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Abstract. Proxy Re-Encryption (PRE), introduced by Blaze et. al in [BBS98§], allows
a ciphertext encrypted using a key pk; to be re-encrypted by a third party so that
it is an encryption of the same message under a new key pk;, without revealing
the message. Post-Compromise Security (PCS) was first introduced for messaging
protocols, and ensures that a ciphertext remains confidential even when past keys
have been corrupted. We define PCS in the context of PRE, which ensures that
an adversary cannot distinguish which ciphertext a re-encryption was created from
even given the old secret key, potential old ciphertexts and update token used to
perform the re-encryption. We argue that this formal notion accurately captures the
most intuitive form of PCS. We give separating examples demonstrating how our
definition is stronger than existing ones, before showing that PCS can be met using a
combination of existing security definitions from the literature. In doing so, we show
that there are existing PRE schemes that satisfy PCS. We also show that natural
modifications of more practical PRE schemes can be shown to have PCS without
relying on this combination of existing security definitions. Finally, we discuss the
relationship between PCS with selective versus adaptive key corruptions, giving a
theorem that shows how adaptive security can be met for certain re-encryption graphs.

I
1 Introduction

Cloud storage has become increasingly popular in recent years, evolving from acting as a
source of backup data to becoming the default storage for many applications and systems.
For example, popular media streaming platforms such as Netflix and Spotify allow clients
to subscribe to on-demand access for media files as opposed to storing them locally. This
has increased the number for devices which no longer need much in-built storage as long as
they have an internet connection.

Since the cloud is usually a third party, to ensure confidentiality clients should encrypt
their files. This poses problems when a client wants to change the key for their encrypted
files as a means of satisfying compliance directives or to enforce access control policies. For
the former, NIST recommends regular key rotation [BBB™12|, as does the Payment Card
Industry Data Security Standard [PCI18| and the Open Web Application Security Project
(OWASP) [OWA18]. For the latter, an organisation can choose which of its employees can
access specific files by having those files encrypted under those keys. Should access need to be
granted or revoked from someone, the files should be re-encrypted to a new key accordingly.
One trivial solution has the client download, decrypt, encrypt using the new key, then re-
upload the file. However, this can be very expensive, particularly for modern applications
involving large databases, or if the client has limited processing capability.
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The primitive of Proxy Re-Encryption (PRE), introduced by Blaze et al. [BBS9§],
presents a more elegant solution. In a PRE scheme, the client creates an update token A; ;
using the current secret key sk; and a new public key pk;. The server can then use this token
to re-encrypt the ciphertext, transforming it into an encryption of the same message which
can now be decrypted using sk;. The most basic security notion for PRE states that the
server performing the re-encryption learns nothing about the underlying message.

Post-Compromise Security (PCS). The notion of PCS was first used in [CCG16| for
messaging protocols and is informally defined as follows:

Definition 1 ( |[CCG16]). A protocol between Alice and Bob provides Post-Compromise
Security (PCS) if Alice has a security guarantee about communication with Bob, even if
Bob’s secrets have already been compromised.

As this definition only provides the bare intuition, the ‘security guarantee’ is left open so
that it can be tailored to the application, which is what we will for for PCS in PRE in this
work. Note that PCS differs from forward security, which conveys that the compromise of
future states does not affect the security of past ones. PCS conveys a scheme’s ability to
regain security after a session or party has been compromised, which has clear applications
involving revocation and key rotation (key life-cycles), where having access to the old key
should not affect the security of a re-encrypted ciphertext.

Motivation for PCS PRE. One particular application of post-compromise PRE of in-
terest is to complement PCS of messages in transit, by giving PCS security to backed-up
messages stored in the cloud. The Signal Protocol for encrypting messages in transit between
two devices provides strong, modern, provable security guarantees including PCS [CCG16].
However, most users expect to keep their messages when they lose their device or buy a new
one; thus, popular Signal implementations such as WhatsApp back up client messages to
public cloud services. Unfortunately, this backup is encrypted using a static encryption key.
This means that while messages in transit have PCS, these properties are lost once messages
are backed up. If an adversary compromises a device and obtains the static cloud backup
key, they can retain this to compromise future messages once they are backed up.

Assuming that all message history is stored locally, the updated message history could
be encrypted under a new key and re-uploaded at regular time intervals, but this will have
a huge cost both in terms of computation and bandwidth, particularly as much messaging
is done via smart-phones. A PRE scheme with PCS could be used instead, so that the PCS
of messages in transit is extended to message backups.

1.1 Contributions

In this paper we set out the first formalisation of PCS for PRE schemes. In our model, the
adversary cannot distinguish a re-encrypted ciphertext given the old key, old ciphertexts
and the token used to perform the re-encryption. In other words, we view a compromise as
the loss of all previous public and secret states associated with a given ciphertext, and limit
the information that must remain secret to the current secret key alone. To date there is
no security definition that gives the adversary the update token used in the challenge re-
encryption. Our definition implies unidirectionality (meaning update tokens can only be used
to re-encrypt from pk; to pk; and not from pk; to pk;) as opposed to treating unidirectional
and bidirectional schemes differently, and that additional randomness beyond that given in
the update token is added upon re-encryption. Since we do not make as many assumptions
concerning which algorithms are deterministic or on the flow of re-encryption operations, our



security model can be applied to more general PRE schemes and applications than similar
definitions in the literature (see [Section 3)).

We analyse our model, proving several results that associate PCS with existing security
models for PRE and related primitives such as updatable encryption |[LT18|, and provide
separating examples that distinguish PCS as a separate security characteristic in its own
right. One of our major contributions is to show that a PRE scheme that is both source-
hiding and secure against chosen plaintext attacks also has PCS, meaning that one of the
PRE schemes given by Fuchsbauer et al. [FKKP18| immediately satisfies PCS.

In particular, the only known technique used to make a scheme source-hiding also signifi-
cantly reduces the correctness bound — the number of times a ciphertext can be re-encrypted
and still decrypt correctly. This means the lattice-based source-hiding schemes of [FKKP18|
are forced into sub-optimal parameter choices that render their assumptions much stronger
(with respect to the approximation factors of solving worst-case lattice problems) and much
less efficient. We therefore give a new PRE scheme, pcBV-PRE, adapted from BV-PRE — the
practical RLWE-based scheme of Polyakov et al. [PRSV17]. Our new scheme is much more
efficient than those given in [FKKP18| since we leverage the speed of the original construction
in [PRSV17| with minimal changes. Whilst our adaptation is not source-hiding, we prove that
it achieves PCS and is Indistinguishable against Chosen Plaintext Attacks (PRE-IND-CPA)
(often referred to as IND-CPA security) via a tighter reduction than using the combination
of properties previously mentioned, meaning this combination of properties, particularly
source-hiding, is sufficient, but not necessary for achieving PCS.

Finally, we show that achieving PCS with adaptive key compromises is possible via
the transformation of [FKKP18| using adaptive PRE-IND-CPA security (commonly called
IND-CPAED and source-hiding PRE schemes, where sub-exponential security loss is restricted
to certain re-encryption graphs (particularly trees and chains).

Paper structure. We begin by reviewing necessary preliminaries in before re-
viewing related work in [Section 3| In [Section 4] we define Post-Compromise Security (PCS)
and show how our definition relates to those already in the literature. In particular, in
we demonstrate how a combination of properties already defined in the literature
can be used to demonstrate that a PRE scheme has PCS. In we give an explicit,
efficient construction, pcBV-PRE, by modifying the lattice-based BV-PRE scheme [PRSV17|
to show that our notion of PCS can be satisfied by natural extensions of current practi-
cal PRE schemes. Finally, in we discuss the relationship between selective and
adaptive security for PCS using the work of [FKKP18].

Changes w. r. t the ACISP 2019 version. The security proofs for our construction,

pcBV-PRE, have been updated to correct some errors. We also revert to the single-challenge
definition of source-hiding presented in [FKKP18] for easier comparison, which has affected
the security bound of some of our theorems but not the overall correctness of those theorems.
Clear comments as to what has changed are provided in the appropriate sections.

2 Preliminaries

In this section, we give the preliminaries for Proxy Re-Encryption (PRE), including some
common security definitions and an explanation of directed re-encryption graphs. Whilst
we stick to the asymmetric setting in the body of this work, we give symmetric variants

We use different terminology to avoid confusion with CPA security for PKE schemes, which we
refer to as Indistinguishable against Chosen Plaintext Attacks (PKE-IND-CPA)



for important definitions in for easier comparison with related work in the
symmetric setting such as updatable encryption [BLMR13|[LT18| and key rotation [EPRS17].
In general, we use y < F(z) to indicate that y is the output of a deterministic algorithm F

with input z, we use y & F(x) to indicate that F is probabilistic (samples some randomness)

$ c
and y Q_) F(x) for the general case where F may or may not be deterministic.

Definition 2. A Proxy Re-Encryption (PRE) scheme consists of the following algorithms:

— Setup(1*) — params: Outputs a set of public parameters, including the message space
and ciphertext space. Note that params is input to every subsequent algorithm, but we
leave it out for compactness of notation. We often omit the Setup algorithm for the same
reason.

— KeyGen(1*) — (pk,sk): Generates a public-private key pair.

— Enc(pk,m) 5 e Encrypts a message m using a public key pk, producing a ciphertext
ch

— Dec(sk,C) — m/'U L: Decrypts a ciphertext C' to produce either an element of the
message space m’ or an error symbol L.

3 .

— ReKeyGen(sk;, pkj) (—2 A; ;U L: Takes a secret key sk; and public key pk; and outputs an
update token A; ;, or L when ¢ = j. This last condition is often left out of constructions
for compactness.

3 . .

— ReEnc(4;,;,C) (—>) C': Takes a ciphertext C under pk; and outputs a new ciphertext C’

under pk;.

A PRE scheme is correct if, for all m € M, (pk,sk) & KeyGen(1%), then:
Dec(sk, Enc(pk,m)) — m
and if, for all C € C such that Dec(sk;, C') — m, then:

Dec(sk;, ReEnc(4; ;,C)) — m

where (pk;,sk;), (pk;, sk;) & KeyGen(1*) and A, ; @ ReKeyGen(sk;, pk;).

Note that some PRE constructions have a correctness bound — a limit on the number of
re-encryptions that are possible before the resulting ciphertext fails to decrypt properly. We
shall see this in

Definition 3. If an update token A; ; @ PRE .ReKeyGen(sk;, pkj) computed using a PRE
scheme PRE can be used to derive a token Aj;; that can re-encrypt ciphertexts from pk;
to pk; then we say the scheme PRE is bidirectional. If PRE is not bidirectional then it is
unidirectional.

Directionality is often used in security games to determine the adversary’s limitations.

We note that in some existing work including [BBS98|ID03,|AFGHO6,LVO0§|, new ele-
ments are added to a ciphertext when it is re-encrypted. In such schemes, decryption is
different depending on whether (or how many times) a ciphertext has been re-encrypted.
This motivates the following definition:

2Note that some definitions of a PRE scheme have an additional input £ to indicate a level the
ciphertext should be at. In this work, we leave out £ unless discussing schemes and results that use
levelling explicitly.



Definition 4. A PRE scheme has transparency if ciphertexts have the same format regard-
less of how many times they have been re-encrypted.

Transparency is considered advantageous since it means that decryption is the same for
re-encrypted ciphertexts as it is for fresh ciphertexts.

We now move on to giving definitions for message confidentiality in PRE. Indistinguisha-
bility against Chosen Plaintext Attacks (IND-CPA) is a well-known notion in public-key
encryption which states that given a ciphertext, an adversary cannot distinguish which of
two messages it is an encryption of. In this work we refer to it as PKE-IND-CPA, to make
the distinction between this and what is commonly referred to as IND-CPA for PRE in the
literature.

PKE-IND-CPA%P* ¢ (1) OkeyGen(1%) Odnslienge (i, Mo, m1)

k=0 k=r+1 if |mo| # |ma1| : return L
OPKE-lND-CPA

pf & Qe Ol 10y (pk,,sk,.) & KeyGen(1Y) € & Enc(pk,, ms)

return b’ return pk, return C

Fig.1: The PKE-CPA game. This is essentially the same as the IND-CPA game for PKE
schemes, but we make the distinction here for indistinguishability of chosen-plaintext attacks
for PKE schemes and PRE schemes. We give a multi-key, multi-challenge version.

Definition 5. A Public Key Encryption (PKE) scheme PKE is e-Indistinguishable against
Chosen Plaintext Attacks (e-PKE-IND-CPA-secure) if for all Probabilistic Polynomial-Time
(PPT) adversaries A:

‘Pr [PKE-lND-CPA(j{P’“(P) - 1} —Pr {PKEJND-CPA%”“(P) - 1] ‘ <e

where PKE-IND-CPA is defined in[Figure 1| If € is negligible as parameterised by the security
parameter A, then we say the scheme is Indistinguishable against Chosen Plaintext Attacks
(PKE-IND-CPA-secure).

A PRE scheme PRE is e-PKE-IND-CPA secure if the PKE scheme given by PKE =
{PRE KeyGen, PRE .Enc, PRE.Dec} is e-PKE-IND-CPA-secure.

2.1 Re-encryption graphs

We often use a directed re-encryption graph (DRG) when discussing the security of PRE
schemes. A DRG tracks queries the adversary A makes during a security game to represent
re-encryptions that A can make locally. Using update tokens, the adversary can locally re-
encrypt ciphertexts. Therefore, if a challenge ciphertext is an encryption under pk;, and there

exists a sequence of tokens going from 7 to j, then both sk; and sk, are considered challenge

keys. The DRG consists of nodes v; that represent key pairs, and directe edges gi, ; which
represent re-encryptions from pk; to pk;. The DRG is often used to enforce the condition
that A cannot query oracles in such a way that reveals a challenge under a corrupted key,
which we call the trivial win condition. This is a standard condition in all PRE security
definitions. If DRG contains a path from v; to v; and sk; is a challenge key, then so is sk;.
gives a pictorial representation of this.

3If a scheme is bidirectional, then edges added would be directionless. In this work we mainly
focus on unidirectional schemes.



Fig.2: An example directed re-encryption graph, DRG. If a challenge is learned under pkg
and A has learned tokens Ags and Ag 7, then pks, pkg are also considered .
Therefore, token queries that lead to paths from keys to corrupted ones such as
Ag1 or Aso result in a trivial win. The graph on the right gives some examples of what
tokens the adversary can and cannot learn next.

Re-encryption graphs often reflect applications. For example, for simply rotating keys
the resulting graph will be a chain, as is assumed in updatable encryption [BLMR13|LT18|
and key rotation [EPRS17|, whereas some access control hierarchies may lead to trees. Some
results such as those given in |[FKKP18| between selective and adaptive security mainly
apply to some types of graph. Note that some existing work assumes DRGs are acyclic.

