
SELL v1.0: Searchable Encrypted Logging
Library

Amir Jalali Neil Davenport

LinkedIn Corporation
Sunnyvale, CA

{ajalali, ndavenport}@linkedin.com

Abstract. We present a practical solution to design a secure logging
system that provides confidentiality, integrity, completeness, and non-
repudiation. To the best of our knowledge, our solution is the first prac-
tical implementation of a logging system that brings all the above se-
curity aspects together. Our proposed library makes use of a Dynamic
Searchable Symmetric Encryption (DSSE) scheme to provide keyword
search operations through encrypted logs without decryption. This helps
us to keep each log confidential, preventing unauthorized users from de-
crypting the encrypted logs. Moreover, we deploy a set of new features
such as log sequence generation and digital signatures on top of the DSSE
scheme, which makes our library a complete proof of concept solution for
a secure logging system, providing all the necessary security assurances.
We also analyze the library’s performance on a real setting, bootstrap-
ping with 10,000 lines of logs. Based on our observation, the entire search
operation for a keyword takes about 10 milliseconds. Although SELL v1.0
is developed purely in Python without any low level optimization, the
benchmarks show promising timing results for all the operations.

Keywords: Secure logging, dynamic searchable symmetric encryption,
privacy-preserving, information security

1 Introduction

Preserving privacy for a user’s data has become a serious concern for many
companies and data storage services recently. New regulations enforce several
restrictions on the user’s data management such as the purpose of data process-
ing, the amount of data that can be collected, the storage time, and the entities
who can access data. Though all these rules protect data, giving data owners
more control over their personal information, the new regulations also present
challenges for design and implementation of privacy-preserving applications.

Authorized access to data compliance is not a new concept in the security
field. Over time, different cryptography protocols have been designed and de-
veloped to ensure that sensitive data can only be accessed by authorized users
through encryption/decryption and can only be decrypted by those who possess
the key. In the data mining era, however, every piece of data can be interpreted

2

as a sensitive asset that should not be accessed or used without the owner’s
permission. This leads to a complicated situation where developers using any
data must comply with different regulations to address every security concern.
Accordingly, during the last decade, privacy-preserving solutions such as homo-
morphic encryption, the state-of-the-art cryptography primitive that enables the
arithmetic operations on encrypted data, have received more attention. The per-
formance and usability of such schemes however are still not efficient enough to
be widely adopted.

A work-around to this problem is to restrict the required operations on the
encrypted data so a more efficient and practical solution can be developed. Al-
though this strategy cannot be applied to many applications, some applications
may benefit significantly from losing the generality. In particular, logging sys-
tems are one of the applications that only require a certain set of operations,
such as keyword search on the stored logs, that can be performed fairly efficiently
even on encrypted data.

1.1 Problem Statement

One of the objectives of a privacy-preserving environment is to remove access to
raw data or to restrict it to authorized users. This necessitates a framework that
is able to perform a set of required operations on the data without revealing any
information about the identity or values of the data. Adopting this methodology
in a logging system, we require a framework that bolsters the confidentiality,
integrity, and completeness of logs (either system or user logs) at a specific level of
security, while the required operations, such as keyword search, are still possible.
In this work, we concentrate on the design and development of a software library
that provides a secure solution for generating, storing, and searching through
the sensitive logs. Since the nature of logging systems is streaming, we adopt
a dynamic structure that enables the log addition and deletion to and from an
encrypted database, respectively. We adopt the dynamic method by Kamara et
al. [6], which provides a fully dynamic searchable encryption on files; however, we
customize and add new features to this method to fit it into our specific purpose,
providing the security requirements. Our proposed solution is fully customizable.
All the cryptography primitives can be replaced by other schemes depending on
the target level of security and communication overhead. We refer the readers
to section 4 for further details.

1.2 Roadmap

In section 2, we give a brief overview of DSSE scheme and its related methods. In
section 3, we present our proposed solution is presented to address the security
concerns in the logging system. We describe the implementation details as well
as API and workflow of the SELL v1.0 in section 4. In section 5, we present the
performance observation of the library with detailed timing for each operation
and discuss different strategies to improve the performance. We conclude this
work and explore the possible future work in section 6.

3

2 Preliminaries

Searchable Symmetric Encryption (SSE) is the most relevant primitive for devel-
oping a system that can search through encrypted documents. Although other
schemes that are based on public-key cryptography provide the same functional-
ity and possibly better key distribution models, we developed our library based
on symmetric encryption due to performance reasons that are a necessary factor
in logging systems. In this section, we briefly describe the DSSE scheme that
we adopt inside our library. We refer the readers to [6] for further details on the
algorithms and the security of the scheme.

