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Online Social Networks (OSNs) offer free storage and social networking ser-
vices through which users can communicate personal information with one an-
other. The personal information of the users collected by the OSN provider
comes with privacy problems when being monetized for advertising purposes.
To protect user privacy, existing studies propose utilizing data encryption that
immediately prevents OSNs from monetizing users data, and hence leaves secure
OSNs with no convincing commercial model. To address this problem, we pro-
pose Privado as a privacy-preserving group-based advertising mechanism to be
integrated into secure OSNs to re-empower monetizing ability. Privado is run by
N servers, each provided by an independent provider. User privacy is protected
against an active malicious adversary controlling N − 1 providers, all the adver-
tisers, and a large fraction of the users. We base our design on the group-based
advertising notion to protect user privacy, which is not possible in the person-
alized variant. Our design also delivers advertising transparency; the procedure
of identifying target customers is operated solely by the OSN servers without
getting users and advertisers involved. We carry out experiments to examine the
advertising running time under various number of servers and group sizes. We
also argue about the optimum number of servers with respect to user privacy
and advertising running time.

Keywords: Unlinkability, Privacy, Advertising, Online Social Networks,
Privacy-Preserving Advertising, Active Adversary, Malicious Adversary.

1 Introduction

Motivation: Online social networks (OSNs) such as Facebook, Twitter, and
Google+ enable social activities in the digital world. OSN servers supply stor-
age and computational resources for the users and offer various services through
which users are able to share their personal information with one another and
make new friendships. Additionally, OSNs offer advertising service where the
advertisers pay OSNs to find their targeted customers out of social network
members. In particular, in an advertising scenario, every user fills and uploads
a profile (like the Facebook profile) that contains a set of attributes varying
from demographic information to personal interests and hobbies (e.g., age, edu-
cation, music interests, sports activities. etc.). Likewise, advertisers submit their



requests indicating a set of attributes for the intended customers. OSN provider
examines the profiles to find target customers and serves them with proper ad-
vertisements. Advertiser will be charged accordingly.

Apart from the benefits of OSNs, they come with the security problems
where OSN providers monetize users’ personal information by selling them to
the untrustworthy advertisers [31, 35]. To address such issues, existing studies
propose secure designs of OSNs using data encryption, i.e., users encrypt their
data before sharing with OSNs [13, 12, 44, 45, 3, 2]. Although data encryption
would mitigate the data privacy issue, it immediately disables the advertising
service and cuts the significant financial benefit of advertising (the advertising
revenue for Facebook in 2018 was reported as 30.83 billion dollars1). Due to this
monetizing inability, providers would have no convincing commercial model to
establish secure OSNs.

To fill this gap, we propose Privado as a privacy-preserving advertising system
by which secure OSNs can efficiently perform advertising and find target cus-
tomers using the privacy-protected profiles of users. Privado follows group-based
advertising notion and also satisfies advertising transparency (we elaborate on
these two terms in the followings). The former helps user privacy and the latter
is essential for the system performance.

Personalized vs Group-based Advertising: Group based advertising is a
notion that originated from PPAD [8] as a solution for the security issues that
arise in personalized advertising. In fact, any secure personalized advertising ulti-
mately compromises user privacy. That is, when an encrypted profile is matched
against an advertising request (that contains a set of attributes), the success
or failure of the matching indicates the presence or absence of those attributes
inside that encrypted profile. Thus, after enough trials, the OSN provider can
learn all the attributes inside an encrypted profile. Note that this leakage is
inherent to any personalized advertising approach regardless of how the secure
matching is carried out. In essence, this leakage is through the output of the
matching but not the way the matching result is computed. To mitigate this
privacy issue, Taheri et al. [8] introduce the notion of group-based advertising
and provide a cryptographic solution for it. In group-based advertising, users are
split into equal size groups during their registration and the group formation is
static. Once the groups are set, every advertising request is matched against the
encrypted profiles of each group. If the number of the matched profiles inside
the group exceeds a threshold, the group is marked as targeted and all of its
members are shown the advertisement. Note that the group matching outcome
does not (and must not) indicate which profiles exactly matched the request;
instead, it only asserts the total number of matches. When that number exceeds
a threshold, all group members are served that advertisement. Hence, unlike the
personalized advertising, the group matching result would not be linkable to the
individual members.

1 https://www.statista.com/statistics/544001/facebooks-advertising-revenue-
worldwide-usa/



Advertising Transparency: In addition to user privacy, Advertising Trans-
parency [8] is another requirement to be fulfilled in OSN advertising systems.
That is, once the profiles of users and request of the advertiser are uploaded, the
entire matching procedure is run offline by the servers without further involve-
ment of users or advertisers. Users are served by proper advertisements (which
are found via the matching procedure) in their next log-in. The advertising trans-
parency provides benefits for system performance where the server’s execution
time (to match the advertisements to profiles) would not be constrained by the
active time of users (who may not be online in a regular basis). As another
requirement of advertising transparency, users and advertisers should not need
to know or communicate with each other. This property is essential considering
the fact that in an OSN like Facebook there are 2 billion monthly active users2

and 6 million monthly active advertisers3, and making them communicate is
impractical.

Related Works: Advertising problem in secure OSNs with the aforementioned
requirements results in a unique setting that has never been addressed in prior
studies except [8]. In the context of secure online behavioral advertising [4, 23,
46, 16], provable user privacy and advertising transparency are lacking features.
Proposals in server-aided private set intersection [30, 29, 25, 37], as well as server-
aided two-party computations, cannot achieve user privacy under the coalition
of server and advertiser [29, 48, 40] or they lack advertising transparency [30, 29,
25, 37]. The similar problem applies to the context of public key encryption with
key search [19, 21, 49, 7, 32]. Secure Multi-party computation (SMPC) protocols
[11] come with an issue where the communication complexity of parties (i.e.,
servers in our case) is linear with the depth of computed circuit (i.e., matching
procedure). In Privado, while we utilize some SMPC techniques, we propose a
very carefully designed matching function which avoids multiplication gates and
the subsequent communication overhead (which can be of independent interest).

Privado vs PPAD: Taheri et al. proposed PPAD [8] as the first privacy pre-
serving advertising proposal for secure OSNs. PPAD achieves both user privacy
and advertising transparency but under two constraints. First, PPAD relies on
two non-colluding servers whose cooperation compromises user privacy. Second,
user privacy is guaranteed under honest but curious (HbC) adversarial model
where all the parties must follow the protocols precisely.

In Privado, we mitigate the constraining conditions of PPAD. Firstly, we relax
the assumption of PPAD about having two non-colluding servers by proposing a
distributed design consisting of N servers each being operated by an independent
authority. User privacy is protected even if N − 1 servers collude. As the second
enhancement on top of PPAD, Privado offers a stronger security guarantee by
withstanding the malicious adversarial model where entities are allowed to de-
viate from the protocol specifications. In Privado, we assume that up to N − 1
servers may maliciously collude. Also, the adversary can register fake advertising
requests and user profiles.

2 https://www.statista.com/statistics/346167/facebook-global-dau/
3 https://www.statista.com/statistics/778191/active-facebook-advertisers/



PPAD to Privado non-triviality: A naive attempt to extend PPAD to the N
server and malicious setting can be applying SMPC techniques. However, simply
running SMPC between N servers would be inefficient compared to Privado. In
particular, SMPC assumes the servers know the inputs, whereas in the current
setting, the inputs of the servers are encrypted user profiles.

Another non-triviality lies in the fact that PPAD makes use of a privacy
service provider as a trustworthy entity through which group members receive
some secret information (this secret data shall be integrated into users profiles
and would help in computing the group matching results). However, in Privado,
none of the servers are trusted. Thus, another challenge is to perform the same
confidential data dissemination using N servers which are additionally malicious.
Notice that any solution to this problem should also comply with user privacy
and advertising transparency.
N Server Motivation: In Privado, we utilize N servers each run by an in-
dependent provider. As long as at least one server would not collude with the
rest, we protect the privacy of the users. Such setting has been similarly utilized
in outsourced multi-party computations [22, 11, 1, 43]. In practice, this can be
realized by having an OSN whose servers are provided by the ISPs of multiple
distinct countries. As such, collusion is less likely since colluding countries would
have to mutually compromise the privacy of users of their own country to their
opponents. Another motivation for such a realization is that all the contributing
authorities would financially benefit from such a design where they share the ad-
vertising revenue. Deploying multiple conflicting parties for the sake of privacy
is similarly sought in the electronic voting (e-voting) systems [34, 50]. There, the
conspiracy of tallying authorities is restrained by deploying multiple conflicting
entities such as political parties of a country.
Contributions: Our contributions are abstracted as follows:

• Privado is the first privacy preserving group-based advertising for secure
OSNs run by N servers managed by independent providers.

• Privado preserves user privacy under the coalition of N −1 servers who may
additionally register an arbitrary number of advertising requests as well as
control k − 2 users within each group, where k is the group size.

• Privado withstands a malicious adversarial model where the corrupted par-
ties do not conform to the protocol descriptions.

• We prove the security of Privado formally employing the game-based security
definition in PPAD [8].

• We also carry out experiments to examine Privado’s advertising running
time under various number of servers and group sizes. Additionally, we ar-
gue about the optimum number of servers with respect to user privacy and
advertising running time.

The rest of paper is organized as follows. We present the system model, secu-
rity objectives and the adversarial model of Privado in Section 2. Preliminaries
and definitions are provided in Section 3 followed by the full construction in
Section 4. Section 5 is dedicated to the asymptotic and concrete performance
of Privado and the comparison with PPAD. The formal security definition and



proof come in Section 6. Section 7 overviews prior studies and highlights their
shortcomings. Concluding remarks are given in Section 8.

2 System Model

2.1 Model

Privado is comprised of users, advertisers, and N servers denoted by S1,...,SN .
The system overview is illustrated in Figure 1. N servers jointly create an encryp-
tion key pk and distribute the corresponding decryption key shares dk1, ...dkN
among themselves. Hence, performing decryption requires all the servers to con-
tribute using their decryption key shares. Servers also decide on the group size
and threshold value to be used in the group matching procedure.