2.2 Common oracles

Security games usually have a key generation oracle Okeygen, key corruption oracle Ocorrupt,
update token generation oracle ORrekeyGen, re-encryption oracle Oregnc, and finally a challenge
oracle Ochallenge- Recent work also gives an encryption oracle Ognc, as we shall explain in
We give most of these oracles in for compactness.

The main variations between definitions are how the challenge oracle Ochalenge is defined,
and how ORgegnc affects the DRG. We therefore define these in each individual game. Games
often keep track of lists updated by the oracles, namely a list of challenge keys Kcpal, cor-
rupted keys Kcorrupted, Oracle-generated ciphertexts Chonest, challenge ciphertexts Ccha and
oracle-generated tokens Thonest-

OKeyGen (1>‘) OCorrupt (Z) Oknc (iv m) OReKeyGe" (iv j)

k=kKk+1 Keorrupted-add {sk; } c& Enc(pk;, m) A ® ReKeyGen(sk;, pk;)

(pk,,sk,) & KeyGen (1) return sk, Chonest-add{(7, C)} Thonest-add{i, 7, A ; }
return C N

DRG.add{v,} DRG.add{ € ;}

return pk, return A; ;

Fig.3: Common oracles used in security games for PRE, where « is the number of keys in

the game and indicate steps to update lists that may not be used depending

on the game. The lists a particular game uses are indicated in the game’s setup phase.

OKeyGen(l)‘) increments the number of keys k, generates a new key pair and adds a new
vertex to DRG to represent this key pair before returning the public key. Ocorrupt () adds sk;
to the set of corrupted keys Keorrupted and returns it to the adversary. Ognc (i, m) encrypts the
message under pk;, appends the list of honestly-created ciphertexts Chonest with (i, C') and
returns the ciphertext. OrekeyGen(?, ) creates the update token, appends the list of honestly-

generated update tokens Thonest With (4, j, 4; ;), adds the edge gi,j to DRG and returns the
update token.



In our syntax, the restrictions on what tokens the adversary is allowed to learn is not
enforced by oracles (as in other work), but instead by the list of challenge keys Kcpal being
updated using the graph DRG after the adversary has output its guess. Since the adver-
sary can locally re-encrypt the challenge ciphertext using any relevant update tokens it has
learned, we therefore use the following function to update the set of challenge keys:

UpdateChallengeKeys(Kchal, DRG)

Vi such that sk, € Kchal :
Vj such that 3 a path from v; to v; in DRG :
lCcha|.add{Skj}

return Kepal

We enforce the trivial win condition by calling UpdateChallengeKeys at the end of the
game, and checking that no challenge keys have been corrupted (Kchal N Keorrupted = 0).

3 Related work

We begin by stating definitions of PRE schemes that imply confidentiality in
before stating other properties of PRE schemes already defined in the literature that are
relevant to our work in [Section 3.2

3.1 Confidentiality definitions

The basic security definition for PRE was first given in [BBS98| for bidirectional PRE
schemes. Informally, it states the scheme should still be PKE-IND-CPA-secure when given
the additional functionality of re-encryption. This means the proxy should not learn the
message during the re-encryption process. Unidirectional PRE schemes were introduced by
Ateniese et al. JAFGHO06| together with an equivalent security definition. Similar definitions
conveying this notion appear in all work on PRE. We refer to such notions as PRE-IND-CPA.

Definition 6. A PRE scheme PRE is said to be (selectively) e-Indistinguishable against
Chosen Plaintext Attacks-secure (e-PRE-IND-CPA-secure) if for all PPT adversaries A =
(A07 Al ) :

|Pr[PRE-IND-CPAY (1*) = 1] — Pr [PRE-IND-CPAY (1*) = 1]| <,

where PRE-IND-CPA s defined in[Figure 4

If € is negligible as parameterised by the security parameter, then we say the scheme is
(selectively) Indistinguishable against Chosen Plaintext Attacks (PRE-IND-CPA-secure).

Whilst is based on the one given in [FKKP18§|, our formulation is slightly
different as we account for there being multiple possible tokens per key pair, meaning Oregnc
allows A to input an honestly-generated update token as opposed to only having indexes as
input. Note that the DRG is created by adding an edge whenever Ogegnc is called.

It was an open problem for many years to create a PRE scheme which is both unidi-
rectional and multi-hop (can be re-encrypted more than once), with single-hop (can only
be re-encrypted once) constructions emerging as the means of providing unidirectionality in
the meantime. Multi-hop schemes are necessary for both key rotation and dynamic access
control. Unidirectional schemes are necessary for applications where the trust relationship



PRE-IND-CPA%PR¢ (1%) ORSER ™ PA(Cd, 5, [Ai5])

,Cchah Kconuptech Thonesn DRQ = @ if Ai,j given AND (7;7_]'7 A’n]) ¢ W\onest M
K = 0, called = false return |
state @ AOOKeyGen,OCormpt(l)\) if A;; not given :
_IND- _IND- $)
y® A?EncvoReKeyGenaOEeREEml;ND CPA QFRE-IND CPA(1>\’ state) A j il ReKeyGen(sk;, pk;)
—
Kenat ¢ UpdateChallengeKeys(Kchai, DRG) DRG.add{ e}
if Kenat N Keorrupted 7 0 : return 0 o @ ReEnc(A; ;,C)
return b’ return C’

PRE-IND-CPA /-
Ochallenge (Z7 mo, ml)

if called = true OR |mo| # |ma] :

return |

c& Enc(pk;, ms)
Kcha|.add{ski}
called < true

return C

Fig.4: The PRE-IND-CPA game — an extension of PKE-IND-CPA which accounts for re-
encryption. OkeyGen; Oenc, ORrekeyGen are as defined in We note that an equivalent
way to enforce the trivial win condition is for L to be returned whenever ORrekeyGen O OReEnc
are called from an uncorrupted key sk; to a corrupted key sk;.

between Alice and Bob is not symmetrical, such as if Bob is more senior to Alice and there-
fore has access to more sensitive files. Whilst most existing literature considers directionality
as a class of PRE schemes, it was been defined explicitly as a formal security definition
in |[Leel7]. The first constructions for PRE-IND-CPA secure unidirectional, multi-hop PRE
schemes were given using program obfuscation [HRSV07,CCV12|, until Gentry [Gen09] gave
a generic construction using Fully Homomorphic Encryption (FHE).

Much of the research on PRE in recent years has focused on CCA security. A definition of
IND-CCA security for PRE first appears in [CHO7| for bidirectional single-hop (ciphertexts
can only be re-encrypted once) schemes. This allows the adversary to adaptively corrupt
secret keys. A definition of IND-CCA security for unidirectional schemes is given in [LV0§].

Honest Re-encryption Attacks. Recently, a stronger notion than PRE-IND-CPA se-
curity has been introduced which allows the adversary to receive re-encryptions of non-
challenge ciphertexts from uncorrupted to corrupted keys, as long as the ciphertexts were
honestly generated. Cohen formalised these as Honest Re-encryption Attacks (HRA) |Cohl7|
but the same idea is also used elsewhere [LT18|. This motivates the concept of a PRE
scheme being Indistinguishable against Honest Re-encryption Attacks (IND-HRA) [Coh17].
We base our formulation on IND-ENC-security [LT18|, HRA-security [Coh17] and IND-CPA-
security [PRSV17].

Definition 7. A PRE scheme PRE is said to be (selectively) e-Indistinguishable against
Honest Re-encryption Attacks (e-IND-HRA-secure) if for all PPT adversaries A = (A, A1):

|Pr[IND-HRAY (1*) = 1] — Pr[IND-HRA} (1*) = 1]| < ¢,

where IND—HRAZPRS 1s defined in ,

If € is negligible as parameterised by the security parameter, then we say the scheme is
(selectively) Indistinguishable against Honest Re-encryption Attacks (IND-HRA-secure).



IND-HRALPRE (1) OReene " (Ci, 4, [Ad])

Kchah K:covruptedy Chonesh Cchal, Thonest, DRQ = @ if (27 C) g chonest H
Kk = 0, called = false return |
state & AOOKeycen,Ochpt(lA) if A;; given AND (4,4, Ai ;) & Thonest :

IND-HRA IND-HRA return L
14 @ AOE“C’OREKEYGEH’OReEnc +Ochalienge (1>\ state)
1 b

Kenat ¢ UpdateChallengeKeys(Kchai, DRG)
if Kehal N Keorrupted # 0 : return 0
return b’ o ReEnc(4;,;,C)
Chonest-add{j,C"}
if (¢,C) € Cehal :
Cear-add{j, C'}, DRG.add{ ¢ ;}

return C’

if A;; not given :

Ay il ReKeyGen(sk;, pk;)

IND-HRA /-
Ochallenge (’Lv mo, ml)

if |mo| # |m1| OR called = true :

return |

cé Enc(pk;, ms)
Chonest-add{i, C'}

Cehal-add{i, C} Kchar.add{sk,}
called < true

return C'

Fig. 5: The IND-HRA game [Coh17|, which allows re-encryptions of non-challenge ciphertexts
from uncorrupted to corrupted keys using Ogegnc-

We discuss security with respect to adaptive key corruptions in
Theorem 1. IND-HRA = PRE-IND-CPA — PKE-IND-CPA.

As each game builds directly on the last but giving the adversary access to more infor-
mation, the proof of this theorem follows trivially.

3.2 Re-encryption Simulatability and Source-hiding

There are a few properties that a PRE scheme can have that lift the scheme from being
CPA secure to being HRA secure. The goal is to demonstrate that it is possible to replace
re-encryptions from uncorrupted keys to corrupted ones with a value that is created inde-
pendently of the old secret key. This enables an adversary A? in the CPA game to simulate
the HRA game, meaning they can run an adversary A" in the HRA game and return the
same output to win the CPA game with the same advantage. One such property that was
defined by Cohen is re-encryption simulatability.

Definition 8. A PRE scheme PRE is re-encryption simulatable if there exists a proba-
bilistic, polynomial-time algorithm ReEncSim such that with high probability over aux, for all
m € M:

(ReEncSim(pk;, pk;,sk;, C,m),aux) ~, (ReEnc(4; ;, C'), aux)



where /=4 denotes statistical indistinguishability, and values are sampled according to

(pk;,sk;) & KeyGen(1%)

$ A
(pk;,sk;) < KeyGen(1")
A; @ ReKeyGen(sk;, pk;)

c& Enc(pk;, m)
aux = (pk;, pk;,sk;, C,m).

Cohen demonstrates that PRE-IND-CPA-secure schemes which have this property are
IND-HRA-secure |Cohl7, Theorem 5].

Fuchsbauer et al. [FKKP18| expand on Cohen’s work in defining source-hiding. Infor-
mally, in a source-hiding scheme a fresh encryption of a message is indistinguishable from
a re-encrypted ciphertext that is an encryption of the same message even given both key
pairs, the old ciphertext and the update token. This means re-encrypted ciphertexts reveal
no history as to the keys they were previously encrypted under, or similarities between
components of previous ciphertexts. We give a formal description of the game defining the
source-hiding property in

We note that we have changed this definition from the one given our original publication,
which was a multi-key, multi-challenge version of the definition of source-hiding presented
in [FKKP18]. We now use the same definition as in [FKKP18] to avoid confusion and enable
easier comparison. Proofs have been updated accordingly.

SHZ{'PRS(I)\) o?lillenge(m*u f*)
(pko, sko) < KeyGen(1*) i 041> 1]
(pky,sk;) & KeyGen(1*) return L

x 8 * gk
Ao il ReKeyGen(skg, pk;) C” < Enc(pky,m”, £7)

7(0) ($) *
b/ @ Aogfillenge(l)\7 (pk07 Sk0)7 (pk17 Skl)v AOJ) ¢ L ReEnC(AOYL ¢ )
/(1) $

return b’ C" & Enc(pky,m”, 0" +1)
return (C*7C'(b))

Fig. 6: Experiments for the source-hiding property. Here, £ denotes a level for the ciphertext
to be encrypted at — essentially the number of times C' has been re-encrypted. This is
important for noisy PRE schemes, but ignored for PRE schemes without levelling. L is
the number of times a ciphertext can be re-encrypted without breaking the correctness
conditions (the correctness bound).

Definition 9. A PRE scheme PRE is said to be e-source-hiding if for all PPT adversaries
A= (A, Ay):

‘Pr {SH&PRE(IA) = 1] —Pr {SH%’RS(I’\) - 1” <e

where SH?&PRS is defined in .

If € is negligible as parameterised by the security parameter, then we say the scheme is
source-hiding (SH).
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The purpose of source-hiding in [FKKP18§| is to relate selective and adaptive security.
Fuchsbauer et al. also define weak key privacy and show how this together with source-hiding
can reduce security against adaptive HRAs to security against CPA, with sub-exponential
loss for some re-encryption graphs. In particular, they show quasi-polynomial loss in security
when lifting to adaptive corruption for trees and chains, and exponential loss otherwise. We
discuss adaptive key corruptions more fully in but note that the reason for the
exponential security loss in [FKKP18| is because the definition of source-hiding is defined
for only two key pairs, a single challenge, and challenges output both the original ciphertext
and the potential re-encryption. This means the simulator in their proof needs to guess
in advance which keys the adversary will ask for an honest re-encryption of and which
ciphertext will be re-encrypted so that they can integrate the source-hiding challenge in the
right place. This only works if they guess correctly, which leads to the loss in security. We

shall both use and discuss this technique in

3.3 Ciphertext re-randomisation

Thus far we have not considered key revocation explicitly. In this case, stronger definitions
requiring re-encryption to re-randomise the ciphertext are required. To see this, consider the
key encapsulation approach to PRE:

— Encrypt the message m using a symmetric encryption algorithm with key & (C; &
symEnc(k,m)).

— Encrypt k£ with a public key of a PRE scheme pk; and prepend this to make a header
for the encrypted message (Cy & PRE.Enc(pk;, k)).

— To decrypt, first decrypt the header to retrieve k', then use k' to retrieve m/ (k' +
PRE.Dec(sk;, Cy), m' + symDec(k’, C1)).

— The update token is the token from the PRE scheme (4; ; ® PRE ReKeyGen(sk;, pk;)).

$
— To re-encrypt, re-encrypt the header of the ciphertext (C) & pre .ReKeyGen(4; ;, Cy)).
Cp is an encryption of k£ under pk;.

Whilst this method grants the benefits of hybrid encryption, key-scraping attacks are possi-
ble: a malicious user simply retains the message encryption key k and can derive the message
regardless of how many times the ciphertext is re-encrypted. It may be unrealistic for a ma-
licious revoked user to download all the plaintexts due to storage constraints, as is the case
for subscriber-based streaming platforms. However, as symmetric keys are typically much
shorter than the plaintexts, it is more realistic that a malicious subscriber could retain the
message key, k. Although constructions based on this model can be shown to meet the typ-
ical confidentiality definitions for PRE shown in they are not appropriate for
PCS.