2.1 Searchable Symmetric Encryption

SSE is a scheme that allows the ability to perform keyword searches on encrypted
data. In the literature, there are two main approaches available for performing
such operations. The first approach, proposed by [5], computes an encrypted
index for each document,1 which contains the information about the occurrence
of keywords in the document. In a search query, the encrypted index for each
document is tested for the given keyword. Obviously, this method is not efficient
in any sense compared to an inverted index, which led to the second method
of SSE proposed by Curtmola et al. [3]. The SSE schemes based on inverted
indexes contain a single encrypted index that maps all the available keywords
inside all the documents to the document identifiers that contain those keywords.
This method is the most efficient way of searching and it is the fundamental
approach used by different search engines. Several works [10,2,12,9] studied the
usage of SSE from different aspects. While most of these approaches are secure
and practical, they are not suitable in the context of dynamic applications such
as logging systems due to the static construction of the encrypted index.

2.2 Dynamic Searchable Symmetric Encryption

The only main difference between SSE and DSSE is the ability to dynamically
add and remove a document from the encrypted index. Moreover, the update
operation should not leak any information about either the keywords or the
documents. Recently, different approaches on DSSE have been proposed with
different sets of functionality and performance metrics; however, logging systems
are streaming applications by nature. Hence, we prefer to apply an efficient and
practical solution that provides the desired level of security in an environment
with a semi-honest server model.

The proposed DSSE method by Kamara [6], provides a solid security proof
against adaptive indistinguishable Chosen Keyword Attacks (IND-CKA2). This
implies that, given access to an encrypted index, the adversary cannot learn

1 Document in SSE is an entity with a label that contains a set of keywords; the
keyword search operation returns the document label.

4

any information about the index entries and the encrypted keywords. This se-
curity assumption is very conservative in the logging system with semi-honest
adversary model where the encrypted index holder (i.e., collector) merely tries
to gather information out of the protocol, but does not deviate from the protocol
specification. We discuss the security of our library further in section 3.5.

We briefly present the main operations of the DSSE scheme [6] that we
include inside our library in the following. Later in section 4, we describe our
implementation details for each of these operations.

1. Key Generation: Generates the symmetric key under which the logs and
the keyword index are encrypted. The DSSE scheme that is used in this
library has four separate secret-keys: sk1, sk2, sk3, sk4. In addition, we need
an extra secret-key sk sign for the generator’s signature. All of the keys are
randomly generated according to the given security parameter k.

sk1, sk2, sk3, sk4, sk sign ∈ {1, 0}k (1)

2. Encryption/Decryption: The symmetric encryption/decryption algorithm
that is used to encrypt and decrypt logs, respectively. In our software, sk4
is used for this purpose.

Enc(sk4, log)→ log.enc, Dec(sk4, log.enc)→ log (2)

3. Search Token Generation: This operation generates a search token from
a given keyword using a secret-key. The generated search token must not
reveal any information about the input keyword and it should be secure
against adaptive Chosen Ciphertext Attack (CCA2). Given a keyword w,
the associated search token is generated using sk1, sk2, and sk3 as follows:

srch tkn = (HMAC(sk1, w), HMAC(sk2, w), HMAC(sk3, w)) (3)

4. Add Token Generation: Generates an add token from a given log and
a secret-key. The generated add token is sent to the collector and all the
keywords inside the log are added to the encrypted index without revealing
any information about the keywords. The generated add token is produced
by sk1, sk2, and sk3.

add tkn = (HMAC(sk1, logid), HMAC(sk2, logid), λi), (4)

where logid is the log identifier and λi is a set of encrypted values associ-
ated with each keyword inside the log (i = #w). Each λi is generated using
exclusive-or and the concatenation of keywords and log identifier, which are
hashed using sk1, sk2, and sk3. We refer the readers to [6, Figure 3] for fur-
ther details.

