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Abstract

Blockchain technology has immense potential. At the same time, it
is not always possible to scale blockchains. State Channels solve the
problem of scalability while increasing the blockchain’s speed and ef-
ficiency. State Channels present a workaround to current blockchains’
TPS (transaction per second) bottleneck. We used State Channels as a
foundation and created Game Channels. We built it around the needs
of the gambling market. We also developed Signidice PRNG as well as a
dispute resolution mechanism. Signidice uses unique digital signatures
and is also described below. The potential use of Game Channels tech-
nology is not only gambling; some types of online gaming may also be
able to use it.
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1 Introduction
Video games in general, and gambling in particular, require fast interaction
between players. Yet most blockchain systems fail to offer high–speed block
generation, and the average transaction time is too long as well. For instance,
Ethereum generates a new block approximately every 15 seconds [12], while
each transaction on average takes 6 minutes [18]. Obviously, this is too slow
for gaming. Moreover, the transaction fees required will increase the overall
session costs.

Layer 2 solutions [20] are designed to remedy this situation. These operate
"on top" of existing blockchains. One of these solutions is state channels. In
this paper we will cover DAO.Casino’s state channels, focusing on gambling
implementation options.

1.1 State Channels overview

State channels incorporate instant zero–fee settlements between two channel
parties introduce generalized extended functionality to the blockchains with
which they are associated. A State Channel operates as follows [4]:

1. Part of the blockchain state is locked via a smart contract, so that a
specific set of participants must completely agree with each other to
update this state. This state is called the state deposit.
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2. Participants update the state amongst themselves by constructing and
signing transactions that are submitted to the blockchain.

3. Finally, participants store the state back to the blockchain, which closes
the state channel.

In the ideal scenario blockchain participants interact with the channel
twice: when the channel is opening and and when the channel is closed in
an authorized manner with the updated state deposit.

Should participants disagree over a result, the channel state is then changed
to a dispute; the smart contract then acts as an arbitrator in the dispute
resolution process.

1.2 Requirements for state channels

Before going into any further detail about state channels, we need to define
the basic security requirements. Coleman, Horne and Xuanji [5] specify the
following two requirements:

• Trustlessness - parties who entrust state to a properly initialized state
channel should not significantly increase the risk of that state being
manipulated.

• Finality - state channel operations have the same degree of finality and ir-
reversibility as the analogous operations performed directly on the chain
itself.

Additional security and computational requirements come from the gambling
industry:

• Minimal communication complexity in state channels.

• Provably fair random number generation support.

• Minimal time required for random number generation.

• Instant verification of randomly generated numbers.

• Once either party makes a bet, one of the parties has to pay the debt to
the other at some point.

As long as the above requirements are met, fair and convenient gambling
is available to all parties involved.
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1.3 Related works

Payment channels [1] are similar to state channels, but a state deposit stores
only participant balances. Payment channel networks are built from multiple
separate channels that can be coupled when needed. The most popular imple-
mentations of the approach are The Lightning Network for Bitcoin [15] and
The Raiden Network for Ethereum [16]. Given that payment channels store
no game data, using them in the industry is not practical.

State channels were first described in detail by Jeff Coleman in [4] and were
later considered in other works [21, 14, 8]. Generalized State Channels defined
in [5] represent another step forward, enabling users to install new function-
ality into an existing channel without touching the blockchain. A similar idea
was independently developed and implemented in Perun [6]. To make state
channels more trustworthy, McCorry et al [13] defined tools preventing execu-
tion fork attacks. However, all these works considered general state channel
applications without focusing on the needs of the gambling industry.

Daniel Kraft independently described protocol for turn-based games which
also called Game Channels [9]. This protocol was implemented as part of
XAYA Game Library [24]. FunFair [10] offers a proprietary implementation of
state channels called Fate Channels. In particular, it includes a provably fair
random numbers generator based on the commit–reveal pattern for seed gen-
eration. Magmo [3] developed a framework supporting multiplayer channels.
Acebuster designed state channels tailored to poker [11]. It is noteworthy that
all state channel implementations have limitations in terms of the game types
supported.

1.4 DAO.Casino’s solution

For the purposes of this paper all games meeting the following conditions shall
be defined as simple pvp–games:

• Two parties only (e.g. a casino vs. a player);

• The game logic may require random number generation;

• When either party makes a move, a certain end state can be traced to
choose the winner and/or distribute funds among the participants.

