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Abstract. Cryptographic libraries often feature multiple implementa-
tions of primitives to meet both the security needs of handling private
information and the performance requirements of modern services when
the handled information is public. OpenSSL, the de-facto standard free
and open source cryptographic library, includes mechanisms to differen-
tiate the confidential data and its control flow, including run-time flags,
designed for hardening against timing side-channels, but repeatedly acci-
dentally mishandled in the past. To analyze and prevent these accidents,
we introduce Triggerflow, a tool for tracking execution paths that, as-
sisted by source annotations, dynamically analyzes the binary through
the debugger. We validate this approach with case studies demonstrat-
ing how adopting our method in the development pipeline would have
promptly detected such accidents. We further show-case the value of the
tooling by presenting two novel discoveries facilitated by Triggerflow: one
leak and one defect.
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1 Introduction

Attacks based on Side-Channel Analysis (SCA) are ubiquitous in microarchitec-
tures and recent research [22, 20] suggest that they are much harder to mitigate
than originally believed due to flawed system microarchitectures. Constant-time
programming techniques are arguably the most effective and cheapest counter-
measure against SCA. Functions implemented following this approach, execute
and compute results time-independent from the secret inputs, thus avoiding in-
formation leakage.

Implementing constant-time code requires a highly specialized and ever grow-
ing skill set such as SCA techniques, operating systems, compilers, signal pro-
cessing, and even hardware architecture; thus it is a difficult and error-prone
task. Unfortunately, code is not always easily testable for SCA flaws due to code
complexity and the difficulty of creating the tests themselves. Moreover, cryp-
tography libraries tend to offer several versions of a single algorithm to be used
in particular cases depending on the users’ needs, thus amplifying the confusion
and the possibility of using SCA vulnerable functions.
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To that end, we present Triggerflow, a tool that allows to selectively track
code paths during program execution. The approach used by Triggerflow is ele-
gant in its simplicity: it reports code paths taken by a given program according
to the annotations defined by the user. This enables designing simple regres-
sion tests to track control flow skew. Moreover, the tool is extendable and can
be integrated in the Continuous Integration (CI) development pipeline, to au-
tomatically test code paths in new builds. Triggerflow can be used both as a
stand-alone tool to continuously test for known flaws, and as a support tool for
other SCA tools when the source code is available. It easily allows examining
code execution paths to pinpoint code flaws and regressions.

We motivate our work and demonstrate Triggerflow’s effectiveness by adapt-
ing it to work with OpenSSL due to its rich history of known SCA attacks,
its wide usage in the Internet, and its rapid and constant development stage.
We start by back-testing OpenSSL’s previously known and exploited code flaws,
where our tool is able to easily find and corroborate the vulnerabilities. Addition-
ally, using Triggerflow we identify new bugs and SCA vulnerabilities affecting
the most recent OpenSSL 1.1.1a version.

In summary, Section 2 discusses previous problems and pitfalls in OpenSSL
that led to side-channel attacks. Section 3 describes the Triggerflow tool and
Section 4 its application in a CI setting. We analyze in Section 5 the new bugs
and vulnerabilities affecting OpenSSL, and in Section 6 we back-test known
OpenSSL SCA vulnerabilities to validate the tool’s effectiveness. Section 7 looks
at related work. In Section 8 we discuss the limitations of our tool, and finally
we conclude in Section 9.

2 Background

2.1 The OpenSSL BN_FLG_CONSTTIME Flag

In 2005, OpenSSL started considering SCA in their threat model, introducing
code changes in OpenSSL version 0.9.7. The (then new) RSA cache-timing at-
tack by Percival [25] allowed an attacker to recover secret exponent bits during
the sliding-window exponentiation algorithm on systems supporting simultane-
ous multi-threading (SMT). As a countermeasure to this attack, the OpenSSL
team adopted two important changes: Commit 3 introduced the constant-time
exponentiation flag and BN_mod_exp_mont_consttime, a fixed-window modu-
lar exponentiation function; and Commit 4 implemented exponent padding. By
combining these countermeasures, OpenSSL aimed for SCA resistant code path
execution when performing secret key operations during DSA, RSA, and Diffie-
Hellman (DH) key exchange, with the goal of performing exponentiation reason-
ably independent of the exponent weight or length.

The concept is to set the BN_FLG_EXP_CONSTTIME flag on BIGNUM variables
containing secret information: e.g. private keys, secret prime values, nonces, and
integer scalars. Once set, the flag drives access to the constant-time security crit-
ical modular exponentiation function supporting the flag. Due to performance
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reasons, OpenSSL kept both functions: the constant-time version and the non
constant-time version of the modular exponentiation operation. The library de-
faults to the non constant-time function since it assumes most operations are
not secure critical, thus they can be done faster, but upon entry to the non
constant-time function the input BN variables are checked for the flag and if
the program detects the flag is set, it takes an early exit to the constant-time
function, otherwise it continues the insecure code path.

As research and attacks on SCA improved, Acıiçmez et al. [1] demonstrated
new SCA vulnerabilities in OpenSSL. More precisely, the authors showed that
the default BN division function, and the Binary Extended Euclidean algorithm
(BEEA) function—used in OpenSSL to perform modular inversion operations—
are highly dependent on their input values, therefore they leak enough informa-
tion to perform a cache-timing attack. This discovery forced the introduction
of Commit 14, implementing the BN_div_no_branch and BN_mod_inverse_no-
_branch functions, offering a constant-time implementation for the respective
operations. Moreover, BN_FLG_EXP_CONSTTIME was renamed to BN_FLG_CONST-
TIME to reflect the fact that it offered protection not only to the modular expo-
nentiation function, but to other functions as well.

