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Abstract. We initiate the study of indifferentiability for public key en-
cryption and other public key primitives. Our main results are definitions
and constructions of public key cryptosystems that are indifferentiable
from ideal cryptosystems, in the random oracle model. Cryptosystems
include:
– Public key encryption;
– Digital signatures;
– Non-interactive key agreement.

Our schemes are based on standard public key assumptions. By being
indifferentiable from an ideal object, our schemes automatically satisfy a
wide range of security properties, including any property representable
as a single-stage game, and can be composed to operate in higher-level
protocols.
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1 Introduction

When designing a cryptographic system, it is difficult to predict how it will be
used in practice and what security properties will be required of it. For example,
if the larger system produces certain error messages, this can lead to chosen ci-
phertext attacks [6]. Perhaps a message is encrypted using random coins which
themselves are derived from the message, as is used for de-duplication [30].
Maybe the secret key itself will be encrypted by the system, as is sometimes
used in disk encryption. Or perhaps there was bad randomness generation on
the hardware device, leading to secret keys or encryption randomness that is
low-entropy or correlated across many instances.

Cryptographers have devised different security models to capture each of the
scenarios above and more, each requiring different constructions to satisfy. How-
ever, seldom are these different security models considered in tandem, meaning
that each application scenario may require a different scheme. Even worse, there
are many potential security models that have yet to be considered; after all, it is
difficult to predict the various applications devised by software developers that
may deviate from the existing provably secure uses.

With the above in mind, our goal is to develop a single construction for a
given cryptographic concept that simultaneously captures any reasonable secu-
rity property and can be composed to work in any reasonable larger protocol.
As such, only a single instance of the scheme needs to be developed and then
deployed in a variety of use cases, even those that have not been discovered yet.
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Ideal Hash Functions: The Random Oracle Model. Our inspiration will be the
random oracle model (ROM) [4], a common heuristic used in cryptography. Here,
a hash function is assumed to be so well designed that the only reasonable attacks
simply evaluate the hash function as a black box and gain nothing by trying to
exploit the particular design. To capture this, the hash function is modeled as a
truly random function, accessible by making queries to the function.

A random oracle truly is the “ideal” hash function: it is trivially one-way
and collision resistant, the standard security notions for hash functions. But it
is also much stronger: it is correlation intractable [9], a good extractor even for
computational sources, and much more. When used in a larger system, random
oracles can yield provably secure schemes even when standard security properties
for hash functions are insufficient. In fact, the most efficient schemes in practice
are often only known to be secure using random oracles. As such, the ROM is
ubiquitous in cryptography.

Other idealized models have been studied before. Examples include the the
ideal cipher model [27], the generic group model [28], and more recently ideal
symmetric key encryption [2]. However, no prior work considers idealized models
for public key cryptosystems.

Ideal Public Key Cryptosystems. In this work, we define and construct the first
ideal public key cryptosystems such as public key encryption and digital sig-
natures. By being ideal, our schemes will immediately satisfy a wide class of
security properties, including most studied in the literature. Our schemes will
be proven to be ideal in the random oracle model using Maurer’s indifferentia-
bility framework [22], under general computational assumptions. We also show
that certain classic relations among cryptographic objects also hold in the ideal
setting, while discussing cases where such relations fail.

Our goal comes with interesting challenges: on one hand, public key schemes
tend to require number-theoretic structure in order to attain the necessary func-
tionality. On the other hand, ideal schemes by definition have essentially no
structure. Therefore, our results require novel techniques, including bringing in-
differentiability into the public key setting.

1.1 What Is An Ideal Public Key Scheme?

Now, we turn to our results. Our first result is to define, precisely, what an
“ideal” public key cryptosystem is. For simplicity, in the following discussion,
we will consider the case of two-party non-interactive key exchange (NIKE). Such
a scheme consists of two algorithms. KEYGEN is a key generation algorithm run
by each of two users. We will adopt the convention that the input to KEYGEN
is the user’s secret key SK, and the output is the corresponding public key PK.
The two users then exchange their public keys. They then run SHAREDKEY to
extract a common shared key. SHAREDKEY will take as input the public key
for one user and the secret key for the other, and output a shared key K. The
correctness requirement is that both users arrive at the same key:

SHAREDKEY(PK1,SK2) = SHAREDKEY(PK2,SK1)
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whenever PK1 = KEYGEN(SK1) and PK2 = KEYGEN(SK2).
Any NIKE scheme will have the syntax above and the same correctness

requirement. On the other hand, any given NIKE scheme may have additional
structural properties that make it insecure in certain settings. For example, if
multiple shared keys are generated using the same public key PK for a given user,
the resulting shared keys may be correlated in some algebraic way. In order to be
secure in the widest variety of settings, an ideal NIKE scheme should therefore
not have any such additional structure over the minimum needed to ensure
correctness.

In the case of existing idealized models, the idealization is simply a uniformly
random choice of procedures subject to the mandatory correctness requirements.
For example, a hash function has no correctness requirement except for deter-
minism; as such its idealization is a random oracle. Likewise, a block cipher must
be a (keyed) permutation, and the decryption functionality must be its inverse.
As such, the ideal cipher is a random keyed permutation and its inverse.

Therefore, the natural way to model an ideal NIKE scheme is to have all
algorithms be random functions. Of course, the correctness requirement means
that there will be correlations between the algorithms. We take an ideal NIKE
scheme to be two oracles KEYGEN, SHAREDKEY such that:

– KEYGEN(SK) is a random injection;
– SHAREDKEY(PK,SK) is a random function, except that SHAREDKEY(PK1,

SK2) = SHAREDKEY(PK2,SK1) whenever PK1 = KEYGEN(SK1) and PK2 =
KEYGEN(SK2) 3.

We emphasize that all functions are public and visible to the attacker and the
formal definition for ideal NIKE is given in section 3.1.

1.2 Indifferentiability

Of course, just like a random oracle/generic group/ideal cipher, ideal NIKE
cannot exist in the real world. This then begs the question: how do we design
and rigorously argue that a NIKE scheme is so well designed that it can be
treated as an ideal NIKE scheme in applications?

Barbosa and Farshim [2] offer one possible answer. They build a symmetric
key encryption scheme from a hash function. Then, they show, roughly, that if
the hash function is ideal (that is, a random oracle), then so is their encryption
scheme. Our goal in this work will be to do the same for public key schemes:
to build an ideal NIKE scheme assuming that a hash function H is a random
oracle.

As in [2], formal justification of ideal security requires some care. Suppose we
have a construction of an ideal NIKE scheme (KEYGEN,SHAREDKEY) in the
random oracle model, meaning each of the algorithms makes queries to a random
function H. In the case where H is hidden to the adversary, such a construction is

3 By the injectivity of KEYGEN, this is still a well-defined function.
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almost trivial, and would essentially reduce to building symmetric key encryption
from a PRF. However, Maurer [22] observed that this is not enough, since H is
a public function and the adversary can query H as well.

Clearly, any construction (KEYGEN,SHAREDKEY) will now be distinguish-
able from the idealized algorithms, since the adversary can evaluate the al-
gorithms for himself by making queries to H, and checking if the results are
consistent with the oracles provided. Instead, what is needed is Maurer’s no-
tion of indifferentiability, which says that when (KEYGEN,SHAREDKEY) are
ideal, it is possible to simulate H by a simulator S which can make queries to
(KEYGEN,SHAREDKEY). In the real world, (KEYGEN,SHAREDKEY) are con-
structed fromH per the specification. In the ideal world, (KEYGEN,SHAREDKEY)
are the idealized objects, and H is simulated by making queries to the ideal ob-
jects. Indifferentiability requires that the two worlds are indistinguishable to an
adversary that gets access to all the oracles.

Maurer shows that indifferentiability has many desirable properties: it com-
poses well and will be as good as the ideal object in many settings (see Section 1.3
below for some limitations).

Therefore, our goal will be to build NIKE which is indifferentiable from ideal
NIKE in the random oracle model. As indifferentiability has mostly been used
in the symmetric key setting, this will require new techniques to bring indiffer-
entiability into the public key world. Indeed, most works on indifferentiability
build ideal objects with minimal correctness requirements: none in the case of
random oracles, and bijectivity/injectivity in the case of ideal ciphers/symmetric
key encryption. The case of public key cryptosystems requires significantly more
structure for correctness. In fact, we face an immediate theoretical barrier: Im-
pagliazzo and Rudich[19] demonstrate that a random oracle is incapable of con-
structing something as structured as public key encryption, even ignoring the
strong indifferentiability requirement.

Instead, we will obtain our needed structure using public key tools. However,
public key tools come with too much structure: every term has an algebraic
meaning which is not present in the idealized setting. Therefore, our goal will
actually be to employ a novel combination of public key techniques together with
random oracles in order to eliminate this extra structure. The result will be an
indifferentiable NIKE scheme.

1.3 Discussion

Limitations. Before giving our constructions in detail, we briefly discuss limita-
tions. Most importantly, idealized cryptosystems do not exist in the real world.
Even more, Canetti, Goldreich, and Halevi [9] demonstrate that no concrete in-
stantiation in the standard model is “as good as” an ideal object. Therefore,
idealizations of cryptographic primitives are only heuristic evidence for security.

Nevertheless, the counter-examples are usually somewhat contrived, and do
not apply in typical real-world settings. Indeed, in the case of hash functions,
significant resources have been invested in analyzing their security, and the best
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attacks typically treat the hash function as a random oracle4. As such, the
random oracle appears to be a reasonable approximation to the real world in
most settings. By building schemes from such strong hash functions and proving
security using indifferentiability, such schemes are essentially “as good as” the
ideal schemes, assuming the underlying hash function is ideal.

In fact, the random oracle model is widely used for the construction of new
cryptosystems, as it allows security to be justified where no obvious concrete
security property for hash functions would suffice. In these cases, the system is
typically proven to satisfy the single security property considered. In our case,
we are able to rely on the same heuristic treatment of hash functions, and attain
ideal security.

Now, Ristenpart, Shacham, and Shrimpton [24] demonstrate the limitations
of the indifferentiability framework. In particular, they show that indifferen-
tiability is insufficient for proving security properties defined by multi-stage
games. While this potentially precludes certain applications, indifferentiability
is still sufficient to prove many security properties such as CCA-security, key-
dependent-message and circular security in restricted settings (see [2] for dis-
cussion), bounded leakage resilience, and more. We also note that if all but one
of the stages are independent of the ideal primitives, then indifferentiability is
sufficient. This captures, for example, the usual modeling of deterministic public
key encryption in the random oracle model [3]. Even more, in the case where
multiple stages depend on the ideal primitives, Mittelbach [23] shows that indif-
ferentiability is sufficient in some settings.

We leave as an interesting direction for future work building ideal public key
schemes that can be proven secure in stronger models of indifferentiability such
as reset indifferentiability [24] or context-restricted indifferentiability [21].

Relationship to Universal Composability. There are some parallels between our
idealized cryptosystems and universal composability (UC) [8]. Both seek to define
an “ideal” object for a given cryptographic concept. Both consider composition,
using one ideal functionality to build another. Both use a simulation to define
security and composition.

However, the two notions are also fundamentally different. In UC, an ideal
functionality is specified by considering how a trusted third party would solve a
given cryptographic task. Then the actual protocol “emulates” this ideal through
an interactive protocol. For example, the cryptographic task solved by encryption
is simply private communication, and as such the ideal functionality is more or
less message passing.

In contrast, in our setting, rather than consider the abstract task such as
message passing, we consider the cryptographic abstraction of solving such a
task concretely. So we consider, for example, public key encryption rather than
the task of private communication. The ideal public key encryption scheme is
then a random choice of functions, subject to the constraints imposed by the

4 Of course, there are several exceptions, for instance, the length-extension attacks
against various Merkle-Damgard-based hash functions, such as SHA-2 or MD5.
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correctness requirements. The main benefit of our approach is that we naturally
handle a much wider set of use cases such as key-dependent message security
and weak/non-existent randomness; there is no natural way to model these use
cases in the UC framework.

1.4 Constructing Ideal NIKE

We now turn to our constructions. Our goal will be to combine a standard model
NIKE (keygen, sharedkey) — one with concrete mild security properties that
are easy to instantiate — with random oracles to obtain an ideal model NIKE
(KEYGEN,SHAREDKEY).

Making KEYGEN indifferentiable. First, we will focus just on KEYGEN, which
on its own must be indifferentiable from a random injection. Of course, we could
just set KEYGEN to be a random oracle5, but we want to somehow incorporate
keygen so that it can provide the structure needed when we turn to construct
SHAREDKEY. Nevertheless, a random oracle (or some other idealized object)
is needed somewhere in the construction. As a first attempt, we could consider
defining KEYGEN(SK) = H(keygen(SK)), hashing the output of keygen to elim-
inate any structure on the public keys. This, unfortunately, does not work. For
example, keygen may not be collision resistant, and any collision for keygen will
therefore give a collision for KEYGEN. The resulting KEYGEN would then clearly
be distinguishable from a random function without even making queries to H.

Attack 1. Even if we assume keygen was collision resistant, the scheme would
still not be indifferentiable. Indeed, the attacker can query KEYGEN(SK), eval-
uate pk = keygen(SK) for itself, and then query H on pk. The simulator now
has to simulate H, and for indifferentiability to hold it must know how to set
H(pk) = KEYGEN(SK). However, the simulator only gets to see pk and some-
how must query KEYGEN on SK. Extracting SK from pk involves breaking the
original NIKE, which is presumably intractable.

A different approach would be to define KEYGEN(SK) = keygen(H(SK)).
The problem here is that keygen may output very structured public keys, which
are clearly distinguishable from random. One possibility is to assume keygen has
pseudorandom public keys; that is, that keygen applied to uniformly random
coins gives a pseudorandom output.

Attack 2. However, we still have a problem. Indeed, suppose the adversary
queries KEYGEN(SK), which in the ideal world will give a random string. Then
the adversary queries H(SK). In the ideal world, the simulator must set H(SK) =
r such that keygen(r) = KEYGEN(SK). This may be flat out impossible (in the
case where the range of keygen is sparse), and at a minimum requires inverting
keygen, again breaking the security of the NIKE scheme.

A third approach which does work is to combine the two: KEYGEN(SK) =
H1(keygen(H0(SK))). Now both H0, H1 are random oracles that are simulated by

5 By having the random oracle be sufficiently expanding, it will be an injection with
high probability.
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the simulator. This actually gives indifferentiability: when the adversary queries
H0(SK), the simulator will program H0(SK) = r for a randomly chosen r. Then
it will program H1(keygen(r)) = KEYGEN(SK) by querying KEYGEN. The only
way a problem can arise is if the input keygen(r) was already programmed in
H1. All that we need to exclude such a possibility is that keygen is well-spread:
that the distribution of outputs given a uniformly random input has high min-
entropy. This follows easily from the security of the NIKE protocol.

The takeaway from the above discussion is that inputs and outputs for a
standard-model scheme must be processed by idealized objects; this is the only
way that the simulator can obtain enough information to be indifferentiable.

Making SHAREDKEY indifferentiable. Next, we move to define SHAREDKEY in
a way to make the joint oracles (KEYGEN,SHAREDKEY) indifferentiable from
an ideal NIKE protocol.

Unfortunately, we immediately run into problems. We somehow need to de-
sign the shared-key algorithm SHAREDKEY to take as input one public key
PK1 = H1(keygen(H0(SK1))), as well as another secret key SK2. It will out-
put a shared key K. Importantly, we need to maintain the correctness re-
quirement that SHAREDKEY(PK1,SK2) = SHAREDKEY(PK2,SK1) whenever
PK1 = KEYGEN(SK1) and PK2 = KEYGEN(SK2).

Guided by Impagliazzo and Rudich’s [19] barrier, we cannot rely on the
functionalities of the random oracles H0, H1 for this. Instead, we must use the
functionality provided by (keygen, sharedkey). However, sharedkey expects output
from keygen, and this value has been completely scrambled by the hash func-
tion H1, which is un-invertible. Therefore, SHAREDKEY has no way to apply
sharedkey in a meaningful way.

So we need some way to preserve the structure of the output keygen while
still allowing for an indifferentiability proof. But at the same time, we cannot
just expose the output of keygen in the clear, as explained above.

Our solution is to replace H1 with a random permutation P such that both
P and P−1 are publicly accessible (we discuss instantiating the random permu-
tation below). We then have that

KEYGEN(SK) = P−1(keygen(H0(SK)))

Then we can define SHAREDKEY(PK,SK) = sharedkey(P (PK), H0(SK)). Note
that, defining SHAREDKEY in this way achieves the desired correctness guaran-
tee, which follows simply from the correctness of (keygen, sharedkey).

Attack 3. However, by allowing the permutation P to be invertible, we have
invalidated our indifferentiability proof above for KEYGEN. Suppose for example
that keygen’s outputs are easily distinguishable from random. Then an attacker
can compute PK = KEYGEN(SK), and then query P on either PK or a random
string r. In the case of a random string, P (r) will itself be essentially a random
string. On the other hand, P (PK) will be an output of keygen, and hence dis-
tinguishable from random. The problem is that the simulator defining P−1 only
gets to see r and has no way to know whether r came from KEYGEN or was
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just a random string. Therefore, the attacker can fool the simulator, leading to
a distinguishing attack.

To avoid this problem, we will assume the standard-model NIKE protocol
has pseudorandom public keys. In this case, the simulator will always respond to
a P using a fresh random output of keygen. In the case where the query to P was
on a random r, the result will look random to the adversary. On the other hand,
if the query was on a PK = KEYGEN(SK), the simulator is ready to program
any subsequent H0(SK) query to satisfy P (PK) = keygen(H0(SK)).

Attack 4. Many more problems still arise, similar to the problems above faced
when trying to define KEYGEN(SK) = keygen(H(SK)). Namely, the adversary
could first call the query k = SHAREDKEY(PK′,SK), which in the ideal world
will give a random string. Then the adversary makes queries to P,H0 and com-
putes sharedkey(P (PK′), H0(SK)) for itself. In the ideal world, the simulator must
set P (PK′) = r and H0(SK) = s such that sharedkey(r, s) = k. But this in-
volves inverting sharedkey on k, which may be computationally infeasible. Worse
yet, the adversary could do this for PK′1, . . . ,PK′` and SK1, . . . ,SK`, obtaining
`2 different random and independent ki,j values from SHAREDKEY by consid-
ering all possible PK′i,SKj pairs. The simulator then needs to somehow find
r1, . . . , r`, s1, . . . , s` such that sharedkey(ri, sj) = ki,j , where ki,j are each ran-
dom independent strings. This is clearly impossible for large enough `, since it
would allow for compressing an O(`2)-bit random string into O(`) bits.

Our solution is to apply one more hash function, this time to the output
of sharedkey: SHAREDKEY(PK1,SK2) = H1(sharedkey(P (PK1), H0(SK2))). Now,
all we need is that sharedkey(ri, sj) are all distinct for different i, j pairs, which
follows with high probability from the security of the NIKE scheme. Then we
can simply program H1(sharedkey(ri, sj)) = ki,j .

Attack 5. This construction unfortunately is still insecure: the adversary first
samples sk1 and SK2, then it queries PK2 = KEYGEN(SK2), pk2 = P (PK2), then
calculates k = sharedkey(pk2, sk1) and queries H1(k). After that, the adversary
calculates pk1 = keygen(sk1), and queries PK1 = P−1(pk1). Next it calls k′ =

SHAREDKEY(PK1,SK2) and finally tests k′
?
= H1(k). In the real world, the test

always passes, while to achieve indifferentiability, the simulator has to output
a proper H1(k). Unfortunately, until the query H1(k), simulator knows nothing
of (sk1,SK2) (it only has KEYGEN(SK2)), which means that it cannot program
H1(k) to be k′. Therefore test fails with overwhelming probability in the ideal
world. To get prevent this attack, we present our final construction:

SHAREDKEY(PK1,SK2) = H1({PK1,PK2}, sharedkey(P (PK1), H0(SK2)))

where PK2 = KEYGEN(SK2) = P−1(keygen(H0(SK2)))6. How does this help?
We note that, in the final construction, by including PK1,PK2 in the H1 queries,
we force the adversary to query PK1 = P−1(pk1) before the H1 query. This al-
lows the simulator to program P−1 in a way that allows it to correctly answer the

6 Here, {PK1,PK2} means the un-ordered set containing PK1 and PK2, so that
{PK1,PK2} = {PK2,PK1}.
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later H1 query. In particular, it samples SK1 itself and responds to the P−1 query
with PK1 = KEYGEN(SK1). Afterward, when then adversary makes the query
H1({PK1,PK2}, k), the simulator will respond with SHAREDKEY(PK2,SK1),
which is always identical to SHAREDKEY(PK1,SK2).

Attack 6. Even with our final construction, we must be careful. Suppose that it
was possible for the adversary to choose a public key pk∗ such that it can guess
the value of sharedkey(pk∗, sk) for a random (hidden) sk, then there is still an
attack. Namely, the adversary queries PK∗ = P−1(pk∗) and PK = KEYGEN(SK)
for a random SK. It then guesses the value t∗ of sharedkey(PK∗, H0(SK)), without
ever actually querying H0. Finally, it queries k = H1({PK∗,PK}, t∗), and checks
that the result is equal to SHAREDKEY(PK∗,SK). In the real world, this check
will pass as long as the guess t∗ is correct. On the other hand, in the ideal
world, the check can only pass with negligible probability, since the simulator
has no way of knowing SK, and hence has no way of programming H1 to output
SHAREDKEY(PK∗,SK). Our solution is to add another security requirement for
the NIKE scheme, which we call entropic shared keys, insisting that for any pk∗

of the adversary’s choosing, the adversary cannot guess sharedkey(pk∗, sk) except
for negligible probability.

Attack 7. One last attack strategy: the attacker could first query PK1 =
KEYGEN(SK1),PK2 = KEYGEN(SK2), k = SHAREDKEY(PK1,SK2). Then, it
could query r1 = P (PK1), r2 = P (PK2). Finally, it could treat r1, r2 as the mes-
sages in the standard-model NIKE protocol, and guess the shared key t for the
protocol. Then it could query H1 on t (and {PK1,PK2}). In the real world, the
result H1({PK1,PK2}, t) would be equal to k, so the simulator in the ideal world
needs to be able to set H1({PK1,PK2}, t) = k. At this point, the simulator has
PK1,PK2, t. But the simulator has no knowledge of SK1 or SK2. Therefore it has
no way of guessing the correct input to SHAREDKEY to obtain k, as doing so re-
quires recovering either SK1 or SK2 by inverting the random injection KEYGEN.
Moreover, the adversary has access to both honest interfaces and adversarial
interfaces, and it can implement those interfaces into two oracles: O1(·, ·) and
O2(·, ·), such that Oi takes (pk, shk) as inputs and outputs “1”, iff shk is a valid
shared key of ri and pk (pk here is allowed to be a malicious public key). Con-
cretely, take O1 for instance, the adversary can implement the oracle as follows:
let PK∗ = P−1(pk), k̄ = H1(PK∗,PK1, shk) and k∗ = SHAREDKEY(PK∗,SK1),
and we define O1(pk, shk) = 1 if k̄ = k∗7. Note that, if our NIKE scheme is only
against passive attack, such as the scheme in [20], then the active attack [18],
which only uses the oracles described above, can efficiently decode the secret key
of r1 and r2, and break indifferentiability. Thus, to prevent such kind of attacks,
we need a higher level security notion for our standard model NIKE, which we
call semi-active unpredictable shared keys. In this notion, we define that, even
having access to O1 and O2, guessing the shared key t from the user’s messages
r1, r2 is implausible except for a negligible probability.

7 As long as the range of H1 is sufficiently large, the oracle implemented only has
negligible false-positive.
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While we have protected against certain natural attacks, we need to argue
indifferentiability against all possible attacks. To do so we use a careful simula-
tion strategy for H0, H1, P, P

−1, and prove indifferentiability through a careful
sequence of hybrids. In essence, each step in the hybrid argument corresponds
roughly to one of the attack strategies discussed above, and our proof shows that
these attacks do not work, demonstrating the indistinguishability of the hybrids.

Constructing P, P−1. Our random permutation P, P−1 can easily be instantiated
using the ideal cipher model in the setting where the key space contains only
a single element. We note that indifferentiable ideal ciphers can be constructed
from random oracles [12].

Therefore, all we need for our construction is three random oracles. Multiple
random oracles can easily be built from a single random oracle by prefixing
the oracle index to the input. Finally, an indifferentiable random oracle of any
domain/range can be constructed from a fixed-size random oracle [10].

The role of P in the proof. It is natural to wonder what role P plays in the
actual security of our scheme. After all, since P−1 is publicly invertible using P ,
the adversary can easily undo the application of P−1 to the output of KEYGEN.
So it may seem that P is a superfluous artifact of the proof.

There are multiple ways to address this question. One answer is that with-
out P , there would be no way to have a computationally efficient simulator as
discussed above. One could consider an inefficient simulator, but this would cor-
respond to a weaker notion of indifferentiability. This notion of indifferentiability
would be useless when composing with protocols that have computational rather
than statistical security. What’s more, we would actually be unable to prove even
this weaker form. Indeed, our proof crucially relies on the computational security
of the standard-model NIKE protocol. Since the inefficient simulator would es-
sentially have to break the security of the NIKE protocol, it would be impossible
to carry out the proof.

A higher-level answer is that by including P — which is under full control
of the simulator — the simulator gets to learn extra information about what
values the adversary is interested in. In particular, in order to relate the ideal
oracles to the standard-model scheme, the adversary must always send a query
to the simulator. This extra information provided by making such queries is
exactly what the simulator needs for the proof to go through. This is a common
phenomenon in random-oracle proofs, where hashing sometimes has no obvious
role except to provide a reduction/simulator with necessary information.

Yet another answer is that, if P is omitted, the scheme is actually insecure in
some settings. For example, an ideal NIKE satisfies the property that an adver-
sary, given Alice’s secret key and half of Bob’s public key, cannot compute the
shared key between Alice and Bob. Now, consider the case where the standard
model NIKE does not satisfy this requirement. Then if we do not include P , our
construction does not satisfy the requirement either. Instead, by including P , an
adversary who gets half of Bob’s ideal public key cannot invert the permutation
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to recover any information about the corresponding standard-model public key.
It then follows that the adversary cannot guess the shared key.

1.5 Extending to Other Idealized Cryptosystems

We now turn our attention to extending the above results to other cryptosys-
tems. First, we use our ideal NIKE scheme to construct ideal public key en-
cryption (PKE). Note that ideal public key encryption is in particular CCA
secure, whereas the standard way to turn a NIKE scheme into a PKE scheme is
never CCA secure. In order to make the scheme CCA secure, a natural starting
point is the Fujisaki-Okamoto (FO) transform [17]. While this transformation
applied to our ideal NIKE certainly achieves CCA security, it unfortunately is
not indifferentiable when applied to our NIKE. The reasons are several-fold,
and should come as no surprise given that FO was never designed to achieve
indifferentiability.

For starters, recall from our NIKE discussion that all inputs and outputs of
the algorithms need to be passed through ideal objects under the simulator’s
control. In the FO transformation, this is not the case. Another reason why FO
does not give indifferentiability is that the FO transform allows for encryption
randomness to be recovered during decryption; in fact, this is a crucial feature of
the CCA security proof. On the other hand, such encryption schemes cannot be
ideal, since ideal encryption schemes guarantee that the encryption randomness
is hidden even to the decrypter8.

To overcome these issues, we first show a careful transformation from our
ideal NIKE into ideal deterministic public key encryption (DPKE). By focus-
ing first on DPKE, we side-step the randomness issue. Our transformation is
inspired by the FO transform, but in order to ensure that all inputs/outputs
are passed through oracles under the simulator’s control, we employ our random
permutation trick again.

Finally, we turn to convert ideal DPKE into standard PKE. The usual con-
version (simply including the encryption randomness as part of the message)
does not suffice, again because the usual conversion allows the decrypter to re-
cover the encryption randomness. We instead essentially hide the randomness
by hashing with a random oracle. This, however, requires care in order to enable
a complete indifferentiability proof.

Ideal Signatures. Finally, we investigate constructing ideal signatures. While in
the standard model signatures can in principle be built from one-way functions
and therefore random oracles, we observe that the situation for ideal signatures
is much more challenging. For example, an ideal signature scheme will be unique,
meaning for any message/public key, only a single signature will verify. On the
other hand, constructing unique signatures even under standard security notions

8 One can define a different idealization of PKE where the ideal decryption function-
ality does output the encryption randomness. However, this stronger functionality
corresponds to weaker security guarantees
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is difficult, and the only known constructions require strong number-theoretic
tools such as bilinear maps.

We instead assume a building block as a standard-model signature scheme
with unique signatures, as well as some other mild security properties which can
be easily instantiated using bilinear maps. We show that such a scheme can, in
fact, be turned into ideal signatures using similar ideas to the above.

1.6 Instantiations

Our NIKE schemes require a standard-model NIKE. Unfortunately, we cannot
use a truly arbitrary standard model NIKE, as in addition to the semi-active
unpredictable shared keys, we also need pseudorandom public keys and entropic
shared keys. As such, we need to make sure such a scheme can be instanti-
ated. Our other results similarly require standard-model schemes where various
outputs of the schemes are pseudorandom bit strings.

We note that the entropic shared key requirement is satisfied by all con-
structions we are aware of and the semi-active unpredictable shared keys can be
done under doubly-strong CDH assumption or bilinear maps [16]. On the other
hand, the requirement of pseudorandom public keys is slightly non-trivial. Many
number-theoretic constructions have public keys that are elements in Zkq for some
modulus k; even if the public keys are pseudorandom in these sets, there may
be no way to represent a random element of Zkq as a random bit string (which

we need in order to apply the ideal permutation P ), since qk = |Zkq | may be far
from a power of 2.

However, it will usually be easy to map such public keys to random strings
in {0, 1}n for some integer n. For example, in the case k = 1, suppose we are
given a (pseudo)random element pk ∈ Zq. Let n be some integer such that
n ≥ λ+ log2 q for a security parameter λ. Let t = b2n/qc be the largest integer
such that tq ≤ 2n. Then we can extend pk into a random element pk′ in Ztq by
setting pk′ = pk + aq, where a is a random integer in Zt. Finally, we note that
a random integer in Ztq is distributed exponentially close (in λ) to a random
integer in Z2n .

We can similarly handle the case k > 1 by bijecting public keys into Zqk in the
standard way. Such conversions can be applied to Diffie-Hellman key agreement.
The result that we attain our NIKE results under doubly-strong-CDH, whereas
our signature scheme requires CDH in bilinear map groups.

We note that one of the cases we do not know how to handle are schemes
based on factoring or RSA, as the public key would be an RSA composite p×q for
random large primes p and q; this is clearly distinguishable from a random string
using primality testing. On the other hand, we know of no way to bijectively
map such numbers into random bit strings, without factoring them (and hence
breaking the scheme). In fact, doing so without factoring would seem to allow
for obliviously sampling large RSA composites by choosing a random string, and
then applying the inverse map. Oblivious sampling of RSA composites is a major
open question.
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2 Background

Notation. Throughout this paper, λ ∈ N denotes the security parameter. We
let N be the set of non-negative integers, including zero and {0, 1}∗ denote the
set of all finite-length bit strings, including the empty string ε ({0, 1}0 = ε). For
two bit strings, X and Y , X||Y denotes string concatenation and (X,Y ) denotes
a uniquely decodable encoding of X and Y . The length of a string X is denoted
by |X|.

For a finite set S, we denote s← S the process of sampling s uniformly from
S. For a probabilistic algorithm A, we denote y ← A(x;R) the process of running
A on inputs x and randomness R, and assigning y the result. We let RA denote
the randomness space of A; we require RA to be the form RA = {0, 1}r. We
write y ← A(x) for y ← A(x,R) with uniformly chosen R ∈ RA, and we write
y1, . . . , ym ← A(x) for y1 ← A(x), . . . , ym ← A(x) with fresh randomness in each
execution. If A’s running time is polynomial in λ, then A is called probabilistic
polynomial-time (PPT). We say a function µ(n) is negligible if µ ∈ o(n−ω(1)),
and is non-negligible otherwise. We let negl(n) denote an arbitrary negligible
function. If we say some p(n) is poly, we mean that there is some polynomial
q such that for all sufficiently large n, p(n) ≤ q(n). We say a function ρ(n) is
noticeable if the inverse 1/ρ(n) is poly. We use boldface to denote vector, i.e. m;
we denote mi as the i-th component of m and |m| as the length of m. Due to
space limit, we will give the definition of games and ideal objects(such as random
oracle model, ideal cipher model) in Appendix A.

2.1 Public Key Primitives

In this part, we recall the definitions of the public key primitives that we consider
in our work.

Non-Interactive Key Exchange (NIKE) [13]. NIKE is a cryptographic
primitive which enables two parties, who know the public keys of each other, to
agree on a symmetric shared key without requiring any interaction. It consists
of two algorithms: NIKE.keygen and NIKE.sharedkey together with a shared key
space SHK.

– NIKE.keygen : Given input a secret key sk, the algorithm outputs a public
key pk;

– NIKE.sharedkey Given inputs a public key pk1 and a secret key sk2, the al-
gorithm outputs a shared key shk ∈ SHK.

For correctness, we require that, for any two key pairs (pk1, sk1), (pk2, sk2),
the system satisfies:

NIKE.sharedkey(pk1, sk2) = NIKE.sharedkey(pk2, sk1).

Public Key Encryption (PKE) [13]. A public-key encryption scheme con-
sists of three algorithms: PKE.keygen,PKE.enc,PKE.dec together with a message
space M. Formally,
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– PKE.keygen Given input a secret key sk, the algorithm outputs a public key
pk;

– PKE.enc Given inputs a public key pk and m ∈M, the algorithm outputs a
ciphertext c = PKE.enc(pk,m);

– PKE.dec Given inputs a secret key sk and a ciphertext c, the algorithm
outputs either a plaintext m or ⊥.

For correctness, we require that, for any key pair (pk, sk)(pk = PKE.keygen(sk))
and m ∈M, the scheme satisfies:

PKE.dec(sk,PKE.enc(pk,m)) = m.

Digital Signature [25]. A digital signature scheme consists of three algo-
rithms: Sig.keygen,Sig.sign,Sig.ver along with a message space M. Formally,

– Sig.keygen Given input a sign key sk, the algorithm outputs a verification
key vk;

– Sig.sign Given inputs a sign key sk and a message m ∈ M, the algorithm
outputs a signature σ = Sig.sign(sk,m);

– Sig.ver Given inputs a signature σ, a message and a verification key vk,
outputs either 1 or 0.

For correctness, we require that, for any key pair (sk, vk) (vk = Sig.keygen(sk))
and m←M, the signature scheme satisfies:

Sig.ver(Sig.sign(sk,m),m, vk) = 1

2.2 Indifferentiability

In [22], Maurer, Renner and Holenstein(MRH) propose the indifferentiability
framework, which formalizes a set of necessary and sufficient conditions for one
system to securely be replaced with another one in a wide class of environments.
This framework has been used to prove the structual soundness of a number of
cryptographic primitives, which includes hash functions [10, 14], blockciphers [1,
12, 15], domain extenders [11] and authenticated encryption with associated
data [2]. In the following, we first recall the definition of indifferentiability.

A random system Σ := (Σ.hon,Σ.adv) is accessible via two interfaces Σ.hon
and Σ.adv, where Σ.hon provides a honest interface through which the system
can be accessed by all parties and Σ.adv models the adversarial access to the
inner working part of Σ. Typically, a system implements either some ideal objects
F , or a construction CF

′
, which applies some underlying ideal objects F ′.

Definition 1. (Indifferentiability [22].) Let Σ1 and Σ2 be two systems and
S be a simulator. The indifferentiability advantage of a differentiator D against
(Σ1,Σ2) with respect to S is

Advindif
Σ1,Σ2,S,D(1λ) := Pr[RealΣ1,D]− Pr[IdealΣ2,S,D],
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where games RealΣ1,D and IdealΣ2,S,D are defined in Figure 1. We say Σ1 is
indifferentiable from Σ2, if there exists an efficient simulator S such that for any
probabilistic polynomial time differentiator D, the advantage above is negligible.
Moreover, we say Σ1 is weakly indifferentiable from Σ2, if for any probabilistic
polynomial time differentiator D, there exists an efficient simulator SD such that
the advantage above is negligible.

RealΣ1,D:

b← DHonest,Adv,
Return b.

Honest(X)

Return Σ1.hon(X).

Adv(X)

Return Σ1.adv(X).

IdealΣ2,D:

b← DHonest,Adv,
Return b.

Proc.Const(X)

Return Σ2.hon(X).

Proc.Prim(X)

Return SΣ2.adv(·)(X).

Fig. 1: Indifferentiability of Σ1 and Σ2, where S is the simulator and D is the adversary.

Next, we recall composition theorem for indifferentiability. In [22], MRH
give out the composition theorem for indifferentiability, and then Ristenpart,
Shacham and Shrimpton(RSS) [24] propose a game-based version for the theo-
rem.