5. Delete Token Generation: Similar to add token, this procedure generates
a delete token using a given log and a secret-key. The generated token is
sent to the collector and deletes all the keywords that are included inside

5

the deleted log without leaking any information to the collector. This value
is computed as:

del tkn = (HMAC(sk1, logid), HMAC(sk2, logid), HMAC(sk3, logid), H(logid))
(5)

6. Search: The search operation is performed by the collector given a gener-
ated search token. During this procedure, the collector searches for the given
keyword (encrypted) and returns all the log identifiers that include the key-
word. Upon receiving the generated search token (3), the collector unpacks
three HMAC digests. The first hash value (generated using sk1) is associated
to the inverted index keys. If this value exists, the collector yields the cor-
responding log IDs, otherwise the keyword is not in the index. In order to
bolster security against search pattern attacks, the log IDs are randomly al-
located inside the inverted index and each node contains the address of next
list node. See [6, Figure 3] for further details.

7. Add: Given an add token, the collector adds all the keywords inside the
add token to the current encrypted index without learning any information.
When the collector receives an add token (4), it unpacks the hash digests
and all the λi values. Subsequently, the collector discovers the address of an
addition node for each λi inside a search table and updates the index.

8. Delete: Given a delete token (5), the collector removes all of the included
keywords out of the encrypted index without learning any information. Sim-
ilar to the addition operation, the collector decodes the address of deleted
keywords by unpacking the hash digests and stepping through the delete
table.

Considering the above operations, we are able to design a dynamic secure
logging system that preserves the confidentiality of log data while enabling the
authorized entity to search for a keyword and retrieve the target logs. However,
preserving the confidentiality of the data is not enough for a full verifiable and
secure logging system. Therefore, we propose additional features on top of the
DSSE scheme to bolster the integrity, completeness, and authenticity of the logs.
We explain our proposed solution in the next section.

3 Proposed Solution

In this section, we describe our methodology for providing all the required secu-
rity properties of a verifiable and secure logging system. We carefully engineer
the available solutions and employ the most compatible ones in a single software
library to provide security assurance of log data inside a system.

3.1 Confidentiality and Privacy

The main objective of this project is to ensure the confidentiality of each log. In
most logging infrastructures, user logs are stored as raw data inside a database.

6

Any entities who have access to this database can read and interpret all the
log data despite perhaps not being authorized. To solve this problem, all the
logs are encrypted using a symmetric encryption scheme and only parties who
possess the secret-key can decrypt and read the data. Using a secure symmetric
encryption scheme guarantees the confidentiality and privacy of log data as long
as the shared secret-key is distributed securely. We discuss the encryption scheme
that we use inside the library in section 4.

3.2 Integrity

We define the log integrity assurance as the ability to verify that the generated
log is not manipulated or tampered with during transmission. This property
is an essential concern in environments where the communication links are not
secure and vulnerable to man-in-the-middle attacks (MITM). In this scenario,
an attacker secretly alters the communication between the log generator and
log collector. Using an authenticated encryption method which offers a Message
Authentication Code (MAC) in addition to encrypting messages provides both
authenticity and integrity of the data. In our solution, we adopt the AES GCM

authenticated encryption method for encrypting the logs and generating a MAC
tag, that ensures both integrity and authenticity of the logs.

3.3 Completeness Check

The RFC5848 [8] describes a mechanism to sequence and detect missing mes-
sages in the transmitted syslog using a signature block. Inspired by that, we
design and develop a log sequencing mechanism that encapsulates the informa-
tion corresponding to each log, such as log ID and application name, in addition
to its parent log ID. The generated log sequence is verified at the collector upon
receiving each log and any mismatch in the sequence hash illustrates incomplete-
ness. The incomplete logs are recorded inside a list at the collector and can be
accessed later to check the log completeness. To mitigate the threat of MITM
attacks on log sequence values, the log generator also digitally signs the infor-
mation that comprises the log sequence. The generated signature is verified at
the collector prior to a sequence check to ensure the authenticity and integrity
of the log sequence.

Note that, since the collector does not possess the symmetric key, it is not
possible to integrate the log sequence inside the log stream and encrypt the
entire data using authenticated encryption.

The above method checks for the completeness of logs and detects the miss-
ing intervals for in-order delivery2; however, there are situations where logs are
transmitted over UDP, which leads to out-of-order distribution. To overcome
this shortcoming, RFC5848 [8] defines a Global Block Counter (GBC) that de-
termines the number of signature blocks sent prior to the current one. This value

2 Such applications use TCP or TLS connections to ensure the sequence order of logs
at the transport layer.

7

Encrypted logTagAdd tokenSignature blockSignature

enc(sk, log)

add token(log)

(app name,parent id,log id,log datetime,tag)
sign(app name,parent id,log id,log datetime,tag)

Fig. 1: Generated add payload by log generator

increases from 0 to 9,999,999,999 incrementally and resets when it reaches the
maximum value. In this situation, RFC5848 defines another variable, session ID,
which is increased incrementally whenever the GBD reaches the maximum value.
The session ID informs the collector that the sequence number was reset.