We offer a Game Channel technology that allows launching blockchain-based
simple pvp–games without fees for additional transactions, and with zero de-
lays between moves/rounds. This solution meets the above–mentioned require-
ments for state channels.
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Game channels is an instance of state channels tailored to the needs of
the gambling industry. Modification of the Signidice [19] algorithm is used
for provably fair random number generation within a game channel. Signidice
generates random numbers from a unique digital signature of one player and
a random seed from the other player. It allows a reduction in communication
complexity in comparison with the commit–reveal RNG scheme.

This paper is organized as follows. Section 2 gives basic notations, defi-
nitions and a simplified scheme for game channels. In section 3 we provide
detailed coverage of the orignal game channel protocol. Section 4 covers a
modification of the original protocol for the two player case and comments on
delegating blockchain interactions to a third party.

2 Preliminaries
In this section we introduce definitions and notation that will be used through-
out the paper.

We denote the set of integers modulo an integer n by Zn. When writing
x

R←− S we mean that x is chosen uniformly at random from the set S. By H
we denote some cryptographic hash function.

The communication model considers a point–to–point channel between two
parties. One of them may be a malicious adversary. The adversary can diverge
from the specified protocol in any way.

2.1 Safety and liveness of game channels

Liveness of game channels assures that there is always a result for each of the
channel participants within a round. Round results within the channel can
be saved on–chain any time, with a submission window of sufficient size left
to avoid miner attacks. Thus, game channels rely on the blockchain liveness.
Simply put, the exact state sent by the channel participants must always be
locked in the blockchain. It is assumed that the state is accepted and signed by
all channel participants. Given the above, it is important that all participants
have stable Internet connections free of significant interruptions.

The safety of a game channel also relies on the safety of the blockchain. It
assures that all game channel participants obtain a valid and identical result.
Analyzing intra–channel activities, we can suggest a case when a participant
does not respond to messages sent to him via the channel. There is no telling
whether an actual network failure occurred or a participant deliberately gave
no response. As far as state channels are concerned, the participant availability
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issue is expected to be resolved through implementing some procedure for
obtaining a valid result even when one of the participants is unavailable. In
game channels the relevant functions are integrated into the smart contract
responsible for dispute resolution; the smart contract is authorized to decide
the reward distribution in compliance with the game logic. Note that a new
round can only be started after all the parties have agreed upon the previous
round. Thus, in the worst case one player will be in the n + 1 state, while
the other is in the n state. If the first player fails to send a state update, the
dispute is resolved in favor of the second player, who receives the maximum
reward.

Griefing is the ability of a participant to deviate from the protocol in order
to disrupt participant interaction without directly violating the security of the
protocol. There are two griefing strategies. One implies forcing a party into
paying the channel closure transaction; to do so, a party that was supposed
to close the channel does not send the transaction to the blockchain. This is
not a major issue, as state deposits considerably exceed transaction costs, and
participants are likely to assume this risk. The other strategy implies posting
expired channel states during a dispute if an attacking party believes that the
other participant is unavailable. To reduce this risk, a game channel checks
the game round number when there is a state change attempt in dispute; if the
difference between the round number of the new state and the round number
suggested by an attacker exceeds 1, the attacker loses their deposit.

It is noteworthy that an incorrect implementation of game channels and
software errors can cause one or both players to lose their entire deposits.
However, this issue is out of the scope of the present work.

2.2 Signatures and Fingerprints

Definition 1. A signature scheme Σ is a tuple (M,S,K,KeyGen, Sign, V erify)
where:

• M is a finite field of possible messages;

• S is a finite field of possible signatures;

• K is a finite field of possible keys;

• KeyGen : (1k) → (sk, pk). This algorithm takes as input a security
parameter k and outputs secret and public keys;

• Signsk : (m) → σ. The signing algorithm takes as input a message
m ∈M and secret key sk ∈ K, and outputs a signature σ ∈ S;
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• V erifypk : (m,σ)→ {0, 1}. This algorithm check whether the signature
σ ∈ S for a message m ∈M and a public key pk ∈ K is valid.

In addition we define the uniqueness property for a signature scheme.

