
Field Extension in Secret-Shared Form and Its Applications to
Efficient Secure Computation

Ryo Kikuchi1, Nuttapong Attrapadung2, Koki Hamada1, Dai Ikarashi1,
Ai Ishida2, Takahiro Matsuda2, Yusuke Sakai2, and Jacob C. N. Schuldt2

1 NTT,
kikuchi ryo@fw.ipsj.or.jp, {koki.hamada.rb, dai.ikarashi.rd}@hco.ntt.co.jp

2 National Institute of Advanced Industrial Science and Technology (AIST),
{n.attrapadung, a.ishida, t-matsuda, yusuke.sakai, jacob.schuldt}@aist.go.jp

Abstract. Secure computation enables participating parties to jointly compute a function over their
inputs while keeping them private. Secret sharing plays an important role for maintaining privacy
during the computation. In most schemes, secret sharing over the same finite field is normally utilized
throughout all the steps in the secure computation. A major drawback of this “uniform” approach
is that one has to set the size of the field to be as large as the maximum of all the lower bounds
derived from all the steps in the protocol. This easily leads to a requirement for using a large field
which, in turn, makes the protocol inefficient. In this paper, we propose a “non-uniform” approach:
dynamically changing the fields so that they are suitable for each step of computation. At the core
of our approach is a surprisingly simple method to extend the underlying field of a secret sharing
scheme, in a non-interactive manner, while maintaining the secret being shared. Using our approach,
default computations can hence be done in a small field, which allows better efficiency, while one would
extend to a larger field only at the necessary steps. As the main application of our technique, we show
an improvement upon the recent actively secure protocol proposed by Chida et al. (Crypto’18). The
improved protocol can handle a binary field, which enables XOR-free computation of a boolean circuit.
Other applications include efficient (batch) equality check and consistency check protocols, which are
useful for, e.g., password-based threshold authentication.

Keywords: secure computation, secret sharing, active security

1 Introduction

Secret-sharing-based secure computation enables parties to compute a function of a given set of inputs
while keeping these secret. The inputs are distributed to several parties via a secret sharing scheme, and
the parties then compute the function by interacting with each other. Throughout the above steps, any
information except the output must be kept secret to the parties.

Secure computation should satisfy the security notions, such as privacy and correctness, in the presence of
an adversary, which might compromise some of the parties participating in the computation. There are two
classical adversary models capturing different adversarial behaviors: passive (i.e., semi-honest) and active
(i.e., malicious). The latter provides a stronger security guarantee as an actively secure protocol will remain
secure in the presence of an adversary following an arbitrary adversarial strategy. Another metric of security
is the number of parties that an adversary can corrupt. The setting in which an adversary is allowed to
corrupt up to half of the parties, is referred to as honest majority. Unconditionally secure protocols can only
be realized in the honest majority setting [21].

Many secret-sharing-based secure computations are defined over a finite field, e.g., [6,4,13,7,11]. The
choice of the underlying field greatly affects the efficiency of those protocols since field elements and field
operations are the units of any processing, and the size of the field affects the size and efficiency of field
elements and field operations, respectively. In other words, an unnecessarily large field incurs a large cost
of storage, computation, and communication among parties. From this, a natural question arises: how small
can the field size be?

Intuitively speaking, we can consider two lower bounds regarding the field size. The first is the range of
values used in the computation. The field size should be large enough to contain any value that appears in
all steps in the computation. For example, if one wants to store values that are less than 10, and compute
the sum of 100 values, the field size should be larger than 10× 100 ≈ 210 to accommodate this computation,
while if one wants to store binary values and compute a boolean circuit, a binary field is sufficient.

Another bound is derived from statistical errors which are typically a part of the computation, and which
in turn provides an upper bound for the advantage of an adversary. These errors are typically dependent on
the size of the field used in the computation. For example, consider a protocol for checking equality of secret
shared values. Specifically, let K be a field, and let [s] and [s′] be shares of s, s′ ∈ K. There is a straightforward
way for the parties holding [s] and [s′] to verify that s = s′ without revealing s and s′ themselves: generate a
random share [r], securely compute [r(s− s′)], reconstruct this value, and verify whether the reconstructed
value r(s − s′) is 0 or not. If s 6= s′, r(s − s′) will be a random value different from 0, except probability
1/ |K|, where |K| denotes the size of K. Therefore, if one wants to ensure that a statistical error probability
is less than 2−κ, the field size must be larger than 2κ.

The field size should be larger than these two lower bounds even if there is a gap between those. For
example, if the parties securely compute statistics with a possible range from 0 to 1, 000 (≈ 210) with
statistical error 2−40, a field size larger than 240 must be used (this comes from max(210, 240)).

Our Contribution. We propose a method to dynamically change the fields used in secure computation to
improve efficiency. Note that a large field (e.g. chosen to lower the statistical error of a protocol) is not
necessarily required in all stages of a secure computation. Often, a significant part of the computation
can be done in a smaller field which is just sufficiently large to accommodate the values appearing in the
computation, and only when verifying correctness, a much larger field is required to reduce the statistical
error inherent in the used protocol, e.g. like the equality check described above.

Therefore, if we can dynamically change the underlying field, we can improve the efficiency of secure
computation by using a field of an appropriate size for each stage of the computation. Note that for this
approach to work, it is required that the parties can change the underlying field while a secret is shared
over the field. In this paper, we propose a method that achieves this, which furthermore does not require the
parties holding the shared secret to communicate. Hence, this allows the parties by default to use a small
field over which computation is efficient, and only switch to a large (extended) field at the time of verification
to achieve the desired statistical error.

Let us briefly recall standard construction of field extension. Let K be a base field and let F ∈ K[X] be

an irreducible polynomial of degree m − 1. Then K̂ := K[X]/F is a field extension of K of size |K|m. An

m-tuple of elements in K, (s1, . . . , sm), can be regarded as a vector representation of a single element ŝ ∈ K̂
defined as ŝ = s1 + s2X + · · · + smX

m−1. Note that a single element s1 ∈ K can also be regarded as an
element in K̂ by setting si = 0 for 2 ≤ i ≤ m.

We show that this kind of extension allows shares from a secret sharing scheme to be mapped into the
extended field, as long as we use a t-out-of-n linear secret sharing scheme. Let [s] (that is not necessarily in

K) be a share of s ∈ K and [[s′]] be a share of s′ ∈ K̂. We show that, if the parties have an m-tuple of shares
[s1], . . . , [sm], the parties can regard them as a single share, [[s′]], where s′ := s1 + s2X + · · · + smX

m−1.
Similar to the above, this also implies that a single share [s] can be regarded as a share of [[ŝ]], where
ŝ := s+ 0X + · · ·+ 0Xm−1.

This technique is simple but useful for improving the efficiency of secure computation. Let us revisit the
example of equality checking highlighted above. Assume that the parties have computed [s] and [s′], where

s, s′ ∈ K and that to make the computation efficient K was chosen to be a small field, e.g., GF(2). Let K̂
be the extended field of K with size larger than 2κ. To check that s = s′, the parties extend [s] and [s′] into

[[ŝ]] and [[ŝ′]] using our technique, and generate a sharing [[r]] of randomness r ∈ K̂. The parties then securely
compute [[r(s− s′)]], reconstruct the resulting value, and check whether this is 0 or not. Since the revealed

value belongs to K̂, the statistical error of the comparison, and thereby the advantage of an adversary, is
bounded by 2−κ. Besides this, the parties can batch multiple equality checks by “packing” multiple secrets
in K into a single secret in K̂. If m secrets in a field are packed into a single element in an m-degree extended

2

field, there is no extra cost with respect to communication compared to parallel executions of equality checks
in K. Similar scenarios appear in password-based threshold authentication [23] and batch consistency check
[15,25], and we can apply this technique to the protocols for these.

As the main application of our technique, we show how to improve a recent protocol proposed by Chida
et al. [11] which achieves fast large-scale honest-majority secure computation for active adversaries. Although
Chida et al. proposed a protocol suitable for small fields, the protocol cannot be applied to a binary field,
since the bound on the advantage of the adversary is given by (3/ |K|)δ, which is not meaningful for |K| = 2.
This, for example, prevents the use of XOR-free computation of a boolean circuit.3 Informally, their protocol
generates δ shared random values, computes δ “randomized” outputs in addition to the ordinary one, and
verifies correctness of the computation by checking if the randomized outputs correspond to the ordinary
outputs when the latter is randomized using the same randomnesses. Here, the shared random values and
the randomized outputs are used for verification only. Hence, we can apply our technique to this protocol as
follows. The (shared) random values and randomized outputs in K are replaced by a single random value and

the randomized output in K̂, and then the ordinary output in K is extended to K̂ at the time of verification.
The bound on the adversarial advantage in this modified protocol is 3/|K̂|. Therefore, we can choose a binary

field as K (and an extension field K̂ of appropriate size) in the protocol.