Theorem 2. (Indifferentiability Composition [24].) Let Σ1 := (CF1 ,F1) be
a system that is indifferentiable from Σ2 := (F2,F2) along with simulator S. Let
G be a single-stage game. Then for any adversary A, there exists an adversary
B and a differentiator D such that

Pr[GCF1 ,AF1 )] ≤ Pr[GF2,BF2 )] + Advindif
Σ1,Σ2,S,D.

However, RSS [24] prove that the composition theorem above does not extend
to multi-stage games as the simulator has to keep the local state for consistency.
While, Barbosa and Farshim(BF) [2] observe that if allowing some relaxations
on the games, we could rewrite some multi-stage games as equivalent to single-

stage games. Essentially, for an n-adversary game GCF ,A1,...,An
n , if only one ad-

versary(say A1) can call the ideal objects F directly and the rest can only call
CF , then Gn can be rewritten as a single-stage game, because the game Gn itself,
of course, has access to CF . Then in [2], BF formalize this observation in the
following theorem.

Theorem 3. (Multi-stage Game Composition [2].) Let Σ1 := (CF1 ,F1) be
a system that is indifferentiable from Σ2 := (F2,F2) along with simulator S. Let
G be an n-adversary game and A := (A1, . . . ,An) be a n-tuple of adversaries
where A1 can access F1 but Ai (i > 1) can only access CF1 . Then there is an
n-adversary B and a differentiator D such that

Pr[GCF1 ,AF1
1 ,ACF1

2 ,...,ACF1
n ] = Pr[GF2,B

F2
1 ,...,BF2

n ] + Advindif
Σ1,Σ2,S,D.

Remark. Barbosa and Farshim [2] give a strong motivation for the relaxation
imposed on the class of games above. To our best of knowledge, the related-key
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attack (key-dependent message attack) game is not known to be equivalent to
any single-stage game. As a result, it would be insufficient to prove a system
is related-key attack secure as follows: 1) there is another system, say Σ2, such
that Σ1 is indifferentiable from Σ2; 2) Σ2 is related-key attack secure. However,
if allowing the relaxation, the proof follows trivially, hence from a practical point
of view(by adding this specific relaxation on games), composition extends well
beyond 1-adversary games.

3 Indifferentiable NIKE

In this section, we propose the notion of “ideal NIKE” and then build an in-
differentiable non-interactive key exchange scheme from simpler ideal primitives
and a standard-model NIKE scheme.

3.1 What is Ideal NIKE?

In this part we give the rigorous description of ideal NIKE, formally:

Definition 4. (Ideal NIKE.) Let X ,Y,W be three sets such that |X | ≥ 2ω(log λ),
|Y| ≥ 2ω(log λ), |W| ≥ 2ω(log λ), |X | ≤ |Y| and |X | × |Y| ≤ |W|. We denote
F [X → Y] as the set of all injections that map X to Y and G[X ×Y → W] as the
set of the functions that map X ×Y to W. We define T as the set of all function
pairs (F,G) such that: 1)F ∈ F , G ∈ G; 2) ∀x, y ∈ X , G(x, F (y)) = G(y, F (x));
3) G(x1, y1) = G(x2, y2)⇒ (x1 = x2 ∧ y1 = y2) ∨ (y1 = F (x1) ∧ y2 = F (x2)).

We say that a NIKE scheme ΠNIKE = (NIKE.KEYGGEN,NIKE.SHAREDKEY),
associated with secret key space X , public key space Y and shared key space
Z, is an ideal NIKE if (NIKE.KEYGEN,NIKE.SHAREDKEY) is sampled from T
uniformly.

It’s trivial to note that, due to an information-theoretic argument, an ideal
NIKE achieves related-key attack security, leakage-resiliency and so forth. Next,
we show how to construct an indifferentiable NIKE scheme from simpler primi-
tives.

3.2 Construction

In this section, we build an indifferentiable NIKE scheme from simpler ideal
primitives (namely random oracles and ideal ciphers) along with a standard-
model (that is, non-ideal) NIKE scheme.

Building Blocks. Our scheme consists of several building blocks:

– A standard-model NIKE scheme ΠSM−NIKE = (keygen, sharedkey) with secret
key space X , public key space Y, and shared key space Z;

– H0 := {0, 1}∗ → X is a random oracle whose co-domain matches the secret
key space of Π.
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– H1 := {0, 1}∗ →W is a random oracle, where |X | × |Y| ≤ |W|;
– P := Y → Y is a random permutation on the public key space of Π, and
P−1 is P ’s inverse.

Note that, the random permutations typically operate on bit strings, which
means Y = {0, 1}n for some natural number n ≥ ω(log λ). Moreover, the shared
key space in the standard model NIKE Z and in our construction W might be
not equivalent, because it’s unnecessarily correct that |X | × |Y| ≤ |Z|. And if
not, then setting W = Z would give a differentiator directly, by just checking
whether |X | × |Y| ≤ |W|.

Construction. Now we are ready to build an indifferentiable NIKE scheme, de-
noted as ΠNIKE = (NIKE.KEYGEN,NIKE.SHAREDKEY), from the building blocks
above. Formally,

– NIKE.KEYGEN(SK) : Given input SK, the algorithm runs keygen(H0(SK)),
and outputs the public key PK = P−1(keygen(H0(SK)));

– NIKE.SHAREDKEY(PK1,SK2) : Given inputs (PK1,SK2), the algorithm com-
putes PK2 = NIKE.KEYGEN(SK2) and sharedkey(P (PK1), H0(SK2)). If PK1 ≤
PK2, then it outputs the shared key as

SHK = H1(PK1,PK2, sharedkey(P (PK1), H0(SK2))),

else, it outputs

SHK = H1(PK2,PK1, sharedkey(P (PK1), H0(SK2))).

Correctness of the scheme easily follows, and what’s more interesting is its indif-
ferentiability. Next, we prove our scheme is indifferentiable from an ideal NIKE.
Before that, we first specify the security properties of the standard-model NIKE.

Property 1. Semi-active unpredictable shared key. We say the shared
key, for a NIKE scheme, is semi-active unpredictable, if for any PPT adversary
A, the advantage

AdvA := Pr[AO1,O2(pk1, pk2) = sharedkey(pk1, sk2)] ≤ negl(λ),

where pki = keygen(ski), ski ← X and Oi is a predicate oracle such that takes
(pk, shk) as input and outputs a bit(the public key pk here might be malicious).
Concretely, the oracle Oi outputs “1” iff shk = sharedkey(ski, pk). This is the
standard security game for NIKE schemes against active adversary, except that
we relax the notion on two pieces: 1) we only require unpredictability of the
shared key, rather than indistinguishability from random; 2) the oracles takes
both public key pk and shared key shk as input and tell whether shk is a valid
shared key, rather than taking the public key pk, and outputting the correspond-
ing shared key shk.

Remark. Note that, unpredictable shared key only against passive attack might
be insufficient for indifferentiability. Take the scheme in [20] for instance, its
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shared key is, of course, unpredictable against passive adversary. However, the
active attack in [18] can decode the secret keys (sk1 and sk2) efficiently, by only
accessing to the oracles above, which breaks the indifferentiability immediately.

The next two properties are mild additional security properties that are not
usually required for NIKE schemes, but are achieved by most natural schemes.
We require these properties in order to prove the ideal security of our construc-
tion.

Property 2. entropic shared keys. We say the shared key, for a NIKE
scheme is entropic, if for any PPT adversary A, the advantage that A wins the
following game is negiligble:

sk
$← X , (pk∗, shk∗)← A;

Return 1((shk∗ = sharedkey(pk∗, sk)).

Fig. 2: Entropic Shared Keys.

Note that the entropic shared keys property tells us that if the adversary only
knows one public key(even it’s chosen by the adversary), it cannot predict the
shared key if the other secret key is random and hidden. In other words, this
property guarantees that there is no way to make the shared key have low min-
entropy.

Property 3. pseudorandom public keys. We say the public key, for a NIKE
scheme, is pseudorandom, if for any PPT adversary A, the advantage

AdvA := |Pr[A(keygen(sk))]− Pr[A(R)]| ≤ negl(λ),

where sk ← X , R ← Y. We immediately observe that as Y = {0, 1}n, our
standard-model NIKE must have public keys that are pseudorandom bit strings.

Additional Property. Based on entropic shared keys and pseudorandom public
keys, we actually have an additional security property, which we call variant
entropic shared keys (this property is necessary for the proof below), specifically:

Pr[shk∗ = sharedkey(pk, sk∗) : (sk∗, shk∗)← A, pk
$← Y] ≤ negl(λ),

where now the adversary is asked to output a secret key sk∗ and a shared key
shk∗ with a random and hidden public key pk. This property holds trivially based
on Property 2 and 3. In fact, if there is an attacker breaks this variant entropic
shared keys with non-negligible probability ρ, by outputting (sk∗, shk∗), then we
can break property 2, by just outputting (keygen(sk∗), shk∗), with probability
ρ− ε, where ε is the advantage of pseudorandom public keys. By definition, we
have that Pr

pk
$←Y

[shk∗ = sharedkey(sk∗, pk)] ≥ ρ, hence, due to pseudorandom

public keys, it’s apparent that

Pr
sk

$←X
[shk∗ = sharedkey(sk∗, keygen(sk)) = sharedkey(sk, keygen(sk∗))] ≥ ρ− ε,



Indifferentiability for Public Key Cryptosystems 19

which breaks property 2 immediately. Below, for ease of exposition, we abuse
this variant property also as entropic shared keys. And we say a NIKE scheme
is Good if it satisfies the three properties above.

Now, we are ready to establish our theorem.

Theorem 5. ((Indifferentiable NIKE).) ΠNIKE is indifferentiable from an
ideal NIKE if ΠSM−NIKE is Good.

Proof. According to the definition of indifferentiability, we immediately observe
that the adversary has two honest interfaces (NIKE.KEYGEN, NIKE.SHAREDKEY)
(below we will denote (NKG,NSK) for ease) and four adversarial interfaces
(H0, P, P

−1, H1). Therefore, we need to build an efficient simulator S that can
simulate the four adversarial interfacesH0, P, P

−1 andH1 properly, which means,
for any PPT differentiator D, the view of D in the real game is computationally
close to the view in the ideal game. To do so, we will go through with a sequence
of hybrid games, where in each game, there exists a system that responds to all
of the queries(both honest and adversarial) in a slightly different way and then
we build our simulator S as the system in the last game. Before the description
of the games, we first specify some parameters and events:

– there are six types of query: (SK;H0), (PK;P ), (pk;P−1), (PK1,PK2, shk;H1),
(SK; NKG), (PK,SK; NSK) where SK← X ,PK, pk,PK1,PK2 ← Y, shk← Z;

– adversary makes at most q queries to the system, where q = poly(λ);

– the oracles used in the real world are H̃0, P̃ , P̃
−1, H̃1, ÑKG and ÑSK;

– in each game, the system’s responses are denoted as H r
0, P

r, P−1r, H r
1,NKGr

and NSKr, for instance, we denote H r
0(SK) as the system’s response when

adversary makes a query Q = (SK;H0);

– the advantage of unpredictable shared key is bounded by ε1;

– the advantage of entropic shared keys is bounded by ε2;

– the advantage of pseudorandom public keys is bounded by ε3.

Note that in the normal lazy sampling of random oracles or permutations,
each output will be chosen essentially at random. However, a simulator for indif-
ferentiability will need to occasionally sample in such a way as to be consistent
with the ideal NIKE. Next we define two events, named “Strong Consistency
Check”(SCC) and “Weak Consistency Check”(WCC). These checks look for the
cases where the adversary may already have the necessary information to pre-
dict the query response without making the query. Intuitively, if the checks
pass(SCC = 1), it means the adversary is unable to make such a prediction, and
the simulator is essentially free to answer randomly. On the other hand, if the
checks fail(SCC = 0), the simulator must answer carefully to be consistent with
the adversary’s prediction.

Strong Consistency Check. Let Q1, . . . , Qq be the sequence of the queries,
we say the check for the k-th query passes (SCCk = 1) if any one of the following
cases is satisfied:
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– Case 1. The k-th query is a P query, say (PK∗;P ) and in the previous k− 1
queries, there is no query with form of (SK∗;H0), (SK∗; NKG) or (PK,SK∗; NSK)
such that NKGr(SK∗) = PK∗.
Note that if there had been a previous query on such an SK∗, then it would
be possible for the adversary to predict P (PK∗) = P (NKGr(SK∗)) without
making a P query at all by just evaluating keygen(H r

0(SK∗)).
– Case 2. The k-th query is a P−1 query, say (pk∗;P−1) and in the previous
k − 1 queries, there exists no query with form of (SK∗;H0), (SK∗; NKG) or
(PK,SK∗; NSK) such that keygen(H r

0(SK∗)) = pk∗.
Note that if there had been a previous query on such an SK∗, then the
adversary can predict P−1(pk∗) = P−1(keygen(H r

0(SK∗))) by just querying
(SK∗; NKG).

– Case 3. The k-th query is a H1 query, say (PK∗1 ,PK∗2 , shk;H1) which sat-
ifies PK∗1 > PK∗2 or in the previous k − 1 queries, then is no query with
form of (SK∗;H0), (SK∗; NKG) or (PK,SK∗; NSK) such that NKGr(SK∗) ∈
{PK∗1 ,PK∗2}.
Note that if there had been a previous query on such an SK∗ (say NKGr(SK∗) =
PK∗1) and PK∗1 ≤ PK∗2 , then the adversary can predicate H1(PK∗1 ,PK∗2 , shk)
by just querying (PK∗2 ,SK∗; NSK)9.

We note, in the ideal world, the simulator is unable to tell if SCC happens
since doing so requires knowing the adversary’s queries to NKG and NSK. Instead,
the simulator will be able to carry out a weak consistency check, WCC:

Weak Consistency Check. Let Q1, . . . , Qq be the sequence of the queries,
we say event WCC occurs for the k-th query (WCCk = 1) if one of the following
cases satisfies:

– Case 1. The k-th query is a P query, say (PK∗;P ) and in the previous k− 1
queries, there is no query with form of (SK∗;H0) such that NKGr(SK∗) =
PK∗.

– Case 2. The k-th query is a P−1 query, say (pk∗;P−1) and in the previ-
ous k − 1 queries, there exists no query with form of (SK∗;H0) such that
keygen(H r

0(SK∗)) = pk∗.
– Case 3. The k-th query is a H1 query, say (PK∗1 ,PK∗2 , shk;H1) which satifies

PK∗1 > PK∗2 or in the previous k − 1 queries, then is no query with form of
(SK∗;H0) such that NKGr(SK∗) ∈ {PK∗1 ,PK∗2}.

Note that in the weak consistency check, we only keep track of the H0 queries,
rather than the NKG or NSK queries, so it will not catch all the bad cases. But
we will demonstrate that the adversary is unable to generate such bad cases
except for negligible probability.

Now we are ready to describe the games. After each game, we give the in-
tuition for why that game is indistinguishable from the previous game. The full
proof of indistinguishability between the hybrids will be given in Appendix E.

9 This, of course, only works under the condition that shk is a valid shared key.
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Game 0. This game is identical to the real game except that the system main-
tains four tables, referring to H0-table, P -table, P−1-table and H1-table. Specif-
ically, the system responds to the queries the same as in the real world, for

instance, H r
0(SK) = H̃0(SK),NKGr(SK) = ÑKG(SK) and so forth. For the tables,

the system maintains them as follows:

– H0-table: Initially empty, consists of tuples with form of (SK, sk, pk,PK).
Once the adversary makes a H0 query, say (SK∗;H0), which does not exist in
H0-table (no tuple that the first element of it is SK∗), inserts (SK∗, H̃0(SK∗),

keygen(H̃0(SK∗)), ÑKG(SK∗)) into H0-table.
– P -table: Initially empty, consists of tuples with form of (∗, ∗, pk,PK). Once

the adversary makes a P query, say (PK∗;P ), which does not exist in P -table,
it inserts (∗, ∗, P̃ (PK∗),PK∗) into P -table.

– P−1-table: Initially empty, consists of tuples with form of (∗, ∗, pk,PK). Once
the adversary makes a P−1 query, say (pk∗;P−1), which does not exist in
P−1-table, it inserts (∗, ∗, pk∗, P̃−1(pk∗)) into P−1-table.

– H1-table: Initially empty, consists of tuples with form of (PK1,PK2, shk,SHK).
Once the adversary makes a H1 query, say (PK∗1 ,PK∗2 , shk∗;H1), which does
not exist inH1-table, the system inserts (PK∗1 ,PK∗2 , shk∗, H̃1(PK∗1 ,PK∗2 , shk∗))
into H1-table.

Note that at this point all the queries are responded by the real oracles and
these tables are just keeping track of information related to adversary’s queries(to
the adversarial interfaces) and completely hidden to the adversary. Hence the
view in real game is identical to the one in Game 0. Next, we illustrate an
alternative way to responds to part of the queries, by using these tables and
accessing to the honest interfaces.

For ease of exposition, we here define a relation between the query Q and the
table Tab. Specifically, if Q is a H0 query (Q = (SK;H0)), we say Q ∈ Tab if there
is a 4-tuple T = (T1, T2, T3, T4) in Tab such that T1 = SK. Analogously, if Q is a
P query (Q = (PK;P )), we say Q ∈ Tab if there is a 4-tuple T = (T1, T2, T3, T4)
in Tab such that T4 = PK; if Q is a P−1 query (Q = (pk;P−1)), we say Q ∈ Tab
if there is a 4-tuple T = (T1, T2, T3, T4) in Tab such that T3 = pk; if Q is
a H1 query (Q = (PK1,PK2, shk;H1)), we say Q ∈ Tab if there is a 4-tuple
T = (T1, T2, T3, T4) in Tab such that T1 = PK1, T2 = PK2 and T3 = shk.

Game 1. This game is identical to Game 0, except the way of maintaining the
tables and responding to the queries. Specifically,

H0-query. Suppose Qk = (SK;H0) (k ∈ [1, q]), then the system responds as
follows:

– Case 1. If Qk ∈ H0, which means there is a tuple T = (T1, T2, T3, T4) ∈ H0

such that T1 = SK, then the system responds with T2;
– Case 2. If Qk /∈ H0, the system makes a query (SK; NKG) and searches every

tuple T = (T1, T2, T3, T4) ∈ P such that T4 = NKGr(SK) and T2 6= ∗. If
such a tuple is found, then the system responds to Qk with T2 and inserts
(SK, T2, T3, T4) into H0-table.
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– Case 3. Otherwise, the system responds with H̃0(SK) and inserts (SK, H̃0(SK),
keygen(H̃0(SK)),NKGr(SK)) into H0-table.

P -query. Suppose Qk = (PK;P ), then the system responds:

– Case 1. IfQk ∈ H0∪P∪P−1, which means there is a tuple T = (T1, T2, T3, T4) ∈
H0 ∪ P ∪ P−1 such that T4 = PK, then the system responds with T3;

– Case 2. Otherwise, responds with P̃ (PK), and inserts (∗, ∗, P̃ (PK),PK) into
both P and P−1 table.

P−1-query. Suppose Qk = (pk;P−1), then the system responds:

– Case 1. IfQk ∈ H0∪P∪P−1, which means there is a tuple T = (T1, T2, T3, T4) ∈
H0 ∪ P ∪ P−1 such that T3 = pk, then the system responds with T4;

– Case 2. Otherwise, responds with P̃−1(pk), and inserts (∗, ∗, pk, P̃−1(pk))
into both P and P−1 table.

H1-query. Suppose Qk = (PK1,PK2, shk;H1), then the system responds:

– Case 1: If Qk ∈ H1, which means there is a tuple T = (T1, T2, T3, T4) ∈ H1

such that T1 = PK1, T2 = PK2 and T3 = shk, then the system responds with
T4.
Note that for the cases below where Qk /∈ H1, after we compute the response
SHK, we will always add the tuple (PK1,PK2, shk,SHK) to H1-table, so that
on future identical queries, Qk will be in H1.

– Case 2: If Qk /∈ H1 and WCCk = 1, then the system would first test the
validity of shk using P and P−1 table. Formally,

1. If PK1 > PK2, then the system responds with H̃1(PK1,PK2, shk);
2. If PK1 ≤ PK2 and there is a tuple T = (T1, T2, T3, T4) ∈ P−1 such

that T4 = PK1 and T1 6= ∗, then the system searches every tuple T ′ =
(T ′1, T

′
2, T

′
3, T

′
4) ∈ P ∪ P−1 which satisfies T ′4 = PK2 and T ′2 6= ∗. If such

a tuple T ′ is found, then test if shk
?
= sharedkey(T3, T

′
2)(only using the

tuples in P ∪P−1). If so, the system makes a query (T ′4, T1; NSK) and re-
sponds toQk with NSKr(T ′4, T1), otherwise responds with H̃1(PK1,PK2, shk);

3. If PK1 ≤ PK2 and there is a tuple T = (T1, T2, T3, T4) ∈ P−1 such
that T4 = PK2 and T1 6= ∗, then the system searches every tuple T ′ =
(T ′1, T

′
2, T

′
3, T

′
4) ∈ P ∪ P−1 which satisfies T ′4 = PK1 and T ′2 6= ∗. If such

a tuple T ′ is found, then test if shk
?
= sharedkey(T3, T

′
2)(only using the

tuples in P ∪P−1). If so, the system makes a query (T ′4, T1; NSK) and re-
sponds toQk with NSKr(T ′4, T1), otherwise responds with H̃1(PK1,PK2, shk);

4. Otherwise, responds with H̃1(PK1,PK2, shk).

– Case 3: If Qk /∈ H1 and WCCk = 0, which means, there exists a query
Qi = (SK;H0)(i < k) such that NKGr(SK) ∈ {PK1,PK2}, then the system
would first test the validity of z using H0-table, P -table and P−1-table.
Formally,
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1. There exist two queries Qi = ((SK1;H0)) and Qj = (SK2;H0)(i, j <

k) such that NKGr(SK`) = PK`(` = 1, 2), then the system test shk
?
=

sharedkey(keygen(H0(SK1)), H0(SK2))(only using the tuples in H0-table).
If so, the system makes a query (PK2,SK1; NSK) and responds to Qk with
NSKr(PK2,SK1), otherwise responds with H̃1(PK1,PK2, shk);

2. There exists a query Qi = ((SK1;H0))(i < k) such that NKG(SK1) = PK1

but no such a query for PK2, then searches every tuple T = (T1, T2, T3,
T4) ∈ P∪P−1 which satisfies T4 = PK2. If such a query is found, then the

system tests shk
?
= sharedkey(T3, H0(SK1))(H0(SK1) is extracted from

H0-table and T3 is from the P ∪ P−1-table). If so, the system makes a
query (PK2,SK1; NSK) and responds to Qk with NSKr(PK2,SK1), other-
wise responds with H̃1(PK1,PK2, shk);

3. There exists a query Qi = ((SK2;H0))(i < k) such that NKG(SK2) = PK2

but no such a query for PK1, then searches every tuple T = (T1, T2, T3,
T4) ∈ P∪P−1 which satisfies T4 = PK1. If such a query is found, then the

system tests shk
?
= sharedkey(T3, H0(SK2))(H0(SK2) is extracted from

H0-table and T3 is from the P ∪ P−1-table). If so, the system makes a
query (PK1,SK2; NSK) and responds to Qk with NSKr(PK1,SK2), other-
wise responds with H̃1(PK1,PK2, shk);

4. Otherwise, responds with H̃1(PK1,PK2, shk).

Note that, in Game 1 the system keeps a longer table, and for part of the
queries, the system responds to them in an alternative way, which is only using
the tables and accessing to the honest interfaces. Moreover, in Game 1, the tuples
stored in the tables correspond to the response of queries that are answered by

the real oracles, for instance, ∀(SK1,PK2), we have NKGr(SK1) = ÑKG(SK1) and

NSKr(PK2,SK1) = ÑSK(PK2,SK1). Hence, in either game, the response of any
query is identical, which means that the view in Game 1 is identical to the one
in Game 0. However, the system can only answer part of the queries by tables
and honest interfaces, and for the rest it has to call the real oracles. Thus, in
the following hybrid games, we will illustrate additional alternative ways(not
calling the real oracles) to respond to the rest queries, without changing the
view significantly.

Remark: A careful reader would have noticed that several cases, for instance
Case 2 in H0-query or Case 2.2 in H1-query, do not exist in Game 1, because
for any tuple T ∈ P ∪P−1, we have T1 = T2 = ∗. While, in the following hybrid
games, the system would modify the way of maintaining the tables, and those
values would not be ∗ anymore.

Game 2. This game is identical to Game 1, except for responding to P queries.
Suppose Qk = (PK;P ), then the system responds:

– Case 1: If Qk ∈ H0 ∪ P ∪ P−1, same as in Game 1.
– Case 2: If Qk /∈ H0 ∪P ∪P−1 and SCCk = 1, then the system responds with
y ← Y and inserts (∗, ∗, y,PK) into P -table.
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– Case 3: If Qk /∈ H0 ∪ P ∪ P−1 and SCCk = 0, then responds with P̃ (PK),
and inserts (∗, ∗, P̃ (PK),PK) into both P and P−1 table.

The only difference between Game 1 and Game 2 occurs in the case 2, where
Qk /∈ H0 ∪P ∪P−1 and SCCk = 1. In Game 1, the system responds with P̃ (PK)
while in Game 2, we replace it with a random string. Due to definition, we note
that strong consistency check determines whether or not the adversary has the
ability to learn P̃ (PK) by making a query to NKG. If so, we must answer the P
query using P̃ ; otherwise, we can answer it randomly without changing the view
with high probability.

Game 3. This game is identical to Game 2, except modifying P -query once
more. More concretely, in case 2, if Qk /∈ H0 ∪ P ∪ P−1 and SCCk = 1, then
the system responds to Qk with a random public key pk∗ = keygen(sk∗) instead,

where sk∗
$← X and inserts (∗, ∗, keygen(sk∗),PK) into P -table.

Here, we just change the distribution of outputs in the case where we do not
use P̃ . Game 3 is indistinguishable from Game 2 by pseudorandom public keys.

Game 4. This game is identical to Game 3, except the way of filling up the P -
table. Concretely, in case 2, the system inserts the tuple (∗, sk∗, keygen(sk∗),PK)
into the table.

Here, the only difference between Game 4 and Game 3 is that the system also
records the random coins sk∗ into the P -table(now the 2nd term of this tuple
is not ∗ anymore). Since that sk∗ is uniformly sampled by the system, it would
not be used with high probability, which means the adversary’s view would be
close in both games.

Game 5. This game is identical to Game 4, except that to answer P queries.
Assuming Qk = (PK;P ), then,

– Case 1. Qk ∈ H0 ∪ P ∪ P−1, same as in Game 4.
– Case 2. If Qk /∈ H0 ∪ P ∪ P−1 and SCCk = 1, then same as in Game 4.
– Case 3. If Qk /∈ H0 ∪ P ∪ P−1 and SCCk = 0, then the system responds

with a random public key pk∗ = keygen(sk∗), where sk∗
$← X and inserts

(∗, sk∗, keygen(sk∗),PK) into P -table.

The difference between Game 5 and Game 4 occurs in case 3, where the
adversary makes a P query Qk = (PK∗;P ) such that SCCk = 0 and Qk /∈ H0 ∪
P ∪P−1. This means that PK∗ = NKGr(SK∗) = P̃−1(keygen(H̃0(SK∗))) for some
SK∗, and that the adversary previously queried (SK∗; NKG) or (PK,SK∗; NSK),
but not (SK∗;H0).

Since Qk /∈ H0 ∪ P ∪ P−1, it’s trivial that the adversary has never made a
query on (keygen(H̃0(SK∗));P−1), as such a query would have resulted in a tuple
which contains PK∗ being added to P−1-table. Therefore, H̃0(SK∗) and thus
keygen(H̃0(SK∗)) are independent of the adversary’s view. However, in Game 4,
the query would result in (∗, ∗, P̃ (PK),PK) being added to P -table, comparing to
(∗, sk∗, keygen(sk∗),PK∗) in Game 5. Unlike the previous one, this time sk∗ would
be used, for instance, the adversary knows SK∗ such that NKGr(SK∗) = PK∗,
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and it would make a query (SK∗;H0) after Qk. While, by definition, the system
in Game 5 implicitly sets H r

0(SK∗) = sk∗, and sk∗ is a fresh random value, hence
the response of (SK∗;H0) is well-distributed. Moreover, before Qk, the adversary
is independent of H̃0(SK∗), which means the two games are indistinguishable.

Game 6. This game is identical to Game 5, except that to answer P−1 queries.
Suppose Qk = (pk;P−1), then the system responds:

– Case 1: If Qk ∈ H0 ∪ P ∪ P−1, same as in Game 5;
– Case 2: If Qk /∈ H0 ∪ P ∪ P−1 and SCCk = 1, then the system samples

SK ← X , makes a query (SK; NKG), responds to Qk with NKGr(SK) and
inserts (SK, ∗, pk,NKGr(SK)) into P−1-table.

– Case 3. Otherwise, responds with P̃−1(pk).

The difference of Game 6 and Game 5 occurs in case 2, where the adversary
makes a P−1 query Qk = (pk∗;P−1) such that SCCk = 1 and Qk /∈ H0∪P ∪P−1.
This means, there is no SK∗ which appears in the previous queries, even in
the NKG and NSK queries, such that pk∗ = keygen(H̃0(SK∗)). Hence SK∗ and

thus ÑKG(SK∗) are independent of the adversary’s view, which means we can

replace ÑKG(SK∗) with NKGr(SK) where SK
$← X as long as SK, H̃0(SK) and

keygen(H̃0(SK)) do not appear in the adversary’s queries(including both the
previous queries and the following queries). In fact, SK is uniformly sampled
by the system and independent of adversary’s view, those values never appear
except for negligible probability.

Game 7. This game is identical to Game 6, except that to answer P−1 queries.
Suppose Qk = (pk;P−1), then the system responds:

– Case 1: If Qk ∈ H0 ∪ P ∪ P−1, same as in Game 6;
– Case 2: If Qk /∈ H0 ∪ P ∪ P−1 and SCCk = 1, same as in Game 6.
– Case 3: If Qk /∈ H0 ∪ P ∪ P−1 and SCCk = 0, then the system samples

SK ← X , makes a query (SK; NKG), responds to Qk with NKGr(SK) and
inserts (SK, ∗, pk,NKGr(SK)) into P−1-table.

The difference between Game 7 and Game 6 occurs in case 3, where the
adversary makes a P−1 query Qk = (pk∗;P−1) such that SCCk = 0 and Qk /∈
H0∪P∪P−1. This means that pk∗ = keygen(H̃0(SK∗)) = P̃ (NKGr(SK∗)) for some
SK∗, and that the adversary previously queried (SK∗; NKG) or (PK,SK∗; NSK),
but not (SK∗;H0).

Moreover, we note that in Game 6, the response of any P query(Q /∈ H0)
is responded with a random public key, rather than calling the real oracles,
which means the query (NKGr(SK∗);P ) would leak nothing about H̃0(SK∗) and
keygen(H̃0(SK∗)). Hence, H̃0(SK∗) and keygen(H̃0(SK∗)) are hidden from the ad-
versary’s view. And if the adversary can make a query (keygen(H̃0(SK∗));P−1),
then it means the adversary is able to predict the public key for an unknown
secret key(H̃0(SK∗)). As our standard-model NIKE scheme has pseudorandom
public keys, this is impossible except for negligible probability.

Game 8. This game is identical to Game 7, except that to answer H0 queries.
Suppose Qk = (SK;H0), then the system responds:
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– Case 1. If Qk ∈ H0, which means there is a tuple T = (T1, T2, T3, T4) ∈ H0

such that T1 = SK, then the system responds with T2(same as in Game 7);
– Case 2. If Qk /∈ H0 but there is a tuple T = (T1, T2, T3, T4) in P -table such

that T4 = NKGr(SK) and T2 6= ∗, then the system responds with T2 and
inserts (SK, T2, T3, T4) into H0-table(same as in Game 7);

– Case 3. Otherwise, the system samples sk
$← X , makes a query (SK; NKG),

responds with sk, and inserts (SK, sk, keygen(sk),NKGr(SK)) into H0-table.

The difference between Game 8 and Game 7 occurs in case 3, where the adver-
sary makes a H0 query Qk = (SK∗;H0) such that Qk /∈ H0 and NKGr(SK∗) never
appears in P -table, hence it knows nothing of H̃0(SK∗) and keygen(H̃0(SK∗)), al-
though the adversary might know NKGr(SK∗). Thus, from the adversary’s view,
H̃0(SK∗) is uniformly distributed in X , and it is equivalent to randomly sample
sk∗ ← X and implicitly set sk∗ as the response of Qk.

Game 9. This game is identical to Game 8, except that to answer the H1 query.
Suppose Qk = (PK1,PK2, shk;H1), then the system responds:

– Case 1: If Qk ∈ H1, which means there is a tuple T = (T1, T2, T3, T4) ∈ H1

such that T1 = PK1, T2 = PK2 and T3 = shk, then the system responds with
T4(same as in Game 8).

– Case 2: If Qk /∈ H1 and WCCk = 1, then the system would test the validity
of z only using P and P−1 table. Formally,
1. If PK1 > PK2, then the system responds with a random string;
2. If PK1 ≤ PK2 and there is a tuple T = (T1, T2, T3, T4) ∈ P−1 such

that T4 = PK1 and T1 6= ∗, then the system searches every tuple T ′ =
(T ′1, T

′
2, T

′
3, T

′
4) ∈ P ∪ P−1 which satisfies T ′4 = PK2 and T ′2 6= ∗. If such

a tuple T ′ is found, then tests if shk
?
= sharedkey(T3, T

′
2)(only using the

tuples in P ∪P−1). If so, the system makes a query (T ′4, T1; NSK) and re-
sponds toQk with NSKr(T ′4, T1), otherwise responds with a random string;

3. If PK1 ≤ PK2 and there is a tuple T = (T1, T2, T3, T4) ∈ P ∪ P−1 such
that T4 = PK2 and T1 6= ∗, then searches every tuple T ′ = (T ′1, T

′
2, T

′
3, T

′
4)

in P -table which satisfies T ′4 = PK1 and T ′2 6= ∗. If such a tuple T ′

is found, then tests if shk
?
= sharedkey(T3, T

′
2)(only using the tuples in

P ∪ P−1). If so, the system makes a query (T ′4, T1; NSK) and responds
to Qk with NSKr(T ′4, T1), otherwise responds with a random string;

4. Otherwise, responds with a random string.
– Case 3: If Qk /∈ H1 and WCCk = 0, which means, there exists a query
Qi = (SK;H0)(i < k) such that NKG(SK) ∈ {PK1,PK2}, then the system
would test the validity of z only using H0-table, P -table and P−1-table.
Formally,
1. There exist two queries Qi = ((SK1;H0)) and Qj = (SK2;H0)(i, j < k)

such that NKG(SK`) = PK`(` = 1, 2), then the system tests shk
?
=

sharedkey(keygen(H0(SK1)), H0(SK2))(the valueH0(SK`) is extracted from
the H0-table, rather than making oracle queries). If so, the system makes
a query (PK2,SK1; NSK) and responds to Qk with NSKr(PK2,SK1), oth-
erwise responds with a random string.
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2. There exists a query Qi = ((SK∗;H0))(i < k) such that NKG(SK∗) =
PK1 but no such a query for PK2, then searches every tuple T = (T1, T2, T3,
T4) ∈ P ∪ P−1 which satisfies T4 = PK2. If such a query is found, then

the system tests shk
?
= sharedkey(T3, H0(SK∗))(H0(SK∗ is extracted from

H0-table and T3 is from the P ∪ P−1-table). If so, the system makes a
query (PK2,SK∗; NSK) and responds to Qk with NSKr(PK2,SK∗), other-
wise responds with a random string.

3. There exists a query Qi = ((SK∗;H0))(i < k) such that NKG(SK∗) =
PK2 but no such a query for PK1, then searches every tuple T = (T1, T2, T3,
T4) ∈ P ∪ P−1 which satisfies T4 = PK1. If such a query is found, then

the system tests shk
?
= sharedkey(T3, H0(SK∗))(H0(SK∗ is extracted from

H0-table and T3 is from the P ∪ P−1-table). If so, the system makes a
query (PK1,SK∗; NSK) and responds to Qk with NSKr(PK1,SK∗), other-
wise responds with a random string.

4. Otherwise, responds with a random string.

The difference of Game 9 and Game 8 occurs in the cases associated with
underline. Specifically, instead of calling the real oracle H̃1, we now lazily sample
the oracle using the table for H1. However, in both games, queries to NSK will
still make queries to the random oracle H̃1. As such, we will need to make sure
that the response would not violate the consistency with NSK.

Note that, in either Game 9 or Game 8, the system never uses the real
oracles H̃0, P̃ and ˜P−1 to respond to the adversarial queries. Suppose Qk =
(PK∗1 ,PK∗2 , shk∗;H1), it’s trivial to note that, except for negligible probability,
shk∗ 6= sharedkey(H̃0(SK∗1), P̃ (PK∗2)), which means that with high probability

there is no (PK,SK) such that H̃1(PK∗1 ,PK∗2 , shk) = ÑSK(PK∗1 ,SK∗2), where

ÑKG(SK∗2) = PK∗2 . Hence, it suffices to show that the response of Qk is con-
sistent with the previous queries. Easy to note that for case 2.1, we can replace
the response with random string, as each NSK is with form of PK1 ≤ PK2. More-
over, it’s also trivial that, for the cases where the shared key test fails (case 2.2,
2.3, 3.1, 3.2, 3.3), we can replace the responses with random strings.