Definition 2. A signature scheme Σ is called unique if for every message
m ∈ M and for every public key pk ∈ K there is only one valid signature
σ ∈ S.

In our protocols we use two types of signature schemes: RSA [17] and
ECDSA [7]. ECDSA is a standard signature for transaction acknowledgement
within a channel. RSA is reserved for pseudorandom number generation in
the Signidice algorithm.

Remark. RSA can be replaced by any other signature with the uniqueness
property. We suggest considering BLS [2] as the primary alternative.

When a channel is open, the smart contract only stores the Merkle–tree
fingerprint and not the entire RSA public key. The purpose of this is to
reduce the transaction cost of opening a channel.

Definition 3. Let pk = (N, e) be a RSA public key. Then f = H(H(e), H(N))
is a Merkle–tree fingerprint of the RSA public key pk.

Remark. In the DAO.Casino implementation KECCAK − 256 [23] is always
used for the H function to ensure compatibility with Ethereum.

2.3 Signidice

Signidice [19] is a protocol that allows pseudorandom number generation by
two parties.

Define the bit hash length as hash.size, and the maximum and the mini-
mum number the generation can yield as max and min respectively.

Remark. If max − min is a power of two, the while loop in step 2 of the
Signidice algorithm can be omitted. But if it isn’t a power of two, the resulting
distribution is not uniform, as some numbers may be more likely than others.

In the DAO.Casino implementation the unique RSA unique signature is
used by the Sign and V erify functions:

• RSA.Signd(m) : Zn → Zn : m→ mdmodN

• RSA.V erifye(m, s) : Zn × Zn → {True, False} : (m, s)→ check if
semodN == m
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Signidice

1. Alice send seed R←− {0, 1}∗ to Bob
2. Bob computes:

h← H(seed)
S ← Σ.Signd(h)
L← H(S)
range← max−min+ 1

while L ≥
⌊
(2hash.size − 1)/range

⌋
· range do

L← H(L)
end while

L← (L mod range) +min
3. Bob send S, L to Alice
4. Alice check results:
if Σ.V erifye(S) and L is correct then

The number L is accepted
else

The number L is not accepted
end if

2.4 Channels

As stated above, State Channel operation requires an on–chain smart contract.
Let’s define the core functionalities required to enable this contract:

• OpenChannel - Defines the parties’ consent to interact within the chan-
nel;

• UpdateChannel - Changes the last state stored in blockchain to the
newest state approved by both parties;

• CloseChannel - Completes the channel operation. The latest state ap-
proved by both channel parties is stored in the blockchain; funds are
distributed according to the state;

• OpenDispute - The game is halted and a dispute is initiated when one
of participants fails to get reliable relevant data. A dispute has two
potential outcomes specified below;

• ConsensusResolve - Parties resolve the dispute by consenting a new
state;
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• ArbitrationResolve - The dispute is resolved through smart contract
arbitrage.

Remark. Note that these functionalities may be implemented within a single
contract or within several interacting contracts.

Now we introduce the following concept.

Definition 4. The set (OpenChannel, UpdateChannel, CloseChannel,
OpenDispute, ConsensusResolve, ArbitrationResolve) is called aGame Chan-
nel Contract System and is denoted by GCCS.

Remark. GCCS can also be extended by adding additional functionality, but
these addons are out of scope in the present work.

Definition 5. We say that a connection between two parties is called a Сhan-
nel if the following conditions holds:

1. Every message sent contains some game–related data;

2. Every message (or main part of a message) is signed by the sender;

3. The connection verified by GCCS.

Each channel has a state. The channel state is the last message sent by
a participant that unambiguously defines the latest game state and/or the
participants’ balance. Note that each protocol participant must store the
latest channel state.

Also, each channel has a lifetime parameter. The Lifetime defines the
number of blockchain blocks available to the GCCS to update the channel
state and open disputes related to this state.

We define the channel participants as: Player and Dealer. The table
below defines the differences between these roles:

Player Dealer
Makes bets Receives bets

Generates PRNG seed Generates pseudorandom numbers
Checks game results Calculates game results

Other differences depend on the specific protocol implementation.
To coordinate different actions within the channel, GCCS must be able

to recognize approvals from both parties. If a channel state signed by Player
and by Dealer is received, GCCS considers that the participants have reached
a consensus. Note that the sender does not matter in this case. To reduce
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transaction costs, receiving one signature may suffice if the transaction itself
is sent by the other party (i.e. approval is confirmed by sending).