Related Work. There are several techniques to achieve active security even if the field size is small. Beaver
[3] showed that one can securely compute a multiplication gate in the presence of active adversaries for any
field/ring by sacrificing a multiplication triple. The SPDZ protocol [14] and subsequent studies generate the
triples using cryptographic primitives, such as somewhat homomorphic encryption and oblivious transfer.
Furukawa et al. [15] and subsequent works [1,25] used another approach to generate the triples using cut-
and-choose technique in honest majority. Genkin et al. [17] introduced an algebraic manipulation detection
(AMD) circuit that implies actively secure computation. Although their construction relies on a tamper-
proof primitive if one uses a binary field, the later result [18] obtained a binary AMD circuit from a boolean
one with polylog overhead with 2−κ statistical error.

Cascudo et al. [10] employed different fields to offer a trade-off with the field size of the circuit. Their
technique makes use of an encode between GF(2k) and (GF(2))m while maintaining the structure of mul-
tiplication of those ring and field in some sense. Since the motivation is different, our technique does not
maintain the structure of multiplication, while our technique is space-efficient: we can embed several secrets
in K into K̂ without redundancy.

Paper Organization. The rest of the paper is organized as follows. In Section 2, we will recall linear secret
sharing. In Section 3, we introduce our main technique of field extension in a secret-sharing form. In Section
4, we show several applications of our technique to secure computation based on threshold linear secret
sharing: consistency check, equality check of multiple shares, and finally and as the main technical result, an
efficient secure computation protocol for arithmetic circuits.

2 Linear Secret Sharing

In this section we give the definition of linear secret sharing [5]. Here, we consider general linear secret sharing
with respect to an access structure.

Definition 2.1 (Secret Sharing). Let S be a finite domain of secrets. Also, let A be an access struc-
ture of parties P1, . . . , Pn. A secret sharing scheme Π = (Share,Rec) realizing A satisfies the following two
requirements:

Reconstruction Requirement. Let Si be a finite domain of the party Pi’s shares. For any set G ∈ A
where G = {i1, . . . , i|G|}, there exists a reconstruction function RecG : Si1 × · · · × Si|G| → S such that for any
secret s ∈ S, it holds that RecG([s]i1 , . . . , [s]i|G|) = s where Share(s)→ 〈[s]1, . . . , [s]n〉.

3 Precisely, secure computation in GF(2m) is XOR-free but redundant for a boolean circuit.

3

Security Requirement. For any set B /∈ A, any two secrets α, β ∈ S, and any elements vali ∈ Si (1 ≤ i ≤
n), it holds that

Pr[
∧
Pi∈B

{ [α]i = vali }] = Pr[
∧
Pi∈B

{ [β]i = vali }]

where the probabilities are taken over the randomness of the sharing algorithm.

Definition 2.2 (Linear Secret Sharing). Let K be a finite field and Π a secret sharing scheme with a
domain of secrets S ⊆ K realizing an access structure A of parties P1, . . . , Pn. We say that Π is a linear
secret sharing scheme over K if the following holds:

1. A share of each party consists of a vector over K. More precisely for any index i, there exists a constant
di such that the party Pi’s share is taken from Kdi . We denote by [s]ij the j-th coordinate of the party
Pi’s share of a secret s ∈ S.

2. For any set in A, i.e., authorized set, its reconstruction function is linear. More precisely, for any set
G ∈ A, there exist constants {αij}Pi∈G,1≤j≤di such that for any secret s ∈ S, it holds that

s =
∑
Pi∈G

∑
1≤j≤di

αij · [s]ij

where the addition and multiplication are over the field K.

If all shares consist of only one element in the field K, Definition 2.2 implies that for any set G ∈ A, there
exist constants {αi}Pi∈G such that for any secret s ∈ S, it holds that s =

∑
Pi∈G αi · [s]i.

3 Field Extension in Secret-Shared Form

In this section we propose a simple but highly useful method to extend a sharing of a secret over a field to a
sharing of the same secret over an extended field, without requiring any communication between the parties
which the secret is shared. This is the main mechanism we will exploit in our hybrid approach to protocol
design, in which evaluation will be done over a smaller field, but verification is done over a large field to
ensure a low statistical error, which in turn bounds the advantage of an adversary.

Let Π be a linear secret sharing scheme with a domain of secrets S ⊆ K realizing an access structure A
of parties P1, . . . , Pn. In the following, we consider a scenario in which these parties will be sharing m
secrets s1, . . . , sm.

Let K̂ = K[X]/F be the extended field of K where F ∈ K[X] is an irreducible polynomial of degree m. Let

f be the bijective function of natural extension i.e. f : Km → K̂ and f(a1, . . . , am) = a1+a2X+· · ·+amXm−1.
The following theorem shows that if secrets in K are shared via a linear secret sharing scheme as

[s1]ij , . . . , [sm]ij with coefficients {αij}Pi∈G,1≤j≤di for some G ∈ A, a “packed” share f
(
[s1]ij , . . . , [sm]ij

)
is

in fact a share of s1 + s2X + · · ·+ smX
m ∈ K̂ with coefficients {f(αij , 0, . . . , 0)}Pi∈G,1≤j≤di . In other words,

multiple shares can be embedded in the extended field K̂ (which we will refer to as packing), and jointly

reconstructed over K̂. Since a party can locally compute f
(
[s1]ij , . . . , [sm]ij

)
, the parties can obtain a share

of s1 + s2X + · · · + smX
m ∈ K̂ from shares of s1, . . . , sm ∈ K without communicating. The theorem also

implies that the parties can obtain a share of s1 + · · ·+ s`X
` + 0X`+1 + · · · 0Xm ∈ K̂ from shares of ` (< m)

secrets by setting [sk]ij = 0 for ` < k ≤ m.

Theorem 3.1. Let [sk]ij be the j-th coordinate of Pi’s share of a secret sk ∈ S. Then for any set G ∈ A, it
holds that

f−1
(∑
Pi∈G

∑
1≤j≤di

f(αij , 0, . . . , 0) · f
(
[s1]ij , . . . , [sm]ij

))
= (s1, . . . , sm)

where {αij}Pi∈G,1≤j≤di are the constants defined in Definition 2.2.

4

[Proof] We have that∑
Pi∈G

∑
1≤j≤di

f(αij , 0, . . . , 0) · f
(
[s1]ij , . . . , [sm]ij

)
=
∑
Pi∈G

∑
1≤j≤di

αij ·
(

[s1]ij + [s2]ij ·X + · · ·+ [sm]ij ·Xm−1
)

=
∑
Pi∈G

∑
1≤j≤di

αij · [s1]ij +
(∑
Pi∈G

∑
1≤j≤di

αij · [s2]ij

)
X

+ · · · +
(∑
Pi∈G

∑
1≤j≤di

αij · [sm]ij

)
Xm−1

= s1 + s2 ·X + · · ·+ sm ·Xm−1.

Thus, we see that f−1
(∑

Pi∈G
∑

1≤j≤di f(αij , 0, . . . , 0) · f
(
[s1]ij , . . . , [sm]ij

))
= f−1(s1 + s2 ·X + · · ·+ sm ·

Xm−1) = (s1, . . . , sm).

Induced Secret Sharing Scheme. The above theorem not only shows that shares from a secret sharing
scheme over K can be embedded and reconstructed in the extension field K̂, but in fact let us define an
“induced” secret sharing scheme over K̂ based on the secret sharing scheme over K. More specifically, let
Π = (Share,Rec) be a linear secret sharing scheme with a domain of secrets S ⊆ K realizing an access

structure A of parties P1, . . . , Pn. We consider the induced scheme Π̂ = (Ŝhare, R̂ec) with a domain of

secrets Ŝ ⊆ K̂ = K[X]/F defined as follows.

Ŝhare(s):

1. Compute (s1, . . . , sm)← f−1(s)

2. For k ∈ [1,m]: compute Share(sk)→ {[sk]1j}1≤j≤d1 , . . . , {[sk]nj}1≤j≤dn〉
3. For i ∈ [1, n] and j ∈ [1, di]: set [[s]]ij ← f([s1]ij , . . . , [sm]ij)

4. Output 〈{[[s]]1j}1≤j≤d1 , . . . , {[[s]]nj}1≤j≤dn〉

R̂ecG({[[s]]ij}Pi∈G,j∈[1,di]):

1. For Pi ∈ G and j ∈ [1, di]: compute α̂ij ← f(αij , 0, . . . , 0).

2. Output s←
∑
Pi∈G,j∈[1,di] α̂ij · [[s]]ij .

The linearity of the above secret sharing scheme follows directly from Theorem 3.1, and security likewise
follows in a straightforward manner. We write this as the following corollary.

Corollary 3.2. Assume that Π is a linear secret sharing scheme. Then the induced secret sharing scheme
Π̂ is a linear secret sharing scheme.