There is little work on requiring re-encryption to also re-randomise. In [CHO07|, Canetti
and Hohenberger discuss a notion for re-randomising ciphertexts (which they call unlinka-
bility) in the context of creating a CCA definition. Other notions of re-randomisation exist
in the related areas of key rotation |[EPRS17| and updatable encryption |LT18|. These differ
from proxy re-encryption in that they are symmetric schemes, updates happen sequentially
from k; to k;4+1, and they name full re-randomisation as a necessary security goal. The fact
the schemes are symmetric gives the impression that they must be faster than asymmetric
schemes. However, both constructions rely on homomorphic properties of field groups used
in public-key cryptography, and to date all such schemes rely on these. It is difficult to see
how to construct a scheme that re-encrypts a ciphertext that doesn’t rely on such public-
key-like primitives. It would therefore be wrong to assume that symmetric re-encryption
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primitives must be faster. Our public-key constructions should therefore not necessarily be
assumed inefficient in comparison to all symmetric constructions.

|[EPRS17| defines UP-REENC security for key rotation / updatable encryption schemes,
which does not give the adversary the token used to create the challenge re-encryption. Their
construction, ReCrypt allows an adversary who has learned the update token to reverse the
re-encryption of the challenge ciphertext and therefore does not cover full compromise of
the user who generated the update token. Other related work models PCS by giving a
bound on the amount of information the adversary retains about a the ciphertext prior to
re-encryption |Leel7,[MS17|. Such definitions do not account for the possibility of revoked
users storing parts of the original ciphertexts and colluding, and lead to more complicated,
less intuitive proofs than our approach. We create a stronger definition in which schemes must
be unidirectional, and the adversary knows the update token used to create the challenge
re-encryption.

A particular work of note is |[LT18], where Lehmann and Tackmann define PCS for
updatable encryption schemes as IND-UPD. We give an asymmetric version of IND-UPD
for comparison with our work in but state the main points briefly here. In
the pkIND-UPD game, key updates happen sequentially. The challenge oracle outputs a re-
encrypted ciphertext and the adversary must guess which ciphertext it is a re-encryption
of. Challenge ciphertexts are updated whenever a new key is generated, but only given
to the adversary if the oracle O’EELLranhal is called under a specific key (or epoch, in their
terminology). An updatable encryption scheme can be bidirectional and still be IND-UPD,
as bidirectionality invokes the additional winning condition that the adversary cannot have
learned any update tokens used to create a challenge ciphertext. Another of the winning
conditions given in OpRilEUnc is that when ReEnc is deterministic, the adversary cannot have
re-encrypted either of the potential challenge ciphertexts Cy, C;. Another notable condition
is that the adversary cannot learn the update token going towards the key that the challenge
is given under, which is enforced as a condition in OEZ:JnTOk. We will address these points
when we build our own definition in We provide separating examples with respect
to pkIND-UPD in to demonstrate that our notion is stronger.

4 Strong PCS for PRE

In this section, we create a definition for strong PCS for public-key PRE schemes. We begin
by justifying our motivation, explaining why we believe existing definitions are insufficient
for PCS.

We have two main motivations for creating a new definition for PCS in the context of
PRE. The first is that there is currently no definition that implies unidirectionality and
ciphertext re-randomisation. We believe that the distinction whether a PRE scheme is uni-
directional or bidirectional is vital in the post-compromise scenario to model the corruption
of used update tokens, and hence we define PCS to explicitly mean that schemes meeting
the definition must be unidirectional. The second motivation is a matter of existing defi-
nitions inherently assuming which of the algorithms in the PRE scheme are probabilistic.
We explain how this introduces problems when considering a post-compromise scenario. We
now go into both of these motivations in more detail.

Explicit unidirectionality. We use the most relevant definition in the existing literature
to make our case. IND-UPD [LT18|, defined for updatable encryption, places restrictions
based on inferable information, as defined by the [LT18] notions of directionality:

— When sk; can be derived from sk; and 4; ; (LT-bidirectional).
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— When sk; cannot be derived from sk; and A; ; (LT—unidirectional)ﬂ

In the LT-unidirectional case, the adversary can acquire re-encryption tokens from a cor-
rupted key to a challenge key, but not the other way around. In the LT-bidirectional case, the
adversary is additionally prevented, by definition, from learning tokens from challenge keys
to corrupted keys or vice versa. This means that for bidirectional schemes, the adversary
queries tokens in such a way that the resulting re-encryption graphs form disjoint sub-graphs
— one containing corrupted keys and the other containing challenge keys. Proving security
is therefore reduced to proving that unrelated, randomly-generated keys cannot be used to
infer information about an encrypted message. We consider applying the same restrictions
for a definition of PCS for PRE to be too restrictive, as they go against our intuition of PCS
that only the new secret key must remain secret.

Since the derivability of the new secret key is implicit information to the game, meeting
the definition itself says nothing about directionality and therefore the extent to which
update token compromise is of concern. We believe that it is better for directionality to be
explicit as it allows practitioners to understand the security of a scheme more clearly.

Assuming probabilistic algorithms. There appear to be only two existing security defi-
nitions which explicitly consider re-randomisation [EPRS17,[LT18|. The [EPRS17| definition
of a key rotation scheme assumes that ReKeyGen is randomised but ReEnc is determinis-
tic. This leads to a necessary condition that the update token used to create the challenge
re-encryption cannot be learned by the adversary, otherwise the adversary could use it to
re-encrypt the input ciphertexts locally and compare this to the challenge to win the game.
The adversary is allowed to learn other tokens going from corrupted to challenge keys us-
ing an oracle ORekeyGen, but not the exact token used to perform the re-encryption. This
means UP-REENC |[EPRS17] does not model compromise of the update token used. For
this reason, it is important that new randomness is also introduced in ReEnc to prevent
trivial downgrading of the challenge ciphertext if the adversary compromises the update
token used.

In the [LT18| definition of an updatable encryption scheme, the opposite assumption is
made — that ReEnc is randomised and ReKeyGen is deterministic. This means that for keys
sk;, pk;, there is only one update token A; ;. This is reflected in their IND-UPD security
game (and pkIND-UPD) by having an update token A;_; ; created when k; is generated and
later having oracles reveal tokens to the adversary. This is less fitting for schemes where
ReKeyGen is randomised and there are multiple tokens per key pailﬂ More importantly,
such an assumption implicitly rules out the possibility that additional randomness incorpo-
rated into the update token masks the secret keys, which is important for security as the
secret key sk; should not be derivable from the update token 4;; and the public key pk;.
BV-PRE |[PRSV17] is an example of this, where knowledge of the ‘public’ key ‘pk;’ together
with A; ; can be used to derive sk;. Another example is ElGamal-based symmetric PRE
schemes (e.g. [BBS98,LT18|) where update tokens have the form A; ; = sk;/sk;. Clearly,
given the update token, compromise of the old key leads to compromise of the new key.
Introducing additional randomness into the update token not only gives a means of masking
the new key, but also means that the client does not need to fully rely on the proxy to be
assured of new randomness, which is more appropriate for some trust scenarios.

4The general understanding of unidirectionality is not so strong - the new key does not necessarily
have to be derivable, but the token and old key should lead to the message being learned.

® Interestingly, other works such as [FKKP18| take a similar approach to the adversary learning
update tokens, despite their assuming randomised tokens.
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For constructions where randomness is added in both ReKeyGen and ReEnc, neither
definition is suitable. It is therefore of interest to create a security notion for PCS which
factors in the possibility that both the ReKeyGen and ReEnc algorithms are probabilistic.

4.1 Post-Compromise Security

We model Post-Compromise Security (PCS) using an adversary A who chooses two ci-
phertexts (whose decryption key can be known) and a re-encryption token, and receives a
challenge ciphertext which is a re-encryption of one of the chosen ciphertexts created us-
ing the specified token. A attempts to distinguish which ciphertext was re-encrypted. This
models the compromise of all key-related material prior to the challenge re-encryption.

Unlike some previous definitions, we allow A to corrupt the secret key with which the
update token was generated. As in IND-HRA security, we also allow A to re-encrypt honestly
(oracle)-generated non-challenge ciphertexts to corrupted keys. Challenges are obtained via
the challenge oracle Ocpéllenge which will only accept as input honestly-generated ciphertexts
of the same length, and honestly-generated update tokens. The challenger maintains lists to
enforce this: Chonest a11d Thonest respectively.

Here we present a formal definition of PCS for general PRE. As for PRE-IND-CPA and
IND-HRA security, the first stage adversary Ay can access key generation and key corrup-
tion oracles OkeyGen, Ocorrupt and the second stage adversary .4, can access the encryption,
token generation, re-encryption and challenge oracles Ognc, ORekeyGen, OE&EW OCP,f:a”enge. The
challenger maintains a list of corrupted keys Kcorrupted, honest ciphertexts Chonest and chal-
lenge ciphertexts Cchal, and enforces the trivial win condition using a re-encryption graph
DRG to verify that no challenge keys have been corrupted.

Definition 10. A PRE scheme PRE is said to have (selective) e-Post-Compromise Security
(e-PCS) if for all PPT adversaries A = (Ao, A1):

|Pr [PostComp (1*) = 1] — Pr [PostComp (1*) = 1]| < ¢,

where PostCompl:j‘PRE 1s defined in ,

If € is negligible as parameterised by the security parameter, then we say the scheme has
(selective) Post-Compromise Security (PCS).

We give a definition of PCS for symmetric PRE schemes in

4.2 Basic observations

In we show that it is necessary for PCS to have randomness incorporated into
re-encryption.

Lemma 1. No PRE scheme where ReEnc is deterministic has PCS.

Proof. If ReEnc is deterministic then A can submit (Co, C1,1%,j, A; ;) t0 Ochalienge to learn
challenge Cp*. Then A can locally compute C) < ReEnc(4; ;,Cy) and compare this with
Cyr — if they match then output ' = 0, otherwise output o' = 1.

Lemma 2. PCS = unidirectional.
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PostCompf&pR‘g(l’\) OReenc(C' 4, 4, [4:;])

K:chaly Kcorruptem Chonest7 Cchah Cmsg7 W\onesty DRg = 0 if Ai,j given :

Kk = 0, called = false if (4,7, Ai ;) & Thonest : return L
state & AgKeycemOcQ,mp((lx) else : A;; + ReKeyGen(sk;, pk;)

if (i,C) & Chonest : return L

0" ¥ ReEnc(A;;, )

Chonest-add{j7 C’}
Crmsg[(7, C)] = Cinse (2, O))]
if (7'70) € Cchal :
Cehar-add{j, C'}, DRG.add{ € ;}

return C’

b/ @ A?REKG)’GE"’OE"C’Ongnc’ocP%f:allenge(1A7 state)
Kehal < UpdateChallengeKeys(Kchal, DRG)
if Kehal N Keorrupted # 0 : return 0

/
return b

OcPhcaIIenge(COv Cq A j» Ai,j)

if |Co| # |C1] OR called = true : return L
if (4,Co), (2, C1) & Chonest OR (4, J, Ai,5) & Thonest : Teturn L
¢ Y ReEnc(A;;, Co)

o & ReEnc(A;;, Cy)

Cmsg (4, C4")] = Crmsg (4, Cb)]
Chonest-add {7, Clly*}y Cchal-add{7, C{)*}, /Ccha|.add{skj}
called <+ true

!
return Cy"

Fig.7: The PostComp game. This reflects full compromise of the old secret key and update
token used to perform the re-encryption.

Proof. We show that if a scheme is bidirectional then it cannot have PCS. Bidirectionality
implies that an update token A; ;, can be used to derive Aj;;. The adversary A proceeds

as follows: A first corrupts a key sk;, then creates two ciphertexts Cy i Oknc(i,mo), C1 i
$
Okgnc(i,m1) and update token A, ; Q ORekeyGen (%, j), before submitting (Co, C1,1, j, 4; ;)

to the challenge oracle. A then computes A;; from A; ;, and uses this to compute C” @
ReEnc(A4;;,C"), where C’ is the received challenge re-encryption, to obtain the challenge
ciphertext under key pk,, before decrypting using sk, to win the game.

This means an easy way to disprove PCS for existing schemes is to show bidirectionality.

4.3 Separating examples

We now demonstrate the relationship between PCS and existing security notions and con-
structions by means of a number of separating examples.

Lemma 3. pkIND-UPD-security =~ PCS.

Proof. Let PRE be a pkIND-UPD-secure PRE scheme where ReEnc is deterministic. By
this scheme does not have PCS.

The same can be said for IND-UPD security and PCS for symmetric re-encryption schemes

as defined in
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Lemma 4. Let PRE be a PRE scheme where ReKeyGen is deterministic. If PRE has PCS,
then it is pkIND-UPD-secure.

We note that is not an exact comparison, as pkIND-UPD-security assumes
that ciphertexts are re-encrypted through every key (as is the case in the key rotation
application) whereas the same is not true in security PREE However include a proof sketch
to demonstrate how the two may relate.

Proof sketch. The PostComp adversary A can simulate the pkIND-UPD game. Before the
challenge is issued, Onex: can be easily simulated by generating a new key pair, corrupting
the old secret key and creating an update token between the old key and the new. The
adversary replaces the challenge ciphertext with the output from Ocpé”enge(Co, Cy,e—1,¢@).
The PostComp adversary Ay must guess the remaining keys which the pkIND-UPD will
corrupt, which will result in a sub-exponential loss of security as the challenge graph will
be a chain. The simulator can update both challenge and honest ciphertexts using Ogegnc,
and corrupting tokens can be simulated with calls to OrekeyGen. Re-encrypting a challenge
ciphertext directly to the requested key as opposed to going through all previous keys in the
chain first will go unnoticed, as if the number of times a ciphertext has been re-encrypted
could be detected then this could be used to win the PostComp game.

Lemma 5. IND-HRA-security =~ PCS.

Proof. Let PRE = (KeyGen,Enc, Dec, ReKeyGen, ReEnc) be a IND-HRA-secure PRE
scheme, and let (symKeyGen, symEnc,symDec) be an IND-CPA-secure symmetric encryp-
tion scheme. We now define a PRE scheme using the key encapsulation method as follows:

— KeyGen(1%) 3 (pk, sk) : (pk, sk) & KeyGen(1*)

Enc(pk,m) 3 (Co,Ch) : k & symKeyGen(1*), C & Enc(pk, k), Cy & symEnc(k, m)
— Dec(sk,C) — m/ : k' < Dec(sk,Cp), m’' < symDec(k’, C1)

ReKeyGen(sk;, pk;) & A Ay ¢ ReKeyGen(sk;, pk;)
— ReEnc(Ai;,0) X (c1,¢1) - ¢ & ReEnc(As . o), O = O

This scheme is also IND-HRA, but is not PCS. An adversary A can submit two ciphertexts
to the challenge oracle, and compare the second part of the challenge re-encryption with the
submitted ciphertexts to win the game.

Lemma 6. PCS =5 PRE-IND-CPA-security.