2.2 Flag Exploitation

During the last three years, the BN_FLG_CONSTTIME flag has received a fair
amount of attention due to its flawed effectiveness as an SCA countermeasure
in OpenSSL. Pereida García et al. [27] showed the issues of having an insecure-
by-default approach in OpenSSL by exploiting a flaw during DSA signature
generation due to a flag propagation issue. Performing a Flush+Reload [39]
attack, the authors fully recover DSA private keys.

Following the previous work, Pereida García and Brumley [26] identified yet
another flaw in OpenSSL, this time involving the BN_mod_inverse function.
Failure to set the flag allowed the authors to successfully perform a cache-timing
attack using Flush+Reload to recover secret keys during ECDSA P-256 sig-
nature generation in SSH and TLS protocols.

Building on top of the previous works, two research teams [35, 3] discovered
independently several SCA flaws in OpenSSL. On the one hand, Aldaya et al. [3]
developed and used a simple but effective methodology to find vulnerable code
paths in OpenSSL. The authors tracked SCA vulnerable functions in OpenSSL
using GDB by placing breakpoints on them. They executed the RSA key gen-
eration command, hitting the breakpoints and thus reveling flaws in OpenSSL’s
RSA key generation implementation. On the other hand, [35] analyzed the RSA
key generation implementation and also discovered calls to the SCA vulnerable
GCD function. In both cases, the authors noticed a combination of non constant-
time functions in use, failure to set flags, and flags not propagated to BIGNUM
variables caused OpenSSL to leak key bits. Moreover, both works demonstrate
that it is possible to retrieve enough key bits to fully recover an RSA key after a
single SCA trace using different cache techniques and threat models (page-level
or Flush+Reload).
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The previous works highlight a clear and serious issue surrounding the constant-
time flag. The developers need to identify all the possible security critical cases in
OpenSSL where the flag must be set in order to prevent SCA attacks, which has
proven to be a laborious and clearly error-prone task. Even if done thoroughly
and correctly, the developers must still ensure code changes do no introduce
regressions surrounding the flag.

3 Tracking Execution Paths with Triggerflow

OpenSSL’s regression-testing framework has significantly improved over time,
notably following the HeartBleed vulnerability. Nevertheless, the framework has
its limitations, with real-world constraints largely imposed by portability require-
ments weighed against engineering effort. With respect to the BN_FLG_CONST-
TIME flag, the testing framework does not provide a mechanism to track function
calls or examine the call stack. This largely contributes to the root cause of the
previously discussed vulnerabilities surrounding the BN_FLG_CONSTTIME flag: the
testing framework cannot accommodate a reasonable regression test in these in-
stances.

With this motivation, our work began by designing Triggerflow1: a tool for
tracking execution paths. After marking up the source code with special com-
ments, its purpose is to detect when code hits paths of interest. We wrote Trig-
gerflow in Ruby2 and it uses GDB3 for inspecting code execution. In support of
Open Science [18], Triggerflow is free and open source, distributed under MIT
license.

We chose GDB since it provides all the required functionality: an established
interface for choosing trace points and inspecting the program execution, as well
as a machine-readable interface4. Additionally, GDB supports a wide variety of
platforms, architectures, and languages.

Architecture. The high level concept of Triggerflow is as follows.

1. The inputs to Triggerflow are: a directory with annotated source code, in-
structions to build it, commands to run and debug, and optionally patches
to apply before building.

2. Triggerflow scans the source code for special keywords, which are typically
placed in comments near related lines of code, and builds a database of
annotations.

3. Triggerflow commences the build, then runs the given commands (triggers)
under GDB, instructed to set breakpoints at all points of interest.

4. When GDB reports hitting a breakpoint, Triggerflow inspects the backtrace
supplied by GDB, makes decisions based on the backtrace and stored anno-
tations, and possibly logs the code path that led to it.

1 https://gitlab.com/nisec/triggerflow
2 https://www.ruby-lang.org/en/
3 https://www.gnu.org/software/gdb/
4 https://sourceware.org/gdb/onlinedocs/gdb/GDB_002fMI.html

https://gitlab.com/nisec/triggerflow
https://www.ruby-lang.org/en/
https://www.gnu.org/software/gdb/
https://sourceware.org/gdb/onlinedocs/gdb/GDB_002fMI.html
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In addition to verbose raw logging, Triggerflow provides output in Graphviz
DOT format, allowing easy conversion to PDF, image, and other formats.

Annotations. Using marked up source code allows leveraging existing tools
for merging code changes to (semi)automatically update annotations to reflect
codebase changes. It is best when annotations are maintained in the original
code, and updated by the author of related changes, but for the purposes of
code analysis by a third party, Triggerflow also supports storing annotations
separately, in form of patches that define annotation context. Our tool currently
supports four different annotations, described below and illustrated in Figure 1.

1. TRIGGERFLOW_POI is a point of interest and it is always tracked. The Trig-
gerflow tool reports back every time the executing code steps into it.

2. TRIGGERFLOW_POI_IF is a conditional point of interest, thus it is condition-
ally tracked. The Triggerflow tool reports back every time the code annotated
is stepped into and the given expression evaluates to true.

3. TRIGGERFLOW_IGNORE is an ignore annotation that allows to safely ignore
specific code lines resulting in code execution paths that are not interesting
(false positives).