The rest are case 2.4 and case 3.4, and we will explain one by one. The
bad case here is that, when case 2.4 or 3.4 occurs, the adversary still can hand
in a valid shared key. For case 2.4, by definition, it consists of 3 sub-cases(for
ease, we denote them as case A, B and C), Case A: there is a tuple T ∈ P−1

such that T4 = PK∗1 but there is no tuple T ′ ∈ P ∪ P−1 that T ′4 = PK∗2 ;
Case B: there is a tuple T ∈ P−1 such that T4 = PK∗2 but there is no tuple
T ′ ∈ P ∪ P−1 that T ′4 = PK∗1 ; Case C: there is no tuple T ∈ P−1 such that
T4 ∈ {PK∗1 ,PK∗2}. For case A and B, we note that the adversary might know one
of the secret keys(the adversary picks sk∗, calculates pk∗ = keygen(sk∗) and sets
PK∗1 as the response of (pk∗;P−1)), but for the other one, it even doesn’t know
the public key(otherwise there would be a tuple in P ∪P−1), thus the adversary
is obligated to output a valid shard-key without knowing one of the public keys.
As our standard model NIKE scheme achieves entropic shared keys(the variant
version), this is impossible except for negligible probability. For Case C, the
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adversary might know two public keys(the adversary picks SK∗1 ,SK∗2 , and sets
PK∗` = NKG(SK∗` ) then it makes two P queries (PK∗1 ;P ) and (PK∗2 ;P ) and sets
pk∗` as the response of the corresponding query), but it knows nothing of the two
secret keys, because no tuple is founded in H0-table or P−1 table. Meanwhile,
the adversary can implement the interfaces into oracles and use those oracles
as additional helper to predict the shared key. Fortunately, our shared key is
masked by a random oracle (H1), thus the only thing the adversary can do is
equality test, which means the oracles adversary implements is the best helper it
can count on. And due to the semi-active unpredictable shared keys property of
our standard model NIKE, we have that, the adversary can not output a valid
shared key except for negligible probability.

Now we turn to case 3.4, and by definition, it consists of two sub-cases(case
D and E), Case D: there is a tuple T ∈ H0 such that T4 = PK1 but there is no
tuple T ′ ∈ P ∪ P−1 such that T ′4 = PK2; Case E: there is a tuple T ∈ H0 such
that T4 = PK2 but there is no tuple T ′ ∈ P ∪ P−1 such that T ′4 = PK1. Similar
to the analysis for case A or B, the adversary here knows one of the secret keys
but does not know the other public key, so due to the entropic shared keys, it
can only output a valid shared key with negligible probability.

Game 10. In Game 9, the queries to the adversarial interfaces are answered by
the tables which’re maintained by the system and by making queries to honest
interfaces. The system never makes queries directly to H̃0, P̃ , P̃

−1, H̃1; these
oracles are only used to answer the NKG,NSK queries (either generated by the
adversary or by the system’s response to H0, H1, P, P

−1 queries). At this point, it
is straightforward to show that we can replace NKG,NSK with the ideal versions
from Definition 4, resulting in Game 10.

We note that in Game 10, the system is efficient, and it responds to the
adversarial interfaces just by keeping several tables and calling the honest inter-
faces. Thus, we can build a simulator that responds to the honest and adversarial
queries precisely as the system does in Game 10. The result is that the view in
Game 10 is identical to the ideal world and it suffices to prove that any adjacent
games are indistinguishable. As the rigorous proof is quite long, we will give the
full description in Appendix E.

Remark: The rigorous proof is much more involved than the intuitive para-
graphs listed above. In fact, the view of the adversary consists of the view on both
the honest interfaces (NKG,NSK) and the adversarial interfaces (H0, P, P

−1, H1),
and the view on those interfaces are correlated(for instance, a change on the re-
sponse of a P query might affect the view on H1). And a careful reader would
have already noticed that our intuitive paragraphs only give evidence that chang-
ing the way of answering such queries would not affect the view on the corre-
sponding interface, for instance, in Game 5, the explanation paragraph only
shows the view on P would not change with high probability, which actually
is insufficient, because the response of H1 queries would be also affected in the
following queries for consistency, which might change the view on H1. Hence,
in our proof, we will show that the view on all interfaces preserves with high
probability between any two adjacent games.
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A Games and Ideal objects

Games. An n-adversary game G is a Turing machine, denoted as GΣ,A1,...,An ,
where Σ is a system and Ai are adversarial algorithms that can keep full local
state but might only communicate with each other through G. If we say a n-
adversary game Gn is reducible to an m-adversary game Gm, we mean that, for
any (A1, . . . ,An), there are (A′1, . . . ,A′m) such that for any system Σ we have

that GΣ,A1,...,An
n = GΣ,A

′
1,...,A

′
m

m . A game G is called a n-stage game [24] if G is an
n-adversary game and it cannot be reducible to any m-adversary game, where
m < n10. Moreover, we say two games are equivalent if they are reducible in
both directions.

Random Oracle Model (ROM) [4]. Random oracle model is an idealized
model(a theoretical black box) which responds to any unique query with a truly
random string, and if the query is repeated, the response would be consistent.
More concretely, a random oracle model has a publicly accessible hash function
H : {0, 1}∗ → {0, 1}n such that : 1) for any x, every bit of H(x) is truly random;
2) for any x 6= y, H(x) and H(y) are independent.

Ideal Cipher Model (ICM) [5]. The Ideal Cipher Model is another idealized
model which also responds to any unique query with a truly random string.
While, instead of having a publicly accessible random function, ideal cipher
model has a publicly accessible ideal cipher E : {0, 1}k × {0, 1}n → {0, 1}n.
Specifically, E is an ideal cipher along with a k-bit key and n-bit input/output
such that: 1) for any pair (k, x), every bit of E(k, x) is truly random; 2) for
any fix key k, E(k, ∗) is a random permutation; 3) for any k1 6= k2 and (x, y),
E(k1, x) and E(k2, y) are independent. Moreover, any adversary interacting with
an ideal cipher model would be given access to both the cipher and its inverse.

Random Functions. Let X and Y be two finite sets, we denote F [X → Y] to
be the set of all functions that map from X to Y. If we say a function F : X → Y
is a random function, we mean that F is uniformly sampled from F [X → Y]11.

Random Injections. Similarly, let X and Y be two sets such that |X | ≤ |Y|,
we define I[X → Y] to be the set of all injections that map from X to Y. If we
say a function F : X → Y is a random injection, we mean that F is uniformly
sampled from I[X → Y].

Lazy samplers. Lazy samplers are algorithmic procedures, to simulate various
ideal objects along with arbitrary domain and range, by lazily sampling function
at each point. Those ideal objects include: random oracle model, ideal cipher
model, random functions and random injections [26].

10 For any single-stage game GΣ,A, we can trivially rewrite it as ĀḠ
Σ

, where Ḡ is an
oracle machine and Ā is an adversarial algorithm, and Ā is compatible with this
oracle machine Ḡ.

11 If F grants oracle accesses to all parties(honest or adversarial) in a black-box manner,
then we treat F as an idealized model
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B Indifferentiable Public Key Encryption

In this section, we propose the notion of “ideal PKE” and then build an indif-
ferentiable public key encryption scheme from ideal NIKE and random oracles.
Roughly, our strategy consists of two steps: first, we construct an indifferentiable
deterministic public key encryption(DPKE) from an ideal NIKE, and then build
an indifferentiable PKE from an ideal DPKE.

B.1 What is Ideal PKE?

In this part, we give the rigorous description of ideal PKE, formally:

Definition 6. (Ideal PKE.) Let X ,Y,M,R, C be five sets such that: 1) |X | ≥
2ω(log λ), |Y| ≥ 2ω(log λ), |R| ≥ 2ω(log λ) and |C| ≥ 2ω(log λ); 2) |X | ≤ |Y|; 3)
|Y|× |M|×|R| ≤ |C|. We denote F [X → Y] as the set of all injections that map
X to Y; E [Y ×M×R→ C] as the set of all injections that map Y ×M×R to
C and D[C ×X →M∪ ⊥] as the set of all functions that map X × C to M∪ ⊥.
We define T as the set of all function tuples (F,E,D) such that:

– F ∈ F , E ∈ E and D ∈ D;
– ∀x ∈ X ,m ∈M and r ∈ R, D(x,E(F (x),m, r)) = m;
– ∀x ∈ X , c ∈ C, if there is no (m, r) ∈ M×R such that E(F (x),m, r) = c,

then D(x, c) =⊥.

We say that a PKE scheme ΠPKE = (PKE.KEYGEN,PKE.ENC,PKE.DEC),
associated with secret key space X , public space Y, message space M, nonce
space space R, and ciphertext space C, is an ideal PKE if ΠPKE is sampled from
T uniformly. Moreover, if the nonce space is empty, then we say such a scheme
is an ideal DPKE.

Same as in Section 3, we note that, due to an information-theoretic argu-
ment, an ideal PKE achieves CCA-2 security, related-key attack security, leakage-
resiliency and so forth. Next, we show how to construct an indifferentiable PKE
scheme, from an ideal NIKE and random oracles.

B.2 Construction for Deterministic PKE

In this section, we build an indifferentiable deterministic PKE (DPKE) from
simpler ideal primitives (namely random oracles and ideal ciphers) along with
an ideal NIKE. We firstly present our first attempt of the construction and
then illustrate a differentiator to break it (this attack also indicates a difficulty
of building indifferentiable PKE). Next, we give our solution to get rid of the
attack and establish the proof.

First attempt to build an indifferentiable DPKE. Given an ideal NIKE
ΠNIKE, a natural way to build an indifferentiable DPKE is the follwing: 1) con-
vert this ideal NIKE into a PKE scheme; 2) apply the Fujisaki-Okamoto trans-
formation [17], which combines with a random oracle to give at least CCA-2
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security. The hope is that this transformation would give us an indiffernetiable
DPKE. Specifically, let ΠNIKE = (NKG,NSK) be an ideal NIKE, associated with
secret key space X , public key space Y and shared key space Z, and we de-
note sk, pk, shk to be the secret key, public key and shared key of ΠNIKE, re-
spectively. For an easy exposition, we always denote the inputs of component
primitives(for instance, in the standard model NIKE in Section 3 or the ideal
NIKE in this section) as the lower-case and inputs of the target primitives as the
upper-case. Let H0,H1 := {0, 1}∗ → X ; H2 := {0, 1}∗ → Z; H3 := {0, 1}∗ →M,
then applying FO-transform, we have the following DPKE scheme: ΠDPKE =
(DPKE.KEYGEN,DPKE.ENC, DPKE.DEC).

– DPKE.KEYGEN(SK): On inputs secret key SK, the algorithm outputs public
key PK = NKG(H0(SK));

– DPKE.ENC(PK,M): On inputs public key PK and message M, the algorithm
computes δ = H2(PK||M), and outputs ciphertext C as

C = (C1,C2,C3) = (NKG(H1(PK||M)), δ⊕NSK(PK, H1(PK||M)), H3(PK, δ)⊕M);

– DPKE.DEC(SK,C): On inputs secret key SK and ciphertext C = (C1,C2,C3),
the algorithm computes:

PK = DPKE.KEYGEN(SK); A1 = NSK(C1, H0(SK));

A2 = C2 ⊕ A1; A3 = C3 ⊕H3(PK||A2).

Then it tests whether C
?
= DPKE.ENC(PK||M). If yes, then outputs A3, else

aborts.

Correctness easily follows, but this scheme is not indifferentiable. Next we present
a differetiator to break it.

Differentiator for FO transform. Due to definition, D has three honest inter-
faces (DPKE.KEYGEN,DPKE.ENC,DPKE.DEC)(below, we will denote (DKG,DE,
DD) for short) and six adversarial interfaces (H0, H1, H2, H3,NKG,NSK), and we
build D as in Figure 3:

Differentiator D:

SK
$← X ,M $←M;

A← DKG(SK), (B1,B2,B3)← DE(A,M);
Q1 ← H0(SK),Q2 ← NSK(B1,Q1),Q3 = H3(A,Q2 ⊕ B2);
Return 1(Q3 = B3 ⊕M)

Fig. 3: Differentiator for FO-transform.

We immediately observe that, in the real game, A and (B1,B2,B3) are the
corresponding public key and ciphertext, respectively. Moreover, due to ΠNIKE’s
correctness, we have

NSK(PK,H1(PK||M)) = NSK(C1,H0(sk)) = NSK(B1,Q1).
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which refers to,
Pr[Q3 = H3(PK, δ) = B3 ⊕M] = 1.

However, in the ideal game, the simulator knows nothing of queries to the honest
interfaces, and the only information it has is: (SK,A,B1,B2)(other information
such like H0(SK),NSK(B1,Q1) and H3(A,Q2 ⊕ B2) are simulated by S itself).
Therefore, without decryption oracle, M is independent of simulator’s view. And
the decryption oracle always aborts except S hands in a valid ciphertext, which
consists of three elements (B1,B2,B3). Moreover, in the ideal world, the honest
interface DPKE.ENC is a random injection, hence

Pr[S outputs a valid B3] ≤
poly(λ)

|M|
,

which means, in the ideal game,

Pr[Q3 = H3(A,Q2 ⊕ B2) = B3 ⊕M] ≤ poly(λ)

|M|
.

Difficulty of building indifferentiable PKE. Due to this differentiator, we
know that: if we want to build an indifferentiable PKE, we should be super-
cautious if the ciphertext includes piece with form of string ⊕M 12. And inter-
estingly, most of the known PKE schemes have this kind of piece in ciphertext.
Next, we give our solution to get rid of this kind of attack.

Our solution. To prevent the attack above, the only hope is S can always
output a valid ciphertext itself. Our trick is, instead of using random oracles,
we use an ideal cipher model P , with inverse. Specifically, let Z = Y × M
(we specify the shared key space of ΠNIKE to be Y ×M and |X | ≤ |M|), and
P := Z → Z. Now, we denote δ = P (PK||M), and modify the ciphertext as
C = (NKG(H1(PK||M)), δ ⊕ NSK(PK,H1(PK||M)))). Formally:

– DPKE.KEYGEN(SK): On inputs secret key SK, the algorithm outputs public
key PK = NKG(H0(SK));

– DPKE.ENC(PK,M): On inputs public key PK and message M, the algorithm
computes δ = P (PK||M), and outputs ciphertext C as

C = (C1,C2) = (NKG(H1(PK||M)), δ ⊕ NSK(PK,H1(PK,M)));

– DPKE.DEC(SK,C): On inputs secret key SK and ciphertext C = (C1,C2), the
algorithm computes:

PK = DPKE.KEYGEN(SK); A1 = NSK(C1, H0(SK));

A2 = C2 ⊕ A1; A3 = P−1(A2),A4 = A3/PK.

Then it tests whether C
?
= DPKE.ENC(A3). If yes, then outputs A4

13, else
aborts.

12 we stress that this difficulty might not be an impossibility separation, and here we
just point out a vulnerability of building indifferentiable PKEs

13 we note that A3 = PK||M, and by A3/PK, we mean removing PK from A3.
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In our new setting, we immediately observe that the ciphertext only consists
of two elements, which means S can always hand in the vaild ciphertext to the
decryption oracle. Now we see how this new scheme prevent the attack above.
Following the same spirit, the corresponding differentiator for the new scheme
should be:

Differentiator D:

SK
$← X ,M $←M;

A← DKG(SK), (B1,B2)← DE(A,M);
Q1 ← H0(SK),Q2 ← NSK(B1,Q1),Q3 = P−1(Q2 ⊕ B2);
Return 1(Q3 = A||M)

Fig. 4: Differentiator for new scheme.

Same as above, in real game, Pr[D] = 1. Meanwhile, in ideal game, we note
that S still can extract the following information (SK,A,B1,B2). As now the
ciphertext only consists of two elements, S can run the decryption oracle M′ ←
DD(SK, (B1,B2)) and output Q3 = A||M′. Hence, in ideal game, we also have
Pr[D] = 1. Apparently, this is only an evidence that our new scheme prevents
this specific differentiator. And to prove it’s an indifferentiable DPKE, we need
to show that our scheme can prevent all kind of PPT differetiators.

Theorem 7. (Indifferentiable DPKE). ΠDPKE is indifferentiable from an ideal
DPKE if ΠNIKE is an ideal NIKE.

As the proof of Theorem 7 is long, we will give the full details in Appendix
F.

B.3 Construction for PKE

In this section, we complete the construction by building an indifferentiable
PKE from ideal DPKE and random oracles. Similarly as in Appendix B.2 , we
firstly present two attempts and then illustrate the corresponding differentiators
to break the schemes. Then we give the modified solution to get rid of those
attacks and complete the proof.

First attempt. Given an ideal DPKE ΠDPKE = (DKG,DE,DD), a trivial way
to build a PKE scheme is to treat the nonce as part of the message and discard
it in the decryption procedure. Specifically:

– PKE.KEYGEN(SK) = DKG(SK);
– PKE.ENC(PK,M,R) = DE(PK,M||R);
– PKE.DEC(SK,C): On inputs a secret key SK and a ciphertext C, the algo-

rithm runs DD(SK,C). If aborts then it aborts, else let (M||R) = DD(SK,C),
it outputs M.

Correctness of the scheme is straightforward, while unfortunately, it’s not
indifferentiable.



36 Mark Zhandry and Cong Zhang

Differentiator for first attempt. Due to definition, D has three honest inter-
faces (PKE.KEYGEN,PKE.ENC,PKE.DEC)(below, we will denote (PKG,PE,PD)
for ease) and three adversarial interfaces (DKG,DE,DD). We build D as in Fig-
ure 5:

Differentiator D:

SK
$← X ,M $←M;R

$←R;
A← PKG(SK),B← PE(A,M,R), Q1 ← DD(SK,B)
Return 1(Q1 = M||R)

Fig. 5: Differentiator for first attempt.

Easy to note that, in real game Pr[D = 1] = 1. Meanwhile, in ideal game, the
simulator has no information of the nonce R, as PD only outputs M. To respond
to the query, the simulator has to guess the nonce itself, hence we have

Pr[D = 1] ≤ poly(λ)

|R|
.

Second attempt. To solve the problem above, we add an additional random
oracle to force the attacker to hand in the nonce when calling the DE-query.
Specifically, let H0 := {0, 1}∗ → R, then we build ΠPKE as:

– PKE.KEYGEN(SK) = DKG(SK);
– PKE.ENC(PK,M,R) = DE(PK,M||H0(PK,M,R));
– PKE.DEC(SK,C): On inputs a secret key SK and a ciphertext C, the al-

gorithm runs DD(SK,C). If DD aborts then the algorithm aborts, else let
(M||str) = DD(C,SK), it outputs M.

Apparently, this modification can prevent the attack above, as the response
of the DD query now is H0(PK,M||R) and H0 is under S’s control (To test
the consistency, the adversary has to hand in R to S, as a result the simulator
can always output the proper response). Although the attack above is solved,
unfortunately, this scheme is still insufficient.

Differentiator for second attempt. Due to definition, any differentiator has
three honest interfaces (PKG,PE,PD)and four adversarial interfaces (DKG,DE,DD,
H0). We build D as in Figure 6:

Differentiator D:

SK
$← X ,M $←M; r

$← R;
A← PKG(SK),B← DE(A,M||r), Q1 ← PD(sk,B)
Return 1(Q1 6=⊥)

Fig. 6: Differentiator for second attempt.

Easy to note that, in real game, Pr[D = 1] = 1. Meanwhile, in ideal game,
we claim that, with noticeable probability, the decryption would abort. In fact,
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the decryption procedure outputs M if and only if there exists a nonce R ∈ R
such that H0(PK,M,R) = r. Moreover, R, r ∈ R, and H0 is a random oracle, we
have that

Pr[∀R ∈ R, H0(PK,M,R) 6= r] ≈ 1/e

which refers to Pr[D = 1] ≤ 1− 1/e ≈ 0.6

Our solution. To get rid of this new attack, we have to shorten the size of H0’s
range, to make sure that every element in H0’s range has pre-image with high
probability. Meanwhlie, to make sure the ciphertext space is sufficiently large, we
also need to pad some dummy strings. Specifically, let ΠDPKE be an ideal DPKE,
associated with secret key space X , public key space Y = {0, 1}n1 , message space
M = {0, 1}n2+2n3 , and ciphertext space C, and let H0 := {0, 1}∗ → {0, 1}n3 ,
where n2 > 0 and n1, n3 ≥ ω(log λ), then we build our scheme as:

– PKE.KEYGEN(SK) = DKG(SK):
– PKE.ENC(PK,M,R): On inputs public key PK, message M ∈ {0, 1}n2 and

nonce R ∈ {0, 1}2n3 , the algorithm outputs ciphertext:

C = DE(PK,M||H0(PK,M,R)|| 0 . . . 0︸ ︷︷ ︸
n3

);

– PKE.DEC(SK,C): On inputs secret key SK and ciphertext C, the algorithm
runs A = DDPKE(SK,C). If A =⊥ or the last n3 bits are not 0n3 , then it
aborts, else the algorithm outputs the first n2 bits.

Correctness follows easily, and the rest is to show its indifferentiability.

Theorem 8. (Indifferentiable PKE). ΠPKE is indifferentiable from an ideal
PKE if ΠDPKE is an ideal DPKE.

Again, as the proof of Theorem 8 is quite long, we put the full details into
Appendix G.

C Indifferentiable Digital Signatures

In this section, we extend our result to the digital signature scheme. We propose
the notion of “Ideal Signature”, and then build an indifferentiable signature
scheme from simpler ideal primitives (random oracle model and ideal cipher
model) and a stand-model signature scheme.

C.1 What is “Ideal Signature”?

In this part, we give the rigorous description of ideal signature, formally:

Definition 9. (Ideal Signature.) Let X ,Y,M, Σ be four sets such that: 1)
|X | ≥ 2ω(log λ), |Y| ≥ 2ω(log λ), |M| ≥ 2ω(log λ) and |Σ| ≥ 2ω(log λ); 2) |X | ≤ |Y|;
3) |X | × |M| ≤ |Σ|. We denote F [X → Y] as the set of all injections that map
X to Y; S[X ×M→ Σ] as the set of all injections that map X ×M to Σ and
V[Y ×M× Σ → {0, 1}] as the set of all functions that map Y ×M× Σ to a
bit. We define T as the set of all function tuples (F, S, V ) such that:
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– F ∈ F , S ∈ S and V ∈ V;

– ∀x ∈ X ,m ∈M, V (F (x),m, S(x,m)) = 1;

– ∀x ∈ X ,m ∈M and σ ∈ Σ, if σ 6= sign(x,m), then V (F (x),m, σ) = 0;

– ∀x ∈ X ,m ∈ M and σ1, σ2 ∈ Σ, V (F (x),m, σ1) = V (F (x),m, σ2) = 1 ⇒
σ1 = σ2.

We say that a digital signature scheme ΠSig = (Sig.KEYGEN,Sig.SIGN,Sig.VER),
associated with secret key space X , public key space Y, message space M and
signature space Σ, is an ideal digital signature, if ΠSig is sampled from T uni-
formly.

It’s trivial to note that, an ideal signature is a unique signature, and due
to the information-theoretic argument, it also achieves CMU-secure, related-key
attack secure, leakage-resilient and so forth. Next, we show how to construct an
indifferentiable signature scheme from simpler ideal primitives.

C.2 Construction

In this section, we build our indifferentiable signature scheme from simpler ideal
primitives (namely random oracles and ideal ciphers) along with a standard-
model(that is, non-ideal) signature scheme.

Building Blocks. Our scheme will consist of several building blocks:

– A standard-model signature scheme ΠSM−Sig = (keygen, sign, ver) with secret
key space X , public key space Y = {0, 1}n1 , message space M = {0, 1}n2

and signature space Σ ⊂ {0, 1}n3 ;

– H0 := {0, 1}∗ → X ;H1 := {0, 1}∗ →M;

– P := {0, 1}n1 → {0, 1}n1 is a random permutation and P−1 is P’s inverse,

– E := {0, 1}n1+n2 × {0, 1}n3 → {0, 1}n3 is an ideal cipher model, where
{0, 1}n1+n2 is its key space and E−1 is its inverse.

Construction. Now we are ready to build an indifferentiable signature scheme,
denoted as ΠSig = (Sig.KEYGEN,Sig.SIGN,Sig.VER), from the building blocks
above. Formally,

– Sig.KEYGEN(SK): On inputs secret key SK, the algorithm outputs public
key PK = P−1(keygen(H0(SK)));

– Sig.SIGN(SK,M): On inputs secret key SK and message M, the algorithm
computes PK = Sig.KEYGEN(SK) and outputs the signature

σ = E−1((PK||M), sign(H0(SK), H1(M))),

– Sig.VER(PK,M, σ): On inputs public key PK, message M and the signature
σ, the algorithm outputs a bit b = ver(P (PK), H1(M), E((PK||M), σ)).
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Correctness easily follows, and the rest is to prove its indifferentiability. Before
that, we specify several security properties of the standard-model signature.

Property 1. uniqueness. We say a signature achieves uniqueness, if ∀(pk, sk)←
keygen,m ∈M, σ1, σ2 ∈ Σ, we have,

ver(pk,m, σ1) = ver(pk,m, σ2) = 1⇒ σ1 = σ2.

Property 2. random-message attack (RMA). We say a signature scheme

is RMA-secure if for any PPT adversary A, the advantage

AdvA := Pr[ver(pk,m∗, σ∗) = 1 : σ∗ ← Asign(sk,m1,...,mq)(pk,m∗)] ≤ negl(λ)

where (pk, sk) ← keygen, (m∗,m1, . . . ,mq)
$← M and m∗ was not previously

signed.

Property 3. pseudorandom public key. We say the public key, for a signa-
ture scheme, is pseudorandom, if for any PPT adversary A, the advantage

AdvA := |Pr[A(keygen(r))]− Pr[A(R)]| ≤ negl(λ)

where r ← X , R← Y.
We say a signature scheme is Good if it satisfies the three properties above.

Next, we prove the following theorem.

Theorem 10. (Indifferentiable Signatures). ΠSig is indifferentiable from an
ideal digital signature if ΠSM−Sig is Good.

Again, as the proof of Theorem 10 is quite long, we put the full details into
Appendix H.

D Instantiating Our Constructions

In this section, we explain how to instantiate our schemes. In particular, we
briefly explain how to build secure standard-model schemes that can be plugged
into our construction.

D.1 Non-interactive Key Exchange (NIKE)

We need a NIKE protocol where (1) the shared key is semi-active computation-
ally unpredictable; (2) for any secret key, the distribution of shared key is close
to uniform in shared key space over the public key’s distribution and (3) the
public values exchanged by the parties are computationally close to uniform bit
strings. (1) is a weakening of the usual notion of security for a NIKE scheme
against active attack, and (2) is guaranteed in most known schemes, except for
some artificial constructions. In contrast, (3) is non-standard, and requires some
care to make sure it is handled properly. We now give several example construc-
tions:
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From doubly-strong CDH. The usual Diffie-Hellman protocol gives a NIKE that
is almost good enough for us. Let G be a group of prime order p with generator g.
The secret keys are integers a ∈ Zp. keygen(a) = ga and sharedkey(h, a) = ha. For
ga = keygen(a) and gb = keygen(b), the secret shared key is sharedkey(ga, b) =
gab. The doubly-strong computational Diffie-Hellman assumption states that it
is computationally infeasible to compute gab from ga, gb and having access to
an oracle that on input (u, v) tests whether v = ua and another oracle that on
input (u, v) tests whether v = ub. This assumption can plausibly hold on typical
cryptography groups, and over bilinear groups, it follows trivially from the plain
CDH assumption, since the bilinear map can be used to implement the oracles.
Moreover, this assumption immediately gives us the semi-active unpredictable
shared keys in our standard model NIKE protocol.

For the pseudorandomness of public keys, we need some more care. We con-
sider two cases:

– G is the group of quadratic residues mod a safe prime q. In other words,
q = 2p + 1. In this case, the public key is a random residue, clearly not a
uniformly random bit string

– G is an elliptic curve over a finite field. Here, the public key is a random
point on the elliptic curve, which is represented by two elements of the finite
field satisfying the elliptic curve equation. Again, clearly not a uniform bit
string.

We now explain how to convert either protocol into one with statistically
random public keys.

In the case of the group of quadratic residues, we will assume q = 3 mod 4.
In this case, −1 is not a residue, meaning that for every non-zero integer x in Zq,
exactly one of x and −x is a reside. As such, we can bijectively map the group
G to the integers {1, . . . , p}: for each element g ∈ G, if g ∈ {1, . . . , p} output g,
and otherwise output q − g.

We are still not done: now the public key is random in {1, . . . , p}, but as p
is not a power of 2, this cannot be represented as a uniform bit string. Instead,
we will use the following:

Lemma 11. Let D be a distribution over [0, N − 1] that is computationally
indistinguishable from uniform. Then n be an integer such that n − log2N ≥ λ
where λ is the security parameter. Let T be the largest integer such that TN ≤ 2n.
Then the distribution x+Ny where x← S and y ← [0, T −1] is computationally
indistinguishable from the uniform distribution over [0, 2n − 1].

Proof. We prove this by a sequence of hybrids:

Hybrid 0. In this case, the adversary is given z = x + Ny for x ← D and
y ← [0, T − 1].

Hybrid 1. In this case, the adversary is given z = x+Ny for x← [0, N −1], y ←
[0, T − 1]. Notice that Hybrids 0 and 1 are computationally indistinguishable
since D is computationally indisitnguishable from uniform on [0, N − 1]. Notice
that in Hybrid 2, z is uniform on [0, TN − 1]
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Hybrid 2. In this hybrid, z is uniform on [0, 2n]. Notice that ‖2n − TN‖ ≤ N .
Therefore the two distributions are at most N/2n-close in statistical distance.
Notice that N/2n ≤ 1

2λ
, which is negligible.

Lemma 11 shows that any key generation algorithm where outputs are uni-
form in some interval can be turned into an algorithm where outputs are uniform
bit strings. By applying this Lemma to Diffie-Hellman over safe primes, we ob-
tain a NIKE scheme meeting our needs.

In the case of elliptic curves, things are a bit more complicated. Fortunately,
there are multiple ways to represent elliptic curve elements as (almost) random
elements in the ambient finite field; for example, see [29]. Elements in the finite
field of q elements can be mapped into the integers [0, q − 1] in a natural way,
and then we can apply Lemma 11.

D.2 Signatures

Next, we turn to signatures. Unfortunately, as we need unique signatures, we
have to be careful about how we instantiate our scheme.

From Bilinear maps. We can use the unique signature scheme of Boneh, Lynn,
and Shacham [7] from bilinear maps. Since we need a weaker notion of security
than the usual chosen message attack security, we can actually use a simplifica-
tion of their scheme.

The secret key is an integer a ∈ Zp, and the public key is h = ga. Messages
m are just group elements, and the signature on m is σ = ma. Notice that
(g, h,m, σ) is a Diffie-Hellam tuple; therefore, all that’s needed to verify the
signature is a way to solve the decisional Diffie-Hellam (DDH) problem. On the
other hand, by the computational Diffie-Hellman (CDH) problem it is hard to
compute σ from g, h,m. Such “gap Diffie-Hellman” groups can be instantiated
from bilinear maps.

The only thing that remains is to guarantee that public keys are random bit
strings. Since known constructions of bilinear maps are just special elliptic curve
groups, we can apply the same modifications as we did for key agreement above
to get random public keys.

E Proof of Theorem 5

In this section, we give the full description of our simulator and the rest proof
of Theorem 5.

Simulator In Ideal Game. Let (KEYGEN,SHAREDKEY) be the function pair
that samples from TNIKE, the simulator works as follows. Like the system in Game
10, the simulator also maintains four tables, referring to H0-table, P -table, P−1-
table and H1-table. Concretely:

– H0-table: Initially empty, consists of tuples with form of (SK, sk, pk,PK).
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– P -table: Initially empty, consists of tuples with form of (∗, sk, pk,PK).
– P−1-table: Initially empty, consists of tuples with form of (SK, ∗, pk,PK).
– H1-table: Initially empty, consists of tuples with form of (PK1,PK2, shk,SHK).

By definition, S has access to the honest interfaces (NKG,NSK), where NKGr(SK) =
KEYGEN(SK) and NSKr(PK,SK) = SHAREDKEY(PK,SK). And for the adver-
sarial queries, S works as the system in Game 10, by just using the tables and
calling the honest interfaces.

H0-query. Suppose Qk = (SK;H0) (k ∈ [1, q]), then the simulator responds as
follows:

– Case 1. If Qk ∈ H0, which means there is a tuple T = (T1, T2, T3, T4) ∈ H0

such that T1 = SK, then S responds with T2;
– Case 2. If Qk /∈ H0 but there is a tuple T = (T1, T2, T3, T4) in P -table such

that T4 = NKGr(SK), then S responds with T2 and inserts (SK, T2, T3, T4)
into H0-table;

– Case 3. Otherwise, the simulator samples sk
$← X , responds with sk, and

inserts (SK, sk, keygen(sk),NKGr(SK)) into H0-table.

P -query. Suppose Qk = (PK;P ), then the simulator responds:

– Case 1. IfQk ∈ H0∪P∪P−1, which means there is a tuple T = (T1, T2, T3, T4) ∈
H0 ∪ P ∪ P−1 such that T4 = PK, then S responds with T3;

– Case 2. Otherwise, S responds with a random public key pk∗ = keygen(sk∗),

where sk∗
$← X and inserts (∗, sk∗, keygen(sk∗),PK) into P -table.

P−1-query. Suppose Qk = (pk;P−1), then the simulator responds:

– Case 1. IfQk ∈ H0∪P∪P−1, which means there is a tuple T = (T1, T2, T3, T4) ∈
H0 ∪ P ∪ P−1 such that T3 = pk, then S responds with T4;

– Case 2. Otherwise, S samples SK← X , makes a query (SK; NKG), responds
to the query with NKGr(SK) and inserts (SK, ∗, pk,NKGr(SK)) into P−1-
table.

H1-query. Suppose Qk = (PK1,PK2, shk;H1), then the simulator responds:

– Case 1: If Qk ∈ H1, which means there is a tuple T = (T1, T2, T3, T4) ∈ H1

such that T1 = PK1, T2 = PK2 and T3 = shk, then S responds with T4.
– Case 2: If Qk /∈ H1 and WCCk = 1, then S would test the validity of z only

using P and P−1 table. Formally,

1. If PK1 > PK2, then S responds with a random string;

2. If PK1 ≤ PK2 and there is a tuple T = (T1, T2, T3, T4) ∈ P−1 such
that T4 = PK1, then S searches every tuple T ′ = (T ′1, T

′
2, T

′
3, T

′
4) ∈

P ∪ P−1 which satisfies T ′4 = PK2. If such a tuple T ′ is found, then

test if shk
?
= sharedkey(T3, T

′
2)(only using the tuples in P ∪ P−1). If

so, the simulator makes a query (T ′4, T1; NSK) and responds to Qk with
NSKr(T ′4, T1), otherwise responds with a random string;
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3. If PK1 ≤ PK2 and there is a tuple T = (T1, T2, T3, T4) ∈ P ∪ P−1

such that T4 = PK2, then S searches every tuple T ′ = (T ′1, T
′
2, T

′
3, T

′
4)

in P -table which satisfies T ′4 = PK1. If such a tuple T ′ is found, then

test if shk
?
= sharedkey(T3, T

′
2)(only using the tuples in P ∪ P−1). If

so, the simulator makes a query (T ′4, T1; NSK) and responds to Qk with
NSKr(T ′4, T1), otherwise responds with a random string;

4. Otherwise, responds with a random string.

– Case 3: If Qk /∈ H1 and WCCk = 0, which means, there exists a query
Qi = (SK;H0)(i < k) such that NKG(SK) ∈ {PK1,PK2}, then S would test
the validity of z only using H0-table, P -table and P−1-table. Formally,
1. There exist two queries Qi = ((SK1;H0)) and Qj = (SK2;H0)(i, j < k)

such that NKG(SK`) = PK`(` = 1, 2), then the simulator tests shk
?
=

sharedkey(keygen(H0(SK1)), H0(SK2))(the valueH0(SK`) is extracted from
the H0-table, rather than making oracle queries). If so, the system makes
a query (PK2,SK1; NSK) and responds to Qk with NSKr(PK2,SK1), oth-
erwise responds with a random string.

2. There exists a query Qi = ((SK∗;H0))(i < k) such that NKG(SK∗) =
PK1 but no such a query for PK2, then searches every tuple T = (T1, T2, T3,
T4) ∈ P ∪P−1 which satisfies T4 = PK2. If such a query is found, then S
tests shk

?
= sharedkey(T3, H0(SK∗))(H0(SK∗) is extracted from H0-table

and T3 is from the P ∪ P−1-table). If so, the system makes a query
(PK2,SK∗; NSK) and responds to Qk with NSKr(PK2,SK∗), otherwise
responds with a random string.