The ability of the parties to locally evaluate the embedding function f , means that the parties can locally
construct a sharing [[ŝ]] of the induced scheme Π̂ from sharings [s1], . . . , [sm] of Π, where ŝ = s1 + s2X +

· · ·+ smX
m−1 ∈ K̂ and s1, . . . , sm ∈ K.

Throughout the paper, we will adopt the notation used above. Specifically, for a secret sharing scheme

Π = (Share,Rec) over K, which we will also refer to as the base scheme, Π̂ = (Ŝhare, R̂ec) denotes the induced

secret sharing scheme defined above over the field extension K̂ = K[X]/F . For values s ∈ K and v ∈ K̂, we
will use [s] and [[v]] to denote sharings of the base and the induced secret sharing scheme, respectively. We
will sometimes abuse this notation, and for a value s ∈ K use [[s]] to denote [[f(s, 0, . . . , 0)]], and will also
refer to this as an induced sharing.

5

4 Applications to Secure Computation

In this section, we show several applications for actively secure computation with abort and an honest major-
ity. As preliminaries to these, in Section 4.1, we first give basic definitions, including threshold secret sharing
and several protocols that are used as building blocks. Then, we present applications of our field extension
technique to consistency check of shares in Section 4.2, equality check of multiple shares in Section 4.3, and
computation of arithmetic circuits in Section 4.4.

4.1 Preliminaries

Threshold Linear Secret Sharing. A t-out-of-n secret sharing scheme [5] enables n parties to share a
secret v ∈ K so that no subset of t parties can learn any information about it, while any subset of t + 1
parties can reconstruct it. In addition to being a linear secret sharing scheme, we require that the secret
sharing scheme used in our protocol supports the following procedures:

– Share(v): We consider non-interactive secret sharing where there exists a probabilistic dealer D that
receives a value v (and some randomness) and outputs shares [v]1, . . . , [v]n. We denote the sharing of a
value v by [v]. We use the notation [v]J to denote the shares held by a subset of parties J ⊂ {P1, . . . , Pn}. If
the dealer is corrupted, then the shares received by the parties may not be correct. Nevertheless, we abuse
notation and say that the parties hold shares [v] even if these are not correct. We will define correctness
of a sharing formally below.

– Share(v, [v]J): This non-interactive procedure is similar to the previous one, except that here the shares
of a subset J of parties with |J | ≤ t are fixed in advance. We assume that there exists a probabilistic

algorithm D̃ that receives a value v and some values [v]J = {[̃v]i}Pi∈J (and some randomness) and outputs

shares [v]1, . . . , [v]n where [v]i = [̃v]i holds for every Pi ∈ J . We also assume that if |J | = t, then [v]J
together with v fully determine all shares. This also means that any t+1 shares fully determine all shares.
(This follows since with t+ 1 shares one can always obtain v. However, for the secret sharing schemes we
use, this holds directly as well.)

– Reconstruct([v], i): Given a sharing of a value v and an index i held by the parties, this interactive protocol
guarantees that if [v] is not correct (see formal definition below), then Pi will output ⊥ and abort.
Otherwise, if [v] is correct, then Pi will either output v or abort.

– Open([v]): Given a sharing of a value v held by the parties, this procedure guarantees that at the end of
the execution, if [v] is not correct, then all the honest parties will abort. Otherwise, if [v] is correct, then
each party will either output v or abort. Clearly, Open can be run by any subset of t+ 1 or more parties.
We require that if any subset J of t+1 honest parties output a value v, then any superset of J will output
either v or ⊥ (but no other value).

– Local Operations: Given correct sharings [u] and [v], and a scalar α ∈ K, the parties can generate correct
sharings of [u+ v], [α · v] and [v + α] using local operations only (i.e., without any interaction). We denote
these local operations by [u] + [v], α · [v], and [v] + α, respectively.

Standard secret sharing schemes like the Shamir scheme [27] and the replicated secret sharing scheme [22,12]
support all of these procedures (with their required properties). Furthermore, if a base secret sharing scheme
supports the above procedures, then the induced secret sharing scheme over a field extension likewise supports
the above procedures. This easily follows from the one-to-one correspondence between a set of m shares
[s1], . . . , [sm] of the base scheme and a share [[ŝ]] of the induced scheme, where ŝ = s1 +s2X+ · · ·+smX

m−1.
Specifically, the above procedures for the induced scheme can be implemented by simply mapping the input
shares to shares of the base scheme using f−1, and running the corresponding procedure of the base scheme.

The following corollary regarding the security of an induced secret sharing scheme is a simple extension of
Corollary 3.2 and follows from the one-to-one correspondence between a set of m shares in the base scheme
and a share in the induced scheme.

Corollary 4.1. Let Π be a secure threshold linear secret sharing scheme. Then the induced scheme Π̂ is a
secure threshold linear secret sharing scheme.

6

In the following, we set the threshold for the secret sharing scheme to be b(n− 1)/2c, and we denote by
t the number of corrupted parties. Since we assume an honest majority, it holds that t < n/2, and so the
corrupted parties can learn nothing about a shared secret.

We now define correctness for secret sharing. Let J be a subset of t + 1 honest parties, and denote by
val([v])J the value obtained by these parties after running the Open procedure where no corrupted parties
or additional honest parties participate. We note that val([v])J may equal ⊥ if the shares held by the honest
parties are not valid. Informally, a secret sharing is correct if every subset of t+ 1 honest parties reconstruct
the same value (which is not ⊥). Formally:

Definition 4.2. Let H ⊆ {P1, . . . , Pn} denote the set of honest parties. A sharing [v] is correct if there
exists a value ṽ ∈ K (ṽ 6= ⊥) such that for every J ⊆ H with |J | = t+ 1 it holds that val([v])J = ṽ.

If a sharing [v] is not correct, then either there exists a subset J of t+1 honest users such that val([v])J = ⊥,
or there exists two subsets J1 and J2 such that val([v])J1 = v1 and val([v])J2 = v2, where v1, v2 ∈ K and
v1 6= v2. We will refer to the former as an invalid sharing, and the latter as a value-inconsistent sharing. Note
that a correct sharing in an induced secret sharing scheme corresponds to a set of m correct shares of the
base scheme (and conversely, if a single sharing in the base scheme is incorrect, the sharing in the induced
scheme will be incorrect).

Definition of Security for Secure Computation. We use the standard definition of security based on
the ideal/real model paradigm [9,19], with security formalized for non-unanimous abort. This means that the
adversary first receives the output, and then determines for each honest party whether they will receive abort
or receive their correct output. Also, we prove the security of our protocols in a hybrid model, where parties
run a protocol with real messages and also have access to a trusted party computing a subfunctionality for
them. The modular sequential composition of [8] states that one can replace the trusted party computing
the subfunctionality with a real secure protocol computing the subfunctionality. When the subfunctionality
is g, we say that the protocol works in the g-hybrid model. The formal definitions of security appears in
Appendix A.

Definitions for Ideal Functionalities. Here, we recall the definitions of the ideal functionalities used in
the paper, which are based on the ones used in [11]. These functionalities are associated with a threshold
linear secret sharing scheme. Since in this paper we will utilize functionalities for both a secret sharing scheme
for a base field K and those of the induced scheme for an extension field K̂, we will use the style like Fx for
the former, and the style like F̂x for the latter. In the following, we only describe the functionalities for the
base field K; Those for the extension field K̂ are defined in exactly the same way, with the correspondences
that the sharing algorithm is of the induced scheme, and every value is of K̂. We note that the protocols
realizing these functionalities can be efficiently instantiated using standard secret sharing schemes [27,12,2].
(These protocols treat the underlying field and secret sharing scheme in a black-box manner, and hence can
be naturally used for realizing the functionalities for the induced scheme.)

– Fcoin – Generating Random Coins: When invoked, this functionality picks an element r ∈ K uniformly
at random and sends it to all parties.

– Frand – Generating Random Shares: This functionality generates a sharing of a random value in K
unknown to the parties. The formal description is given in Functionality 4.3.

– Finput – Secure Sharing of Inputs: This functionality captures a secure sharing of the parties’ inputs.
The formal description is given in Functionality 4.4.

– FcheckZero – Checking Equality to 0: This functionality allows callers to check whether a given sharing is
a sharing of 0 without revealing any further information on the shared value. The formal description is
given in Functionality 4.5.

– Fmult – Secure Multiplication up to Additive Attacks [17,16]: This functionality captures a secure com-
putation of a multiplication gate in an arithmetic circuit, but allows an adversary to mount the so-called
additive attacks. Specifically, this functionality receives input sharings [x] and [y] from the honest parties

7

FUNCTIONALITY 4.3 (Frand – Generating Random Shares)

Upon receiving {αi}Pi∈C from the ideal adversary S, Frand chooses a random r ∈ K, sets [r]C = {αi}Pi∈C ,
and runs [r] = ([r]1, . . . , [r]n) ← Share(r, [r]C). Then, Frand hands each honest party Pi (for i ∈ H) its
share [r]i.