Channel Status is a global variable defining the current channel status.
The following status values are defined:

• Unused - channel wasn’t opened before;

• Open - channel open, game in progress;

• Close - channel was previously used and is now closed;

• Dispute - channel is open, dispute in progress.

The chart below illustrates the channel life–cycle from state to state.

Unused Open Close

Dispute

OpenChannel CloseChannel

OpenDispute ConsensusResolve

ArbitrationResolve

The dispute state is the same regardless of the underlying cause. After
recording this state, the channel can either go back to open or closed depending
on parties’ actions. The channel goes back to open if parties are able to agree
upon a new state. If the dispute is resolved through smart–contract arbitrage,
the channel moves to the closed state.

Now we can say that a Game Channel is a channel γ such that Player and
Dealer use the protocols described in this paper.

10



3 Game Channels
In this section we give a detailed coverage of protocols that allow two parties to
open a game channel, play a game, close the channel and get rewards, without
any risk of counterparty fraud. Also, we are going to consider the dispute
resolution mechanism.

Let dk and pk denote, respectively, Dealer’s and Player’s ECDSA keys.

Table 1: The names of variables and their meanings
(Solidity implementation)

Name Type Descriprion
channelId bytes32 Unique channel identifier
playerAddress address Player’s ethereum-address
dealerAddress address Dealer’s ethereum-address
gameContractAddress address Ethereum-address of the game
playerBalance uint256 Player’s deposit value
dealerBalance uint256 Dealer’s deposit value
openingBlock uint256 Information identifying when a message sent
RSAfingerprint bytes32 Merkle-tree fingerprint of the RSA public key
gameData bytes Game process data
round uint256 Round number of the game session
bet uint256 Player’s bet
seed bytes32 Random seed for PRNG
flag bool Closing flag
maxNumber, minNumber uint256 Boundaries of random numbers in the game

3.1 Opening a channel

A Player initiates the channel open event. To open a channel, its participants
have to agree upon a specific initial state and confirm it with their signatures.
Then the transaction with the state and participant signatures is sent to the
smart contract that verifies the validity of the data. The smart contract creates
a unique channel ID generated according to the following formula:

channelId = H(gameContractAddress, playerAddress, dealerAddress,
playerBalance, dealerBalance, openingBlock,RSAfingerprint).

Note that either participant may send the opening transaction. For simplicity,
let’s assume that it is sent by the Dealer. The message exchange sequence is
specified in the 1 protocol.
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Protocol 1 Opening a channel

1. Player sends message containing amount of tokens for Player’s deposit
to Dealer.

initial_message = (playerAddress, playerBalance, dealerAddress,
gameContractAddress)

2. Dealer generates the public RSA key RSA_public_key = (N, e) and
calculates the RSAfingerprint. Then, Dealer generates the following
messages:

open_message = (playerAddress, dealerAddress, playerBalance,
dealerBalance, openingBlock, gameData,RSAfingerprint, gameContractAddress)

dealer_signed_message = ECDSA.Signdk(open_message)

3. Dealer sends the following data to Player:

(RSA_public_key, open_message, dealer_signed_message)

4. Player receives the message, checks data in it and then signs the
open_message and sends it back to Dealer.

player_signed_message = ECDSA.Signpk(open_message)

5. If the player_signed_message is valid, Dealer calls the openChannel
smart contract function with the following data:

(open_message, dealer_signed_message, player_signed_message)

f unc t i on openChannel (
playerAddress ,
dea lerAddress ,
p layerBalance ,
dea lerBalance ,
openingBlock ,
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gameData ,
RSAfingerprint ,
gameContractAddress ,
dealer_signed_message ,
player_signed_message

)

6. The contract verifies validity of the received data. If valid, it is assumed
that the both parties approved opening the channel. Then the contract
generates channelId and freezes the funds of the both parties for the
game. The channel status changes to Open.

Example 3.1. Let’s assume that Bob runs a casino. Alice wants to use Bob’s
service to play roulette, which is available in the list of games. First Alice
allows the game contract to transfer 100 of Alice’s tokens to later use them as
a deposit. Then she sends the following message to Bob:

Alice:
0xde8456...