SELL v1.0 does not support such functionality and it only supports the
completeness check over the frameworks where in-order delivery is handled by
the transport layer. Supporting the above mechanism is not complicated and only
requires a small change in the payload structure; however, we believe sequence
check for out-of-order delivery adds a considerable load on the collector, which
leads to overall performance degradation.

3.4 Non-Repudiation

Non-repudiation is a high assurance of log authenticity that is very useful during
the audit procedure and proof of events. As mentioned above, the log generator
signs each log sequence with a signing key and the signature is verified on the
collector using the generator’s verification key. Moreover, each log is encrypted
using authenticated encryption and the authentication tag is included in the
Signature block. The log authenticity can also be checked by the reviewer during
the decryption process by querying the collector for the verified signature block
of the log id which includes the authentication tag. The distribution of the
generator’s public-key depends on the available applications and infrastructure;
in the current version of the library, the generator’s public-key is passed to the
collector’s constructor as an argument. Alternatively, the collector can retrieve
the valid public-key from a Trusted Certificate Authority (TCA).

Since the digital signature provides the authenticity of the origin, our pro-
posed solution also provides non-repudiation assurance since the collector can
assert the digital origin of a log.

Encrypted log, add token, signature block, and signature are encapsulated in a
single payload and sent to the collector as a new added log. Fig. 1 illustrates
such a payload. Note that the encrypted log and tag can be excluded from the
payload and sent to a third-party storage; the collector does not require this part
for the search operation. Accordingly, the log reviewer can download the target
encrypted logs (their IDs are retrieved from the collector) from the third-party
database and decrypt them locally with their secret-key.

8

The log datetime value that is included in the payload is used for time-
specified search operations. We explain this feature in detail later in section
4.5.

3.5 Security

As well documented in the literature, there are several common attack mod-
els to consider when evaluating the security of an encryption scheme[1]. The
indistinguishability game is defined as follows:

1. A challenger generates a key pair, keeping the secret-key private and pro-
viding the public-key to the adversary A.

2. The A can perform any number of decryption and encryption operations
using the provided public-key (for encryption) and the decryption oracle.

3. The A then deliberately chooses two messages m0,m1 which they believe
will give them the best advantage in the game. Then sends both of these
messages to the Challenger.

4. The Challenger then randomly chooses a bit from the set b← {0, 1}.
5. Based on the value of this bit, the Challenger then encrypts either message
m0 or m1 producing Cb ← Enc(sk,mb).

6. Before receiving Cb from the challenger, the A can perform any additional
operations that they so choose.

7. The A then receives Cb from the Challenger.
– In the non-adaptive (IND-CCA1) scenario, the A cannot make any fur-

ther calls to the decryption oracle.
– In the adaptive (IND-CCA2) scenario, the A can perform additional

decryption operations, but may not submit the Cb to the decryption
oracle, as this would provide the solution to the game thus invalidating
it.

8. Now the A makes a guess as to the value of b′ out of the possible set which
was {0, 1}.

We say that the scheme is IND-CCA1/CCA2 secure if

Prob[b = b′] ≤ 1

2
+ ε(k), (6)

where ε(k) is a negligible function in the security parameter k.

In layman’s terms, this means that the A has almost no advantage over random
guessing. That is 1

2 .

In addition to the underlying symmetric encryption, digital signature, and
hash functions, DSSE schemes should be secure against the related attack mod-
els. According to [6,3], the highest level of security for an SSE scheme is defined
by IND-CKA2. We describe this concept in the context of logging systems in
the following [3]:

9

1. An adversary A generates a collection of logs, logs = (log1, · · · logn).
2. The challenger generates a secret-key K randomly based on a security pa-

rameter k and the corresponding encrypted indexes from logs: Index =
(I1, · · · , In) where Ii ← IndexK(logi). Note that, here Index = (I1, · · · , In)
is an encrypted set based on the secret key K and it is public. The goal here
is to evaluate the security of a scheme by assessing the adversary’s ability to
find any relation between an encrypted index and the corresponding plain
log.

3. Given a full access to (I1, · · · , In) and token-oracle3, A chooses two logs
log∗0 ∈ logs, log∗1 after an arbitrary polynomial order of computations.
Moreover, A is not allowed to generate any token from the keywords in
log∗0, log

∗
1. A sends these logs to the challenger.

