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Abstract. Lattice-based public-key encryption has a large number of
design choices that can be combined in diverse ways to obtain different
tradeoffs. One of these choices is the distribution from which secret keys
are sampled. Numerous secret-key distributions exist in the state of the
art, including (discrete) Gaussian, binomial, ternary, and fixed-weight
ternary. Although the secret-key distribution impacts both the concrete
security and the performance of the schemes, it has not been compared
in a detailed way how the choice of secret-key distribution affects this
tradeoff.
In this paper, we compare different aspects of secret-key distributions
from submissions to the NIST post-quantum standardization effort. We
consider their impact on concrete security (influenced by the entropy
and variance of the distribution), and on decryption failures and IND-
CCA2 security (influenced by the probability of sampling keys with “non
average, large” norm). Next, we select concrete parameters of an encryp-
tion scheme instantiated with the above distributions to identify which
distribution(s) offer the best tradeoffs between security and key sizes.
The conclusions of the paper are: first, the above optimization shows
that fixed-weight ternary secret keys result in the smallest key sizes in
the analyzed scheme. The reason is that such secret keys reduce the de-
cryption failure rate and hence allow for a higher noise-to-modulus ratio,
alleviating the slight increase in lattice dimension required for countering
specialized attacks that apply in this case. Second, compared to secret
keys with independently sampled components, secret keys with a fixed
composition (i.e., the number of secret key components equal to any pos-
sible value is fixed) result in the scheme becoming more secure against
active attacks based on decryption failures.

Keywords: Lattice cryptography · Public-key encryption · Secret keys · De-
cryption failure · Hybrid attack

1 Introduction

Recent advances in the development of quantum computers [43,61,42,55,41,30]
have made a long-standing threat [64] against classical cryptography concrete. At
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Fig. 1: The impact of a lattice-based encryption/key-encapsulation scheme’s
secret-key distribution on various aspects of the scheme.

present, it is not clear when a general-purpose quantum computer will become
available and this threat will manifest [26,62]. Nevertheless, given the widely
recognized difficulties of migrating to new cryptographic infrastructures [32] as
well as the long-term confidentiality requirements on data currently exchanged,
efforts towards the standardization [56,27] of post-quantum cryptography [16]
have already begun. Lattice-based cryptography [57] has received significant at-
tention [19,48] as a candidate for quantum-safe cryptography due to its well-
understood mathematical foundations, efficiency, and flexibility. However, the
design of lattice-based cryptosystems can be challenging as various tradeoffs
and interactions between design aspects must be accounted for. In the design
of lattice-based public-key encryption (PKE) schemes, aspects which must be
considered include the choice of structure in the underlying lattice [60,52,49],
the choice of independent or implicit noise [11], the choice of the noise distri-
bution [17,53,6], and the choice of the secret-key distribution. All these affect
the resulting security, operation and performance of the final scheme. Figure 1
summarizes the influence exercised on the scheme by these aspects of the choice
of secret-key distribution, which is our focus in this paper.

Secret-key distributions can be characterised by their variance and entropy,
which both impact on security. A secret key with low variance makes concrete
attacks on the scheme easier [6,4,2,10]. For example, in attacks utilizing lattice
reduction (such as the primal [6] and dual [2] attacks), the secret key is part
of a short lattice vector that is recovered as the solution to a lattice problem
formulated using the scheme’s public key (and ciphertext). These attacks are
improved by taking into account the imbalance between the norms of the secret
key and error vector [10]. The entropy of the secret-key distribution is relevant
for combinatorial attacks (such as the hybrid attack [39], and the sparse variant
of the dual attack [2]) in which part of the secret key is recovered by guessing.
Secret keys with lower entropy are easier to guess.

The secret-key distribution influences chosen-ciphertext or active attacks [28]
that exploit decryption failures, because the secret key is directly involved in
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Table 1: Performance comparison of a Ring Learning with Rounding [11]-based public-key encryp-
tion scheme, considering different secret-key distributions (details in Sec. 4.3). For concrete attacks
considered, Q assumes a quantum speedup, while C does not.

Parameters
Fixed-weight Symmetric Discrete Fixed-composition Binomial

ternary secrets ternary secrets Gaussian secrets Binomial secrets secrets

η, θ, h, σ2 1, -, [163], 0.41 1, 0.41, -, 0.41 -, -, -, 0.3 3, -, [194, 77, 12], 1.5 3, 1, -, 1.5
n, q, p, t 796, 213, 29, 24 796, 213, 29, 25 820, 213, 29, 24 828, 214, 210, 24 828, 214, 210, 24

Bandwidth 1937 B 1961 B 1991 B 2215 B 2215 B
Public key 921 B 921 B 948 B 1060 B 1060 B

Encryption overhead 1016 B 1040 B 1043 B 1155 B 1155 B
Failure rate 2−173 2−187 2−172 2−187 2−172

Primal attack [6] (Q/C) 2175/2192 2175/2192 2176/2194 2176/2194 2176/2194

Dual attack [2] (Q/C) 2176/2194 2176/2194 2178/2196 2174/2192 2174/2192

Hybrid attack [39] (Q/C) 2183/2193 2183/2195 2314/2328 2253/2271 2253/2271

Sparse-secrets attack [2] (Q/C) 2175/2192 2175/2192 2176/2194 2176/2194 2176/2194

decryption and thus affects the probability of such failure events occurring. An
attacker who witnesses these failure events can build up statistical information on
the secret-key, making recovery of the secret easier [23,33]. Finally, the secret-key
distribution also affects the computational performance of the scheme, through
sampling of keys and (polynomial or matrix) multiplications.