4. TRIGGERFLOW_IGNORE_GROUP is a group ignore annotation that allows to
safely ignore a specific code execution path if and only if every line marked
with the same group ID is stepped into.

1 /* code before */
2 if(a % 2 == 0) // TRIGGERFLOW_POI
3 /* code after */

1 if(something) {
2 a = publickey; //

TRIGGERFLOW_IGNORE_GROUP
ec_publickey

↪→
↪→

3 }
4 call_suspicious_code(a) //

TRIGGERFLOW_IGNORE_GROUP
ec_publickey

↪→
↪→

1 /* code before */
2 call_suspicious_code(a) //

TRIGGERFLOW_POI_IF a.private()↪→
3 /* code after */

1 int call_suspicious_code(int a) {
2 // TRIGGERFLOW_POI
3 /* something interesting with a */
4 }
5 call_suspicious_code(public_key) //

TRIGGERFLOW_IGNORE↪→

Fig. 1. Annotations currently supported by Triggerflow.

3.1 Annotating OpenSSL

Using the known vulnerable code paths previously discussed in Section 2.2, we
created a set of annotations for OpenSSL with the intention to track potential
leakage during secure critical operations in different public key cryptosystems
such as DSA, ECDSA, RSA, as well as high-level CMS routines.

Following a direct approach, as Figure 2 illustrates we placed TRIGGERFLOW-
_POI annotations to track the code path execution of the most prominent infor-
mation-leaking functions previously exploited. We placed an annotation in the
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BN_mod_exp_mont function immediately after the early exit to its constant-time
counterpart. In the BN_mod_inverse function, we placed a similar annotation
after the early exit. We added an annotation at the top of the non constant-
time BN_gcd function since it is known for being previously used during security
critical operations but this function does not have an exit to a constant-time
implementation, i.e., it is oblivious to the BN_FLG_CONSTTIME.

On the ECC code we annotated the ec_wNAF_mul function. This function
implements wNAF scalar multiplication, a known SCA vulnerable function ex-
ploited several times in the past [12, 8, 28, 4, 2]. Similar to the previous cases,
upon entry to this function, an early exit is available to a more SCA secure Mont-
gomery ladder scalar multiplication ec_scalar_mul_ladder, thus we added the
annotation immediately after the early exit.

The strategy to annotate BN_div varies depending on the OpenSSL branch.
For branches up to and including 1.1.0, the function checks the flag on BN
operands and assigns no_branch = 1 if it detects the flag. Hence we annotate
with a no_branch != 1 conditional breakpoint. The master and 1.1.1 branches
recently applied SCA hardening to its callee bn_div_fixed_top to make it obliv-
ious to the flag. The corner case is when the number of words in BN operands
are not equal, and inside the resulting data-dependent control flow we add an
unconditional point of interest annotation.

Ideally, the previous annotations should never be reached, since we assume
OpenSSL follows a constant-time code path during the execution of these secure
critical operations. Yet one of the most security-critical parts of the process is
marking false positive annotations. To give an idea of the scope of such marking,
with the above described point of interest annotations applied to the OpenSSL
1.1.0 branch, and no ignore annotations, Triggerflow identifies 84 potentially
errant code paths, provided with only a basic set of 25 triggers.

4 Continuous Integration

As previously discussed, our main motivation for Triggerflow is the need to test
for regressions in OpenSSL surrounding the BN_FLG_CONSTTIME flag. From the
software quality perspective, and given the previously exploited vulnerabilities
discussed later in Section 6, there is a clear need for an automated approach
that accounts for the time dimension and a rapidly changing codebase. Seem-
ingly small and insignificant changes can suddenly shift codepaths, and when
PRs are proposed and merged we want to be automatically informed. Using
code marked up for Triggerflow allows establishing CI, automatically testing
code for introducing unsafe codepaths. We propose (and deploy) the following
approach to establish an automatic CI pipeline using Triggerflow and GitLab’s
infrastructure, illustrated in Figure 3.

– Create a special Git repository containing Triggerflow configuration, trigger
list, annotations in form of Quilt5 patch queue, and a submodule containing

5 https://savannah.nongnu.org/projects/quilt

https://savannah.nongnu.org/projects/quilt
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1 int ec_wNAF_mul(const EC_GROUP *group, EC_POINT *r,
const BIGNUM *scalar,↪→

2 size_t num, const EC_POINT *points[],
const BIGNUM *scalars[],↪→

3 BN_CTX *ctx)
4 {
5 /* ... */
6 if ((scalar == NULL) && (num == 1)) {
7 return ec_scalar_mul_ladder(group, r,

scalars[0], points[0], ctx);↪→
8 }
9 }

10
11 if (scalar != NULL) { /* TRIGGERFLOW_POI */

1 int bn_div_fixed_top(BIGNUM *dv, BIGNUM *rm, const
BIGNUM *num,↪→

2 const BIGNUM *divisor, BN_CTX *ctc
x)

3 {
4 /* ... */
5 div_n = sdiv->top;
6 num_n = snum->top;
7
8 if (num_n <= div_n) {
9 /* TRIGGERFLOW_POI */

