
Probability 1 Iterated Differential in
the SNEIK Permutation

Léo Perrin

Inria, France, leo.perrin@inria.fr

Abstract. SNEIK is a permutation at the core of a submission to the NIST lightweight
cryptography project. In this note, we exhibit an iterated probability 1 differential
in this permutation. However, it is still unclear if this differential can be used to
construct attacks against the permutation in a mode, e.g., against the hash function
SNEIKHA.
We also suggest a simple fix: adding a 32-bit rotation in one tap prevents this issue.
Keywords: SNEIK · NIST lightweight cryptography project · Differential Cryptanal-
ysis · ARX · Permutation

1 The SNEIK Permutation
SNEIK [Saa19] is a submission to the NIST lightweight cryptography project. It relies on
a 512-bit ARX-based permutation which is best described by the diagram in Figure 1.

It operates on an array s of sixteen 32-bit words indexed from 0 to 15. At time i,
the word s[i] is computed from the others words s[j] using the following sequence of
operations which we describe using C-style notations (a reduction modulo 16 of the indices
is implicitely made):

t = s[i-1];
t ^= s[i-16] ^ d[i];
t = L1(t) ^ s[i-1];
t += s[i-14];
t = L2(t) ^ s[i-16];
s[i] = t;

where L1 and L2 are linear permutations and d[i] is a round constant—there details do
not matter for this observation.

2 Probability 1 Differential
Theorem 1. Any n-bit string x = (xn−1, ..., x0) is easily mapped to the integer int(x) =∑n−1

j=0 xi2i. We let as usual a�b denote the binary representation of int(a)+ int(b) mod 2n

and a ⊕ b denote the bitwise exclusive or of a and b. Further, let δn be the n-bit string
such that int(δn) = 2n−1, i.e., δn = (1, 0, 0, ..., 0). Then the following equality holds with
probability 1:

(a� b)⊕
(
(a⊕ δn)� (b⊕ δn)

)
= 0 .

Proof. The bit of highest weight of a� b is a linear function of an−1 and bn−1 and is the
only bit of a� b depending on either of these variables. Hence, complementing both of
these bits does not change the result of the modular addition.

mailto:leo.perrin@inria.fr


2 Probability 1 Iterated Differential in the SNEIK Permutation

Figure 1: A diagram representing the SNEIK permutation (Figure 1 of [Saa19]).

Corollary 1. let s and s′ be two SNEIK states such that s′[j] = s[j]⊕ δn for all j. Then
it holds that t⊕ t′ = δn, where t and t′ are the words output by the state update function
in s and s′ respectively.

In other words, if the difference on all words is equal to δn before the state update,
then it is equal to δn on all words after the state update.
Proof. We simply need to show that the difference between t and t′ is equal to δn when
they are computed using the algorithm given above. Suppose that s[j]⊕ s′[j] = δn for all
j. Then the difference in the input of L1 is(

s[i]� (s[i− 1]⊕ d[i])
)
⊕
(
(s[i]⊕ δn)� (s[i− 1]⊕ d[i]⊕ δn)

)
,

which means we can apply Theorem 1 and obtain that it is equal to 0. The difference is
therefore equal to zero in the output of L1.

Let y be this output (which is thus the same for both s and s′). The difference in the
input of L2 is equal to(

(s[i− 2]⊕ y)� s[i− 14]
)
⊕
(
(s[i− 2]⊕ δn ⊕ y)� (s[i− 14]⊕ δn)

)
.

Again, we deduce from a direct application of Theorem 1 that this difference is equal to 0.
In the end, we therefore have that t⊕ t′ is equal to s[i− 15]⊕ s′[i− 15] which, under

our assumption, is equal to δn. Hence, we have that t⊕ t′ = δn.

3 Conclusion
We verified this observation using the reference implementation. However, it is unclear at
the moment if this observation can be turned into an attack against a cipher/hash function
relying on this permutation.

Finally, we remark that this behaviour is simply avoided by adding a rotation in one of
the taps, i.e., by replacing the operation t← t⊕ s[i− 2] with t← t⊕ (s[i− 2]≪ 1).

References
[Saa19] Markku Juhani O. Saarinen. SNEIKEN and SNEIKHA authenticated encryption

and cryptographic hashing. Available online at https://github.com/pqshield/
sneik., 2019.

https://github.com/pqshield/sneik
https://github.com/pqshield/sneik

	The SNEIK Permutation
	Probability 1 Differential
	Conclusion