FUNCTIONALITY 4.4 (Finput- Sharing of Inputs)

1. Finput receives inputs v1, . . . , vM ∈ K from the parties. For each k ∈ {1, . . . ,M}, Finput also receives
from the ideal adversary S the corrupted parties’ shares [vk]C for the k-th input.

2. For each k ∈ {1, . . . ,M}, Finput runs [vk] = ([vk]1, . . . , [vk]n)← Share(vk, [vk]C).
3. For each i ∈ {1, . . . , n}, Finput sends Pi the shares ([v1]i, . . . , [vM]i).

FUNCTIONALITY 4.5 (FcheckZero – Checking Equality to 0)

FcheckZero receives [v]H from the honest parties and uses it to compute v. Then:

– If v = 0, then FcheckZero sends 0 to the ideal adversary S. Then, if S sends reject (resp. accept), then
FcheckZero sends reject (resp. accept) to the honest parties.

– If v 6= 0, then FcheckZero proceeds as follows:
• With probability 1/|K|, it sends accept to the honest parties and S.
• With probability 1− 1/|K|, it sends reject to the honest parties and S.

FUNCTIONALITY 4.6 (Fmult - Secure Multiplication up to Additive Attacks)

1. Upon receiving [x]H and [y]H from the honest parties where x, y ∈ K, Fmult computes x, y and the
corrupted parties’ shares [x]C and [y]C .

2. Fmult hands [x]C and [y]C to the ideal adversary S.
3. Upon receiving d and {αi}Pi∈C from S, Fmult defines z = x · y + d and [z]C = {αi}Pi∈C . Then, Fmult

runs [z] = ([z]1, . . . , [z]n)← Share(z, [z]C).
4. Fmult hands each honest party Pi its share [z]i.

FUNCTIONALITY 4.7 (Fproduct - Secure Sum-of-Products up to Additive Attacks)

1. Upon receiving {[x`]H}L`=1 and {[y`]H}L`=1 from the honest parties where x`, y` ∈ K, Fproduct computes
x` and y` and the corrupted parties’ shares [x`]C and [y`]C , for each ` ∈ {1, . . . , L}.

2. Fproduct hands {[x`]C}L`=1 and {[y`]C}L`=1 to the ideal adversary S.
3. Upon receiving d and {αi}Pi∈C from S, Fproduct defines z =

∑L
`=1 x` · y` + d and [z]C = {αi}Pi∈C .

Then, it runs [z] = ([z]1, . . . , [z]n)← Share(z, [z]C).
4. Fproduct hands each honest party Pi its share [z]i.

and an additive value d from the adversary, and outputs a sharing of x · y+ d. The formal description is
given in Functionality 4.6.

– Fproduct – Secure Sum of Products up to Additive Attacks: This functionality captures a secure computa-
tion for the inner product of two vectors of input sharings. As with Fmult, security up to additive attacks
is considered. The formal description is given in Functionality 4.7.

4.2 Share Consistency Check

In this section, we present a protocol for checking the correctness of a collection of shares [x1], . . . , [xl]. The
protocol outputs reject if there is an invalid or incorrect share in [x1], . . . , [xl], and outputs accept otherwise.
The protocol is based on Protocol 3.1 from [25], and works by choosing random coefficients from the extension
field, using these to compute a linear combination of the shares embedded in the extension field, and finally
opening the resulting sharing. To ensure no information regarding the original shares is revealed, a sharing
of a random value of the extension field is added to the linear combination of shares. The description of
the protocol is shown in Protocol 4.10. Note that, unlike [25], the coefficients for the linear combination are
chosen from the full extension field, which allows an analysis with a better probability bound; while the
original protocol from [25] will fail with probability 1

|K|−1 , our protocol fails with probability 1

|K̂|
. Hence, our

8

protocol will, in addition to allowing the failure probability to be freely adjusted via the size of the extension
field, also remain meaningful for binary fields, for which the original protocol cannot be used.

The protocol relies on the base secret sharing scheme to be robustly-linear, which is defined as follows.

Definition 4.8. A secret sharing scheme is robustly-linear if for every pair of invalid shares [u] and [v],
there exists a unique α ∈ K such that α[u] + [v] is valid (when computed locally by the parties).

Note that secret sharing schemes for which there are no invalid shares, like the Shamir secret sharing scheme,
will trivially be robustly-linear.

The following lemma plays a central role in the analysis of Protocol 4.10.

Lemma 4.9. Let [u] be an incorrect sharing of a robustly-linear secret sharing scheme over K, and let [[v]] be

any sharing of the induced secret sharing scheme over K̂. Then, for a randomly chosen α ∈ K̂, the probability
that α · f([u], 0, . . . , 0) + [[v]] is a correct sharing, is at most 1/|K̂|.

[Proof] The proof proceeds by considering the possible combinations of validity, invalidity, and value-

inconsistency of [u] and [[v]], and for each combination, show that only a single choice of α ∈ K̂ will make
[[w]] = α · f([u], 0, . . . , 0) + [[v]] a valid sharing.

Firstly, recall that a value w ∈ K̂ can be expressed as w = w1 +w2X+ · · ·+wmX
m−1, where wi ∈ K, and

a sharing [[w]] in the induced sharing scheme over K̂ corresponds to [[w]] = [w1] + [w2]X + · · ·+ [wm]Xm−1,
where [wi] are shares over K. Note that for a sharing [[w]] to be valid, each sharing [wi] for 1 ≤ i ≤ m must
be valid.

Now consider [[w]] = αf([u], 0, . . . , 0) + [[v]] for a value α ∈ K̂, and let αi ∈ K for 1 ≤ i ≤ m be the values
defining α. Then, it must hold that [wi] = αi[u] + [vi]. In the following, we will argue about the validity of
[wi]. We consider the following cases.

– [vi] is valid. In this case, only αi = 0 will make [wi] valid. To see this, assume for the purpose of a
contradiction, that [wi] is valid and αi 6= 0. Then [u] = α−1i ([wi]− [vi]) will be valid due to the validity
of local computations, which contradicts the assumption in the lemma that [u] is incorrect.

– [vi] is value-inconsistent. That is, there exist sets J1 and J2 of t + 1 users such that val([vi])J1 = v
(1)
i ,

val([vi])J2 = v
(2)
i , and v

(1)
i 6= v

(2)
i . There are two sub-cases to consider, [u] being value-inconsistent or

invalid (recall that the assumption in the lemma is that [u] is incorrect).
• [u] is value-inconsistent. Let val([u])J1 = u(1) and val([u]))J2 = u(2). Note that val([wi])J1 = αiu

(1) +

v
(1)
i and val([wi])J1 = αiu

(1) + v
(1)
i due to the correctness of local operations. Now, if u(1) = u(2), it

must hold that αiu
(1) + v

(1)
i 6= αiu

(2) + v
(2)
i , since v

(1)
i 6= v

(2)
i . Hence, [wi] is value-inconsistent. On

the other hand, if u(1) 6= u(2), only the unique value αi =
v
(2)
i −v

(1)
i

u(1)−u(2) will ensure that αiu
(1) + v

(1)
i =

αiu
(2) + v

(2)
i , and thereby make [wi] valid.

• [u] is invalid. Firstly, observe that αi = 0 implies that [wi] = [vi], and as [vi] is value-inconsistent,
so will be [wi]. Hence, in the following analysis assumes that αi 6= 0. Since [u] is invalid, there is a
set J ′ satisfying val([u])J′ = ⊥. For this J ′ we claim that val([wi])J′ = ⊥. To see this assume that
val([wi])J′ 6= ⊥. Since [vi] is value-inconsistent, val([vi])J′ 6= ⊥. Thus we have that val(α−1i ([wi] −
[vi]))J′ = val([u])J′ 6= ⊥, which contradicts the definition of J ′.

– [vi] is invalid. There are again two sub-cases to consider.
• [u] is value-inconsistent. This case is symmetric to the case where [vi] is value-inconsistent and [u] is

invalid. A similar analysis to the above yields that at most a single choice of αi will make [wi] valid.
• [u] is invalid. That is, both [u] and [vi] are invalid. As the secret sharing scheme over K is assumed

to be robustly-linear, there is only a single value αi that will make [wi] = αi[u] + [vi] valid.

As shown in the above analysis, all possible combinations of validity, value-inconsistency, and invalidity of
[u] and [vi] lead to at most a single possible value αi that will make [wi] valid. Since α is picked uniformly at

random from K̂, the αi values are independent and uniformly distributed in K. Hence, the probability that
[[w]] is valid, which requires each [wi] to be valid, is bounded by (1/|K|)m = 1/|K̂|.

9

PROTOCOL 4.10 (Share Consistency Check)

Inputs: The parties hold l shares [x1], . . . , [xl].