10 /* caller didn't pad dividend -> no
constant-time guarantee... */↪→

1 int BN_gcd(BIGNUM *r, const BIGNUM *in_a, const BIGNUM
*in_b, BN_CTX *ctx)↪→

2 {
3 BIGNUM *a, *b, *t; /* TRIGGERFLOW_POI */

1 BIGNUM *BN_mod_inverse(BIGNUM *in,
2 const BIGNUM *a, const BIGNUM

*n, BN_CTX *ctx)↪→
3 {
4 BIGNUM *A, *B, *X, *Y, *M, *D, *T, *R = NULL;
5 BIGNUM *ret = NULL;
6 int sign;
7
8 if ((BN_get_flags(a, BN_FLG_CONSTTIME) != 0)
9 || (BN_get_flags(n, BN_FLG_CONSTTIME) != 0)) {

10 return BN_mod_inverse_no_branch(in, a, n, ctx);
11 }
12
13 bn_check_top(a); /* TRIGGERFLOW_POI */

1 int BN_mod_exp_mont(BIGNUM *rr, const BIGNUM *a, const
BIGNUM *p,↪→

2 const BIGNUM *m, BN_CTX *ctx,
BN_MONT_CTX *in_mont)↪→

3 {
4 /* ... */
5 if (BN_get_flags(p, BN_FLG_CONSTTIME) != 0
6 || BN_get_flags(a, BN_FLG_CONSTTIME) != 0
7 || BN_get_flags(m, BN_FLG_CONSTTIME) != 0)

{
8 return BN_mod_exp_mont_consttime(rr, a, p, m,

ctx, in_mont);↪→
9 }

10
11 bn_check_top(a); /* TRIGGERFLOW_POI */

Fig. 2. Top left: a TRIGGERFLOW_POI annotation in the wNAF scalar multiplication
function after the early exit. Middle left: a TRIGGERFLOW_POI annotation during BN_div
execution. Bottom left: a TRIGGERFLOW_POI annotation in OpenSSL’s insecure BN_gcd
function. Top right: a TRIGGERFLOW_POI annotation in OpenSSL’s BN_mod_inverse
function after the early exit. Bottom right: a TRIGGERFLOW_POI annotation in BN_mod-
_exp_mont after the early exit.

Get next unrebased commit

Rebase CI repo on it

Conflicts?Await manual intervention

OpenSSL upstream

CI repo

Push to CI repo, trigger build
Yes No

Fig. 3. CI flow illustrated.
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code to test (in our case, OpenSSL). This repository is hosted on a GitLab
instance and includes the description of the testing process in GitLab format,
.gitlab.yml.

– Two runners are established on separate machines, connected to the GitLab
instance. A runner is automated testing software which creates a container
and runs testing routines according to rules in .gitlab.yml. We maintain
two runners with different architectures, x86_64 and aarch64. The runners
are based in our infrastructure. When new code is pushed into the GitLab
repository and .gitlab.yml is present, runners execute the tests and report
status back to GitLab, where results are then reviewed.

– A separate software (repatcher) is continuously monitoring main OpenSSL
code repository for updates and adapting annotations to changed code. If
changes can be applied automatically, repatcher6 pushes updated code to
GitLab where it is tested. Otherwise, a human is notified to resolve conflicts
and update the patches manually. After that, repatcher’s work automatically
continues. Repatcher is based in our infrastructure.

This process is independent of any support from the original developers. Of
course, a better approach is to have developers themselves integrate and maintain
Triggerflow annotations upstream, or potentially enforce them at compile time.

Unfortunately, successful deployment of such a CI pipeline depends on code
being buildable on every upstream commit, which is sometimes not the case
with OpenSSL. Still, with minimal manual inspection it makes a great automatic
testing setup: Figure 4 illustrates our CI testing OpenSSL’s master branch us-
ing Triggerflow. The results of our CI system instance are public7, monitoring
master, 1.1.1 and 1.1.0 branches of OpenSSL.

Average build of OpenSSL on our runners takes 85 s on x86_64 (440 s on
aarch64), and Triggerflow takes average of 26 s to run our set of triggers on
x86_64 (92 s on aarch64).

Status Pipeline Commit Stages

 00:07:42
  1 hour ago

 00:07:52
  1 hour ago

 00:07:46
  1 hour ago

 
 passed  

patched/mas…   f3b5c690
[master:c8147d37ccaaf28c…

 passed #1494 by 
 patched/mas…   81d96fbd

[master:fe16ae5f95fa86ddb…

 passed #1493 by 
 patched/mas…   9fb8e7df

[master:0b76ce99aaa5678b…

 

 

#1495 by
latest

Fig. 4. GitLab CI running: Triggerflow testing OpenSSL code.

6 https://gitlab.com/nisec/repatcher
7 https://gitlab.com/nisec/openssl-triggerflow-ci

https://gitlab.com/nisec/repatcher
https://gitlab.com/nisec/openssl-triggerflow-ci
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5 New Bugs and Vulnerabilities

With the tooling in place, our first task was to examine functionality issues that
could arise with applying the annotation patches to a shifting codebase. The EC
module recently underwent a quite heavy overhaul regarding SCA security [33].
We used that as a case study, and in this section we present two discoveries
facilitated by Triggerflow: one leak and one software defect.

5.1 A New Leak

We started from Commit 1 and the Triggerflow unit test in question is ECDSA
signing in ecdsa_ossl.c. The test passed at that commit, hence the tooling
proceeded with subsequent commits. They all passed unit testing, until reaching
Commit 2. The purpose of said commit was to fix a regression in the padding
of secret scalar inputs in the timing-resistant elliptic curve scalar multiplication,
using the group cardinality rather than the generator order, supporting cryp-
tosystems where the distinction is relevant (e.g., ECDH and cofactor variants).
Figure 5 illustrates the failed unit test.

openssl dgst -sha512
-sign key.pem -out

data.sig data

ecdsa_sign_setup()
crypto/ec/ecdsa_ossl.c:115

EC_POINT_get_aff-
ine_coordinates_GFp()
crypto/ec/ec_lib.c:768

int_bn_mod_inverse()
crypto/bn/bn_gcd.c:161

Fig. 5. Insecure flow: projective to affine point conversion (abridged).