Users fill in a profile (similar to Facebook profile) in which they provide
their preferences as a list of attributes varying from demographic information
to personal interests and hobbies (e.g., age, education, music interests, sports
activities, etc.). Then, the user encrypts his profile under pk and hands it over
to all the servers. On the other side, advertisers create their advertising requests,
which include the attributes they seek in their target customers, e.g., {painting
∧ football ∧ computer engineer}. Requests are then submitted to each server in
the plaintext form. Each server has a local database in which it stores all the
advertising requests and encrypted user profiles registered in the system.

Advertiser uploads his advertising 
request to all the servers

N servers jointly find the matching between group profiles 
and advertising requests

Joining Users are divided into 
groups of size k

i i+1 i+k Advertiser

Each user uploads an encrypted 
profile to all the servers

!"!#
$%# $%"

Fig. 1. Privado System Overview. Users encrypt their profiles using an encryption key
whose corresponding decryption key is split among the N servers as dk1, ..., dkN .

Privado applies the group-based advertising notion. For that, users are ran-
domly divided into groups of identical size at their arrival time. As discussed
earlier, the grouping of users is essential for user privacy and should not be



done based on similar interests. For every advertising request, N servers jointly
examine all the groups and identify the target ones: i.e., groups whose number
of matched profiles exceeds a system-wise threshold. All the members of a tar-
get group are served by the advertisement (since advertising to a subset would
violate user privacy). The non-target groups are skipped. Subsequently, the ad-
vertiser is charged based on the number of target groups (hence users) to which
the advertisement is shown. We remark that group-based advertising degrades
advertising accuracy (losing some target customers) where we do not advertise
to the groups with insufficient target members. Also, there would be some non-
target users who receive irrelevant advertisements since they belong to a target
group. Hence, this is the cost of achieving user privacy. We refer the interested
readers to PPAD [8] for an extensive analysis of the advertising accuracy in
group-based advertising over various group sizes and threshold values.

2.2 Security Goal

The security goal of Privado is to protect user privacy. User privacy indicates
the inability of any adversarial entity to bind the group matching result to
a particular group member, as defined in PPAD [8]. This means that for a
target group, none of the servers would be able to conclude whether a particular
group member has the attributes of the advertising request or not. However,
it is important to realize that any advertising system is inherently prone to
some implicit privacy leakage regardless of how secure it is designed. That is,
once a group is qualified/disqualified as a target for an advertising request, this
reveals the inclusion or exclusion of the queried attributes among the group
members. This leakage is inevitable even though the matching occurs entirely
on the encrypted profiles. In personalized advertising, this leakage immediately
breaks user privacy [29, 48, 30, 29, 25, 37] whereas in the group-based counterpart
the inclusion or exclusion is not attributable to a particular group member.
PPAD supplies a formal security definition for user privacy that we present in
Section 6.1. We utilize this definition to formally prove the security of Privado.

2.3 Adversarial Model

Privado considers the adversarial model where an adversary may corrupt any
subset of N − 1 servers, create arbitrarily many advertising requests and fake
k−2 profiles per group (k is the group size). Notice that, having more than k−1
fake profiles in a group converts the group-based advertising to the personalized
variant (adversary knows the content of k − 1 profiles hence can immediately
link the group-matching results to the unknown profile), which, as discussed ear-
lier, violates user privacy. We consider static corruption, i.e., the adversary
selects which party to corrupt before the protocol starts. Corrupted parties are
active/malicious adversaries who may refuse to follow the protocols’ specifi-
cations. We assume parties communicate through insecure but authenticated
channels.



3 Definitions and Preliminaries

3.1 Notation

We write x← X to denote picking an element x uniformly at random from set X.
a||b represents concatenation of a with b. |A| stands for the number of elements

in set A. a represents a ciphertext embodying the value a. Likewise, B where
B is a vector, means the element-wise encryption of B. For shorthand, we use
PPT for a probabilistic polynomial time entity. We write Encpk(m, r) to denote
encryption of a message m using an encryption key pk and a randomness r.

3.2 Definitions

Negligible: A function f is called negligible if for all positive polynomials p,
there exists a constant C such that for every value c > C it holds that f(c) < 1

p(c) .

Secure Multi-Party Computation: Consider the ideal functionality
F (in1, ..., inN ) = (f1(in1, ..., inN ), ..., fN (in1, ..., inN )) running by a trusted
third party that receives inputs (ini) from ith party and delivers fi(in1, ..., inN ).
Let γF be a multi-party protocol to compute F . γF is said to securely realize
F if for every PPT adversary A with auxiliary input aux ∈ {0, 1}∗ attacking
protocol γF , there exists a PPT simulator Sim for the ideal functionality F ,
that ∀ security parameter λ:

{IDEALF,Sim(aux),Pc
(in1, ..., inN , λ)}} ≡c {REALγF ,A(aux),Pc

(in1, ..., inN , λ)}
(1)

The left and right side of this equality represent the output of parties in
interaction with F and γF , respectively. Pc is the set of corrupted parties
controlled by the adversary/simulator. ≡c stands for computational indistin-
guishability.

Hybrid Model: Let γF be a multi-party protocol that securely realizes ideal
functionality F and assume θ is another protocol that makes use of γF as a
sub-protocol. In the hybrid model, security of θ can be proven by replacing γF

with its ideal functionality F (as if there is a trusted third party running F ).
This would be called F -hybrid model [17].

3.3 Preliminaries

Bloom Filter [6] is a data structure for the set representation which also sup-
ports insertion and membership check queries. A Bloom filter is formed as a
bit array of size p, and d hash functions denoted by H1(.), ...,Hd(.). To insert
an element x to the Bloom filter, all the hash functions are evaluated on x; i.e.
H1(x)..., Hd(x). The output of the hash functions indicate the indices of the bit
array that shall be set to 1. To check the membership of an element y, simi-
larly the hash functions are evaluated on y which results in d indices. If all the



corresponding bit values are 1, then y counts as an element of the set with the

probability of 1− (1− ((1− 1
p )
d
)
e
)
d

. e is the total number of elements inserted

into the Bloom filter. Otherwise (if at least one of the checked indices is 0), y
is definitely not a member. Throughout the paper, we refer to the creation of a
Bloom filter with BFCreate(Att) where Att is the set of elements to be inserted.
Super-Increasing Set: A super-increasing set A = {a1, ...ak} of size k is a set
of k positive real numbers such that each element of the set is greater than the
aggregate of its preceding elements in the set [42]. That is,

∀i, ai >
∑

j=1:i−1

aj (2)

IND-CPA Encryption Scheme: For a public key encryption scheme E =
(Gen,Enc,Dec) we define the IND-CPA game PubKCPA

A,E (λ) as [27]

(pk, dk)← Gen(1λ); (M0 = {m0,i}i=1:L,M1 = {m1,i}i=1:L, history)← A(pk)

s.t. |m0,i|i=1:L = |m1,i|i=1:L; b← {0, 1};C = {ci ← Enc(Pk,mb,i)}i=1:L;

b′ ← A(history, C) : output is 1 if b == b′ (3)

Encryption E is IND-CPA if for every probabilistic polynomial time adversary
A, there exists a negligible function negl(λ) s.t.

Pr[PubKCPA
A,E (λ) = 1] <

1

2
+ negl(λ) (4)

or equivalently [27],

|Pr[output(PubKCPA
A,E (λ, 0)) = 0]− Pr[output(PubKCPA

A,E (λ, 1)) = 0]| (5)

where PubKCPA
A,E (λ, b) indicates the output of IND-CPA experiment when the

challenge bit is b.
(N,N)-Threshold Additive Homomorphic Encryption Scheme with a
Distributed Key Generation: An additive homomorphic encryption scheme
is a public key encryption scheme with key generation Gen, encryption Enc,
and decryption Dec algorithms which additionally enables computation over
plaintexts using ciphertexts. That is, for any two messages m0,m1 (from the
message space) encrypted as c0 = Encpk(m0), c1 = Encpk(m1), one can compute
the summation of messages in the encrypted format as Encpk(m0+m1) = c0�c1
where pk is the encryption key and � is the homomorphic operation over the
ciphertext.

An example is Paillier encryption in which multiplication of the cipher-
texts results in the summation of the underlying plaintexts i.e., c0 · c1 =
Encpk(m0 + m1). In the (N, N)-threshold homomorphic encryption, the de-
cryption key is distributed among N parties such that the presence of all of
them (N out of N) is required to make correct decryption. Generation of the
key in the threshold settings usually relies on a trusted party who creates and
distributes the decryption key shares and then leaves the system. However,



in the present work, we leverage a distributed key generation protocol pro-
posed by [18] for the Paillier setting. We refer to that encryption scheme by
TEnc = (DKeyGen,Dsk,Enc,DDec) whose details come next.

1. pk ← DKeyGen(1λ) is a distributed protocol run by N parties S1, ..., SN
to compute the public key pk as a composite modulus N with an unknown
prime factorization q1.q2.

2. dk1, ....dkN ← Dsk(pk) is a distributed protocol run by S1, ...SN to generate
decryption key shares of the given public key pk. Each party Si receives one
share i.e., dki.

3. C ← Enc(N,m) is the encryption algorithm to convert the plaintext to a
random ciphertext. A random number r is chosen from Z∗N . The ciphertext
is set to C = gm · rN mod N2 where g = 1 +N .
Additionally, Paillier encryption comes with re-encryption algorithm to re-
randomize a given ciphertext C i.e., C ′ ← ReEnc(C, r′) = C · r′N mod N2

where r′ ∈ Z∗N . We may eliminate r′ and write ReEnc(C) for shorthand.
4. m = DDec(dk1, ...., dkN , C) is a distributed protocol in which all the par-

ties S1, ..., SN contribute their respective shares of the decryption key i.e.,
dk1, ..., dkN to decrypt a ciphertext C to the plaintext m.

