�`}`∈L.
Construction 1 instantiated with HIBS is (S, 2z)-succinct and also (S1, z)-succinct, where

S =
{
{τi}j′≤i≤j : j, j′ ∈ [|TL|]

}
and S1 =

{
{τi}1≤i≤j : j ∈ [|TL|]

}
.

and z(·) = B · logB(·) where B = max`∈L{|I`|}. We assume B is constant.

Proof. Fix any j, j′ ∈ [|TL|] and any set T = {τi}j≤i≤j′ . By the definition of succinctness, it suffices
to show that the output of Compress on T , is a set of nodes of size at most 2B · log(|T |).

For any identity tuple ι ∈ I, let Subι be the set of all level-L identities of which ι is a prefix.
We say that T covers ι if Subι ⊆ T . Let CoverT be the set of all identities covered by T . We say T
subsumes an identity ι if ι is a descendant of some ι′ ∈ CoverT such that ι′ 6= ι. By construction of
Algorithm 2 (Compress), any identity subsumed by T will not be in the output set of Compress(T )
(specifically, it will be removed in the innermost for-loop of Algorithm 2).

For any ` ∈ [L], consider any consecutive sequence of s level-` identities covered by T . By
definition of lexicographic ordering, there are fewer than 2B level-` identities in the sequence that
are not subsumed by T (these identities will be at the beginning and/or end of the sequence).
Moreover, if the sequence begins at the smallest level-` identity in the lexicographic order, then
there are fewer than B identities in the sequence that are not subsumed by T (these identities will
be at the end of the sequence).

Thus, for each ` ∈ [L], there are fewer than 2B level-` identities in the output set of Compress(T ).
Moreover, L ≤ logB(|TL|) ≤ logB(T ). Therefore, the output set size is at most 2B logB(T ).
Moreover, if T ∈ S1, then the output set size is at most B logB(T ).

Discussion of alternative approaches As discussed above, forward-secure signatures (FSS)
and FFS are different primitives with distinct requirements. One could build a FFS from a FSS by
computing a long list of secret keys and then using them in backwards order. Using techniques of
[36, 24], a sequence of keys could moreover be stored with logarithmic storage and computation to
access a key. However, this optimization is only designed for contiguous sequences of keys; HIBS-
based schemes allow for some succinct non-sequential key release and thus support more nuanced
tag structures. Still, for certain applications, e.g., postquantum sequential key release, an FFS
based on a FSS such as XMSS [13] could be useful.

The requirements of FFS also have some similarity to timed authentication. The TESLA timed
authentication protocol [49, 50] considers releasing authentication (MAC) keys following a delay
after sending the payload, in the broadcast authentication context. Such delayed verification is
untenable for email for several reasons, even beyond the inconvenience of waiting 15 minutes for
email delivery. Email’s store-and-forward nature (see §2.2) means multiple MTAs may need to verify
emails before forwarding (e.g., for spam filtering): if the first MTA waits to verify before forwarding,

19



the next MTA will be unable to verify because the delay has rendered the authentication forgeable.
Also, the inability to discard incoming spam before a time delay may increase denial-of-service
vulnerability, especially for smaller email providers.

5 Our Protocol Proposals

Sections 5.1 and 5.2 respectively describe our two proposed systems KeyForge and TimeForge.

5.1 KeyForge

KeyForge consists of two components: (1) replace the digital signature scheme used in DKIM with
a succinct FFS; and (2) email servers periodically publish expiry information.

5.1.1 FFS configuration for KeyForge

Figure 4 illustrates KeyForge’s key hierarchy. KeyForge is based on an L-level tag structure,
corresponding to identity space I = {I`}`∈[L] where the level-L identities represent 15-minute time
chunks spanning a 2-year period. We use the following intuitive 4-level configuration for ease of
exposition, but as discussed in §6, it is preferable for efficiency to keep |I`| equal for all ` ∈ [L].

I1 = {1, 2} representing a 2-year time span

I2 = {1, . . . , 12} representing months in a year

I3 = {1, . . . , 31} representing days in a month

I4 = {1, . . . , 96} representing 15-minute chunks of a day

A tag τ = (y,m, d, c) ∈ I1 × I2 × I3 × I4 corresponds to a 15-minute chunk of time. The 15-
minute chunks are contiguous, consecutive, and disjoint, so that any given timestamp is contained
in exactly one chunk. τ(t) denotes the unique 4-tuple tag (y,m, d, c) that represents the chunk of
time containing a timestamp t, and t @ τ denotes that τ represents a chunk of time containing
timestamp t.

MPK

2019

01

01

C1 Cn

. . .

. . .

. . . . . .

2020

. . .

. . . . . .

12

. . . 30

C1 Cn ∆ Time Chunk

Days

Months

Years

MPK

. . .. . .. . . . . .

Figure 4: KeyForge Hierarchy Layout

KeyForge requires each signature at time t to be with respect to a tag (timestamp) t+ ∆̂/ The
tag is sent in the email’s header, and used for verification at the receiving server. Algorithm 3
specifies KeyForge’s signing and verification.

Efficient tree regeneration from private keys. A key feature of our FFS construction is that
the private keys from children (e.g., day-keys) are easy to generate from parent keys (e.g., the

20



Algorithm 3 KeyForge.Sign and KeyForge.Verify

t = CurrentTime()
function KeyForge.Sign(sk,m,∆)

return FFS.Sign(sk, τ(t+ ∆),m)

function KeyForge.Verify(vk, τ,m, σ)
return t @ τ AND FFS.Verify(vk, τ,m, σ)

MSK). This is not implied by the definition of HIBS,12 and is essential for succinct expiry of entire
portions of the tree (e.g., a year) by disseminating a single key. Further, regeneration can enhance
security and availability: to limit key exposure, organizations could store the MSK in an HSM
disconnected from the Internet, and keep only a child key pair in the MSA, thereby mitigating
damage in case of compromise and allowing recovery from failure.

Where to publish expiry information? Regeneration allows KeyForge to have succinct expiry
information; the number of private keys necessary to represent all expired chunks depends on the
tree’s structure (see §6), but amounts to less than 4 KB for reasonable configurations.

Small expiry information means ease of distribution. While our implementation uses a simple
public-facing webserver, one could imagine posting via DNS TXT records, public blockchains, or
in outgoing email headers. Slow but permanent techniques (e.g., a blockchain) for keys higher up
in the hierarchy (e.g., a year) could ensure that such keys are permanently available.

When to publish expiry information? KeyForge requires email servers to publish expiry
information at regular intervals. A natural option is to publish expiry information every 15 minutes;
to publish the expiry information corresponding to each chunk c at the end of the time period that
c represents.

Publishing every 15 minutes yields the finest granularity of expiry possible under the basic four-
level tag structure. Based on a server’s preference, it could release information at longer intervals
(e.g., days) or shorter ones. In case of an attack, an adversary would be able to convince third
parties of the authenticity of all emails in the current interval (e.g., the current day), so risk aversion
prefers shorter intervals.

Server misconfiguration and clock skew may cause minor clock discrepancies between the MSA
and MDA. To account for this, we delay publishing “expired” keys by 5 minutes. Although in
practice most emails are received very quickly, the SMTP RFC [38] has a very lax give-up time
of 4 days. To get a rough idea of how quickly emails tend to be delivered, we computed the time
differences from the first Received header to the last in the Podesta email corpus [65],13 and found
that, of the 48,246 messages with parseable Received timestamps, over 99% (47,349) took less than
12 minutes.

While expiry time is a configurable parameter of KeyForge (e.g., by administrators), keeping
it short is advisable to minimize time until universal forgeability. We leave a detailed study of
email delivery times in practice to future work, while noting that such a study might support
considerably reducing our conservative 15 minutes, and/or tailoring our approach to specific delay-
prone situations. For example, delays are often caused by expected receiving-server outages (e.g.,

12The definition of HIBS is compatible with this property, but does not require it. Constructions typically have
randomized subkey generation processes so do not have reproducible child keys.

13Beyond the irony, we chose the Podesta email corpus as it was distributed intact with attachments, and thus
arguably more representative of a realistic user’s email distribution than other public datasets.

21



for server updates), which might be resolved by using a DMARC-like DNS record to signal to the
sender to hold messages until later. Anti-spam techniques such as greylisting can delay email by
15 minutes more than usual; to address this, we can add 17 minutes’ leeway when first sending to
a new domain.