(0xde8456..., 100, 0x87ff5a...,
0x8a4654...)
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→

Bob:
0x87ff5a...

Bob analyzes the message and agrees to carry out a game. Bob allows the
game contract to transfer 5000 of Bob’s tokens to later use them as a deposit.
Then he responds to Alice:

Alice:
0xde8456...

(N, e, 0xde8456..., 0x87ff5a..., 100,
5000, openingBlock, gameData,
RSAfingerprint, 0x8a4654...,
Bob_signature)
←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

Bob:
0x87ff5a...

Alice checks the Bob’s message and, making sure it is valid, signs it on her
part and replies.

Alice:
0xde8456...

(0xde8456..., 0x87ff5a..., 100, 5000,
openingBlock, gameData,
RSAfingerprint, 0x8a4654...,
Alice_signature)
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→

Bob:
0x87ff5a...

After checking Alice’s signature for validity, Bob sends both their signa-
tures to the contract along with the channel data.
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Bob:
0x87ff5a...

(0xde8456..., 0x87ff5a..., 100, 5000,
openingBlock, gameData,
RSAfingerprint, 0x8a4654...,
Bob_signature, Alice_signature)
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→

Contract:
0x8a4654...

The smart contract checks the validity of both the signatures and the bal-
ances of the participants. Then the contract locks the participant deposits.
The channel is now open.

3.2 Interaction within the channel

Once the channel is open, the whole gambling process is divided into rounds.
In each round a player makes specific game-related decisions (e.g. makes a bet)
and sends them to the dealer with a random seed. On the basis of this seed,
the dealer then computes the game result. If the player accepts the result as
fair, the next round begins. The process of interactiing within a single round
is defined by the 2 protocol.

Note that every time the channel state is updated, game-related-data is
also recorded on the blockchain. This allows us to maintain necessary game–
related statistics and to distribute rewards between the casino and the game
developer according to the actual bets.

Example 3.2. Continuing with the example above, Alice places her bet of 10
tokens on red, generates the relevant message and signs it:

Alice:
0xde8456...

(channelId, 10, 1, gameData,
qw2ert5t, Alice_signature)
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→

Bob:
0x87ff5a...

Upon the receipt of Alice’s message, Bob starts computing the round re-
sult. To do it, he calculates the hash from Alice’s data and signs it via a
RSA signature. The result is 0x5r43c... Then, on the basis of the result ob-
tained, Bob generates a random number that determines the game result.
Let’s assume this number is 14. It is on red, so Alice wins the round. Bob
generates a message for Alice and signs it: update_channel_message =
(channelId, playerBalance, dealerBalance, gameData, round)

Alice:
0xde8456...

(14, 0x5f43c..., channelId, 110,
4990, gameData, 1, Bob_signature)
←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

Bob:
0x87ff5a...
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Protocol 2 Messaging in the channel

1. Player generates the seed and the following messages:

seed_message = (channelId, bet, round, gameData, seed)
signed_seed_message = ECDSA.Signpk(seed_message)

then sends data to Dealer.

2. Dealer checks the signed_seed_message, seed_message and computes:
V = H(seed_message)
S = RSA.Sign(V )
Shash = H(S)
gameRange = maxNumber −minNumber + 1
while Shash ≥

⌊
(2hash.size − 1)/gameRange

⌋
· gameRange do

Shash ← H(Shash)
end while
L = (Shash mod gameRange) +minNumber

Applying the game logic to the resulting value, Dealer obtains the result
for the round.

3. Dealer signs the new channel state

update_channel_message =
(channelId, playerBalance, dealerBalance, gameData, round)

dealer_signed_message =
ECDSA.Signdk(update_channel_message)

4. Then Dealer sends the following message to Player:

message = (L, S, update_channel_message,
dealer_signed_message)

5. Player makes sure that the number L, the game result and new partici-
pants’ balances are calculated correctly.
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6. Player sends the update_channel_message and its signature back to
Dealer.

player_signed_message =
ECDSA.Signpk(update_channel_message)

7. If the player or the dealer want to update the on–chain state of the game,
they call the updateChannel function of the smart contract:

f unc t i on updateChannel (
channel Id ,
p layerBalance ,
dea lerBalance ,
gameData ,
round ,
dealer_signed_message ,
player_signed_message

)

Alice approves the received data upon checking it. She signs the message
and sends it to Bob.