We instantiate an (N,N)-threshold encryption scheme TEnc using the pro-
posal of [18]. We present the security guarantees of TEnc as an ideal functionality
FTHRESH as shown in Figure 2 (generalizing two-party definitions of [18]).
Zero-Knowledge Proof (ZKP) of Knowledge: is a proof system < P, V >

for a language L defined over relation R i.e., L = {x| ∃ ω : (x, ω) ∈ R} by which
a prover P knowing witness ω can prove the validity of a statement i.e., x ∈ L to
a verifier V . Let (P (ω), V (z, r))(x) be the output of V (namely, 1 if V accepts the
proof, 0 otherwise) in interaction with P upon the common public statement x.
The verifier holds the auxiliary input z and the random tape r whereas P owns
the private witness ω. A zero-knowledge proof system satisfies three properties
which are abstracted as follows [15]:

• Perfect Completeness: an honest prover can always convince the honest ver-
ifier on a valid statement x ∈ L. In principle, for every (x, ω) ∈ R

Pr[(P (ω), V )(x) = 1] = 1 (6)

• Computational Soundness: A dishonest prover is unable to make a valid
proof for an invalid statement x /∈ L unless with a low probability. That is,
∀(x, ω) /∈ R and for all dishonest PPT prover P ∗,

Pr[(P ∗(ω), V )(x) = 1] = 1− 2−t (7)

2−t is called soundness error and can get arbitrarily small for the large values
of t.
• Computational Zero-knowledge: The proof system does not reveal anything

beyond the correctness of the statement x ∈ L. More formally, a proof system



FTHRES

Key Generation: Upon receiving request (Generate, 1λ) from party Pi (i ∈ [1, N ]),
FTHRES records (Pi, Generate, 1

λ) in the database and sends it to the adversary. Upon
the receipt of request (Pi, Generate, 1

λ) from all the N parties (∀i ∈ [1, N ]), FTHRES
sends (RandInput) to the adversary and receives (GenInput, r). Then, FTHRES
uses its own randomness together with r to generate an encryption key pk and its
corresponding decryption key dk. FTHRES records dk and outputs pk to the adversary.
If the adversary responds with continue then FTHRES delivers pk to all the other par-
ties and ignores any message of this form, otherwise, sends abort to all the other parties.

Decryption: Once (Decrypt, c) message is received from some party Pi (i ∈ [1, N ]),
FTHRES operates as below:

1. If no key was created, FTHRES ignores the request.
2. If a key was already created, then FTHRES records (Pi, Decrypt, c) and sends it to

the adversary. Once requests for the decryption of c are received from all parties
Pi=1:N then FTHRES sends (Decrypt, c) to the adversary. Adversary responds with
the receiver set RC ⊆ {1, ..., N}. If RC is empty, FTHRES sends abort to all the
parties. Otherwise, FTHRES decrypts the ciphertext c as Decdk(c) and sends the
result to the parties specified in RC.

Fig. 2. The ideal functionality FTHRES for the distributed (N,N)-threshold encryption
scheme TEnc = (DKeyGen,Dsk,Enc,DDec). FTHRES captures the security proper-
ties of Key Generation (i.e., DKeyGen and Dsk) and Decryption (DDec) which are
multi-party protocols. However, Enc is a single party algorithm (not a multi-party
protocol) and thus is not presented as a functionality.



(P, V ) is computational Zero-knowledge if there exists a PPT simulator Sim
s.t. for every PPT verifier V ∗ we have

{(P (w), V ∗(z, r))(x)} c≡ {(SimV ∗(x,z,r,.))} (8)

SimV ∗(x,z,r,.) indicates the output of simulator with oracle access to
V ∗(x, z, r, .).

We refer to an interactive proof system as the proof that is an interactive
two-party protocol run between the polynomial-time prover and the verifier. On
the other hand, in a non-Interactive proof, the proof generated by the prover
can be verified without further interaction with the prover.

Non-Interactive Zero-Knowledge Proof of Plaintext Range (NI-
POPR): This is a proof system to prove that a ciphertext m encrypts a value
of a particular range Range i.e., m ∈ Range. We illustrate a non-interactive
version of such POPR with NI-POPR( m ,R).

We present functionality FRPOPR, as shown in Figure 3, to capture the security
requirements of an ideal POPR protocol.

FRPOPR with a relation R

– FPOPR−R receives (Prove, P, V, (pk, m , Range), ω) from prover P and hands
over it to the adversary.

– If the adversary responds with abort, then FRPOPR sends abort to the verifier V .
– If the adversary responds with continue, If ((pk, m , Range), ω)∈ R, FRPOPR sends

(proof, P, V, (pk, m , Range)) to the verifier V . Otherwise, outputs (disproof, P,
V, (pk, m , Range)) to V .

Fig. 3. The ideal functionality FRPOPR for proof of plaintext range.

In section 4, we will make use of POPR for ciphertexts embodying 0 or 1
values. Hence, we deploy the proof system proposed by [39] over the following
relation R (Equation 9). µ belongs to Z∗N :

R = {((pk, m ,Range), ω =< m,µ >)| m ∈ Range ∧ m = Encpk(m,µ)} (9)

Non-Interactive Zero-Knowledge Proof of Correct Multiplication (NI-
POCM): The purpose of POCM is to prove that a ciphertext is the correct
multiplication of two given ciphertexts under a given public key pk. Namely,

c = a ∗ b where a b and c are given. We illustrate a non-interactive

version of such POCM with NI-POCM( a , b , c ). The ideal function FRPOCM ,
presented in Figure 4, captures soundness, completeness and zero-knowledge
properties of a secure POCM protocol.



FRPOCM with a relation R

– FRPOCM receives (Prove, P, V, (pk, a , b , c ), ω) from prover P and hands over
it to the adversary.

– If the adversary responds with abort, then FRPOCM sends abort to the verifier V .

– If the adversary responds with continue, if ((pk, a , b , c ), ω)∈ R, FRPOCM sends

(proof, P, V, (pk, a , b , c )) to the verifier V . Otherwise, outputs (disproof, P,

V, (pk, a , b , c )) to V .

Fig. 4. The ideal functionality FRPOCM for the proof of correct multiplication.

We base our POCM on the technique presented in [11] for Paillier encryption
setting. The corresponding relation R is formulated in equation 10. µ and γ are
elements of Z∗N .

R = {(pk, a , b , c ), ω =< a, µ, γ >)| a = Encpk(a, µ) ∧ c = ReEnc( b
a
, γ)}

(10)

We further leverage Fiat-Shamir method [14] to achieve perfect zero-knowledge
and a non-interactive POCM in random oracle model.
Mix Network: Mix network (mix-net) is a multiparty system which converts
a set of input data to an untraceable output [41]. The input is usually a set

of ciphertexts i.e.,
←−
C in = {C1, ..., Ck} and the output is the re-encrypted and

permuted version of the input i.e.,
←−
C out = {C ′π(1), ..., C

′
π(k)} where π is a permu-

tation and C ′π(i) denotes the re-encryption of π(i)th element of Cin. A mix-net

comprises multiple servers (mixers) {S1, ..., SN} where each Si in turn computes
a randomly permuted and re-encrypted output Couti from Couti−1

.
Verifiable Shuffles are used to implement mixers. A verifiable shuffle V S is

a tuple V S = (E,SH, (P, V )) where E = (Gen,Enc,Dec,ReEnc) is an en-
cryption scheme with key generation Gen, encryption Enc, decryption Dec and
re-encryption ReEnc algorithms. SH denotes shuffle algorithm whose input is a

set of ciphertexts i.e.,
←−
C in = { m1 , ..., mk } and the output is the re-encrypted

and permuted version of the input i.e.,
←−
C out = { mπ(1) , ..., mπ(k) }. (P, V )

is a proof system used to prove that there exists a permutation π and some
randomnesses which can covert the input ciphers to the output ciphers.

A verifiable shuffle should satisfy the following properties: 1) shuffle privacy
that is the permutation must remain secret to any outsider (this features usually
relies on the IND-CPA security of the underlying encryption E) and 2) shuffle
verifiability which means the correct construction of the output should be veri-
fiable (that relies on the soundness of the proof system). The shuffle verifiability
guarantees the robustness of a mix-net even when some number of mixers are cor-
rupted. We define the ideal functionality FRV S (Figure 5) to capture the security



properties of a verifiable shuffle proof system.
←−
C out is the correct permutation

of
←−
C in if the prover P knows a witness ω for which (

←−
C in,

←−
C out, w)∈ R.

FRV S with a relation R

– FRV S receives (Prove, P, V, (pk,
←−
C in,

←−
C out), ω) from prover P .

– If ((pk,
←−
C in,

←−
C out), ω)∈ R, FRV S sends (proof, P, V, (pk,

←−
C in,

←−
C out)) to verifier

V . Otherwise, outputs (disproof, P, V, (pk,
←−
C in,

←−
C out)) to V .

Fig. 5. The ideal functionality FRV S for the proof system of a verifiable shuffle scheme.

We employ the Pallier-based mix-net protocol proposed by [38]. Their under-
lying shuffle scheme has an interactive proof system which is transformable to a
non-interactive version using Fiat-Shamir method [14] in random oracle model.

R is defined as in Equation 11. π is the permutation,
←−
C in = { m1 , ..., mk }

and
←−
C out = {C1, ..., Ck}.

R = {(pk,
←−
C in,

←−
C out), ω =< π, {µi}ki=1 >)| ∀Ci ∈

←−
C out, Ci = ReEnc( mπ(i) , µi)}

(11)

4 Privado

4.1 Design Challenges

In this section, we list some possible threats and attacks that can be attempted
by a malicious adversary in our system model. We also sketch our proposed
solution next to each item. The attacks are not limited to this list; our goal is
to highlight some of our design difficulties as well as provide an intuition of our
design choices.