1.1 Our contributions

In this work, we focus on the choice of the secret-key distribution when designing
a lattice-based public-key encryption scheme, analyzing how this choice affects
the scheme’s security, operation and performance. Our contributions are:

1. We compare a number of secret-key distributions used in NIST post-quantum
candidates [56] with respect to different criteria such as variance, entropy and
resulting probability of decryption failure.

2. We analyze the performance of a lattice-based public-key encryption scheme
for the above secret-key distributions. We show in Table 1 (details in Sec-
tion 4.3) that fixed-weight ternary secret keys lead to minimum bandwidth
requirements, while remaining secure. Despite allowing specialized attacks,
such secrets also allow stronger noise tolerance, increasing the noise-to-
modulus ratio and security. This combination leads to smaller keys. Our find-
ings agree with previous recommendations for NTRU-based schemes [37,15],
but consider a wider range of secret-key distributions and underlying lattice
assumptions.

3. We extend the analysis in [23] on the impact of decryption failures on the
chosen-ciphertext (IND-CCA2) security of lattice-based encryption schemes.
We show in Figure 2 (details in Section 5) that using fixed-weight ternary
secrets, rather than ternary secrets with independently drawn components,
makes the scheme less prone to attacks of the above form, since sampling
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Fig. 2: Total work for a chosen-ciphertext attack on lattice-based encryption
schemes by boosting decryption failures as in [23], considering fixed and non
fixed-weight secrets. The scheme in this work is similar to a version of the
Round5 [9] scheme without error correction (details in Sec. 4.2 and 5.2). The
vertical red, dashed line indicates a failure rate of 2−64.

larger-than-expected secrets is impossible. Moreover, we show the same more
generally is true for fixed-composition secrets, that is, secrets for which the
number of components of each possible value is fixed, and that this is inde-
pendent of the scheme’s error distribution.

1.2 Related work

In the realm of lattice-based public-key encryption, multiple types of secret-key
distributions have been proposed in the literature. Ternary secrets have been
proposed for NTRU schemes. For example, in NTRU Encrypt [37] these are
recommended over binary secrets. In the paper introducing NTRU Prime [15], it
is stated that a fixed-weight ternary secret-key distribution appears to improve
key-sizes for the same level of security, compared to a wider distribution such
as a discrete Gaussian. The potential benefits of fixing the weight for ternary
distributions have also been discussed in [12,13].
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At the same time, other lattice-based public-key encryption schemes, such
as [18], [17], [5] and [24], propose the usage of binomial or Gaussian distribu-
tions, citing their stronger resistance against specialized attacks such as [39] or
the ease of obtaining tighter proofs [17]. Indeed, the lattice-based proposals that
have progressed to the second round of the NIST post-quantum standardization
process sample their secret-keys from a wide variety of distributions includ-
ing discrete Gaussian, centered binomial, symmetric-ternary and fixed-weight
ternary secrets. Three of these submissions, viz. LAC [50,51], NTRU Prime [14]
and Round5 [9], employ fixed-weight ternary secrets.

The above discussion shows that the trade-offs in security and performance
offered by various distributions have not been quantified in a systematic way
and a consensus has not been reached by the community. Moreover, to the best
of our knowledge, no work provides a detailed and thorough analysis of the role
of the secret-key distribution in these tradeoffs.

The possibility of an attacker searching for ciphertexts that lead to a higher
than expected probability of decryption failure in lattice-based public-key en-
cryption was proposed by Alperin-Sheriff [7] and Hamburg [35], as part of an
analysis of LAC [50]. This was further analyzed by D’Anvers et al in [23]. As
a possible countermeasure to the above attack, Hamburg [35] suggested to fix
the Hamming weight in the LAC cryptosystem, but a rationale or full analysis
was not provided. Concurrent to the present work, some techniques we propose
– namely, fixing the (Hamming) weight of the secret-keys (and error vectors) –
were independently used to stop the above attack [7,35] in an updated version of
LAC [51, Section 1] submitted to the second round of the NIST process. How-
ever, the authors do not analyze how this technique stops the attack, nor do
they generalize it to other schemes and distributions.

In the context of fully homomorphic encryption [29] schemes, design choices
implicitly account for the security and performance tradeoffs resulting from the
use of secrets having low variance and/or low entropy, which are essential for
controlling the noise growth in such schemes. A ternary [63], or fixed-weight
ternary [34], secret-key distribution is typically chosen in implementations. The
Homomorphic Encryption Security Standard [1] accordingly recommends secure
parameters for several choices of secret-key distribution, including ternary.

1.3 Organization

Section 2 introduces preliminaries and notation. Section 3 describes the secret-
key distributions considered in this work. Section 4 first analyzes and compares
the entropies, variances and probabilities of decryption failure for the differ-
ent secret-key distributions in Sections 4.1 and 4.2. Next, Section 4.3 analyzes
the (bandwidth) performance of a lattice (specifically, rounding)-based encryp-
tion scheme instantiated with the various secret-key distributions we consider,
showing that fixed-weight ternary keys lead to the smallest bandwidth require-
ments. Section 5 analyzes the influence of the secret-key distribution on chosen-
ciphertext (IND-CCA2) attacks that use decryption failures, showing that fixing
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the weight or number of secret key components makes such attacks harder. Sec-
tion 6 concludes the paper.

2 Preliminaries

2.1 Notation

For each positive integer a, we denote the set of congruences modulo a by Za.