4. The challenger chooses a random bit b← {0, 1} and generates Ib ← IndexK(log∗b)
and sends Ib back to A.

5. Given Ib and access to the token-oracle even after receiving Ib (adaptive),
A outputs b′ ∈ {0, 1} without generating any token from the keywords in
log∗0, log

∗
1.

The scheme is IND-CKA2 (Chosen Keyword Adaptive Attack) secure if for every
polynomial time computations performed by adversary A:

Prob[b = b′] ≤ 1

2
+ ε(k), (7)

in other words, the adversary has a negligible advantage over random guessing.
The underlying DSSE scheme is secure against IND-CKA2. The detailed secu-
rity proof of the algorithm is described in [6, Section 5]. Since the scheme is
IND-CKA2 secure, we expect that a semi-honest collector cannot obtain any
information about the keywords and log data except for the number of logs and
the number of keywords inside the encrypted index.

In addition to IND-CKA2, collectors should not be able to learn the search
pattern for a specific keyword. Although, the search pattern attacks cannot com-
promise the confidentiality, after a certain number of search operations for a
keyword, the collector can learn the logs that include the keyword. The DSSE
scheme in [6] addresses this problem by constructing a fully random assignment
of elements to the inverted index. While this approach degrades the overall per-
formance because of the lack of locality, it prevents the collector from learning
from the access pattern. In the next section, we describe the methodology that
we use to implement different features inside our library. SELL v1.0 is publicly
available4.

4 Implementation Summary

In this section, we describe our implementation methodology. Our proposed li-
brary is designed as a proof of concept and it can be customized easily for dif-

3 A can generate any add/search/delete token from the chosen input.
4 Our library will be publicly available soon.

10

ferent applications and environments. In particular, the keyword extraction

method can be simply replaced by a custom version. In the current version, all
the words inside a log separated by a space are extracted and attached to the
encrypted index. While this covers all the possible existing whole keywords, it
increases the size of the encrypted index, which consequently leads to perfor-
mance loss. Alternatively, the keyword extraction can be performed only on the
specific parts of a log data such as user, date, action, protocol, and so on. This
will significantly improve the efficiency of the library since the encrypted index
size is optimal.

4.1 Implementation Parameters

This secure logging library consists of different cryptographic modules such as
hash functions, HMAC, symmetric encryption, etc. Each one of these modules di-
rectly affects the overall performance and security of the library. We chose a set of
default values for implementation parameters that yield reasonable performance
and security properties for the scheme. We briefly explain these parameters in
the following:

Symmetric Encryption. As discussed earlier, we use an instance of AES GCM

authenticated encryption inside the library to ensure integrity. In particular,
the default parameter generates a 256-bit secret-key and 128-bit iv for the en-
cryption procedure, providing a 256-bit security level. These parameters are in
compliance with NIST recommendations [4] for the GCM mode. Alternatively,
users can adopt other authenticated encryption modes such as OCB, CCM, or
CWC.

Hash Functions. The underlying DSSE scheme makes use of three HMACs
with different keys. We use an instance of HMAC SHA256 for the default imple-
mentation of these functions, which is recommended by RFC4868 [7]. Moreover,
the log ID and log sequence are also hashed using SHA256, providing 128-bit
and 256-bit security against collision and preimage attacks. Furthermore, we use
BLAKE2b hash for generating variable length hash digests.

Digital Signature. All the generated sequence hashes are signed with the log
generator’s signing key and verified by the collector. We adopt ECDSA-NIST384p,
which in combination with AES GCM-256 provides the SUITE-B-GCM-256 security
level [11]. Since asymmetric cryptography operations such as signing and signa-
ture verification are much slower than symmetric cryptography, increasing the
security level of the digital signatures may affect the performance of the library
considerably. If the security requirement allows for lower levels, we highly rec-
ommend users to deploy smaller parameter sets such as NIST256p or NIST192p,
which significantly improves the performance of the library.

11

4.2 Classes and APIs

In a logging system, different log generators produce logs based on actions and
send them to a central repository. This gives us the ability to search through the
logs and to detect and describe an incident. In this architecture the log genera-
tor, collector, and log reviewer are separate entities with different functionality.
Therefore, in the OOP terminology, each one of them can be encapsulated into a
unique class. We designed our library based on this architecture, which includes
three main classes: Generator, Collector, and Reviewer5. We explain each of
these classes and their main methods in the following:

Generator Class. This class is designed to generate the encrypted payload
from the logging application/system. The constructor generates all the required
secret-keys according to the given security level.