In Section 6, we present a formal security definition capturing user privacy
followed by a concrete security proof of Privado. Our formal proof does not im-
pose any strategy on the adversary and considers a black box adversary. This
implies that our advertising system defeats any misbehavior of adversary includ-
ing the ones listed below.

Profile Replay Attack: Profile replay attack refers to the situation where a
malicious server attempts registering a (corrupted) user inside a group employing
the profile of an honest member of that group. That is, the corrupted server re-
encrypts the honest user’s profile and submits it as a new one. Note that due to
the IND-CPA security of the encryption scheme, the honest servers would not
notice such profile duplication. This duplication influences the pattern in the



group matching result (i.e., the total number of matched users in each group). For
clarification, assume a group of size k with 2 honest members and k−2 dishonest
ones. Let P1 and P2 denote the profiles of honest members. One of the corrupted
group members submits a duplicate of P1 and the rest of k−3 corrupted members
leave their profiles empty (without any attributes). Therefore, the matching
result of P1 is always counted twice in the group matching result. Thus, if P1

matches an advertising request then the total number of target users would be
a value larger than 2, otherwise not. This indeed enables a corrupted server to
link the result of matching to a particular member (the genuine holder of P1 in
the above example).

Privado defeats this attack by requiring each user to prove in zero-knowledge
that he knows the content of the submitted encrypted profile. Consequently,
the adversary cannot make valid proof of an encrypted profile with unknown
content. The proof includes proof of plaintext range as well as proof of correct
multiplication. We supply the details in Section 4.3.

Compound Group Matching: Compound group matching attack occurs
when a corrupted server does not commit to the initial grouping of users, i.e., for
each advertising request, it groups profiles in an arbitrary way. This enables an
adversary to deliberately group a victim profile with multiple different groups
and according to the changes in the matching results (before and after inclusion
of the victim profile) learns which advertising requests match the profile.

Privado stands this attack by employing an (N,N)-threshold encryption
scheme whose decryption key is divided among N servers each run by an inde-
pendent provider. Servers are all aware of the initial grouping of the users. Also,
at least one of the servers is non-colluding by assumption, i.e., would not con-
tribute its decryption power with other servers for fake groups. Thus, compound
group matching, which relies on the decryption operation, would be impossible.

Servers Equivocation: This attack refers to any deviation of the servers
from the execution of instructed protocols. Our approach stands against the at-
tack using replicated computations. That is, multiple servers run an identical
set of computations and they shall end up with the same local results. In the
case of inconsistency, an equivocation is detected. We make use of additive ho-
momorphic encryption (which is secure against malicious entities) to devise the
servers computations.

Privado vs PPAD: Technically, because we have a harder problem com-
pared to PPAD [8], our solution employs many other tools, including threshold
additive homomorphic encryption, zero knowledge proofs of knowledge, verifiable
shuffles, and mix networks.

4.2 Construction Overview

In this part, we provide an overview of Privado’s protocols and their objectives.
Protocols are Initialization, User Registration, Advertiser Registration,
and Advertising. The detailed construction is provided in section 4.3.

Initialization: The system life-cycle starts by servers running the initializa-
tion protocol to set up the necessary protocol parameters. This includes a thresh-



old homomorphic encryption scheme whose decryption key is shared among the
servers. The key generation is a distributed protocol without making use of any
trusted third party. Each server also utilizes a database to keep a copy of every
profile and advertising request.

User Registration: A user joins the system by executing the user regis-
tration protocol. Each user is assigned to a particular group at his arrival time
and obtains a group membership identifier (MID) that uniquely identifies him
among his group-mates. The membership ID assignment should be at random
and private; otherwise user privacy can be violated (see Section 6). Servers dis-
tribute MIDs among the group members privately and randomly by the help of
a mix-net protocol. MIDs shall help in the calculation of the group matching
results. Upon the receipt of MID, the user creates his encrypted profile. Each
profile is comprised of a set of attributes which are modeled by a Bloom filter.
The final encrypted profile comprises element-wise encryption of the Bloom fil-
ter (in which the MID is also integrated). Additionally, the user proves in zero
knowledge that the profile was constructed properly.

Advertiser Registration: Similar to the profile, advertising request con-
sists of a set of attributes that shall be converted to a Bloom filter format. The
advertiser submits his request to all the servers. The servers insert the request
into their local databases.

Advertising: Servers run advertising protocol to determine the target
groups for a given advertising request. Recall that a target group is the one in
which the total number of matched profiles (i.e., target users) exceeds a system-
wide threshold. In a nutshell, the advertising protocol consists of two parts:
Aggregation and Matching. During the aggregation phase, each server locally
computes the matching results of individual members in the encrypted format
and then aggregates them into a single ciphertext. Aggregation helps break any
linkability between the matching results and individual group members. Next,
the servers collaborate to decrypt the aggregate by running a threshold decryp-
tion protocol. Each server de-aggregates the aggregate value (that is now in
plaintext) to identify the total number of profiles that match to the advertising
request.

4.3 Full Construction

This section presents the detailed construction of Privado. We assume that the
servers have synchronized states. However, the synchronization of servers does
not serve any privacy purpose, that is, the lack of synchronization would not
cause any privacy issue.

Initialization: Initialization protocol is run by N servers to set the system
parameters as follows.

• Servers initially agree on protocol parameters and publish them publicly.
This includes the group size k, the threshold value Thr which is used for the
group matching, the Bloom filter size p and its hash functions. Also, servers



construct a super-increasing set ∆ = {δ1, ..., δk} of size k called Membership
Identifier Set whose elements satisfy Equation 12.

∀m ∈ {1, ..., k}, δm >

m−1∑
i=1

δi ∗ p (12)

where p is the size of the Bloom filter. Elements of ∆ are used in the user
registration protocol.

• Servers jointly establish a distributed (N,N)-threshold additive homomorphic
encryption scheme TEnc = (DKeyGen,Dsk,Enc,DDec). As such, servers
run DKeyGen to generate an encryption key pk which shall be publicized
to the whole system. Servers engage in the execution of Dsk protocol to
create the shares of the corresponding decryption key. As a result, every
(ith) server obtains an additive share of the decryption key (dki=1:N ) which
keeps it private. Correct decryption requires all servers contributing their
decryption key shares. Henceforth, for shorthand, we write Enc to denote
encryption under pk.

• One of the servers, namely Sj , encrypts ∆ as ∆ = ( δ1 =

Enc(δ1, r1), ..., δk = Enc(δk, rk)) using the randomnesses ri=1:k. Sj com-

municates ∆ together with the randomnesses ri=1:k to all the other sev-
ers Si=1:N,i6=j . Each server Si=1:N recomputes the encryptions, namely, for

i ∈ [1, k] computes Enc(δi, ri) and compares against δi ∈ ∆. Servers abort

in the case of mismatch, otherwise, store ∆ in their local databases. As we

will present in the user registration part, ∆ shall be used as the input to
the mix-net.

User Registration: Figure 6 depicts user registration protocol by which the
user registers his profile to N servers. User and servers interact through an
authenticated channel as given below.
Servers:

• Group assignment: Servers decide on the user’s group identifier i.e., GID
which determines the group the user belongs to (step 1.1 of Figure 6).
The group assignment must be at random and can rely on users arrival
order. Servers assign GIDs to the users incrementally. Namely, servers as-
sign GID = 1 to the first set of k registered users, and GID = 2 for the
second set of k registered users and so on. For this sake, each server keeps
track of the number of joining users.

• Membership ID assignment: Next, servers assign a private integer called
membership identifier (for shorthand, membership ID denoted by δ) to each
user that uniquely identifies him inside his group (step 2 of Figure 6). Since
the uniqueness of δs must be preserved within each group, servers only create
one set of identifiers i.e., ∆ in the initialization phase, and keep assigning
the same identifiers for every group but under different permutations.



Si=1:N

Initialize GID=1
1. If group is completed: 

1.1 GID=GID+1  

1.2 Run mix-net and obtain Δπ

2. δπ(j) = jth element of Δπ

9. If σj
POPR, σj

POCM are verified

DB. insert(GID, UNamej, δ𝜋 j ,

BFj , σj
POPR, Pfj , σj

POCM)

4. If GID, δ𝜋(j) received from Si∈ 1,…,𝑁 are 

not consistent: abort

5. UNamej: A username

6. AttSet=  Set of attributes

7. BFj , σj
POPR, Pfj , σj

POCM =

PCreate(AttSet, δj )

3. GID, δ𝜋(j)

8. UNamej,

BFj , σj
POPR

Pfj , σj
POCM

Memberj

Fig. 6. An instance of User Registration protocol (UReg) between jth group member
(j ∈ [1, k]) and ith server (i = 1 : N). When a group of profiles is registered (step 1),
servers increment the GID as well as jointly run mix-net to make a new shuffle of the

membership identifier set ∆ . The user obtains the group information (at step 3) from
all the servers and delivers the profile (at step 8) to all of them.

For every group of k users, servers shuffle the encrypted membership iden-

tifier set i.e., ∆ ( ∆ is generated in the initialization phase) through a
mix-net execution (step 1.2 of Figure 6). We remark that mix-net is only

run once for each group. Let ∆π = ( δπ(1) , ..., δπ(k) ) be the output of

mix-net where π indicates the permutation. Each server Si=1:N stores ∆π

in its local database. For the jth member of the group, each server Si=1:N

delivers the jth element of ∆π (i.e., δπ(j) ) to that user (step 2 of Figure 6).

Note that since mix-net preserves shuffle privacy, none of the servers knows
the permutation π and hence does not know which δ is given to which group
member. Thus, the private assignment of membership identifier is satisfied.

Additionally, shuffle verifiability of mix-net guarantees that ∆π is the cor-

rect permutation of ∆ (even in the presence of N − 1 corrupted servers).

• Each server Si=1:N sends GID and the membership identifier δπ(j) to the

user (step 3 of Figure 6).

User:

• The user obtains GID as well as δπ(j) from each server Si=1:N (step 3 of

Figure 6). If the GID and the ciphertext δπ(j) sent by all the servers are

identical (step 4 of Figure 6), user continues to the next step. Otherwise, an
equivocation from the server side is detected and user aborts.