We identify Za with the set {0, 1, . . . , a− 1}. For a set A, we denote by a
$←− A

that a is drawn uniformly at random from A. For any polynomial f(x), let Rf
denote the polynomial ring Z[x]/f(x). For each positive integer a, we write Rf,a
for the polynomials of degree less than that of f(x), with all coefficients in Za.
We call a polynomial ternary if all its coefficients are 0, 1 or −1. Throughout
this document, regular font letters denote elements from a Rf defined for a poly-
nomial f(x). For any polynomial, its Hamming weight h is defined as its number
of non-zero coefficients. For x ∈ Q, bxe denotes rounding to the closest integer
(with rounding up in case of a tie). This operation is extended to polynomials
coefficient-wise.

2.2 Cryptographic, problem and scheme definitions

We follow the notation used in [23]. A public-key encryption (PKE) scheme is
defined as a triple of functions PKE = (Keygen, Enc, Dec) with message space
M, where given a security parameter λ Keygen returns a secret key sk and
public key pk, Enc encrypts a message m ∈M using pk to produce a ciphertext
ct, and Dec returns an estimate m′ of m given ct and sk.

The decisional Learning with Errors (LWE) [59] problem involves distin-
guishing the uniform sample (A,U)← U(Zk1×k2q ×Zk1×mq ) from the LWE sam-

ple (A,B = 〈AS + E〉q) where A ← U(Zk1×k2q ) and where the secret key S

and error E are generated from the secret and error distributions χs(Zk2×mq )

and χe(Zk1×mq ) respectively. The search problem is to recover S from the LWE
sample.

As mentioned in [23], the above problem definitions can be generalized to
Ring [52] or Module [49] (R/M)LWE by using vectors of polynomials. To fur-
ther generalize the definition, independent reduction polynomials f1(x) and f2(x)
can be considered, the first used to reduce the product of polynomial multipli-
cations during key-generation and the second used similarly during encryption
and decryption. The NIST PQC candidate Round5 [9] uses such a construction
with different reduction polynomials. Then, the generalized problem is to dis-
tinguish the uniform sample (A,U) ← U(Rk1×k2f1,q

×Rk1×mf1,q
) from a generalized

LWE sample (A,B = 〈AS + E〉f1) where A ← U(Rk1×k2f1,q
), S ← χs(Rk2×mq )

and E ← χe(Rk1×mq ). The search problem is analogous to the LWE case.
The decisional generalized Learning with Rounding (LWR) [11] problem in-

volves distinguishing the uniform sample (A, bp/q ·Ue) where A ← U(Rk1×k2f1,q
)
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Algorithm 1: Keygen()

1 A← U(Rl×l
f1,q

)

2 SA ← χs(Rl×m
q ), EA ← χe(Rl×m

q )

3 B =
⌊
p/q · 〈ASA + EA〉f1

⌉
4 return (pk = (A,B), sk = SA)

Algorithm 2: Encrypt(pk = (A,B),m)

1 S′B ← χs(Rl×m
q ), E′B ← χe(Rl×m

q )
2 E′′B ← χe(Rm×m

q )
3 Br = bq/p ·Be
4 B′ =

⌊
p/q · 〈ATS′B + E′B〉f1

⌉
5 V ′ =

⌊
t/q · 〈BT

r S
′
B + E′′B + q

2
encode(m)〉

f2

⌉
6 return ct = (B′,V ′)

Algorithm 3: Decrypt(sk = SA, ct = (B′,V ′))

1 m′ =
⌊

2
q
(bq/t · V ′e − 〈bq/p ·B′eSA〉f2)

⌋
2 return decode(m′)

and U ← U(Rk1×mf1,q
) from the generalized LWR sample (A,B =

⌊
p/q · 〈AS〉f1

⌉
)

where A ← U(Rk1×k2f1,q
), and S ← χs(Rk2×mq ). Analogous to the LWE case, the

search problem is to recover S from the generalized LWR sample.
Using the above generalized problem definitions, we define a generalized

public-key encryption scheme in Algorithms 1, 2 and 3 similar to [23, Sec. 2.4].
Note the use of an additional ciphertext compression modulus t in addition

to the primary modulus q and the rounding modulus p. The function encode

transforms a message m ∈ M into a polynomial representation, and decode is
the inverse decoding function. As proposed in [23, Sec. 2.4], this generalized PKE
framework can be instantiated to describe multiple NIST PQC schemes that are
based on LWE/LWR [17,9], RLWE/RLWR [6,9] or MLWE/MLWR [18,25].

3 State of the art: Secret-key distributions

This section presents definitions of the secret-key distributions analyzed in this
paper. A number of, but not all, of these distributions feature in second-round
NIST post-quantum cryptographic (PQC) candidates [56], this is summarized in
Table 2. We start with distributions of secrets of length n obtained by drawing
each of the n components independently from one single distribution. Then we
describe distributions in which secrets are generated as a whole.

3.1 Discrete Gaussian distribution

For schemes based on the (Ring [52]) Learning with Errors [59] ((R)LWE) prob-
lem, security reductions from worst-case lattice problems are feasible if the
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Table 2: NIST PQC candidates featuring secret-key distributions analyzed in
this work.