Auxiliary Input: The parties hold the description of finite fields K and K̂.

The protocol:

1. For all i ∈ [l], the parties compute [[xi]] = f([xi], 0, . . . , 0).

2. The parties call F̂coin to obtain random elements α1, . . . , αl ∈ K̂.
3. The parties call F̂rand to obtain a sharing [[r]] for a random element r ∈ K̂.
4. The parties locally compute

[[w]] = α1 · [[x1]] + . . .+ αl · [[xl]] + [[r]]

5. The parties run Open([[w]]).
6. If any party aborts, the parties output reject. Otherwise, the parties output accept.

With the above lemma in place, establishing the following result is straightforward.

Theorem 4.11. Assume the sharing scheme over K is robustly-linear. Then, in Protocol 4.10, if one of the
input shares [x1], . . . , [xl] is not correct, the honest parties in the protocol will output accept with probability

at most 1/|K̂|.

[Proof] Assume that there is an index i ∈ [l] such that [xi] is not correct, and note that [[v]] can be expressed
as [[w]] = αif([xi], 0, . . . , 0) + [[v]], where [[v]] =

∑
j∈[l]\{i} αjf([xj], 0, . . . , 0) + [[r]]. Then, applying Lemma 4.9

yields that, when αi ∈ K̂ is picked uniformly at random, as done in the protocol, the probability that [[w]] is

correct, is at most 1/|K̂|. As Open guarantees that the honest parties will output reject on input an incorrect
share, the theorem follows.

Similar to [25], we will not define the ideal functionality and show full security of Protocol 4.10, as this
leads to complications. For example, defining the ideal functionality would require knowing how to generate
the inconsistent messages caused by inconsistent shares. Instead, the protocol will have to be simulated
directly when showing security of a larger protocol using Protocol 4.10 as a sub-protocol.

4.3 Equality Check of Multiple Shares

Here, we show a simple application of our field extension technique to a protocol for checking that multiple
shared secrets [v1], . . . , [vm] of the base field elements v1, . . . , vm ∈ K are all equal to 0. This functionality,
which we denote by FmcheckZero, is specified in Functionality 4.12. Our protocol uses the ideal functionality
F̂checkZero (Functionality 4.5) in a straightforward way, and thus the definition of FmcheckZero incorporates an
error probability from the false positive case, namely, even if some non-zero shared secret is contained in
the inputs, the protocol outputs accept with probability at most 1/|K̂|, where K̂ is the extension field. The
formal description of our protocol appears in Protocol 4.13.

FUNCTIONALITY 4.12 (FmcheckZero — Batch-Checking Equality to 0)

FmcheckZero receives [v1]H , . . . , [vm]H from the honest parties and uses them to compute v1, . . . , vm. Then,

1. If v1 = · · · = vm = 0, then FmcheckZero sends 0 to the ideal adversary S. Then, if S sends reject (resp.,
accept), then FmcheckZero sends reject (resp., accept) to the honest parties.

2. If vi 6= 0 for some i ∈ {1, . . . ,m}, then FmcheckZero proceeds as follows:

(a) With probability 1/|K̂|, it sends accept to the honest parties and S.

(b) With probability 1− 1/|K̂|, it sends reject to the honest parties and S.

10

PROTOCOL 4.13 (Batch-Checking Equality to 0)

Inputs: The parties hold a sharing [v1], . . . , [vm].

The protocol:

1. The parties locally compute a “packed” share [[v̂]] = f([v1], . . . , [vm]).

2. The parties call F̂checkZero on input [[v̂]], and output whatever F̂checkZero outputs.

The security of Protocol 4.13 is guaranteed by the following theorem. (We omit the proof since it is
straightforward.)

Theorem 4.14. Protocol 4.13 securely computes FmcheckZero with abort in the F̂checkZero-hybrid model in the
presence of active adversaries who control t < n/2 parties.

Since the efficient protocol for checking equality to zero of a finite field K by Chida et al. [11, Protocol 3.7]
in the (Frand,Fmult)-hybrid model uses the underlying secret sharing scheme and the finite field in a black-box

manner, it can be used as one for checking equality to zero for an extension field K̂ in the (F̂rand, F̂mult)-
hybrid model. Hence, by combining this protocol with Theorem 4.14, we also obtain an efficient protocol for
checking equality to zero of multiple shared secrets in the base field K in the (F̂rand, F̂mult)-hybrid model.

An obvious merit of our protocol is that it can be used even if the size of the base field K is small, i.e,
|K| ≤ 2κ for an intended statistical error κ. On the contrary, Chida et al.’s original protocol [11, Protocol
3.7] cannot be used for small field elements. Another merit of our protocol is that by adjusting the size of

the extension field K̂, we can flexibly reduce the error probability (i.e. the false positive probability) that
the protocol outputs accept even though some input shares contain a non-zero secret.

Application to Password-Based Authentication. We can apply our protocol to implement a password-based
authentication protocol, such as [23]. Let us consider the following scenario. A password is stored among
multiple backend servers in a linear secret sharing form. To log-in to the system the user splits his password
into shares and sends each share to each server. The servers run Protocol 4.13 to determine whether the
password sent from the user is correct (more precisely, the servers subtract the two shares, the one sent
from the user and the one stored by themselves, and run Protocol 4.13 to determine whether the difference
between two shares is zero).

We claim that the most space-efficient way to store the password is to store a password in a character-
by-character manner. For example, if a password is encoded by the ASCII code (8-bit represents a single
character), shares of a password is a sequence of GF(28)-shares. By running Protocol 4.13, the servers combine
GF(28)-shares into a single induced share which contains the entire password, and check that the secret-
shared bytes are all zeros. This approach has advantages over the following alternative choices regarding
storage capacity. The first alternative is (1) to use a field sufficiently large both for storing the password and
for providing statistical security, for example, a 320-bit field. This alternative is not efficient because we need
to allocate 320 bits of storage for every password, which may include short, say, 8-byte passwords. Another
alternative is (2) to use a field sufficiently large for statistical security but not necessarily large enough for
storing the password, for example, a 40-bit field. In this case, the password will be stored by first dividing
the password into a sequence of 40-bit blocks, and then share these among the servers in a block-by-block
manner. This alternative is again not efficient, particularly in the case that the length of a password is not
a multiple of the size of a block.

4.4 Secure Computation for Arithmetic Circuits

As mentioned earlier, the original highly efficient protocol for computing arithmetic circuits for a small finite
field by Chida et al. [11, Protocol 5.3], in fact cannot be used for a field K with |K| ≤ 3 (e.g. computation
for boolean circuits).

In this section, we show how to remove this restriction by using our field extension technique. Namely, we
propose a variant of Chida et al.’s protocol that truly works for any finite field. The formal description of our

11

protocol is given in Protocol 4.15. The simple idea employed in our protocol is to perform the computations
for the randomized shares [r · x] and the equality check of the invariant done in the verification stage, over

an extension field K̂. In contrast, these operations are done over the base field K in Chida et al.’s original
protocol. This allows us to perform the computation of the randomized shares using only a single element
(of the extension field), while still achieving statistical security 3/|K̂|, which is a simplification compared

to the protocol by Chida et al. Note that 3/|K̂| can be chosen according to the desired statistical error by
adjusting the degree m for the field extension.

PROTOCOL 4.15 (Computing Arithmetic Circuits over Any Finite K)

Inputs: Each party Pi (i ∈ {1, . . . , n}) holds an input xi ∈ K`.
Auxiliary Input: The parties hold the description of finite fields K and K̂ with 3/|K̂| ≤ 2−κ, and an arithmetic
circuit C over K that computes F on inputs of length M = ` · n. Let N be the number of multiplication gates
in C.

The protocol:

1. Secret sharing the inputs: For each input vj held by the party Pi, the party Pi sends vj to Finput. Each
party Pi records its vector of shares ([v1]i, . . . , [vM]i) of all inputs, as received from Finput. If the party
received ⊥ from Finput, then it sends abort to the other parties and halts.

2. Generate a randomizing share: The parties call F̂rand to receive a sharing [[r̂]].
3. Randomization of inputs: For each input wire sharing [vj] (where j ∈ {1, . . . ,M}), the parties locally

compute the induced share [[vj]] = f([vj], 0, . . . , 0). Then, the parties call F̂mult on [[r̂]] and [[vj]] to receive
[[r̂ · vj]].

4. Circuit emulation: Let G1, . . . , G|C| be a predetermined topological ordering of the gates of the circuit C.
For j = 1, . . . , |C| the parties proceed as follows:
– If Gj is an addition gate: Given pairs ([x], [[r̂ · x]]) and ([y], [[r̂ · y]]) on the left and right input wires

respectively, each party locally computes ([x+ y], [[r̂ · (x+ y)]]).
– If Gj is a multiplication-by-a-constant gate: Given a pair ([x], [[r̂ · x]]) on the input wire and a constant
a ∈ K, each party locally computes ([a · x], [[r̂ · (a · x)]]).