We do not fully detail remediation procedures for timeouts, but note that similar authentication
failures happen under DKIM and are commonly resolved via feedback loops such as Authentication
Failure Reporting [28]. Shortening our expiry time is tricky given potentially adversarial routing
delays: providing TCP-like flow control would be systematically possible, but we should also account
for malicious MTAs trying to prolong messages’ unforgeability. A hard-cutoff maximum would likely
be advisable.

Why 15-minute chunks? The time period associated with each leaf node is the maximum
granularity of expiry information release. ∆̂ is a lower bound on chunk size: since ∆̂ represents
email delivery time, publishing expiry information more often does not make sense.

Why a 2-year public key lifetime? Rotating keys is good practice; for operational reasons, the
Messaging, Malware, and Mobile Anti-Abuse Working Group (M3AAWG) recommends DKIM key
rotation every 6 months [40]. However, recognizing that, realistically, DKIM keys often last more
than 6 months, our evaluation assumes a 2-year period.

How many levels? The optimal L depends on a trade-off between computation time and expiry
succinctness; see §6.

Flexible expiry policies The basic tag structure described above is customizable: e.g., an extra
level I` might represent an email’s “sensitivity,” allowing sensitive emails to expire faster. Alterna-
tively, one might want certain emails to expire more slowly or never (e.g., bank/employer emails or
contracts). In KeyForge, sensitivity can be expressed as the desired delay until expiry. KeyForge is
highly configurable: after the first four levels, different email servers’ policies need not be consistent.
Verification refers only to the first four levels of the tag (when checking t @ τ), so a sending server
can add more levels beyond the basic four without sacrificing compatibility, to match its desired
expiry policy.

5.2 TimeForge

KeyForge’s main limitation is that it requires signers to continuously release key material. Wide
distribution can pose a practical challenge; users must depend on their provider to perform this
task reliably. Unreliable distribution would limit a system’s realistic deniability.

TimeForge takes a different approach that eliminates reliance on follow-up action by signers.
TimeForge uses a service that we term a publicly verifiable timekeeper (PVTK), which could be
realized using various extant Internet systems. A PVTK is a global service that maintains a
monotonically increasing clock. At any clock time t, any party can query the PVTK to obtain a
publicly verifiable proof πt that the current time is at least t. Simultaneously, the system ensures
that attackers cannot forge such proofs at an earlier time.

The intuition behind TimeForge is straightforward. Let M be an email message sent at time
period t. The sender first signs each message using a standard SUF-CMA signature scheme to
produce a signature σ. She then authenticates the message, not directly using σ, but rather using a
witness indistinguishable and non-interactive proof-of-knowledge (PoK) of the (informal) statement:

I know a valid sender signature σ on M
OR

22



I know a valid PVTK proof πt+d, for some d ≥ ∆.

Assuming a trustworthy PVTK service, this proof authenticates the message during any time
period prior to t+ ∆. Once a PVTK proof πt+∆ becomes public, the PoK becomes trivial for any
party to generate. Witness indistinguishability ensures that a signer’s valid proof is indistinguish-
able from a “forgery” later computed using a revealed PVTK proof.

Publicly verifiable timekeeping. A PVTK scheme comprises three algorithms.

• TK.Setup(1λ) takes a security parameter λ and outputs a set of public parameters params
and a trapdoor sk.

• TK.Prove(sk, t) takes as input sk and the current time epoch t, and outputs a proof πt.

• TK.Verify(params, t, πt) on input params, a time period t, and the proof πt, outputs whether
πt is valid.

Correctness and Security. Correctness is straightforward. ∆-PVTK security requires that an
adversary with a PVTK oracle (which provides proofs for arbitrary time periods t) must not be
able to produce a valid proof for some time period tmax + ∆ (except with negligible probability)
where tmax is the largest oracle query, and ∆ > 0 is a constant parameter.

Realizing a PVTK service. A simple PVTK system can be constructed using a single server
that maintains a clock, and periodically signs the current time using an SUF-CMA signature (our
implementation does this).

While conceptually simple, deploying this solution at scale is likely to be costly, and may suffer
denial-of-service and network-based attacks. A better approach might construct a PVTK from
existing Internet services. Next, we outline several proposals.

OCSP servers. The Online Certificate Status Protocol, in its “stapling” configuration [51] allows
TLS servers to obtain a standalone, signed, and timestamped certificate validity message from a
Certificate Authority (CA); this can be viewed as an organic implementation of a PVTK server.
To avoid reliance on a single CA, users can define the proof πt to comprise multiple valid staples,
e.g., one from any k out of N chosen CAs. These parameters, as well as the CA identities, can be
selected as part of the setup algorithm.

CT and randomness beacons. The Certificate Transparency protocol consists of a centrally-
managed and publicly verifiable log for recording the issuance of certificates [41]. While CT is
not intended as a timestamping protocol, each CT log entry is signed by the log operator (e.g.,
Google), contains a timestamp, and may be re-purposed to implement a centralized PVTK service.
Similarly, NIST operates a randomness beacon [45] that signs and distributes timestamps. While
any single centralized service may be unreliable or subject to attack, a (fault-tolerant) combination
of these extant services can be used to construct a “composite” PVTK system.

Proof of work blockchains. A number of cryptocurrencies use proof of work blockchains to
construct an ordered transaction ledger [43, 66] which generates new blocks at a rate using inten-
tionally chosen parameters. These ledgers can be used as a form of PVTK system, in which params
comprises some initial block header Bs, and πt comprises a list of block headers {Bs+1, . . . , Bt}
drawn from the blockchain. Although this approach does not produce an exact timekeeping service
(block intervals are probabilistic), nor does it guarantee cryptographic unforgeability (as chains can
be forged given control of a substantial fraction of the network’s hash power), this is likely not a
problem for the short intervals used in TimeForge.

23



VDFs and puzzles. Cryptographic “puzzles” are mathematical problems that require a known
(or statistically predictable) number of computational operations to solve. Examples include cryp-
tocurrency proof of work systems and timelock encryption schemes [53]. A related primitive, the
Verifiable Delay Function [9, 52] creates a sequential puzzle that requires a precisely-known amount
of work to solve, and allows the solver to produce a proof of the solution’s correctness. While
puzzles and VDFs do not directly allow for the creation of a PVTK system, they enable a related
primitive: at time t a sender may generate a puzzle challenge M (e.g., the contents of an email mes-
sage) such that a proof πt+∆ can be found by applying a computational process to M in expected
time approximately ∆.

A basic TimeForge signature scheme. The TimeForge scheme consists of four algorithms:
TF.Keygen, TF.Sign and TF.Verify, and TF.Forge. We assume a PVTK scheme with parameters
params and an SUF-CMA signing algorithm Sig.

• TF.Keygen(1λ, params). Run Sig.Keygen(1λ) to generate (pk, sk) and output PK = (pk, params),
and SK = sk.

• TF.Sign(PK,SK,M, t,∆). Parse PK = (pk, params). On input a message M and a time
period t, compute σ ← Sig.Sign(SK,M‖t‖∆) and the following witness-indistinguishable
(WI) non-interactive PoK:14

Π = NIPoK{(σ, s, π) : Sig.Verify(pk, σ,M‖t‖∆) = 1 ∨
(TK.Verify(params, π, s) = 1 ∧ s ≥ t+ ∆)}

Note that the prover can produce this proof using (σ,⊥,⊥) as the witness. Output σtf =
(Π, t,∆).

• TF.Verify(PK,M, σtf). Parse PK = (pk, params) and σtf = (Π, t,∆), verify the proof Π
with respect to the public values t,∆, pk,M , and output the verification result.

TF.Forge takes as input a PVTK proof πs for some time period s ≥ t+ ∆.

• TF.Forge(PK,M, t, s,∆, πs). parse PK = (pk, params) and compute the NIPoK Π de-
scribed in the TF.Sign algorithm, using the witness (⊥, s, πs). Output σtf = (Π, t,∆).