3. There exists a query Qi = ((SK∗;H0))(i < k) such that NKG(SK∗) =
PK2 but no such a query for PK1, then searches every tuple T = (T1, T2, T3,
T4) ∈ P ∪P−1 which satisfies T4 = PK1. If such a query is found, then S
tests shk

?
= sharedkey(T3, H0(SK∗))(H0(SK∗) is extracted from H0-table

and T3 is from the P ∪ P−1-table). If so, the system makes a query
(PK1,SK∗; NSK) and responds to Qk with NSKr(PK1,SK∗), otherwise
responds with a random string.

4. Otherwise, responds with a random string.

Next we prove the indistinguishability between any adjacent games, by show-
ing that the adversary’s view on both games are close. Before that, we give
two useful lemmas based on ΠSM−NIKE’s pseudorandom public keys and entropic
shared keys.

Lemma 12. Let X := keygen(sk) be a variable, where sk ← X , then ∀y ∈ Y,

Pr[X = y] ≤
√

2ε3 + 1
|X | .

Proof. By definition, the advantage of pseudorandom public key is bounded by
ε3, hence by hybrid argument, we have that

AdvA := |Pr[A(keygen(sk1), keygen(sk2))]− Pr[A(y1, y2)]| ≤ 2ε3

where sk1, sk2 ← X , y1, y2 ← Y.



44 Mark Zhandry and Cong Zhang

Assuming there exists y∗ such that Pr[X = y∗] >
√

2ε3 + 1
|X | , then it’s trivial

that Pr[keygen(sk1) = keygen(sk2)] > 2ε3+ 1
|X | . On the other hand, Pr[y1 = y2] =

1
|Y| ≤

1
|X | , which means we can differ the tuple with a better advantage than

2ε3.

Similar to Lemma 12 , we also have the following lemma.

Lemma 13. Let sk∗ be any fixed element in X , pk∗ be any fixed element in Y,
and Z1 = sharedkey(pk, sk∗) and Z2 = sharedkey(pk∗, sk) where sk← X , pk← Y,
then ∀z ∈ Z, ` ∈ {1, 2}, Pr[Z` = z] ≤ ε2
Note that Lemma 12 tells us that the public key has high min-entropy, and any
PPT adversary cannot predict it with a noticeable probability, without knowing
the corresponding secret key. Analogously, Lemma 13 tells us that any PPT
adversary cannot predict the shared key without knowing one party’s public
key. Now, we are ready to prove the indistinguishability between any adjacent
games.

Claim. Game Real ≈ Game 0.

Proof. The only difference between Game Real and Game 0 is that, in Game
0 the system additionally maintains several tables that are completely hidden
from the adversary, hence we have

Pr[Game Real] = Pr[Game 0].

Claim. Game 0 ≈ Game 1.

Proof. By definition, we note that in Game 1, the system maintains longer tables
and it responds to part of the queries (called type A queries) by just using
those tables and calling the honest interfaces. For the rest queries (called type
B queries), the system responds by calling the real oracles. Moreover, the items
stored in those tables are always consistent with the real oracles, and in either
games, the honest interfaces correspond to the real oracles, which means the
response by calling the honest interfaces is identical to the one by calling real

oracles(for instance, NKGr(SK) = ÑKG(SK) = P̃−1(keygen(H̃0(SK)))). Hence
the responses of type A queries by either the real oracles(Game 0) or by honest
interfaces plus tables(Game 1) are identical, which refers to

Pr[Game 0] = Pr[Game 1].

Claim. Game 1 ≈ Game 2.

Proof. Recalling that the only difference between Game 1 and Game 2 occurs
in case 2, where Qk = (PK∗;P ) /∈ H0 ∪ P ∪ P−1 and SCCk = 1. In Game 1, the
system responds to Qk with P̃ (PK∗) while in Game 2, the system replaces the
response with a random string in Y. To prove the indistinguishability, we first
formalize the adversary’s view in Game 1. By definition, we immediately observe
that, in Game 1,
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– The system responds to (SK, H0) with H̃0(SK);
– The system responds to (PK;P ) with P̃ (PK);
– The system responds to (pk;P−1) with P̃−1(pk);
– The system responds to (PK1,PK2, shk;H1) with H̃1(PK1,PK2, shk);

– The system responds to (SK; NKG) with ÑKG(SK);

– The system responds to (PK1,SK2,NSK) with ÑSK(PK1,SK2).

Hence in adversary’s perspective, under the consistency conditions listed below,
the responses of H0 and H1 are independent and random strings. For P queries
Qk = (PK;P ) /∈ H0 ∪ P ∪ P−1, if SCCk = 1, then the response is uniformly
distributed in Y, while if SCCk = 0, then the response should be a random
public key instead. For P−1 query Q = (pk;P−1), the response should be the
inverse of P , and if Q /∈ H0 ∪ P ∪ P−1, then the response is independent and
uniformly distributed. Here are the consistency conditions:

1. P r(P−1r(pk)) = pk, P−1r(P r(PK)) = PK;
2. There exists no (PK1 6= PK2), (pk1 6= pk2) such that P r(PK1) = P r(PK2) or
P−1r(pk1) = P−1r(pk2);

3. NKGr(SK) = P−1r(keygen(H r
0(SK)));

4. NSKr(PK1,SK2) = Hr
1 (PK1,NKGr(SK2), sharedkey(P r(PK1), H

r
0(SK2)));

5. P r(NKGr(SK)) = keygen(H r
0(SK))(case 2 for H0 query );

6. H r
1(P−1r(keygen(sk1)),NKGr(SK2), sharedkey(P r(NKGr(SK2)), sk1))

= NSKr(P−1r(keygen(sk1)),SK2) (case 2.2, 2.3 for H1 query) ;
7. H r

1(NKGr(SK1),PK2, sharedkey(P r(PK2), H
r
0(SK1))) = NSKr(PK2,SK1) (case

3.2, 3.3 for H1 query);
8. H r

1(NKGr(SK1),NKGr(SK2), sharedkey(keygen(H r
0(SK1)), H

r
0(SK2)))

= NSKr(NKGr(SK1),SK2) = NSKr(NKGr(SK2),SK1)(case 3.1 for H1 query) .

Now we turn to Game 2, where the system responds to Qk (Qk /∈ H0∪P∪P−1

and SCCk = 1) with a random string y in Y, comparing to P̃ (PK∗) in Game 1.
We note that:

– forH0 query, the response is identical in either game, asH r
0(SK) = H̃0(SK)(the

second term of every tuples in P tables is *).
– for P query, the response of Qk is well-distributed as y is uniformly sampled.

And after Qk, the system implicitly sets P−1r(y) = PK∗.
– for P−1 query, as long as y never appears before Qk (say A makes a query

(y, P−1) before Qk ), the responses of P−1 are well-formed and consistent.
– for H1 query, after Qk the system implicitly sets

H r
1(PK1,PK∗, sharedkey(y,H r

0(SK1))

=H̃1(PK1,PK∗, sharedkey(P̃ (PK∗), H̃0(SK1))

=NSKr(PK∗,SK1)

where PK1 = NKGr(SK1). Hence, as long as the adversary does not make a
query (PK1,PK∗, sharedkey(P̃ (PK∗), H̃0(SK1);H1), the responses ofH1 queries
are well distributed (H̃1 is a random oracle).
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For the bad event on P−1 query(Bad1), where the adversary makes a query
(y, P−1) before Qk, we note that, y is uniformly sampled by the system, and
unless the adversary knows a secret key SKy such that y = keygen(H r

0(SKy)),

(y, P̃−1(y)) are independent of A’s view. Applying Lemma 12, we have

∀SK ∈ X ,Pr[keygen(H̃0(SK)) = y] ≤

√
2ε3 +

1

|X |
,

which refers to

Pr[A knows SKy] ≤ q

√
2ε3 +

1

|X |
.

And under the condition that A does not know SKy, the probability that the
adversary makes a query (y, P−1) before Qk is trivially bounded k−1

|Y| . Thus, we

have

Pr[Bad1] ≤

√
2ε3 +

1

|X |
+
k − 1

|Y|
.

For the bad event on H1 query(Bad2), where during the game the adversary
makes a query (PK1,PK∗, sharedkey(P̃ (PK∗), H̃0(SK1);H1), we note that, to do
so, the adversary has to output a valid shared key sharedkey(P̃ (PK∗), H̃0(SK1)).
Moreover, if P̃ (PK∗) is known by the adversary, then this bad event occurs
with high probability. Fortunately, we can argue that P̃ (PK∗) is independent
of A except for a negligible probability. Essentially, A cannot learn P̃ (PK∗) by
just making P query(by definition P r(PK∗) = y, rather than P̃ (PK∗)), and an
alternative way to learn P̃ (PK∗) is that, the adversary knows a secret key SK∗

such that NKGr(SK∗) = PK∗, and it outputs keygen(H r
0(SK∗)). However, due

to definition, we know that SCCk = 1, which means the adversary never makes
(SK∗;H0) or (SK∗; NKG) in the previous queries. Besides, H̃0 is a random oracle,
it’s apparent that for any secret key SK, H̃0(SK) is uniformly distributed in X .
Applying Lemma 12, we have

∀SK ∈ X ,Pr[keygen(H̃0(SK)) = P̃ (PK∗)] ≤

√
2ε3 +

1

|X |
,

which refers to

Pr[A knows SK∗] ≤ q

√
2ε3 +

1

|X |
.

Hence, P̃ (PK∗) is independent of the adversary’s view except for negligible prob-
ability. Moreover, due to the entropic shared keys, we have that, under the con-
dition that P̃ (PK∗) is independent of A’view, the probability that A outputs a
valid shared key is bounded by:

Pr[A outputs a valid shared key|P̃ (PK∗) is independent of A’s view] ≤ qε2.
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Thus, we have

Pr[Bad2] ≤

√
2ε3 +

1

|X |
+ qε2.

Next, we prove that, with high probability, the consistency conditions also hold.

First equation. Under the condition that the responses of P and P−1 are
consistent, it’s trivial that the first equation holds.

Second equation. For one direction, where the adversary attempts to outputs
pk1 6= pk2 such that P−1r(pk1) = P−1r(pk2), we note that after Qk, the system
sets P−1r(y) = PK∗ and the system always responds with PK∗ to the query
(P̃ (PK∗), P−1). Hence, the only case that A would break this equation is A
makes a query (P̃ (PK∗);P−1). Hence, this bad event can be trivially bounded
by Bad2.

For the other direction, where the adversary attempts to outputs PK1 6= PK2

such that P r(PK1) = P r(PK2), we observe that, the response of a P query
Qi = (PK;P ) is either P̃ (PK) (case 1 and 3 ) or a random string in Y (case 2),
hence there are only two cases that A would break this equation: 1) there is a
collision of the random strings sampled by the system(case 2); 2) the adversary
makes a query Qj = (P̃−1(y);P ) where Qj ∈ H0 ∪ P ∪ P−1 or SCCj = 0(case

1, 3). The probability of the first case is, of course, bounded by q2

|Y| , and for the

second one, the probability is negligible if (P̃−1(y), y) are independent of A’s
view, which is bounded by Bad1.

Third equation. It’s trivial that the only case that adversary can break the
equation is that A knows a secret key SKy such that keygen(H̃0)(SKy) = y.
Specifically, on the left side,

NKGr(SKy) = ÑKG(SKy) = P̃−1(y),

while on the right side,

P−1r(keygen(H r
0(SKy))) = P−1r(y) = PK∗.

By the analysis for Bad1, trivial to note that this equation hold unless Bad1

occurs.

Fourth equation. By definition, it’s apparent that afterQk andQi = (SK1, H0),
the system implicitly sets

H r
1(PK1,PK∗, sharedkey(P r(PK∗), H r

0(SK1)) = NSKr(PK∗,SK1),

and before Qi or Qk, the system responds this query with

H̃1(PK1,PK∗, sharedkey(y, H̃0(SK1)) 6= NSKr(PK∗,SK1).

Hence it’s rest to prove that before Qk or Qi, the adversary cannot output a
valid shared key sharedkey(P r(PK∗), H r

0(SK1)) except for negligible probability.
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Before Qk. In this case A has to output a valid shared key before Qk. And
unless Bad1 occurs, y is independent of A’s view, which means the adversary is
obligated to output a valid shared key without knowing one party’s public key
y. Moreover, due to pseudorandom public keys, y is computational close to a
random public key, and then applying the entropic shared keys, we can bound
the bad event here by q(Pr[Bad1] + ε2 + ε3).

Before Qi. In this case A has to output a valid shared key before Qi, and
we immediately observe that A might knows y and keygen(H̃0(SK1))(A makes
queries (SK1; NKG) and (NKGr(SK1);P )). Moreover,A has access to all interfaces
and those information might help it predict the shared key, and we denote Bad3 as
the event that A outputs a valid shared key for (y, keygen(H̃0(SK1))). First, note
that y is uniformly distributed and due to pseudorandom public key, Pr[Bad3] ≤
Pr[Bad3]+ε, where Bad3 denotes the event that that A outputs a valid shared key
for (keygen(s̄k), keygen(H̃0(SK1))) where s̄k← X . Next, we prove that Pr[Bad3] ≤
q2ε1. Essentially, assuming A is an adversary breaks Bad3 with advantage ε,
then we can build a reduction R that breaks semi-active unpredictable shared
keys with advantage ε

q2 , even the adversary knows a secret key SK∗ such that

NKGr(SK∗) = PK∗ and it does not makes a query (SK∗;H0) before it outputs the
shared key, which only strengthen our result. Concretely, let C be the challenger
of semi-active unpredictable shared keys with challenge public key (pk1, pk2) and
the corresponding oracles (O1,O2), then the reduction RA works as follows:

– R simulates(lazy sampler) four random oracles H ′0, P
′, P−1′

and H ′1 itself.
– R simulates NKG and NSK just by the oracles. For instance, NKG(SK) =
P−1′

(keygen(H ′0(SK))).
– R simulatesH0 queries by theH ′0 and if the adversary makes queries (SK∗;H0)

or (SK1;H0), our reduction aborts;
– R simulates P queries and P−1 queries as the system in Game 2 by using P ′

and P−1′
, except that it implicitly sets P (PK∗) = pk1 and P (NKG(SK1)) =

pk2.
– For H1 queries, R use both H ′1 and the oracles O1 and O2. Specifically, let

(PK,PK′, shk;H1) be the query:
1. If PK /∈ {PK∗,PK1} and PK′ /∈ {PK∗,PK1}, then R responds to it as the

system in Game 2 by only using H1.
Note that the reduction controls every interfaces, and once the adversary
makes a NKG(SK) query, H0(SK) is known by R.

2. If PK ∈ {PK∗,PK1} and PK′ ∈ {PK∗,PK1}, then R responds to it as the
system in Game 2 by only using H1.

3. If PK = PK∗ ∧ PK′ /∈ {PK∗,PK1}, and P (PK′) is known by R, then it
makes a call (P (PK′), shk) to O1. If O1 answers 1, then R responds to
the query with NSK(PK′,SK∗), otherwise as the system in Game 2 by
only using H1.

4. If PK′ = PK∗ ∧ PK /∈ {PK∗,PK1}, and P (PK) is known by R, then it
makes a call (P (PK), shk) to O1. If O1 answers 1, then R responds to the
query with NSK(PK,SK∗), otherwise as the system in Game 2 by only
using H1.
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5. If PK = PK1 ∧ PK′ /∈ {PK∗,PK1}, and P (PK′) is known by R, then it
makes a call (P (PK′), shk) to O2. If O2 answers 1, then R responds to
the query with NSK(PK′,SK1), otherwise as the system in Game 2 by
only using H1.

6. If PK′ = PK1 ∧ PK /∈ {PK∗,PK1}, and P (PK) is known by R, then it
makes a call (P (PK), shk) to O2. If O2 answers 1, then R responds to the
query with NSK(PK,SK1), otherwise as the system in Game 2 by only
using H1.

Trivially note that, the view of A in Game 2 is identical to the view that
simulated by the reduction14 and R can just outputs one of the shared key
shk when the adversary makes a query (PK∗,PK1, shk;H1). As the reduction
randomly sets the challenging public key(at most q choices), and shk is the one of

the shared key(at most q queries) that A outputs, hence Pr[RA wins] ≥ Pr[Bad3]
q2 ,

referring to Pr[Bad3] ≤ ε3 + q2ε1. Combing together, we have

Pr[Bad events for 4th equation] ≤ q(Pr[Bad1 + ε2 + ε3 + q2ε1 + ε3]).

Fifth equation. Easy to note that the 1 st and 3rd equation imply the fifth
one.

Sixth equation. By definition, we immediately observe that the query Qj =
(NKGr(SK2);P ) satisfies SCCj = 0, otherwise, the adverary knows nothing of
SK2 except for negligible probability (≤ qPr[Bad1]). Besides, if the adversary
makes a query (SK2;H0) before this H1 query, the 6th equation holds for free as
the system would follow case 3.2 to responds to this H1 query. Hence the only
case that the adversary would break the equation is that, under the condition
that SCCj = 0 and no ((SK2;H0)) before, the adversary outputs a valid shared
key shk = sharedkey(P r(NKGr(SK2)), sk1) where keygen(sk1) = y. Applying the
same analysis above (case “before Qi” in the fourth equation), we can bound
this bad event by Pr[Bad3].

Seventh equation. Easy to observe that, the bad events that break this ques-
tion are identical to the ones in the fourth equation, hence this equation holds
as long as the 4th equation holds.

Eighth equation. We immediately note that, in this equation, every query is
either a H0 query or a NKG query or a NSK query. Moreover, the response of
those queries are identical in both games, hence this equation holds for free.

Combing together, we can bound the unoin of the bad events as

Pr[Bad] ≤ Pr[Bad1] + Pr[Bad2] + Pr[Bad3] + ε2 + 2ε3 + q2ε1,

which refers to

|Pr[Game 1]− Pr[Game 2]| ≤ q · Pr[Bad] ≤ negl(λ).
14 the purpose of O1 and O2 is to makes sure that, for H1 query, the case 2.2 and

case 2.3 can be answered correctly. And once the system has the power to check the
validity of the shared key, say after Game 5, the reduction would not use the oracle
anymore.
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Claim. Game 2 ≈ Game 3.

Proof. Recalling the only difference between Game 3 and Game 2 is that the
system replace the responses of the P query (case 2) with a random public key
rather than a random string. Specifically, let Qk = (PK∗, H0)(Qk /∈ H0∪P ∪P−1

and SCCk = 1), in Game 3, the system samples sk
$← X , responds with pk =

keygen(sk), and inserts (∗, ∗, pk,PK∗) into the P -table.
The proof here is straightforward, as the system just change the distribution

of the responses from random strings to random public keys and the system
would not insert the secert key sk into P -table, so there is a trivial reduction
from distinguisher of Game 2 and Game 3 to the pseudorandom public key
property15. Therefore, we have that

|Pr[Game 2]− Pr[Game 3]| ≤ q2ε3 ≤ negl(λ).

Claim. Game 3 ≈ Game 4.

Proof. Recalling that the only difference between Game 4 and Game 3 is that
the system also records the secret key sk into P -table. More concretely, let Qk =
(PK∗, H0)(Qk /∈ H0 ∪ P ∪ P−1 and SCCk = 1), in Game 4, the system samples

sk
$← X , responds to Qk with pk = keygen(sk), and inserts (∗, sk, pk,PK∗) into

the P -table. Hence, the only case to distinguish Game 4 from Game 3 is when
sk is used. In fact, unless the adversary makes a query (SK∗;H0) such that
NKGr(SK∗) = PK∗, the responses of all queries in both games are identical.
Applying the analysis above (Game 1≈ Game 2 ), it’s trivial that

Pr[A outputs SK∗] ≤ q

√
2ε3 +

1

|X |
+

q

|Y|

which refers to

|Pr[Game 3] = Pr[Game 4]| ≤ q(q

√
2ε3 +

1

|X |
+

q

|Y|
) ≤ negl(λ).

Claim. Game 4 ≈ Game 5.

Proof. Recalling that the only difference between Game 4 and Game 5 occurs
in case 3, where Qk = (PK∗;P ) /∈ H0 ∪ P ∪ P−1 but SCCk = 0. Therefore
the adversary knows at least one secret key SK∗ such that NKGr(SK∗) = PK∗.
The fact is that in Game 4, the system responds to Qk with P̃ (PK∗) while in

Game 5 the system samples sk
$← X , responds to Qk with keygen(sk) and inserts

(∗, sk, keygen(sk),PK∗) into P table.

15 It’s important that the system does not use sk(say, inserts it into P -table) as in the
reduction, the simulated system has no access to sk. And that’s the reason why we
need an additional game (Game 4) to complete the proof.
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Analogous to the analysis above(Game 1 ≈ Game 2), we know that, under
the condition that the bad events above never occur, A’s view on Game 4 is:
the responses of H0 and H1 are independent and random strings. For P queries
Qk = (PK;P ) /∈ H0 ∪ P ∪ P−1, the response is a random public key, no matter
with SCCk = 0 or 1. For P−1 query Q = (pk;P−1), the response should be
the inverse of P , and if Q /∈ H0 ∪ P ∪ P−1, then the response is independent
and uniformly distributed. Moreover, the responses also satisfy the following
equations:

1. P r(P−1r(pk)) = pk, P−1r(P r(PK)) = PK;
2. There exists no (PK1 6= PK2), (pk1 6= pk2) such that P r(PK1) = P r(PK2) or
P−1r(pk1) = P−1r(pk2);

3. NKGr(SK) = P−1r(keygen(H r
0(SK)));

4. NSKr(PK1,SK2) = Hr
1 (PK1,NKGr(SK2), sharedkey(P r(PK1), H

r
0(SK2)));

5. P r(NKGr(SK)) = keygen(H r
0(SK))(case 2 for H0 query );

6. H r
1(P−1r(keygen(sk1)),NKGr(SK2), sharedkey(P r(NKGr(SK2)), sk1))

= NSKr(P−1r(keygen(sk1)),SK2) (case 2.2, 2.3 for H1 query) ;
7. H r

1(NKGr(SK1),PK2, sharedkey(P r(PK2), H
r
0(SK1))) = NSKr(PK2,SK1) (case

3.2, 3.3 for H1 query);
8. H r

1(NKGr(SK1),NKGr(SK2), sharedkey(keygen(H r
0(SK1)), H

r
0(SK2)))

= NSKr(NKGr(SK1),SK2) = NSKr(NKGr(SK2),SK1)(case 3.1 for H1 query) .

Now we turn to Game 5, where the system responds to Qk /∈ H0 ∪ P ∪ P−1

and SCCk = 0 with a random public key(the system samples sk
$← X and

responds with pk = keygen(sk) ), comparing to keygen(H̃0(SK∗)) in Game 4. For
H0 query, after Qk, the system implicitly sets H r

0(SK∗) = sk, as sk is sampled
uniformly, the response is well-distributed. For P query, as pk is a random public
key, the response is also well-distributed. After Qk, the system implicitly sets
P−1r(pk) = PK∗, thus as long as the adversary never sees pk before(say A makes
a query (pk;P−1)), the responses of P−1 queries are well-formed and consistent.
In fact, pk is a random public key, due to pseudorandom public key property,
we can bound this bad event by k−1

|Y| + (k− 1)ε3. For H1 query, by definition, we

have that after Qk, the system implicitly sets:

H r
1(PK1,PK∗, sharedkey(pk, H r

0(SK1))

=H r
1(PK1,PK∗, sharedkey(sk, P r(PK1))

=NSKr(PK∗,SK1) = H̃1(PK1,PK∗, sharedkey(P̃ (PK∗), H̃0(SK1));

where PK1 = NKGr(SK1). Hence, as long as the adversary does not make a query
(PK1,PK∗, sharedkey(P̃ (PK∗), H̃0(SK1);H1), the responses of H1 queries are well
distributed (as H̃1 of itself is a random oracle). Same as above, we note that, if
such a bad event occurs, the adversary is obligated to output a valid shared key
sharedkey(P̃ (PK∗), H̃0(SK1)), where A knows H̃0(SK1)(A can just make a query
(SK1;H0)). Next, we show that, even A knows SK∗, P̃ (PK∗) is still independent
of A’s view. Firstly, it’s trivial that the adversary cannot knows P̃ (PK∗) by
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just making P query, secondly Qk /∈ H0 which means the adversary never makes
query (SK∗;H0) before Qk and after Qk, H r

0(SK∗) = sk. Hence H̃0(SK∗) is hidden
from adversary’s view(the best strategy to guess P̃ (PK∗) is randomly samples

x
$← X and outputs keygen(x)), which implies

Pr[A outputs P̃ (PK∗)] ≤ q

√
2ε3 +

1

|X |
.

Next, under the condition that P̃ (PK∗) is independent, the probability that
A outputs a valid shared key is bound by the entropic shared key property and
pseudoranom public key property, specifically,

Pr[A outputs a valid shared key|P̃ (PK∗) is independent] ≤ q(ε2 + ε3).

Next, we prove that, with high probability, the consistency conditions hold.

First equation. Under the condition that the responses of P and P−1 are
consistent, it’s trivial that the first equation holds.

Second equation. For one direction, where the adversary attempts to outputs
pk1 6= pk2 such that P−1r(pk1) = P−1r(pk2), we note that after Qk, the system
sets P−1r(pk) = PK∗ and the system always responds with PK∗ to the query
(P̃ (PK∗), P−1). Hence, the only case that A would break this equation is A
makes a query (P̃ (PK∗);P−1). Fortunately, we’ve already proven that

Pr[A outputs P̃ (PK∗)] ≤ q

√
2ε3 +

1

|X |
.

For the other direction, where the adversary attempts to outputs PK1 6= PK2

such that P r(PK1) = P r(PK1), we observe that, the response a P query Qi =
(PK;P ) is either P̃ (PK) (case 1 ) or a random public key (case 2 and 3), hence
there are only two cases that A would break this equation: 1) there is a collision
of the random public key sampled by the system; 2) the adversary makes a query
Qj = (P̃−1(pk);P ) where Qj ∈ H0 ∪ P ∪ P−1 or SCCj = 0. The probability of
the first case is bounded by(applying Lemma 12 and pseudorandom public key)

q2
√

2ε3 + 1
|X | + q2

|Y| + qε3, and for the second one, we note that pk is a random

public key, and A learns nothing of P̃−1(y) by making a query (y;P−1), which
means P̃−1(y) is hidden from A. Combining together, we can bound the union
of those bad events by:

Pr[Bad events for 2nd equation] ≤ q2

√
2ε3 +

1

|X |
+

q2

|Y|
+ qε3 +

q

|Y|
.

Third equation. By definition, we have that after Qk, the system implicitly
sets H r

0(SK∗) = sk;P−1r(pk) = PK∗. The potential attack to break this equation
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is that, A outputs SKpk such that keygen(H̃0(SKpk)) = pk. Specifically, on the
left side

NKGr(SKpk) = ÑKG(SKpk) = P̃−1(pk),

while on the right side,

P−1r(keygen(H r
0(SKpk))) = P−1r(y) = PK∗.

Now we bound this bad event as follows: as pk is a random public key, and due
to pseudorandom public key property, we have that in the previous H0 query
or NKG query(say Qi = (SKi;H0)),Pr[keygen(H r

0(SKi)) = pk] = 1
|Y| + ε3. Hence

the probability that no “good” SKi(i < k) is bounded by k−1
|Y| + (k− 1)ε3. Under

the condition that no good SKi appears before Qk, applying H̃0 is a random
oracle again, we have that after Qk, the adversary cannot output SKpk except
for probability (applying Lemma 12)

Pr[A outputs SKpk] ≤ (q − k)

√
2ε3 +

1

|X |
.

Thus we can bound the bad event that breaks 3rd equation by

Pr[Bad events for 3rd equation] ≤ k − 1

|Y|
+ (k − 1)ε3 + (q − k)

√
2ε3 +

1

|X |
.

Fourth equation. By definition, it’s apparent that afterQk andQi = (SK1, H0),
the system implicitly sets

H r
1(PK1,PK∗, sharedkey(P r(PK∗), H r

0(SK1)) = NSKr(PK∗,SK1),

and before Qi or Qk, the system responds this query with

H̃1(PK1,PK∗, sharedkey(pk, H r
0(SK1)) 6= NSKr(PK∗,SK1).

Hence it’s rest to prove that before Qk or Qi
16, the adversary cannot output a

valid shared key sharedkey(P r(PK∗), H r
0(SK1)) except for negligible probability.

Before Qk. In the case that A outputs a valid shared key before Qk, we note
that the adversary is obligated to output a valid shared key without knowing
one party’s public key pk. As pk is a random public key, it’s trivial that this case
is bounded by the entropic shared key property and pseudorandom public key
property.

Before Qi. In this case that A outputs a valid shared key before Qi, we note
that A might knows pk and keygen(H r

0(SK1))(A makes queries (SK1; NKG) and
(NKGr(SK1);P )), and A is able to output a valid shared key by only having two

16 due to Qk /∈ H0, it’s trivial that the query (SK∗;H0) is always after Qk, which means
the adversary can not getch P r(PK∗) by calculatting keygen(H r

0(SK∗)) before Qk.
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public keys (pk, keygen(H r
0(SK1)) ). Hence, applying exactly the same technique

as above(the case “before Qi” in Game 1 ≈ Game 2), we can bound this bad
case by the semi-active unpredictable shared key property. Combing together,
we have

Pr[Bad events for 4th equation] ≤ q(q2ε1 + ε2 + ε3).

Fifth equation. Easy to note that the 1 st and 3rd equation imply the fifth
one.

Sixth equation. By definition, we immediately observe that the query Qj =
(NKGr(SK2);P ) satisfies SCCj = 0, otherwise, the adverary knows nothing of

SK2 except for negligible probability (≤ q
√

2ε3 + 1
|X | + q

|Y| ). Besides, if the ad-

versary makes a query (SK2;H0) before this H1 query, the 6th equation holds
for free as the system would follow case 3.2 to responds to this H1 query. Hence
the only case that the adversary would break the equation is that, under the
condition that SCCj = 0 and no ((SK2;H0)) before, the adversary outputs a
valid shared key shk = sharedkey(P r(NKGr(SK2)), sk1) where keygen(sk1) = pk.

As the adversary makes this H1 query before (SK2;H0), the response of
(NKGr(SK2);P ) is another public key, and the adversary knows nothing of the
corresponding secret key. Hence, the probability that A outputs a valid shared
key is bounded by the semi-active unpredictable shared keys. Combing together,
we have:

Pr[Bad events for 6th equation] ≤ q

√
2ε3 +

1

|X |
+

q

|Y|
+ q3ε1.

Seventh equation. Easy to observe that, the bad events that break this equa-
toin are identical to the ones in the fourth equation, hence this equation holds
as long as the 4th equation holds.

Eighth equation. By definition, we note that in Game 5, keygen(H r
0(SK1)) =

P r(NKGr(SK1)), which means that this equation holds if the 7th equation holds.
Combing together, we can bound the unoin of the bad events as

Pr[Bad] ≤ (q2+2q−k)

√
2ε3 +

1

|X |
+2q(q2ε1+ε2+ε3)+(q+2k−2)ε3+

q2 + 2q + 2(k − 1)

|Y|
,

which refers to

|Pr[Game 4]− Pr[Game 5]| ≤ q · Pr[Bad] ≤ negl(λ).

Claim. Game 5 ≈ Game 6.

Proof. Recalling that the only difference betwwen Game 5 and Game 6 occurs
in case 2(answering P−1 query), where Qk = (pk∗;P−1) /∈ H0 ∪ P ∪ P−1 and
SCCk = 1. Therefore, there is no (SK∗; NKG) such that keygen(Hr

0 (SK∗)) = pk∗

before Qk. In Game 5, the system responds to Qk with P̃−1 while in Game 6, it
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samples SK
$← X , responds with NKGr(SK), and inserts (SK, ∗, pk∗,NKGr(SK))

into P−1 table.
Similar to the analysis above, we note that, under the condition that the bad

events above never occur, A’s view on Game 5 is: the responses of H0 and H1 are
independent and random strings. For P queries Qk = (PK;P ) /∈ H0 ∪ P ∪ P−1,
the response is a random public key. For P−1 query, the response should be
the inverse of P , and if Q /∈ H0 ∪ P ∪ P−1, then the response is independent
and uniformly distributed. Moreover, the responses also satisfy the following
equations:

1. P r(P−1r(pk)) = pk, P−1r(P r(PK)) = PK;
2. There exists no (PK1 6= PK2), (pk1 6= pk2) such that P r(PK1) = P r(PK2) or
P−1r(pk1) = P−1r(pk2);

3. NKGr(SK) = P−1r(keygen(H r
0(SK)));

4. NSKr(PK1,SK2) = Hr
1 (PK1,NKGr(SK2), sharedkey(P r(PK1), H

r
0(SK2)));

5. P r(NKGr(SK)) = keygen(H r
0(SK))(case 2 for H0 query );

6. H r
1(P−1r(keygen(sk1)),NKGr(SK2), sharedkey(P r(NKGr(SK2)), sk1))

= NSKr(P−1r(keygen(sk1)),SK2) (case 2.2, 2.3 for H1 query) ;
7. H r

1(NKGr(SK1),PK2, sharedkey(P r(PK2), H
r
0(SK1))) = NSKr(PK2,SK1) (case

3.2, 3.3 for H1 query);
8. H r

1(NKGr(SK1),NKGr(SK2), sharedkey(keygen(H r
0(SK1)), H

r
0(SK2)))

= NSKr(NKGr(SK1),SK2) = NSKr(NKGr(SK2),SK1)(case 3.1 for H1 query) .

Now we analyze the view on the adversarial interfaces. For H0 query, the
responses in both games are identical. For P query, the system implicitly sets
P r(NKGr(SK)) = pk∗ after Qk, thus as long as the adversary never sees NKGr(SK)
before(say A makes a query (NKGr(SK);P ) before Qk), the response of P queries
are well distributed and consistent. In fact, SK is sampled uniformly from X ,
and applying Lemma 12, we have

∀z, Pr
SK

$←X
[NKGr(SK) = z] ≤

√
2ε3 +

1

|X |
,

which means

Pr[A outputs NKGr(SK)] ≤ (k − 1)

√
2ε3 +

1

|X |
.

For P−1 query, we know that NKGr(SK) = P̃−1(keygen(H̃0(SK))). Besides, ap-
plying Lemma 12, it’s apparent that,

∀pk, Pr
SK

$←X
[keygen(H̃0(SK)) = pk] ≤

√
2ε3 +

1

|X |
,

hence, in A’s view, NKGr(SK) is an independent and random string except for

negligible probability(≤ (k − 1)
√

2ε3 + 1
|X | ). For H1 query, we note that after
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Qk, the system implicitly sets:

H r
1(PK1,NKGr(SK), shk1)

=NSKr(PK1,SK) (case 2.2, 2.3)

=H̃1(PK1,NKGr(SK), sharedkey(P̃ (NKGr(SK)), H̃0(SK1));

H r
1(PK2,NKGr(SK), sharedkey(pk∗, H r

0(SK2)))

=NSKr(NKGr(SK),SK2) (case 3.2, 3.3)

=H̃1(PK2,NKGr(SK), sharedkey(P̃ (NKGr(SK)), H̃0(SK2)).

where shk1
17is the valid shared key between pk∗ and P r(PK1) and PK` = NKGr(SK`).

Therefore, unlessA calls (PK`,NKGr(SK), sharedkey(P̃ (NKGr(SK)), H̃0(SK`);H1),
the responses of H1 queries are well distributed (as H̃1 of itself is a random
oracle). Same as above, we note that, if such a bad event occurs, the adver-
sary is obligated to output a valid shared key sharedkey(P̃ (NKGr(SK)), H̃0(SK`),
where A might know H̃0(SK1)(A can just make a query (SK`;H0)). However,
P̃ (NKGr(SK)) is independent of A’s view, in fact, easy to note that, except for

randomly guessing(the best strategy is that A samples sk
$← X and outputs

keygen(sk), so the probability is bounded by q
√

2ε3 + 1
|X | ), the only case A can

output P̃ (NKGr(SK)) is Amakes a query (SK;H0)(for P query Q, in either game,
the system only responds with P̃ (NKGr(SK)) in case 1, where Q ∈ H0). However,
SK is sampled uniformly by the system, hence, we have

Pr[A outputs P̃ (NKGr(SK))] ≤ q

√
2ε3 +

1

|X |
+

q

|X |
.

Now, under the condition that P̃ (NKGr(SK)) is independent, the probability
that A outputs a valid shared key is trivially bounded by the entropic shared
key property, specifically,

Pr[A outputs a valid shared key|P̃ (NKGr(SK)) is independent] ≤ qε2.

Next, we prove that, with high probability, the consistency conditions hold.

First equation. Under the condition that the responses of P and P−1 are
consistent, it’s trivial that the first equation holds.