Alice:
0xde8456...

(channelId, 110, 4990, gameData, 1,
Alice_signature)
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→

Bob:
0x87ff5a...

At the request of either party, the message and both signatures can be sent
to the contract to update the data stored in it.

Bob and Alice exchange messages until either of them decides to close the
channel for some reason.

3.3 Closing the channel

If either party wants to close the channel they initiate the relevant query.
There are following reasons for this:

1. Player or Dealer voluntary decides to stop gambling. The 3 protocol
defines the sequence of actions for this scenario.
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2. Either participant has zero balance and/or lacks tokens for the next bet.
If either party sends the closure query, and the other accepts it, the 3
protocol is applied. Otherwise the 4 protocol is used.

3. The Channel has expired. Note that participants have to monitor the
channel validity period on their own. Once it is expired, all smart con-
tract functions become unavailable, except for the closeBY Time func-
tion. This is the 5 protocol.

4. If either party stops responding to messages, the 6 protocol is applied.

5. Data forgery by either participant. If an attempt to upload forged data
to the channel is detected, the contract returns an error message. Thus,
invalid data cannot get to the blockchain, and can only be stored locally
by participants. When either player suspects the other of fraud, the 6
protocol is applied. Note that for the smart contract this case is similar
to the previous one as far as the contract logic is concerned.

Protocol 3 Consented channel close

1. A party willing to close a channel sends their current round state to the
other participant.

message =
(channelId, playerBalance, dealerBalance, gameData, round)

2. If the other participant accepts this state, this participant returns the
following message with a signature:

close_message =
(channelId, playerBalance, dealerBalance, gameData, round, flag)

party2_signed_message = ECDSA.Sign(close_message)

3. The first party then validates the received message, and, if approved,
signs the close_message as well.

party1_signed_message = ECDSA.Sign(close_message)
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4. Dealer holding the party1_signed_message and
party2_signed_message, sends them to the contract with the
close_message.

f unc t i on closeByConsent (
channelId ,
p layerBalance ,
dea lerBalance ,
gameData ,
round ,
party1_signed_message ,
party2_signed_message

)

5. The contract validates received signatures. Then makes sure that
amounts frozen in the contract equal tokens that the player and the
dealer intend to withdraw.

6. If all the conditions are met, the contract initiates the
closeChannel(channelId) function and distributes tokens between
parties according to the data received.

7. The contract then deletes the channel via the
removeChannel(channelId) function. The contract changes the
channels status to Close.

Protocol 4 Low balance channel closure

1. The first party makes a request to the smart contract updateChannel
function and sends it the latest signed state indicating that either player
has a zero token balance or insufficient balance to bet.

2. The updateChannel function updates the stored data and simultane-
ously checks player balances. If zero or insufficient balance is confirmed,
the channel is closed and removed (see items 6 and 7 for the 3 protocol).
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Protocol 5 Expiration closer

1. Either party calls the closeByT ime(channelId) function. The function
checks whether or not a dispute was initiated during its execution.

2. If yes, the closeByDispute(channelId) function is executed; it interprets
the channel state in favor of Player, giving them the highest possible
reward provided in the game logic.

3. The channel is closed and removed (see items 6 and 7 for the 3 protocol).

Protocol 6 Nonresponse/data forgery closery

1. A participant uploads the latest approved state to the smart contract
via the updateChannel function.

2. The participant then attempts to open a dispute via the following con-
tract function:

func t i on openDispute (
channelId ,
round ,
bet ,
gameData ,
seed ,
player_signed_message

)

where player_signed_message = ECDSA.Signpk(channelId, round,
playerBalance, gameData, seed).

3. The smart contract verifies the data received from the participant; if it
is valid, a dispute is opened. The channel status changes to Dispute.