Proof. Let PRE = (KeyGen,Enc,Dec, ReKeyGen,ReEnc) be a PRE scheme that is
IND-HRA-secure and has PCS. We use it to construct the following PRE scheme:

— KeyGen(1*) 3 (pk, sk) : (pk, sk) & KeyGen(1*)
Enc(pk,m) % (Co,C1) : C & (m, Enc(pk,m)

— Dec(sk,C) — m’ : m’ < Dec(sk, C1)
ReKeyGen(sk;, pk;) & Aiji Ay @ ReKeyGen(sk;, pk;)
— ReEnc(Ai;,C) (€1, 1) : € & Enc(pk;,0), ) & ReBnc(A, 5, C1)

SHowever, it appears that if a re-encryption scheme has transparency, then it is much easier to
relate security for updatable encryption schemes with security for PRE schemes meaning that the
relation applies exactly for such schemes.
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Clearly this scheme is not PRE-IND-CPA secure, as fresh ciphertexts contain the plaintext.
However the scheme has PCS, as re-encryptions C] will be unrelated to Cy, since PRE has
PCS, and the creation of C{ is independent of both Cy and A, ;.

Since PCS does not imply any security notion concerning confidentiality of the message,
confidentiality definitions must be proven separately in order to demonstrate that a PRE
scheme is useful in practice.

4.4 PCS via source-hiding

This section has been updated, partly due to errors and partly due to the change in our given
definition of source-hiding in|Definition 9 as we no longer use a multi-key, multi-challenge
version. The main impact is that the proven advantages are now higher, but still negligible.

In this section we show that a PRE scheme that is both source-hiding and
PRE-IND-CPA-secure also has PCS.

Theorem 2 (main). Let PRE be a PRE scheme with transparency which is both
PRE-IND-CPA-secure and source-hiding. Then PRE also has PCS, limited to the case where
re-encryption graphs are acyclic.

More specifically, if PRE is ecpa-PRE-IND-CPA-secure and esy-source-hiding, then the

advantage € of an adversary A in winning PostCompﬁRg 18

€ <k(k—1)(Qr + Qurre + 1)(Qure +1) - €sn + ecpa < negl(A)

for some negligible function negl(X), where Qg is the number of queries A makes to Ognc,
and Qg rE s the number of re-encryption queries for non-challenge ciphertezts that A makes
to OReEnc-

The intuition behind this proof is that as source-hiding implies that re-encrypted ci-
phertexts appear to be independent of the original ciphertext (and the old secret key), the
challenge re-encryption in PostCompZRg can be replaced with a fresh encryption of my at
the appropriate level. As long as the ciphertext does not reveal anything about the under-
lying message, PRE is PCS. We give a reduction-based proof that a PRE scheme that is
both source-hiding and PRE-IND-CPA-secure is PCS.

Proof. We prove this theorem using a sequence of game hops, breaking the proof down
into a number of lemmas. Let PostCompSH be a variant of the PostComp game where all

re-encryptions of non-challenge ciphertexts and the re-encryption made by Ofﬁ;ﬁg:gr:p are

replaced with fresh encryptions at the appropriate level. Let Game® denote the experi-
ment Game where choice of b is made explicit. We first demonstrate that PostComp and
PostCompSH are computationally indistinguishable, before showing how PRE-IND-CPA-
security implies that PostCompSH® and PostCompSH! are computationally indistinguish-
able.

Lemma 7. Let ¢g be the advantage in distinguishing between PostCompSH and PostComp.
Then

€0 < k(K —1)(Qe +Qure +1)(Qure + 1) - €sh.
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Proof. This proof is based on proof of [FKKP18, Lemma 7], which gives a reduction based
on source-hiding. We use a hybrid argument where re-encryptions are replaced one at a
time. Let PostCompSH,, := PostComp, and let PostCompSH,, be identical to PostCompSH,_
except that the k' re-encryption query is replaced with a fresh encryption. We see that
PostCompSHy,, .. +1 = PostCompSH.

We describe how an adversary B trying to win SH? can simulate either PostCompSH k—1
or PostCompSH,,, depending on the bit d. Therefore, if there exists a PPT distinguisher D
that, with advantage d, outputs d;, = 0 to indicate that it is playing PostCompSH,,_; and
dp =1 to indicate that it is playing PostCompSH,,, then B can run D as a subroutine and
set d' = d, to win SH with the same advantage.

B first sets b <& {0,1} for PostComp. Note that SH only has two keypairs
(pksH, sk3™), (pk3™, sk$H), and that the challenge OS! (m, £) returns both the fresh en-

challenge
cryption C* and the challenge C®). Therefore, B must first guess which ciphertext C' and
key indexes i*, j*will be input for the k' replacement. B responds to the k" re-encryption
query as follows:

— It takes the two keypairs from the source-hiding game (pkgH,skgH), (pk?H,skiH), sets
these as (pk;-,sk;«), (pk;«, sk;.) respectively, and then self-generates the remaining x — 2
key pairs for PostComp.

— When the adversary makes the query that leads to the creation of C under pk; (which
could be either through Ognc or Ogegnc)), if © # @* then the reduction aborts. Other-

wise the reduction takes the underlying message and uses it to query Off:'a”enge(m, £) LA

c*c’ (b)) and returns C* to the adversary. Note that C* is created via oracles, either
by Ognc(i, m) or by calling Ogegnc on an oracle-created ciphertext. This means that for
a pair (¢, C) where C is an oracle-created ciphertext under pk; reduction will know the
underling message m and the number of times ¢ that the ciphertext has been (or appears
to have been) re-encrypted.

— Let the k' re-encryption is the adversary queries for an honest ciphertext C' be
OReknc (7%, 7, (A= ;),C). If C # C* or j # j*, the reduction aborts. Otherwise, it re-

turns the challenge C” ®) it received from the source-hiding game.

Note that for the challenge ciphertext, B has chosen b and therefore can easily simulate the
challenge by re-encrypting as described above.

Because PRE is esy-source-hiding by assumption, we conclude that the advantage § that
D has in distinguishing between PostCompSH,,_; and PostCompSH; cannot be greater than
k(k—1)(Qrp + Qure + 1) - espy. Because Qurr + 1 replacements need to be made in total,
we get that the advantage of distinguishing between PostComp and PostCompSH is bounded
by €0 < (Qurr + 1) - €sn, as required.

Lemma 8. If PRE is ecpa-secure, then the advantage € in distinguishing between
PostCompSHO’PRS and PostCompSHO’PRS 18

€1 < €cpa-

Proof. We show how an adversary A in PRE-IND-CPA® can simulate PostCompSH””R¢.
Thus, if there exists a PPT adversary B that wins PostCompSH (returning bjz) with advantage
¢, then A can win PRE-IND-CPA"P™¢ with the same advantage by returning b’ = bj;. A
simulates PostComp®” ¢ by responding to oracle queries made by B as follows:
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— A simulates Ognc as described in PostComp, also setting lookup tables Cmsg[(7, C')] :=m
for the underlying message m and Cie,[(¢, C)] := 0 for the ciphertext level.

— A forwards calls to ORrekeyGen t0 the same oracle in its own game.

— To simulate O&Ca”enge(i*,j*, (A j+],C5,CF), A first retrieves mg <= Cmsg[(C§,1%)],
by < Cieu[(C3)], M1 < Cmsel(CT)], 4 — Ciev[(CF,i*)].  Then A queries
Oz(::}fa/_l\lenge(.ja mo, ml) - Cl(b)'

— A simulates Oregnc(i,j,C) for non-challenge ciphertexts by retrieving m <= Cnsg[(4, C)]

and ¢ < Cie[(i,C)] and returning C’ & Enc(pk;,m, £ + 1). A sets Cnsg[(4,C")] =
m, Cey[(7,C)] := €+ 1.

For challenge ciphertexts, if B has set A; ; = L then A retrieved 4A; ; <= OrekeyGen (%, J)
and returns C” <— ReEnc(4; ;,C).

We note that, as PRE has transparency, the level of the challenge re-encryption will be hid-
den meaning that B cannot submit ciphertexts at different levels and use this to distinguish
o'®

The resulting simulation is identical to PostCompSHb. Therefore, if there exists an ad-
versary B that wins PRE-IND-CPA® with advantage ¢, then A can win PostCompSH with the
same advantage. We conclude that ¢; < ecpa, as required.

By and [§] and the triangle inequality, we see that
e<k(k—1)(Qr+ Qure +1)(Qure + 1) - €sH + €cpa,

as required. a

Remarks. These remarks address the benefits or our original approach where we used a
multi-key, multi-challenge variant of source-hiding.

We note that a multi-key, multi-challenge variant of source-hiding will result in a simpler
reduction, as the simulator will no longer need to guess in advance which keys and ciphertexts
will be used in replacing the re-encrypted ciphertext with a fresh encryption. We conjecture
that proving that a PRE scheme meets multi-key, multi-challenge variant of source-hiding
should not incur a significant loss, proving source-hiding requires a statistical argument that
ciphertexts are identically distributed, which should apply to multiple keys and ciphertexts
as long as they are honestly-generated. Indeed, it is possible that the overall loss from using
a multi-key, multi-challenge notion of source-hiding will mean the overall loss of security is
less severe than it is in the current approach.

Finally, we conjecture that there is the potential for a tighter relation between IND-HRA-
security and PCS, as at a high level the only re-encryption that needs replacing here is the one

performed by Ocpénenge. Because the single-challenge definition of source-hiding has limited

. . . . . $ .
application in that it only says that re-encryptions C’ g—) ReEnc(4; ;, C) of fresh ciphertexts

cé Enc(pk;, m, [¢]) can be replaced by fresh encryptions, whereas we need this property to
hold even when C is itself a re-encrypted ciphertext.

It should be possible that such a replacement can be made without needing to replace
all previous re-encryptions. Informally, this follows trivially from an iterative argument, or
from the statistical argument outlined above.

4.5 Existing PRE schemes that satisfy PCS

This subsection has also been updated to discuss the possibility that additional schemes have
PCS.
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In |[FKKP18, Construction 7.b], Fuchsbauer et al. present a PRE scheme which is
PRE-IND-CPA-secure and source-hiding. This construction is based on the hardness of the
decision learning with errors problem with sub-exponential noise-to-modulus ratio. Using
the result of see that this scheme is PCS. However, current known techniques
that make a PRE scheme provably source-hiding result in a scheme that is both less efficient,
and relies on stronger security assumptions. We shall discuss this in detail in

We therefore aim to demonstrate that source-hiding is not necessary for proving PCS,
which we do with our construction in We note that, subject to the remarks given
in it is possible that |[FKKP18| Construction 2, Construction 4] also have PCS,
as, whilst these constructions are not source-hiding, they do re-randomise ciphertexts upon
re-encryption in a way that is necessary for PCS.

5 An Efficient Construction from Lattices

We introduce a natural construction with PCS, based on BV-PRE — the ring-LWE (RLWE)
construction presented in [PRSV17|. Whilst shows that source-hiding can lead
to PCS, the existing constructions with this property [FKKP18| make sub-optimal param-
eter choices that significantly impact the schemes’ practicality. Our construction has PCS
but is not source-hiding, implying that source-hiding is not necessary for PCS. This means
that our construction can make much better parameter choices in terms of efficiency. Our
construction also does not rely on strong assumptions or heavy techniques such as obfusca-
tion [HRSVO7,|CCV12]. We also achieve transparency, meaning the cost of decryption does
not grow for repeatedly re-encrypted ciphertexts. If extra computation is needed to decrypt
a re-encrypted ciphertext, then this may outweigh the benefits of outsourcing re-encryption.
Heavier computation may go against the reasons for outsourcing re-encryption to begin with.

Our construction makes some adaptations to BV-PRE to fit the workflow of PRE; making
use of the key resampling technique of [BV11] to re-randomise the ciphertext. Any scheme
that permits similar re-randomisation can be proven secure using related methods. We begin
this section by covering some necessary preliminaries for lattices.

5.1 Lattice preliminaries

We let ¢ € Z denote some modulus and n denote a ring dimension. We represent the set of
integers modulo q as Z, = {|—¢/2],...,0,..., q/2]}. We will be working over power-of-two
cyclotomic rings of the form R, = Zy[z]/(z"+) where n is a power of two. We use @ to
denote the polynomial such that R, = Z,[z]/®. Next we discuss the various distributions

that will be used. We use the notation s &~ D to denote that the element s is sampled

according to distribution D. If D is a set, then we assume s & D means that s is sampled
uniformly from the set D. We denote the discrete Gaussian distribution over Z, as x,. The
distribution x, has its support restricted to Z, and a probability mass function proportional
to that of a Gaussian distribution with variance o2. We sometimes write y. where we use a
subscript e to denote an “error” distribution, but the underlying variance is still denoted by
0. Slightly abusing notation, we can sample a polynomial s & Xe by sampling each of the
coefficients of s according to the distribution x.. We say a distribution D is (B, d)-bounded

if Pr (|x| >B:zd& D) < 6. We denote the uniform distribution over R, as Uy, and we

use the shorthand (a,b) & Ug to mean that a,b & Uy.
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ring-LWE (RLWE) assumption: Let s be some secret polynomial in R,. Samples from
the RLWE,, 4 ,.(s) distribution take the form (a,b = as +e) € Ry x Ry where a & Uy,
e & Xe- The (normal form) RLWE, 4. problem is to distinguish between an oracle that

outputs samples from RLWE,, , .. (s) where s & Xe and an oracle that outputs uniform
elements in Rg. The RLWE, 4. assumption states that no PPT algorithm can solve the
RLWE,, 4 . problem with a non-negligible advantage. Note that if we take ¢ > w(logn) and
o/q = 1/poly(n), the RLWE, , ., problem is at least as hard as solving standard worst-case
lattice problems over ideal lattices up to polynomial approximation factors using quantum
algorithms [LPR10].

5.2 Adapting BV-PRE for PCS

The underlying scheme, BV-PRE [PRSV17], is based on the BV encryption scheme [BV11],
which is based on RLWE. This scheme is parameterised by ciphertext modulus ¢, plaintext
modulus p > 2, ring dimension n, polynomial ring R, = Z,[n]/{z™ + 1) and relinearisation
window r. BV-PRE uses a relinearisation technique to reduce the size of the error that is
added to a ciphertext upon re-encryption. During relinearisation, we break down a ciphertext
into parts as determined by the relinearisation window:

Loz (a) /7 |
C = ;- (27)1 (1)

=0

Note BV-PRE is not fully public-key, relying on an additional ‘publicﬂ key ‘pk’p for the
target key sk to generate update tokens. These ‘public’ keys are also RLWE samples with
the same underlying secret, sp as the public key pky. However, and these ‘public’ keys
are assumed to be unknown to the adversary when proving security. Indeed any entity in
possession of both the ‘public’ key and an update token created from this key can derive the
old secret key, sk 4. A description of the full BV-PRE scheme can be found in

We get around the need for additional ‘public’ keys using the key resampling technique
ReSample [BV11] which takes a public key pk and outputs a fresh public key pk’y with the
same underlying secret. We also use same relinearisation technique as [PRSV17| to reduce
error growth. We describe the re-sampling algorithm ReSample in but note
that it can also be written as ((a), (b)) & pcBV-PRE.Enc((a, b),0).