Second equation. For one direction, where the adversary attempts to outputs
pk1 6= pk2 such that P−1r(pk1) = P−1r(pk2), we observe that, the response of a
P−1 query Qi = (pk;P−1) is either P̃−1(pk) (case 1 and 3) or NKGr(SK). Hence,

17 In fact, the adversary has two ways to calculate this shared key: 1) A makes a query
(SK1;H0) and computes sharedkey(pk∗, H r

0(SK1)); 2) Amakes a query (NKGr(SK);P )
and computes sharedkey(P r(NKGr(SK)), sk∗), as pk∗ is chosen by A, A might know
the secret key sk∗ such that keygen(sk∗) = pk∗.
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under the condition that (SK;H0) never appears, the only case that A would
break this equation is: there is a collision of the response, which is bounded by:

Pr[Collision in P−1 queries] ≤ q2

√
2ε3 +

1

|X |
+ q2

√
2ε3 +

1

|X |
+

q2

|X |
.

For the other direction, where the adversary attempts to outputs PK1 6=
PK2 such that P r(PK1) = P r(PK1), we observe that, the system implicitly sets
P r(NKKr(SK)) = pk∗, while if the adversary makes a query (SK∗;H0) such that
keygen(H̃0(SK∗)) = pk∗, then P r(NKGr(SK∗)) = pk∗. Same as above, we note
that, H̃0 is a random oracle, hence applying Lemma

Pr
SK

[keygen(H̃0(SK)) = pk∗] ≤

√
2ε3 +

1

|X |
,

which refers to,

Pr[A outputs SK∗] ≤ q

√
2ε3 +

1

|X |
.

Combing together, we can bound the union of those bad events by:

Pr[Bad events for 2nd equation] ≤ (2q2 + q)

√
2ε3 +

1

|X |
+

q2

|X |
.

Third equation. By definition, we immediately note that, the responses of H0

queries are identical in both games, hence unless the adversary makes a query
(SK;H0), this equation holds for free.

Fourth equation. By definition, we note that pk∗ is chosen by the adver-
sary, which means the adversary might know the corresponding secret key sk∗.
Hence, the adversary can calculate the shared key sharedkey(pk∗, H r

0(SK1)) with-
out making a query (SK1;H0), in fact, the adversary can just makes two queries
(SK1; NKG) and (NKGr(SK1);P )) and outputs sharedkey(sk∗, P r(NKGr(SK1))).
However, due to both case 2.2 and 3.2 for H1 queries, we have that, after Qk
and Qi = (SK1, H0)(case 3.2), the system implicitly sets

H r
1(P−1r(pk∗),PK1, sharedkey(pk∗, H r

0(SK1)) = NSKr(P−1r(pk∗),SK1).

Moreover, after Qk and Qj = (NKGr(SK1);P )(case 2.2), the system sets

H r
1(P−1r(pk∗),PK1, sharedkey(pk∗, H r

0(SK1)) = NSKr(PK1,SK) = NSKr(P−1r(pk∗),SK1).

and before Qk or (Qi ∩Qj), the system responds this query with

H̃1(P−1r(pk∗),PK1, sharedkey(pk∗, H r
0(SK1)) 6= NSKr(P−1r(pk∗),SK1).

Thus unless the adversary can make such a query before Qk or (Qi ∩ Qj), the
4th equation holds for certain.
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Before Qk. As pk∗ is chosen by the adversary, sk∗ is known, which means the
shared key is never the barrier anymore. However, there are three components
in H1 query and one of them is P−1r(pk∗), and as we showed above, before Qk

Pr[A outputs NKGr(SK) = P−1r(pk∗)] ≤ (k − 1)

√
2ε3 +

1

|X |
.

Before (Qi∩Qj). In this case, we show that, the adversary cannot outputs the
valid shared key as before. In fact, the probability that A is able to output the
corresponding shared key is immediately bounded by the entropic shared key
property and , as A has no knowledge of the other party’s public key and secret
key. Combing together, we have

Pr[Bad events for 4th equation] ≤ qε2 + +(k − 1)

√
2ε3 +

1

|X|
.

Remark: Careful readers would notice that there is actually an additional
case, which is A picks PK1(rather than PK1 = NKGr(SK1)) and makes a query
(PK1;P ). Meanwhile, in this case A knows nothing of SK1, which means it can-
not runs NSKr(P−1r(pk∗),SK1), therefore, this case would not affect the equation
at all.

Fifth equation. Easy to note that the 1st and 3rd equation imply the fifth
one.

Sixth equation. Easy to note that the bad events that break this equation is
covered by the ones in the fourth equation.

Seventh equation. Easy to note that the bad events that break this equation
is also covered by the ones in the fourth equation.

Eighth equation. Easy to note that, under the condition A never makes a
query (SK;H0), the responses of H0 queries are identical in both games, which
implies the 8th equation holds for free.

Combing together, we can bound the unoin of the bad events as

Pr[Bad] ≤ (q2 + 2q + 3(k − 1))

√
2ε3 +

1

|X |
+
q2 + q

|X |
+ 2qε2,

which refers to

|Pr[Game 5]− Pr[Game 6]| ≤ q · Pr[Bad] ≤ negl(λ).

Claim. Game 6 ≈ Game 7.

Proof. Recalling that the only diffence between Game 6 and Game 7 occurs
in case 3(answering P−1 query), where Qk = (pk∗;P−1) /∈ H0 ∪ P ∪ P−1 but
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SCCk = 0. Therefore, in such a case, A made a query (SK∗; NKG) before Qk,
where keygen(H r

0(SK∗)) = pk∗.
However, by Qk /∈ H0, we know that A does not make a query (SK∗;H0)

before Qk. Moreover Qk /∈ P , which implies H r
0(SK∗) = H̃0(SK∗). As H̃0 is a

random oracle, H̃0(SK∗) is unifromly distributed in X and hidden from A, hence
the probability that A can output “pk∗”(the component of Qk) is bounded by
the pseudorandom public key property, specifically,

|Pr[Game 6]− Pr[Game 7]| ≤ qε3 ≤ negl(λ).

Claim. Game 7 ≈ Game 8.

Proof. The only difference between Game 7 and Game 8 occurs in case 3(an-
swering H0 query), where Qk = (SK∗;H0) /∈ H0 ∪ P . In Game 7, the system

responds with H̃0(SK∗), while in Game 8, the system samples sk
$← X , responds

with sk and inserts (SK∗, sk, keygen(sk),NKGr(SK∗)) into H0 table.
Similar to the analysis above, we note that, under the condition that the

bad events above never occur, A’s view on Game 7 is: the responses of H0

and H1 are independent and random strings. For P queries, the response is a
random public key. For P−1 query, the response should be the inverse of P , and
if Q /∈ H0∪P ∪P−1, then the response is independent and uniformly distributed.
Moreover, the responses also satisfy the following equations:

1. P r(P−1r(pk)) = pk, P−1r(P r(PK)) = PK;
2. There exists no (PK1 6= PK2), (pk1 6= pk2) such that P r(PK1) = P r(PK2) or
P−1r(pk1) = P−1r(pk2);

3. NKGr(SK) = P−1r(keygen(H r
0(SK)));

4. NSKr(PK1,SK2) = Hr
1 (PK1,NKGr(SK2), sharedkey(P r(PK1), H

r
0(SK2)));

5. P r(NKGr(SK)) = keygen(H r
0(SK))(case 2 for H0 query );

6. H r
1(P−1r(keygen(sk1)),NKGr(SK2), sharedkey(P r(NKGr(SK2)), sk1))

= NSKr(P−1r(keygen(sk1)),SK2) (case 2.2, 2.3 for H1 query) ;
7. H r

1(NKGr(SK1),PK2, sharedkey(P r(PK2), H
r
0(SK1))) = NSKr(PK2,SK1) (case

3.2, 3.3 for H1 query);
8. H r

1(NKGr(SK1),NKGr(SK2), sharedkey(keygen(H r
0(SK1)), H

r
0(SK2)))

= NSKr(NKGr(SK1),SK2) = NSKr(NKGr(SK2),SK1)(case 3.1 for H1 query) .

Now we analyze the view on the adversarial interfaces. For H0 query, as sk
is uniforomly sampled, the response is well distributed. For P query, the system
implicitly sets P r(NKGr(SK∗)) = keygen(sk) after Qk, moreover, easy to note
that the adversary never makes a query (NKGr(SK∗);P ) before Qk(otherwise
Qk ∈ P ), hence the response of P queries are well distributed and consis-
tent. For P−1 query, the system implicitly sets P−1r(keygen(sk)) = NKGr(SK∗),
thus unless the adversary makes a query (keygen(sk);P−1) before Qk, the re-
sponse is consistent. In fact, sk is sampled uniformly by the system, therefore
keygen(sk) is independent of A’s view before Qk, which implies except for neg-

ligible probability(≤ (k − 1)
√

2ε3 + 1
|X | ), the adversary would not make such a
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query. Moreover, in Game 8, H̃0(SK∗) and keygen(H̃0(SK∗)) are hidden from the
adversary, hence P̃−1(keygen(H̃0(SK∗)) is uniformly distributed.

For H1 query, we note that after Qk, the system implicitly sets:

H r
1(NKGr(SK∗),PK1, sharedkey(P r(PK1), sk)) = NSKr(PK1,SK∗)

=H̃1(NKGr(SK∗),PK1, sharedkey(P r(PK1), H̃0(SK∗)))

Therefore, unless A calls (NKGr(SK∗),PK1, sharedkey(P r(PK1), H̃0(SK∗));H1),
the responses of H1 queries are well distributed (as H̃1 of itself is a random
oracle). In fact, H̃0(SK∗) and keygen(H̃0(SK∗)) are independent of A’s view,
thus the probability that A output a valid shared key is bounded by qε2. Next,
we prove that, with high probability, the consistency conditions hold.

First equation. Under the condition that the responses of P and P−1 are
consistent, it’s trivial that the first equation holds.

Second equation. Easy to note that, in Game 8, the responses of P and P−1

queries are independent of the real oracles(only using the tables and accessing to
the honest interfaces). Specifically, the responses of P -queries are random public
keys which are sampled by the system, and the responses of P−1 queries are
NKGr(SK) where SK is either sampled by the system(case 2) or chosen by the
adversary (case 1). Therefore, the second equation holds for certain unless there
exist collisions in those responses, applying Lemma 12, we have that

Pr[Collision inP and P−1 queries] ≤ 2q2

√
2ε3 +

1

|X |
.

Third equation. Under the condition that the responses of P−1r are consistent,
this equation holds trivially.

Fourth equation. By definition, we note that, after Qk and Qi = (PK1;P )(case
3.2), the system implicitly sets

H r
1(NKGr(SK∗),PK1, sharedkey(P r(PK1), sk)) = NSKr(PK1,SK∗).

Moreover, after Qk and Qj = (SK1, H0) where NKGr(SK1) = PK1, the system
sets

H r
1(NKGr(SK∗),PK1, sharedkey(keygen(H r

0(SK1)), sk)) = NSKr(PK1,SK∗).

However, before Qk and Qi ∩Qj , the system responds with

H̃1(NKGr(SK∗),PK1, sharedkey(keygen(H r
0(SK1)), sk)) 6= NSKr(PK1,SK∗).

Hence, unless the adversary can make such a query before Qk or (Qi ∩Qj),
the 4th equation holds for certain.

Before Qk. As sk is uniformly sampled by the system, (sk, keygen(sk)) are
independent of A’s view before Qk. Hence, the probability that A outputs a
valid shared key is bounded trivially by the entropic shared key property.
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Before (Qi∩Qj). Same as above, we have that, (H r
0(SK1), P

r(NKGr(SK1))) are
independent of A’s view. Hence, the probability that A outputs a valid shared
key is also bounded by the entropic shared key property. Combing together, we
have

Pr[Bad events for 4th equation] ≤ 2qε2.

Fifth equation. Easy to note that the 1st and 3rd equation imply the fifth
one.

Sixth equation. By definition, we note that, the response of (keygen(sk1);P
−1)

is identical in both game, unless the adversary makes query (SK;H0) such
that keygen(H r

0(SK)) = keygen(sk1), which is bounded by(applying Lemma 12 )

q
√

2ε3 + 1
|X| .

Under the condition that the response of (keygen(sk1);P
−1) is identical in

both game, this equation holds as long as the 4th equation holds.

Seventh equation. Easy to note that the bad events that break this equation
is also covered by the ones in the fourth equation.

Eighth equation.Easy to note that the bad events that break this equation is
also covered by the ones in the fourth equation.

Combing together, we can bound the unoin of the bad events as

Pr[Bad] ≤ (q2 + q + (k − 1))

√
2ε3 +

1

|X |
+ 3qε2,

which refers to

|Pr[Game 7]− Pr[Game 8]| ≤ q · Pr[Bad] ≤ negl(λ).

Claim. Game 8 ≈ Game 9.

Proof. The difference of Game 9 and Game 8 occurs in the cases associated with
underline. Specifically, instead of calling the real oracle H̃1, we now lazily sample
the oracle using the table for H1.

Similar to the analysis above, we note that, under the condition that the
bad events above never occur, A’s view on Game 7 is: the responses of H0

and H1 are independent and random strings. For P queries, the response is a
random public key. For P−1 query, the response should be the inverse of P , and
if Q /∈ H0∪P ∪P−1, then the response is independent and uniformly distributed.
Moreover, the responses also satisfy the following equations:

1. P r(P−1r(pk)) = pk, P−1r(P r(PK)) = PK;
2. There exists no (PK1 6= PK2), (pk1 6= pk2) such that P r(PK1) = P r(PK2) or
P−1r(pk1) = P−1r(pk2);

3. NKGr(SK) = P−1r(keygen(H r
0(SK)));

4. NSKr(PK,SK) = Hr
1 (PK,NKGr(SK), sharedkey(P r(PK), H r

0(SK)));
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5. P r(NKGr(SK)) = keygen(H r
0(SK))(case 2 for H0 query );

6. H r
1(P−1r(keygen(sk1)),NKGr(SK2), sharedkey(P r(NKGr(SK2)), sk1))

= NSKr(P−1r(keygen(sk1)),SK2) (case 2.2, 2.3 for H1 query) ;
7. H r

1(NKGr(SK1),PK2, sharedkey(P r(PK2), H
r
0(SK1))) = NSKr(PK2,SK1) (case

3.2, 3.3 for H1 query);
8. H r

1(NKGr(SK1),NKGr(SK2), sharedkey(keygen(H r
0(SK1)), H

r
0(SK2)))

= NSKr(NKGr(SK1),SK2) = NSKr(NKGr(SK2),SK1)(case 3.1 for H1 query) .

Now we analyze the view on the adversarial interfaces. Firstly, we note
that, in both games, the responses of H0, P and P−1 queries are identical,
which also implies the 1st, 2nd, 3rd and 5th equation hold for free. For H1

query Qk = (PK1,PK2, shk;H1), the response is well distributed unless shk =
sharedkey(P̃ (PK1), H̃0(SK2)). In fact, in either game, H̃0, P̃ and P̃−1 are hidden
from A, hence due to the entropic shared key property, shk is not a valid shared
key (under H̃0 and P̃ ) except for negligible probability(≤ qε2). Next we prove
that, with high probability, the consistency condition hold.

Fourth equation. By definition, we note that, after Qk = (SK2;H0) and Qi =
(PK1, P ), the system implicitly sets

H r
1(PK1,NKGr(SK2), sharedkey(P r(PK1), H

r
0(SK2))) = NSKr(PK1,SK2),

besides, after Qk = (SK2;H0) and Qj = (SK1;H0), the system sets

H r
1(PK1,NKGr(SK2), sharedkey(P r(PK1), H

r
0(SK2))) = NSKr(PK1,SK2),

moreover, after Ql = (NKGr(SK2);P ) and Qj = (SK1;H0), the system sets

H r
1(PK1,NKGr(SK2), sharedkey(P r((SK1;H0)), H r

0(SK1))) = NSKr((SK1; H0),SK1),

However, before (Qk ∩ Ql) or (Qi ∩ Qj)(Case A) the system responds with a
random string, moreover, by definition, the system also responds with a ran-
dom string if A makes such a query before Qk ∩Qj(Case B). Hence, unless the
adversary can make such a query in either Case A or Case B.

For Case A, we note that in such a case, the adversary knows nothing of
the other party’s public key and secret key, hence it’s trivially bounded by qε2.
While for Case B, the adversary might knows both public keys, however it does
not know any of the two secret keys, which measn this bad case is bounded by
the semi-active unpredictable shared keys. Specifically,

Pr[Bad events for 4th equation] ≤ q(q2ε1 + ε2).

Sixth equation. By definition, we note that, after Qk = (keygen(sk1);P
−1) and

Qi = (SK2;H0), the system implicitly sets

H r
1(P−1r(keygen(sk1)),PK2, sharedkey(keygen(sk1), H

r
0(SK2)))

=NSKr(P−1r(keygen(sk1)),SK2),
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besides, after Qk and Qj = (NKGr(SK2);P ), the system sets

H r
1(P−1r(keygen(sk1)),PK2, sharedkey(keygen(sk1), H

r
0(SK2))

=NSKr(PK2,SK) = NSKr(P−1r(keygen(sk1)),SK1).

where P−1(keygen(sk1)) = NKGr(SK). However, the system responds with a
random string before Qk or (Qi ∩ Qj). Therefore, as long as A does not make
such a query before Qk or (Qi ∩ Qj), this equation holds for certain. Applying
exactly the same analysis above(Game 5 ≈ Game 6 - fourth equation) we have
that

Pr[Bad events for 6th equation] ≤ qε2 + (k − 1)

√
2ε3 +

1

|X |
.

Seventh equation. Easy to note that the bad events that break this equation
is also covered by the ones in the fourth equation.

Eighth equation.Easy to note that the bad events that break this equation is
also covered by the ones in the fourth equation.

Combing together, we can bound the unoin of the bad events as

Pr[Bad] ≤ (k − 1)

√
2ε3 +

1

|X |
+ 3qε2 + q3ε1,

which refers to

|Pr[Game 8]− Pr[Game 9]| ≤ q · Pr[Bad] ≤ negl(λ).

Claim. Game 9 ≈ Game 10.

Proof. Let (F,G) be the function pair that uniformly sampled from Tnike(the
function pair set in Definition 4, where F is a random injection and G is a ran-
dom injection except G(F (x), y) = G(F (y), x)), and we note that the difference
between Game 9 and Game 10 is that, in Game 9 the system responds to all

queries by calling (ÑKG(·), ÑSK(·, ·)), while in Game 10 the system responds to
all queries by calling (F (·), G(·, ·)). Next we prove that the distribution of the

responses by calling (ÑKG, ÑSK) is close to the ones by calling (F,G).

Firstly, we note that the consistency condition holds for both pairs, more con-

cretely, ∀SK1,SK2, G(F (SK1),SK2) = G(F (SK2),SK1) and ÑSK(ÑKG(SK1),SK2) =

ÑSK(ÑKG(SK2),SK1).

Secondly, P̃ is a random permutation model and H̃1 is a random oracle. For
NKG queries, unless the adversary outputs SK1 6= SK2 but keygen(H̃0(SK1)) =
keygen(H̃0(SK2)), the responses are independent and injective. For NSK queries,
under the condition that no collision in NKG, the responses are independent and
injective (under such shared key condition) except that the adversary outputs
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(PK1,SK2) and (PK′1,SK′2) such that

(PK1, ÑKG(SK2), shk1) 6= (PK′1, ÑKG(SK′2), shk2)

H̃1(PK1, ÑKG(SK2), shk1) = H̃1(PK′1, ÑKG(SK′2), shk2).

Hence, applying Lemma 12, it’s apparent that

|Pr[Game 9]− Pr[Game 10]| ≤ q2

√
2ε3 +

1

|X |
+

q2

|W|
≤ negl(λ).

Combining all the claims together, we establish the entire proof. ut

F Proof of Theorem 7

In this section, we give the full proof of Theorem 7, that we show ΠDPKE is
indifferentiable from an ideal DPKE.

Proof. According to the definition of indifferentiability, we immediately observe
that, the adversary has three honest interfaces (DKG, DE,DD) and six adversarial
interfaces (H0, H1, P ,P−1, NKG,NSK ). Therefore, we need to build an efficient
simulator S that can simulate the six adversarial interfaces H0, H1P, P

−1,NKG
and NSK properly, which means, for any PPT differentiator D, the view of D in
the real game is computationally close to the view in the ideal game. To do so,
we will go through with a sequence of hybrid games, where in each game, there
exists a system that responds to all of the queries(both honest and adversarial)
in a slightly different way and then we build our simulator S as the system in the
last game. Before the description of the games, we first specify some parameters:

– there are nine types of query: (SK;H0), (PK,M;H1), (PK,M;P ), (Z;P−1),
(sk,NKG), (pk1, sk2; NSK), (SK; DKG), (PK,M; DE), (C,SK; DD) where M ←
M, (PK, pk1)← Y, (SK, sk, sk2)← X ,Z← Z,C← C;

– adversary makes at most q queries to the system, where q = poly(λ);

– the oracles used in the real world are H̃0, H̃1, P̃ , P̃
−1, ÑKG, ÑSK, D̃KG, D̃E,

and D̃D;
– in each game, the system’s responses are denoted as H r

0, H
r
1, P

r, P−1r,NKGr,
NSKr,DKGr,DEr and DDr, for instance, we denote H r

0(SK) as the system’s
response when adversary makes a query Q = (SK;H0);

Next, we define the hybrid games and after each game we give a rough intu-
ition for why that game is indistinguishable from the previous game. Specifically,

Game 0. This game is identical to the real game except that the system main-
tains six tables, referring to H0-table, H1-table, P -table, P−1-table, NKG-table
and NSK-table. Specifically, the system responds to the queries the same as in

the real world, for instance, H r
0(SK) = H̃0(SK),DKGr(SK) = D̃KG(SK) and so

forth. For the tables, the system maintains them as follows:
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– H0-table: Initially empty, consists of tuples with form of (SK, sk,PK). Once
the adversary makes a query (SK∗;H0) which does not exist in H0-table (no
tuple that the first element of it is SK∗), then the system inserts (SK∗, H̃0(SK∗),

ÑKG(H̃0(SK∗)) into H0-table.
– H1-table: Initially empty, consists of tuples with form of (PK,M, sk,PK).

Once the adversary makes a query (PK∗,M∗;H1) which does not exist in

H1-table, then inserts (PK∗,M∗, H̃1(PK∗||M∗), ÑKG(H̃1(PK∗||M∗)) into H1-
table.

– P -table: Initially empty, consists of tuples with form of (PK,M,Z). Once the
adversary makes a query (PK∗,M∗;P ) which does not exist in P -table, it
inserts (PK∗,M∗, P̃ (PK∗||M∗)) into P -table.

– P−1-table: Initially empty, consists of tuples with form of (PK,M,Z). Once
the adversary makes a query (Z∗;P−1) which does not exist in P−1-table,
it inserts (P̃−1(Z∗),Z∗) into P−1-table(here we abuse P̃−1(Z∗) to be 2 ele-
ments, (PK∗,M∗ )).

– NKG-table. Initially empty, consists of tuples with form of (∗, sk,PK). Once
the adversasry makes a query (sk∗; NKG) which does not exist in NKG-table,

the system inserts (∗, sk∗, ÑKG(sk∗)) into NKG table.
– NSK-table. Initially empty, consists of tuples with form (pk1, sk2; NSK). Once

the adversary makes a query (pk1, sk2; NSK) which does not exist in NSK

table, the system inserts (pk1, sk2; ÑSK(pk1, sk2)) into NSK table.

Note that at this point all the queries are responded by the real oracles
and these tables are just keeping track of information related to adversary’s
queries(to the adversarial interfaces) and completely hidden to the adversary,
hence the adversary’s view in real game is identical to the one in Game 0. Next,
we illustrate an alternative way to answer part of the queries, by using these
tables and the honest interfaces.

Same as above, we here also define a relation between query Q and the
table Tab. Concretely, if Q is a H0 query (Q = (SK;H0)), we say Q ∈ Tab
if there is a 3-tuple T = (T1, T2, T3) in Tab such that T1 = SK. Analogously,
if Q is a H1 query (Q = (PK,M;H1)), we say Q ∈ Tab if there is a 4-tuple
T = (T1, T2, T3, T4) ∈ Tab such that T1 = PK, T2 = M. And for a P query
Q = (PK,M;P ), we say Q ∈ Tab if there is a 3-tuple T = (T1, T2, T3) ∈ Tab such
that such that T1 = PK, T2 = M; if Q is a P−1 query (Q = (Z;P−1)), we say
Q ∈ Tab if there is a 3-tuple T = (T1, T2, T3) ∈ sfTab such that T3 = Z. For
NKG query, we say Q = (sk; NKG) ∈ Tab if there exists a 3-tuple T = (T1, T2, T3)
such that T2 = sk; and for NSK query, by Q = (pk1, sk2; NSK) ∈ Tab we mean
there exists a 3-tuple T = (T1, T2, T3) ∈ Tab such that T1 = pk1, T2 = sk2.

Game 1. This game is identical to Game 0, except the way of maintaining the
tables and responding the queries. Specifically,

H0-query. Suppose Qk = (SK;H0) (k ∈ [1, q]), then the system responds as
follows:

– Case 1. If Qk ∈ H0, which means there is a tuple T = (T1, T2, T3) ∈ H0 such
that T1 = SK, then the system responds with T2;
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– Case 2. Otherwise, the system responds with H̃0(SK) and inserts (SK, H̃0(SK),
DKGr(SK)) into H0-table.

H1-query. Suppose Qk = (PK,M;H1), then the system responds as follows:

– Case 1. If Qk ∈ H1, which means there is a tuple T = (T1, T2, T3, T4) ∈ H1

such that T1 = PK, T2 = M, then the system responds with T3;
– Case 2. Otherwise, the system responds with H̃0(PK||M) and inserts (PK,M,
H̃0(PK||M),C1) into H0-table.

NKG-query. Suppose Qk = (sk; NKG), then the system responds as follows:

– Case 1. If Qk ∈ NKG, which means there is a tuple T = (T1, T2, T3) ∈ H1

such that T2 = sk, then the system responds with T3;
– Case 2. If Qk /∈ NKG but there is a tuple T = (T1, T2, T3, T4) ∈ H1 or
T ′ = (T ′1, T

′
2, T

′
3) ∈ H0 such that T3 = sk or T ′2 = sk, then the system

responds to Qk with T4 or T ′3, and inserts (∗, sk, T4) or (∗, sk, T ′3) into NKG
table.

– Case 3. Otherwise, the system responds with ÑKG(sk) and inserts (∗, sk, ÑKG(sk)
into NKG-table.

P -query. Suppose Qk = (PK,M, P ), then the system responds as follows:

– Case 1. If Qk ∈ P ∪ P−1, which means there is a tuple T = (T1, T2, T3) ∈
P ∪ P−1 such that T1 = PK, T2 = M, then the system responds with T3;

– Case 2. IfQk /∈ P∪P−1, then the system makes a query (PK,M; DE)((C1,C2) =
DEr(PK,M) ). If there exist tuples T = (T1, T2, T3, T4) ∈ H1 and T ′ =
(T ′1, T

′
2, T

′
3) ∈ NSK such that T4 = C1, T

′
1 = PK, T ′2 = T3, then the system

responds to Qk with C2 ⊕ T ′3 and inserts (PK,M,C2 ⊕ T ′3) into NSK table.
– Case 3. Similarly, if there exist tuples T = (T1, T2, T3) ∈ H0 ∪ NKG and
T ′ = (T ′1, T

′
2, T

′
3) ∈ NSK such that T3 = C1, T

′
1 = PK, T ′2 = T2, then the

system responds to Qk with C2 ⊕ T ′3 and inserts (PK,M,C2 ⊕ T ′3) into NSK
table.

– Case 4. If there exist tuples T = (T1, T2, T3, T4) ∈ H1 and T ′ = (T ′1, T
′
2, T

′
3) ∈

NSK such that T4 = PK, T ′1 = C1, T
′
2 = T3, then the system responds to Qk

with C2 ⊕ T ′3 and inserts (PK,M,C2 ⊕ T ′3) into NSK table.
– Case 5. Similarly, if there exist tuples T = (T1, T2, T3) ∈ H0 ∪ NKG and
T ′ = (T ′1, T

′
2, T

′
3) ∈ NSK such that T3 = PK, T ′1 = C1, T

′
2 = T2, then the

system responds to Qk with C2 ⊕ T ′3 and inserts (PK,M,C2 ⊕ T ′3) into NSK
table.

– Case 6. Otherwise, the system responds with P̃ (PK,M).

NSK-query. Suppose (pk1, sk2,NSK) is the k-th query, the system responds as
follows:

– Case 1. If Qk ∈ NSK, which means there exists T = (T1, T2, T3) ∈ NSK such
that T1 = pk1, T2 = sk2, then the system responds with T3;
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– Case 2. If there exists three tuples T = (T1, T2, T3), T ′ = (T ′1, T
′
2, T

′
3) ∈

H0 ∪ NKG, T̄ = (T̄1, T̄2, T̄3) such that T3 = pk1, T
′
2 = sk2, T̄1 = T ′3 and

T̄2 = T2, then the system responds to Qk with T̄3 and inserts (pk1, sk2, T̄3)
into NSK table.

– Case 3. If there exists three tuples T = (T1, T2, T3) ∈ H0 ∪ NKG, T ′ =
(T ′1, T

′
2, T

′
3, T

′
4) ∈ H1, T̄ = (T̄1, T̄2, T̄3) such that T3 = pk1, T

′
3 = sk2, T̄1 =

T ′4 and T̄2 = T2, then the system responds to Qk with T̄3 and inserts
(pk1, sk2, T̄3) into NSK table.

– Case 4. If there exists three tuples T = (T1, T2, T3) ∈ H0 ∪ NKG, T ′ =
(T ′1, T

′
2, T

′
3, T

′
4) ∈ H1, T̄ = (T̄1, T̄2, T̄3) such that T2 = sk2, T

′
4 = pk1, T̄1 =

T3 and T̄2 = T ′3, then the system responds to Qk with T̄3 and inserts
(pk1, sk2, T̄3) into NSK table.

– Case 5. If there exists three tuples T = (T1, T2, T3, T4), T ′ = (T ′1, T
′
2, T

′
3, T

′
4) ∈

H1, T̄ = (T̄1, T̄2, T̄3) such that T4 = pk1, T
′
3 = sk2, T̄1 = T ′4 and T̄2 = T3, then

the system responds to Qk with T̄3 and inserts (pk1, sk2, T̄3) into NSK table.
– Case 6. If there exist tuples T = (T1, T2, T3, T4) ∈ H1 and T ′ = (T ′1, T

′
2, T

′
3) ∈

P ∪ P−1 such that T1 = T ′1 = pk1, T2 = T ′2 and T3 = sk2, then the sys-
tem makes a query (T1, T2; DE), responds to Qk with C2 ⊕ T ′3, and inserts
(pk1, sk2, T

′
3) into NSK table.

– Case 7. If there exist two tuples T = (T1, T2, T3) ∈ H0 ∪ NKG and T ′ =
(T ′1, T

′
2, T

′
3) ∈ P ∪ P−1 such that T ′1 = T3, T2 = sk2 and C1 = pk1, where

(C1,C2) = DEr(T ′1, T
′
2), then the system responds to Qk with C2 ⊕ T ′3 and

inserts (pk1, sk2, T
′
3) into NSK table.

– Case 8. Otherwise, the system responds to Qk with ÑSK(pk1, sk2).

P−1 query. Suppose Qk = (Z, P−1), then the system responds as follows:

– Case 1. If Qk ∈ P ∪ P−1, which means there is a tuple T = (T1, T2, T3) ∈
P ∪ P−1 such that T3 = Z, then the system responds to Qk with (T1, T2);

– Case 2. If Qk /∈ P ∪ P−1 but there are two tuples T = (T1, T2, T3, T4) ∈ H1

and T ′ = (T ′1, T
′
2, T

′
3) ∈ NSK such that T1 = T ′1, T3 = T2 and Z = C2 ⊕ T ′3,

where (C1,C2) = DEr(T1, T2), then the system responds to Qk with (T1, T2),
and inserts (T1, T2,Z) into P−1 table;

– Case 3. If there are two tuples T = (T1, T2, T3) ∈ H0 ∪ NKG and T ′ =
(T ′1, T

′
2, T

′
3) ∈ NSK such that T1 6= ∗, T2 = T ′2 and DDr((T ′1,Z ⊕ T ′3), T1) =

M 6=⊥, then the system responds to Qk with (T3,M) and inserts (T3,M,Z)
into P−1 table;

– Case 4. Otherwise, the system responds with P̃−1(Z).

Note that, in Game 1 the system keeps a longer table, and for part of the
queries, the system responds to them in an alternative way, which is only using
the tables and the honest interfaces. Moreover, in Game 1, the tuples stored
in the tables correspond to the response of queries that are answered by the
real oracles, and for any SK,PK,M and any ciphertext C, we have DKGr(SK) =

D̃KG(SK),DEr(PK,M) = D̃E(PK,M) and DDr(C,SK) = D̃D(C,SK). Hence, in
either game, the response of any query is identical, which refers to that the view
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in Game 1 is identical to the one in Game 0. However, the system can only
answer part of the queries by tables and honest interfaces, and for the rest it
has to call the real oracles. Thus, in the following hybrid games, we will illustrate
additional alternative ways(not calling the real oracles) to respond to the rest
queries, without changing the view significantly.

Game 2. This game is identical to Game 1, except for responding to H0 queries.
Suppose Qk = (SK;H0), then the system responds:

– Case 1. If Qk ∈ H0, same as in Game 1;

– Case 2. Otherwise, the system samples sk
$← X , responds to Qk with sk and

inserts (SK, sk,DKGr(SK)) into H0 table.

The only difference between Game 1 and Game 2 occurs in the case 2, where
Qk /∈ H0 and DKGr(SK) never appears in (NKG) table. In Game 1, the system
responds with H̃0(SK) while in Game 2, we replace it with a random string. Due
to definition, we note that the only case that the system makes a query (SK;H0)
is when the adversary knows nothing of H̃0(SK), although the adversary might
know DKGr(SK). Therefore, from the adversary’s view, H̃0(SK) is uniformly dis-
tributed in X , which implies A’s view preserves whp. if the system responds to
Qk with sk and implicitly set NKGr(sk) = DKGr(SK) afterwards.

Game 3. This game is identical to Game 2, except for responding to H1 queries.
Suppose Qk = (PK,M;H1), then the system responds:

– Case 1. If Qk ∈ H1, same as in Game 2;

– Case 2. Otherwise, the system samples sk
$← X , responds to Qk with sk and

inserts (PK,M, sk,C1) into H1 table.

The only difference between Game 2 and Game 3 occurs in the case 2, where
Qk /∈ H1 and C1 never appears in (NKG)table. In Game 2, the system responds
with H̃1(PK,M) while in Game 3, we replace it with a random string. Due to
definition, we note that the only case that the system makes a query (PK,M;H1)
is when the adversary knows nothing of H̃1(PK,M), although the adversary
might know C1. Therefore, from the adversary’s view, H̃1(PK,M) is uniformly
distributed in X , which implies A’s view preserves whp. if the system responds
to Qk with sk and implicitly set NKGr(sk) = C1 afterwards.

Game 4. This game is identical to Game 2, except for responding to NKG
queries. Suppose Qk = (sk; NKG), then the system responds:

– Case 1. If Qk ∈ NKG, same as in Game 3;

– Case 2. If Qk /∈ NKG but there is a tuple T = (T1, T2, T3, T4) ∈ H1 or
T ′ = (T ′1, T

′
2, T

′
3) ∈ H0 such that T3 = sk or T ′2 = sk, then same as in Game

3;

– Case 3. Otherwise, the system samples SK∗
$← X , responds to Qk with

DKGr(SK∗), and inserts (SK∗, sk,DKGr(SK∗)) into NKG table.
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The only difference between Game 3 and Game 4 occurs in the case 3, where
Qk /∈ NKG and sk never appears in H0 ∪ H1 table. In Game 3, the system

responds with ÑKG(sk), while in Game 4, the system replaces it with a random

public key(DKGr(SK),SK
$← X ). We immediately note that SK is independent

of A’s view, which implies that DKGr(SK) is well-distributed.
The reason why the response is a random public key, rather than a random

string, is to keep the consistency conditions. If not, the adversary could do the
following attack: 1)A picks a secret key sk∗ and makes a query (sk∗; NKG)(pk∗ =
NKGr(sk∗)) ; 2) A picks a message M and makes a query (pk∗,M; DE)((C∗1 ,C

∗
2) =

DEr(pk∗,M)); 3) A makes a query (C∗1 , sk∗; NKG); 4) A makes a query (C∗2 ⊕
NKGr(C∗1 , sk∗);P−1) and test if the response is identical to (pk∗,M). We note
that, from the attack above, the message M is independent of the system(calling
P̃−1 would not help as NKGr(sk∗) is a random string now). Therefore the only
case to extract M is to call the decryption oracle DD, which means the system
has to know the corresponding secret key.