4. Participants then have t1 time blocks to call updateChannel to provide
a newer valid state; there is also another function is doubleSign (only
available to the Dealer). The first function is followed by step 4.1 of the
protocol, the second is followed by step 4.2.
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4.1. After checking the validity of the data, updateChannel compares
the round number when the dispute was opened with the round
number in the updated state. If the difference is more than one,
the dispute opener loses their deposit. The channel is closed and
removed (see items 6 an 7 for the 3 protocol). Otherwise the dispute
is removed after the channel update, and the channel state reverts
back to Open. Note that it does not matter which party provides
the channel update.

4.2. When doubleSign is called, the smart contract checks whether or
not a player sent two different signed messages with the same round
number. If so, Player loses all their deposit. The channel is closed
and removed (see items 6 and 7 for the 3 protocol).

f unc t i on doubleSign (
channelId ,
round ,
bet ,
gameData ,
seed ,
player_signed_message

)

5. After t1 time blocks the t2 time window opens, allowing parties to update
the channel state or call the doubleSign function; otherwise Dealer can
call the resolveDispute function from the contract. If none of the options
is selected for the allocated t1 + t2 time span, the 5 protocol applies. In
this case there are no additional steps.

f unc t i on r e so l v eD i spu t e (
channel Id ,
N,
e
S

)

5.1. The resolveDispute function checks the dealer RSA public key
and verifies the RSA signature S. If incorrect, the function call
is aborted.
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5.2. The resolveDispute function calls the
runGame(channelId, playerBalance, S) function.

5.3. The runGame function verifies the game logic and withdraws player
balances.

5.4. The channel is closed and removed (see items 6 and 7 for the 3
protocol)

Example 3.3. Continuing with the example, let’s assume that Alice bets 20
tokens in round 5 and sends the data to Bob in a message.

Alice:
0xde8456...

(channelId, 20, 5, gameData, qwrtty)
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→

Bob:
0x87ff5a...

But, Bob has just had a connection failure and cannot respond to Alice.
Alice gets no response and uploads the last agreed upon state to the channel;
then she opens a dispute with a new request. The contract allocates t1 + t2
time blocks to Bob so that he can upload a newer state to the channel. Suppose
that after t1− 1 blocks Bob restores the connection in time to provide a new
state with game results, via the updateChannel function. The dispute is then
removed, and Alice and Bob go on gambling.

When the channel lifespan at round n comes close to expiration, Bob de-
cides to close the channel. He requests Alice’s approval to close the channel
with the current state.

Alice:
0xde8456...

(channelId, 85, 5015, gameData, n)
←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

Bob:
0x87ff5a...

Alice checks the received message and sends a message with the data re-
quired to close the game, along with a signature, to Bob.

Alice:
0xde8456...

(channelId, 85, 5015, gameData, n,
true, Alice_signature)
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→

Bob:
0x87ff5a...

Bob, in turn, checks the received data and, upon making sure the data is
valid, signs the data and sends it with both signatures to the contract.
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Bob:
0x87ff5a...

(channelId, 85, 5015, gameData, n,
true,Bob_signature,
Alice_signature)
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→

Contract:
0x8a4654...

Suppose that the signature validity condition is then met for both signa-
tures. Therefore, upon checking the received data, the contract closes the
channel and removes it.

Example 3.4. Suppose that the same time there is another player gambling
with Bob, Mallory, who is a fraudster. There is an open channel between
them. Mallory makes a bet of 2 tokens on red, generates a message and sends
it to Bob:

Mallory:
0xca62a232...

(channelId, 2, 1, gameData, vg345)
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→

Bob:
0x87ff5a...

Bob computes the result for Mallory. It is 20 black; Mallory loses his bet
and Bob sends him the relevant message:

Mallory:
0xca62a232...

(20, 0x53c..., channelId, 3, 502,
gameData, 1, Bob_signature)
←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

Bob:
0x87ff5a...

Unhappy with the result, Mallory tries to send back to Bob a state with
forged data in which the result favors him.

Mallory:
0xca62a232...

(channelId, 7, 498, gameData, 1,
Malory_signature)
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→

Bob:
0x87ff5a...

Upon checking Mallory’s message, Bob detects invalid data, loads the last
valid state and initiates a dispute via the openDispute function. The contract
allocates t1 + t2 time bocks to Mallory to provide a newer state signed by the
both parties. Mallory retries the forged state, uploading it to the channel via
the updateChannel function. The contract checks the data, detects that it
is invalid and returns an error. As a result, Mallory fails to provide a newer
state to the channel within the allocated t1 time span. Now Bob launches
the resolveDispute function. This function, in turn, makes sure that Bob’s
data is valid and calls the runGame function that defines the game logic. The
runGame function checks the gambling process and concludes that 2 tokens
have to be removed from Mallory’s account and deposited to Bob’s account.
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The channel is then closed and removed.