We give our construction, pcBV-PRE, in It builds on BV-PRE by having the
proxy add further randomness in the ReEnc operation. Recall that this is necessary for a
scheme to have PCS, as otherwise an adversary could re-encrypt locally to obtain the same
re-encryption. This additional randomness has minor implications for how this affects the
correctness requirement for multiple re-encryptions over that presented in [PRSV17].

5.3 Security proofs

For brevity, we defer the correctness analysis of pcBV-PRE to

Post-Compromise Security. The proof in this updated version is new, as it addresses
errors in the previous proof regarding how key corruption is handled, and how re-encryptions
of non-challenge ciphertexts are handled.

" Polyakov et al. also refer to these keys as “ ‘public’”.
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KeyGen(1?) Enc(pk, m) 5c Dec(sk,C) — m

a&L{q, (a,b) + pk s+ sk
!
s,e & xe v, €0,e1 & e m =Co—s-Cy modp
!
b=a-s+ pe Co=b-v+peys+m return m
sk=s Ci=a-v+per
pk = (a,b) return ¢ = (Cy, C1)
return (pk, sk)
ReKeyGen(sk ,, pk) = Aa ReEnc(Aap,C) > C’
for i € {0,1,..., [logy()/r]} : ({8} @ bk ) = Ancos
(Bi,0:) & ReSample(pk ) (Co,C1) ¢
Yi=0; —sk, - (27) (BP™ 6P7) & ReSample(pk ;)
Aas = ({835 phey Logala)iml
( ) Co=Co+ Y (CF) i) + P
return Ay p i=0

Llo:

22(q)/7] )
=Y (g

i=0

return C' = (C}, C1)

Fig.8: pcBV-PRE. This adapts BV-PRE |[PRSV17| to be fully public-key, and minimises
computation and bandwidth for the user for the re-encryption process. The key resampling
algorithm ReSample is described in [Appendix D]

We firstly show that pcBV-PRE is satisfies PCS with a direct proof. In other words,
we do not leverage the proof of to prove PCS via source-hiding security. This
is because pcBV-PRE as written does not satisfy source-hiding security, see for
more details.

Theorem 3. pcBV-PRE has Post-Compromise Security. In other words, for any adversary
A to the PostComp game,

‘Pr [PostCompi{PRg(lk) = 1} —Pr {PostComp}ipCBV'PRE(IA) = 1} ’ <k,

for some € = negl(\) under the RLWE,, 4., assumption.

Proof Overview. We only give a brief informal argument here and refer the reader to [Ap]
for a full proof. We first demonstrate that the scheme is secure for a variant of
the game where re-encryptions of non-challenge ciphertexts from uncorrupted to corrupted
keys are forbidden. We call this variant CPA-PostComp.

This proof is adapted from the PRE-IND-CPA-security (IND-CPA-security in their ter-
minology) proof of the BV-PRE in [PRSV17]. It follows a sequence of game hops beginning

with the CPA—PostCompb’pCBV'PRE security game where b & {0, 1}. In this game, the adver-
sary is challenged to guess the bit b. Then we use a hybrid argument with a series of game
hops where each game hop replaces:

1. resamples of the public key of a single honest entity with uniform random values, and
2. the update tokens created using the honest entity’s public key with uniform random
values.
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Finally, the challenge re-encryption given to the adversary is a uniformly sampled value and
thus the adversary has no advantage in this game. This implies that CPA-PostComp?:P<BV-PRE
and CPA-PostComp*PBV-PRE 41 indistinguishable.

To prove security for the full PostComp game including honest re-encryptions, we use a
similar idea to re-encryption simulatability to demonstrate how re-encryptions from un-
corrupted to corrupted keys can be simulated without the update token or knowledge
of the old secret key. We demonstrate how this simulated game is indistinguishable from
PostComp, meaning that pcBV-PRE has post-compromise security. The full proof is given in

Append

PRE-IND-CPA security. We secondly show that pcBV-PRE is a PRE-IND-CPA-secure
PRE scheme. This is a much simpler proof since it follows a similar argument to that of
Theorem [3] and the fact that the same security notion was shown in [PRSV17, Theorem 2.

Theorem 4. pcBV-PRE is IND-HRA secure.

Proof. The proof of this property follows an identical similar argument to that of Theorem 3]
except that the challenge is now replacing a fresh encryption as opposed to a re-encrypted
ciphertext. a

6 From selective to adaptive security

Thus far, we have discussed selective security, where the adversary first corrupts keys, then
learns challenges, in two distinct stages. In the adaptive model, a single-stage adversary can
corrupt secret keys at any point and therefore choose which keys to corrupt as a result of
received challenges. As long as the trivial win condition holds (that no challenge key has been
corrupted), the adversary can adaptively decide which keys should be corrupted depending
on the output of other oracle queries.

To lift to this stronger model, we need notions of key privacy. The intuition behind this
is that we can replace some challenge-related queries with counterparts under different keys
and relate this to key privacy.

6.1 Weak Key Privacy

In this section, we present the formal definitions for the related notions of key privacy. key
privacy (sometimes called key anonymity), was first introduced for PKE in [BBDPO1]. Infor-
mally it means that an adversary is unable to determine which public key was used to encrypt
a ciphertext. A strong version for PRE schemes for update tokens appears in [ABHO09| which
is referred to as strong key privacy in [FKKP18|, and states that an adversary is unable to
distinguish between an update token between two uncorrupted keys and a random element
of the token space. Note that this is strictly stronger than key inference where the hidden se-
cret keys must be computed, as is is the concern in collusion attacks. We refer the interested
reader to [ABHO09| for further details.

In their work relating selective and adaptive security, Fuchsbauer et al. [FKKP18|] define
weak key privacy and show that this is sufficient for adaptive security. We now define this
formally.

Definition 11. A PRE scheme PRE is said to have e-weak key privacy if for all PPT
adversaries A:

|Pr [weakKP%(1*) = 1] — Pr[weakKP}(1*) = 1]| <,

where weakKPl;"pRg is defined in .
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WeakKPi{PRg(lk) OKeyGen() ochallenge(ivj)

k=0 Kk Kk+1 A° P ReKeyGen(sk;, pk;)

y & ACKeyGen:Ochatienge (1% (pk,;, sk,;) & KeyGen(1%) (sk, pk) & KeyGen(1*)

/ t k ~
return b return pk, Al @ ReKeyGen(sk, pkj)

b
return A

Fig.9: The weak key privacy game [FKKP18| Definion 8|. Given an update token, an adver-
sary cannot distinguish the source key.

6.2 Adaptive Post-Compromise Security

In this section, we discuss PCS with adaptive key corruptions. We give the full adaptive
game for adaptive PCS in

In general, selective security can be shown to imply adaptive security at an exponential
loss, where the adversary in the selective game must first guess which keys the adaptive
adversary will corrupt. This is known as complexity leveraging. A general framework for
showing relations between selective and adaptive security for general definitions is given
in [JKK™17]. Jafargholi et al. achieve this by constructing a variant of the selective game,
then using pebbling games that dictate what replacements can be made in a series of hy-
brids, leading to the adaptive game, demonstrating the loss of security between each hybrid.
Jafargholi et al. demonstrate how using pebbling games can give a smaller loss of security.
We refer the interested reader to [JKKT17/FKKP18]| for a full description of pebbling games
and their usage. A similar approach specific to PRE is used in [FKKP18§]|, limited to when the
adversary creates directed re-encryption graphs which are acyclic and have only one source
node. An even tighter reduction is given which results in quasi-polynomial loss between
selective and adaptive HRA security for PRE schemes with ciphertext indistinguishability
and weak key privacy, limited to some types of directed re-encryption graph, namely trees
and chains.

Selective PRE-IND-CPA security combined with weak key privacy gives adaptive
PRE-IND-CPA security [FKKP18, Theorem 1, Theorem 5]. The loss of security compared
to the selective setting depends on the number of keys k generated during the game, and
the space and time complexities of the DRG. More precisely, the loss of security is approxi-
mately 7 k7, where ¢ is the maximum number of pebbles and 7 is the maximum number of
moves for a valid pebbling strategy for a considered class of re-encryption graphs DRG. This
means that the loss is exponential for general re-encryption graphs, but quasi-polynomial
for trees and chains. We therefore obtain the following theorem, whose proof follows from
and uses the same techniques as those used to prove [FKKP18, Theorem 5|:

Theorem 5. Let PRE be a PRE scheme which is ecpa-selectively PRE-IND-CPA secure,
esu-source-hiding and e kp-weakly key private. for some negligible function negl(\), where
QE is the number of queries A makes to Ognc, and Qyre is the number of re-encryption
queries for mon-challenge ciphertexts that A makes to Ogegnc. Let Qg be the number of
encryption oracle queries made by the adversary, and Qgrg be the number of re-encryption
queries for non-challenge ciphertexts that the adversary makes to ORregnc-

Then PRE is e-adaptively PCS secure with a security loss of = 7 - k7 for directed re-
encryption graphs DRG with degree k, space complexity o and time complexity T, where

e<2k(k —1)(Qe+ Qure +1)(Qurr +1) - esn + HU+5+1(ecpA + 27 - ewkp), (2)

restricted to graphs DRG which are acyclic, have at most k nodes, degree 6 and depth d.
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6.3 Achieving adaptive security of pcBV-PRE

Our construction pcBV-PRE is not source-hiding. This is because fresh encryptions will have
different noise magnitudes compared with re-encryptions. One method of overcoming this is
using a noise ‘blurring’ approach |[CCL™ 14|, as was noted by |[FKKP18, Construction 7.b].
This would involve ‘blurring’ or ‘drowning’ the noise in fresh encryptions so that it was
distributed in the same way as re-encryptions. To do this, we would modify the ciphertext
pairs in the Enc and ReEnc algorithms so that we would add fresh noise to them. This fresh
noise would be taken from an error distribution such that it ‘blurred’ out all the old noise
that was introduced from the encryption and re-encryption operations. We present a variant
of pcBV-PRE that is provably source-hiding using this blurring approach in

The advantage of doing this, is that on decryption the noise will not reveal anything
about the method of encryption/re-encryption that was used, or the keys the ciphertext was
previously encrypted under. This is vital since in the source-hiding security property, the
adversary receives all of the available decryption keys and thus can decrypt any ciphertext
that they want.

With this in mind, there are a number of reasons why proving source-hiding is actu-
ally a hindrance. Using the same approach as [FKKP18, construction 7b] requires at least
a sub-exponential noise-to-modulus ratio which considerably harms performance and se-
curity. This is because the LWE assumption (and respectively RLWE in our case) that
is used becomes much stronger, since the approximation factors of the related ideal lat-
tice problems become sub-exponential rather than polynomial in n. In particular, there are
quantum polynomial time algorithms solving ideal lattice problems with approximation fac-
tor exp(O(y/n)) |BS16,/CDPR16,(CDW17] providing evidence that we cannot simply use an
arbitrary noise-to-modulus ratio while retaining the same security guarantees. Moreover,
the increase in modulus that is required makes standard operations much slower. As a by-
product, the scheme of [FKKP18§| allows only a constant number of re-encryptions.

The intention with our construction was to give a practical PRE scheme with PCS with
minimal restrictions and from weaker assumptions. Since pcBV-PRE is very close to the
original (BV-PRE) [PRSV17| which is comparatively fast (see [PRSV17] for exact figures)
and our construction only adds extra sampling, loss of efficiency is minimal. Incorporating
source-hiding, results in a scheme that is impractical, based on much stronger assumptions
and also heavily restricted in the number of re-encryptions that can occur.

We prove that pcBV-PRE has weak key privacy in Therefore, it should be
noted that a source-hiding version of pcBV-PRE would achieve adaptive security (for the
restricted graphs of [FKKP18|) by the proof of Theorem [2| and the fact that pcBV-PRE is

PRE-IND-CPA secure (Theorems 1] and [4).

7 Conclusions and Future work

In this paper, we have presented the strongest notion of Post-Compromise Security for
PRE to date. By strongest, we mean that existing Post-Compromise Security notions are
implied by our notion of security, and we have presented separating examples showing that
the opposite implication does not hold. We have also shown that PCS can be achieved
via a number of existing PRE security notions which immediately shows that at least one
existing PRE scheme satisfies PCS [FKKP18|. We presented an efficient construction of a
PRE scheme with PCS based on lattices that is transparent. We have also discussed the
possibility of achieving adaptive security for restricted re-encryption graphs. We leave as
future work the possibility of proving tighter bounds between security notions, and further
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investigating the relationship between selective and adaptive security for more generic re-
encryption graphs.
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Definitions for symmetric PRE

Here we give definitions for the symmetric setting for easier comparison with other re-
encryption schemes defined with symmetric keys. We leave out some security games where
the change is analogous, but explicitly give those which contains lists to clarify how those
lists are updated.

Definition 12. A symmetric Proxy Re-Encryption (symPRE) scheme sPRE consists of
the following algorithms:

SPRE .Setup(1*) — params: Outputs a set of public parameters, including the message
space and ciphertext space. Note that params is input to every subsequent algorithm, but
we leave it out for compactness of notation. We often omit the Setup algorithm for the
same reason.

SPRE KeyGen(1*) 3 k: Generates a secret key

SPRE.Enc(k,m,{) LAYoR: Encrypts a message m using a key k, producing a ciphertext
at level . We often leave out £ for compactness.

SPRE.Dec(k,C) — m/ U L: Decrypts a ciphertext C to produce either an element of the
message space m' or the error symbol

$
SPRE ReKeyGen(k;, k;) (—2 A; jUL: Takes current key k; and next key k; and outputs an
update token A; ;, or L when i = j. This last condition is often left out of constructions
for compactness.

SPRE.ReEnc(4,; ;,C) @ C': Takes a ciphertext C under k; and outputs a new ciphertext
C’ under k;.
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A symmetric PRE scheme is correct if for allm € M,k & SPRE KeyGen(1*):
SPRE.Dec(k,sPREEnc(k,m)) = m
and if for all C € C such that sSPRE .Dec(k;,C) — m:
SPRE .Dec(kj, sPRE.ReEnc(A4; ;,C)) = m

where ki, k;, & sPRE KeyGen(1)) and A; ; + sPRE.ReKeyGen(k;, k;).

SE-IND-CPA%%% (1%) Ochallenge (2, M0, M1)

k=0 if |mo| # |ma] :

v @ AoKeyGenvoEncvochallenge(1)\) return L

return b’ =b cé Enc(k:, msp)
return C

Fig. 10: SE-IND-CPA, the symmetric variant of the PKE-IND-CPA game. Again, we give a
multi-key, multi-challenge variant.