Defining Security. Security for TimeForge is defined according to the following experiment. This
experiment can be considered a variant of (weak) UF-CMA security definition for a signature scheme:
an attacker must attempt to forge a TimeForge proof over a message M that she has not previously
queried to a signing oracle. To assist in this, the attacker is given access to not one, but two oracles.
The first is a signing oracle for the TimeForge signature scheme, and produces valid signatures for
tuples of the form (M ′, t′,∆′). The main difference from the standard UF-CMA experiment is the
existence of a second oracle that models the PVTK service. To model this, the attacker additionally
obtains PVTK parameters params at the start of the experiment, and may repeatedly query the
PVTK oracle on chosen epoch numbers s to obtain PVTK proofs of the form πs. Let smax be the
largest time period queried to the PVTK oracle at the conclusion of the experiment. We say the
attacker wins iff she outputs a message M and valid TimeForge proof σtf = (Π, t,∆) such that
smax < t + ∆. where (M, t,∆) was not queried to the signing oracle. We say that a TimeForge
scheme is unforgeable under chosen timestamp attacks if ∀ p.p.t. attackers A, the adversary has at
most a negligible advantage in succeeding at the above experiment.

14Here we use Camenisch-Stadler notation, where the witness values are in parentheses () and any remaining values
are assumed to be public.

24



Remark 2. The definition above does not prevent forgeries that are “outside the expiration period.”
Specifically, an intermediary can intercept a message embedding (M, t,∆) where t + ∆ is in the
future, and author a new message M ′, t′,∆′ where t + ∆ has already been proved by the PVTK
oracle. This is explicitly allowed by TimeForge; indeed, it is a goal of the system.

Theorem 2. If (1) the PVTK service uses an SUF-CMA signature scheme, (2) the WI proof system
is sound (extractable), and (3) the underlying signature scheme used by TimeForge is SUF-CMA,
then the basic TimeForge scheme is secure under chosen timestamp attacks.

Proof. Our proof is by contradiction. Let A be an attacker that succeeds with non-negligible
advantage in the chosen timestamp experiment. We construct a pair of algorithms B1,B2 such that
that one of the two algorithms (respectively) succeeds with non-negligible advantage in the SUF-
CMA game against (1) the signature scheme Sig, or (2) the underlying PVTK signature scheme.
We now describe the operation of each algorithm.

An attack on the signature scheme Sig. In this strategy we construct B1, which conducts the
SUF-CMA experiment for the underlying signature scheme Sig. B1 first obtains a public key pk from
the SUF-CMA challenger. It next uses the PVTK signature scheme’s key generation algorithm to
produce a keypair (params, skPVTK) for the PVTK service and sends PK = (pk, params) to A.

Each time A queries the PVTK oracle on some timestamp s, B1 implements TK.Prove by using
skPVTK to sign s and return the signature πs. Whenever A queries the TimeForge signing oracle
on some tuple (M, t,∆), B1 first queries the SUF-CMA signing oracle to obtain a signature σ on
M‖t‖∆. It then constructs a TimeForge signature by constructing the proof described in the
TF.Sign algorithm using σ as the satisfying witness, and returns σtf to A.

When A outputs a pair (M∗, σ∗tf) that satisfies the win conditions of the experiment, B1 parses
σ∗tf to obtain (Π∗, t∗,∆∗) and runs the extractor on Π∗ to obtain the witness (σ∗, s∗, π∗). (If the
extractor fails, B1 aborts.) If σ∗ is a valid signature on M∗‖t‖∆, it outputs the pair (σ∗,M∗) as
an SUF-CMA forgery.15

An attack on the PVTK scheme. In this strategy we construct B2, which conducts the SUF-CMA
experiment against the PVTK signature scheme. This algorithm proceeds as in Strategy 1, except
that here we set params to be the public key obtained from the SUF-CMA challenger, and generate
the keypair (pk, sk) = Sig.Keygen(1λ). Queries to the PVTK oracle are answered by forwarding s
to the SUF-CMA oracle and returning the resulting signature as πs, and queries to the TimeForge
oracle are answered honestly by running TF.Sign with sk as an input. As in the previous strategy,
if A succeeds in the experiment we run the extractor to obtain σ∗, s∗, π∗. Then B2 verifies that π∗

is a valid signature on s∗ and, if so, outputs (π∗, s∗) as a forgery for the SUF-CMA experiment.

Analysis. A’s view is distributed identically when it interacts with B1 or B2, so A’s advantage must
be identical w.r.t. B1 and B2. By soundness, the WI knowledge extractor fails with probability at
most negligible in the security parameter. Thus both adversaries will abort with at most negligible
probability due to extraction error.

It remains only to show that at least one of the two algorithms above must succeed with
non-negligible advantage in the SUF-CMA experiment. This is true because the attacker’s output
(Π∗, t∗,∆∗) and the extracted witness (σ∗, s∗, π∗) must satisfy the conditions that (1) for all PVTK
queries s made during the experiment, s < t∗ + ∆∗ (by the requirements of the experiment), (2)
the message M∗‖t‖∆ has not been queried to the SUF-CMA signing oracle (by the requirements of

15By the restrictions on A, M∗ must represent a message that has not previously been queried to the SUF-CMA
oracle.

25



the experiment), and (3) the following conditions are true (by the soundness of the proof system):

Sig.Verify(pk, σ∗,M∗) = 1 ∨ (TK.Verify(params, π∗, s∗)

= 1 ∧ s∗ ≥ t∗ + ∆∗)

If A succeeds in the TimeForge experiment with non-negligible advantage, then the extracted
witness must contain a valid signature σ∗ on a message M∗‖t‖∆ not queried to the signing oracle,
or it must contain a valid signature π∗ on some epoch s∗ not queried to the PVTK oracle. Hence,
one of B1 or B2 succeeds with non-negligible advantage.

5.3 Realizing the TimeForge proof system

TimeForge can be realized using a variety of WI and ZK proof systems, combined with efficient
SUF-CMA signature schemes. For example, a number of pairing-based signature schemes [7, 21, 6]
admit efficient proofs of knowledge of a signature using simple Schnorr-style proofs [2]. More
recent proving systems, e.g., Bulletproofs [14] and zkSNARKs (e.g., [48, 32], admit succinct proofs
of statements involving arbitrary arithmetic circuits and discrete-log relationships. Using the latter
schemes ensures short proofs, in the hundreds of bytes, in some cases with a small, constant
verification cost. Thus, even complex PVTK proofs such as block header sequences, can potentially
be reduced to a succinct TimeForge signature.

A concrete implementation. For our basic implementation, which signs a timestamp, we con-
sidered several proof systems. For the relatively simple proof statement used in this scheme,
Bulletproofs are not appropriate for two reasons: (1) the proof sizes that result exceed 1000 bytes,
and (2) these proofs do not natively support efficient signatures. zkSNARKs produce bandwidth-
efficient signatures, but at a significant cost due to the need to generate a trusted setup embedding
the signature verification circuit. Based on these considerations, we propose and evaluate one con-
crete implementation based on Schnorr-style proving techniques, made non-interactive using the
Fiat-Shamir heuristic. Our approach implements TimeForge using a dedicated server that produces
(weak) Boneh-Boyen signatures [10] over the current time period t, which is encoded as an integer
in Zq. Let g1, g2 be generators of a pair of bilinear groups G1,G2 of order q. Briefly, a Boneh-Boyen

signature on a time period t comprises a single group element σ = g
1/x+t
1 , where x represents the

signing key, and the server’s public key is gx2 . Verification is conducted by checking the following
pairing equality: e(g1, g2) = e(σ, gx2g

t
2).

Our proposed TimeForge proof of knowledge requires the following components. First, the
prover to provides a Pedersen commitment B to the current time period Tcurrent using randomness
r. The proof also reveals the (alleged) true signing time period Tsigning in cleartext (in case it is
different) and attaches δ. Using these values, the prover employs the homomorphic property of

Pedersen commitments to derive an implicit commitment C = g
γ=Tcurrent−Tsigning−δ
1 hr

′
, and then uses

a range proof to prove that it knows a value γ that is in the range [1, 232]. We use a range proof due
to Camenisch, Chaabouni, and shelat [20]. Alternatively, this proof could be implemented using a
Bulletproof, due to Bootle et al. [14].

In addition to this commitment proof and range proof, we provide two separate Schnorr-style
proofs in an “OR” construction:

1. A standard Schnorr signature on the message. This comprises an interactive proof of knowl-
edge of a value sk ∈ Zq such that PK = gsk, flattened into a signature of knowledge on

26



the signed message, using the Fiat-Shamir heuristic. (This represents the genuine signer’s
signature on the message.)

2. A proof of knowledge of a Boneh-Boyen signature on the TimeForge time period Tcurrent,
signed using the TimeForge server secret key. For this construction we use a interactive
zero-knowledge protocol given by Boneh, Boyen and Shacham [11, Protocol 1], flattened
using the same Fiat-Shamir hash function.