The fix. In this case, what the tooling is telling us is that the code is travers-
ing the insecure modular inversion path when converting from projective to
affine coordinates. Examining this function, it has always been oblivious to the
constant-time flag, yet academic results suggest that said conversion should be
protected [24, 23]. Put another way, Commit 2 is not the culprit—the function
is insecure by design. Instead of simply enabling the flag, we chose8 to add a
field_inv function pointer inside the EC_METHOD structure, alongside existing
pointers for other finite field operations such as field_mul and field_sqr. This
allowed us to unify the finite field inversion across the EC module, instead of
each function meticulously enabling the constant-time flag when calling BN_mod-
_inverse. Once unified, we can ensure default SCA hardening through a single
interface. We provided three different implementations for this pointer for three
different EC_METHOD instances:

1. EC_GFp_mont_method is the default for prime curves and pre-computes a
Montgomery arithmetic structure for finite field arithmetic. This is conve-
nient for inversion via FLT, which is modular exponentiation with a fixed
exponent and variable base—benefiting generously from the Montgomery

8 https://github.com/openssl/openssl/pull/8254

https://github.com/openssl/openssl/pull/8254
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arithmetic. Hence our field_inv implementation is a straightforward ver-
sion of FLT in this case.

2. EC_GFp_simple_method is a fallback method that contains much of the boil-
erplate code pointed to by several other EC_METHOD implementations. For
example, those that implement their own custom arithmetic, such as NIST
curves that use Mersenne-like primes. Here, no Montgomery structure is
guaranteed to exist. Hence our field_inv implementation is blinding, com-
puting a−1 = b/(ab) with b chosen uniformly at random and the ab term
inverted via BN_mod_inverse.

3. EC_GF2m_simple_method is the only method for binary curves present in the
OpenSSL codebase. Here field_inv is a simple wrapper around BN_GF2m-
_mod_inv, which is already SCA-hardened with blinding.

With these SCA-hardened field_inv function pointers in place, we then
transitioned all finite field inversions in the EC module from BN_mod_inverse
and BN_GF2m_mod_inv to our new pointer, including that of the projective to
affine conversion. After these changes, Triggerflow unit tests were successful.

5.2 A New Defect

The previous unit test failure is curious in the sense that Commit 2 was essen-
tially unrelated to projective to affine conversion. As stated above, that conver-
sion has always been oblivious to the constant-time flag. We were left with the
question of how such a change could trigger an insecure behavior in an unrelated
function.

Using the debugger to compare the internal state when executing EC_POINT-
_get_affine_coordinates_GFp in Commit 2 and its parent, we discovered that,
until the latter, a temporary variable storing one of the inputs to BN_mod-
_inverse was flagged as constant-time even if the flag was not explicitly set
with the dedicated function. The temporary variable in question was obtained
through a BN_CTX object, a buffer shared among various functions that sim-
ulates a hardware stack to store BIGNUM variables, minimizing costly memory
allocations—we defer to [13] for more details on the internals of the BN_CTX
object.

In this case, the BN_CTX object is created in the top level function implement-
ing signature generation for the ECDSA cryptosystem, and is shared among most
of its callees and descendants; the analysis led to discover that the BN_CTX buffer
retained the state of BN_FLG_CONSTTIME for each stored BIGNUM variable, allow-
ing functions to alter the value of BN_FLG_CONSTTIME, and thus occasionally the
execution flow, of subsequently called functions sharing the same BN_CTX.

The fix. This long-standing defect raises several concerns:

– as in the case that led to its discovery, retrieving a BIGNUM variable from
the BN_CTX with BN_FLG_CONSTTIME unexpectedly set, might lead to unin-
tentional execution of a timing-resistant code-path. This could be perceived
as a benign effect, but hides unexpected risks as it generates false negatives



Triggerflow: Regression Testing by Advanced Execution Path Inspection 11

during security analysis. Moreover, changes as trivial as getting one more
temporary variable from the shared BN_CTX—or even just changing the or-
der by which temporary variables are retrieved—can influence the execution
flow of seemingly unrelated functions, eluding manual analysis and defying
developer expectations;

– a BIGNUM variable with BN_FLG_CONSTTIME unexpectedly set could reach
function implementations that execute in variable time and should never
be called with confidential inputs marked with BN_FLG_CONSTTIME. Such
functions diligently check for API abuse and raise exceptions at run time:
this defect can then result in unexpected application crashes or potentially
expose to bug attacks;

– automated testing is made fragile, in part for the false negatives already
mentioned, but additionally because the test suite becomes not representa-
tive of external application usage of the library, as different usage patterns
of a shared BN_CTX in unrelated functions lead to different execution paths.
Finally, the generated failure reports could be misleading as changes in un-
related functions might end up triggering errors in other modules.

The fix itself was relatively straightforward, and consisted in unconditionally
clearing BN_FLG_CONSTTIME every time a BIGNUM variable is retrieved from a
BN_CTX9.

What is remarkable is how Triggerflow assisted in the discovery of a defect
that had been unnoticed for over a decade, automating the interaction with the
debugger to pinpoint which revisions triggered the anomalous behavior.