We present oracles commonly used in games for symmetric PRE schemes in

OKeyGen(lA) OCorvupt(i) OEnc(’L'7 m) oReKeyGen(iaj)

k=k+1 Keorrupted -add{k; } cé Enc(ki, m) Aqj il ReKeyGen(k;, k;)
ke & KeyGen(1))  return ki Cronest-add{(i, O)} | Thonest-2dd{(7, ], A)}
DRG.add{v,} return C' DRG.add{<:;}

return A; ;

Fig. 11: Common oracles used in security games for symmetric PRE.

Definition 13. An encryption scheme SE is e-Indistinguishable against Chosen Plaintext
Attacks (e-SE-IND-CPA-secure) if for all PPT adversaries A:

‘Pr | SE-IND-CPA% (1Y) = 1] — Pr [SE-IND-CPA%*(1%) = 1] ‘ <e

where SE—IND—CPAZ’\SE(l)‘) is defined in |Figure 10, If € is negligible as parameterised by the

security parameter A, then we say the scheme isIndistinguishable against Chosen Plaintext
Attacks (sym-CPA-secure).

A symmetric PRE scheme sPRE is (e-sym-CPA-secure) if the encryption scheme given by
SPRE = {sPRE.KeyGen, sPRE .Enc, sPRE.Dec} is e-SE-IND-CPA-secure.

Definition 14. A symmetric PRE scheme sPRE is e-source-hiding if for all PPT adver-

saries A:
Pr [symSH?fWg(ﬂ) - 1] —Pr [symSH}fPRg(ﬂ) - 1” <e,

where symSH is defined in [Figure 12 If € is negligible as parameterised by the security
parameter X, then we say sSPRE is source-hiding.
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symSHi{SPRg(lA) Ochallenge(m*7é*)

ko & KeyGen(1), k1 & KeyGen (1) if *>L—1:return L

Ao & ReKeyGen(ko, k1) C « Enc(ko,m”, ")

7(0)
v @ Aochanenge(lk’ ko, kl,AO,l) C — ReEnC(AO,hC)

return b’ = b oM E Enc(ki,m™, £* + 1)
return (C, C'(b))
Fig. 12: Experiments for the symmetric source-hiding property. L is the number of times a
ciphertext can be re-encrypted without breaking the correctness conditions.

SymPostCompfpr'g(lA) Oreenc(C, 1, J, [Ai 5]) Ochallenge (Co, C1, 1, §, Ai )
Kehal, Keorrupted, Chonest, Cehal, Thonest, DRG = if A;; given: if |Co| # |C1| OR called = true : return L

k = 0, called = false if (4,7, Ai ;) & Thonest : return L if (4,Co), (1, C1) & Chonest OR (i, 7, Ai ;) & Tronest : Teturn L
state & A(?KeyGenﬂOCorvupt(l)\) els§ 1 Ay j < ReKeyGen(k;, k;) o & ReEnc(A:;, Cy)

’ @ OEncsOReKeyGen s OReEncsOchallenge /1 A if (Z’ C) é Chonest : Teturn L Chonest.add{(j, Cl)},Ccha|.A(j, C’,)7 Kcha|_add{kj}
b Aj (17, state) s
Kehal < UpdateChallengeKeys(Kchal, DRG) ¢ < ReEnc(4:;,C) called < true

Chonest-add{ (4, C")} return C’

if Kena N ’Ccorrupted 7é 0 : return L

return b’ = b

if (i,C) € Conal :
Cena-add{(§, C")}, Kchat-add {k; }
return C’

Fig. 13: The symmetric variant of PostComp game.

Definition 15. A symmetric PRE scheme sPRE is said to be e-post-compromise secure
(e-PCS) if for all PPT adversaries A = (Ag, A1):

‘Pr {SymPostComp?prg(l/\) = 1] —Pr [SymPostComp}fPRg(l’\) = 1} ‘ <k¢,

where SymPostComp’* "7 (1) is defined in|Figure 15

If € is negligible as parameterised by the security parameter, then we say the scheme is
Post-Compromise Security (PCS).

We give the equivalent lemma to for symmetic PRE.
Lemma 9. IND-UPD =& symmetric PCS.

Proof. Because RISE is not unidirectional, it is not compromise secure by We
present the following full counterexample to demonstrate this. RISE [LT18] is proven to be
IND-UPD. Here we adapt RISE for general proxy re-encryption as this fits more with our
notation, but we observe that the original construction defined as an updatable encryption
scheme is also sufficient for the proof.

— RISE' KeyGen(1*) : & & Z2, (pk, sk) =, (z, ¢°)
RISE.Enc(pk,m) : r & 7;,C « (pk", g" -m)

RISE'.Dec(sk,m) : m’ + Cy - O(;I/Sk
RISE".ReKeyGen(sk;, sk;) : A ; = (sk;/sk;, pk;) = (5 /2, g%7)

RISE'.ReEnc(A; ;,C) : (Ay) = Ay, & 72,07 (C& -y ,Cy - g7)

Given A; j = (z;/x;,9%), and x;, A can compute z; and use this to decrypt the challenge
ciphertext.
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B Asymmetric IND-UPD

IND-UPD |LT18, definition 3| is a post-compromise security notion for updatable encryp-
tion schemes, which are a variant of symmetric PCS schemes. The main difference in up-
datable encryption is that key updates happen sequentially from k; to k;;1, meaning the
re-encryption graph is always a chain. Another notable difference between updatable en-
cryption schemes and PRE schemes is that they contain an algorithm Next, which generates
a new key and an update token from the old key to the new one as opposed to defining these
functions separately.

Here we adapt IND-UPD for the public-key setting.

pkIND-UPD%” ™ (1*) Onext ()
e=0,DRG = (vo) e+e+1
(sko, ko) & KeyGen(1*) DRG.add{v.}
$
’Ccorruptedachonesh ’Cchal = (Z) (pkevske) ~ KeyGen(l)\)
called =0 Ac_1e ® ReKeyGen(sk,_;, pk.,)
kU kU

state &) Aot Oene:Ocammt Ol Qe (13 ) ) if called = 1:
% @ A?NextaOEncaOCcrrth‘rOE:alrJnTok’Otzlal:nchal’OztlEUnc’Ogtlal\:enge(1/\7 state) c: @ ReEnc(Ac—_1e, C§,1)
Kehal < UpdateChallengeKeys(Kchal, DRG) return pk,
if ICchaI n Kcorrupted # @ :return 0
return b’

Ofearnrok (1) Ofcamchal()

if i =é:return L Kchar-add{sk_}

if PRE is unidirectional : return C

DRg.add{gi_lyi} // directed edge
elseif PRE is bidirectional :
DRG.add{e; i1} // undirected edge

return A;_q ;
OReenc(C) Ofhlienge (Co, C1)
if (e —1,C) & Chonest : return L if called =1 OR |Cy| # |C4] : return L
if ReEnc is deterministic,called =1 AND e=¢€: if (e,Co), (€,C1) & Chonest : return L

if C=Cy OR C =C : return L e+=e+1

" ® ReEnc(A._1..,C) DRG.add{v.}
Cronest-add{e, C'} (Pk,,sk,) & KeyGen(1*)
return C’ e=e,Co=Co,Cr=C1

Ac_i,e @ ReKeyGen(sk,_;, pk,.)

€ & ReEnc(Aere, Cb)
Kcha|.add{ske}
return (pk,, CJ)

Fig. 14: The pkIND-UPD game, based on IND-UPD |LT18] adapted to the public-key setting.
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Definition 16. A PRE scheme PRE is said to be (selectively) e-pkIND-UPD-secure if for
all PPT adversaries A = (Ap, A1):

Pr [pklmD-UPD?img(ﬂ) - 1] —Pr [kaND-UPD}‘{PRg(l’\) — 1” <e

where pkIND-UPDYPR¢ (1}) is defined in|[Figure 1]

If € is negligible as parameterised by the security parameter, then we say the scheme is
(selectively) pkIND-UPD-secure.

C BV-PRE

We describe BV-PRE [PRSV17| in [Figure 15| Note that BV-PRE is not fully public-key as
it uses an additional ‘public’ key ‘pk’p for the target key, which cannot be made public

without exposing sk 4 to anyone with the update token.

Setup(1*) KeyGen(1*) Enc(pk,m)
Choose positive integers q,n ad Uy (a,b) < pk
Choose plaintext modulus p se & Xe v, eo, €1 & Ye
Choose key switching window r b=a-s+pe Co=b-v+peo+m
return pp = (q,n,p-r) sk = s, pk = (a,b) Ci=a-v+per
return (sk, pk) return C = (Cy, C1)
Dec(sk, c) Preprocess(1*, sk ) ReKeyGen(sk 4, ‘pk’s)
s+ sk, (Co,Ch) + C sp < sk, sa  sky
g ) : T Cale?
m' = Cy —,s~C1 mod p for i€ {0,1,..., [log,(q)/r]}: {(,31‘,91')}}1__052((1)/ Ve epkg
return m 8 & u, for i € {0,1,..., [logy(q)/r]} :
o &, wom b sa @)
0; = Bi - sB + pe; Aasp = {(Bi,mi) g2 @)

return ‘pk’p = {(51‘,‘91')},\71:052((1)/“ return AA,B
ReEnc(Aa4,s,C)

{(Biyy) 52 @) o Au g
(Co,C)  C
[loga(q) /7]
Co=Co+ Z € 7)
i=0

[loga(g)/7] ]
ci= 3 (@ p)
i=0
return C’' = (Cj, C1)

Fig.15: BV-PRE |[PRSV17|. U, is the discrete uniform distribution over R, and x. is a
B.-bounded discrete Gaussian error distribution.
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D Key Resampling and its Implications

To prevent the need for a ‘public’ key ‘pk’p to create a secure PRE scheme as in BV-PRE,
we a key resampling technique. This means our scheme is public-key in the traditional sense
where no extra keys are required for re-encryption.

D.1 Key Resampling

The key resampling technique [BV11], can be found in [Figure 16 We use this in our con-
struction in to obtain PCS.

ReSample(pk)
(a,b) « pk
v, € & Xe

6” (i Ye
a=av+ pe’
b= bv + pe”

return (a, b)

Fig. 16: Key resampling technique [BV11].

Observe that b = as +p(ev +e” —€’s) and therefore (@, b) is also suitable for encryption.
(@,b) is computationally indistinguishable from a freshly generated public key for s. This
leads us to define the a new security game for resampled keys in where given a
public key (a,b), the challenger either returns a resampled key or a uniformly sampled pair.
It is similar to RLWE challenges for fresh keys.

D.2 Implications of resampling

ReSample-ncRLWE? (1*) OkeyGen () Ochallenge (%)
k=0 K+ r+1 (a,b) + pk;
d’ — AoKeyGenvoCorrupt(lk) a ﬁ Z/’q v, e/ ﬁ Ye, e// i Ye
;o o
return (d' = d) se & e (@0, bo) = (av + pe’, bv + pe”)
b=a-s+pe (al,l’n)ﬁz,{f

pk,, = (a,b),sk,, = s return (@q, bq)

return pk,

Fig.17: A variant of RLWE for resampling. Note that the challenge oracle can be queried
more than once.

Lemma 10. Let ReSampIe—ncRLWEZ\(l)‘) be defined as in and let k be the number
of keys generated in ReSampIe-ncRLWEf‘l(l’\). Then for all PPT adversaries A there exists

a RLWE distinguisher D such that:

|Pr [ReSampIe—ncRLWE?L\ =1] - Pr [Resamme‘”CRLWE}‘\ =1]|
< (k4 Q) AdvRLWEq 4. (D),
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where Q) is the number of calls that A makes to Ochallenge-

Proof. Let D receive an RLWE challenge, where either the sample is genuine d = 0 or it is
random d = 1. We demonstrate via a hybrid argument that D can simulate ReSample-RLWE.

Let Hy := ReSample-RLWE, and let H; be identical to H;_; except that the first ¢ public
keys have been replaced with uniform random values. Suppose there exists an adversary
B that can distinguish between H;_; and H; with advantage e. We demonstrate how an
RLWE distinguisher D that can break RLWE with the same advantage by simulating H;
and running B as a subroutine. D simulates H,_4 by responding to calls B makes to OkeyGen
as follows:

— if k < i then D returns (ug,u1) & uz,
— if k = D returns an RLWE challenge (a, b),
— if £ > i then D returns a genuine RLWE sample.

Then D returns d’ = d’y. The maximal advantage in distinguishing between H; and H;_; is
therefore AAvRLWEg 4 . (D). B B B B
Now consider a further hybrid argument Hy ... Hg where Hy is identical to H,, and H; is

identical to H,;_1 except that the ith output of Ochallenge is replaced with (a, b) & L{g.

Because all public keys are now random elements of i, we note that we can replace a,b
with random elements of U, by the RLWE assumption. Alternatively, this can be seen in
the same way as the IND-CPA security of the underlying encryption scheme [PRSV 17}, proof
of Theorem 5.1], as ReSample is the same as encrypting 0. This means that the maximal
advantage in distinguishing between H; and H;_; is AAvRLW E , .. (D)

Overall, we get that the number of times we rely on RLWE is « + (). This completes the
proof. a

To get to selective key corruption models, we need to consider a variant of
ReSample-ncRLWE where A is also given access to a key corruption oracle. We describe
this variant, which we call ReSample-RLWE, in

Resamp|6-RLWE:14(1>\) OKeyGen() OCorrupt(i) Ochallenge(i)
k=0 K< K+ 1 if i € Kehal : if 7 € Kcorrupted :
Kcorruptech ,Cchal = (0 a (S; Uq return | return |
d AOKeyGe"’Ocmup“ocmue"ge(1)\) $ ’Ccorrupted~add{(}i) (a,b) + pk;
/ 5 € < Xe return sk . "3
return (d' =d) b=a-s+pe i V,€ = Xes€ & Xe
_ 7 ’ 1
pk,. = (a,b) (@o,b0) = (av + pe’, bv + pe”)
sk, =s (a,bi) & U
return pk,, Kchar-add{(})

return (éd,Bd)
Fig. 18: A variant of RLWE for resampling with key corruptions. As in ReSample-ncRLWE
the challenge oracle can be queried more than once.

To prove ReSample-RLWE? (1*), we revisit an observation made in [FKKP18|, where
Fuchsbauer et al. note that when proving the security of PRE schemes, it is sufficient to
only need to replace values connected to the challenge graph — the subgraph of the re-
encryption graph which is reachable from the challenge node. We believe this is logical,
as the corruption of independently generated keys with no links to challenge keys should
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not affect the security of the challenge keys. We generalise this observation assumption as
follows: if {q} is the set of queries made in a security game Game that are independent of
any challenge queries, then {¢} can give no advantage to an adversary hoping to win Game.
We call this the challenge independence assumption. This is relevant for key corruptions as,
if the adversary corrupts keys which are never related to any challenge keys, the challenge
independence assumption means these keys give the adversary no additional advantage. This
principle is similar to the intuition of how re-encryption simulatability and source-hiding
imply IND-HRA, as replacing re-encryptions with ciphertexts independent of the challenge
secret key cannot give an advantage in learning challenge keys.