5.4 KeyForge+ and TimeForge+

KeyForge+ (resp. TimeForge+) consists of KeyForge (resp. TimeForge) with two modifications: a
forge-on-request protocol and per-recipient-domain signatures, described next.

1. Forge-on-request protocol. We add a protocol (detailed in Algorithm 4) by which email
servers accept real-time requests for specified email content to be sent to the requester (and nobody
else). The forge-on-request protocol ensures that all users have the capability to forge emails to
themselves in real time, directly achieving immediate recipient forgeability. The requirement that
the recipient be the requester is crucial: each requester is enabled to forge emails only to herself.

The requester’s email server attests to the requesting client’s identity (similarly to DKIM). We
note that a malicious server could unauthorizedly sign requests for any client account it controls.
This is outside our threat model, and such behavior is equally possible under DKIM (see also
“Client-server trust” under §3.2): that is, today’s email ecosystem already relies on servers to
attest honestly to their clients’ identities, and allows servers to spam their own clients (a behavior
that might not keep them many clients).

The scheme as described so far already works for single-recipient emails, but can be problematic
for multi-recipient16 emails due to spam/spoofing attacks between co-recipients: as long as all
recipients of an email receive exactly the same information, an attacker can always request a forged
email addressed to a group including herself, and quickly forward it to trick the others into treating
the email as legitimate. To remedy this, we require one more change to KeyForge.

2. Per-recipient-domain signatures. In DKIM, KeyForge, and TimeForge, the sending server
signs each outgoing email once. In KeyForge+ and TimeForge+, instead, the sending server signs
each outgoing email once per recipient domain. That is, the sending server produces a signature
σD = Sign(sk, (D,m)) for each recipient domain D,where sk is the signing key and m is the email
information that the sending server would have signed under DKIM (or KeyForge or TimeForge).
The sending server sends each recipient domain D the email and only the signature σD.

Per-recipient-domain signatures prevent attackers from using the forge-on-request protocol to
send spam/spoofing emails to co-recipients on forged emails. Adida et al. [1] previously proposed
per-recipient signatures in a very similar context.

Notation Emails(S,R,m, µ, t) is as defined in §3.3, additionally taking into account that signatures
in KeyForge+ and TimeForge+ are per recipient domain. FReq denotes a special message to betoken
forge requests. For an email address a, let a.dom denote its domain.

Note that a forge-on-request protocol achieves a stronger guarantee than the use of ring sig-
natures (i.e., signing with respect to both the sending and receiving servers’ public keys). A
forge-on-request protocol enables any recipient with the ability to send mail from an email server
to forge mail from any sender to herself. The ring signature approach enables her to do this only
if she has the ability to sign fraudulent mail with the receiving server’s secret key.

16Here, “recipients” means any recipients whether via to, cc, or bcc.

27



Algorithm 4 Forge-on-request

Requester
To request an email with message m and metadata µ from alice@foo.com:

• Send (FReq,m, µ, alice@foo.com) to client’s (i.e., its own) email server.

Email server (say, bar.com, with secret key s)
On receiving request (FReq,m, µ, a) from own client bob:17

• If a.dom = bar.com:18 Let t be the current time. Deliver e to bob, where e =
Emails(a, bob@bar.com,m, µ, t).

• Else: Let σ = Sign(FReq,m, µ, a, bob).19 Send (FReq,m, µ, a, bob, σ) to server a.dom.
On receiving request (FReq,m, µ, a, b, σ) from server b.dom:

• v ← Verify(vk, (FReq,m, µ, a, b), σ), where pk is b.dom’s public key in DNS.

• If v = 0: Do not respond.

• Else (i.e., v = 1): Let t be the current time. Send e, e′ to b.dom, where e =
Emails(a, b,m, µ, t) and e′ = Emails(a, b,m, µ, t− ∆̂).

Theorem 3. KeyForge+ is non-attributable for recipients (Definition 1) and ∆̂-universally non-
attributable (Definition 2).

Proof. Follows directly from Lemmata 2 and 3.

Lemma 2. KeyForge+ is non-attributable for recipients (Def. 1).

Proof. Recall from Definition 1 that we must show that there is a PPT simulator S such that for
any sender S and recipient R, for any email message m and metadata µ,

KeyForgesk(S,R,m, µ, t) ≈c SR(S,m, µ) , (2)

where sk is the (master) secret key of S, t is the time at which S is invoked, and the superscript
R denotes that S has access to the recipient’s email server. We construct S in Algorithm 5.

Algorithm 5 Simulator S for recipient non-attributability

Input: S,m, µ
t = CurrentTime()
send forge request (m,µ) to S
receive answer {e0, e1}
parse e0, e1 as emails w.r.t. tags τ0, τ1 respectively
if τ(t) = τ0 then return e0

else if τ(t) = τ1 then return e1

By definition of ∆̂, we know S received the request at some time t′ ≤ t + ∆̂. Thus, by
construction of KeyForge, the emails e, e′ must be signed with respect to the tags τ(t′ − ∆̂), τ(t′)
(say, respectively). It follows that τ(t) = τ(t′ − ∆̂) or τ(t) = τ(t′). Therefore, at least one of the
if-conditions in Algorithm 5 must be satisfied, and S always produces an output. By construction
of the if-statements and the forge-on-request protocol, the output of S is an email signed by S for a
tag corresponding to timestamp t, as (2) requires.Indeed, we achieve equality of distributions (not
just indistinguishability).

28



Lemma 3. KeyForge+ is ∆̂-universally non-attributable (Def. 2).

Proof. Recall from Definition 2 that we must show that there is a PPT simulator S such that for
any sender S (with secret key sk) and recipient R, for any email message m, metadata µ, and
timestamp t, the following holds at any time ≥ t+ ∆̂:

KeyForgesk(S,R,m, µ, t) ≈c S(S,R,m, µ, t) . (3)

Let KeyForge∗sk∗ be identical to KeyForgesk except that whenever KeyForgesk invokes KeyForge.Sign(sk, ·),
KeyForge∗sk∗ instead invokes HIBS.Sign(sk∗, ·). Next, we construct S in Algorithm 6.

Algorithm 6 Simulator S for ∆̂-strong non-attributability

Input: S,R,m, µ, t
retrieve published expiry information η for S
for all (~τ , sk~τ ) ∈ η do

if t @ ~τ then
sk∗ ← HIBS.KeyGen?(sk~τ , `, τ(t); ~O(~τ))
return KeyForge∗sk∗(S,R,m, µ, t)

Since S is invoked at time ≥ t+ ∆̂, and KeyForge prescribes publication of expiry information
at the end of each chunk of duration ∆̂, the expiry information η retrieved by S includes expiry
information with respect to time t. Therefore, the if-condition in Algorithm 6 is satisfied for at
least one element of η.20

Recall that KeyForge.Sign invokes FFS.Sign, which invokes HIBS.Sign. By definition, if t @ ~τ and
η is expiry information with respect to sk, then sk∗ as computed in Algorithm 6 is the same key
used to invoke HIBS.Sign (within FFS.Sign, which is within KeyForge.Sign) at time t. Therefore, the
output distributions of KeyForge∗sk∗ and KeyForgesk are identical. It follows that S satisfies (3).

On the efficiency of KeyForge+/TimeForge+ Per-recipient-domain signatures add sender-side
overhead compared to single-signature schemes like DKIM, KeyForge, or TimeForge: the sending
server must compute one signature per recipient domain per email, whereas the receiving server
verifies just one signature, just like before. While this additional computation is unlikely to be
prohibitive given the efficiency of signing, it must be taken into account when evaluating KeyForge+

and TimeForge+’s efficiency, as discussed further in Section 6.
Implementing forge-on-request and per-recipient-domain signatures would entail more complex-

ity and significant changes to the existing email infrastructure, than the base protocols. While im-
mediate recipient forgeability is desirable for added protection against real-time attacks (see Threat
Model 2), KeyForge is a more realistic candidate for near-term deployment as it is realizable with
lighter-weight changes to the existing system: namely, replacing DKIM’s signature scheme, and
unilateral server publication of small amounts of data.

6 Implementation and Evaluation

We implemented prototypes of KeyForge and TimeForge and integrated them into Postfix, a com-
mon MDA/MSA. The entire project consists of roughly 2,000 lines of Go, C, and Python, and

20In fact, it will be satisfied for exactly one element of η, by construction of Compress which ensures that no
timestamp is represented by more than one element.