– If Gj is a multiplication gate: Given pairs ([x], [[r̂ · x]]) and ([y], [[r̂ · y]]) on the left and right input wires
respectively, the parties compute ([x · y], [[r̂ · x · y]]) as follows:
(a) The parties call Fmult on [x] and [y] to receive [x · y].
(b) The parties locally compute the induced share [[y]] = f([y], 0, . . . , 0).

(c) The parties call F̂mult on [[r̂ · x]] and [[y]] to receive [[r̂ · x · y]].
5. Verification stage: Let {([zk], [[r̂ · zk]])}Nk=1 be the pairs on the output wires of the multiplication gates, and

{([vj], [[r̂ · vj]])}Mj=1 be the pairs on the input wires of C.

(a) For k = 1, . . . , N , the parties call F̂rand to receive [[α̂k]].

(b) For j = 1, . . . ,M , the parties call F̂rand to receive [[β̂j]].
(c) Compute linear combinations:

i. The parties call F̂product on vectors ([[α̂1]], . . . , [[α̂N]], [[β̂1]], . . . , [[β̂M]]) and
([[r̂ · z1]], . . . , [[r̂ · zN]], [[r̂ · v̂1]], . . . , [[r̂ · vM]]) to receive [[û]].

ii. For each k ∈ {1, . . . , N}, the parties locally compute the induced share [[zk]] = f([zk], 0, . . . , 0)

of the output wire of the k-th multiplication gate. Then, the parties call F̂product on vectors

([[α̂1]], . . . , [[α̂N]], [[β̂1]], . . . , [[β̂M]]) and ([[z1]], . . . , [[zN]], [[v1]], . . . , [[vM]]) to receive [[ŵ]].
iii. The parties run Open([[r̂]]) to receive r̂.

iv. Each party locally computes [[T̂]] = [[û]]− r̂ · [[ŵ]].

v. The parties call F̂checkZero on [[T̂]]. If F̂checkZero outputs reject, the parties output ⊥ and abort.
Else, if it outputs accept, they proceed.

6. Output reconstruction: For each output wire of C, the parties run Reconstruct([v], i) where [v] is the sharing
on the output wire, and Pi is the party whose output is on the wire. If a party received ⊥ in any of the
Reconstruct procedures, it sends ⊥ to the other parties, outputs ⊥, and halts.

Output: If a party has not aborted, it outputs the values received on its output wires.

12

The following theorem formally guarantees the security of our protocol.

Theorem 4.16. Let κ be a statistical security parameter such that 3/|K̂| ≤ 2−κ. Let F be an n-party

functionality over K. Then, Protocol 4.15 securely computes F with abort in the (Finput,Fmult, F̂mult, F̂product,

F̂rand, F̂checkZero)-hybrid model with statistical error 2−κ, in the presence of active adversaries who control
t < n/2 parties.

Before giving the proof of Theorem 4.16, we give the key lemma that states that in the real protocol
execution, if an adversary A uses some non-zero value in its additive attacks in the invocations of Fmult,
F̂mult and F̂product, the probability that the honest parties can detect it via the use of F̂checkZero except with

probability at most 2/|K̂|.

Lemma 4.17. In the real execution of Protocol 4.15, if an adversary A sends some non-zero additive value
in any of the calls to Fmult, F̂mult, or F̂product, then the value [[T̂]] computed in Verification stage (Step 5)

equals 0 with probability less than 2/|K̂|.

The proof of the lemma proceeds closely to that of [11, Lemma 4.2]. Before going to the formal proof, we
give its overview. Note that during an execution of the protocol, A may mount additive attacks when calling
F̂mult in Step 3, calling Fmult and F̂mult at the computation of multiplication gates in Step 4, and calling
F̂product at (c) in Step 5. We classify the cases at which stage A uses a non-zero additive value in its additive
attacks for the first time: (1) Step 3, (2) Step 4, or (3) Step 5. Then, for each case, we can show that the

probability that val([[T̂]])H = 0 holds is at most 2/|K̂|. More specifically, we can show that the probability

of val([[T̂]])H = 0 occurring in Case (1) is exactly 1/|K̂| due to the random choice of {β̂j}’s. Roughly, this

holds because for the index j ∈ {1, . . . ,M} at which A uses a non-zero additive value d ∈ K̂ \ {0} in the

invocation of F̂mult for computing [[r̂ · vj]], we have val([[r̂ · vj]])H = r̂ · vj + d. Then, val([[T̂]])H contains

β̂j · d as a monomial, which is uniformly distributed over K̂ since so is β̂j . Thus, val([[T̂]])H can be zero only

with probability 1/|K̂|. The remaining cases can be shown with similar arguments, and the probability that

val([[T̂]])H = 0 occurring in Case (2) is bounded by 2/|K̂| due to the random choices of α̂k’s and r̂, and that

in Case (3) is bounded by 1/|K̂| due to the random choice of r̂.

[Proof] Note that during the execution of the protocol, A may mound additive attacks when calling Fmult

and F̂mult at the computation of multiplication gates in Step 4, and calling F̂product at (c) in Step 5.

Regarding (1), for each j ∈ {1, . . . ,M}, let âj ∈ K̂ denote the added value in A’s additive attack in the

invocation of F̂mult for the randomized share [[r̂ · vj]] for the j-th input wire. Then, we have val([[r̂ · vj]])H =
r̂ · vj + âj .

Regarding (2), consider the computation at the k-th multiplication gate for each k ∈ {1, . . . , N}. Parties
initially hold pairs ([xk], [[r̂ · xk]]) and ([yk], [[r̂ · yk]]) that correspond to the left and right wires, respectively.
Here, [xk] and [[r̂ · xk]] may not have been computed correctly (i.e. it is possible that val([[r̂ · xk]])H 6= r̂ · xk),
since Amight have mounted additive attacks in previous multiplication gates and in the computation of input
wires. However, for proving the lemma, only their relative relation taking into account all “accumulated”
errors so far matters. That is, we have val([[r̂ · xk]])H = r̂ · xk + b̂k, where b̂k ∈ K̂ denotes the accumulated
errors.

Then, we denote by [zk] the shares returned from Fmult on inputs [xk] and [yk]. Also, we denote by [[r̂ · zk]]

the shares returned from F̂mult on inputs [[r̂ · xk]] and [[yk]]. Letting ck ∈ K (resp. d̂k ∈ K̂) denote the additive

value in A’s additive attack for the invocation of Fmult (resp. F̂mult), we have val([zk])H = xk · yk + ck and

val([[r̂ · zk]])H = (r̂ · xk + b̂k) · yk + d̂k.

Regarding (3), letting f̂ , ĝ ∈ K̂ denote the additive values in A’s additive attacks in the invocations of

F̂product, and using the above introduced {val([[r̂ · vm]])H}Mm=1, {val([zk])H}Nk=1, and {val([[r̂ · zk]])H}Nk=1, we

13

have

val([[û]])H =

N∑
k=1

α̂k ·
((
r̂ · xk + b̂k

)
· yk + d̂k

)
+

M∑
j=1

β̂j · (r̂ · vj + âj) + f̂ ,

val([[ŵ]])H =

N∑
k=1

α̂k · (xk · yk + ck) +

M∑
j=1

β̂j · vj + ĝ.

Thus, we have

val([[T̂]])H = val([[û]])H − r̂ · val([[ŵ]])H

=

N∑
k=1

α̂k ·
((
r̂ · xk + b̂k

)
· yk + d̂k

)
+

M∑
j=1

β̂j · (r̂ · vj + âj) + f̂

− r̂ ·

 N∑
k=1

α̂k · (xk · yk + ck) +

M∑
j=1

β̂j · vj + ĝ


=

N∑
k=1

α̂k ·
(
b̂k · yk + d̂k − r̂ · ck

)
+

M∑
j=1

β̂j · âj + f̂ − r̂ · ĝ.

In the following, we show that the probability that val([[T̂]])H = 0 holds is at most 2/|K̂| by the case
classification on which stage A submits a non-zero additive value for the first time: Step 3, Step 4, or Step 5.

– Case 1 – Step 3: In this case, there exists some j ∈ {1, . . . ,M} such that âj 6= 0: Let j0 be the smallest

such j for which this holds. In this case, val([[T̂]])H = 0 occurs if and only if

β̂j0 =

−
N∑
k=1

α̂k ·
(
b̂k · yk + d̂k − r̂ · ck

)
−

M∑
j = 1
j 6= j0

β̂j · âj − f̂ + r̂ · ĝ

 · 1

âj0
.

This holds with probability 1/|K̂| since β̂j0 ∈ K̂ is distributed uniformly, and chosen independently of
other values.