Lemma 11. Let ReSampIe—RLWEl;\(lk) be defined as in and let Kcha be the number
of keys on which challenges are called by Aﬂ Then an adversary who wins ReSample-ncRLWE
when Kchal keys are gemerated can win ReSample-RLWE with the same advantage by the
challenge independence assumption.

Proof. We note that all keys are generated independently, and that in ReSample-RLWE keys
either become challenge keys or corrupted keys. Therefore corrupted keys are independent of
the challenge keys, so the challenge independence assumption applies, meaning key corrup-
tion gives no advantage in winning the original game. We conclude that ReSample-ncRLWE
implies ReSample-RLWE, and so we can therefore replace all RLWE samples with uniform
random values.

Combining [Lemma 10| and |[Lemma 11| gives the following result.

Lemma 12. Then for all PPT adversaries A:

|Pr [ReSample-RLWEY (1*) = 1] — Pr[ReSample-RLWEY (1*) = 1]|
<(k+Q)-AdvRLWE, ,.(D), (3)

where Kk is the number of key pairs generated in ReSampIe—ncRLWEi(l)‘) and @ is the number
of calls that A makes to Ochallenge-

E Analysis of pcBV-PRE

In this section, we present proofs concerning pcBV-PRE. We first demonstrate correctness
and calculate the correctness bound, before giving a full proof of that pcBV-PRE
has PCS.

E.1 Correctness of pcBV-PRE

Much of the analysis used to argue correctness from [PRSV17] holds for our modified scheme
in Therefore, we keep the discussion fairly brief and refer to [PRSV17| for full
details.

Recall that the decryption algorithm computes Cy — Cys and then performs a reduction
modulo p. In the case that (Cp, C1) is a ciphertext produced by the Enc algorithm, we have
that

Co— Ci1s =plev+eg+e18) + m, (4)

8 Without loss of generality, we assume that by the end of the game, all keys are either corrupted
or challenged.

35



so decryption is successful when p(ev + eg + e15) + m (i.e. the error plus the message) does
not wrap around modulo g. However, the correctness condition of decryption is different

when considering ciphertexts output by the ReEnc algorithm. To see how, let (Cj, C7) &
ReEnc(Aa_ B, (Co, C1)). We also note that for (a,b) < ReSample(i, j) where b = as + pe,
we get

/

b—sa=plev+e” —¢s). (5)
Using notation consistent with we have that

[log(q)/r]
Cy— Cisp = Co + CO (0; — s4(2) = spB:) + (0P — P )
=0

llog(a)/r]

=Co—Cisat > COF(6; —spf) + (7Y — prrovysp)

=0

[log(q)/r]

Co—Cisat Y O plevi+ejsp+ef)

1=0
proxy /proxy /Iproxy
] ( cv C SB € ) ’

where all arithmetic is done over the integers modulo ¢. This shows that the error grows by
an additive term of pE on each re-encryption where

llog(a)/r]
E _ Z O{Z) . (6112‘ _|_ 6283 _|_ 6;/) _|_ (e,Uproxy _|_ e/proxySB + 6//proxy).
=0

Assume that . is (B, d)-bounded for some small § (we quantify these values later). Then
we have that the noise grows by at most

pllEllsc < pn(2" = 1)(llog(q)/r] +1)(2B*n + B) + p(2B°n + B) =: G(n,q,7,B)  (6)

on each re-encryption taking into consideration the multiplication of degree n — 1 polyno-
mials. Therefore, after ¢ re-encryptions, the noise has grown by an additive term of size (G.
Therefore, the condition for successful decryption after ¢ re-encryptions is

p(2B™ + B) + (G(n,q,r,B) + p/2 < q/2 (7)

where G is defined in [Equation (6)] Note that if our error distribution has o > w(logn),
then we can set B = oy/n and § = 27! [MRO7,LATV13|. In order to choose parameters

of the system, one needs to ensure that is satisfied. Note that this analysis
is a worst-case one. It is shown in [PRSV17| that the central limit theorem can be used
to essentially alter the form of B and change all occurrences of n into occurrences of /n

in by allowing for a tunable failure probability. We omit this more practical
method of correctness analysis for brevity.

E.2 Full proof of [Theorem 3|

As conveyed in we separate the proof of into two theorems, the first

of which proves a variant of the game that does not consider honest re-encryptions between
uncorrupted and corrupted keys, and the second which does.
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Theorem 6. Let CPA-PostComp be a wvariant of the PostComp game where no re-
encryptions from uncorrupted to corrupted keys are permitted whatsoever. Then for all PPT
adversaries A, there exists an RLWE distinguisher D such that:

‘Pr {CPA-PostCompg{pCBV'PRE(l’\) - 1} —Pr [CPA-PostccmpgpcBV'PRE(1A) - 1”
< (k+(Qrk + QreL +1)(logy(q)/r] +1) +1) - AdvRLW Ey 4,1 (D), (8)

where Qrk is the number of queries A makes to ORekeyGen(i,]) where sk; and sk; are un-
corrupted, and Qrg1 is the number of queries A makes to OrekeyGen(C, 1, J, A; ;) where sk;
and sk; are uncorrupted and A; j = 1.

Because A is PPT, we note that Qrx and Qgrg. are both polynomial, meaning that the

overall advantage in distinguishing b is negligible by the RLWE assumption.

Proof. We prove this theorem using a sequence of game hops as described in [Lemmas 13
to

Lemma 13. Let Gamel®V"RE be the same as CPA-PostComp”PBV-PRE . Lot Game,

is identical to Gamey except that all wupdate tokens between uncorrupted keys

({(ﬁm%‘ =0; —sky, - (2T)’3)}Z-U:0§2(Q)/TJ , pkB> are replaced with ({(ﬁi, )}~Llog2(q)/rJ )
Then for b € {0,1} and for all PPT adversaries A:

‘Pr {1 — Gameg’pCBV'PRE(A)} —Pr [1 — Gamel{’pCBV'PRE(A)} ‘
< (k4 (Qrx + QrrL)([logy(q)/r] +1)) - AdvRLW Ej 4 . (D).

Proof. Note thatifz =r+u € R2 then if 7 & Z/{2 then z is indistinguishable from z’ & Z/l,?

even if u is known and vice versa. This means we can replace {(8,,7; = 0, — sk; )Uog2 9/ ”}

where {(8,,6,) & ReSample(pk; )}UOgQ(Q)/TJ with uniform random values if and only if we can
replace calls to ReSampIe(pk ) Wlth uniform random values. This means it will be possible
to simulate update tokens Ai,j when sk; and sk; are unknown.

Let d € {0,1}. We demonstrate how an adversary B for ReSample-RLWE(1*) can sim-

b,pcBV-PRE
ulate Game ;" :

B samples b & {0,1}

— When A calls Oﬁz;“ggn and Og‘sfr‘:;t, B forwards these queries the equivalent oracles in
ReSample-RLWE.

— When A calls Ogiges.., (i, 5):

e If sk; is not corrupted and sk; is corrupted, B returns L.

o If sk; is corrupted, B returns A, ; & ReKeyGen(sk;, pk; ).
e If sk; and sk; are not corrupted, B uses the ReSample-RLWE challenger to obtain

3 Wi log, r log, T
{(81,0,) & Ofirnge ()} 267 and sets A« ({(8,0.)3 252V, pk, ).
When A calls Og:gnecd(i,], A; ;,C), B makes the checks described in PostComp, using the
same method as for OrekeyGen if A;; = L.

When A calls 0S2™e (i j, A, ,Co,C1), B responds as it would for OSZE’fj (i, 4, Qi j, Ch).

challenge
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If d = 0 then resamples are genuine so this perfectly simulates Gameg’pCBV'PRE, andifd=1
then this simulates Ga mell"'pCBV'PRE. Therefore, for an adversary A that outputs d’y = d with
advantage 8, B can set d’ = d’, and win ReSample-RLWE%(1*) with the same advantage.
Overall, B calls O;ﬁ‘;‘ﬁenge [logy(q)/r] +1 times for each call A makes to Ogeenc, and a further

|logy(g)/r] + 1 times whenever A calls Oreenc(C, 1,7, A;j; = L) for some C,1,j. Overall,

Ogﬂ‘;‘ﬁenge was called at most (Qrx + Qrrr)([logy(q)/r] + 1) times. gives us the

result.

b,pcBV-PRE b b,pcBV-PRE
2 € 1 ’

Lemma 14. Let Game identical to Game except that when
Ochalienge (Co, C1, 4, 7, Ai j) is queried, if A, ; = L, the challenger generates an update token
as described for calls to ORekeyGen i1 pTOOSf of and the output of the ReSampIe(pkj)
used in Ochalienge (Co, C1, 1, J, Ai ;) is replaced with uniform random values. Then forb € {0,1}
and all PPT adversaries A, there exists an RLWE distinguisher D such that

Pr {1 & Gamel{’pCBV'PRE(A)} —Pr [1 & Gameg’pCBV'PRE(A)} ‘
< (lloga(q)/r] +2) - AdVRLW Ey .. (D).

Proof. First, we note that for the challenge query Ochaiienge(Co, C1,1, 7, Ai ), if A;; = L

and sk, is uncorrupted, then A cna be replaced with uniform random values as described in
proof of [Lemma 13| This incurs a security loss of (|logy(q)/r] +1) - AdvRLWEy 4 . (D).

For the remaining step we demonstrate that if there exists an adversary A that outputs

"4 = d for Game’, 41 (where d € {0,1}) with advantage J, then there exists an adversary

B who can win ReSampIe—RLWE%’pCBV'PRE(1)‘) with the same advantage. As before, we show

how B can use ReSample-RLWE%(1*) to simulate GameZH. B first samples b & {0,1}, and
responds to all oracles except the challenge as described in proof of [Lemma 13] When A calls
o&med (Cy, Cy,1, J, A, ;), B performs the appropriate checks, then follows the procedure for

challenge

pcBV-PRE.ReEnc(4; j, Cp) except that it replaces ReSample(pk;) with a call to orwe  (5).

challenge
For ReSample-RLWE®PBV-PRE "{his simulates Game; and for ReSample-RLWE!:P<BV-PRE,
this simulates Gamey. Therefore, B can run A on the simulation and return d’ = d’y to win
with the same advantage.
Since Ozﬂ‘g’ﬁenge(j) is called once for the resample and at most |log,(q)/r] + 1 times for

the update token, we leverage RLWE at most |log,(q)/r| + 2 times. O

Lemma 15. Let Games be identical to Games, except that Ochallenge Teturns uniform random
values. For all adversaries A:

Pr [1 & Gameg’PCBV'PRE(A)} —Pr [1 & GamelPBVPRE )] . (9)

Proof. In both Game, and Games, the adversary submits two ciphertexts Cy = (Co,0, Co,1)
and Cq = (C1,0, C1,1) when it queries the challenge oracle. In Gameg, the challenger responds
by setting Co = Cy) and C1 = Cyp) for uniformly chosen b & {0,1} and returning the
challenge ciphertext given by

logo(a)/r) Uogs(a)/r)
Ch=Co+8'+ > (€ y), Ci=p+ > (" 8)
i=0 i=0
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using the relinearisation breakdown described in In particular, 8* and 6* are
the result of calling ReSample(pk;) in Game; on an honest public key and are therefore
uniform random values that are used once and never revealed to A. Therefore, C{, and C}
are independent uniform random values in Gamey which is the exact case in Gamez. This
argument holds for each of A’s challenge oracle queries. This concludes the proof of this
lemma. o

Because the challenge in can be replaced with random values for both b = 0 and
b =1, we can use to |L5| together with the triangle inequality to get:

Pr | CPA-PostComp%PBY-PRE(12) — 1| = Pr | CPA-PostCompP<BV-PRE(1%) = 1
A A
< (k+ (Qrix + QrrL + 1)(|logy(q)/r] + 1) + 1) - AdvRLW Ey 4. (D).

This concludes the proof of 0
. . b,pcBV-PRE /1 )\
Theorem 7. If there exists a PPT adversary A that can win PostComp; (1)

with mon-negligible probability, then there exists an adversary B that can win
CPA—PostComp%pCBV'PRE(IA) with non-negligible probability, by the RLWE assumption.

Proof. This is similar to the proof outline of [Cohl7, Theorem 5]. We demonstrate how
an adversary B for CPA—PostComplngBV'PRE can simulate PostCompfj\PCBV'PRE. B replaces
calls to Oreenc(C, 1, j[, A; ;]) where sk; ¢ Keorrupted sk; € Keorrupted and (#,C) € Chonest but
(i,C) & Cehal, with a fake re-encryption. If this replacement is not detectable, then /5 can call
A as a subroutine, output the same guess and win with the same advantage. We demonstrate
how B can create these fake re-encryptions of ciphertext C', when pk;, pk; are known but

A; ; is unknown, without detection. Without loss of generality, we give the proof for the

simplified construction given in
Note that for b; = a;s; + pe;,

b; — a;s; = pe;. (10)
C <+ Enc(pk;,m) m’ < Dec(sk; = s;,C) A j < ReKeyGen(sk;, pk;) C’ + ReEnc(A4;;,C)
v, €0, €1 & Xe (Co,Ch) ¢ (@,b) <+ ReSample(pk;) (@,7) < Aij
Co =biv+pco +m m'=Co—Cisi modp  y=h—s (a,0) ReSample(pk;)
Cr = ait + p&; a = a;0+ pei, b= b+ pey i = aj0+pci,b = byi + pco
Aiy = (a,7) Cy=Co+Cry+ b
Cly=Cia+a

Fig. 19: Simplified construction

Let (pk;,sk;) = ((ai,b; = ais; + pe;), s:), (pkj,skj) = ((aj,b; = ajs; + pej),s;) and
let C,A; ;,C" be as described in [Figure 19, We first note that by a genuine
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re-encryption will result in a ciphertext C’ = (C{, C}), where
Ch=Co+Ciy+b
=Co4Cr(b—s;)+b
=Cy—5,C1 + Cli) + i)
2 p(eos; — €1+ e;0) +m+ C1(bjv + pey) + bjv + pey
=b;(C10+ 1) + p(Créo + €0 + €0si — €1+ €;0) +m,
Ci=Cia+a
= Ci(a;v +per) + a0+ pe
=a;(C10+0) +p(Crer + ).
If we let
VvV = le + [‘, €9 = Cltii() + F’A(; + 6?()51' — 6,71 + 61"!:'7 e = 0167]7 + 6}, (].1)
we get
Cl = b;v + peg +m,
A (12
C =a;v +pey.