Algorithm 1 PCreate(AttSet, δπ(j) )

1: BFj = {bj,i}i=1:p = BFCreate(AttSet)

2: Pfj = { Pfj,i } = {ReEnc(bj,i ∗ δπ(j) )}i=1:p

3: BFj = { bj,i }i=1:p = {Enc(bj,i)}i=1:p

4: σPOPRj = {NI-POPR( bj,i , {0, 1})}i=1:p

5: σPOCMj = {NI-POCM( bj,i , δπ(j) , Pfj,i )}i=1:p

6: return BFj , σ
POPR
j , Pfj , σ

POCM
j

• Profile creation and submission: The procedure of profile creation is shown
in Algorithm.1. The user inserts his set of attributes AttSet into a Bloom
filter data structure (line 1 of Algorithm.1). Then, the user multiplies each

element of BF with δπ(j) and re-encrypts the result (line 2 of Algorithm.1).

The resultant vector Pfj constitutes the profile of user. Additionally, the

user must create a proof asserting that the profile is well-formed. Namely,

the element of Pfj are either encryption of zero or the assigned δπ(j) . As

such, user performs the following.
1. The user encrypts his Bloom filter (line 3 of Algorithm.1). Then, for

every element of BFj , he creates a proof of plaintext range [0, 1] (line

4 of Algorithm.1).
2. Using proof of correct multiplication, the user proves that every element

of Pfj is the correct multiplication of the corresponding element in

BFj with δπ(j) i.e., Pfj,i = bj,i · δπ(j) (line 5 of Algorithm.1).

• Finally, the user submits BFj , Pfj together with the proofs

σPOPRj , σPOCMj to all servers (steps 7-8 of Figure 6).

Servers:

– Each server Si=1:N verifies the proofs σPOPRj , σPOCMj and accepts or rejects
accordingly (step 9 of Figure 6). If the verification is successful, servers insert

the profile together with its GID, and δπ(j) into their local databases.

Advertisement Registration: This protocol, given in Figure 7, is run between
the advertiser and all the servers to register an advertising request to the system.
They interact as follows.
Advertiser:

• Advertiser creates a Bloom filter from the set of attributes (denoted by
TAud) he seeks in his target users (steps 1-3). The target audience of the ad-
vertising request are the profiles which contain the conjunction of attributes



in TAud. Thus, if an advertiser wants to find users with attributes X OR
Y, he must split the request and submit it as two separate requests: one for
X and the other for Y.

• Let Req = {r1, r2, ..., rp} be the created Bloom filter (p is the size of Bloom
filter). The advertiser hands over Req as well as the product advertisement
(denoted by Product) to each server Si=1:N (step 4).

Servers:

• Servers assign a request number RID to the advertising request (step 5) and
return it to the advertiser (step 7). RIDs are assigned incrementally, thus,
servers keep track of the registered requests. RID shall be used to follow up
the advertising result.

• Each server Si=1:N inserts the advertising request, the product advertise-
ment, and the request number RID in its local database (step 6).

Si=1:N
5. RID=RID+1
6. DB. insert(RID, Req, Product)

1. Product= Select a product
2. TAud=Target attributes
3. Req=BFCreate(TAud)

4. Req, Product

7. RID

Advertiser

Fig. 7. Advertiser registration protocol (AdReg). The advertiser submits the request
to all the servers and gets an identical RID from all of them (we assume servers have
synchronized states).

Advertising Servers run this protocol for every unmatched pair of advertising
request and a group of profiles, and store the matching result in their databases.
Let GID and Req denote the group and the request that are to be matched,
respectively. Figure 8 exhibits the overall interaction of servers for the adver-
tising protocol. First, each server retrieves the profiles of the intended group,
i.e., Pf1, ..., Pfk and the request from its database (steps 1-2 of Figure 8). Next,
servers proceed with three main phases 1) Aggregation, 2) Distributed Decryp-
tion, and 3) De-aggregation/Matching. While phases 1 and 3 are non-interactive,
phase 2 requires servers interaction to run distributed decryption protocol. We
stress that both users and advertisers are offline during the matching
procedure, which is one of our main contributions.

1. Aggregation: Aggregation (step 4 of Figure 8) is run by each server locally.
Algorithm 2 summarizes the entire procedure. Let R be the indices of the
set bits in the advertising request as given in Equation 13.

R = {i|ri ∈ Req and ri == 1} (13)



1. {RID, Req, Product}=Retrieve Req from DB

2. Retrieve Pf1 , … , Pfk for group GID

3. R={i|Reqi == 1}

4. ϕ = Aggregate Pf1 , … , Pfk , Req

5. ϕ =DDec(dk1, … , dkN, ϕ )

6. Result=Match(ϕ, R , Thr, Δ = {δ1, … , δk})
7. If Result==yes

Advertise the product for the group

Si

𝑆𝑗≠𝑖

DDec

ϕ , 𝑑𝑘𝑖 ϕ , 𝑑𝑘𝑗

ϕ ϕ

Fig. 8. Advertisement protocol (Ad) to match an advertising request (Req) to a group
(GID). Si communicates with all the other servers at step 5 to execute distributed de-
cryption DDec protocol. All the servers run an identical set of instructions as indicated
for Si.

For each profile Pfj=1:k in the group, each server extracts the profile’s el-
ements in accordance to the index set R and then homomorphically sums
them up (step 3 of Algorithm 2). This is indicated in Equation 14.

φj =
∏
i=1:p

i∈R

Pfji =
∑
i=1:p

i∈R

bji · δπ(j) = δπ(j) ·
∑
i=1:p

i∈R

bji (14)

Pfji represents the ith element of the jth profile where i ∈ [1, p] and j ∈ [1, k].

Observe that the final summation i.e., φj embodies the multiplication of

the user’s membership ID i.e., δπ(j) with
∑
i∈R bji that is the sum of bit

values of the profile in accordance to the set R. Let αj denote
∑
i∈R bji

(Equation 15).

αj =
∑
i=1:p

i∈R

bji (15)

Thus, φj would be

φj = δπ(j) · αj (16)

After the computation of < φ1 , ..., φk >, each server aggregates them as

given in Equation 17 (line 5 of Algorithm 2). Let φ be the final aggregate.

Since all the servers hold a database with the same set of encrypted pro-

files, their local computation should all result in the same ciphertext φ .



Otherwise, an equivocation is detected.

φ =

k∏
j=1

φj =

k∑
j=1

δπ(j) ∗ αj (17)

Algorithm 2 Aggregate( Pf1 , ..., Pfk , Req)

1: R = {i|ri ∈ Req and ri == 1}
2: for j = 1 : k do

3: φj =
∏

i=1:p
i∈R

Pfji

4: end for
5: φ =

∏k
j=1 φj

6: return φ

2. Distributed Decryption: All the servers use their decryption key shares to

jointly decrypt φ through DDec protocol (step 5 of Figure 8). We use φ to

be the decrypted result as shown in Equation 18.

DDec(φ) = φ =

k∑
j=1

δπ(j) ∗ αj (18)

Recall that we employ a DDec algorithm which stands malicious parties. As
such, each server accompanies its computation result with a zero-knowledge
proof of correct decryption [18]. Thus, if a corrupted server attempts de-

crypting a ciphertext different from φ , or using a fake decryption key share

then its proof will not be validated by honest servers and the cheating server
is caught.

3. De-aggregation/Matching: Matching procedure is a non-interactive protocol
that each server runs individually (step 6 of Figure 8). Algorithm 3 illustrates
this procedure where the aim is to identify the total number of targeted
profiles from Φ. It starts by dividing φ with the first largest membership ID
namely, δk (line 3). The quotient of this division is equal to απ−1(k) where
π−1(k) indicates the index of a group member with the membership ID δk.
To realize why this is the case, let reformulate φ by extracting out the term
of δk (to be the largest δ) as in Equation 19.

φ

δk
=
δk · απ−1(k) +

∑k−1
m=1 δm · απ−1(m)

δk
(19)



Having known that αj=1:k values are bounded by p together with Equation
12, we derive the following inequalities:

k−1∑
m=1

δm · απ−1(m) <

k−1∑
m=1

δm · p < δk (20)

Relying on Equation 20, the quotient of division in Equation 19 would be
απ−1(k) and the remainder is

∑k−1
m=1 δm · απ−1(m).

If the quotient of division, i.e., απ−1(k) equals to |R| (line 3) then one match
is found in the group (line 4). This is true as explained next. First note that
απ−1(k) contains the sum of bit values of the Bloom filter of the π−1(k)th

group member in accordance to the index set R (also see Equation 15).
Hence, equality of |R| and απ−1(k) indicates that the number of the set
bits in the request (i.e., |R|) and the sum of the corresponding bits in a
profile i.e., απ−1(k) are equal. This happens only when a profile contains all
the attributes in the advertising request (i.e., every element of the profile
corresponding to the non-zero elements of the request is also non-zero).
The procedure continues by setting the value of φ to the remainder of the
division (line 6) and using the next largest δ as the divisor (line 2). At each
step, the matching of one group member is identified and augmented to the
total matches (line 4). If the number of matched users hits the threshold
(line 8), then the advertisement is served for the entire group, otherwise, the
group is skipped (lines 9-11).

Algorithm 3 Match(φ, |R|, Thr,∆ = {δ1, ..., δk})
1: count = 0
2: for δj ∈ ∆, j = k : 1 do
3: if Φ

δj
== |R| then

4: count = count+ 1
5: end if
6: φ = φ mod δj
7: end for
8: if Thr ≤ count then return Yes
9: else

10: return No
11: end if

Profile update: The profile update corresponds to replacing the existing profile
with a new one. The procedure is identical to the profile registration except that
servers do not redistribute membership identifiers and the updater uses his prior
identifier and remains in the same group. In fact, the user interacts with servers
by following only the steps 5-9 of Figure 6.