Secret-key distribution NIST PQC candidate

Discrete Gaussian (Sec. 3.1) Frodo [17]
Centered binomial (Sec. 3.2) Kyber [18], Saber [25], NewHope [5], LAC [50]
Symmetric ternary (Sec. 3.3) NTRU [40]

Fixed-weight ternary (Sec. 3.4) Round5 [9], NTRUPrime [14], 2nd round LAC [51]

noise follows a sufficiently wide Gaussian distribution [59,20], such as the Frodo
scheme [17]. Variants in which the secret follows the same distribution as the
error can be proven equivalent to the original problem by putting the system
in systematic form, as done in [8]. Therefore, for schemes based on (R)-LWE,
components of the secrets commonly (approximately) follow a discrete Gaussian
distribution. For implementation reasons, the approximations have a finite sup-
port [17]. The discrete Gaussian probability distribution function DZ,σ over Z
with mean µ = 0 and parameter σ is defined as

DZ,σ(X = k) =
1

S
e−k

2/2σ2

. (1)

Here X is the random variable over Z, and S is the normalization constant∑∞
k=∞ e−k

2/2σ2

. For σ ≥ 0.5, it holds that var(DZ,σ) ≈ σ2.

3.2 Centered binomial distribution

The centered binomial distribution was introduced in [6] as an easy-to-implement
distribution that is a good approximation to a rounded continuous Gaussian
distribution with the same variance. For each positive integer η, the centered
binomial distribution binη of width η has support {−η,−η+1, . . . ,−1, 0, 1, . . . , η}
and is defined as

binη(k) =

(
2η

k + η

)
2−2η for k ∈ [−η, η] ∩ Z. (2)

Clearly, binη is symmetric around zero and so has mean zero. By direct compu-
tation, it can be shown that the variance of this distribution is var(binη) = η

2 .

Sampling from binη can be done [6] by computing
∑η−1
i=0 (bi − b′i) where the

bi, b
′
i ∈ {0, 1} are uniform independent bits. The NewHope submission to the

NIST standardization [58] uses bin8 for generating noise and secrets. The Ky-
ber [18] and Saber [24] submissions employ binη with 3 η ∈ {6, 8, 10} for gener-
ating secrets in their three proposed parameter sets. The LAC [50] submission
employs two distributions based on bin1 for generating secrets and noise in its
proposed parameter sets.

3 The two submissions use different notations for the parameter η.
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Scaled version. We define the scaled centered binomial distribution binη,θ of
width η and with scaling factor θ as

binη,θ(k) = θ ·binη(k) for k ∈ Z, 1 ≤ |k| ≤ η, and binη,θ(0) = 1− θ(1−binη(0)).
(3)

In order that binη,θ is a probability distribution, it is required that 0 ≤ θ ≤
1/(1− binη(0)). As binη,θ is symmetric around zero, its mean equals zero. Its
variance satisfies

var(binη,θ) =
∑
k 6=0

k2θ · binη(k) = θ · var(binη) =
1

2
θ · η. (4)

By varying over both η and θ, the scaled centered binomial distribution allows a
wide range of trade-offs to be investigated. It has the centered binomial distribu-
tion (as binη,1 = binη) as a special case. We note that this generic distribution
is not actually used in any NIST PQC candidate.

3.3 Symmetric ternary distribution

For 0 ≤ α ≤ 1, the symmetric ternary distribution Tα with parameter α is
defined as

Tα(0) = 1− α, Tα(1) = Tα(−1) =
1

2
α. (5)

Clearly, Tα has mean zero and variance α. The Lizard submission to the NIST
standardization [22] employs T 1

2
and T 1

4
for secret key generation in Lizard.CCA

and Lizard.KEM. This distribution is another special case of the scaled centered
binomial distribution defined in Section 3.2 (as bin1,θ = T 1

2 θ
).

3.4 Fixed-weight ternary distribution

This distribution is not defined via a component-wise distribution, rather, the
entire secret is generated as a whole, as in the NIST PQC candidates Round5 [9]
and NTRUPrime [15], and very recently in the version of the candidate LAC
introduced in the second round of the NIST post-quantum standardization pro-
cess [51]. For positive integers n, h with h even and 1 ≤ h ≤ n/2, the fixed-weight
ternary distribution Tn,h is the uniform distribution on the set of all ternary vec-
tors with h/2 ones, h/2 minus ones, and n− h zeroes.

There is a close relationship between fixed-weight ternary secrets and secrets
generated according to a symmetric ternary distribution. Indeed, each compo-
nent of a vector drawn according to Tn,h has distribution Th/n. Specifically, the

per-component variance of vectors drawn according to Tn,h equals h
n . Conversely,

by the law of large numbers, for large n, a vector of length n with each component
drawn independently according to Tα with high probability has approximately
1
2αn ones, 1

2αn minus ones, and n(1− α) zeroes.
However, as will be shown in Section 5, a certain active attack that utilizes

decryption failures [23] is more powerful against secrets with independently gen-
erated components according to Th/n than against secrets generated according to
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Fig. 3: Comparison of the entropies and variances of the distributions consid-
ered in this work; solid green: fixed-weight ternary (with dimension 800 and
weight of secret keys ranging from 8 till 792), dotted red: symmetric ternary
with independently sampled components), blue (discrete Gaussian), black (cen-
tered binomial).

Tn,h. The reason is that such an attacker can benefit from the (rare) occurrence
of secrets of a weight considerably larger than h.

4 Analysis

We begin with a comparison of two fundamental properties of the distribu-
tions considered in Section 4.1, namely their entropies and variances. Next, we
look more deeply into the interaction between a secret-key distribution and the
underlying cryptographic scheme, and compare in Section 4.2 the probability
of decryption failures when different secret-key distributions are considered. In
Section 4.3, we compare the key sizes of a lattice-based public-key encryption
scheme when instantiated with the different secret-key distributions considered
in this work.