Game 5. This game is identical to Game 4, except for responding to P queries.
Suppose Qk = (PK,M;P ), then the system responds:

– Case 1. If Qk ∈ P ∪ P−1, same as in Game 4;
– Case 2. IfQk /∈ P∪P−1, then the system makes a query (PK,M; DE)((C1,C2) =

DEr(PK,M) ). If there exist tuples T = (T1, T2, T3, T4) ∈ H1 and T ′ =
(T ′1, T

′
2, T

′
3) ∈ NSK such that T4 = C1, T

′
1 = PK, T ′2 = T3, then same as in

Game 4;
– Case 3. Similarly, if there exist tuples T = (T1, T2, T3) ∈ H0 ∪ NKG and
T ′ = (T ′1, T

′
2, T

′
3) ∈ NSK such that T3 = C1, T

′
1 = PK, T ′2 = T2, then same as

in Game 4;
– Case 4. If there exist tuples T = (T1, T2, T3, T4) ∈ H1 and T ′ = (T ′1, T

′
2, T

′
3) ∈

NSK such that T4 = PK, T ′1 = C1, T
′
2 = T3, then same as in Game 4;

– Case 5. Similarly, if there exist tuples T = (T1, T2, T3) ∈ H0 ∪ NKG and
T ′ = (T ′1, T

′
2, T

′
3) ∈ NSK such that T3 = PK, T ′1 = C1, T

′
2 = T2, then same as

in Game 4;

– Case 6. Otherwise, the system samples Z
$← Z, responds to Qk with Z and

inserts (PK,M,Z) into P table.

The only difference between Game 5 and Game 4 occurs in case 6; in Game
4 the system responds with P̃ (PK,M) while in Game 5 the system replaces it
with a random string. By definition, we note that the only case that the system
makes a query (PK,M;P ) is when adversary knows nothing of P̃ (PK,M), however
it might knows DEr(PK,M) and P̃ (PK,M) is part of them. If the adversary
also knows NSKr(PK, H r

1(PK,M)) or NSKr(C1, H
r
0(SK)), then the system must

responds to Qk correctly, and in fact this situation is covered by case 2, 3, 4, 5.
Therefore, in case 6, the adversary also knows nothing of NSKr(PK, H r

1(PK,M))
or NSKr(C1, H

r
0(SK)), which implies that the system can answer it randomly.

Game 6.This game is identical to Game 5, except for responding to NSK queries.
Suppose Qk = (pk1, sk2; NSK), then the system responds:
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– Case 1. If Qk ∈ NSK, then same as in Game 5;
– Case 2. If there exists three tuples T = (T1, T2, T3), T ′ = (T ′1, T

′
2, T

′
3) ∈

H0 ∪ NKG, T̄ = (T̄1, T̄2, T̄3) such that T3 = pk1, T
′
2 = sk2, T̄1 = T ′3 and

T̄2 = T2, then same as in Game 5;
– Case 3. If there exists three tuples T = (T1, T2, T3) ∈ H0 ∪ NKG, T ′ =

(T ′1, T
′
2, T

′
3, T

′
4) ∈ H1, T̄ = (T̄1, T̄2, T̄3) such that T3 = pk1, T

′
3 = sk2, T̄1 = T ′4

and T̄2 = T2, then same as in Game 5;
– Case 4. If there exists three tuples T = (T1, T2, T3) ∈ H0 ∪ NKG, T ′ =

(T ′1, T
′
2, T

′
3, T

′
4) ∈ H1, T̄ = (T̄1, T̄2, T̄3) such that T2 = sk2, T

′
4 = pk1, T̄1 = T3

and T̄2 = T ′3, then same as in Game 5;
– Case 5. If there exists three tuples T = (T1, T2, T3, T4), T ′ = (T ′1, T

′
2, T

′
3, T

′
4) ∈

H1, T̄ = (T̄1, T̄2, T̄3) such that T4 = pk1, T
′
3 = sk2, T̄1 = T ′4 and T̄2 = T3, then

same as in Game 5;
– Case 6. If there exist tuples T = (T1, T2, T3, T4) ∈ H1 and T ′ = (T ′1, T

′
2, T

′
3) ∈

P ∪ P−1 such that T1 = T ′1 = pk1, T2 = T ′2 and T3 = sk2, then same as in
Game 5;

– Case 7. If there exist two tuples T = (T1, T2, T3) ∈ H0 ∪ NKG and T ′ =
(T ′1, T

′
2, T

′
3) ∈ P ∪ P−1 such that T ′1 = T3, T2 = sk2 and C1 = pk1, where

(C1,C2) = DEr(T ′1, T
′
2), then same as in Game 5;

– Case 8. Otherwise, the system samples Z
$← Z, responds to Qk with Z and

inserts (pk1, sk2,Z) into NSK table.

The only difference between Game 6 and Game 5 occurs in case 8; in Game

5 the system responds with ÑSK(pk1, sk2) while in Game 6 the system replace it
with a random string. By definition, we note that, by the consistency conditions,
there are three cases in total to predict NSKr(pk1, sk2). Case A: the adversary
knows NSKr(pk2, sk1) where NKGr(sk`) = pk`(Case A is covered by case 2, 3,
4, 5); Case B: following the encryption path, the adversary knows P r(PK,M)
such that PK = pk1 and H r

1(PK,M) = sk2(covered by case 6); Case C: following
the decryption path, the adversary knows P r(PK,M) such that pk1 = C1,PK =
NKGr(sk2) where (C1,C2) = DEr(PK,M)(covered by case 7).Therefore, in case 8,
the adversary cannot predict NSKr(pk1, sk2) at all, which implies that the system
can answer it randomly.

Game 7. This game is identical to Game 5, except for responding to P−1

queries. SupposeQk = (Z;P−1), then the system responds: P−1 query. Suppose

Qk = (Z, P−1), then the system responds as follows:

– Case 1. If Qk ∈ P ∪ P−1, which means there is a tuple T = (T1, T2, T3) ∈
P ∪ P−1 such that T3 = Z, then same as in Game 6;

– Case 2. If Qk /∈ P ∪ P−1 but there are two tuples T = (T1, T2, T3, T4) ∈ H1

and T ′ = (T ′1, T
′
2, T

′
3) ∈ NSK such that T1 = T ′1, T3 = T2 and Z = C2 ⊕ T ′3,

where (C1,C2) = DEr(T1, T2), then same as in Game 6;
– Case 3. If there are two tuples T = (T1, T2, T3) ∈ H0 ∪ NKG and T ′ =

(T ′1, T
′
2, T

′
3) ∈ NSK such that T1 6= ∗, T2 = T ′2 and DDr((T ′1,Z ⊕ T ′3), T1) =

M 6=⊥, then same as in Game 6;
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– Case 4. Otherwise, the system samples PK
$← Y,M $← M, responds with

(PK,M) and inserts (PK,M,Z) into P−1 table.

The only difference between Game 7 and Game 6 occurs in case 4; in Game 6
the system responds with P̃−1(Z) while in Game 7 the system replace it with a
random string. Same as above, we note that there are two cases in total that the
adversary can predicate P−1r(Z) before Qk, which are exactly case 2 and case
3(following the encryption and decryption path, respectively). Hence, in case 4,
it’s proper for the system to responds to Qk with a random string.

Game 8. In Game 7, the queries to the adversarial interfaces are answered by the
tables which’re maintained by the system and by making queries to DKG,DE,DD.

The system never makes queries directly to H̃0, H̃1, P̃ , P̃
−1, ÑKG, ÑSK; these

oracles are only used to answer the DKG,DE,DD queries (either generated by
the adversary or by the system’s response to H0, H1, P, P

−1,NKG,NSK queries).
At this point, it is straightforward to show that we can replace DKG,DE and DD
with the ideal versions from Definition 6, resulting in Game 8.

We note that in Game 8, the system is efficient, and it responds to the adver-
sarial interfaces just by keeping several tables and calling the honest interfaces.
Thus, we can build a simulator that responds to the honest and adversarial
queries precisely as the system does in Game 8. The result is that the view in
Game 8 is identical to the ideal world and it suffices to prove that any adjacent
games are indistinguishable. Next we give the full description of the simulator S
and the rigorous proof for the indistinguishability between each adjacent games.

Simulator In Ideal Game. Let (KEYGEN,ENC,DEC) be the function pair
that samples from TDPKE, the simulator works as follows. Like the system in
Game 8, the simulator also maintains six tables, referring to H0-table, H1-table,
P -table, P−1-table, NKG-table and NSK-table. Concretely:

– H0-table: initially empty, consists of tuples with form of (SK, sk,PK);
– H1-table: initially empty, consists of tuples with form of (PK,M, sk,PK);
– P -table: initially empty, consists of tuples with form of (PK,M,Z);
– P−1-table: initially empty, consists of tuples with form of (PK,M,Z);
– NKG-table: initially empty, consists of tuples with form of (SK, sk,PK);
– NSK-table: initialy empty, consists of tuples with form of (pk1, sk2,Z).

By definition, the simulator S has access to the honest interfaces (DKG,DD,DE),
where DKGr(SK) = KEYGEN(SK),DEr(PK,M) = ENC(PK,M),DDr(C1,C2,SK) =
DEC(C1,C2,SK). And for the adversarial queries, S works as the system in Game
8, by just using the tables and calling the honest interfaces.

H0-query. Suppose Qk = (SK;H0) (k ∈ [1, q]), then the system responds as
follows:

– Case 1. If Qk ∈ H0, which means there is a tuple T = (T1, T2, T3) ∈ H0 such
that T1 = SK, then the system responds with T2;

– Case 2. Otherwise, the system samples sk
$← X , responds to Qk with sk and

inserts (SK, sk,DKGr(SK)) into H0 table.
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H1-query. Suppose Qk = (PK,M;H1), then the system responds as follows:

– Case 1. If Qk ∈ H1, which means there is a tuple T = (T1, T2, T3, T4) ∈ H1

such that T1 = PK, T2 = M, then the system responds with T3;

– Case 2. Otherwise, the system samples sk
$← X , responds to Qk with sk and

inserts (PK,M, sk,C1) into H1 table.

NKG-query. Suppose Qk = (sk; NKG), then the system responds as follows:

– Case 1. If Qk ∈ NKG, which means there is a tuple T = (T1, T2, T3) ∈ H1

such that T2 = sk, then the system responds with T3;

– Case 2. If Qk /∈ NKG but there is a tuple T = (T1, T2, T3, T4) ∈ H1 or
T ′ = (T ′1, T

′
2, T

′
3) ∈ H0 such that T3 = sk or T ′2 = sk, then the system

responds to Qk with T4 or T ′3, and inserts (∗, sk, T4) or (∗, sk, T ′3) into NKG
table.

– Case 3. Otherwise, the system samples SK∗
$← X , responds to Qk with

DKGr(SK∗), and inserts (SK∗, sk,DKGr(SK∗)) into NKG table.

P -query. Suppose Qk = (PK,M, P ), then the system responds as follows:

– Case 1. If Qk ∈ P ∪ P−1, which means there is a tuple T = (T1, T2, T3) ∈
P ∪ P−1 such that T1 = PK, T2 = M, then the system responds with T3;

– Case 2. IfQk /∈ P∪P−1, then the system makes a query (PK,M; DE)((C1,C2) =
DEr(PK,M) ). If there exist tuples T = (T1, T2, T3, T4) ∈ H1 and T ′ =
(T ′1, T

′
2, T

′
3) ∈ NSK such that T4 = C1, T

′
1 = PK, T ′2 = T3, then the system

responds to Qk with C2 ⊕ T ′3 and inserts (PK,M,C2 ⊕ T ′3) into NSK table.

– Case 3. Similarly, if there exist tuples T = (T1, T2, T3) ∈ H0 ∪ NKG and
T ′ = (T ′1, T

′
2, T

′
3) ∈ NSK such that T3 = C1, T

′
1 = PK, T ′2 = T2, then the

system responds to Qk with C2 ⊕ T ′3 and inserts (PK,M,C2 ⊕ T ′3) into NSK
table.

– Case 4. If there exist tuples T = (T1, T2, T3, T4) ∈ H1 and T ′ = (T ′1, T
′
2, T

′
3) ∈

NSK such that T4 = PK, T ′1 = C1, T
′
2 = T3, then the system responds to Qk

with C2 ⊕ T ′3 and inserts (PK,M,C2 ⊕ T ′3) into NSK table.

– Case 5. Similarly, if there exist tuples T = (T1, T2, T3) ∈ H0 ∪ NKG and
T ′ = (T ′1, T

′
2, T

′
3) ∈ NSK such that T3 = PK, T ′1 = C1, T

′
2 = T2, then the

system responds to Qk with C2 ⊕ T ′3 and inserts (PK,M,C2 ⊕ T ′3) into NSK
table.

– Case 6. Otherwise, the system samples Z
$← Z, responds to Qk with Z and

inserts (PK,M,Z) into P table.

NSK-query. Suppose (pk1, sk2,NSK) is the k-th query, the system responds as
follows:

– Case 1. If Qk ∈ NSK, which means there exists T = (T1, T2, T3) ∈ NSK such
that T1 = pk1, T2 = sk2, then the system responds with T3;
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– Case 2. If there exists three tuples T = (T1, T2, T3), T ′ = (T ′1, T
′
2, T

′
3) ∈

H0 ∪ NKG, T̄ = (T̄1, T̄2, T̄3) such that T3 = pk1, T
′
2 = sk2, T̄1 = T ′3 and

T̄2 = T2, then the system responds to Qk with T̄3 and inserts (pk1, sk2, T̄3)
into NSK table.

– Case 3. If there exists three tuples T = (T1, T2, T3) ∈ H0 ∪ NKG, T ′ =
(T ′1, T

′
2, T

′
3, T

′
4) ∈ H1, T̄ = (T̄1, T̄2, T̄3) such that T3 = pk1, T

′
3 = sk2, T̄1 =

T ′4 and T̄2 = T2, then the system responds to Qk with T̄3 and inserts
(pk1, sk2, T̄3) into NSK table.

– Case 4. If there exists three tuples T = (T1, T2, T3) ∈ H0 ∪ NKG, T ′ =
(T ′1, T

′
2, T

′
3, T

′
4) ∈ H1, T̄ = (T̄1, T̄2, T̄3) such that T2 = sk2, T

′
4 = pk1, T̄1 =

T3 and T̄2 = T ′3, then the system responds to Qk with T̄3 and inserts
(pk1, sk2, T̄3) into NSK table.

– Case 5. If there exists three tuples T = (T1, T2, T3, T4), T ′ = (T ′1, T
′
2, T

′
3, T

′
4) ∈

H1, T̄ = (T̄1, T̄2, T̄3) such that T4 = pk1, T
′
3 = sk2, T̄1 = T ′4 and T̄2 = T3, then

the system responds to Qk with T̄3 and inserts (pk1, sk2, T̄3) into NSK table.
– Case 6. If there exist tuples T = (T1, T2, T3, T4) ∈ H1 and T ′ = (T ′1, T

′
2, T

′
3) ∈

P ∪ P−1 such that T1 = T ′1 = pk1, T2 = T ′2 and T3 = sk2, then the sys-
tem makes a query (T1, T2; DE), responds to Qk with C2 ⊕ T ′3, and inserts
(pk1, sk2, T

′
3) into NSK table.

– Case 7. If there exist two tuples T = (T1, T2, T3) ∈ H0 ∪ NKG and T ′ =
(T ′1, T

′
2, T

′
3) ∈ P ∪ P−1 such that T ′1 = T3, T2 = sk2 and C1 = pk1, where

(C1,C2) = DEr(T ′1, T
′
2), then the system responds to Qk with C2 ⊕ T ′3 and

inserts (pk1, sk2, T
′
3) into NSK table.

– Case 8. Otherwise, the system samples Z
$← Z, responds to Qk with Z and

inserts (pk1, sk2,Z) into NSK table.

P−1 query. Suppose Qk = (Z, P−1), then the system responds as follows:

– Case 1. If Qk ∈ P ∪ P−1, which means there is a tuple T = (T1, T2, T3) ∈
P ∪ P−1 such that T3 = Z, then the system responds to Qk with (T1, T2);

– Case 2. If Qk /∈ P ∪ P−1 but there are two tuples T = (T1, T2, T3, T4) ∈ H1

and T ′ = (T ′1, T
′
2, T

′
3) ∈ NSK such that T1 = T ′1, T3 = T2 and Z = C2 ⊕ T ′3,

where (C1,C2) = DEr(T1, T2), then the system responds to Qk with (T1, T2),
and inserts (T1, T2,Z) into P−1 table;

– Case 3. If there are two tuples T = (T1, T2, T3) ∈ H0 ∪ NKG and T ′ =
(T ′1, T

′
2, T

′
3) ∈ NSK such that T1 6= ∗, T2 = T ′2 and DDr((T ′1,Z ⊕ T ′3), T1) =

M 6=⊥, then the system responds to Qk with (T3,M) and inserts (T3,M,Z)
into P−1 table;

– Case 4. Otherwise, the system samples PK
$← Y,M $← M, responds with

(PK,M) and inserts (PK,M,Z) into P−1 table.

Now we are ready to prove the indistinguishability between any adjacent
games.

Claim. Game Real ≈ Game 0.

Proof. The only difference between Game Real and Game 0 is that, in Game
0 the system additionally maintains several tables that are completely hidden
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from the adversary, hence we have

Pr[Game Real] = Pr[Game 0].

Claim. Game 0 ≈ Game 1.

Proof. By definition, we note that in Game 1, the system maintains longer tables
and it responds to part of the queries (type A query) by just using those tables
and calling the honest interfaces. For the other queries (type B query), the
system responds by calling the real oracles. Moreover, the items stored in those
tables are always consistent with the real oracles, and in either games, the honest
interfaces correspond to the real oracles, which means the response by calling
the honest interfaces is identical to the one by calling real oracles(for instance,

DKGr(SK) = D̃KG(SK) = ÑKG(H̃0(SK))). Hence the responses of type A queries
by either the real oracles(Game 0) or by honest interfaces plus tables(Game 1)
are identical, which refers to

Pr[Game 0] = Pr[Game 1].

Claim. Game 1 ≈ Game 2.

Proof. Recalling that the only difference between Game 1 and Game 2 occurs
in case 2, where Qk = (SK∗;H0) /∈ H0 and DKGr(SK∗) never appears in the
previous queries. In Game 1, the system responds to Qk with H̃0(PK∗) while
in Game 2, the system replaces it with a random string sk∗ in X . To prove
the indistinguishability, we first formalize the adversary’s view in Game 1. By
definition, we immediately observe that, in Game 1,

– The system responds to (SK, H0) with H̃0(SK);
– The system responds to (PK,M;P ) with P̃ (PK,M);
– The system responds to (Z;P−1) with P̃−1(Z);
– The system responds to (PK,M;H1) with H̃1(PK,M);

– The system responds to (sk; NKG) with ÑKG(sk);

– The system responds to (pk1, sk2,NSK) with ÑSK(pk1, sk2);

– The system responds to (SK; DKG) with D̃KG(SK);

– The system responds to (PK,M; DE) with D̃E(PK,M);

– The system responds to (C1,C2,SK; DD) with D̃D(C1,C2,SK).

Hence in adversary’s perspective, under the consistency conditions listed be-
low, the responses of H0 and H1 are independent and random strings; the re-
sponses of NKG and NSK are random injections; the responses of P and P−1 are
random permutations where P−1 is P ’s inverse. Here is the consistency condi-
tions:

– P r(P−1r(Z)) = Z, P−1r(P r(Z)) = Z;
– There exists no SK1,SK2 such that NKGr(SK1) = NKGr(SK2);
– There exists no Z1,Z2 such that P r(Z1) = P r(Z2) or P−1r(Z1) = P−1r(Z2);
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– DKGr(SK∗) = NKGr(H r
0(SK∗));

– DEr(PK,M) = NKGr(H r
1(PK,M)),NSKr(PK, H r

1(PK,M))⊕ P r(PK,M);
– DDr(C1,C2,SK) = P−1r(C2⊕NSKr(C1, H

r
0(SK))) if the ciphertext is valid by

re-encryption;
– NSKr(pk1, sk2) = NSKr(pk2, sk1) if and only if pk` = NKGr(sk`);
– P r(NKGr(sk),M) = C2 ⊕ NSKr(sk,C1) where (C1,C2) = DEr(NKGr(sk),M);
– P−1r(C2 ⊕ NSKr(sk,C1)) = (NKGr(sk),M) where (C1,C2) = DEr(NKGr(sk),M).

Now we turn to Game 2, where the system responds to Qk with a random
string sk∗ in X , comparing to H̃0(SK∗) in Game 1. Next we see the view on the
adversarial interfaces. For H0 queries, as sk∗ is uniformly sampled, the responses
are well distributed. For H1 queries, the responses are identical in either game
except that there exists (PK,M) such that the ciphertextC1 = DKGr(SK∗). As
H̃1 is a random oracle, the probability of this bad event is bounded by q

|X | .

For NKG queries, note that after Qk, the system implicitly sets NKGr(sk∗) =
DEr(SK∗) = NKGr(H̃0(SK∗)). Hence as long as the adversary never makes a query
(sk∗; NKG) before Qk and H̃0(SK∗) is hidden, the responses are consistent. In fact
sk∗ is uniformly sampled and for the adversary, the only way to have H̃0(SK∗)
is randomly guessing, which means the probability of the bad events is bounded
by k−1+q

|X | . For NSK and P queries, note that after Qk the system implicitly sets

NSKr(PK∗, H r
1(PK∗,M)) = NSKr(sk∗,C1);

P r(PK∗,M) = C2 ⊕ NSKr(sk∗,C1),

where PK∗ = DKGr(SK∗) and (C1,C2) = DE(PK∗,M). Note that there are two
cases: 1) adversary calls (PK∗, H r

1(PK∗,M; NSK) or (PK∗,M;P ) before it makes
a query (sk,C1; NSK); 2) adversary calls (sk,C1; NSK) before it makes queries
(PK∗, H r

1(PK∗,M; NSK) and (PK∗,M;P ). For the first case, we immediately ob-

serve that the system switch the response of (sk∗,C1; NSK) to ÑSK(H̃0(SK∗),C1),
and under the condition H̃0(SK∗) is independent of adversary’s view, the re-
sponse is well-distributed. Analogously, for the second case, the response of

(PK∗, H r
1(PK∗,M; NSK) or (PK∗,M;P ) will be set as NSKr(sk∗,C1) = ÑSK(sk∗,C1),

due to sk∗ is sampled by the adversary and ÑSK is a random injection(with a
shared key property), the response is well-distributed. For P−1 query, after Qk,
the system sets

P−1r(C2 ⊕ NSKr(sk∗,C1)) = (NKGr(sk∗),M).

We observe that the adversary can not make such a query before (sk∗,C1; NSK) or
(PK∗, H r

1(PK∗,M; NSK). Same reason as above(NSK or P queries), the responses
are well distributed.

Next we prove that, with high probability, the consistency condition.

First equation. Under the condition that the responses of P and P−1 are
consistent, it’s trivial that the first equation holds.

Second equation. As ÑKG is a random injection, it’s trivial that if the adver-
sary never makes a query (H̃0(SK∗); NKG), the equation holds.
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Third equation. For one direction, the adversary attempts to outputs (PK1,M1) 6=
(PK2,M2) such that P r((PK1,M1)) = Pr((PK2,M2)). While, under condition that
the response is consistent, we have that

P r(PK1,M1) = C1
2 ⊕ NSKr(PK1,H

r
1(PK1,M1))

P r(PK2,M2) = C2
2 ⊕ NSKr(PK2,H

r
1(PK2,M2))

where (C`1,C
`
2) = DEr(PK`,M`). Therefore the response is ciphertext-related,

which means with high probability, there is no collusion.

For the other direction, we note that the response is also ciphertext-related,
so analogously this equation holds with high probability.

Fourth equation. If the responses of NKG are consistent, then this equation
holds trivially.

Fifth equation. Under the condition that the responses of H1 queries do not
change in Game 2 and the responses of other queries are consistent, this equation
holds trivially.

Sixth equation. If the responses of P−1,NSK queries are consistent, then this
equation holds trivially.

Seventh equation. Note that if H̃0(SK∗) is independent of the adversary’s
view(if not the adversary can makes a query (PK, H̃0(SK∗); NSK) and detect a
collision here) and the responses are consistent, this equation holds.

Eighth equation. Analogously, we note that if H̃0(SK∗) is independent of the
adversary’s view and the responses of all queries are consistent, this equation
holds.

Ninth equation. This equation is implied by the eighth one.

Combing together, we can bound the union of the bad events as

Pr[Bad] ≤ q

|X |
+
k − 1

|X |
+

q

|X |
≤ negl(λ)

which refers to

|Pr[Game 1]− Pr[Game 2]| ≤ q · Pr[Bad] ≤ negl(λ).

Claim. Game 2 ≈ Game 3.

Proof. Easy to note that the analysis in this claim is symmetrical to the last
one(Game 1 ≈ Game 2 ), hence

|Pr[Game 2]− Pr[Game 3]| ≤ |Pr[Game 1]− Pr[Game 2]|.

Claim. Game 3 ≈ Game 4.
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Proof. Recalling that the only difference between Game 3 and Game 4 occurs in
case 3, where Qk = (sk∗; NKG) /∈ H0. In Game 1, the system responds to Qk with

ÑKG(sk∗) while in Game 2, the system samples SK∗ and replace the response
with DKGr(SK∗).

Analogous to the analysis above(Game 1 ≈ Game 2), we know that under
the condition that those bad events never occurs, the adversary’s view on Game
2 is: the response of H0, H1 queries are random and independent random strings;
NKG is an random injection and NSK is another random injection but with the
shared key property, P is a random permutation and P−1 is its inverse. Beyond
that, the responses also satisfy the following equations:

– P r(P−1r(Z)) = Z, P−1r(P r(Z)) = Z;
– There exists no SK1,SK2 such that NKGr(SK1) = NKGr(SK2);
– There exists no Z1,Z2 such that P r(Z1) = P r(Z2) or P−1r(Z1) = P−1r(Z2);
– DKGr(SK∗) = NKGr(H r

0(SK∗));
– DEr(PK,M) = NKGr(H r

1(PK,M)),NSKr(PK, H r
1(PK,M))⊕ P r(PK,M);

– DDr(C1,C2,SK) = P−1r(C2⊕NSKr(C1, H
r
0(SK))) if the ciphertext is valid by

re-encryption;
– NSKr(pk1, sk2) = NSKr(pk2, sk1) if and only if pk` = NKGr(sk`);
– P r(NKGr(sk),M) = C2 ⊕ NSKr(sk,C1) where (C1,C2) = DEr(NKGr(sk),M);
– P−1r(C2 ⊕ NSKr(sk,C1)) = (NKGr(sk),M) where (C1,C2) = DEr(NKGr(sk),M).

Next, we turn to case 3 in Game 4 and see the view on the adversarial
interfaces. For H0 query, after Qk, the system implicitly sets H r

0(SK∗) = sk∗.
Hence as long as the adversary never makes a query (SK∗;H0) then the response
would be consistent. However, sk∗ is chosen by the adversary and it might not
be well-distributed, hence it’s necessary to prove that the adversary never makes
such a query even after Qk. In fact, SK∗ is sampled by the system and never
revealed to the adversary, which means (SK∗;H0) never appears in the query

sequence except with negligible probability(≤ (k−1)
|X | + (q−k)

|X | ). For H1 queries,

the responses are identical in either games unless there is a query (PK,M;H1)
such that C1 = DKGr(SK∗), which is bound by q

|X | . For NKG query, as long as

SK∗ and H̃0(SK∗) are hidden from adversary, the responses are consistent and
well-distributed. In fact, the only way for the adversary to gain SK∗ and H̃0(SK∗)
is randomly guessing and the probability of success is of course negligible.

For NSK and P queries, note that after Qk the system implicitly sets

NSKr(PK∗, H r
1(PK∗,M)) = NSKr(sk∗,C1);

P r(PK∗,M) = C2 ⊕ NSKr(sk∗,C1),

where PK∗ = DKGr(SK∗) and (C1,C2) = DE(PK∗,M). Moreover, except for neg-
ligible probability(≤ q

|X | ), DKGr(SK∗) never appears before Qk. Then applying

the same analysis above(Game 1 ≈ Game 2), we have that the responses are
consistent and well-distributed. For P−1 queries, analogously, the responses are
proper except for negligible probability.
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For the equations, observe that, the 1st, 3rd, 4th, 5th and 6th equations holds
just applying the analysis above, and next we explore the rest ones.

Second equation. Note that the responses of NKG queries are random public
keys, hence the only case that induces collision is that in the query sequence
there exists SK1 6= SK2 but DKGr(SK1) = DKGr(SK2). As H̃0 is a random oracle

and ÑKG is a random injection, it’s apparent that this bad event is bounded by
q2

|X | .

Seventh equation. Note that if DKGr(SK∗) is independent of adversary’s view
before Qk and all responses are consistent, then this equation holds.

Eight equation. Analogously, if DKGr(SK∗) is independent of adversary’s view
before Qk and all responses are consistent, then this equation holds.

Ninth equation. This equation is implied by the eighth one.

Remark. For the ninth equation, we note that there are two ways to generate a
valid C2 ⊕ NSKr(sk∗,C1). The first one is from the encryption path, specifically
the adversary makes the following queries

(sk∗; NKG), (NKGr(sk∗),M∗; H1), (NKGr(sk∗),M∗; DE), (NKGr(sk∗),Hr
1(NKGr(sk∗),M∗); NSK)

then the system calculates:

C2 ⊕ NSKr(NKGr(sk∗), H r
1(NKGr(sk∗),M∗)) = C2 ⊕ NSKr(sk∗,C1).

In this case, the system has information of (NKGr(sk∗),M∗), so it can answer
this query property. However, the second one is generate from the decryption
path, concretely the adversary makes the following queries:

(sk∗; NKG), (NKGr(sk∗),M∗; DE), (sk∗,C1; NSK),

then it calculates C2 ⊕ NSKr(sk∗,C1) directly. We note that, in this case, the
adversary never hand in the plaintext M∗ to the system while the system is
obligated to output the correct plaintext, although the min-entropy of plaintext
might be very high. To do so, the system should have an alternative way to
extract M∗, which is using the decryption oracle DD. And this explains why the
response of (sk∗,NKG) must be a random public key, otherwise the system can
not make use of the decryption oracle.

Combining together, we can bound the union of the bad events by

Pr[Bad] ≤ k − 1

|X |
+
q − k
|X |

+
q

|X |
+

q

|X |
,

which refers to

|Pr[Game 3]− Pr[Game 4]| ≤ q · Pr[Bad] ≤ negl(λ).

Claim. Game 4 ≈ Game 5.
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Proof. Firstly, we note that, in either Game 4 or Game 5, the adversary’s view
on the honest interfaces is consistent, hence it suffices to prove that, with high
probability, the view on the adversarial interfaces also does not change. Accord-
ing to the definition, the only difference between Game 4 and Game 5 is when
Case 6 occurs where the system replaces the response of P queries (fails in the
consistency check) with a random string str∗.

By definition, we immediately observe that the responses of H0, H1 and NKG
queries are identical in either game, so it suffices to only analyze the rest one.
Suppose Qk = (PK∗,M∗;P ), the adversary’s view on the adversarial interfaces
are as follows:

View on P . When case 6 happens, the system implicitly sets P (PK∗,M∗) = str∗.
Hence if str∗ never appears in the previous queries(bounded by q

|Y | ), then the

view on P preserves.

View on NSK. When case 6 happens, the system implicitly sets

NSK(PK∗, H1(PK∗,M∗)) = C2 ⊕ str∗

Hence, similar to the analysis above, if C2 ⊕ str∗ never appears in the previous
queries, and P̃ (PK∗,M∗) and (PK,M) such that ˜NSK(PK,M) = C2 ⊕ str∗ never
appear, then the view on NSK does not change. For the bad event we can bound
it by 3q

|Y| .

View on P−1. When case 6 occurs, the system implicitly sets ˜P−1(C2⊕ str∗) =
(PK∗,M∗). Hence, similar to the analysis above, if C2⊕ str∗ never appears in the

previous queries, and P̃ (PK∗,M∗) and Z such that ˜P−1(Z) = (PK∗,M∗) never
appears, then the view on P−1 preserves. For this bad event, we can also bound
it by 3q

|Y| .

Now, we bound the union of these bad events as

Pr[Bad] ≤ q

|Y|
+

3q

|Y|
+

3q

|Y|
≤ negl(λ),

which refers to

|Pr[Game 4]− Pr[Game 5]| ≤ qPr[Bad] ≤ negl(λ).

Claim. Game 5 ≈ Game 6.

Proof. Easy to observe that the role of NSK is symmetric to the role of P (C2 =
NSKr(PK,M,Hr

1(PK,M))⊕Pr(PK,M)), hence applying the same analysis above(Game
4 ≈ Game 5), we have that

|Pr[Game 5]− Pr[Game 6]| ≤ |Pr[Game 4]− Pr[Game 5]|.

Claim. Game 6 ≈ Game 7.
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Proof. Firstly, we note that, in either Game 6 or Game 7, the adversary’s view
on the honest interfaces is consistent, hence it suffices to prove that, with high
probability, the view on the adversarial interfaces also does not change. Accord-
ing to the definition, the only difference between Game 6 and Game 7 is when
Case 4 occurs where the system replaces the response of P−1 queries (fails in the
consistency check) with a random string.

By definition, we immediately observe that the responses of H0, H1 and NKG
queries are identical in either game, so it suffices to only analyze the rest one.
Suppose Qk = (Z,P−1), the adversary’s view on the adversarial interfaces are as
follows:

View on P and NSK. In both games, the responses of P queries are responded
by P−1 table or a random string, therefore expect with collision, the view on P
and NSK does not change. And this bad event can be bounded by 2q

|Y| .

View on P−1. When case 4 occurs(the consistency check fails), then the system
replaces P−1r(X) with a random string.

Firstly we note that, in both games, the real oracles H̃0, H̃1, ÑKG, ÑSK, P̃ are
hidden, hence except with negligible probability(≤ q

|Z| ), the adversary can not

output a tuple (PK,M, str), such that P̃ (PK,M) = str. Hence, it’s rest to show
if the consistency check fails, with high probability, the view on P−1 does not
change. In fact, the view changes means that the adversary, without knowing
NSKr(PK, H r

1(PK,M)), can output a Z such that Z = NSK(PK, H1(PK,M))⊕C2,
which is bounded by q

|Y| . Combining together, we can bound the union of the

bad events by

Pr[Bad] ≤ 2q

|Y|
+

q

|Y |
,

which refers to,

|Pr[Game 6]− Pr[Game 7]| ≤ q · Pr[Bad] ≤ negl(λ).

Claim. Game 7 ≈ Game 8.

Proof. Let (F,E,D) be an ideal deterministic encryption scheme that’s sampled
from TPKE(Definition 6), and we note that in Game 7, the system responds all of
the adversarial interfaces just using tables and honest interfaces, it never directly

calls the real oracles. Besides, H̃0, H̃1 are random oracles, (ÑKG, ÑSK) is an ideal
NIKE and P̃ is random permutations, hence the only chance that the adversary
can differ these two games is one of following events occurs:

– There are queries (SK1;H0) and (SK1;H0) such that SK1 6= SK2 and H̃0(SK1) =
H̃0(SK2);

– There are queries (PK1,M1; DE) and (PK2,M2; DE) such that (PK1,M1) 6=
(PK2,M2) but they satisfy either C1

1 = C2
1 or C1

2 = C2
2 where (C`1,C

`
2) =

D̃E(PK`,M`);
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– There are queries (PK1,M1; DE) and (PK2,M2; DE) such that (PK1,M1) 6=
(PK2,M2) but they satisfy either C1

1 = C2
1 or C1

2 = C2
2 where (C`1,C

`
2) =

E(PK`,M`);

We observe that if none of the events occurs then we can replace the honest
interfaces with (F,E,D), which represents Game 8. Moreover, we can bound
the probability of those bad events as:

Pr[Bad] ≤ 2q2

|X |
+

3q2

|Y|

which refers to

|Pr[Game 7]− Pr[Game 8]| ≤ Pr[Bad] ≤ negl(λ).

Combining all claims together, we complete the entire proof. ut

G Proof of Theorem 8

In this section, we give the full proof of Theorem 8, that we show ΠPKE is
indifferentiable from an ideal PKE.

Proof. According to the definition of indifferentiability, we immediately observe
that, the adversary has three honest interfaces (PKG, PE and PD) and four
adversarial interfaces (H0,DKG,DE and DD). Therefore, we need to build an
efficient simulator S that can simulate the six adversarial interfaces properly,
which means, for any PPT differentiator D, the view of D in the real game is
computationally close to the view in the ideal game. To do so, we will go through
with a sequence of hybrid games, where in each game, there exists a system that
responds to all of the queries(both honest and adversarial) in a slightly different
way and then we build our simulator S as the system in the last game. Before
the description of the games, we first specify some parameters:

– there are seven types of queries such as (PK,M,R;H0), (sk,DKG), (pk,M,R; DE),
(sk,C; DD), (SK,PKG), (PK,M,R; PE), (SK,C; PD), where sk,SK← X , pk,PK←
Y,R← R and C← C;

– adversary makes q queries to the system, where q = poly(λ);

– the real oracles used in the real world are H̃0, D̃KG, D̃E, D̃D, P̃KG, P̃E, P̃D;
– in each game, the system’s responses are denoted asH r

0,DKGr,DEr,DDr,PKGr,
PEr and PDr, for instance, we denote H r

0(PK,M,R) as the system’s response
when adversary makes a query Q = (PK,M,R;H0).