Performing profile update in a group-based advertising approach comes with
the security concern [8], where servers can analyze the group matching results



Overhead\Entity User Advertiser S1, ...SN
User Registration O(p · λ) - O(p · λ)

Advertisement - - O(k · |R|+N · λ)

(a) Privado Asymptotic Performance

Overhead\Entity User Advertiser Provider PSP

User Registration O(p) - - -

Advertisement - - O(k · |R|) O(k · |R|)

(b) PPAD [8] Asymptotic Performance
Table 1. Computation Complexity based on the group multiplications. k: number
of users per group. |R|: number of set bits in the advertising request. p: size of the
Bloom filter. N : the total number of servers. Advertiser registration does not involve
any cryptographic operation hence is not included in the tables.

before and after the update operation and hence identify which attributes are
modified in the updated profile. As an example, assume that an advertising
request targeting an attribute x had no target customer in a particular group.
Later on, a member of that group updates his profile. After that update, the
number of matched profiles (for attribute x) increases to one. Thus, it is revealed
that the updated profile contains attribute x.

To address this issue, we propose batch update, i.e., profile updates are ap-
plied when all the group members (of a single group) hand over at least one
update. Assume the jth member of the group wants to update his profile. He
runs PCreate algorithm (algorithm 1) over a new set of attributes. Let Opj
be the output tuple. User submits Opj to all the servers. Servers copy this up-
date in their databases but would not replace the old profile with this new one
(thus will not consider it for any advertising). Instead, servers wait until there
would be an update for every member of that group. Till then, the user may
attempt multiple updates and servers would only consider the latest one. Once
Op1, ..., Opk are received from all the k members of the group, servers replace
the all old profiles in that group with the updated ones. Henceforth, advertising
is run over the new set of profiles. Notice that from now on any changes that
happen to the group matching result (after the batch update) cannot be linked
to a particular group member since all of the group members updated their pro-
files (and by the minimal assumption, at least two updates were performed by
the honest members).

5 Complexity and Performance

5.1 Complexity

We demonstrate the computational complexity based on the number of group
multiplications. The complexity analysis are illustrated in Table 1.a.



User: User performs O(p) encryption operations to create BF and Pf as

part of his profile. Each encryption requires O(λ) group multiplications. Further,

for each element of BF and Pf , the user generates proof of plaintext range

and proof of correct multiplication. Each proof is of O(λ). Thus, the overall
running time complexity of user is O(p · λ).
Advertiser: An advertiser only creates a plaintext Bloom filter, hence carries
no cryptographic operations.
Servers: We analyze the running time complexity of servers for each protocol
separately as follows.

• User registration: During this protocol and for each group of profiles,
servers run mix-net to create a fresh permutation of the membership identi-
fier set. We use the verifiable shuffle scheme proposed by [38]. As such, in each
instance of mix-net, each server carries O(k · λ) operations (or equivalently
O(k·λk ) = O(λ) operations per group member).
Additionally, servers receive the encrypted profiles whose correctness must
be checked. That is, servers verify σPOPR and σPOCM that are generated for
p distinct elements of each profile. Verification of each proof incurs constant
overhead in λ. Thus, in total, profile verification costs O(p ·λ) at each server.
In total, O(p · λ) is the overhead of profile registration on each server.

• Advertising: In this protocol, servers locally compute the Φ value then

decrypt it. The computation of Φ requires (k · |R|) + k − 1 operations.

Then, each server uses its own share of the decryption key to decrypt Φ
which is done in O(λ). Additionally, each server must verify the computation
(decryption) of N − 1 other servers which results in O((N − 1) · λ) more
operations. In total, O(k · |R|+N ·λ) is a load of advertising on each server.
We emphasize that N adds only an additive overhead to the advertising
run-time.

5.2 Concrete Performance

We investigate the performance of Privado by simulating the advertising protocol
on a computer with an Intel Xeon 2.93 GHz CPU, 80GB RAM, and Ubuntu 16.4
operating system. We deploy Paillier encryption scheme with 2048 bit modulus.
Our performance results are taken using Fiat-Shamir heuristic implementation.

We generate 1000 random profiles with 400 attributes (based on our per-
sonal experience from Facebook advertising as well as due to [8], 400 attributes
are approximately the maximum number) as well as 100 advertising requests
with 30 random attributes (for randomly generated profiles, almost no match
is found for an advertisement with more than 30 attributes [8]). A Bloom filter
accommodating 400 attributes has a size of p = 6848. An advertising request
with 30 attributes contains 294 set bits in its Bloom filter representation (i.e.,
|R| = 294). We group the profiles using group sizes 2-20, create their encrypted
format and attempt to run advertising protocol over the resultant groups. The
results are shown in Figure 9.



The results assert that the server’s overhead linearly scales with the group size
and the number of servers. In particular, the group size impacts the server’s run-

ning time to aggregate a group of profiles, i.e., the computation of Φ , whereas

the number of servers influences the running time of decryption of Φ (during
which each server should verify the decryption integrity of N − 1 other servers).
Adding a new server to the system will increase the run time of each server by
30ms which is the time required to verify the decryption of one server.
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Fig. 9. Running time of servers in Advertising protocol over the different number of
servers and group sizes. N indicates the number of servers.

Recommended Number of Servers: In Privado, we utilize multiple
servers in order to provide better privacy for the users, i.e., the privacy holds
unless an adversary obtains control of all the servers. Thus, increasing the num-
ber of servers would make the job of the adversary harder (hence results in a
stronger privacy guarantee). In contrast, the number of servers negatively in-
fluences the advertising running time and degrades the performance. Thus, the
selection of N is a trade-off between privacy and performance. Note that, due to
the privacy concern, N cannot be less than 2. For any value of N greater than
2, the best candidate can be set according to the computational power of servers
and the desired performance. For instance, in a system with group size 11, if the
desired running time of advertising protocol is less than 400 milliseconds, then
the maximum value of N (which is the best for user privacy) would be 8 (in
Figure 9, the running time line of N = 8 is the closest line to the intersection of
group size 11 with the running time 400 milliseconds).

Privado vs PPAD: We compare the advertising running time of Privado
with PPAD [8]. For the results to be comparable, we deploy 2 servers for Privado
similar to PPAD. The computation complexity of PPAD is given in Table 1.b.



With respect to the computation complexity, both servers in Privado and
PPAD run an identical set of instructions to perform aggregation (computation

of Φ ) and decryption. However, in Privado, servers have to verify each others’
decryption results in order to provide security against malicious servers. In fact,
the additional term N ·λ in Table 1.a under the advertising row asserts this fact.
That is, each server of Privado has to carry O(λ) group multiplications to verify
the decryption result of another server.

The simulation results (shown in Figure 10) comply with the asymptotic
analysis. In order to clarify this observation, in Figure 10, we plot the run time of
Privado under both honest-but-curious (HbC) and malicious adversarial models.
In the HbC curve of Privado, we exclude the verification run time (i.e., servers
do not verify the ZKP of correct decryption of one another) assuming that they
all trustfully follow the protocol. As it is apparent from the graphs, PPAD and
Privado run identically in the HbC model. The malicious setting of Privado
imposes 30 ms to the total run time (that is the verification run time), which is
the time that each server spends to verify other server’s output. This difference
causes PPAD to be 1.2 times faster than Privado in the two-server setting. For
instance, under the group size 7, PPAD performs advertising in 140 ms whereas
Privado runs in 168 ms ( 168

140 = 1.2). But, we emphasize that this computational
cost has enabled Privado to stand a stronger adversarial model and deliver more
robust security guarantee for its users.
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6 Security

We analyze the security of Privado against an active adversary who controls at
most N−1 servers, k−2 users per group, and an arbitrary number of advertisers
(as discussed earlier, more than k− 2 colluding users per group cannot be made
secure by any technique, and clearly, if all servers are adversarial then privacy is
not applicable). We consider a malicious adversary which may refuse to follow
the protocols’ instructions and act in an arbitrary way. We present the security
definition of user privacy in Section 6.1 (originally proposed by [8]) and provide
a full security proof against this most powerful adversary in Section 6.2.

6.1 Security Definition

We utilize the following game to illustrate the formal definition of user privacy.
The game is played between an adversary and a challenger. The adversary directs
all the colluding malicious entities in the system i.e. N − 1 servers, k − 2 users
per group, and any number of advertisers. On the other hand, the challenger
controls the rest of parties which are honest, i.e., 2 of the group members, 1
server and some of the advertisers. In this game, the adversary selects two sets
of attributes for the honest users of a group and asks the challenger to register
the honest users using those sets. The challenger assigns the sets randomly to
the honest users and registers them accordingly. The adversary’s task is to guess
which attribute set is registered under which username. In secure group-based
advertising, the adversary would not be able to guess the correct assignment
with better than a negligible advantage. Thus, even though the adversary has
the power to know and even set the attributes of the two honest users, he cannot
decide which user has which attribute set.

Note that, this security definition perfectly copes with the security challenges
we discussed in Section 4.1. In particular, if the adversary manages to mount any
of those attacks, then it would be able to break this game. For example, if the
adversary manages to reuse one of the honest members profile for a corrupted
member (mount replay attack), then (as we explained in Section 4.1) this would
result in a specific pattern in the total number of target users of the group. As
such, adversary can precisely learn the assignment of attributes to honest users
and win the game. Therefore, the failure of the adversary in this game means
the resilient of the design against all those attacks.
We consider UPrivacyA(λ) a probabilistic experiment defined in terms of a game
played between adversary A and a challenger, as given below [8].



User privacy experiment UPrivacyA(λ):

1. Adversary and challenger are given the security parameter λ. They
execute the Initialization protocol.

2. Adversary registers k − 2 users to the group with the GID∗ to be
attacked. Subsequently, the challenger takes the role of the other two
users whose usernames are denoted by Uname0 and Uname1. This
step can be executed after step 4 as well.

3. Adversary outputs two attribute sets Att0 and Att1 to be assigned
to the two honest users in the group to be attacked.