4.1 Comparing entropy against variance

In this section, we study the per-symbol entropy of the secret-key distributions
considered in this work, for a fixed variance. We note that the symmetric ternary
(Section 3.3) and fixed-weight ternary (Section 3.4) distributions cannot have a
variance larger than one. On the other hand, the centered binomial distribution
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(Section 3.2) cannot have a variance smaller than one. Finally, the discrete Gaus-
sian distribution (Section 3.1) can be parametrized to have variances in both of
these regimes.

The comparison of these distributions with respect to entropy achieved for
a fixed variance is shown in Figure 3. The per-symbol entropy of the fixed-
weight ternary distribution Tn,h is obtained as follows. Clearly, there are exactly(
n
h

)(
h
h/2

)
ternary vectors of length n containing exactly h/2 +1’s and exactly h/2

−1’s. As Tn,h is the uniform distribution on this set of ternary vectors, it has

entropy log2

((
n
h

)(
h
h/2

))
, and hence a per-symbol entropy of 1

n log2

((
n
h

)(
h
h/2

))
.

Stirling’s approximation implies that for large n, the per-symbol entropy of Tn,h
is very close to the entropy of Tn/h.

In Figure 3, we fix n = 800, and compute the variance as h/n, and entropy
as above for Hamming weights h ranging from 8 till 792. It can be seen that in
the so-called “low-variance” regime (i.e., for variances less than approximately
0.4), the ternary distributions achieve entropies almost as high as that of the
discrete Gaussian distribution, which is known to maximize the entropy for a
given variance [44]. Such regimes can be imagined to be desirable for low prob-
abilities of decryption failure, since a low variance implies a lower probability
of (a) large component(s) being sampled in the secret key that can increase the
failure probability. The ternary distributions may have other benefits, namely
more efficient cryptographic computations and easier sampling, that we do not
discuss here.

For such low variances however, the centered binomial distribution cannot
be defined and thus cannot be compared with either the discrete Gaussian or
the ternary distributions. We must thus consider variances that are greater than
one, and there it can be seen in Figure 3 that the entropy of the centered bino-
mial distribution for such variances is lower than that of the discrete Gaussian
distribution.

4.2 Comparing failure probability against variance

We discuss the impact of the secret-key distribution choice on the decryption
failure rate of the generalized lattice-based public-key encryption scheme de-
scribed in Section 2, algorithms 1, 2 and 3. For concreteness and simplicity, we
consider a Ring Learning with Rounding based instantiation of it, i.e., we choose
l = 1, EA = E′B = E′′B = 0. To prevent the polynomial degree from being re-
stricted to only powers of 2, we choose the key-generation reduction polynomial
f1(x) = Φn+1(x) = xn + xn−1 + . . . + 1, the (n + 1)-th cyclotomic polynomial
for n+ 1 a prime. To avoid correlated errors due to the use of this specific f1(x)
and also to reduce decryption failure rates to the level achieved by sparser cyclo-
tomic polynomials such as in [6], we choose the encryption reduction polynomial
f2(x) = xn+1 − 1. We refer to [9] for details on this technique, noting that it
requires the polynomials in SA and S′B to have a factor (x− 1).

Section 4.1 mentioned that the (fixed-weight and symmetric) ternary distri-
butions can only have variance at most one, while the centered binomial dis-
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Fig. 4: Comparison of the failure rates of the lattice-based encryption scheme
described in Section 4.2, when using fixed-weight ternary (green) and symmetric,
non fixed-weight ternary (red) secret keys.

tribution can only have variance at least one. This complicates a direct (i.e.,
with variances equalized) comparison of the failure rates resulting from these
distributions. Instead, in this section we analyze the effect of fixing the compo-
sition of the secrets on the decryption failure rate, i.e., the effect of fixing the
exact number or weight of secret key components for each possible component
value. In other words, we will compare the failure rate of the above-mentioned
public-key encryption scheme when instantiated with the symmetric ternary dis-
tribution as opposed to the fixed-weight ternary distribution. Next, we will do
the same and compare the centered binomial distribution bin η(k), with a fixed-
composition variant of it, i.e., with the uniform distribution on the set of all
vectors in {−η, . . . , η}n with exactly b

(
2η
k+η

)
2−2ηnc components equal to k (for

k ∈ {−η, . . . , η} \ {0}), and the remaining components are zero.

For fixed scheme parameters n = 800, q = 211, p = 29, t = 27, Figure 4 com-
pares the failure rates achieved by the above scheme for the symmetric ternary
and fixed-weight ternary distributions. In the former case, the failure probability
can be computed by iteratively convolving the symmetric ternary secret distri-
bution and that of the “rounding” error, similar to [25]. In case of fixed-weight
ternary secrets, assuming independence, the failure probability can be computed
similarly as in [9, Sec. 4.3] where one term in the decryption error polynomial
is distributed as the sum of exactly h independent uniform random variables on
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Fig. 5: Comparison of the failure rates of the lattice-based encryption scheme
described in Section 4.2, when using secrets drawn from a (centered) binomial
distribution (red) and one where for each given value the numbers of secret
coefficients are fixed (green), i.e., a fixed-composition variant.

(−q/2p, q/2p]∩Z, minus the sum of h independent uniform random variables on
(−q/2p, q/2p] ∩ Z.

Figure 4 shows that the use of fixed-weight ternary secrets in the encryption
scheme reduces its decryption failure rates. The explanation is that, unlike their
fixed-weight counterparts, secret keys sampled from the symmetric ternary dis-
tribution may have a Hamming weight that is higher than expected. The same
reasoning holds for secret keys sampled from distributions that for which the
number of each possible symbol is fixed.