29



Monthly KeyForgeB KeyForgeB σ Monthly KeyForgeC KeyForgeC σ DKIM RSA2048 σ TimeForge σ

30× 65 = 1950 98 30× (64 + 32) = 2880 64× 2 + 32 = 160 256 841

Table 1: Bandwidth costs (in bytes) of KeyForgeB , KeyForgeC , and DKIM with RSA. σ denotes a signature.

is available open source.21 Full details of cryptographic primitives and curve parameters are in
Appendix D.

We evaluate two versions of KeyForge instantiated with different HIBS schemes: (1) KeyForgeB,
which uses Gentry-Silverberg’s “BasicHIDE” bilinear map based scheme [30] using a BN254 curve
and (2) KeyForgeC , which uses certificate chains on public keys using non-identity-based signatures,
instantiated with Ed25519.22 We also implemented a prototype of TimeForge (see Appendix 5.3),
which is less efficient; it is intended as a proof of concept whose practicality will improve with
advances in the underlying proof primitives (an active area of research). The two KeyForge imple-
mentations share the following bandwidth optimization.

KeyForge bandwidth optimization. HIBS schemes tend to have relatively large signatures. In
KeyForgeB, a signature must include public parameters for each node on the path to the current
chunk. A public parameter in this configuration is 65B, yeilding a bandwidth of 260B for a four-
level Y/M/D/Chunk tree, resulting in a total of 293B per signature. KeyForgeC similarly requires
an Ed25519 signature between each node in the hierarchy, and has total signature size of 448B (four
64B path signatures, four 32B public keys, and the message signature). We optimize bandwidth
by precomputing all path parameters except for the last chunk and store them in the DNS, along
with the MPK. When verifying from a new server, KeyForge performs a DNS lookup and caches
the result at a cost of 2-3KB per month (see Table 1).

Two components, the keyserver and mail filter, are shared between all implementations. They
are described next.

Mail Filter. The filter ensures that sent emails are properly formatted, verifies incoming emails,
and communicates the results to the MDA/MTA. The filter works by intercepting SMTP requests,
adding necessary metadata to outgoing email headers, and requesting cryptographic operations from
the keyserver. When sending a message, the filter attaches an expiry time (and other verification
information) to the email’s header, hashes the metadata and message content, forwards the hash to
the keyserver to sign, and finally adds this signature to the header. On receipt, the filter confirms
that the signature’s hash matches the message and metadata, and forwards the signature, sending
domain, and expiry timestamp to the keyserver for verification. If verification fails, the filter alerts
PostFix and the message is dropped.

Keyserver. The keyserver performs signing and verification, communicates with the mail filter
over RPC, and publishes expired keys (for KeyForge) via a simple webserver.

6.1 Evaluation

We evaluate messaging bandwidth, expiry data bandwidth, and speed. Our primary focus is on
comparison with RSA-2048: it is the signature scheme commonly used in DKIM, and so a natural
benchmark for practicality in the current email ecosystem. Although more bandwidth-efficient al-
gorithms were approved for DKIM use some months ago, (e.g., Ed25519 with a 64 B signature [35]),

21https://github.com/keyforgery/KeyForge
22The certificate-based approach has been attributed to folklore.

30



Sign(ms) Sign/s Verify(ms) Verify/s

TimeForge 24.58 49.68 23.24 43
KeyForgeB 0.34 2,932 3.36 298
KeyForgeC 0.13 17,197 0.13 7,541
RSA2048 0.93 1,075 0.05 19,966
Ed25519 0.03 27,001 0.10 9,781

Table 2: Time required for a single operation in milliseconds, and the equivalent number of operations per
second. KeyForge times are for a 4-level tree, RSA is from OpenSSL benchmarks.

1 2 3 4 5 6 7
Tree Depth

0.000

0.001

0.002

0.003

0.004

0.005

0.006

T
im

e
in

S
ec

on
ds

KeyForgeB Signing and Verification Time

Sign Cached

Sign Uncached

Verify Cached

Verify Uncached

Figure 5: KeyForgeB timings

1 2 3 4 5 6 7
Tree Depth

0.0000

0.0002

0.0004

0.0006

0.0008

0.0010

T
im

e
in

S
ec

on
ds

KeyForgeC Signing and Verification Time

Sign Cached

Sign Uncached

Verify Cached

Verify Uncached

Figure 6: KeyForgeC timings

these schemes appear to have had limited deployment to date.23 Nonetheless, for completeness,
this section also considers Ed25519 performance.

Bandwidth. Table 1 shows bandwidth costs for various configurations of KeyForge and TimeForge.
Both KeyForge implementations have a bandwidth per email that is 42% smaller than a DKIM
RSA-2048 signature.

Speed. To capture the range of KeyForge’s possible performance, we considered two cases: (1)
where the public key path is verified from scratch (e.g., in setting up a new server, or verifying
messages from a new domain) and (2) where path parameters are pre-verified and cached. Figures 5
and 6 show the results. Signing is largely unaffected by tree depth when caching.

Table 2 provides efficiency microbenchmarks for KeyForge, TimeForge, and Ed25519 and DKIM’s
RSA-2048 via the OpenSSL suite’s benchmark. All KeyForge benchmarks are for a 4-level tree with
caching. Our experiments were run on a laptop with power lower than a common server (see Ap-
pendix D), so our timings may be seen as upper bounds. Performance scales linearly with the
number of cores; our measurements are for a single core.

Optimizing for KeyForge expiration bandwidth. While the Y/M/D/Chunk configuration
is easy to intuit, an equal branching factor across tree levels yields a large gain in succinctness.
Table 4 (in Appendix E) shows the average and maximum size of expiry info of various depth trees
with an equal branching factor: e.g., the average expiry size for a 2-year period is 4.5MB, 4KB, or
1.8KB for depths 1, 4, and 7.

Discussion and analysis. We find that KeyForge, especially KeyForgeC , is likely practical when

23E.g., as of October 2019, Gmail and Exchange use only RSA-2048.

31



using DKIM’s RSA-2048 as a benchmark. In both implementations, KeyForge’s signing time is
better than RSA: KeyForgeB and KeyForgeC sign 2.7 and 16 times faster than RSA, respectively.
KeyForge further beats RSA on signature bandwidth per email, at just 63% or less of RSA signature
size in the worst case. RSA outperforms KeyForge only on verification time: KeyForgeC is still
eminently practical, with verification a factor of two slower than RSA, whereas KeyForgeB is an
order of magnitude slower.

Verification time is unlikely to affect KeyForge’s viability, as other factors such as hashing, I/O,
and network latency are likely to dominate. Any hash-and-sign scheme must read the message
into memory and perform a hash, so to provide a ballpark measurement of I/O and hashing, we
timed OpenSSL’s SHA256 on the Podesta corpus [65], stored on-disk. The average time required
was 10.2ms (2.689ms std),24 indicating that hashing and I/O is surprisingly impactful. Network
latency is significant as well — SMTP requires that a sending MTA perform a minimum of four
round trips per email.25 A highly optimistic round-trip time of 5ms would yield of 20ms per email,
not including time to send message content.

The choice between KeyForgeB and KeyForgeC is likely implementation dependent: while
KeyForgeB requires less bandwidth, its drawbacks are speed and use of non-IETF-standardized
curves (unlike KeyForgeC).

A note on adoption. With an ecosystem as unwieldy as email, a reasonable concern might be
that any large-scale update would be difficult. That said, now is an opportune time to propose
such changes: the IETF has recently approved a new standard that will encourage MTAs to begin
updating their DKIM signing and verification algorithms [35]. Further, if the community were to
endorse a new standard, one could imagine large email providers (e.g., Google) displaying favorable
security indicators akin to to Gmail’s TLS indicators[31]. Such tactics have been successful in the
context of HTTPS.

We have consulted members of the IETF, W3C, and the Gmail Security team, and optimized
and evaluated our prototypes with their performance priorities and concerns in mind.

Acknowledgements

We are grateful to Jon Callas for helpful discussions about motivations for email non-attributability
and our scheme’s applicability to DKIM, and to Dan Boneh, Daniel J. Weitzner, John Hess, Bradley
Sturt, Stuart Babcock, and Ran Canetti for their feedback on earlier versions of this work. This
work was supported in part by the William and Flora Hewlett Foundation grant 2014-1601, and by
the MIT Media Lab’s Digital Currency Initiative and its funders. We would like to acknowledge
support from the National Science Foundation under awards CNS-1653110 and CNS-1801479, and
a Google Security & Privacy Award.