4. Challenger selects a bit value b randomly. He assigns Attb and Attb̂
to Uname0 and Uname1, respectively. Finally, the challenger cre-
ates two profiles accordingly and runs the UReg (User Registration)
protocol on behalf of these two users together with the adversary.

5. challenger registers advertisers upon adversary’s request with the at-
tributes the adversary provides. This step can be run polynomially-
many times.

6. The advertising protocol is executed jointly by the challenger and the
adversary for polynomially many advertising requests.

7. The adversary outputs a bit b
′
. If b == b

′
then the output of the

experiment is 1 indicating that the adversary succeeds, otherwise it
is 0.

Definition 1. Privado protects user privacy against an active adversary if for
every PPT adversary A, there exists a negligible function negl(λ) where λ is
the security parameter such that:

Pr[UPrivacyA(λ) = 1] ≤ 1

2
+ negl(λ) (21)

6.2 Formal Security Proof

Proof Overview: Our proof consists of two parts. In the first part, illustrated
in Theorem 1, we show that breaking user privacy of Privado would compromise
the IND-CPA security of the underlying encryption scheme TEnc. This is done
through the construction of a simulator B which ties user privacy game to the
IND-CPA game. As the second part, we supply Theorem 2 in which we prove
that B runs indistinguishable from the real challenger due to the IND-CPA
security of the deployed encryption TEnc.

Note that in Privado, for efficiency, we deploy Fiat-Shamir heuristic to enable
non-interactive ZKPs for POPR, POCM and the proof system of the verifiable
shuffle scheme. Thus, the security of FRPOPR, FRPOCM , and FRV S are in the random
oracle model (and subsequently, the proof of Theorem 1). However, we emphasize
that our security proof also works intact in the standard model by utilizing
interactive ZKPs.



Theorem 1. Privado preserves user privacy as given in Definition 1, in
FRPOPR, FRPOCM , FRV S, FTHRES hybrid model, assuming that the TEnc encryp-
tion scheme is IND-CPA secure.

Proof: If there exists a PPT adversary A who breaks user privacy with ε(λ)
advantage, then we can construct a PPT adversary B who breaks the IND-CPA
security of TEnc with the same advantage. Let h ∈ [1, N ] be the index of the
honest server that is run by B whereas h̄ be the set of N−1 servers controlled by
A. B also simulates the ideal functionalities FRPOPR, FRPOCM , FRV S , and FTHRES .
B works as follows.

1. Simulator B engages with A to execute the initialization phase. B, receives
the encryption key pk and the security parameter 1λ from IND-CPA chal-
lenger. B, simulating FTHRES , waits to obtain (Si, Generate, 1

λ) message
from each server Si ∈ h̄ and then asks A for a randomness. Upon the re-
ceipt of randomness, B hands over pk (obtained from IND-CPA challenger)
to A. If A responds with continue, B proceeds with the rest of executions,
otherwise sends abort to Pi∈h∪h̄ and terminates.

Next, one of the servers namely Sj creates the membership identifiers and
their encryption. If Sj ∈ h̄ (controlled by A) then two situations may happen.
A either outputs the membership identifier set ∆ = {δi}i=1:k, its encryption

∆ = { δi = Enc(δi, ri)}i=1:k, together with the randomnesses {ri}i=1:k or
A outputs an empty set. In the former case, B verifies whether ∆ satisfies

Equation 12 and also whether ∆ is the correct encryption of ∆ using the

given randomnesses. If A outputs an empty set then B generates ∆ and ∆

by itself and communicates ∆ and ∆ and the encryption randomnesses to
Si∈h̄ to be verified by A.

2. (a) B and A run the mix-net. We assume shuffling starts from S1 and ends

with SN . The initial input to the mix-net is ∆π0
= ∆ . For every Si∈h̄,

A creates ∆πi
by shuffling and re-encrypting ∆πi−1

(πi−1 and πi are

the permutations of Si−1 and Si, respectively). A calls FRV S to prove the
correctness of its shuffle to every other servers including Sh. As such, A
sends ∆πi−1

, ∆πi
, and the witness ωi as the proof of correct shuffle to

FV S−R. A part of ωi includes the permutation πi (to indicate that ∆πi

is the correct shuffle of ∆πi−1
). This means that B while simulating

FRV S will learn this permutation. However, we remark that B will not
use this information. B simulates FRV S and verifies the proof correctness.
When the honest server Sh takes the turn, B simulates on behalf of it

as follows. B populates ∆πh
with k encryptions of a junk value δ′ i.e.,

∆πh
= { δ′ , ..., δ′ }. B delivers ∆πh

to Sh+1 (that is controlled by

A). B sends (proof, Sh, Si, (pk, ∆πh−1
, ∆πh

)) to each Si∈h̄ playing as



FRV S . If h = N then the honest server’s (B’s) output ∆πh
constitutes

the final output of the mix-net.

(b) A creates k−2 profiles on behalf of corrupted members. As such, A com-

municates BFj , and Pfj with Sh ( j indicates the index of corrupted

member). Also, A proves the correctness of profiles to Sh by invoking

FRPOPR and FRPOCM for every element of BFj and Pfj , respectively.

B shall act as FRPOPR and FRPOCM and verify the correctness of profiles.
Note that according to Equation 9, B while simulating FRPOPR, learns
the profiles of corrupted members. That is, for each encrypted element

bj,i=1:p of BFj (for each corrupted member j controlled by A), A
submits a witness ω to B which contains the corresponding plaintext bj,i
(together with the encryption randomness). This enables B to learn all
the bit value of the Bloom filter BFj .

3. A outputs two attribute sets Att0, Att1 to be used for the honest users.

4. B generates two Bloom filters out of Att0 and Att1 namely BF0 and
BF1. B sends M0 = {BF0, BF1} = {b0,1, ..., b0,p, b1,1, ..., b1,p} and M1 =
{BF1, BF0} = {b1,1, ..., b1,p, b0,1, ..., b0,p} to the IND-CPA challenger and

obtains C = { bb,1 , ..., bb,p , bb̂,1 , ..., bb̂,p } = { BFb , BFb̂ }. B homo-

morphically multiplies δ′ into each encrypted Bloom filter BFb and BFb̂

and constructs Pfb and Pfb̂ , respectively. B registers BFb , Pfb under

UName0 and BFb̂ , Pfb̂ for UName1. B acts as FRPOPR and FRPOCM to

prove the correctness of profiles to each server Si∈h̄. That is, for the jth

element of BFb i.e., b0,j where j ∈ [1, p], B sends (proof, UName0, Si,

(pk, BFb,j , [0, 1])) to each Si∈h̄. Also, for the jth element of Pfb B sends

(proof, UName0, Si, (pk, BFb,j , Cb, Pfb,j )) to each Si∈h̄. B acts similarly

for UName1, BFb̂ and Pfb̂
5. A and B start registering arbitrary advertising requests to the system.

6. A invokes the advertising protocol for an arbitrary advertising request Req.
This step can be repeated polynomially many times. B computes the aggre-

gation as Φ based on the registered profile. Next, B, simulating FTHRES ,

waits for all the other servers Si∈h̄ to request decryption of Φ to compute
the decryption result. Observe that B does not own the decryption power so
cannot execute decryption. However, in step 2.b, B acting as FRPOPR could
learn the content of corrupted users’ profiles. Also, B knows the content of
honest users profiles due to step 3. Thus, B can craft the decryption re-
sult i.e., Φ on its own. As such, B first computes the matching results of
corrupted members i.e., α3,...αk using the Bloom filters extracted in step 2
(αis is defined in Equation 15). Then, B calculates the individual match-
ing results of the honest members i.e., α1 and α2 based on BF0 and BF1,
respectively. B needs to associate each matching result with a membership



identifier (as given in Equation 17). Therefore, B shuffles ∆ under a random
permutation π and associates jth element of ∆π i.e., δπ(j) with the jth group
member. B performs shuffling only once and then keeps using the same as-
signment for the rest of advertising requests. B outputs the aggregate value
Φ as

∑
j=1:k δπ(j) · αj .

Note that B acting as FTHRES is supposed to perform decryption of a ci-
phertext (i.e., encrypted aggregation) upon the request of all the N servers.
Thus, B would only attempt decryption of ciphertexts that are agree with
its own (i.e., the honest server’s) local computations for which B knows the
corresponding plaintext. Thus, B is always able to make a correct decryption
indistinguishable from FTHRES . If A sends a decryption request for an ar-
bitrary ciphertext which does not correspond to any aggregation computed
by B, then B would never decrypt it.

7. A outputs a bit value b′. B delivers the same value to the IND-CPA chal-
lenger.

B carries polynomial operations at each step hence runs in polynomial time.
Also, B simulates user privacy game to A indistinguishable from the original
game as discussed next. Steps 1 is done as instructed in the real protocol. In
step 2, B replaces all the membership IDs i.e., δ1, ..., δk with δ′ which remains
unnoticed to A due to the IND-CPA security of the encryption scheme (this is
formally proven in in Theorem 2). Step 3 is run as expected. In step 4, B creates
the content of the two honest users flawlessly. Though, B does not know the real

content of BFb and BFb̂ to generate the profile correctness proof, B itself

simulates FRPOPR and FRPOCM which enable him to approve to the adversary
A that the profiles of honest members are constructed appropriately. Step 5 is
executed as expected. In step 6, the decrypted aggregate value Φ constructed
by B is certainly admissible to A since the decryption is modeled by the ideal
functionality FTHRES .