This class contains a bootstrap method that accepts a list of log files as
the input. The bootstrap method generates the initial encrypted index from
the given log files. The collector constructor later gets this bootstrap index
as the input to construct the main tables for the Generator object. In order
to add a new log to the collector encrypted index, Generator can call either
file add token or line add token. These methods have the same functional-
ity and generate the payload, which is illustrated in Fig. 1 according to the log
structure. See section 4.4 for further details.

Collector Class. This class contains the encrypted index that is generated
by Generator objects. The constructor of the class gets the initial encrypted in-
dex from the bootstrapping phase. The Collector class offers search, add, and
delete operations upon receiving a search token, add token, and delete token,
respectively. In particular, an add token is generated by Generator, while search
and delete tokens are produced by Reviewer. Collector is also responsible for
justifying the completeness and authenticity of the incoming logs using hash and
signature verification methods. It stores a list of incomplete sequences, as well
as fake signatures, which can be easily accessed by Reviewer during the audit
procedure.

Reviewer Class. This class can search for keywords and also delete logs from
the encrypted index. The constructor takes the generated secret-key from the
Generator class.

Note that the key-exchange procedure between Generator and Reviewer

classes is out of scope of this library. This procedure can vary in different in-
frastructures based on the availability of secure protocols. For instance, a sim-
ple static Diffie-Hellman key exchange can provide a shared secret-key between
Generator and Reviewer objects. It is also possible that these two objects exist
on a single machine where no key-exchange method is required.

In addition to search token and del token methods, we design a special
feature for this class, count token, which can query the number of occurrences

5 The class names are in compliance with RFC5848 notations.

12

sk = (sk1, sk2, sk3, sk4) ∈ {1, 0}k
Key Generation

Collector Reveiwer

Bootstrapping

sk

Keyword Search

srch tkn

Generator

sk

Key Establishment

index ←bootstrap()

index
Setup

Server(index)

Log Add

add token ←add log(log)

add token
add(add token)

srch tkn ←search token(kwrd)

Search

[log ids] ←search(srch tkn)

[log ids]

Log Delete

del tkn ←del token(log)

del tkn

delete(del tkn)

Keyword Count

count tkn ←count token(kwrd)

count tkn

cnt ←count table(count tkn)

cnt

Fig. 2: SELL v1.0 workflow

of a keyword inside the entire log repository. Based on the required operations in
a logging system, we find it very useful to have this ability without decrypting the
logs. For instance, the occurrence count can be used inside a SIEM appliance
or a dashboard to instantly illustrate the number of occurrences of a special
keyword.

4.3 Workflow

In this section, we describe the workflow of our presented library in a nutshell.
We consider a single instance of log generator, collector, and log reviewer in this
model; however, one can easily extend this model to multiple generators and
reviewers as long as a secure key distribution mechanism is applied.

Alternatively, the collector and secure index can be extended to multiple
instances and corresponding operations can be performed on each instance sep-
arately and accumulated at the end in a familiar map reduce pattern. Fig. 2
presents the workflow of our library. Different operations are separated by labels

13

and the corresponding payloads are defined in the box. As mentioned before,
the add token payload includes more information than the addition token to
enable the completeness check. In terms of overall performance, operations such
as bootstrapping and search require more instructions compared to other oper-
ations. Note that retrieving the number of occurrences of a keyword is a simple
search through a hash map table. Therefore, this feature can be easily deployed
in real-time event monitoring applications.

4.4 Different Log Structures Support

The described DSSE method in [6] is designed for keyword search inside a file.
While system logs can be stored as a batch inside a log file, in some situations,
single line streaming logs need to be encrypted and sent to the collector. There-
fore, we implement this functionality inside the library using a set of different
APIs. Based on the log structure, either file or line encryption methods can be
called by the log generator and the corresponding keywords are extracted from
a file or a single line, respectively. Note that, in the log file encryption scenario,
all the log lines inside the file are identified by a single log ID, which is the log
filename.

4.5 Efficient Time-Specified Search

Since SELL v1.0 is designed to provide a secure logging framework for various
applications, we design and develop the necessary features to allow the reviewer
to perform investigation operations as efficiently as possible.