References

[1] Ben Adida, David Chau, Susan Hohenberger, and Ronald L. Rivest. Lightweight email signa-
tures. In International Conference on Security and Cryptography for Networks, pages 288–302.

24Email size is often pushed up by HTML formatting, embedded media, and attachments. Average email size in
our corpus is 98 KB (691 KB std).

25SMTP messages require a round trip per command, and each email requires a MAIL, RCPT, and two DATA
commands.

32



Springer, 2006.

[2] Ben Adida, Susan Hohenberger, and Ronald L. Rivest. Lightweight encryption for email. In
Steps to Reducing Unwanted Traffic on the Internet Workshop, SRUTI’05. USENIX Associa-
tion, 2005.

[3] D. F. Aranha and C. P. L. Gouvêa. RELIC is an Efficient LIbrary for Cryptography. https:
//github.com/relic-toolkit/relic.

[4] Diego F. Aranha, Laura Fuentes-Castañeda, Edward Knapp, Alfred Menezes, and Francisco
Rodŕıguez-Henŕıquez. Implementing pairings at the 192-bit security level. In International
Conference on Pairing-Based Cryptography, pages 177–195. Springer, 2012.

[5] Associated Press. DKIM verification script. Available at https://github.com/

associatedpress/verify-dkim.

[6] Mira Belenkiy, Melissa Chase, Markulf Kohlweiss, and Anna Lysyanskaya. P-signatures and
noninteractive anonymous credentials. In TCC 2008, 2008.

[7] Mira Belenkiy, Melissa Chase, Markulf Kohlweiss, and Anna Lysyanskaya. Compact E-Cash
and Simulatable VRFs Revisited. In Pairing-Based Cryptography ’09, 2009.

[8] Steven Michael Bellovin. Spamming, phishing, authentication, and privacy. 2004.

[9] Dan Boneh, Joseph Bonneau, Benedikt Bünz, and Ben Fisch. Verifiable delay functions. In
Advances in Cryptology - CRYPTO 2018 - 38th Annual International Cryptology Conference,
Santa Barbara, CA, USA, August 19-23, 2018, Proceedings, Part I, pages 757–788, 2018.

[10] Dan Boneh and Xavier Boyen. Short signatures without random oracles. In Christian Cachin
and Jan L. Camenisch, editors, Advances in Cryptology - EUROCRYPT 2004, pages 56–73,
Berlin, Heidelberg, 2004. Springer Berlin Heidelberg.

[11] Dan Boneh, Xavier Boyen, and Hovav Shacham. Short group signatures. In Matt Franklin, ed-
itor, Advances in Cryptology – CRYPTO 2004, pages 41–55, Berlin, Heidelberg, 2004. Springer
Berlin Heidelberg.

[12] Nikita Borisov, Ian Goldberg, and Eric Brewer. Off-the-record communication, or, why not
to use PGP. In Proceedings of the 2004 ACM Workshop on Privacy in the Electronic Society,
WPES ’04, pages 77–84, New York, NY, USA, 2004. ACM.

[13] Johannes A. Buchmann, Erik Dahmen, and Andreas Hülsing. XMSS - A practical forward
secure signature scheme based on minimal security assumptions. In Bo-Yin Yang, editor,
Post-Quantum Cryptography - 4th International Workshop, PQCrypto 2011, Taipei, Taiwan,
November 29 - December 2, 2011. Proceedings, volume 7071 of Lecture Notes in Computer
Science, pages 117–129. Springer, 2011.

[14] B. Bunz, J. Bootle, D. Boneh, A. Poelstra, P. Wuille, and G. Maxwell. Bulletproofs: Short
proofs for confidential transactions and more. In 2018 IEEE Symposium on Security and
Privacy (SP), volume 00, pages 319–338.

33

https://github.com/relic-toolkit/relic
https://github.com/relic-toolkit/relic
https://github.com/associatedpress/verify-dkim
https://github.com/associatedpress/verify-dkim


[15] Jack Burbank, David Mills, and William Kasch. Network Time Protocol Version 4: Protocol
and Algorithms Specification. https://tools.ietf.org/html/rfc5905 [https://perma.cc/
428T-HN3Y].

[16] John Callas, Eric Allman, Miles Libbey, Michael Thomas, Mark Delany, and Jim Fenton.
DomainKeys Identified Mail (DKIM) Signatures.

[17] Jon Callas. [ietf-dkim] Thinking about DKIM and surveillance. Available online at:
https://mailarchive.ietf.org/arch/msg/ietf-dkim/eWKbWdYmkX_d2ki_lAbczVSj8qY

[https://perma.cc/DQF6-SQNZ].

[18] Jon Callas. [ietf-dkim] DKIM Key Sizes, October 2016. http://mipassoc.org/pipermail/

ietf-dkim/2016q4/017195.html [https://perma.cc/7NNX-QJUK].

[19] Jon Callas. [ietf-dkim] DKIM Key Sizes, October 2016. http://mipassoc.org/pipermail/

ietf-dkim/2016q4/017207.html [https://perma.cc/K8LM-KJS7].

[20] Jan Camenisch, Rafik Chaabouni, and abhi shelat. Efficient protocols for set membership and
range proofs. In Josef Pieprzyk, editor, Advances in Cryptology - ASIACRYPT 2008, pages
234–252, Berlin, Heidelberg, 2008. Springer Berlin Heidelberg.

[21] Jan Camenisch and Anna Lysyanskaya. Signature schemes and anonymous credentials from
bilinear maps. In Advances in Cryptology–CRYPTO 2004, 2004.

[22] Ran Canetti, Cynthia Dwork, Moni Naor, and Rafail Ostrovsky. Deniable encryption. In
Burton S. Kaliski, editor, Advances in Cryptology — CRYPTO ’97, pages 90–104, Berlin,
Heidelberg, 1997. Springer Berlin Heidelberg.

[23] Charles Cazabon. getmail version 5. http://pyropus.ca/software/getmail.

[24] Don Coppersmith and Markus Jakobsson. Almost optimal hash sequence traversal. In Matt
Blaze, editor, Financial Cryptography, 6th International Conference, FC 2002, Southampton,
Bermuda, March 11-14, 2002, Revised Papers, volume 2357 of Lecture Notes in Computer
Science, pages 102–119. Springer, 2002.

[25] D. Crocker. Internet Mail Architecture, 2009. https://tools.ietf.org/html/rfc5598.

[26] Mario Di Raimondo and Rosario Gennaro. New approaches for deniable authentication. Jour-
nal of Cryptology, 22(4):572–615, Oct 2009.

[27] Cynthia Dwork, Moni Naor, and Amit Sahai. Concurrent zero-knowledge. In Proceedings of
the Thirtieth Annual ACM Symposium on Theory of Computing, STOC ’98, pages 409–418,
New York, NY, USA, 1998. ACM.

[28] Hilda L. Fontana. Authentication Failure Reporting Using the Abuse Reporting Format.
https://tools.ietf.org/html/rfc6591 [https://perma.cc/5MTF-ZD8P].

[29] Center for Strategic and International Studies (CSIS). Significant cyber incidents,
2018. https://www.csis.org/programs/cybersecurity-and-governance/technology-

policy-program/other-projects-cybersecurity.

34

https://tools.ietf.org/html/rfc5905
https://perma.cc/428T-HN3Y
https://perma.cc/428T-HN3Y
https://mailarchive.ietf.org/arch/msg/ietf-dkim/eWKbWdYmkX_d2ki_lAbczVSj8qY
https://perma.cc/DQF6-SQNZ
http://mipassoc.org/pipermail/ietf-dkim/2016q4/017195.html
http://mipassoc.org/pipermail/ietf-dkim/2016q4/017195.html
https://perma.cc/7NNX-QJUK
http://mipassoc.org/pipermail/ietf-dkim/2016q4/017207.html
http://mipassoc.org/pipermail/ietf-dkim/2016q4/017207.html
https://perma.cc/K8LM-KJS7
http://pyropus.ca/software/getmail
https://tools.ietf.org/html/rfc5598
https://tools.ietf.org/html/rfc6591
https://perma.cc/5MTF-ZD8P
https://www.csis.org/programs/cybersecurity-and-governance/technology-policy-program/other-projects-cybersecurity
https://www.csis.org/programs/cybersecurity-and-governance/technology-policy-program/other-projects-cybersecurity


[30] Craig Gentry and Alice Silverberg. Hierarchical ID-based cryptography. In Yuliang Zheng,
editor, Proceedings of ASIACRYPT 2002, volume 2501 of Lecture Notes in Computer Science,
pages 548–566. Springer, 2002.