4 Modifications
In this section we introduce some modifications to the basic protocol. First,
we will cover conversion of the game channel into a version without the Dealer
role, with two equal players. The other modification allows connecting a third
party to the channel that will not directly participate in the game, but will
receive published channel states with participant signatures.

4.1 Two Players Case

Some games (e.g., some dice variations) involve two equal players; a casino
takes no part in the process. The original protocol version covered in the
Game Channels section can be used for these games. But for completeness, we
want to suggest an alternate protocol version based on the Threshold Signature
Scheme. Obviously, the threshold signature must have the uniqueness property
(e.g. TBLS or TRSA [22] signatures).

Let’s redeclare the Player role as Player1, and the Dealer role as Player2.
For the two player scenario an altered version of the 1 protocol is applied to
open the channel. The RSA signature is replaced with the selected threshold
signature scheme: τ is replaced by the τ.PartSign() algorithm. This algorithm
takes as input a message m and outputs a partial signature of the message for
any participant. Item 2 is replaced with the DKG protocol, which allows each
party to have a part of the private key and a shared public key. Just like
in the original protocol, the channel state changes to Open when the channel
receives two valid participant signatures.

Once the channel is open, a round involving interaction of two peer parties
takes place under the new protocol at the 24 page. Obviously, upon completion
of a round each party gets a signed game result and a signed message from
the other party with the same data in it. Dispute can be initiated in the case
of data discrepancy.

To close a channel, the same methods are used as specified in subsection 3.3.
The protocols covered in that section are compatible with this modification
with a minor alteration. Now bet is considered to be committed once both
participants have posted their seeds. Also, the resolveDispute and doubleSign
functions are available to either participant. (see the 5 item for protocol 6).
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Protocol 2.1 Messaging in the channel

1. Participants generate and exchange messages of the following type:

seed_message = (channelId, bet, round, gameData, seed)
signed_seed_message = ECDSA.Sign(seed_message)

2. Participants verify the received signed_seed_message and carry out
the following calculations:
aggregate_seed_message =
= seed_message (from Player1) || seed_message (from Player2)
V = H(aggregate_seed_message)
S = τ.PartSign(V )

3. They then exchange messages with their respective signature fragments.

message = (S, round, gameData, player1Balance, player2Balance)

4. Players verify whether the S number is calculated correctly. If this con-
dition is met, the next step follows immediately.

5. To compute the game results, the players holding two segments of the
signature merge them into a single aggregate_S that depends on the
selected τ and on the DKG protocol.
Shash = H(aggregate_S)
gameRange = maxGame−minGame+ 1
while Shash ≥

⌊
2hash.size/gameRange

⌋
· gameRange do

Shash ← H(aggregate_Shash)
end while
L = (Shash mod gameRange) +minGame
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6. Players exchange the game results and verify the data.

message =
(channelId, player1Balance, player2Balance, gameData, round)

signed_message = ECDSA.Sign(message)

7. If needed, either player may use the two signatures of the result message
to update the channel state.

Note that our two player modification is described for informational pur-
poses only. We recommend using the original version (with the additional step
for the Dealer’s bet), as it has same security properties, but is more efficient
in terms of speed.

4.2 Third Party Observer

Pisa [13], as mentioned above, allows connecting a “watcher” to a channel. If
one of the actual players happens to get disconnected, the watcher will be able
to stand in for that player in interacting with the smart contract. The design of
the Game channels allows us to easily apply a similar approach and connect a
third participant. To that end, any time participants approve some state, they
post it with their respective signatures. The third participant listens to the
channel and can then update the smart contract state using these messages.
Note that the third participant needs no lock or verification within the smart
contract.

This approach can be useful in the design of a platform where players
and dealers meet. In this case a platform can assume responsibility for all
contract requests, reducing player costs incurred from additional transactions.
The downside of this approach is increased system centralization. Requests
to a smart contract via the platform can be implemented as optional, not
mandatory, functionality.
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