Searching for a keyword inside a specific time period is a common operation in
an investigation. This requires each log to include timing information that can be
later searched for. We propose a new method that integrates timing information
for a log inside the encrypted index. Our proposed solution adds extra memory
complexity on the collector, but it provides a notable performance improvement
for the keyword search operation.

In contrast to an unencrypted logging database where the timing information
is assigned to each log and the search operation is performed on each single log
entry, in SELL v1.0 the search index is an inverted index with keywords as its
key labels. Moreover, log IDs are allocated inside a dynamic linked list where
the address of the next node is encrypted inside the previous node. This kind
of data structure inherently requires sequential steps through the entire list to
retrieve all the log IDs. Therefore, we include a time-stamp with each log ID
and store them as a 2-tuple in the collector’s ID database. Note that the time-
stamp is generated by a generator using datetime package6. During the search
procedure, each yielded log’s time-stamp is checked to ensure it is in the specified
search time-range. Since the log IDs are stored in chronological order, the last
received log containing the searched keyword is retrieved first from the encrypted
index. This provides us with an optimal search strategy: each recovered log ID

6 Alternatively, a user can customize the time value and extract it from the log data.

14

Table 1: Benchmark results of SELL v1.0 for different operations. Benchmarks
are obtained on a 3.0 GHz Intel Core i7 running macOS v.10.13.3. Numbers
represent the average of 1,000 iterations and are presented in milliseconds. The
loaded log file contains 10,000 Apache log lines. The log line benchmark is per-
formed on 10 lines of logs iteratively.

Operation Log File (ms) Log Line (ms)

Bootstrapping 40,701 61

Add Token 4,442 6

Search Token 2

Delete Token 3

Search 8

Add 6

Delete 11

is compared with the beginning of the search time-slot and if it is older than
this value, the search operation is terminated. In order to be immune to any
manipulation of log time-stamps, as illustrated in Fig. 1, this value is included
inside the signature block and signed by generator.

In SELL v1.0, the search token method can include start time and end time

for a keyword. These arguments are optional and can be replaced with default
values if the user does not specify time intervals for the search.

5 Performance and Discussion

5.1 Performance Evaluation

In this section, we report the performance of the secure logging library on a
practical setting to evaluate the efficiency and feasibility of our proposed solu-
tion. The reported benchmarks are generated based on default implementation
parameters, which are discussed in section 4.1, providing SUITE-B-GCM-256 level
of security. Lower levels of security will result in much better performance met-
rics due to the smaller digests and signatures.

We benchmark the library on a MacBook Pro equipped with 3 GHz In-
tel Core i7 running macOS v.10.13.3. The library is developed in Python and
benchmark tests are run with Python 3.6.17. Table 1 presents the performance
timing of the SELL v1.0 for different operations. The benchmark results are ob-
tained using pytest-benchmark and are represented in milliseconds. For each
operation, we benchmark the library over 10 rounds with 100 iterations each
and present the average time. Note that the performance timings are directly
related to processor’s frequency. Faster processors can improve these numbers
considerably.

7 SELL v1.0 also supports Python 2.7.

15

We instantiate the collector with an encrypted index loaded with 10,000
lines of logs at the bootstrapping phase. The sample logs are generated by Fake

Apache Log Generator8. For the file add token operation, a log file contain-
ing 10,000 log lines is added to the collector. Based on the timing results, adding
the log file is more than 10 times faster than bootstrapping a file with the same
size. Search, add, and delete operations are also performed on the index of 10,000
logs.

The current version of SELL is implemented purely in Python without taking
any advantage of optimization from Cython or C++/C implementation. We plan
to implement these optimizations in the future versions of the library and expect
to see significant performance improvements.

5.2 Discussion on Performance Improvement

The reported performance in the previous section is associated with the default
parameter set that we use in SELL v1.0. Moreover, the keyword extraction
method simply extracts all the unique words inside a log. Although, this seems
to be a reasonable assumption for many applications, we highly recommend
extracting metadata from the log data instead of all possible words. This results
in an optimal encrypted index in size, which leads to more efficient search, add,
and delete operations on the collector.

Furthermore, the keyword extraction method can be implemented using effi-
cient searching techniques, such as regular expression matching with an n-grams
index. In particular, Google Code search engine benefits notably in terms of
performance from 3-grams indexing9. However, there is a trade-off between the
search-time improvement and the redundant memory complexity of the gener-
ated n-grams index. As mentioned before, the keyword extraction method is
totally customizable and developers can implement it based on their application
requirements.