Conversely, there also exists a non-negligible probability that secrets sam-
pled from the symmetric ternary distribution have a weight that is lower than
expected, which leads to the possibility of a multi-target attack along the lines
of [35] that reduces the cost of key recovery attacks such as [39,2]. In this attack,
the attacker can perform a one-time precomputation in order to find an encryp-
tion randomness that results in higher than expected probability of decryption
failure, use this to compute ciphertexts for multiple targets, out of which targets
with secret keys that have smaller than expected weight can be identified if de-
cryption unexpectedly succeeds. Fixing the weight of the secret keys, in addition
to improving the decryption failure rate, also stops this attack.

The same result as for the ternary distributions can be seen again in Figure 5
that compares the decryption failure rate of the encryption scheme for the cen-
tered binomial distribution and its fixed-composition variant introduced above.
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The comparison is done for the fixed parameters n = 828, q = 214, p = 210,
t = 24. It is again seen that fixing the weight of the non-zero components re-
duces the failure rate, since it strictly limits the number of non-zero components
that are sampled in the secret key, as well as removing the possibility of sampling
many large components.

4.3 Comparing security and performance trade-offs

The variance, entropy, failure probability and computational performance can
be computed given a type of secret-key distribution. However, it is not straigh-
forward to derive a conclusion about the overall system looking at them indi-
vidually, since their effect is interlinked, as shown in Figure 1. While a secret
distribution aspect (e.g., low variance) can have a positive impact on the en-
cryption scheme, e.g., low decryption failure, it can also have a negative impact,
e.g., lower concrete security. Therefore, we choose to analyze the eventual effect
of this interaction on the final scheme, by performing a parameter search with
the aim of minimizing the bandwidth requirements. Our chosen scheme is the
same Ring Learning with Rounding based instantiation of the generalized PKE
scheme of Section 2, that we instantiated in Section 4.2, i.e., by choosing l = 1,
EA = E′B = E′′B = 0 f1(x) = Φn+1(x), f2(x) = xn+1 − 1. Parameters are
chosen to encrypt a 192-bit message, while offering a minimum targeted security
level (NIST security category 3 [56]) and ensuring a negligibly low decryption
failure rate so that standard transformations [38] can be applied on the scheme
to obtain an IND-CCA2 secure scheme.

While choosing parameters, concrete security is analyzed considering the best
known current attacks, which are ones that utilize lattice basis reduction, under
the conservative core-sieving model [6] assuming sieving [46] as the underlying
SVP oracle in basis reduction. Although the exact cost of lattice reduction is con-
sidered unclear in the literature [21,36,54,3], it is dominated by that of running
the SVP oracle on b-dimensional lattices. Ignoring asymptotic factors, this cost
is estimated as 20.292b and 20.265b [45,47,46] respectively, depending on whether
a quantum speedup by Grover’s algorithm [31] is assumed or not. Attacks con-
sidered include the primal or decoding attack [6], and the dual or distinguishing
attack [2], extended to utilize lattice rescaling [9,10,2], to exploit the fact that a
number of secret-key distributions in this work are relatively narrower than the
error, and result in unbalanced short lattice vectors. To further account for such
narrow secret-key distributions, specialized or combinatorial attacks such as the
hybrid lattice reduction and meet-in-the-middle attack [39], and a sparse-secret
attack [2] are also considered.

Table 1 summarizes the computed parameters and compares the achieved
performance. The first row shows parameters related to the secret-key distribu-
tion, namely η, θ, and h where applicable, as defined in Section 3, and variance σ2

of the distribution. For schemes with fixed-composition secret-key distributions,
the parameter h = [h1, h2, . . . , hη] describes the composition: for 1 ≤ i ≤ η, the
secret key has hi components equal to i and hi components equal to −i. The
second row includes the size n of the reduction polynomial and the moduli – q,
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p, and t – involved in the Ring Learning with Rounding (RLWR) problem [11].
Note that each secret has n − 2

∑η
i=1 hi components equal to zero. We observe

that all configurations achieve a classical level of at least 192 bits of security,
and a failure rate of at most 2−170.

While not a formal proof, the conclusion from the comparison in Table 1
is: for the same security and decryption failure rate targets, a rounding-based
public-key encryption scheme with smallest bandwidth requirements is obtained
when the secret keys are sampled from a fixed-weight ternary distribution. This
result can be explained considering the behaviour of entropy/variance in Fig-
ure 3 and decryption failure probability in Figure 4 and 5. First, a Gaussian
distribution achieves the highest entropy for any given variance (Figure 3). In
a low variance regime (e.g., for variances less than 0.4), the ternary secret-key
distributions have entropy almost as high as that of the Gaussian, with the ad-
vantage that ternary secrets do not admit larger components as might happen
with a Gaussian distribution, and thus lead to a lower failure probability. Fur-
ther, secret-keys sampled from fixed-composition distributions cannot have more
components than expected, also lowering the failure probability (Figures 4 and
5).

Thus, it is logical to expect that when a cryptographic scheme’s parameters
are optimized in the low variance regime, fixed-weight ternary secrets will lead
to the lowest failure rates and smallest key sizes overall. In the high variance
regime, Figure 3 shows that binomial distributions have lower entropy than that
of Gaussian for a given variance, although this may still be high enough to
deal with specialized or combinatorial attacks such as [39,2]. Important to note
however, is that the failure probability of any distribution in this high variance
regime is worse than that seen in the low variance regime. This is why even while
possibly allowing specialized attacks [39,2], fixed-weight ternary keys also enable
stronger noise tolerance and a higher noise-to-modulus ratio, improving security.
The combination of these two competing effects while optimizing parameters of
the encryption scheme, allow fixed-weight ternary secrets to provide the smallest
key sizes. It is an open question whether this result can be formalized.