[31] Google. Making email safer for you, February 2016.

[32] Jens Groth. On the size of pairing-based non-interactive arguments. In Marc Fischlin and
Jean-Sébastien Coron, editors, Advances in Cryptology – EUROCRYPT 2016, pages 305–326,
Berlin, Heidelberg, 2016. Springer Berlin Heidelberg.

[33] Lachlan J. Gunn, Ricardo Vieitez Parra, and N. Asokan. Circumventing cryptographic denia-
bility with remote attestation, 2019.

[34] HIPAA Journal. United hospital district phishing attack impacts 2,143 patients,
2019. https://www.hipaajournal.com/united-hospital-district-phishing-attack-

impacts-2143-patients/.

[35] J. Levine. RFC 8463 - A New Cryptographic Signature Method for DomainKeys Identified
Mail (DKIM).

[36] Markus Jakobsson. Fractal hash sequence representation and traversal. Proceedings of the
2002 IEEE International Symposium on Information Theory (ISIT), pages 437–44, 2002.

[37] Markus Jakobsson, Kazue Sako, and Russell Impagliazzo. Designated verifier proofs and their
applications. In Proceedings of the 15th Annual International Conference on Theory and Ap-
plication of Cryptographic Techniques, EUROCRYPT’96, pages 143–154, Berlin, Heidelberg,
1996. Springer-Verlag.

[38] John Klensin. RFC5321: Simple Mail Transfer Protocol, 2008.

[39] Murray Kucherawy and Elizabeth Zwicky. Domain-based Message Authentication, Reporting,
and Conformance (DMARC). https://tools.ietf.org/html/rfc7489.

[40] Kurt Andersen. M3aawg DKIM Key Rotation Best Common Practices | M3aawg, March
2019. http://www.m3aawg.org/DKIMKeyRotation [March 2019 version archived at: https:

//perma.cc/4WY6-SH8K].

[41] Ben Laurie, Adam Langley, and Emilia Kasper. Certificate Transparency. RFC 6962, June
2013.

[42] Jeremy B. Merrill. Authenticating Email Using DKIM and ARC, or How We Analyzed the
Kasowitz Emails. ProPublica, July 2017.

[43] Satoshi Nakamoto. Bitcoin: A peer-to-peer electronic cash system, 2009.

[44] Moni Naor. Deniable ring authentication. In Advances in Cryptology — CRYPTO 2002, pages
481–498, Berlin, Heidelberg, 2002. Springer Berlin Heidelberg.

[45] NIST. NIST randomness beacon. https://www.nist.gov/programs-projects/nist-

randomness-beacon.

35

https://www.hipaajournal.com/united-hospital-district-phishing-attack-impacts-2143-patients/
https://www.hipaajournal.com/united-hospital-district-phishing-attack-impacts-2143-patients/
https://tools.ietf.org/html/rfc7489
http://www.m3aawg.org/DKIMKeyRotation
https://perma.cc/4WY6-SH8K
https://perma.cc/4WY6-SH8K
https://www.nist.gov/programs-projects/nist-randomness-beacon
https://www.nist.gov/programs-projects/nist-randomness-beacon


[46] Emad Omara, Benjamin Beurdouche, Jon Millican, Raphael Robert, Katriel Cohn-Gordon,
and Richard Barnes. The Messaging Layer Security (MLS) Protocol. https://tools.ietf.

org/html/draft-ietf-mls-protocol-07 [https://perma.cc/YQ5X-36LB].

[47] Open Whisper Systems. Curve.java, 2018. https://github.com/signalapp/libsignal-

protocol-java/blob/master/java/src/main/java/org/whispersystems/libsignal/

ecc/Curve.java [https://perma.cc/6CBK-745E].

[48] Bryan Parno, Jon Howell, Craig Gentry, and Mariana Raykova. Pinocchio: Nearly practical
verifiable computation. In Proceedings of the IEEE Symposium on Security and Privacy. IEEE,
May 2013.

[49] Adrian Perrig, Ran Canetti, J.D. Tygar, and Dawn Song. The TESLA broadcast authen-
tication protocol. RSA CryptoBytes, 5:2–13, 2002. Available at: https://people.eecs.

berkeley.edu/~tygar/papers/TESLA_broadcast_authentication_protocol.pdf.

[50] Adrian Perrig, Dawn Song, Ran Canetti, J. D. Tygar, and Bob Briscoe. Timed efficient stream
loss-tolerant authentication (TESLA): multicast source authentication transform introduction.
RFC, 4082:1–22, 2005.

[51] Yngve N. Pettersen. The Transport Layer Security (TLS) Multiple Certificate Status Request
Extension. RFC 6961, June 2013.

[52] Krzysztof Pietrzak. Simple verifiable delay functions. IACR Cryptology ePrint Archive,
2018:627, 2018.

[53] R. L. Rivest, A. Shamir, and D. A. Wagner. Time-lock puzzles and timed-release crypto.
Technical report, Cambridge, MA, USA, 1996.

[54] Ronald L. Rivest, Adi Shamir, and Yael Tauman. How to leak a secret. In ASIACRYPT,
2001.

[55] Raphael Satter. Emails: Lawyer who met Trump Jr. tied to Russian officials. The Associated
Press, July 2018.

[56] Adi Shamir. Identity-based cryptosystems and signature schemes. In G. R. Blakley and
David Chaum, editors, Proceedings of CRYPTO ’84, volume 196 of Lecture Notes in Computer
Science, pages 47–53. Springer, 1984.

[57] Jonathan Stempel and Jim Finkle. Yahoo says all three billion accounts hacked in 2013
data theft, 2017. https://www.reuters.com/article/us-yahoo-cyber/yahoo-says-all-

three-billion-accounts-hacked-in-2013-data-theft-idUSKCN1C82O1.

[58] Michael Thomas. Requirements for a DomainKeys Identified Mail (DKIM) Signing Practices
Protocol. https://tools.ietf.org/html/rfc5016.

[59] Nik Unger and Ian Goldberg. Deniable key exchanges for secure messaging. In Proceedings
of the 22Nd ACM SIGSAC Conference on Computer and Communications Security, CCS ’15,
pages 1211–1223, New York, NY, USA, 2015. ACM.

[60] Nik Unger and Ian Goldberg. Improved strongly deniable authenticated key exchanges for
secure messaging. PoPETs, 2018(1):21–66, 2018.

36

https://tools.ietf.org/html/draft-ietf-mls-protocol-07
https://tools.ietf.org/html/draft-ietf-mls-protocol-07
https://perma.cc/YQ5X-36LB
https://github.com/signalapp/libsignal-protocol-java/blob/master/java/src/main/java/org/whispersystems/libsignal/ecc/Curve.java
https://github.com/signalapp/libsignal-protocol-java/blob/master/java/src/main/java/org/whispersystems/libsignal/ecc/Curve.java
https://github.com/signalapp/libsignal-protocol-java/blob/master/java/src/main/java/org/whispersystems/libsignal/ecc/Curve.java
https://perma.cc/6CBK-745E
https://people.eecs.berkeley.edu/~tygar/papers/TESLA_broadcast_authentication_protocol.pdf
https://people.eecs.berkeley.edu/~tygar/papers/TESLA_broadcast_authentication_protocol.pdf
https://www.reuters.com/article/us-yahoo-cyber/yahoo-says-all-three-billion-accounts-hacked-in-2013-data-theft-idUSKCN1C82O1
https://www.reuters.com/article/us-yahoo-cyber/yahoo-says-all-three-billion-accounts-hacked-in-2013-data-theft-idUSKCN1C82O1
https://tools.ietf.org/html/rfc5016


[61] WhatsApp. WhatsApp encryption overview: Technical white paper. https://www.whatsapp.
com/security/WhatsApp-Security-Whitepaper.pdf [https://perma.cc/6L5W-C8S5].

[62] Wikileaks. Sony Email Leak. Available at https://wikileaks.org/sony/emails/, 2012.

[63] Wikileaks. The Global Intelligence Files: STRATFOR email leak. Available at https://

wikileaks.org/gifiles/docs/13/1328496_stratfor-.html, 2012.

[64] Wikileaks. Search the DNC Database, July 2016. https://wikileaks.org/dnc-emails/].