Next, we define the hybrid games. Specifically,

Game 0. This game is identical to the real game except that the system main-
tains three tables, referring to H0-table, DE-table and DD-table. Concretely,
the system responds to the queries the same as in the real world, for instance,

H r
0(PK,M,R) = H̃0(PK,M,R),PKGr(SK) = P̃KG(SK) and so forth. For the ta-

bles, the system maintains them as follows:
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– H0-table: Initially empty, consists of tuples with form of (PK,M,R, r). Once
the adversary makes a query (PK,M,R;H0) which does not exist in H0-table,
the system inserts (PK,M,R, H̃0(PK,M,R) into H0-table;

– DE-table: Initially empty, consists of tuples with form of (pk,M,R,C). Once
the adversary makes a query (pk,M,R; DE) which does not exist in DE-table,

the system inserts (pk,M,R, D̃E(pk,M,R) into DE-table;
– DD-table: Initially empty, consists of tuples with form of (sk,C,M, r). Once

the adversary makes a query (sk,C; DD) which does not exist in DD-table,

the system inserts (sk,C, D̃D(sk,C)) into DD-table.

Note that at this point all the queries are responded by the real oracles
and these tables are just keeping track of information related to adversary’s
queries(to the adversarial interfaces) and completely hidden to the adversary,
hence the adversary’s view in real game is identical to the one in Game 0. Next,
we illustrate an alternative way to answer part of the queries, by using these
tables and the honest interfaces.

Same as above, we here also define a relation between query Q and the table
Tab. Concretely, if Q is a H0 query (Q = (PK,M,R;H0)), we say Q ∈ Tab if
there is a 4-tuple T = (T1, T2, T3, T4) in Tab such that T1 = PK, T2 = M, T3 = R.
Analogously, if Q is a DE query Q = (pk,M,R; DE), we say Q ∈ Tab if there
is a 4-tuple T = (T1, T2, T3, T4) ∈ Tab such that T1 = pk, T2 = M, T3 = R; if
Q is a DD query, say Q = (sk,C; DD), we say Q ∈ Tab if there is a 4-tuple
T = (T1, T2, T3, T4) such that T1 = sk and T2 = C.

Game 1. This game is identical to Game 0, except the way of maintaining the
tables and responding to the queries. Specifically,

H0-query. Suppose Qk = (PK,M,R;H0), then the system responds as follows:

– Case 1. If Qk ∈ H0, which means there is a tuple T = (T1, T2, T3, T4) ∈ H0

such that T1 = PK, T2 = M and T3 = R, then the system responds with T4;
– Case 2. If Qk /∈ H0, then the system makes a query (PK,M,R; PE). If there

is a tuple T = (T1, T2, T3, T4) ∈ DE-table such that T1 = PK, T2 = M, T3 =

r||0n3 and T4 = P̃E(PK,M,R), then the system responds with r;
– Case 3. If Qk /∈ H0, then the system makes a query (PK,M,R; PE). If there

is a tuple T = (T1, T2, T3, T4) ∈ DD-table such that PKGr(T1) = PK, T3 =
M,PEr(PK,M,R) = T2 and T4 = r||0n3 , then the system responds with r;

– Case 4. Otherwise, the system responds with H̃0(PK,M,R) and inserts the
tuple (PK,M,R, H̃0(PK,M,R)) into H0-table.

DKG-query. Suppose Qk = (sk,DKG), then the system responds with PKGr(sk).
DE-query. Suppose Qk = (pk,M,R,DE)(for ease, we split R = R1||R2), then

the system responds:

– Case 1. If Qk ∈ DE, which means there is a tuple T = (T1, T2, T3, T4) such
that T1 = pk, T2 = M, T3 = R, then the system responds with T4;

– Case 2. If Qk /∈ DE and R2 6= 0n3 , then
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1. If there is a tuple T = (T1, T2, T3, T4) in DD-table such that PKGr(T1) =
pk, T3 = M and T4 = R, then the system responds with T2;

2. else, the system responds to Qk with D̃E(pk,M,R).
– Case 3. If Qk /∈ DE and R2 = 0n3 , then

1. If there is a tuple T = (T1, T2, T3, T4) in DD-table such that PKG(T1) =
pk, T3 = M and T4 = R, then the system responds with T2;

2. If there is (T1, T2, T3, T4) ∈ H0 such that T1 = pk, T2 = M, T4 = R1, then
the system responds with PEr(pk,M, T3);

3. Otherwise the system responds to Qk with D̃E(pk,M,R).

DD-query. Suppose Qk = (sk,C; DD), then the system responds,

– Case 1. If Qk ∈ DD, which means there exists a tuple T = (T1, T2, T3, T4) ∈
DD such that T1 = sk and T2 = C, then the system responds with T3||T4;

– Case 2. If Qk /∈ DD but there is a tuple T = (T1, T2, T3, T4) ∈ DE such that
T1 = PKG(sk), T4 = C, then the system responds with (T2||T3);

– Case 3. Otherwise, the system makes a query (sk,C; PD) and responds,
1. If PDr(sk,C) =⊥, then the system responds with ⊥;
2. else if there is a tuple (T1, T2, T3, T4) ∈ H0 such that T1 = PKGr(sk), T2 =

PDr(sk,C) and PEr(T1, T2, T3) = C, then the system responds to Qk with
= (PDr(sk,C)||T4||0n3);

3. else, the system responds with D̃D(sk,C).

Game 2. This game is identical to Game 1, except for responding to H0 queries.
Suppose Qk = (PK,M,R;H0), then the system responds,

– Case 1. If Qk ∈ H0, same as in Game 1;
– Case 2. If Qk /∈ H0, then the system makes a query (PK,M,R; PE). If there

is a tuple T = (T1, T2, T3, T4) ∈ DE-table such that T1 = PK, T2 = M, T3 =

r||0n3 and T4 = P̃E(PK,M,R), then same as in Game 1;
– Case 3. If Qk /∈ H0, then the system makes a query (PK,M,R; PE). If there

is a tuple T = (T1, T2, T3, T4) ∈ DD-table such that PKGr(T1) = PK, T3 =
M,PEr(PK,M,R) = T2 and T4 = r||0n3 , then same as in Game 1;

– Case 4. Otherwise, the system samples r ← {0, 1}n3 , responds to Qk with r
and inserts (PK,MmR, r) into H0-table.

Game 3. This game is identical to Game 2, except for responding to DE queries.
Suppose Qk = (pk,M,R; DE)(for ease, we split R = R1||R2), then the system
responds,

– Case 1. If Qk ∈ DE, which means there is a tuple T = (T1, T2, T3, T4) such
that T1 = pk, T2 = M, T3 = R, then same as in Game 2;

– Case 2. If Qk /∈ DE and R2 6= 0n3 , then
1. If there is a tuple T = (T1, T2, T3, T4) in DD-table such that PKGr(T1) =

pk, T3 = M and T4 = R, then same as in Game 2;
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2. else, the system samples C
$← C, responds to Qk with C, and inserts

(pk,M,R,C) into DE table.
– Case 3. If Qk /∈ DE and R2 = 0n3 , then

1. If there is a tuple T = (T1, T2, T3, T4) in DD-table such that PKG(T1) =
pk, T3 = M and T4 = R, then the system responds with T2;

2. If there is (T1, T2, T3, T4) ∈ H0 such that T1 = pk, T2 = M, T4 = R1, then
the system responds with PEr(pk,M, T3);

3. Otherwise the system samples R∗
$← {0, 1}2n3 , responds to Qk with

PEr(pk,M,R∗), and inserts (pk,M,R∗,R1) and (pk,M,R,PEr(pk,M,R∗))
into H0 table and DE table, respectively.

Game 4. This game is identical to Game 3, except for responding to the DD
queries. Suppose Qk = (sk,C; DD), then the system responds,

– Case 1. If Qk ∈ DD, which means there exists a tuple T = (T1, T2, T3, T4) ∈
DD such that T1 = sk and T2 = C, then the system responds with T3||T4;

– Case 2. If Qk /∈ DD but there is a tuple T = (T1, T2, T3, T4) ∈ DE such that
T1 = PKG(sk), T4 = C, then the system responds with (T2||T3);

– Case 3. Otherwise, the system makes a query (sk,C; PD) and responds,
1. If PDr(sk,C) =⊥, then the system responds with ⊥;
2. else if there is a tuple (T1, T2, T3, T4) ∈ H0 such that T1 = PKGr(sk), T2 =

PDr(sk,C) and PEr(T1, T2, T3) = C, then the system responds to Qk with
= (PDr(sk,C)||T4||0n3);

3. else, the system samples str
$← {0, 1}n3 , responds toQk with PDr(sk,C)||str||0n3

and inserts (sk,C,PDr(sk,C), str||0n3) into DD table.

Game 5. In Game 4, the queries to the adversarial interfaces are answered by the
tables which’re maintained by the system and by making queries to the honest

interfaces. The system never makes queries directly to H̃0, D̃KG, D̃E and D̃D;
these oracles are only used to answer the PKG,PE,PD queries (either generated
by the adversary or by the system’s response to H0,DKG,DE,DD queries). At
this point, it is straightforward to show that we can replace PKG,PE and PD
with the ideal versions from Definition 6, resulting in Game 5.

We note that in Game 5, the system is efficient, and it responds to the
adversarial interfaces just by keeping several tables and accessing the honest
interfaces. Thus, we can build a simulator that responds to H0,DKG,DE,DD
queries exactly as the system does in Game 5. The result is that the view in
Game 5 is identical to the ideal world and it suffices to prove that any adjacent
games are computational indistinguishable.

Simulator In Ideal Game. Let (KENGEN,ENC,DEC) be the function pair that
samples from TPKE, the simulator works as follows. Like the system in Game 8,
the simulator also maintains three tables, referring to H0-table, DE-table and
DD-table. Concretely:

– H0-table: initially empty, consists of tuples with form of (PK,M,R, r);
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– DE-table: initially empty, consists of tuples with form of (pk,M,R,C);
– DD-table: initially empty, consists of tuples with form of (sk,C,M, r).

By definition, the simulator S has access to the honest interfaces (PKG,PD,PE),
where PKGr(SK) = PKEYGEN(SK),PEr(PK,M,R) = ENC(PK,M,R),DDr(SK,C) =
DEC(SK,C). And for the adversarial queries, S works as the system in Game 5,
by just using the tables and calling the honest interfaces.

H0-query. Suppose Qk = (PK,M,R;H0), then the system responds as follows:

– Case 1. If Qk ∈ H0, which means there is a tuple T = (T1, T2, T3, T4) ∈ H0

such that T1 = PK, T2 = M and T3 = R, then the system responds with T4;
– Case 2. If Qk /∈ H0, then the system makes a query (PK,M,R; PE). If there

is a tuple T = (T1, T2, T3, T4) ∈ DE-table such that T1 = PK, T2 = M, T3 =

r||0n3 and T4 = P̃E(PK,M,R), then the system responds with r;
– Case 3. If Qk /∈ H0, then the system makes a query (PK,M,R; PE). If there

is a tuple T = (T1, T2, T3, T4) ∈ DD-table such that PKGr(T1) = PK, T3 =
M,PEr(PK,M,R) = T2 and T4 = r||0n3 , then the system responds with r;

– Case 4. Otherwise, the system samples r
$← {0, 1}n3 , responds to Qk with r

and inserts PK,M,R, r into H0 table.

DKG-query. Suppose Qk = (sk,DKG), then the system responds with PKGr(sk).

DE-query. Suppose Qk = (pk,M,R,DE)(for ease, we split R = R1||R2), then
the system responds:

– Case 1. If Qk ∈ DE, which means there is a tuple T = (T1, T2, T3, T4) such
that T1 = pk, T2 = M, T3 = R, then the system responds with T4;

– Case 2. If Qk /∈ DE and R2 6= 0n3 , then
1. If there is a tuple T = (T1, T2, T3, T4) in DD-table such that PKGr(T1) =

pk, T3 = M and T4 = R, then the system responds with T2;

2. else, the system samples C
$← C, responds to Qk with C and inserts

pk,M,R,C into DE table.
– Case 3. If Qk /∈ DE and R2 = 0n3 , then

1. If there is a tuple T = (T1, T2, T3, T4) in DD-table such that PKG(T1) =
pk, T3 = M and T4 = R, then the system responds with T2;

2. If there is (T1, T2, T3, T4) ∈ H0 such that T1 = pk, T2 = M, T4 = R1, then
the system responds with PEr(pk,M, T3);

3. Otherwise the system samples R∗
$← {0, 1}2n3 , responds to Qk with

PEr(pk,M,R∗), and inserts (pk,M,R∗,R1) and (pk,M,R,PEr(pk,M,R∗))
into H0 table and DE table, respectively.

DD-query. Suppose Qk = (sk,C; DD), then the system responds,

– Case 1. If Qk ∈ DD, which means there exists a tuple T = (T1, T2, T3, T4) ∈
DD such that T1 = sk and T2 = C, then the system responds with T3||T4;

– Case 2. If Qk /∈ DD but there is a tuple T = (T1, T2, T3, T4) ∈ DE such that
T1 = PKG(sk), T4 = C, then the system responds with (T2||T3);
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– Case 3. Otherwise, the system makes a query (sk,C; PD) and responds,
1. If PDr(sk,C) =⊥, then the system responds with ⊥;
2. else if there is a tuple (T1, T2, T3, T4) ∈ H0 such that T1 = PKGr(sk), T2 =

PDr(sk,C) and PEr(T1, T2, T3) = C, then the system responds to Qk with
= (PDr(sk,C)||T4||0n3);

3. else, the system samples str
$← {0, 1}n3 , responds toQk with PDr(sk,C)||str||0n3

and inserts (sk,C,PDr(sk,C), str||0n3) into DD table.

Now we are ready to prove the indistinguishability between any adjacent
games.

Claim. Game Real ≈ Game 0.

Proof. The only difference between Game Real and Game 0 is that, in Game
0 the system additionally maintains several tables that are completely hidden
from the adversary, hence we have

Pr[Game Real] = Pr[Game 0].

Claim. Game 0 ≈ Game 1.

Proof. By definition, we note that in Game 1, the system maintains longer ta-
bles and it responds to part of the queries (type A query) by just using those
tables and calling the honest interfaces. For the other queries (type B query),
the system responds by calling the real oracles. However, there is one case
(case 3.1 in DD) that might differ these two games. Specifically, we note that

PDr(sk,C) =⊥ does not implies D̃D(sk,C), in fact, there are two cases might

cause abortion: 1) D̃D(sk,C) aborts; 2) D̃D(sk,C) = M,R1,R2 where R2 6= 0n3 .
Hence, it suffices to prove that, any adversary can not hand in a valid cipher-

text C = D̃E(pk,M,R1||R2)(R2 6= 0n3) without making a DE query except with
negligible probability. In fact, the honest interfaces would not help as

PDr(PK,M,R) := D̃D(PK,M, H̃0(PK,M,R)||0n3)

where R2 ≡ 0n3 . Besides, D̃E is a random injection, it’s trivial that the probabil-
ity that adversary can output a valid ciphertext is bounded by q

|Y|×|M| , which

refers to

|Pr[Game 0]− Pr[Game 1]| ≤ q

|Y| × |M|
.

Claim. Game 1 ≈ Game 2.

Proof. Recalling that the only difference between Game 1 and Game 2 occurs
in case 4. Suppose Qk = (PK∗,M∗,R∗;H0), in Game 1, the system responds
to Qk with H̃0(PK∗,M∗,R∗) while in Game 2 the system replaces the response
with a random string str∗. To prove the indistinguishability, we first formalize
the adversary’s view in Game 1. By definition, we immediately observe that, in
Game 1,
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– The system responds to (PK,M,R;H0) with H̃0(PK,M,R);
– The system responds to (PK,M,R; DE) with D̃E(PK,M,R);
– The system responds to (SK,C; DD) with D̃D(SK,C).

Hence, in the adversary’s perspective, under the consistency condition listed
below, the responses of H0 are independent and random strings. For DE query,
the responses should be random injections and DD is the inverse of DE. Here
are the consistency conditions:

– PKGr(SK) = DKGr(SK);
– PEr(PKGr(SK),M,R) = DEr(DKGr(SK),M,H r

0(DKGr(SK),M,R)||0n3);
– PDr(SK,PEr(PKGr(SK),M,R)) = M;
– PDr(SK,DEr(DKGr(SK),M,R||0n3)) = M;
– DDr(SK,DEr(DKGr(SK),M,R1||R2) = (M,R1||R2);
– There exists no (PK1,M1,R

1) 6= (PK2,M2,R
2) such that DEr(PK1,M1,R

1) =
DEr(PK2,M2,R

2).

Now we turn to Game 2, where the system responds to Qk with str∗ instead.
Next, we explore the view on the adversarial interfaces. For H0 query, in either
game, the response is independent and random string, referring to the response
is well distributed. For DE query, we note that after Qk, the system implicitly
sets DEr(PK∗,M∗,str∗||0n3) = PEr(PK∗,M∗,R∗), hence, as long as the adver-
sary does not make a query (PK∗,M∗, str∗||0n3 ; DE) before Qk, the response
is consistent. In fact, str∗ is uniformly sampled, the probability of this bad
event is bounded by k−1

2n3
. For DD query, we have that after Qk, the system im-

plicitly sets DDr(SK∗,DEr(PK∗,M∗, str∗||0n3)) = DDr(SK∗,PEr(PK∗,M∗,R∗)) =
(M, str∗||0n3). Due to definition, we note that case 3 implies that the adversary
never make such a query before Qk, hence the response is consistent in either
game.

Next, we show that, with high probability, the consistency condition holds.

First equation. This equation holds trivially.

Second equation. Note that the only case that breaks this equation is that the
adversary makes a query (PK∗,M∗, str∗||0n3 ; DE) before Qk, which is bounded
by k−1

2n3
.

Third equation. This equation is independent of H0 query, so it holds trivially
in Game 2.

Fourth equation. Due to the second and third equation, we immediately ob-
serve that if for any (PK,M) and str ∈ {0, 1}n3 , there exists R ∈ {0, 1}2n3 such
that H r

0(PK,M,R) = str, then the fourth equation holds for certain. In fact,
in either Game 1 or Game 2, the responses of H0 queries are independent and
random string, which implies the bad event (no pre-image for H r

0) is bounded

by (1− 1
2n3

)22n3 ≤ ( 1
e )2n3

.

Fifth equation. Easy to note that after Qk the system implicitly sets

DDr(SK∗,PEr(PK∗,M∗,R∗)) = (M∗, str∗||0n3)
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hence as long as the adversary never makes a query (PK∗,M∗, str∗||0n3 ; DE) before
Qk, this equation is implied by the second one.

Sixth equation. By definition, we note that the only case that would induce
a collision is that the adversary makes a query (PK∗,M∗,H̃0(PK∗,M∗,R∗); DE)

or (SK∗; D̃E(PK∗,M∗,H̃0(PK∗,M∗,R∗)||0n3); DD). In fact, H̃0(PK∗,M∗,R∗) is in-

dependent of the adversary’s view, additionally D̃E is a random injection, it’s
trivial that the probability of these bad events is bounded by q

2n3
.

Combing together, we can bound the union of the bad events by

Pr[Bad] ≤ k − 1

2n3
+ 2(

1

e
)2n3

+
q

2n3

which refers to

|Pr[Game 1]− Pr[Game 2]| ≤ q · Pr[Bad] ≤ negl(λ).

Claim. Game 2 ≈ Game 3.

Proof. Recalling that the only difference between Game 2 and Game 3 occurs
in case 2.2 and 3.3. Suppose Qk = (PK∗,M∗,R∗1 ||R∗2 ; DE), in Game 1, the system

responds with D̃E(PK∗,M∗,R∗1 ||R∗2) while in Game 2 the system replaces the

response with a random ciphertext C∗
$← C.

Analogous to the analysis above(Game 1≈ Game 2), we know that under
the condition that the bad events above, the adversary’s view on Game 2 is:
the responses of H0 queries are independent and random strings; DEr is a ran-
dom injection and DDr is its inverse. Moreover, the responses also satisfy the
equations:

– PKGr(SK) = DKGr(SK);
– PEr(PKGr(SK),M,R) = DEr(DKGr(SK),M,H r

0(DKGr(SK),M,R)||0n3);
– PDr(SK,PEr(PKGr(SK),M,R)) = M;
– PDr(SK,DEr(DKGr(SK),M,R||0n3)) = M;
– DDr(SK,DEr(DKGr(SK),M,R1||R2) = (M,R1||R2);
– There exists no (PK1,M1,R

1) 6= (PK2,M2,R
2) such that DEr(PK1,M1,R

1) =
DEr(PK2,M2,R

2).

Next we turn to case 2.2 in Game 3, where the system responds to Qk
with C∗, and see the view on the adversarial interfaces. For H0 queries, it’s
trivial that the responses are identical in both games. For DE queries, due to
C∗ is uniformly sampled, the responses are well distributed. For DD query, note
that after Qk, the system implicitly sets DDr(SK∗,C) = (M∗,R∗1 ||R∗2), hence
as long as the adversary never makes such a query before Qk, the response is
consistent(trivially bounded by q

|C| ). Moreover in case 2.2, R∗2 6= 0n3 , the first

four equations holds for free. Next we prove that the fifth and sixth equation
also hold.

Fifth equation. Trivial to note that, if the adversary never makes a query
(SK∗,C∗; DD) before Qk, the fifth equation holds for certain.
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Sixth equation. As C∗ is uniformly sampled, the probability of collision is
bounded by q

|C| .

Now we turn to case 3.3 in Game 3, where R∗2 = 0n3 . For H0 queries, we

note that after Qk, the system sets H r
0(PK∗,M∗, R̂) = R∗1 if PEr(PK∗,M∗, R̂) =

PEr(PK∗,M∗,R∗). However, R∗1 is chosen by the adversary, which means the

response H r
0(PK∗,M∗, R̂) is not well distributed. Therefore, we have to bound

the probability of such a query. In fact, R∗ is randomly sampled and hidden

from the adversary, and D̃E is an injection, which means the probability that
adversary can make such a query is bounded by q

2n3
. For DE query, note that

after Qk the system implicitly sets

DEr(PK∗,M∗,R∗1 ||0n3) = PEr(PK∗,M∗,R∗) = D̃E(PK∗,M∗, H̃0(PK∗,M∗,R∗)||0n3),

Note that D̃E is a random injection, and R∗ is uniformly chosen by the system,
thus H̃0(PK∗,M∗,R∗) is independent of adversary view except with negligible
probability(≤ q

2n3
), which implies the response to Qk is well-distributed. For

DD query, note that after Qk the system sets

DDr(SK∗,PEr(PK∗,M∗,R∗)) = (M∗,R∗1 ||0n3),

hence under the condition that PEr(PK∗,M∗,R∗)) is independent of adversary’s
view, the responses of DD queries are consistent.

Next we prove that, with high probability, the consistency conditions hold.

First equation. This equation holds trivially.

Second equation. The only case that breaks this equation is the adversary
makes a query (PK∗,M∗,R) such that H r

0(PK∗,M∗,R) = R∗1 or H̃0(PK∗,M∗,R) =
R∗1 . Fortunately, H̃0 is a random oracle, and in Game 3, H r

0 is either answered
by a random string (H0 table) or H̃0(from the DD list), hence the probability
that adversary can make such a query is bounded by q

2n3
.

Third equation. This equation is independent of DE queries, thus it holds for
free.

Fourth equation. This equation is implied by the third one18.

Fifth equation. Easy to see that, under the condition that adversary never
makes a query (SK∗,PEr(PK∗,M∗,R∗); DD) before Qk, this equation holds for
certain.

Sixth equation. Note that the only case that would induce a collision is that the

adversary makes a query (SK∗; D̃E(PK∗,M∗,H̃0(PK∗,M∗,R∗)||0n3); DD) before
Qk which is bounded as above.

Combing together, we can bound the union of the bad events by

Pr[Bad] ≤ 2q

|C|
+

2q

2n3
,

18 For case 3.3, if the system replaces the response with a random ciphertext(as in case
2.2), then this equation falls apart, because the decryption PDr would abort with
high probability.
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refering to

|Pr[Game 2]− Pr[Game 3]| ≤ q · Pr[Bad] ≤ negl(λ).

Claim. Game 3 ≈ Game 4.

Proof. Recalling that the only difference between Game 3 and Game 4 oc-
curs in case 3.3. Suppose Qk = (SK∗,C∗), in Game 3 the system responds to

Qk with D̃D(SK∗,C∗) while in Game 4 the system replaces the response with

(M∗, str∗||0n3) where M∗ = PDr(SK∗,C∗) and str∗
$← {0, 1}n3 .

Analogous to the analysis above, we know that under the condition that the
bad events above, the adversary’s view on Game 2 is: the responses of H0 queries
are independent and random strings; DEr is a random injection and DDr is its
inverse. Moreover, the responses also satisfy the equations:

– PKGr(SK) = DKGr(SK);
– PEr(PKGr(SK),M,R) = DEr(DKGr(SK),M,H r

0(DKGr(SK),M,R)||0n3);
– PDr(SK,PEr(PKGr(SK),M,R)) = M;
– PDr(SK,DEr(DKGr(SK),M,R||0n3)) = M;
– DDr(SK,DEr(DKGr(SK),M,R1||R2) = (M,R1||R2);
– There exists no (PK1,M1,R

1) 6= (PK2,M2,R
2) such that DEr(PK1,M1,R

1) =
DEr(PK2,M2,R

2).

Next, we turn to case 3.3 in Game 4. By definition, we have that PDr(SK∗,C∗) =

M∗ 6=⊥, hence there exists a random string r∗ such that D̃E(PK∗,M∗, r∗||0n3) =
C∗. As H̃0 is a random oracle, there exists R∗ ∈ {0, 1}n3 such that PEr(PK∗,M∗,R∗) =
C∗19 except for negligible probability(≤ ( 1

e )2n3
).

Now we see the view on the adversarial interfaces. For H0 query, after Qk,
the system sets H r

0(PK∗,M∗, R̂) = str∗ if PEr(PK,M∗, R̂) = C∗; as str∗ is uni-
formly sampled, the response is well-distributed. For DE query, after Qk, the

system sets DEr(PK∗,M∗, str∗||0n3) = C∗ = D̃E(PK∗,M∗, r∗||0n3), hence as long
as the adversary never makes a query (PK∗,M∗, str∗||0n3 ; DE) before Qk(≤ k−1

2n3
),

the response is consistent and well-distributed. For DD query, the system just
replaces H̃0(PK∗,M∗,R∗) with str∗, hence the response is well distributed.

For the equations, we observe that the first, third and fourth one hold for
free. And if adversary never makes a query (PK∗,M∗, str∗||0n3 ; DE) before Qk,
the second and fifth ones also hold trivially. And for the last one, we see that the
responses of DE queries is either PEr(PK,M,R) or a random string in C, hence
the probability of a collision is bounded by q

2n3
+ q
|C| .

Combing together, we can bound the union of the bad events by

Pr[Bad] ≤ k − 1

2n3
+

q

|C|
+

q

2n3
,

refering to

|Pr[Game 3]− Pr[Game 4]| ≤ q · Pr[Bad] ≤ negl(λ).
19 The adversary might know such a nonce R∗
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Claim. Game 4 ≈ Game 5.

Proof. Due to the definition, we note that in Game 4, the system responds all of
the adversarial interfaces just using tables and honest interfaces, it never directly
calls the real oracles. Besides, ( ˜DKG, D̃E, D̃D) is an ideal DPKE scheme and H̃0

is a random oracle, the only chance that adversary can differ Game 4 and Game
5 is one of the following events occurs:

– Case 1. There are queries (PK,M,R1; PE) and ((PK,M,R2; PE)) such that
H̃0(PK,M,R1) = H̃0(PK,M,R2);

– Case 2. There is a r ∈ {0, 1}n3 and (PK,M) such that r has no pre-image,
which means ∀R ∈ {0, 1}2n3 , H̃0(PK,M,R) 6= r.

And it’s trivial to note that if none of the cases occurs then we can replace the
honest interfaces (PKG,PE,PD) with an ideal PKE. Moreover we can bound the
probability of the bad cases as:

Pr[Case 1] ≤ q2

2n3
; Pr[Case 2] ≤ (1− 1

2n3
)22n3 ≤ (

1

e
)2n3

,

which refers to

|Pr[Game 4]− Pr[Game 5]| ≤ negl(λ).

Combining together, we complete the whole proof. ut

H Proof of Theorem 10

In this section, we give the full proof of Theorem 10, that we show ΠSig is
indifferentiable from an ideal signature scheme.

Proof. According to the definition of indifferentiability, we immediately observe
that the adversary has three honest interfaces (SKG, SS,SV) and six adversarial
interfaces (H0, H1, P ,P−1, E,E−1 ). Therefore, we need to build an efficient
simulator S that can simulate the six adversarial interfaces H0, H1, P, P

−1, E
and E−1 properly, which means, for any PPT differentiator D, the view of D in
the real game is computationally close to the view in the ideal game. To do so,
we will go through with a sequence of hybrid games. Before the description of
the games, we first specify some parameters and events:

– there are nine types of query: (x,H0), (m,H1), (y, P ), (y, P−1), (y,m, z, E), (y,m, z, E−1),
(x,SKG), (x,m,SS), (y,m,Σ,SV where x← X , y ← Y,m←M, z ← Z;

– adversary makes at most q queries to the system, where q = poly(λ);

– the real oracles used in the construction are H̃0, H̃1, P̃ , P̃
−1, Ẽ, ˜E−1;

– the advantage of random-message attack is bounded by ε1;

– the advantage of pseudorandom public key is bounded by ε2.
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Note that in the normal lazy sampling of random oracles or permutations, each
output will be chosen essentially at random. However, a simulator for indiffer-
entiability will need to occasionally sample in such a way as to be consistent
with the ideal signature. Next we define two events, named “Strong Consistency
Check”(SCC) and “Weak Consistency Check”(WCC). These checks look for the
cases where the adversary may already have the necessary information to predict
the query response without making the query. If the checks pass, it means the
adversary is unable to make such a prediction, and the simulator is essentially
free to answer randomly. On the other hand, if the checks fail, the simulator
must answer carefully to be consistent with the adversary’s prediction.

Strong Consistency Check. Let Q1, . . . , Qq be the sequence of the queries,
we say event SCC occurs for the k-th query (SCCk = 1), if any one of the following
cases is satisfied:

– Case 1. The k-th query is P query, say (y, P ) and in the previous k − 1
queries, there is no query with form of (x,H0), (x,SKG) or (x,m,SS) such
that SKG(x) = y.
Note that if there had been a previous query on such an x, then it would be
possible for the adversary to predict P (y) = P (SKG(x)) without making a
P query at all by just evaluating keygen(H0(x)).

– Case 2. The k-th query is P−1 query, say (y, P−1) and in the previous k− 1
queries, there exists no query with form of (x,H0), (x, SKG) or (x,m,SS)
such that keygen(H̃0(x)) = y.
Note that if there had been a previous query on such an x, the adversary
can predict P−1(y) = P−1(keygen(H̃0(x))) by querying SKG(x).

We note in the ideal world, the simulator is unable to tell if SCC happens,
since doing so requires knowing the adversary’s queries to SKG,SS and SV. In-
stead, the simulator will be able to carry out a weak consistency check, WCC:

Weak Consistency Check. Let Q1, . . . , Qq be the sequence of the queries,
we say event WCC occurs for the k-th query (WCCk = 1), if one of the following
case satisfies:

– Case 1. The k-th query is P query, say (y, P ) and in the previous k − 1
queries, there is no query with form of (x,H0) such that SKG(x) = y.

– Case 2. The k-th query is P−1 query, say (y, P−1) and in the previous k− 1
queries, there is no query with form of (x,H0) such that keygen(H̃0(x)) = y.

– Case 3. The k-th query is E query, say (y,m, z, E) and in the previous k− 1
queries, there is no (m,H1) query or no query with form of (x,H0) such that
SKG(x) = y.

– Case 4. The k-th query is E−1 query, say (y,m, z, E−1) and in the previous
k − 1 queries, there is no (m,H1) query or no query with form of (x,H0)
such that SKG(x) = y.

This weak consistency check will not catch all the bad cases, but we will
demonstrate that the adversary is unable to generate such bad cases, except
with negligible probability.
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Now we are ready the define the games. After each game, we also give the
intuition for why that game is indistinguishable from the previous game.

Game 0. This game is identical to the real game, where every query is answered
by applying real oracles. For instance, the response of (x,H0) is H̃0(x), the
response of (x,SKG) is P̃−1(keygen(H̃0(x))) and so forth. Moreover, during the
queries, it also maintains six tables, referring to H0-table, H1-table, P -table,
P−1-table, E-table and E−1-table. Concretely,

– H0-table: Initially empty, consists of tuples with form of (x, r, y, y′). Once
the adversary makes a (x,H0) query which does not exist in H0-table (no
tuple that the first element of it is x), it inserts (x, H̃0(x), keygen(H̃0(x)),
SKG(x)) into the table.

– H1-table: Initially empty, consists of tuples with form of (m,M). Once the
adversary makes a (m,H1) query that does not exist in H1-table, it inserts
(m, H̃1(m)) into the table.

– P -table: Initially empty, consist of tuples with form of (∗, ∗, y, y′). Once the
adversary makes a (y, P ) query which does not exist in P -table, it inserts
(∗, ∗, P̃ (y), y) into the table.

– P−1-table: Initially empty, consist of tuples with form of (∗, ∗, y, y′). Once
the adversary makes a (y, P−1) query which does not exist in P -table, it
inserts (∗, ∗, y, P̃−1(y)) into the table.

– E-table: Initially empty, consist of tuples with form of (y,m, z, z′). Once
the adversay makes a (y,m, z′, E) query which does not exist in E-table, it
inserts (y,m, Ẽy||m(z′), z′) into the table.

– E−1-table: Initially empty, consist of tuples with form of (y,m, z, z′). Once
the adversay makes a (y,m, z, E−1) query which does not exist in E-table,

it inserts (y,m, z ˜E−1
y||m(z)) into the table.

Note that at this point these tables are just keeping track of information
relating to adversary’s queries, and are completely hidden to the adversary. Next,
same as above, we define a relation based on these tables. We will say a H0

query Qk = (x,H0) is in a table K, denoted Qk ∈ K, if there is a 4-tuple in
K such that the 1st element is equal to x. Analogously, for a P query we say
Qk = (y, P ) ∈ K if there is a 4-tuple in K such that the 4-th element is equal
to y; for P−1 queries, we say Qk = (y, P−1) ∈ K if there is a 4-tuple in K such
that the 3rd element is equal to y. For a H1-query, we say Qk = (m,H1) ∈ K
if there is a 2-tuple T = (T1, T2)in K such that T1 = m; for an E-query, we say
Qk = (y,m, z′, E) ∈ K if there is a 4-tuple T = (T1, T2, T3, T4) ∈ K such that
T1 = y, T2 = m,T4 = z′; for an E−1-query, we say Qk = (y,m, z, E−1) ∈ K if
there is a 4-tuple T = (T1, T2, T3, T4) ∈ K such that T1 = y, T2 = m,T3 = z.

Then, we show a game that the system responds to the queries by using both
tables and the real oracles without changing adversary’s view.

Game 1. This game is identical to Game 0, except the way of maintaining the
tables and responding to the queries. Specifically,

H0-query. Suppose (x,H0) is the k-th query(k ∈ [1, q]), the system responds
as follows:
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– Case 1. If Qk ∈ H0, then it responds with the corresponding output string;
– Case 2. If Qk /∈ H0 but there is a tuple T = (T1, T2, T3, T4) in P -table

such that T4 = SKG(x) and T2 6= ∗, then responds with T2 and inserts
(x, T2, T3, T4) into H0 table;

– Case 3. Otherwise, responds with H̃0(x) and inserts (x, H̃0(x), keygen(H̃0(x)),SKG(x))
and (∗, H̃0(x), keygen(H̃0(x)),SKG(x)) into H0-table and P -table, respec-
tively.

P -query. Suppose (y, P ) be the k-th query, the system responds as follows:

– Case 1. If Qk ∈ H0 ∪ P ∪ P−1, then respond with the third element of the
4-tuple corresponding to Qk;

– Case 2. Otherwise, responds with P̃ (y), and inserts (∗, ∗, P̃ (y), y) into both
P and P−1 table.

P−1-query. Suppose (y, P ) be the k-th query, the system responds as follows:

– Case 1. If Qk ∈ H0 ∪ P ∪ P−1, then respond with the fourth element of the
4-tuple corresponding to Qk;

– Case 2. Otherwise, responds with P̃−1(y), and inserts (∗, ∗, y, P̃−1(y)) into
both P and P−1 table.

H1-query. Suppose (m,H1) be the k-th query, the system responds as follows:

– Case 1. If Qk ∈ H1, then responds with the corresponding string;
– Case 2. Otherwise, the system responds with H̃1(m).