6 Validation

In order to validate our work, we present next a study of the known flaws briefly
discussed in Section 2.2 that led to several SCA attacks, security advisories,
and significant manpower downstream to address these issues. We present these
flaws as case studies, briefly discussing the root cause, security implications, and
the results of running our tooling against an annotated OpenSSL. We separate
the cases by cryptosystem and at the same we (mostly) follow the chronological
discovery of these flaws.

As part of the validation, we used the same OpenSSL versions as in the
original attacks. To that end, we forked OpenSSL branches on the respective
versions and then, we applied the set of annotations previously discussed in
Section 3.1. This approach allowed us to quickly back test and validate the
effectiveness of our tooling to detect potential leakage in OpenSSL.

The list of cases presented here is not exhaustive but serves three purposes:

1. it gives insight to the types of flaws that our Triggerflow is able to find;
2. it shows it is not a trivial task to do, let alone automate; and

9 https://github.com/openssl/openssl/pull/8253

https://github.com/openssl/openssl/pull/8253
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3. it demonstrates the fragility of the BN_FLG_CONSTTIME countermeasure in-
troduced 14 years ago and the need of a secure-by-default approach in cryp-
tography libraries such as OpenSSL.

Moreover, the flaws and vulnerabilities presented in this section and in Sec-
tion 5 demonstrate the effectiveness and efficiency of integrating Triggerflow to
the development pipeline. Maintaining annotations, either as separate patches
or integrated in the code base, might be seen as tedious or error-prone but the
automation benefits outweigh the disadvantages. On the one hand, maintaining
annotations does not require deep and specialized understanding of the code,
compared to manually finding and triggering all the possible vulnerable code
paths across several platforms, CPUs, and versions. On the other hand, a mis-
placed annotation does not introduce flaws nor vulnerabilities, since they are
used only for testing and reporting purposes.

6.1 DSA

The DSA signature generation implementation in OpenSSL has arguably the
longest and most troubled history of SCA issues. In 2016, a decade after BN-
_FLG_CONSTTIME and the constant-time exponentiation function countermea-
sures were introduced, Pereida García et al. [27] discovered that the constant-
time path was not taken due to a flag propagation issue. The authors noticed
that BN_copy effectively copies the content from a BIGNUM variable to another
but it fails to copy the existing flags, thus flags are not propagated and the
constant-time flag must be set again. This issue left the DSA signature genera-
tion vulnerable to cache-timing attacks for more than a decade. To test this issue,
we pointed Triggerflow at our annotated OpenSSL_1_0_2k branch, resulting in
Figure 6 and therefore correctly reporting the flaw.

openssl dgst -sha512 -sign
key.pem -out data.sig data

dsa_sign_setup()
dsa_ossl.c:285

BN_mod_exp_mont()
bn_exp.c:421

Fig. 6. Triggerflow detecting CVE-2016-2178, the flawed CVE-2005-0109 fix
(abridged).

The authors provided a fix for this issue in Commit 5, but at the same time
they introduced a new flaw in the modular inversion operation during DSA sig-
nature generation. This new vulnerability was enabled due to a missing constant-
time flag in one of the input values to the BN_mod_inverse function. At that
time, the flaw was confined to the development branch, subsequently promptly
fixed in Commit 6, thus it did not affect users. Figure 7 shows the result of
pointing Triggerflow to OpenSSL in Commit 5, detecting the flawed fix.

Later in 2018, Weiser et al. [36] found additional SCA vulnerabilities in DSA.
The authors exploited a timing variation due to the BIGNUM structure to re-
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openssl dgst -sha512 -sign
key.pem -out data.sig data

dsa_sign_setup()
dsa_ossl.c:291

BN_mod_inverse()
bn_gcd.c:241

Fig. 7. Triggerflow detecting the flawed CVE-2016-2178 fix (abridged).

cover DSA private keys, an unrelated issue to the BN_FLG_CONSTTIME flag. How-
ever, the fix provided for this issue in Commit 8 was incomplete, and moreover
it introduced a new SCA flaw, once again due to not setting a flag properly.
Triggerflow detected this flaw (see Figure 8) in the OpenSSL_1_1_1 branch, later
fixed in Commit 9 but again only present briefly in development branches.

openssl dgst -sha512 -sign
key.pem -out data.sig data

dsa_sign_setup()
crypto/dsa/dsa_ossl.c:259

BN_mod_exp_mont()
crypto/bn/bn_exp.c:317

Fig. 8. Triggerflow detecting the flawed CVE-2018-0734 fix (abridged).

In the same work, the authors discovered that every time the library loads
a DSA private key, it calculates the corresponding public key following a non
constant-time code path due to a missing flag, and therefore is also vulnera-
ble to SCA attacks. In fact, Triggerflow previously detected this vulnerability
while back-testing Commit 5, suggesting that this issue was long present in the
codebase and could have been detected earlier. This issue was recently fixed in
Commit 7.

6.2 ECDSA

OpenSSL’s ECDSA implementation has also been affected by SCA leakage.
Pereida García and Brumley [26] discovered that the BN_FLG_CONSTTIME flag
was not set at all during ECDSA P-256 signature generation. More specifically,
the modular inversion operation was performed using the non constant-time path
in the BN_mod_inverse function, thus leaving the scalar k vulnerable to SCA
attacks.

openssl dgst -sha512 -sign
key.pem -out data.sig data

ecdsa_sign_setup()
ecs_ossl.c:182

BN_mod_inverse()
bn_gcd.c:238

Fig. 9. Triggerflow detecting CVE-2016-7056 (abridged).