Therefore, if the secret key s; (and therefore e;), message m and random values v, €y, €;
were known, an alternative way to compute a genuine re-encryption would be to sample

v, €9, €1, 0, €, €1 & Xe and compute C’ as described in |eqs. (11)| and |(12)l
We note that, as v,¢g,¢1,0,¢p,¢; are freshly sampled for one-time use, B can easily
sample its own values from . and use these to calculate v, e;. However, since the simulator

. $
does not know s;, ¢;, they cannot compute eqg. Instead B can sample its own s;’,¢e;/ < Yo
and use these to create

/ — N ~ 7 ~ !~
eg =Cheo+co+epsi —er+ei v,

and create a fake re-encryption
C"™ = (bjv + peg + m, a;v + peq). (13)

We need to demonstrate that this replacement will not be detected.

We note that, since pk; is uncorrupted, the distinguisher does not know sk, = s;, and
therefore cannot use C' to learn the ciphertext error Ec = ¢ys; — €1 + e;0, otherwise they
could derive m from C' without knowing the secret key, thereby breaking RLWE. However,
as they do know sk; = s;, they can compute the error term of a re-encrypted ciphertext.
Since

Cy—Cisj = (Co+ Cry+b) — (Cia+ a)s;
=Cy(y—asj)+Co+ b— as;
=0Cy(b—s —asj)+00+i)—ﬁsj
=Co+ Ci(b—asj —s;)+ (b0 + pey) — (aj0 + per)s;
=Cy— Ci1s;+Ci(b—as;j) + (bj — a;js;)0 + p(cy — €155)

@a . . .
=m +pE. + Cip(e;v + ¢y — €185) + pe;jv + p(co — €155)

m+p(E. + ¢y — ¢18j + ;0 + C1(ejv + ¢y — €155)),
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the error on a genuine re-encryption C’ is
Ecr = éos; — €1+ €0+ ¢ — 185 +e;0 + Ci(e;v + €g — é155),
and for a fake re-encryption C"* is
Ecre = épsi’ — €1 4 ¢'0 4 ¢y — €155 + ¢;0 + Ci(ej0 + o — €155),
where underlined values are known to the adversary.

As C1 = a;0 4 pey, and a; is public, (a;,C7) is an RLWE sample with secret © and error
per. Because v and €7 are chosen independently of s; and e;, it follows that even if s; and e;
are later corrupted, v and €7 should remain unknown. As F. is the only other value derived
using 0, €7 and it is also unknown to the adversary, we can therefore argue that the C is
indistinguishable from a value chosen uniformly at random, by the RLWE assumption.

Rearranging, we need to demonstrate that

Ecr = Cieo +co — i + €0+ Ciejv — e1s)) + Ee (14)
and
Eci = Cieg+ ¢y — 155+ ¢j0+ Ci(ejo — e155) + B¢ (15)

where Ef, = €ys;' — €1 + ¢;'0, appear to have the same distribution to any entity that only
knows m, C, s; and C'(*).

Because C appears to be a uniform element of Ry, Cieo + ¢ is also distributed like
an RLWE sample with secret ¢; and error ¢;. The distributions of [Equations (14)| and [(15)|
are therefore indistinguishable, under the RLWE assumption, from the distributions of a

modified version of [Equations (14)| and |(15)| where C1¢) + ¢ is replaced with u & Uy

If w is an element of R, and u & Ug, then u+w is also distributed as a uniform element

of R4. We can therefore replace the entirety of both Ef, and E¢ with v’ & U,. We conclude
that eg and eg are indistinguishable.
Thus, B can produce indistinguishable fake re-encryptions and thus can simulate

PostComp’jCBV'PRE(l)‘) and gain the same advantage as A. This completes the proof.

Proof of [Theorem 3] that pcBV-PRE is PCS - follows from [Theorem 6] and [Theorem 7}

E.3 Source-hiding adaptation of pcBV-PRE

We now describe an adaptation of pcBV-PRE which is provably source-hiding. By the BV-
PRE adaptation, we mean pcBV-PRE apart from the fact that there are blurring widths Fy
associated to level ¢ encryption. In particular, Enc(pk,m;¢) = (co,c1) = (bv + peg + m +
pfe, av+pey) where fo & [—FE¢, E¢]™. In addition, add fy to ¢, when re-encrypting to obtain
a level ¢ ciphertext too.

Lemma 16. The adapted version of BV-PRE is computationally source-hiding provided that
E¢> Ey_1 and Ey > (on)?.

Proof. For correctly sampled aux = pkg, pky, sky, skq, rko—1, we will show that the distribu-
tions of
(3UX, Enc(pko,m;ﬁ),Enc(pkl,m;Z+ 1)) (16)
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and
(aux, ¢ := Enc(pky, m; €), ReEnc(rko_1, pky,¢; £ + 1)) (17)

are computationally indistinguishable for any valid choice of m and /.

Firstly, after writing pk; = (a1,b1 := a1 - 81 + e1), for v, e, e” & Xo and foyq &
[—Eei1, Eer1]™, we have that (by - v+ p(e’ + for1) + m, a1 - v + pe”) or equivalently

((a1-v) - s1+ple' +e1v+ frp1) +m,ar - v+ pe’) (18)

is the form of a valid level £ + 1 encryption of m. Let f/,; = fj,, + (€51 — €' — e1v)

where fé+1 i [—Evi1, Eoy1]. If Eg 1 > 0?n? (which is greater than the largest coefficient of
/

e’ —e" s1+eyv with all but negligible probability), then the distribution of fy11 is statistically
indistinguishable from the distribution of f;/, ;. Therefore, the distribution of Equation
is statistically indistinguishable from the distribution of

((a1-v+pe”) - s1+pfi +m,ar-v+pe’).
In turn, the above is computationally indistinguishable via a RLWE assumption to
(U 81+ pfre + mvu)

where u & R,. Since, the arguments hold for any correctly distributed aux, it follows that
the distribution of is computationally indistinguishable from

(aux, Enc(pkg, m; £), (u1 - so + pfipq +m, Ul)) (19)

where u; & Ry, f} & [—E¢i1, Eoga]-

To complete the proof, we will show that the distribution of is also computationally
indistinguishable to that the distribution of via a similar argument. Let pky = (ag, by :=
ag-So+ep) and fix a valid ciphertext (co, 1) = ((ao-So+e€0)0+p(e+ fe) +m, ag-T+pe) where
U,€,€ & Xo- Writing rko—1 = {8:,6; — so- (2T)i}}f§(q)/rJ, we have that 8;-s1 = 0; — p(e17; +
€; — pe;s1) for some v;,€;, e; sampled from y,. In addition, we have the re-randomisation
term (OPTOXY, GPIOXY) gatisfying [BPTOXY - g1 = GPTOXY — p(e OPTOXY 4 eProXY — pePro¥g, ) where
PPTOXY gProxy gProxXy are sampled from x,. Let ¢f = ZZL:(%(Q)/ ) cgz) - Bi + BPTY and e, =

W, - = _ _ - _ . .
ey’ (e1l; + €; — pé;s1) + ey TP  ePTOXY — pePto*V g 'We can write a re-encryption as

(¢) - s14+p(ec+eol+&—és+ fo+ fepr) +m,cy). (20)
where foi1 & [=Ees1, By Now let fil ) = fi,, — (ec + eo¥ + & — és + fy) where f;,, &
[—Eey1, Egga]. If Egyq > max{Ey, (log(q)/r) - (no)?}, then the distribution of f/, and
feq1 are statistically indistinguishable. Therefore is distributed statistically close to the
distribution of

(c1-s1+pfig +mich). (21)
Finally, using a RLWE assumption on P the term ¢} is statistically indistinguishable
from uniform, meaning that the distribution of the above is computationally indistinguish-

able from (u - s1 + pf),,,u) where u & R,. Since these arguments work for any valid aux
and ciphertext (cg, ¢1), it follows that the distributions of and are computationally
indistinguishable.
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adIND-HRA%PRE (1) Oretnc(C, 4, 4, [Ai 5])

’Ccorrupted7 Kchalycchah 7?10"&5':7 DRg = @ if Ai,j given AND (iij! A’L»J) ¢ 7|~1c>nest :
Kk = 0, called < false return L

$ if A; jnot given :
b+ {0,1}

b o~ AOKeyGen OEncsOcorrupt s OReEnc s OReEnc s Ochallenge (1)\)

$
Kenal < UpdateChallengeKeys(/KCenai, DRG) C’ & ReEnc(4;;,0)

A & ReKeyGen(sk;, pk;)

if K:corrupted n ’Cchal 7£ @ : if (i7 C) € Cchal :
return 0 Cehal-add{(}7, C,): ’Cchal-add{}Sk]’
else return b’ return C’

Ochallenge (m07 mi, 7’)

if |mo| # |m1| OR called = true :

return |

cé ReEnc(pk;, ms)
Cehal-add{(}7,C)
Kchar-add{sk};

called < true

return C

Fig.20: The adIND-HRA game. Like the HRA model |Cohl7], it allows re-encryptions of
non-challenge ciphertexts to compromised keys using Ogregnc- It allows adaptive corruption
of keys subject to the trivial win condition that no key which a challenge ciphertext has
been learned under can be corrupted.

F Adaptive HRA security

Here we describe an extension of selective IND-HRA security as described in
which allows the adversary to adaptively corrupt keys in response after receiving challenges.

Definition 17. A PRE scheme PRE is said to be e-Adaptively Indistinguishable Honest
Re-encryption Plaintext Attacks-secure (e-adIND-HRA-secure) if for all PPT adversaries
A= (A, Ay):

‘Pr {adIND-HRAg{PRS(lA) - 1] —Pr [adIND-HRAi{PRE(l’\) - 1” <e (22)

where adIND-H RAZRE is given in|Figure 20 If € is negligible as parameterised by the security
parameter, then we say the scheme is Adaptively Indistinguishable Honest Re-encryption
Plaintext Attacks-secure (adIND-HRA-secure).

In the adIND-HRA game , A can adaptively corrupt keys subject to the trivial
win condition that they cannot have corrupted a key with which a challenge ciphertext can
be decrypted. In order to keep track of the status of keys, the lists Cchal, Kchal and Keorrupted
are used as well as a directed re-encryption graph DRG which tracks update token queries.
Cchal contains outputs of the challenge oracle Ochalienge @ Well as outputs of Oregnc When
given a challenge as input. Keorrupted contains the outputs of Ocorrupt queries. DRG consists
of nodes v; that represent key pairs, and edges ?M which are added when ORrekeyGen (%, j)
is queried. Using update tokens, the adversary can locally re-encrypt challenge ciphertexts.
Therefore, if a challenge ciphertext is and encryption under pk;, and there exists a sequence
of tokens going from i to j, then both sk; and sk; are considered challenge keys. Represented

43



using the graph DRG, if there is a path from v; to v; and sk; is a challenge key, then so
is sk;. At the end of the game, DRG is used to update the list of challenge keys. Then the
trivial winning condition translates to Kchal N Kcorrupted being empty.

G Adaptive Post-Compromise Security

Here we give the explicit definition for adaptive PCS.

ad—PostCompi{PRg (1/\) OaR‘:(E:nc(C’ i7 j7 [A’L]])
’Ccorrupted7 ]Cchalychonesh Cchal, ﬂonest, DRg = @ if |CO| # ‘Cll OR called = true : return L
k =0, called = false if (i,Co), (¢,C1) & Chonest : return L
b AOKeyGenvoEncvoCorruptvOReKeyGenOazgncvoiﬁaﬁlenge(1>‘) if (4,7, Ai,g) & Thonest : return L
Kenat ¢ UpdateChallengeKeys(Kchai, DRG) if not given : A; ; %l ReKeyGen(sk;, pk;)
if Keorrupted N Kehat 7# 0 : o & ReEnc(A4;,;,C)
return L , if (i,C) € Chonest * Chonest-add{(}7,C")
else return b if (i,C) € Cepar :

Ccha|.add{(}j, C/)
ICcha|.add{(}skj)

return C’
oifr;’acllenge (C[), Cl? i7 ja Al,])

if |Co| # |C1] : return L

if (4,0), (i, C1) & Chonest : Teturn L

if (4,7, Ai ;) & Tronest : return L

c’ & ReEnc(A;,;,Cs)

Chonest-add{(}j, C"), Cenat-add{(}J, C,)7’Cchal-add{(}sk]-)
called <« false

!
return C

Fig. 21: The adaptive post compromise game PostComp. This is stronger than the selective
version as the adversary can choose to corrupt keys as a result of challenge queries, subject
to the trivial win condition.

Definition 18. A PRE scheme PRE is said to have e-Adaptive Post-Compromise Security
(e-adPCS) if for all PPT adversaries A = (Ag,A1):
|Pr [ad—PostComp&(l)‘) =1]—Pr [ad—PostComph(l)‘) =1]| <e

where ad-PostComp A»FRE s defined in [Figure 21 If € is negligible as parameterised by
the security parameter, then we say the scheme has Adaptive Post-Compromise Security

(adPCS).

H Weak key privacy of our construction

We now demonstrates that pcBV-PRE has weak key privacy (??). Recall that this property
is necessary in order to use the results of [FKKP1§|.
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Theorem 8. pcBV-PRE has weak key privacy.

Proof. Once again, the proof replaces the public key and ReSample outputs associated to
identity labels i« = 1,...,x by uniform values one by one. This is permissible due to the
RLWE assumption. Define the following sequence of games:

— Gameg: The weakKPl;"PRg(l)‘, 1%) game.

— Game] for i = 1,...,x: The same as Game;_; apart from the fact that pk; is replaced
with a uniform value.
— Game; for @ = 1,...,k: The same as Game, except that the output of calls to

ReKeyGen(-, pk;) are replaced by a uniform value.

The transitions or game hops occur in the order Gamey — Game] — Game; — --- —
Game]. — Game, . We first note that the secret keys sky, ..., sk, are never used in any of the
games so we ignore these throughout this proof. Game;_; can be seen to be indistinguishable
from Game, by acknowledging that the difference between these games is that a single
RLWE public key is replaced by a uniform value. Next we need to argue that Game, is
indistinguishable from Game;. To do so, we consider a sequence of hybrids between Game),
and Game; denoted as Game] ; where j = 0... [logy(q)/r]. Essentially, in Game; ;, the first j
calls of the form ReSample(pk;) are replaced by uniform random values. Recall that for both
these games, the public key pk;, = (a1, az2) is a uniform random value itself. Therefore, the
difference between Gameg,j and Game;j_s_1 is that the (j + 1) call to ReSample denoted by
(b1, bo) either has the form (ajv + €', agv +€”) or takes the form of a uniform random value.
Considering the pairs (a1,b1) and (ag, bz), an adversary cannot distinguish between Game; ;

and Ga me;’ ;j+1 With non-negligible advantage according to the RLWE assumption. This holds

for j = 0,...,[logy(q)/r] —1. Since we have Game] , = Game; and Game] 1,4 (o)/r] = Game;,
we can conclude that Game;, is indistinguishable from Game; by using the RLWE assumption
multiple times. Iterating through i = 0 to x completes the proof. g
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