E-query. Suppose (y,m, z′, E) be the k-th query, the system firstly calls queries
(m,H1) and (y, P ), then it responds as follows:

– If Qk ∈ E∪E−1, then responds with 3rd element of the 4-tuple corresponding
to Qk;

– If Qk /∈ E ∪ E−1 and SV(y,m, z′) = 0, then the system responds with
Ẽy||m(z);

– If Qk /∈ E ∪ E−1 but SV(y,m, z′) = 1, then

1. If there is a tuple T = (T1, T2, T3, T4) ∈ H0 ∪P such that T4 = y, T2 6= ∗
then the system responds with sign(T2, H1(m))(H1(m) is extracted from
H1-table);

2. Otherwise, it responds with Ẽy,m(z′)

E−1-query. Suppose (y,m, z, E−1) be the k-th query, the system firstly calls
queries (m,H1) and (y, P ), then it responds as follows:

– If Qk ∈ E∪E−1, then responds with 4th element of the 4-tuple corresponding
to Qk;
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– If Qk /∈ E ∪ E−1 and there is a tuple T = (T1, T2, T3, T4) ∈ H0 ∪ P−1,

such that T4 = y, T1 6= ∗, T ′1 = m, then the system tests ver(T3, H1(m), z)
?
=

1(H1(m) is extracted from H1-table). If so, it responds with SS(T1,m), else
˜E−1

y,m(z);

– Otherwise, the system responds ˜E−1
y,m(z).

Note that, in Game 1 the system keeps a longer table, and for each query, it
firstly checks whether it can be responded by the tables or honest interfaces. If
can, then it responds with them, else calls the real oracles. In fact, the system
in Game 1 is a prototype for our simulator S, and in the following games, we
replace the responses that answered by the real oracles with random strings step
by step. Moreover, the tuples stored in the table are consistent of the real oracles,
hence each response in Game 1 is identical to the one in Game 0.

Game 2. This game is identical to Game 1, except for answering P queries.
Assuming (y, P ) to be the k-th query, the system responds as follows:

– Case 1: Suppose Qk ∈ H0 ∪ P ∪ P−1, same as above.
– Case 2: If there is no such tuple in /∈ H0 ∪ P ∪ P−1, but SCCk = 1, then

respond with a random string y′ ← Y. The system inserts (∗, ∗, y′, y) into
the P -table.

– Case 3: If Qk /∈ H0 ∪ P ∪ P−1 and SCCk = 0, same as above.

Note that strong consistency check determines whether or not the adversary
has the ability to learn P̃ (y) by making a query to SKG. If so, we must answer
the P query using P̃ ; otherwise we can answer randomly.

Game 3. This game is identical to Game 2, except modifying P -query once
more. More concretely, in case 2, if Qk /∈ P ∪ P−1 and SCCk = 1, then the

system responds with a random public key y′ = keygen(r), where r
$← X and

inserts (∗, ∗, keygen(r), y) into P -table.
Here, we just change the distribution of outputs in the case where we do not

use P̃ . Game 3 is indistinguishable from Game 2 by the pseudorandomness of
the public key.

Game 4. This game is identical to Game 3, except the way of filling up the
P -table. Concretely, in case 2, the system inserts the tuple (∗, r, keygen(r), y)
into the table.

Here, the only difference from Game 4 is that we record the random coins r
used to sample the output of P into the P table. Since that r is not used with
high probability , this is close to Game 4 from the adversary’s perspective.

Game 5. This game is identical to Game 4, except that to answer P queries,
where the system only uses the tables and honest interfaces. Assuming (y, P ) to
be the k-th query, then

– Case 1. Qk ∈ H0 ∪ P ∪ P−1, same as above.
– Case 2. If Qk /∈ H0 ∪ P ∪ P−1 and SCCk = 1, then same as above;
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– Case 3. If If Qk /∈ H0 ∪P ∪P−1 and SCCk = 0∩WCCk = 1, then it samples
r ← X , responds with keygen(r) and inserts (∗, r, keygen(r), y) into P -table.

Game 5 and Game 4 are identical unless the adversary makes a query Qk
such that Qk = (y, P ),SCCk = 0,WCCk = 1 and Qk /∈ P ∪ P−1. This means
that y = SKG(x) = P̃−1(keygen(H̃0(x))) for some x, and that the adversary
previously queried (x,SKG) or (x,m,SS), but not (x,H0). Since Qk /∈ P ∪ P−1,
the adversary has never made a query on (keygen(H̃0(x)), P−1), as such a query
would have resulted in y being added to the table for P−1. Therefore, H̃0(x)
and thus keygen(H̃0(x)) are independent of the adversary’s view. In Game 5, the
query would result in (∗, r, keygen(r), y) being added to the table for P , mean-
while in Game 4, the table records (∗, ∗, keygen(H̃0(x)), y). However, with high
probability r is only used after (x,H0) query, therefore, after the corresponding
H0 query, the P -table also records (∗, r, keygen(r), y). The only difference is that
in Game 5, r = H̃0, whereas in Game 6, r is a fresh random value. However, since
the adversary has no knowledge of H̃0(x), the two games are indistinguishable.

Game 6. This game is identical to Game 5, except the way it answers P−1

queries, where the system only uses the tables to simulate if the strong consis-
tency check pass. Assuming (y, P−1) to be the k-th query, then,

– Case 1: If Qk ∈ H0 ∪ P ∪ P−1, same as above;
– Case 2: If Qk /∈ H0 ∪ P ∪ P−1 and SCCk = 1, then it samples x ← X , and

responds with SKG(x) and inserts (x, ∗, y,SKG(x)) into P−1-table.

– Case 3. Otherwise, the system responds with ˜P−1(y).

Note that SCCk = 0 implies that Qk ∈ H0, hence the case Qk /∈ H0∪P ∪P−1

and SCCk = 0 does not exist.
Due to the definition, Game 6 and Game 5 are identical unless there exists a

query Qk such that Qk = (y, P−1), WCCk = 1 and Qk /∈ P ∪ P−1. This means
that, in the previous query, no x appears such that y = keygen(H̃0(x)), even
in SKG,SS queries, in other words, SKG(x) never appears and it is hidden from
adversary’s view. Thus we can replace it with a random value. Moreover, we can

replace with SKG(x′) where x′
$← X , as long keygen(H̃0(x′)) never appears in the

queries. We note that, as x′ is randomly sampled and hidden from the adversary,
thus except with negligible probability, keygen(H̃0(x′)) never appears.

Game 7. This game is identical to Game 6, except the way it answers P−1

queries, where the system only uses the tables to simulate, and not the true
oracle P̃−1. Assuming (y, P−1) to be the k-th query, then,

– Case 1: If Qk ∈ H0 ∪ P ∪ P−1, same as above;
– Case 2: If Qk /∈ H0 ∪ P ∪ P−1 and SCCk = 1, then same as above.
– Case 3: If Qk /∈ H0 ∪ P ∪ P−1 and SCCk = 0,WCCk = 1, then it samples
x ← X , and responds with SKG(x) and inserts (x, ∗, y,SKG(x)) into P−1-
table.

Note that WCCk = 0 implies that Qk ∈ H0, hence the case Qk /∈ H0∪P∪P−1

and WCCk = 0 does not exist.
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Due to definition, Game 7 and Game 6 are identical unless there exists a query
Qk such that Qk = (y, P−1), SCCk = 0,WCCk = 1 and Qk /∈ P ∪ P−1. This
means, there exist queries as (x,SKG) or (x,mSS) such that keygen(H̃0(x)) = y.
Moreover, by Game 5, we also note that query (SKG(x), P ) would leak nothing
about H̃0(x) and keygen(H̃0(x)). Hence, H̃0(x) and keygen(H̃0(x)) are hidden
from the adversary’s view. And if such an event happens, it means that the
adversary is able to predict the public key for an unknown secret key. As our
standard-model signature scheme has psedorandom public keys, this is impossi-
ble except with negligible probability.

Game 8. This game is identical to Game 7, except that to answer H0 queries,
where the system only uses the tables and honest interfaces. Assuming (x,H0)
is the k-th query, then

– Case 1. If Qk ∈ H0, same as above;
– Case 2. If Qk /∈ H0 but there is a tuple T = (T1, T2, T3, T4) in P -table such

that T4 = SKG(x) and T2 6= ∗, then same as above;
– Case 3. Otherwise, the system samples r ← X , responds with r and inserts

(x, r, keygen(r),SKG(x)) and (∗, r, keygen(r),SKG(x)) into the H0-table and
P -table, respectively.

Recalling the H0-table in Game 1, we immediately observe that, the only
case that the system calls H̃0(x) is when the adversary knows nothing about
H̃0(x) and keygen(H̃0)(x), although the adversary might know SKG(x) and
(SKG(x), P ). Therefore, from the adversary’s view, H̃0(x) is uniformly distributed
in X , and it is equivalent to randomly pick r ← X and implicitly set r = (x,H0)
and P−1(keygen(r)) = SKG(x).

Game 9. This game is identical to Game 8, except that to answer H1 query,
where the system only uses the tables, not the true oracles. Assuming (m,H1)
is the k-th query, then

H1-query. Suppose (m,H1) be the k-th query, the system responds as follows:

– Case 1. If Qk ∈ H1, then same as above;
– Case 2. Otherwise, the system randomly picks M ← M, responds with M

and inserts (m,M) into H1-table.

Due to definition, we note that the only case that the system calls H̃1(m) is
when the adversary knows nothing about H̃1(m), although the adversary might
knows SS(x,m) for some secret key x. However, the adversary has not called
(SKG(x),m,SS(x,m), E) yet, otherwise (m,H1) would be called automatically.
Hence, H̃1(m) and sign(sk, H̃1(m)) are hidden from adversary’s view and we can
replace it with a random value.

Game 10. This game is identical to Game 9, expect that to answer E queries,
where the system only uses the tables and honest interfaces. Assuming (y,m, z′, E)
is the k-th query, the system firstly calls queries (m,H1) and (y, P ), then it re-
sponds as follows:
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– If Qk ∈ E∪E−1, then responds with 3rd element of the 4-tuple corresponding
to Qk;

– If Qk /∈ E∪E−1 and SV(y,m, z′) = 0, then the system responds with z ← Z,
– If Qk /∈ E ∪ E−1 but SV(y,m, z′) = 1, then the system responds with

sign(T2, H1(m)).

Game 11. This game is identical to Game 10, expect that to answer E−1

queries, where the system only uses the tables and honest interfaces. Assuming
(y,m, z, E) is the k-th query, the system firstly calls queries (m,H1) and (y, P ),
then it responds as follows:

– If Qk ∈ E ∪ E−1, then same as above;
– If Qk /∈ E ∪ E−1 and there is a tuple T = (T1, T2, T3, T4) ∈ H0 ∪ P−1, such

that T4 = y, T1 6= ∗, then the system tests ver(T3, H1(m), z)
?
= 1. If so, it

responds with SS(T1,m), else a random z′ ∈ Z;
– Otherwise, the system responds else a random z′ ∈ Z.

Game 12. In Game 11, the queries to H0, H1, P, P
−1, E and E−1 are answered

by the tables which’re maintained by the system and by making queries to
SKG,SS,SV. The system never makes queries directly to H̃0, H̃1, P̃ , P̃

−1, Ẽ, ˜E−1;
these oracles are only used to answer the SKG,SS,SV queries (either generated
by the adversary or by the system’s response to H0, H1, P, P

−1, E,E−1 queries).
At this point, it is straightforward to show that we can replace SKG,SS and SV
with the ideal versions from Definition 9, resulting in Game 12.

We note that in Game 12, the system is efficient, and it responds to the
adversarial interfaces just by keeping several tables and accessing the honest in-
terfaces. Thus, we can build a simulator that responds to H0, H1, P, P

−1, E,E−1

queries exactly as the system does in Game 12. The result is that Game 12 cor-
responds to the ideal world. Since Game 0 is the real world, it suffices to prove
that any adjacent games are indistinguishable. Next we will give the description
of our simulator and prove the indistinguishability between each adjacent games.

Simulator. Let ΠSig = (SKG,SS,SV) be an ideal signature scheme, associated
with secret key space X , public key space Y, message space M and signature
space Z, where 1) |X | ≤ |Y|; 2) |M| ≤ |Z|. The simulator S responds to the
queries as follows:

H0-query. Suppose (x,H0) is the k-th query(k ∈ [1, q]), the system responds
as follows:

– Case 1. If Qk ∈ H0, then it responds with the corresponding output string;
– Case 2. If Qk /∈ H0 but there is a tuple T = (T1, T2, T3, T4) in P -table

such that T4 = SKG(x) and T2 6= ∗, then responds with T2 and inserts
(x, T2, T3, T4) into H0 table;

– Case 3. Otherwise, the system samples r ← X , responds with r and inserts
(x, r, keygen(r),SKG(x)) and (∗, r, keygen(r),SKG(x)) into the H0-table and
P -table, respectively.
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H1-query. Suppose (m,H1) be the k-th query, the system responds as follows:

– Case 1. If Qk ∈ H1, then responds with the corresponding string;
– Case 2. Otherwise, the system randomly picks M ← M, responds with M

and inserts (m,M) into H1-table.

P -query. Suppose (y, P ) be the k-th query, the system responds as follows:

– Case 1. If Qk ∈ H0 ∪ P ∪ P−1, then respond with the third element of the
4-tuple corresponding to Qk;

– Case 2.If Qk /∈ H0 ∪ P ∪ P−1 and WCCk = 1, then it samples r ← X ,
responds with keygen(r) and inserts (∗, r, keygen(r), y) into P -table.

P−1-query. Suppose (y, P ) be the k-th query, the system responds as follows:

– Case 1. If Qk ∈ H0 ∪ P ∪ P−1, then respond with the fourth element of the
4-tuple corresponding to Qk;

– Case 2. If Qk /∈ H0 ∪ P ∪ P−1 and WCCk = 1, then it samples x← X , and
responds with SKG(x) and inserts (x, ∗, y,SKG(x)) into P−1-table.

E-query. Suppose (y,m, z′, E) be the k-th query, the system firstly calls queries
(m,H1) and (y, P ), then it responds as follows:

– If Qk ∈ E∪E−1, then responds with 3rd element of the 4-tuple corresponding
to Qk;

– If Qk /∈ E∪E−1 and SV(y,m, z′) = 0, then the system responds with z ← Z,
– If Qk /∈ E ∪ E−1 but SV(y,m, z′) = 1, then the system responds with

sign(T2, H1(m)).

E−1-query. Suppose (y,m, z, E−1) be the k-th query, the system firstly calls
queries (m,H1) and (y, P ), then it responds as follows:

– If Qk ∈ E∪E−1, then responds with 4th element of the 4-tuple corresponding
to Qk;

– If Qk /∈ E ∪ E−1 and there is a tuple T = (T1, T2, T3, T4) ∈ H0 ∪ P−1, such

that T4 = y, T1 6= ∗, then the system tests ver(T3, H1(m), z)
?
= 1. If so, it

responds with SS(T1,m), else a random z′ ∈ Z;
– Otherwise, the system responds else a random z′ ∈ Z.

Note that S works exactly the same as the system in Game 12. Moreover,
the distribution of the honest interfaces in Game 12 is also identical to the ones
in the ideal game, which means, for any adversary, the advantage in both Game
12 and Ideal Game is identical. Therefore, it suffices to prove that any adjacent
games are indistinguishable.

Lemma 14. Let Z be a variable such that Z = sign(r,m), where r ← X ,m ←
M, then for any z ∈ Z, Pr[Z = z] ≤ √ε2.
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Proof. Assuming there exists z∗ such that Pr[Z = z∗] >
√
ε2, then it trivially

breaks the RMA security by randomly samples m and r, and hands in its forgery
as sign(r,m).

Claim. Game 0 ≈ Game 1.

Proof. It’s trivial to note that Pr[Game 0] = Pr[Game 1], as in Game 1, the
system only changes the way of maintaining the tables and the terms stored in
each tuple is identical to the responses of real oracles.

Claim. Game 1 ≈ Game 2.

Proof. Firstly, we note that, in either Game 1 or Game 2, the adversary’s view
on the honest interfaces is consistent, hence it suffices to prove that, with high
probability, the view on the adversarial interfaces also does not change. Accord-
ing to the definition, the only difference between Game 1 and Game 2 is when
Case 3 occurs. Suppose (y, P ) is the k-th query, the adversary’s view on the
adversarial interfaces are as follows:

View on H0. By definition, H̃0 is a random oracle such that 1) the response is
consistent; 2) the response to a fresh input is uniformly random.

Thus, the adversary’s view on H0 is consistent in both games, if the responses
of H0 queries satisfy the two properties above. When case 3 occurs, the responses
of H0 queries do not change as it always responds with H̃0.

View on P . By definition, P̃ is a random permutation oracle such that 1) the
response is consistent; 2) the response to a fresh input is uniformly random; 3)
the response is injective.

Thus, the adversary’s view on P is consistent in both games, if the responses
of P queries satisfy the three properties above. When case 3 occurs, after Qk,
the system sets P (y) = r. As r is randomly chosen, property 1, 2 hold trivially,
and property 3 holds if there is no collision of P queries on r.

View on P−1. By definition ˜P−1 is the inverse of a random permuatation oracle
such that 1) the response is consistent; 2) the response is the inverse of P ; 3)
the response is injective; 4) P−1(keygen(H0(x))) = SKG(x).

Thus, the adversary’s view on P−1 is consistent in both games, if the re-
sponses of P queries satisfy the four properties above. When case 3 occurs,
after Qk, the system sets P−1(r) = y, which implies property 2. Moreover, if

r never appears in the previous queries, and P̃ (y), ˜P−1(r) never appear dur-
ing the queries, then property 1 and 3 also hold. For property 4, And easy
to note that property 4 holds if the adversary cannot output x∗ such that
keygen(H̃0(x∗)) = P̃ (y) or keygen(H̃0(x∗)) = r. Applying Lemma 12, this bad

event is bounded by 2q
√

2ε1 + 1
|X | .

View on H1. By definition, H̃1 is a random oracle such that 1) the response is
consistent; 2) the response to a fresh input is uniformly random.
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Thus, the adversary’s view on H1 is consistent in both games, if the responses
of H1 queries satisfy the two properties above. When case 3 occurs, the responses
of H1 queries do not change as it always responds with H̃1.

View on E. Suppose (y,m, z, E) to be an E query, then by definition, the view
on E would satisfy the following:

– 1) the response is consistent;
– 2) the response is injective;
– 3) if SV(y,m, z) = 1, then ver(P (m), H1(m), Ey,m(z)) = 1.
– 4) if SV(y,m, z) = 0, then Ey,m(z) is uniformly random and ver(P (m), H1(m), Ey,m(z)) =

0;

Thus, the adversary’s view on E is consistent in both games, if the responses
of E queries satisfy the four properties above. When case 3 occurs, we note that
the responses of the queries are consistent, which means property 1 and 2 trivially
hold. For property 4, as ΠSM−Sig is unique signature scheme; if SV(y,m, z) = 0,
then

Pr[ver(r, H1(m), Ey,m(z)) = 1] ≤ 1

|Z|
.

However, we note that, in game 2, P̃ (y) to r, then ver(P (m), H1(m), Ey,m(z)) = 1
fails immediately, hence we need bound the probability that SV(y,m, z) = 1. In
fact, as SCCk = 1, the adversary knows nothing of x such that SKG(x) = y, hence
if x, H̃0(x) and keygen(H̃0(x)) never appears, then property 3 holds. Applying

lemma 12, we can bound it by q
|X | + q

√
2ε1 + 1

|X | .

View on E−1 Suppose (y,m, z, E−1) to be an E query, then by definition, the
view on E would satisfy the following:

– 1) the response is consistent;
– 2) the response is injective;
– 3) if ver(P (m), H1(m), z) = 1, then SV(y,m, E−1

y,m(z)) = 1.
– 4) if ver(P (m), H1(m), z) = 0, then E−1

y,m(z) is uniformly random and SV(y,m, E−1
y,m(z)) =

0.

Thus, the adversary’s view on E−1 is consistent in both games, if the re-
sponses of E−1 queries satisfy the four properties above. When case 3 oc-
curs, we note that the responses of the queries are consistent, which means
property 1 and 2 trivially hold. For property 4, same as above, we have that
if ver(P̃ (m), H1(m), z) = 0, then Pr[ver(r, H1(m), z) = 1] ≤ 1

|Z| . However, if

ver(P̃ (m), H1(m), z) = 1, then property 3 breaks immediately, hene we need
bound the probability of the bad event. In fact, as we already assume H̃0(the
sign key of ΠSM−Sig ) never appears, this bad event can be bounded by qε2, the
RMA-security.

Now, we bound the union of these bad events as:

Pr[Bad] ≤ 2q

|Y|
+ 3q

√
2ε1 +

1

|X |
+

2

|Z|
+

q

|X |
+ qε2.
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which referring to

|Pr[Game 1]− Pr[Game 2]| ≤ q · Pr[Bad] ≤ negl(λ).

Claim. Game 2 ≈ Game 3.

Proof. This proof is trivial as we just change the distribution of outputs from
random strings to random public key. Hence, due to the pseudorandomness of
keygen, we have

|Pr[Game 2]− Pr[Game 3]| ≤ qε1 ≤ negl(λ).

Claim. Game 3 ≈ Game 4.

Proof. In Game 4, the system only changes the way of maintaining the tables,
and if r is not used, then the view in both games is consistent. Thus,

|Pr[Game 3] = Pr[Game 4]| ≤ |Pr[Game 1] = Pr[Game 2]|.

Claim. Game 4 ≈ Game 5.

Proof. Firstly, we note that, in either Game 4 or Game 5, the adversary’s view
on the honest interfaces is consistent, hence it suffices to prove that, with high
probability, the view on the adversarial interfaces also does not change. Accord-
ing to the definition, the only difference between Game 4 and Game 5 is when
Case 3 occurs. Suppose (y, P ) is the k-th query, where y = SKG(x) and x is known
by the adversary, then its view on the adversarial interfaces are as follows:

View on H0. By definition, H̃0 is a random oracle such that 1) the response is
consistent; 2) the response to a fresh input is uniformly random.

Thus, the adversary’s view on H0 is consistent in both games, if the responses
of H0 queries satisfy the two properties above. When case 3 occurs, the system
implicitly sets H0(x) = r, as r is randomly chosen, and (x, H0) never appears in
previous queries, property 1 and 2 holds trivially.

View on P . By definition, P̃ is a random permutation oracle such that 1) the
response is consistent; 2) the response to a fresh input is uniformly random; 3)
the response is injective.

Thus, the adversary’s view on P is consistent in both games, if the responses
of P queries satisfy the three properties above. When case 3 occurs, after Qk,
the system sets P (y) = keygen(r), r ← X . Due to the pseudorandomness of the
public key, property 1, 2 and 3 preserves.

View on P−1. By definition ˜P−1 is the inverse of a random permuatation oracle
such that 1) the response is consistent; 2) the response is the inverse of P ; 3)
the response is injective; 4) P−1(keygen(H0(x))) = SKG(x).

Thus, the adversary’s view on P−1 is consistent in both games, if the re-
sponses of P queries satisfy the four properties above. When case 3 occurs, after
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Qk, the system sets P−1(keygen(r)) = y, which implies property 2 and 4. If
keygen(r) never appears in the previous queries, and P̃ (y), H̃0(x) and H̃0(x∗)
such that keygen(x∗) = r never appear, then property 1 and 3 also holds. By

lemma 12, the probability of this event is bounded by 3q
√

2ε1 + 1
|X | + q

|X | .

View on H1. Same as above.

View on E. Suppose (y,m, z, E) to be an E query, then by definition, the view
on E would satisfy the following:

– 1) the response is consistent;
– 2) the response is injective;
– 3) if SV(y,m, z) = 1, then ver(P (m), H1(m), Ey,m(z)) = 1.
– 4) if SV(y,m, z) = 0, then Ey,m(z) is uniformly random and ver(P (m), H1(m), Ey,m(z)) =

0;

Thus, the adversary’s view on E is consistent in both games, if the re-
sponses of E queries satisfy the four properties above. When case 3 occurs,
the system sets Ey,m(z) = sign(r, H1(m)), which implies property 3. Moreover, if

sign(r, H1(m)) never appears in the previous queries and sign(H̃0x, H1(m))m then
the response is consistent and injective. Applying Lemma 14, this bad event can
be bounded by 2q

√
ε2. For property 4, as ΠSM−Sig is unique signature scheme; if

SV(y,m, z) = 0, then

Pr[ver(r, H1(m), Ey,m(z)) = 1] ≤ 1

|Z|
.

View on E−1 Suppose (y,m, z, E−1) to be an E query, then by definition, the
view on E would satisfy the following:

– 1) the response is consistent;
– 2) the response is injective;
– 3) if ver(P (m), H1(m), z) = 1, then SV(y,m, E−1

y,m(z)) = 1.
– 4) if ver(P (m), H1(m), z) = 0, then E−1

y,m(z) is uniformly random and SV(y,m, E−1
y,m(z)) =

0.

Thus, the adversary’s view on E−1 is consistent in both games, if the re-
sponses of E−1 queries satisfy the four properties above. When case 3 occurs,
the system sets E−1

y,m(sign(r, H1(m))) = z,which implies property 3. For property
1, 2, 4, the analysis is same as above.

Now, we can bound the union of these bad events as:

Pr[Bad] ≤ qε1 + 3q

√
2ε1 +

1

|X |
+

q

|X |
+

1

|Z|
+ q
√
ε2 ≤ negl(λ)

which referring to

|Pr[Game 4]− Pr[Game 5]| ≤ q · Pr[Bad] ≤ negl(λ).
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Claim. Game 5 ≈ Game 6.

Proof. Firstly, we note that, in either Game 5 or Game 6, the adversary’s view
on the honest interfaces is consistent, hence it suffices to prove that, with high
probability, the view on the adversarial interfaces also does not change. Accord-
ing to the definition, the only difference between Game 4 and Game 5 is when
Case 2 occurs. Suppose (y, P−1) is the k-th query and SCCk = 1, in Game 5

the system sets P−1(y) = SKG(x) where x
$← X , we note that adversary might

know T such that keygen(T) = y. Then the adversary’s view on the adversarial
interfaces are as follows:

View on H0. In either Game 5 or Game 6, the responses of H0 queries do not
change.

View on P . By definition, P̃ is a random permutation oracle such that 1) the
response is consistent; 2) the response to a fresh input is uniformly random; 3)
the response is injective.

Thus, the adversary’s view on P is consistent in both games, if the responses
of P queries satisfy the three properties above. We note that, in both games P̃
is hidden and P -queries are answered by other tables and the honest interfaces,
hence except negligible collision, property 3 holds.

View on P−1. By definition ˜P−1 is the inverse of a random permuatation oracle
such that 1) the response is consistent; 2) the response is the inverse of P ; 3)
the response is injective; 4) P−1(keygen(H0(x))) = SKG(x).

Thus, the adversary’s view on P−1 is consistent in both games, if the re-
sponses of P queries satisfy the four properties above. When case 2 occurs, after
Qk, the system sets

P−1(y) = SKG(x) = ˜P−1(keygen(H̃0(x)))

If keygen(H̃0(x)) never appears in the previous queries, then SKG(x) is uniformly
fresh, which means property 1, 2, 4 hold. For property 3, we note that if no x∗,
such that SKG(x∗) = SKG(x) or keygen(H̃0(x∗)) = T appear, then the responses

are injective. Applying Lemma 12, we can bound it by 3q
√

2ε1 + 1
|X | .

View on H1. Same as above.

View on E. Suppose (y,m, z, E) to be an E query, then by definition, the view
on E would satisfy the following:

– 1) the response is consistent;
– 2) the response is injective;
– 3) if SV(y,m, z) = 1, then ver(P (m), H1(m), Ey,m(z)) = 1.
– 4) if SV(y,m, z) = 0, then Ey,m(z) is uniformly random and ver(P (m), H1(m), Ey,m(z)) =

0;

Thus, the adversary’s view on E is consistent in both games, if the responses
of E queries satisfy the four properties above. Note that, in both game, the re-
sponses of E queries are consistent, which means property 1 and 2 hold trivially.
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Moreover, we note that if no x∗ such that keygen(H̃0(x∗)) = y and sign(H̃0(x∗))
appear then, property 3 and 4 also hold.

View on E−1. Suppose (y,m, z, E−1) to be an E query, then by definition, the
view on E would satisfy the following:

– 1) the response is consistent;
– 2) the response is injective;
– 3) if ver(P (m), H1(m), z) = 1, then SV(y,m, E−1

y,m(z)) = 1.
– 4) if ver(P (m), H1(m), z) = 0, then E−1

y,m(z) is uniformly random and SV(y,m, E−1
y,m(z)) =

0.

Thus, the adversary’s view on E−1 is consistent in both games, if the re-
sponses of E−1 queries satisfy the four properties above. When case 2 occurs,
the system implictely sets E−1

y,m(sign(T,H1(m))) = SS(x,m),which implies prop-
erty 3 immediately. For property 1, 2, 4, the analysis is same as above.

Now, we can bound the union of these bad events as:

Pr[Bad] ≤ q

|Y|
+ 3q

√
2ε1 +

1

|X |
+ q

√
2ε1 +

1

|X |
+ q
√
ε2 ≤ negl(λ),

which referring to

|Pr[Game 5]− Pr[Game 6]| ≤ q · Pr[Bad] ≤ negl(λ).

Claim. Game 6 ≈ Game 7.

Proof. Suppose Qk = (y, P−1) is the k-th query and we denote event Bad as
SCCk = 0 ∩WCCk = 1. Next, we bound the bad event.

Assuming Bad occurs, then there is a x known by the adversary such that
y = keygen( ˜H0(x)) and (x, H0) never appears in previous k−1 queries. As H̃0(x)
is unifromly distributed in X , the probability that it can output a proper y is
bounded by the pseudorandomness of the public key. By definition, it’s trivial
to note that

|Pr[Game 6]− Pr[Game 7]| ≤ qPr[Bad] ≤ qε1 ≤ negl(λ).

Claim. Game 7 ≈ Game 8.

Proof. Firstly, we note that, in either Game 7 or Game 8, the adversary’s view
on the honest interfaces is consistent, hence it suffices to prove that, with high
probability, the view on the adversarial interfaces also does not change. Accord-
ing to the definition, the only difference between Game 7 and Game 8 is when
Case 3 occurs. Suppose (x, H0) is the k-th query, in Game 8 the system sets

H0(x) = r where r
$← X . While we note that adversary might know SKG(x)

before Qk, with the restriction that SKG(x) never appears in P ∪ P−1 in the
previous queries. Then the adversary’s view on the adversarial interfaces are as
follows:
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View on H0. By definition, H̃0 is a random oracle such that 1) the response is
consistent; 2) the response to a fresh input is uniformly random.

Thus, the adversary’s view on H0 is consistent in both games, if the responses
of H0 queries satisfy the two properties above. When case 3 occurs, the system
implicitly sets H0(x) = r, as r is randomly chosen, and (x,H0) never appears in
previous queries, property 1 and 2 holds trivially.

View on P and P−1. In both games, P and P−1 are answered by H0 table and
the honest interfaces. As the view on H0 does not change, except with negligible
collision, the view on P and P−1 preserves.

View on H1. Same as above.

View on E and E−1. Similar to the analysis above, we have that, if r, keygen(r)
and sign(r, ∗) never appears in the previous queries and H̃0(x), keygen(H̃0(x))
and sign(H̃0(x), ∗) never appears then the view on E and E−1 is consistent
in both games. Applying Lemma 12 and 14, we can bound this bad event by
2q
|X | + 2q

√
2ε1 + 1

|X | + 2q
√
ε2.

Now, we can bound the union of these bad events as:

Pr[Bad] ≤ q

|Y|
+ 2q

√
2ε1 +

1

|X |
+

2q

|X |
+ 2q
√
ε2 ≤ negl(λ)

which referring to

|Pr[Game 7]− Pr[Game 8]| ≤ q · Pr[Bad] ≤ negl(λ).

Claim. Game 8 ≈ Game 9.

Proof. Firstly, we note that, in either Game 8 or Game 9, the adversary’s view
on the honest interfaces is consistent, hence it suffices to prove that, with high
probability, the view on the adversarial interfaces also does not change. Accord-
ing to the definition, we note that in Game 9, the system replaces the responses
of (m, H1) with a random string M.

View on H0, P, P
−1. It’s trivial that, in either Game 8 or Game 9, theH0, P, P

−1

queries are responded in the same way, hence the view does not change.

View on H1. By definition, H̃1 is a random oracle such that 1) the response is
consistent; 2) the response to a fresh input is uniformly random.

Thus, the adversary’s view on H1 is consistent in both games, if the responses
of H1 queries satisfy the two properties above. As M is randomly sampled, if M
never appears in the previous queries, then property 1 and 2 holds.

View on E and E−1. Similar to the analysis above, we note that if M, sign(∗,M)
never appear in the previous queries and H̃0(m), sign(∗, H̃0(m)) never appear,
then view on E and E−1 is consistent. In fact, ΠSM−Sig has unique signature, we
can easily bound the bad event by 4q

|M| . Thus, we have

|Pr[Game 8]− Pr[Game 9]| ≤ q2

|M|
≤ negl(λ).
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Claim. Game 9 ≈ Game 10.

Proof. Firstly, we note that, in either Game 9 or Game 10, the adversary’s
view on the honest interfaces is consistent, hence it suffices to prove that, with
high probability, the view on the adversarial interfaces also does not change.
According to the definition, we note that in Game 10, the system replaces the
responses, which fails in the check, with a random string z′.

View on H0, H1, P, P
−1. It’s trivial that, in either Game 9 or Game 10, the

H0, H1, P, P
−1 queries are responded in the same way, hence the view does not

change.

View on E. Suppose (y,m, z, E) to be an E query, then by definition, the view
on E would satisfy the following:

– 1) the response is consistent;
– 2) the response is injective;
– 3) if SV(y,m, z) = 1, then ver(P (m), H1(m), Ey,m(z)) = 1.
– 4) if SV(y,m, z) = 0, then Ey,m(z) is uniformly random and ver(P (m), H1(m), Ey,m(z)) =

0;

Thus, the adversary’s view on E is consistent in both games, if the re-
sponses of E queries satisfy the four properties above. Property 3 holds trivial
and if z′ never appears in the previous queries, property 1 holds. Moreover, if
SV(y,m, z) = 0, then

Pr[ver(r, H1(m), Ey,m(z)) = 1] ≤ 1

|Z|
.

Property 2 holds trivially if no collision occurs.

View on E−1 Suppose (y,m, z, E−1) to be an E query, then by definition, the
view on E would satisfy the following:

– 1) the response is consistent;
– 2) the response is injective;
– 3) if ver(P (m), H1(m), z) = 1, then SV(y,m, E−1

y,m(z)) = 1.
– 4) if ver(P (m), H1(m), z) = 0, then E−1

y,m(z) is uniformly random and SV(y,m, E−1
y,m(z)) =

0.

As in Game 10, the system only replaces the value when SV(y,m, z) = 0,
hence if z′ never appears in the previous queries and Ẽy,m(z) never appears, then
the view on E−1 preserves.

Now, we can bound the union of these bad events as:

Pr[Bad] ≤ 2q + 1

|Z|
+

q

|Z|
≤ negl(λ)

which referring to

|Pr[Game 9]− Pr[Game 10]| ≤ q · Pr[Bad] ≤ negl(λ).
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Claim. Game 10 ≈ Game 11.

Proof. Firstly, we note that, in either Game 10 or Game 11, the adversary’s
view on the honest interfaces is consistent, hence it suffices to prove that, with
high probability, the view on the adversarial interfaces also does not change.
According to the definition, we note that in Game 11, the system replaces the
responses, which fails in the check, with a random string.

View on H0, H1, P, P
−1. It’s trivial that, in either Game 8 or Game 9, the

H0, H1, P, P
−1 queries are responded in the same way, hence the view does not

change.
Moreover, in both games, H̃0, P̃ , ˜P−1 has been completely hidden, hence

the probability that A outputs (y,m, z) such that z is a valid signature under

H̃0, H̃1P̃ , ˜P−1 is bounded by the uniqueness of the signature scheme. Therefore,
it’s rest to show that, if the query (y,m, z) fails in the check, it would not change
the view on property 3, 4 whp. In other words, suppose(y,m, z, E−1) is the k-th
query, then z is not the valid signature under H0, P, P

−1, whp.
It’s trivial that if z fails the validity check would not change the view, else

then the adversary is asked to output a valid signature without knowing both
sign key. Thus, we have

|Pr[Game 10]− Pr[Game 11]| ≤ q

|M|
+ qε2 ≤ negl(λ).

Claim. Game 11 ≈ Game 12.

Proof. Due to definition, we note that in Game 11, the system responds all of
the adversarial interfaces just using tables and honest interfaces, it never directly
calls the real oracles. Besides, H̃0, H̃1 are random oracles, P̃ , ˜P−1 are random
permutations and Ẽ, ˜E−1 are ideal cipher models, hence the only chance the
adversary can differ Game 9 and Game 10 is it can outputs x 6= x′ ∈ X such that
keygen(H̃0(x)) = keygen(H̃0(x′)), which is bounded by the pseudorandomness of
public key. Hence

|Pr[Game 11]− Pr[Game 12]| ≤ q2

√
2ε1 +

1

|X |
≤ negl(λ).

Combining together, we complete the whole proof. ut