5 Resistance against decryption failure-based
chosen-ciphertext attacks

An important aspect to consider while designing public-key encryption and en-
capsulation schemes is their security against active or chosen-ciphertext attacks,
formalized in the notion of IND-CCA2 security. Lattice-based encryption and
encapsulation schemes typically have a probability of decryption failure, which
depends on the instantiation of the secret key and noise of both parties. In case
of schemes based on (Ring) Learning with Rounding [11], it depends only on the
secret keys since the noise is deterministic and based on the secret keys and the
public parameter. One possible attack against such schemes in the IND-CCA2
model involves an attacker who chooses ciphertexts with the goal of causing a
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decryption failure, and hopes to gain information on the decryptor’s secret key
by observing such failure events.

D’Anvers et al. [23] present an attack framework of this form on a number
of NIST post-quantum standardization candidates, and compare how the dif-
ferent schemes fare against it. However, the roles played by different aspects of
the schemes’ designs in withstanding active attacks of the above form are not
completely studied. In this section we analyze the role played by the secret-key
distribution of a scheme in this attack. We analyze and quantify the cost of the
above-mentioned decryption failure-based attack [23] against each of the secret-
key distributions considered in this paper, in the context of the rounding-based
encryption scheme from Section 4.2. We show that fixing the weight of the (non-
zero) secret key components makes the attack harder, independent of any other
scheme parameters such as the error distribution.

We first recall the basic intuition behind the attack: Typically, most lattice-
based public-key encryption schemes consist of a core building block that is an
IND-CPA secure public-key encryption scheme. Applying a KEM variant [38]
of the Fujisaki-Okamoto transform on this scheme yields an IND-CCA2 secure
scheme, whose security can be proven in the random oracle model. A core com-
ponent of the above transform is a re-encryption step that intuitively requires
the encryptor to prove knowledge of the message that is being encrypted/en-
capsulated. Thus, an active or chosen ciphertext attacker can do no better than
exhaustively search for messages that result in so-called “weak” ciphertexts [23]
which cause a decryption failure with probability higher than a threshold ft –
this is a parameter chosen by the attacker. The probability of finding such weak
ciphertexts is denoted in [23] by the parameter α, and the (increased) decryption
failure rate resulting from them is denoted by the parameter β. Assuming that
the attacker has no quantum access to the decryption oracle, the overall attack
cost of this so-called failure boosting attack, is thus (αβ)−1 (using a classical
computer) or (

√
αβ)−1 (with a quantum speedup [31]). Once weak ciphertexts

are found, the attacker uses information gained by observing decryption failure
events to speed up standard secret key recovery attacks [6,39].

We recall some notation from [23] before proceeding to the analysis of the
attack and our extension of it. In the context of the generalized public-key en-
cryption scheme described in Section 2, algorithms 1, 2 and 3, we define the
errors introduced by the rounding operation (if applicable) as:

UA = ASA + EA −Br, U
′
B = ATS′B + E′B −B′r,

U ′′B = BT
r S
′
B + E′′B +

⌊q
2
m
⌉
− V ′r.

(6)

Further, let

S =

(
−SA

EA + UA

)
, C =

(
EB + U ′B

S′B

)
, G = E′′B + U ′′B (7)

The above-mentioned attack cost of failure boosting can be minimized by the
attacker over the choice of the failure probability threshold ft. This minimization
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requires obtaining the (distribution of the) variance of the coefficients of the
polynomial STCij [23, Eq. 8] (where i, j are used to vary over the coefficients

of the polynomials in STC):

var(STCijk) = ‖(E′B + U ′B:j)‖22var(χs) + ‖(S′B:j)‖22var(χe+u) (8)

Computing (the distribution of) this variance is an essential step towards model-
ing the failure probability in each component of the polynomials involved in the
decryption error term that is represented by STC + G. The attacker chooses
(C,G) with the eventual goal of finding a “weak” ciphertext that causes a higher
than expected probability of decryption failure.

Computing the distribution of the failure probability in each component of
the decryption error eventually allows determining whether the attacker succeeds
in causing the probability of the decryption failure rate in each component of
the above polynomials to be greater than the chosen ft, for a chosen (C,G)
pair – this qualifies as an attack success. This involves computing the resulting
α and β parameters, and thus the overall attack cost. A key assumption made
by [23] in the above computations is that the coefficients of STC are normally
distributed. This assumption also allows applying this analysis to a number of
different schemes with varying secret-key and noise distributions. However, as
mentioned by the authors themselves in [23, Section 3.1], this assumption is also
the source of potential inaccuracies in the analysis. In the following section we
show that this inaccuracy exists for specific distributions, and can be removed
by refining the analysis of [23] for said distributions.

5.1 Adapting failure boosting to fixed-composition secrets

In this section, we refine the of failure boosting analysis from [23] for schemes
which have secret keys with fixed composition, for which there are integers
h−η, . . . , hη such that for each i ∈ {−η,−η+1, . . . , 0, 1, . . . , η}, each secret has hi
components equal to i. Specifically, the Gaussian approximation step involved in
computing the distribution of the decryption failure probabilities per component
of STC +G can be made more precise for such schemes. This allows for a more
accurate computation of the distribution of the coefficients in the polynomials
comprising STC, improving the analysis of [23].

The decryption failure probability fijk in the ijk-th component of STC+G,
given a chosen pair (C,G) is computed in [23, Eq. 11] as:

fijk = Pr
(
|(STC + G)ijk| > qt|G,C

)
≈ Pr

(
|x+ Gijk| > qt|G, x← N

(
0, var(STCijk)

))
.