Similar to the previous case and in order to back-test this issue, we pointed
Triggerflow to the annotated OpenSSL_1_0_1u branch and then we generated
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ECDSA signatures, triggering the breakpoints. The tool reported back an inse-
cure usage of the modular inversion function as shown in Figure 9. The flag was
not set in the nonce k prior to the modular inversion operation. Surprisingly, this
issue is still present in the OpenSSL 1.0.1 branch although the authors provided
a patch for it, mainlined by the vast majority of vendors. It is worth mentioning
the OpenSSL 1.0.1 branch reached EOL around the same time as the work—we
assume that is the reason the OpenSSL team did not integrate it.

6.3 RSA

In 2018, two independent works [35, 3] discovered several SCA flaws during RSA
key generation in OpenSSL. OpenSSL’s RSA key generation is a fairly complex
implementation due to the use of several different algorithms during the process.
It requires the generation of random integers; testing the values for primality;
computing the greatest common divisor and the least common multiple, using
secret values as input. For all of the previous reasons, it is not trivial to implement
a constant-time RSA key generation algorithm. Both research works identified
missing flags, flags set in the wrong variable, and a direct call to the non constant-
time function BN_gcd as the culprits enabling the attacks.

openssl genpkey
-algorithm RSA -out
key.pem -pkeyopt

rsa_keygen_bits:1024

pkey_rsa_keygen()
rsa_pmeth.c:749

BN_MONT_CTX_set()
bn_mont.c:450

witness()
bn_prime.c:356

rsa_builtin_keygen()
rsa_gen.c:154

BN_mod_inverse()
bn_gcd.c:241

BN_mod_exp_mont()
bn_exp.c:422

BN_gcd()
bn_gcd.c:125

Fig. 10. Triggerflow detecting CVE-2018-0737 (abridged).

During back testing we used an annotated OpenSSL_1_0_2k branch, and we
pointed the Triggerflow tool at it. It successfully reported all the vulnerabilities
discovered by the authors. The authors submitted a total of four commits to
OpenSSL codebase to fully mitigate this issue—see Commit 10, Commit 11,
Commit 12, and Commit 13 for more details.

7 Related Work

The Triggerflow framework differs from other existing tools in being a tool to
assist the development process rather than a system for automated detection
and quantification of security vulnerabilities, and aims at being more general
purpose and not restricted to the field of cryptographic applications. As such, it
should be viewed as complementary rather than alternative to the approaches
listed below.
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Programming languages. Various works propose and analyze the option of
using specialized programming languages to achieve constant-time code genera-
tion and verification [10, 14], while others analyze the challenges [7] or opportu-
nities [31] of translating human-readable code into machine instructions through
compilers when dealing with cryptographic software and the need for SCA resis-
tant implementations. They differ from this work in the goal: our evaluation is
not based on a lack of timing-resistant implementations, but rather in assisting
the development process and making sure that insecure paths are not executed,
by mistake, with confidential inputs.

Black box testing. These practices are based on statistical analysis to estimate
the SCA leakage. dudect [29] applies this methodology measuring the timing of
the system under test for different inputs.

Static program analysis. These techniques refers to the analysis of the source
code [5, 38, 30] (building on the capabilities of the LLVM project to perform
the analysis) or annotated machine code [9] of a program to quantify leakages.
An alternative to this approach is represented by CacheAudit [17, 16] based on
symbolic execution, which is usually applied to smaller software or individual
algorithms as it requires more resources. BLAZER [6] and THEMIS [15] employ
static analysis to detect side-channels in Java bytecode programs. BLAZER in-
troduces a decomposition technique associated with taint tracking to discover
timing channels (or prove their absence) in execution branches tainted by se-
cret inputs. THEMIS combines lightweight static taint analysis with precise
relational verification to verify the absence of timing or response size side-
channels. Similar in spirit as it uses lightweight taint tracking, Catalyzr [32]
is a closed-source, commercial tool to detect potential leakage by filtering con-
ditional branches and array accesses after marking sensitive inputs; the authors
apply their tooling to the C-language MbedTLS library. All of these methods
share with Triggerflow the requirement of access to the source code of the tested
software (either direct or reasonably decompiled).

Dynamic program analysis. These techniques detect, measure, and accu-
rately locate microarchitecture leakage during the execution of the code in the
system. ctgrind [21], based on Valgrind memcheck, monitors control flow and
memory accesses for dependencies on secret data. Previous work [37, 36] uses
Dynamic Binary Instrumentation, adding instrumentation at run-time to col-
lect metadata and measurements directly to the binary code without altering
the execution flow of the program, independently providing extensible frame-
works with high accuracy and supporting leakage models for the most relevant
microarchitecture attacks. Relevant recent works employ symbolic execution to
detect side-channel leaks. CacheD [34] is a hybrid approach that combines DBI,
symbolic execution, taint tracking, and constraint solving, while the more re-
cent CaSym [11] employs cache-aware IR symbolic execution; both works then
combine different cache models to detect cache-based timing channels. SPEC-
TECTOR [19] uses similar symbolic execution techniques in combination with
speculative non-interference models to detect speculative execution leaks and
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optimization opportunities in the strategies used by compilers to implement
hardening measures.