– Case 2 – Step 4: In this case, âj = 0 for all j ∈ {1, . . . ,M} and there exists some k ∈ {1, . . . , N} such

that ck 6= 0 or d̂k 6= 0. Let k0 be the smallest such k for which this holds. Since the invocation of Fmult

or F̂mult for the k0-th multiplication gate is the first time A uses a non-zero value for its additive attack,
the “accumulated” error at this point is also zero, i.e. we have b̂k0 = 0. Thus, val([[T̂]])H = 0 occurs if
and only if

α̂k0 ·
(
d̂k0 − r̂ · ck0

)
= −

N∑
k = 1
k 6= k0

α̂k ·
(
b̂k · yk + d̂k − r̂ · ck

)
− f̂ + r̂ · ĝ.

If d̂k0 − r̂ · ck0 6= 0, then the above equality holds with probability 1/|K̂| due to the fact that α̂k0 ∈ K̂
is distributed uniformly, and chosen independently of other values. On the other hand, d̂k0 − r̂ · ck0 = 0

occurs with probability at most 1/|K̂| since r̂ ∈ K̂ is distributed uniformly, and is completely unknown to
A at the timing the computation for k0-th multiplication gate is executed thanks to the perfect security
of the underlying secret sharing scheme and F̂rand. Putting it together, the probability that the above

equation holds is at most 1

|K̂|
+
(

1− 1

|K̂|

)
· 1

|K̂|
< 2

|K̂|
.

14

– Case 3 – Step 5: In this case, âj = 0 for all j ∈ {1, . . . ,M} and b̂k, ck, d̂k = 0 for all k ∈ {1, . . . , N}.
(Note that b̂k’s are zero since no accumuated errors exist.) By the assumption of the lemma, A uses at

least one non-zero additive value, and thus either f̂ 6= 0 or ĝ 6= 0 holds. Then, val([[T̂]])H = 0 occurs if

and only if f̂ − r̂ · ĝ = 0, which occurs with probability at most 1/|K̂| again due to the perfect security

of the underlying secret sharing scheme and F̂rand.

In all the cases, the probability that val([[T̂]])H = 0 occurs is at most 2/|K̂|.

Armed with the above key lemma, we now give the proof of Theorem 4.16.

[Proof] (of Theorem 4.16) Let A be the real adversary who controls the set of corrupted parties C. The
simulator S for A works as follows.

Initially, S receives from A the set of corrupted parties’ inputs {vi}i∈C and input shares {[vj]C}Mj=1 that
A sends to Finput. For each j ∈ H, S computes [vj] = ([vj]1, . . . , [vj]n) ← Share(0, [vj]C) (i.e. shares of 0),
which is used for simulating the honest parties’ behaviors throughout the simulation for A.

After this step, direct communication among the honest parties and the corrupted parties controled by
A occur only from (c) iii. of Verificaiton stage (Step 5). Until then, only local computations or invocations

of functionalities of F̂rand, Fmult, F̂mult, and F̂product are performed. For each invocation of F̂rand, S just
receives from A the corrupted parties’ shares. For each invocation of Fmult for input shares [x] and [y],
S hands A the corrupted parties’ shares4 [x]C and [y]C , and receives from A the additive value d (for an
additive attack) and the corrupted parties resulting shares [[x · y]]C (which may not be correctly computed).

The invocations of F̂mult and F̂product are simulated similarly.
When the simulated execution of the protocol reaches (c) iii. of Verification stage, S proceeds as follows:

S chooses r̂ ∈ K̂ uniformly at random, and generates [[r̂]] = ([[r̂]]1, . . . , [[r̂]]n) ← Ŝhare(r̂, [[r̂]]C), where [[r̂]]C
denotes the corrupted parties’s shares that S received from A when simulating Step 2. Then, S simulates
the opening of r̂ by handing A all of the honest parties’ shares [[r̂]]H . If any of the honest parties aborts
(which S can know from the shares [[r̂]]), then S sends ⊥ to all parties, externally sends the abort message
to the trusted third party computing F , and halts.

Next, S simulates F̂checkZero as follows: If A has used some non-zero additive value in the invocations of
Fmult, F̂mult, or F̂product, then S sends reject to A, externally sends the abort message to the trusted party
computing F , and halts. Otherwise (i.e. no non-zero additive value was used), S sends 0 to A. If S receives
reject back from A, S does the same as above. If S receives accept back from A, A proceeds to the next
step.

If no abort had occurred, S proceeds to Output reconstruction (Step 6). First, S externally sends the
corrupted parties’ inputs {[vj]C}Mj=1 to the trusted party for computing F , and receives the output values
for each output wire of the circuit C that are associated with the corrupted parties. Then, S simulates the
honest parties in the reconstruction of the corrupted parties’ outputs by computing the honest parties’ shares
of each output wire of the circuit C, using the corrupted parties’ shares on the output wire and the actual
output values that S received from the trusted party. In addition, S receives the messages sent from A to
the honest parties for the reconstructions. If any of the messages in the reconstruction of an output wire of
the circuit C associated with an honest party Pi is incorrect (i.e. the shares sent by A are not the correct
shares), then S sends aborti to instruct the trusted party to not send the output to Pi. Otherwise, S sends
continuei to the trusted party, instructing it to send the output to Pi.

The above completes the description of S. Due to the security of the underlying secret sharing scheme, the
distributions of the input shares that S initially compute for honest parties are perfectly indistinguishable
from the actual ones. Furthermore, S’s simulation of the functionalities Finput, F̂rand, Fmult, F̂mult, and

F̂product are perfect. Moreover, unless S fails to simulate F̂checkZero, which we will show occurs with probability

at most 3/|K̂|, S’s simulation of the remaining procedures of S for computing the outputs is also perfect.

4 Throughout the simulation, S knows the corrupted parties’ shares on the input wires of the gate being computed,
and thus can conduct this step.

15

Hence, the distribution of A’s view is identical to that in the real execution except with probability at most
3/|K̂| ≤ 2−κ.

We now show that S’s simulation of F̂checkZero fails with probability at most 3/|K̂|.

– If A has not used any non-zero additive value for the invocations of Fmult, F̂mult, or F̂product, then S
sends 0 to A and outputs accept or reject to the honest parties depending on A’s reply. If A does so in
the real protocol execution, we always have T̂ = 0, in which case F̂checkZero sends 0 to A, and proceeds
in exactly the same way as S does for A. Thus, in this case S’s simulation of F̂checkZero is perfect.

– Otherwise, i.e. if A has used some non-zero value for its additive attacks, S always outputs reject. On
the other hand, if A does so in the real protocol execution, F̂checkZero may output accept if either T̂ = 0,
or T̂ 6= 0 but it chose accept with probability 1/|K̂|. By Lemma 4.17, the probability that val([[T̂]])H = 0

occurs in such a situation is less than 2/|K̂|. Thus, F̂checkZero outputs accept with probability at most
2

|K̂|
+
(

1− 2

|K̂|

)
· 1

|K̂|
< 3

|K̂|
. This implies that the probability of simulation error in this case is also bounded

by 3/|K̂|.

As seen above, S succeeds in simulating F̂checkZero except with probability at most 3/|K̂|. This completes
the proof.

Acknowledgement

A part of this work was supported by JST CREST grantnumber JPMJCR19F6.

References

1. T. Araki, A. Barak, J. Furukawa, Y. Lindell, A. Nof, K. Ohara, A. Watzman, and O. Weinstein. Optimized honest-
majority MPC for malicious adversaries - breaking the 1 billion-gate per second barrier. In IEEE Symposium on
Security and Privacy, SP 2017, 2017.

2. T. Araki, J. Furukawa, Y. Lindell, A. Nof, and K. Ohara. High-throughput semi-honest secure three-party
computation with an honest majority. In ACM CCS 2016, pages 805–817, 2016.

3. D. Beaver. Efficient multiparty protocols using circuit randomization. In CRYPTO, pages 420–432, 1991.
4. Z. Beerliová-Trub́ıniová and M. Hirt. Perfectly-secure MPC with linear communication complexity. In TCC

2008, pages 213–230, 2008.
5. A. Beimel. Secure Schemes for Secret Sharing and Key Distribution. PhD thesis, Israel Institute of Technology,

1996.
6. M. Ben-Or, S. Goldwasser, and A. Wigderson. Completeness theorems for non-cryptographic fault-tolerant

distributed computation (extended abstract). In STOC 1988, pages 1–10, 1988.
7. E. Ben-Sasson, S. Fehr, and R. Ostrovsky. Near-linear unconditionally-secure multiparty computation with a

dishonest minority. In CRYPTO 2012, pages 663–680, 2012.
8. R. Canetti. Security and composition of multiparty cryptographic protocols. J. Cryptology, 13(1):143–202, 2000.
9. R. Canetti. Universally composable security: A new paradigm for cryptographic protocols. In FOCS 2001, pages

136–145, 2001.
10. I. Cascudo, R. Cramer, C. Xing, and C. Yuan. Amortized complexity of information-theoretically secure MPC

revisited. In CRYPTO 2018, Part III, pages 395–426, 2018.
11. K. Chida, D. Genkin, K. Hamada, D. Ikarashi, R. Kikuchi, Y. Lindell, and A. Nof. Fast large-scale honest-majority

MPC for malicious adversaries. In CRYPTO 2018, Part III, pages 34–64, 2018.
12. R. Cramer, I. Damg̊ard, and Y. Ishai. Share conversion, pseudorandom secret-sharing and applications to secure

computation. In TCC 2005, pages 342–362, 2005.
13. I. Damg̊ard and J. B. Nielsen. Scalable and unconditionally secure multiparty computation. In CRYPTO 2007,

pages 572–590, 2007.
14. I. Damg̊ard, V. Pastro, N. P. Smart, and S. Zakarias. Multiparty computation from somewhat homomorphic

encryption. In CRYPTO 2012, pages 643–662, 2012.
15. J. Furukawa, Y. Lindell, A. Nof, and O. Weinstein. High-throughput secure three-party computation for malicious

adversaries and an honest majority. In EUROCRYPT 2017, Part II, pages 225–255, 2017.