(9)

qt = q/2B is a decryption threshold, where q is the system modulus and B
bits of information are extracted from each component of the shared secret.
The previously mentioned assumption made by [23] that the coefficients of STC
are normally distributed results in the approximation in the second step of the
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above equation. We refine this approximation by first noting that (recalling the
definitions of S, C and G in Eq. 7):

STC =
(
−STA (ET

A + UT
A)
)(EB + U ′B

S′B

)
= −STA(EB + U ′B) + (ET

A + UT
A)S′B

= SAEB + EASB

(10)

where
SA = −STA, EB = EB + U ′B , EA = ET

A + UT
A, SB = S′B . (11)

Rewriting STC in the above manner makes it clear that the computation of fijk
in Eq. 9 can be refined as follows:

fijk ≈ Pr (|x1 + x2 + Gijk| > qt|G, x1 ← N (0, var((SAEB)ijk)) , x2 ← χEASB ) (12)

where firstly, var((SAEB)ijk) is adapted from var(STCijk) in Eq. 8 as:

var((SAEB)ijk) = ‖(E′B + U ′B:j)‖22var(χs) (13)

and secondly, χEASB
is the distribution of each component in the polynomial

product (EASB)ij , where polynomials in SB have components from {−η,−η +
1, . . . , η}, with exactly hi components equal to i. The variable x2 is thus dis-

tributed as
∑η
i=−η i

∑hi

j=1Xi,j , where the random variables Xi,j for 1 ≤ i ≤ η
and 1 ≤ j ≤ hi are independently drawn from χe+u. This distribution can be
computed by convolving, over all i ∈ [−η, . . . , η], the hi-fold iterative convolution
of χe+u scaled with a factor i. Equations 12 and 13 thus summarize our adapta-
tion to the analysis of the failure boosting phase of the decryption failure-based
active attack in [23].

5.2 Results of our adaptation

Applying our above adapted analysis, Figure 2 depicts the cost (αβ)−1 of apply-
ing failure boosting to find a weak ciphertext on a classical computer, against the
decryption failure rate of the ciphertext. This is depicted for a number of NIST
post-quantum standardization candidates, and the rounding-based public-key
encryption scheme we defined in Section 4.2 – instantiated with both fixed-weight
and non fixed-weight ternary secrets. The parameters used for these are the same
as computed in Section 4.3. Note that the construction of the encryption scheme
using these distributions is similar to some instantiations of the NIST PQC can-
didate Round5 [9], albeit a version that does not use error correction and also
considers non fixed-weight ternary secrets. The results clearly indicate that fix-
ing the weight makes the attack harder. As a benchmark, Figure 2 also shows
the upper bound placed by the NIST post-quantum standardization call [56], on
the number of decryption oracle queries (264) that an active attacker can make.

To further demonstrate this, and to show that the results of our adaptation
carry over to schemes using secret-keys with a larger support and also inde-
pendent errors (instead of only rounding-based errors), we include results for
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fixed-composition variants of the NIST PQC candidates Saber [24] (rounding
errors), Kyber [18] (secrets and independent errors sampled from a centered Bi-
nomial distribution), and Frodo [17] (secrets and independent errors sampled
from a discrete Gaussian distribution). The fixed-composition variants of Saber
and Kyber that we consider sample their secret keys from centered binomial
distributions [6] analogous to the original schemes, however the number of oc-
currences of the non-zero components are fixed in a manner similar to that
mentioned in Section 4.2. Similarly, the number of each of the secret-key com-
ponents for the fixed-composition variant of Frodo is fixed to the expectation
of the discrete Gaussian distribution from which the original scheme samples
its secret-key components. Figure 2 shows that the cost of the failure boosting
attack increases visibly faster for these fixed-composition variants of Saber, Ky-
ber and Frodo than the original schemes. Since these schemes were originally
designed to use secret key components that are larger than 1, fixing the number
of non-zero secret key components provides them with an even greater security
benefit against the failure boosting attack of [23] than schemes using secret keys
with components that are only ternary.

6 Conclusions and future work

Of all the different design aspects involved in the construction of lattice-based
public-key encryption schemes, an important one that has so far not been ana-
lyzed in depth in the literature is the role played by the secret-key distribution in
the tradeoff between performance and security of the scheme. We initiate study in
this area by comparing a number of secret-key distributions currently being con-
sidered as part of candidates to the NIST post-quantum standardization process,
with respect to different criteria such as variance, entropy, resulting probability
of decryption failure, and resistance against chosen-ciphertext attacks based on
decryption failures.

Our results indicate that out of the secret-key distributions considered in
this work: firstly, fixed-weight ternary secrets reduce the decryption failure rate
of the encryption scheme and allow for a higher noise-to-modulus ratio while
ensuring a large enough dimension secure against concrete attacks, thus leading
to the smallest key sizes when parameters are optimized for bandwidth. Secondly,
fixing the number of components in the secret key for each given value increases
security against decryption failure-based chosen-ciphertext attacks, as compared
to secrets with independently sampled components. An interesting area of further
research is to analyze the effect of having fixed-composition errors on the security
and performance of the encryption scheme.
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Thomas Pöppelmann, Peter Schwabe, and Douglas Stebila. NewHope. Technical
report, National Institute of Standards and Technology, 2017. Available at https:
//csrc.nist.gov/projects/post-quantum-cryptography/round-1-submissions.
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John M. Schanck, Peter Schwabe, and Damien Stehlé. CRYSTALS – Kyber: a
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