Triggerflow is similar to Dynamic Program Analysis techniques with respect
to performing the evaluation when the software is actively running on the target
system. Although limited by requiring access to the source code, Triggerflow can
leverage this property and avoid any instrumentation: the tested binary is exactly
the one generated by the build process of the target, with the only requirement
of not stripping the debug symbols, to aid GDB in mapping function names and
the memory addresses of the routines included in the target software.

8 Limitations

Triggerflow requires access to the sources of the target software, and to annotate
it with markup comments as described in Section 3. Preferably, Triggerflow an-
notations should be maintained directly in the codebase of the upstream target
project, but Triggerflow includes support for versioning of annotation patches
for the analysis of third-party projects. Additionally, it is worth stressing that
Triggerflow does not automatically detect where to annotate the target code—
this goes beyond the tool capabilities. Instead, it relies on developer expertise to
annotate the execution paths of interest. As such, source code access is a limit
only for the analysis of closed-source third-party projects, which fall out of the
immediate scope of Triggerflow as an aid tool for the development process.

Triggerflow depends on the availability of GDB and Ruby on the target plat-
form, and is limited to the executables that can be debugged through GDB. This
is arguably a minor concern, with the only remarkable exception that debugging
through GDB inside a virtualized container usually requires overriding the de-
fault set of system call restrictions that is meant to isolate the supervisor from
the container, raising security concerns when running Triggerflow for third-party
CI and partially limiting the selection of available CI platforms.

The tools developed during this work can also be applied to other software
projects, not just OpenSSL. Triggerflow can work with any language GDB sup-
ports and is useful for analyzing and testing execution paths through any com-
plex project that meets the minimal requirements.

A case study. To substantiate the above claims and demonstrate the flexibility
of Triggerflow, we annotated the ECC portion of golang10. The documentation
states the P384 (pseudo-)class for NIST P-384 curve operations is not constant-
time. Indeed, the ScalarMult method is textbook double-and-add scalar mul-
tiplication. We placed a TRIGGERFLOW_POI annotation inside this method, and
used a golang ECDSA signing application as a trigger. Figure 11 shows the
result, confirming Triggerflow is not restricted to OpenSSL or the C language.

10 https://golang.org/pkg/crypto/elliptic/

https://golang.org/pkg/crypto/elliptic/
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main.main()
harness_ecdsa.go:33

crypto/ecdsa.Sign()
crypto/ecdsa/ecdsa.go:212

crypto/elliptic.(*Curve-
Params).ScalarBaseMult()

crypto/elliptic/elliptic.go:272

crypto/elliptic.(*Curve-
Params).ScalarMult()

crypto/elliptic/elliptic.go:255

Fig. 11. Triggerflow detecting an insecure scalar multiplication path in golang.

9 Conclusion

Triggerflow complements the results offered by any of the analysis techniques
described in Section 7: in large software projects like OpenSSL, pinpointing the
location of a detected leak might not be sufficient. Similarly to other crypto-
graphic libraries, OpenSSL often includes several implementations of the same
primitive, many of which are designed for performance and safe to use only
when all the inputs are public. When a leak is detected in one of these func-
tions, developers are challenged with the task of discovering why and how secret
data reached the insecure code path, rather than altering the location where the
leakage is reported. As demonstrated in Sections 5 and 6, Triggerflow can be suc-
cessfully and efficiently used to aid developers in these situations and, through
CI, prevent regressions in the handling of secret data.

Considering the high number of valid combinations of supported platforms
and build-time options for OpenSSL, and that the available implementations
and control flow depend on these specific combinations, Triggerflow is a good
solution to aid developers by exhaustively automating the BN_FLG_CONSTTIME
tests and prevent future regressions similar to the ones described in this work.

In the context of using Triggerflow with OpenSSL to monitor BN_FLG_CONST-
TIME, it should be mentioned that, security-wise, a secure-by-default approach
would be desirable: i.e., all BIGNUM are considered constant-time unless the pro-
grammer explicitly marks them as public, so that when alternatives exist, the
default implementation of each algorithm is the timing-resistant one, and in-
secure but more efficient ones need to be enabled explicitly and after careful
examination. On the other hand, such change has the potential for being disrup-
tive for existing applications, and is therefore likely to be rejected or implemented
over a long period of time to meet the project release strategy.

Future work. On top of continued development of the tool as discussed, we
plan to expand on this work in the future to widen the coverage of the OpenSSL
library and of the project apps and their options, by setting more triggers and
point of interest across multiple architectures and build-time options. In parallel,
to further demonstrate the capabilities of the tool we plan to apply a similar
methodology to other security libraries and cryptographic software, aiming at
uncovering, fixing, and testing related timing leaks.

Responsible disclosure. All PRs submitted as a result of this work were co-
ordinated with the OpenSSL security team. Following the GitHub PR URLs,
readers will find more extensive discussions of the security implications of the
identified leak and defect. To briefly summarize: (1) the leakage during pro-
jective to affine conversion does not appear to be exploitable with recent SCA
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hardening to the EC module—we speculate it can only be utilized in combina-
tion with some other novel leak, by which time the larger additional leak would
likely be enough independently; (2) while we were able to implement a straw
man application to demonstrate the BN_CTX defect (reaching unintended code
paths and inducing function failures), we were unable to locate a real-world
OpenSSL-linking application matching our PoC characteristics, nor any tech-
nique to exploit the defect within the OpenSSL library itself. We also filed a
report with CERT, summarizing our security findings.

Acknowledgments. This project has received funding from the European Re-
search Council (ERC) under the European Union’s Horizon 2020 research and
innovation programme (grant agreement No 804476).
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