16

16. D. Genkin, Y. Ishai, and A. Polychroniadou. Efficient multi-party computation: From passive to active security
via secure SIMD circuits. In CRYPTO 2015, Part II, pages 721–741, 2015.

17. D. Genkin, Y. Ishai, M. Prabhakaran, A. Sahai, and E. Tromer. Circuits resilient to additive attacks with
applications to secure computation. In STOC 2014, pages 495–504, 2014.

18. D. Genkin, Y. Ishai, and M. Weiss. Binary AMD circuits from secure multiparty computation. In TCC 2016-B,,
pages 336–366, 2016.

19. O. Goldreich. The Foundations of Cryptography - Volume 2, Basic Applications. Cambridge University Press,
2004.

20. S. Goldwasser and Y. Lindell. Secure multi-party computation without agreement. J. Cryptology, 18(3):247–287,
2005.

21. M. Hirt. Multi-Party Computation: Efficient Protocols, General Adversaries, and Voting. PhD thesis, ETH
Zurich, 2001.

22. M. Ito, A. Saito, and T. Nishizeki. Secret sharing schemes realizing general access structure. In Globecom 1987,
pages 99–102, 1987.

23. R. Kikuchi, K. Chida, D. Ikarashi, and K. Hamada. Password-based authentication protocol for secret-sharing-
based multiparty computation. IEICE Transactions, 101-A(1):51–63, 2018.

24. E. Kushilevitz, Y. Lindell, and T. Rabin. Information-theoretically secure protocols and security under compo-
sition. SIAM J. Comput., 39(5):2090–2112, 2010.

25. Y. Lindell and A. Nof. A framework for constructing fast MPC over arithmetic circuits with malicious adversaries
and an honest-majority. In ACM CCS 2017, pages 259–276, 2017.

26. Y. Lindell and B. Pinkas. Secure two-party computation via cut-and-choose oblivious transfer. In Y. Ishai, editor,
Theory of Cryptography - 8th Theory of Cryptography Conference, TCC 2011, volume 6597 of Lecture Notes in
Computer Science, pages 329–346. Springer, 2011.

27. A. Shamir. How to share a secret. Communications of the ACM, 22(11):612–613, 1979.

A Malicious Security in Secure Computation

Most of the contents in this section are taken verbatim from [25, Appendix A]. In the following, the secu-
rity parameter is denoted λ; negligible functions and computational indistinguishability are defined in the
standard way, with respect to non-uniform polynomial-time distinguishers.

Ideal versus Real Model Definition. We use the ideal/real simulation paradigm in order to define security,
where an execution in the real model is compared to an execution in the ideal model where an incorruptible
trusted party computes the functionality for the parties [8,19]. We define security with abort (and without
fairness), meaning that the corrupted parties may receive output while the honest parties do not. Our
definition does not guarantee unanimous abort, meaning that some honest party may receive output while
the other does not. It is easy to modify our protocols so that the honest parties unanimously abort by
running a single (weak) Byzantine agreement at the end of the execution [20]; we therefore omit this step
for simplicity.

The Real Model. In the real model, an n-party protocol π is executed by the parties. For simplicity, we
consider a synchronous network that proceeds in rounds and a rushing adversary, meaning that the adversary
receives its incoming messages in a round before it sends its outgoing message. The adversary A can be
active; it sends all messages in place of the corrupted parties, and can follow any arbitrary strategy. The
honest parties follow the instructions of the protocol.

Let A be a non-uniform probabilistic polynomial-time adversary who can control t < n
2 parties. Let

Realπ,A(z),I(x1, . . . , xn, λ) denote the output of the honest parties and A in the real execution of π, with
inputs x1, . . . , xn, auxiliary-input z for A, and security parameter λ.

The Ideal Model. We define the ideal model, for any (possibly reactive) functionality F , receiving inputs
from P1, . . . , Pn and providing them with outputs. Let I ⊂ {1, . . . , n} be the set of indices of the corrupted
parties controlled by the adversary. The ideal execution proceeds as follows:

17

– Send inputs to the trusted party: Each honest party Pj sends its specified input xj to the trusted
party. A corrupted party Pi controlled by the adversary may either send its specified input xi, some
other x′i or an abort message.

– Early abort option: If the trusted party received abort from the adversary A, it sends ⊥ to all parties
and terminates. Otherwise, it proceeds to the next step.

– Trusted party sends output to the adversary: The trusted party computes each party’s output as
specified by the functionality F based on the inputs received; denote the output of Pj by yj . The trusted
party then sends {yi}i∈I to the corrupted parties.

– Adversary instructs trusted party to continue or halt: For each j ∈ {0, . . . , n − 1} with j /∈ I,
the adversary sends the trusted party either abortj or continuej . For each j /∈ I:
• If the trusted party received abortj then it sends Pj the abort value ⊥ for output.
• If the trusted party received continuej then it sends Pj its output value yj .

– Outputs: The honest parties always output the output value they obtained from the trusted party, and
the corrupted parties outputs nothing.

Let S be a non-uniform probabilistic polynomial-time adversary controlling parties Pi for i ∈ I. Let
IdealF,S(z),I(x1, . . . , xn, λ) denote the output of the honest parties and S in an ideal execution with the
functionality F , inputs x1, . . . , xn to the parties, auxiliary-input z to S, and security parameter λ.

Security. Informally speaking, the definition says that protocol π securely computes a functionality F if
adversaries in the ideal model can simulate executions of the real model protocol. In some of our protocols
there is a statistical error that is not dependent on the computational security parameter. As in [26], we
formalize security in this model by saying that the distinguisher can distinguish with probability at most this
error plus some factor that is negligible in the security parameter. This is formally different from the standard
definition of security since the statistical error does not decrease as the security parameter increases.

Definition A.1. Let F be an n-party functionality, and let π be an n-party protocol. We say that π se-
curely computes F with abort in the presence of an adversary controlling t < n

2 parties, if for every non-
uniform probabilistic polynomial-time adversary A in the real model, there exists a non-uniform probabilistic
polynomial-time simulator/adversary S in the ideal model with F , such that for every I ⊂ {1, . . . , n},{

IdealF,S(z),I(x1, . . . , xn, λ)
} c
≈
{

Realπ,A(z),I(x1, . . . , xn, λ)
}

where x1, . . . , xn ∈ {0, 1}∗ under the constraint that |x1| = · · · = |xn|, z ∈ {0, 1}∗ and λ ∈ N. We say that π
securely computes F with abort in the presence of t active parties with statistical error 2−κ if there exists a
negligible function µ(·) such that the distinguishing advantage of the adversary is less than 2−κ + µ(λ).

Hybrid Model. We prove the security of our protocols in a hybrid model, where parties run a protocol
with real messages and also have access to a trusted party computing a subfunctionality for them. The
modular sequential composition theorem of [8] states that one can replace the trusted party computing the
subfunctionality with a real secure protocol computing the subfunctionality. When the subfunctionality is g,
we say that the protocol works in the g-hybrid model.

Universal Composability [9]. Protocols that are proven secure in the universal composability framework
have the property that they maintain their security when run in parallel and concurrently with other secure
and insecure protocols. In [24, Theorem 1.5], it was shown that any protocol that is proven secure with a
black-box non-rewinding simulator and also has the property that the inputs of all parties are fixed before
the execution begins (called input availability or start synchronization in [24]), is also secure under universal
composability. Since the input availability property holds for all of our protocols and subprotocols, it is
sufficient to prove security in the classic stand-alone setting and automatically derive universal composability
from [24]. We remark that this also enables us to call the protocol and subprotocols that we use in parallel
and concurrently (and not just sequentially), enabling us to achieve more efficient computation (e.g., by
running many executions in parallel or running each layer of a circuit in parallel).

18

	 Field Extension in Secret-Shared Form and Its Applications to Efficient Secure Computation