[65] Wikileaks. WikiLeaks: DKIM Verification, nov 2016. https://wikileaks.org/DKIM-

Verification.html [https://perma.cc/H3SR-YB44].

[66] Gavin Wood. Ethereum: A secure decentralised generalised transaction ledger. Ethereum
project yellow paper, 151:1–32, 2014.

A Comparison Table

Table 3: Comparison of Messaging Schemes

Messaging Email
OTR v3 Signal MLS DKIM KeyForge / TimeForge

Attributable? non-attributable attributable non-attributable
Interactive? yes (see Remark 3) no

Known endpoints? yes yes yes no
Synchronous? yes no yes no (⇐ unknown endpoints)

Routing central server(s) central server(s)
decentralized w/
known endpoints

fully decentralized
w/ unknown endpoints

Federated? no (⇐ central server) no (⇐ central server) yes yes
Authentication

bandwidth
464B∗ 64B (Ed25519)† 64B [46] 256B (RSA2048)

KeyForge: 146B
TimeForge: 1096B

Bandwidth Per User
n = # in group chat

N/A‡ O(n2)§ O(n2) O(1)

∗ This is the size of the initial Diffie-Hellman handshake (which would amortize over multiple messages),
not including any per-message costs.
† The exact signature scheme is implementation-dependent. This data reflects both the current Signal
implementation and the best bandwidth among implementations of which we are aware. [47]
‡ OTR does not support group chat.
§ WhatsApp has an optimization that reduces message traffic; published documentation leaves unclear if
this affects authentication handshake bandwidth. [61]

Table 3 lays out characteristics of KeyForge, DKIM-based email and other types of non-
attributable messaging schemes. As also explained in Section 2, non-attributable email presents a
very different set of constraints from other types of non-email messaging schemes, so direct perfor-
mance comparisons between these settings are not meaningful. Table 3 highlights in more detail
how the email setting differs from other types of messaging.

Remark 3. All other non-attributable messaging schemes of which we are aware require some sort
of interactivity — either by having the sender know the endpoint a priori or by having the receiver
communicate back to the sender before a message is sent. While Signal’s updates to OTR allow
it to be more asynchronous than some other protocols, Signal is still interactive in that it requires
communication of key material to known endpoints. Such interactivity makes these messaging
schemes inappropriate for use in email.

37

https://www.whatsapp.com/security/WhatsApp-Security-Whitepaper.pdf
https://www.whatsapp.com/security/WhatsApp-Security-Whitepaper.pdf
https://perma.cc/6L5W-C8S5
https://wikileaks.org/sony/emails/
https://wikileaks.org/gifiles/docs/13/1328496_stratfor-.html
https://wikileaks.org/gifiles/docs/13/1328496_stratfor-.html
https://wikileaks.org/dnc-emails/
https://wikileaks.org/DKIM-Verification.html
https://wikileaks.org/DKIM-Verification.html
https://perma.cc/H3SR-YB44


B ARC

Authenticated Received Chain (ARC) is an experimental and (at the time of writing) largely
unimplemented IETF standard that aims to address the issues caused by indirect email flows.
Legitimate modification of messages in transit may occur in a number of circumstances. For
example, an MTA that is also a virus scanner may remove malicious attachments, and mailing
lists may prepend a name to the subject of an email. Unfortunately, any alteration of the body
or headers invalidates the original signature. ARC acts as an attestation by an intermediary a
subset of DKIM, SPF, DMARC, or previous ARC signatures were verifiable before content was
modified. To do so, the intermediary adds its own signature to the header of the message, along
with metadata about what was verified.

Complications from ARC. Arc would pose minor complications for non-attributability if widely
adopted, as third-party MTAs sign emails in transit. Though here presented as a modification of
DKIM, KeyForge and TimeForge can be easily exgended to accommodate ARC; the third-party
signer uses an FFS for signing, publishes expiry information, and offers a forge-on-request protocol.

C Preventing real-time attacks requires interaction

Claim 1. In the store-and-forward model (see §2.2), where final-destination addresses and keys may
be unknown to senders, any email protocol that (1) proves (with soundness) the sending domain’s
identity to recipients and (2) is secure against real-time attacks must involve interaction, i.e.,
recipient communication to the sending server after receipt of an initial message.26

Proof (sketch). By assumption, there is a verification procedure V that the receiver R may run on
the single-message protocol transcipt, and V will (with overwhelming probability) output 1 if the
claimed sending domain is correct and 0 otherwise. Since the final destination may be unknown to
the sender, V’s behavior cannot depend on any information associated specifically with the receiver,
such as key material. That is, V’s inputs must consist only of the protocol transcript and public
information. It follows that R may share the received message(s) with any third party T , who then
becomes able to run V for itself on the same inputs as R would use. By soundness, V’s output on
these inputs must suffice to convince T of the sending domain’s identity unless R has the ability
to non-interactively forge protocol transcripts that appear to be from this sending domain, in real
time — say, using an algorithm F. But because the final destination may be unknown to the sender,
the behavior of any such F algorithm cannot depend on any information associated specifically with
the receiver, so the F algorithm could also be run by other parties to successfully forge protocol
transcripts that appear to be from this sending domain. This contradicts soundness (Condition (1)
from the theorem statement).

Among other things, this rules out immediate recipient forgeability by timed-authentication ap-
proaches like TESLA [49, 50] (also mentioned in §4 under “Discussion of alternative approaches”).

26In fact, a version of Claim 1 extends to any unidirectional protocol, which may involve multiple messages but all
sent by the same party, as long as there is realistic nontrivial variance in network delays. For simplicity, the proof
sketch is for single-message protocols.

38



D Compilation and Evaluation parameters

We performed all benchmarks on a 2017 MacBook Pro, 15-inch, with an Intel 4-core 3.1GHz
processor and 16GB of RAM. We use the RELIC toolkit’s [3] implementation of a BN-245 curve.
This configuration conservatively yields keys with a 110-bit security level [4], which is on par with
the standard 2048-bit RSA. We chose RELIC due to its support for many pairing friendly curves
and low overhead.

Openssl was compiled with the following flags:

clang -I. -I.. -I../include -fPIC -fno-common -DOPENSSL_PIC -DOPENSSL_THREADS -D_REENTRANT

-DHAVE_DLFCN_H -arch x86_64 -O3 -DL_ENDIAN -DGHASH_ASM -DECP_NISTZ256_ASM -DDSO_DLFCN

-Wall -DOPENSSL_IA32_SSE2 -DOPENSSL_BN_ASM_MONT -DOPENSSL_BN_ASM_MONT5 -DOPENSSL_BN_ASM_GF2m

-DSHA1_ASM -DSHA256_ASM -DSHA512_ASM -DMD5_ASM -DAES_ASM -DVPAES_ASM -DBSAES_ASM -DWHIRLPOOL_ASM

RELIC was compiled with the following flags:

cmake ../ -DALLOC=DYNAMIC -DFP_PRIME=381 -DARITH=gmp-sec -DWSIZE=64 -DEP_SUPER=off

-DFP_METHD="INTEG;INTEG;INTEG;MONTY;LOWER;SLIDE" -DCOMP="-O3 -mtune=native -march=native"

-DFP_PMERS=off -DFP_QNRES=on -DPP_METHD="LAZYR;OATEP" -DFPX_METHD="INTEG;INTEG;LAZYR"

E Size of Expiry Information

Table 4 shows the size of expiry information.

Table 4: Expiry information size

L
Expiry info size (bytes)

1 year 2 years
Avg Max Avg Max

1 1121248 2242496 1679814 4485056
2 12700 25344 16934 33792
3 3283 6464 3920 7744
4 1787 3520 2016 3968
5 1275 2496 1408 2752
6 1048 2048 1117 2176
7 859 1664 934 1792

39


	Introduction
	Key Ideas
	Overview of Solutions

	Background on Email
	Email Authentication
	DKIM Replacement Constraints
	Resulting System Requirements


	Model and Security Definitions
	Model
	Threat Models
	Defining Non-Attributability

	Forward-Forgeable Signatures
	Definition
	Succinctness
	FFS Construction from (Hierachical) IBS

	Our Protocol Proposals
	KeyForge
	FFS configuration for KeyForge

	TimeForge
	Realizing the TimeForge proof system
	KeyForge+ and TimeForge+

	Implementation and Evaluation
	Evaluation

	Comparison Table
	ARC
	Preventing real-time attacks requires interaction
	Compilation and Evaluation parameters
	Size of Expiry Information