Notice that the execution of the protocol at steps 1-3 and 5 convey no useful
information regarding the attribute assignment of the honest members. This
is the case since the simulator B uses identical membership identifiers δ′ for
all the group members including the honest ones. Thus, the only way to learn
which attribute is assigned to which honest member is through the content of
registered profiles. This should not be possible as the utilized encryption scheme
is IND-CPA secure i.e., the profiles reveal no information about the underlying
attributes. Hence, if A guesses bit b′ with non-negligible advantage, the IND-
CPA security of the underlying encryption is broken. In particular, the output
bit b′ asserts that Attb′ is assigned to UName0 i.e., BFb′ is used in UName0

registration. Recall that the profile of UName0 is constructed based on the
first part of IND-CPA challenger’s output. Therefore, the IND-CPA challenger’s

output must be the encryption of Mb′ i.e., { BFb′ , BFb̂′ }. Assuming that A
has non-negligible advantage ε(λ) in winning the user privacy game, then B
by outputting the same b′ also breaks the IND-CPA game with non-negligible



advantage ε(λ). This is a contradiction with the initial assumption stated in
Theorem 1. Thus, ε(λ) is negligible. �

As for the indistinguishability of {δ′, ..., δ′} from real membership IDs i.e.,
{δ1, ..., δk} in the mix-net execution, we construct a modified simulator B′ which
runs identical to B except that at step 3.a, during the mix-net execution, it uses
the real membership identifiers. In particular, B′ executes step 2.(a) honestly
(not with the junk identifiers).

Next we prove that A cannot distinguish its interaction with B and B′ unless
the underlying encryption scheme is not IND-CPA secure. Let UPrivacyA,B′(λ)
indicate the user privacy experiment run between A and B′.

Theorem 2. In FRPOPR, FRPOCM , FRV S, FTHRES hybrid model and assuming
that the TEnc encryption scheme is IND-CPA secure then

|Pr[UPrivacyA,B(λ) = 1]− Pr[UPrivacyA,B′(λ) = 1]| < negl(λ) (22)

Proof: If A can distinguish between its interaction with B and B′ with non-
negligible advantage ε′, i.e.,

|Pr[UPrivacyA,B′(λ) = 1]− Pr[UPrivacyA,B(λ) = 1]| = ε′ (23)

then we can construct an adversary D who can break the IND-CPA security of
the encryption scheme with ε′ advantage. D interacts with A as below.

1. D runs identical to B.
2. (a) D and A run the mix-net. Shuffling starts from S1 and ends with SN .

For every Si∈h̄, A sends ∆πi−1
and ∆πi

(πi−1 and πi are the per-

mutations of Si−1 and Si, respectively) together with a witness ωi as
the proof of correct shuffle to FV S−R. D simulates FRV S and verifies
the proof. When Sh takes the turn, D simulates on behalf of it as fol-
lows. D selects a random permutation πh and permutes the plaintext
∆ as ∆πh

= {δπ(1), ..., δπ(k)}. D constructs M0 = {δπ(1), ..., δπ(k)} and
M1 = {δ′, ..., δ′} and hands over to the IND-CPA challenger. δ′ is a junk
identifier. As the result, D receives ciphertext C = {C1, ..., Ck}. He sends

∆πh
= {C1, ..., Ck} to Sh+1 (that is controlled by A). D simulates FRV S

and approves the correctness of ∆πh
to A.

(b) A registers k − 2 users into the system. D acts identical to B. Recall
that in this step, B will learn the content of registered profiles i.e.,
BF3, ..., BFk.

3. A outputs two attribute sets Att0 and Att1.
4. D generates two Bloom filters out of Att0 and Att1 namely BF0 =

{b0,1, ..., b0,p} and BF1 = {b1,1, ..., b1,p}. He constructs Pf0 using BF0 and

the membership ID C1, and Pf1 using BF1 and the membership ID C2.

Next, D flips a coin b← {0, 1} and registers BFb , Pfb under UName0 and

BFb̂ , Pfb̂ for UName1. Then, D acts as FRPOPR and FRPOCM to prove the



correctness of profiles to each server Si∈h̄. That is, for the jth element of BFb

i.e., b0,j where j ∈ [1, p], D sends (proof, UName0, Si, (pk, BFb,j , [0, 1]))

to each Si∈h̄. Also, for the jth element of Pf0 D sends (proof, UName0,

Si, (pk, BFb,j , Cb, Pfb,j )) to each Si∈h̄. D acts similarily for UName1,

BFb̂ and Pfb̂ .

Observe that in the view of adversary A, D runs this step the same as B
(since similar to B, D also ends up with a random assignment of profiles to
the honest users).

5. D and A register their own advertising requests.
6. A invokes the advertising protocol for an arbitrary advertising request Req.
D acts the same as B.

7. A outputs a bit value b′. If b == b′ then D outputs 0, otherwise 1.

Clearly, D operates in polynomial time. D simulates indistinguishable from
the real challenger (as well as indistinguishable from B) in user privacy game.
All the steps are run identical except the shuffle operation. If the bit choice of

IND-CPA challenger is 0 then D receives C = { δ1 , ..., δk }. In such case, the

view of A is identical to its interaction with B′. If C = { δ′ , ..., δ′ } then A
experiences an interaction with B. According to Equation 23 we have:

ε′(λ) =|Pr[UPrivacyA,B′(λ) = 1]− Pr[UPrivacyA,B(λ) = 1]|

|Pr[b == b′|C = { δπ(1) , ..., δπ(k) }]− Pr[b == b′|C = { δ′ , ..., δ′ }]| =

|Pr[D outputs 0|M = M0]− Pr[D outputs 0|M = M1]| =
|Pr[output(PubKCPA

D,TEnc(λ, 0)) = 0]− Pr[output(PubKCPA
D,TEnc(λ, 1)) = 0]|

The last equality holds due to IND-CPA security of TEnc (Equation 5). If ε′(λ)
is non-negligible, then D can break the IND-CPA security of TEnc with the
non-negligible advantage. This yields to a contradiction with Theorem 2. Thus,
ε′(λ) is negligible which implies that A cannot distinguish its interaction with
B and B′. �

7 Related Works

In this section, we describe the related works and compare them with Privado.
We first discuss PPAD [8] as our main counterpart. Then, we additionally inves-
tigate four other different areas that are the most similar to the present context
and identify their shortcomings when applied to the OSN advertising scenario.
PPAD: Privacy-Preserving Group-Based Advertising in Online So-
cial Network: PPAD is a secure advertising system which deploys group-based
matching notion and makes use of two servers called the OSN server and the Pri-
vacy Service Provider (PSP). PPAD satisfies advertising transparency as well as
provable user privacy. However, it has two main shortcomings. Firstly, in PPAD,



the data decryption power is given to the PSP, and hence user privacy is tied to
the fact that the OSN provider would not be able to corrupt that single PSP.
This is a huge trust assumption to be placed on a single party and might be
very hard to achieve in real life. Secondly, the adversary is an honest but curious
entity which is supposed to precisely follow the protocol descriptions.

Secure Online Behavioral Advertising Systems (SOBA): In SOBA, a
server named broker is connected to a set of web page owners. As users visit
different web pages, the web page owners communicate this data with the broker.
The broker then is able to create a behavioral profile for each user according to
the visited web pages. The advertising companies pay to the broker to gain users
profiles and be able to advertise for their target users on the web pages. The
proposals in the context of SOBA are not applicable to the OSN advertising due
to the lack of advertising transparency [4, 23, 46] and provable security [16].

Server Aided Private Set Intersection (S-PSI): In an S-PSI protocol,
two parties, holding their own private sets of elements, are willing to compute
their sets’ intersection with the help of a third server. In this context, solutions
either violate the advertising transparency [30, 29, 25, 37] or when transplanted
in the OSN advertising they fall short in providing user privacy (as we define in
advertising context) [29, 48]. In fact, PSI protocols usually make two assumptions
that conflict with our required features: 1- they assume that the data holders can
directly communicate some secret information unbeknown to the server which
is against advertising transparency 2- they assume that set holders and the
server are mutually untrusted and non-colluding [36, 40] whereas in our setting
advertiser (one of the set holders) is cooperating with the server. Moreover, none
of the prior PSI protocols offer a group-based method (matching multiple sets
with one) and such an extension is not trivial.

Public Key Encryption with Keyword search (PEKS): PEKS is an at-
tempt to outsource searching over data that is encrypted using a public key
system. Encrypted data is usually outsourced to an external server who is re-
sponsible to respond to the data owner’s search queries. The first issue with
PEKS solutions is that they achieve privacy by assuming that the querier and
the server are not colluding. This is in contradiction to our assumption (ad-
vertiser and server collude). Server and querier collusion enables keyword guess
attack [19, 21, 49, 7, 32] which is against user privacy in the advertising scenario.

Server Aided Two/Multi-Party Computation (S-2PC/MPC): In S-
2PC/MPC protocols two/multiple parties holding their own private data wish to
compute a function of their inputs by the help of server(s). Parties only learn the
output of function and nothing else. The main issue in S-2PC protocols is that
the two parties are required to be online and involved per function evaluation to
communicate some secret information [26, 28, 20, 33, 24, 9, 5]. This is in contrast
to the advertising transparency. Moreover, the data holders are not supposed
to collude with the server [47, 10] which is not the case in our setting. Indeed,
the collusion of servers with any of the parties would violate our defined user
privacy.



8 Conclusion

In the secure proposals of online social networks, users encrypt their data before
sharing with OSNs. Data encryption blocks accessibility to the plaintext profiles,
disabling the advertising service. To address this problem, we proposed Privado
as a privacy-preserving group-based advertising system for secure OSNs. Our
design is comprised of N servers each provided by an independent authority.
We utilized the group-based advertising notion to enable user privacy, i.e., to
hide the identity of the exact target customers. As such, users are divided into
groups of size k at the registration time and then submit their profiles in an
encrypted format. Advertisers submit their requests as plaintext. Servers find the
target groups for the advertising requests. User privacy (i.e., the unlinkability of
group matching result to the individual group members) is preserved against a
malicious adversary who corrupts N−1 servers, k−2 members of each group and
any number of advertisers. We formally defined and proved user privacy. Our
advertising scheme enjoys advertising transparency where the entire process of
matching groups to the advertising requests are done independent of users’ and
advertisers’ collaboration. We performed experimental simulations and measured
the advertising running time over a various number of servers and group sizes.
We additionally discussed the optimum value of N , the number of servers, with
regard to user privacy and advertising running time.
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