To reduce the time complexity of the search operation on the collector, it
is also possible to decompose a huge encrypted index into multiple smaller in-
stances. During the search operation, the collector is able to use an efficient
search algorithm, such as binary search, on these instances and retrieve the
corresponding log IDs. This construction also enables parallel search on multi-
ple instances of encrypted index through multi-threading development. SELL
v1.0 does not provide such a mechanism, but it offers the flexibility of design
and development of such an architecture for developers. We plan to incorpo-
rate multi-threading search over a distributed encrypted index in the upcoming
versions of the library.

Finally, switching to lower levels of security can improve the overall perfor-
mance of the library significantly.

8 Available at: https://github.com/kiritbasu/Fake-Apache-Log-Generator (Ac-
cessed August 2018).

9 Available at: https://swtch.com/~rsc/regexp/regexp4.html (Accessed on August
2018).

https://github.com/kiritbasu/Fake-Apache-Log-Generator
https://swtch.com/~rsc/regexp/regexp4.html

16

6 Conclusion and Future Work

In this work, we presented a new approach toward a fully secure logging system.
We designed and developed a framework that provides confidentiality, integrity,
completeness, and non-repudiation of logs. Our library also enables specific op-
erations such as keyword searching and discovering how many times a keyword
has occurred on encrypted logs. The proposed method preserves the confiden-
tiality of log data by using an encrypted inverted index that does not leak any
information about the logs and keywords to the semi-honest collector and is
IND-CKA2 secure. We defined a set of default parameters for the SELL v1.0
that provide a conservative standard security level against a variety of attacks.

In terms of performance, we benchmarked SELL v1.0 with a batch of log
samples, bootstrapping the system with 10,000 lines of logs and evaluated the
timing of each operation on an Intel Core i7 processor. Our results imply that
the proposed solution is practically feasible to deploy in real settings, and that it
provides a strong security level. Results can be improved notably by setting the
parameters at lower security levels or further optimizing the implementation.

We plan to extend the functionality and performance of the library in the
next versions. Our main priority in achieving better performance is designing and
developing index decomposition and parallel searching. We hope this work in-
spires researchers and engineers to investigate into the security and performance
of secure operations on encrypted logs, providing all the necessary security as-
surances for the users’ data.

References

1. Bellare, M., Rogaway, P.: Introduction to modern cryptography. Ucsd Cse 207, 207
(2005)

2. Chai, Q., Gong, G.: Verifiable symmetric searchable encryption for semi-honest-
but-curious cloud servers. In: Communications (ICC), 2012 IEEE International
Conference on. pp. 917–922. IEEE (2012)

3. Curtmola, R., Garay, J., Kamara, S., Ostrovsky, R.: Searchable symmetric encryp-
tion: improved definitions and efficient constructions. Journal of Computer Security
19(5), 895–934 (2011)

4. Dworkin, M.J.: Recommendation for block cipher modes of operation: Ga-
lois/counter mode (gcm) and gmac. Tech. rep. (2007)

5. Goh, E.J., et al.: Secure indexes. IACR Cryptology ePrint Archive 2003, 216 (2003)
6. Kamara, S., Papamanthou, C., Roeder, T.: Dynamic searchable symmetric encryp-

tion. In: Proceedings of the 2012 ACM conference on Computer and communica-
tions security. pp. 965–976. ACM (2012)

7. Kelly, S., Frankel, S.: RFC 4868-Using HMAC-SHA-256. Tech. rep., HMAC-SHA-
384, and HMAC-SHA-512 with IPsec, http://www. ietf. org/rfc/rfc4868. txt (2007)

8. Kelsey, J., Callas, J., Clemm, A.: Signed syslog messages. No. RFC 5848. Tech.
rep. (2010)

9. Kelsey, J., Schneier, B.: Minimizing bandwidth for remote access to cryptograph-
ically protected audit logs. In: Recent Advances in Intrusion Detection. pp. 9–9
(1999)

17

10. Kurosawa, K., Ohtaki, Y.: Uc-secure searchable symmetric encryption. In: Inter-
national Conference on Financial Cryptography and Data Security. pp. 285–298.
Springer (2012)

11. Law, L., Solinas, J.: Suite b cryptographic suites for ipsec. Tech. rep. (2007)
12. Waters, B.R., Balfanz, D., Durfee, G., Smetters, D.K.: Building an encrypted and

searchable audit log. In: NDSS. vol. 4, pp. 5–6 (2004)

	SELL v1.0: Searchable Encrypted Logging Library
	Amir Jalali Neil Davenport

