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Abstract

Nearly all secret sharing schemes studied so far are linear or multi-
linear schemes. Although these schemes allow to implement any monotone
access structure, the share complexity, SC, may be suboptimal – there are
access structures for which the gap between the best known lower bounds
and best known multi-linear schemes is exponential.

There is growing evidence in the literature, that non-linear schemes
can improve share complexity for some access structures, with the work
of Beimel and Ishai (CCC ’01) being among the first to demonstrate it.
This motivates further study of non linear schemes.

We initiate a systematic study of polynomial secret sharing schemes
(PSSS), where shares are (multi-variate) polynomials of secret and ran-
domness vectors ~s, ~r respectively over some finite field Fq. Our main hope
is that the algebraic structure of polynomials would help obtain better
lower bounds than those known for the general secret sharing. Some of
the initial results we prove in this work are as follows.

On share complexity of polynomial schemes.
First we study degree (at most) 1 in randomness variables ~r (where the
degree of secret variables is unlimited). We have shown that for a large
subclass of these schemes, there exist equivalent multi-linear schemes with
O(n) share complexity overhead. Namely, PSSS where every polynomial
misses monomials of exact degree c ≥ 2 in ~s and 0 in ~r, and PSSS where
all polynomials miss monomials of exact degree ≥ 1 in ~s and 1 in ~r. This
translates the known lower bound of Ω(nlog(n)) for multi linear schemes
onto a class of schemes strictly larger than multi linear schemes, to con-
trast with the best Ω(n2/ log(n)) bound known for general schemes, with
no progress since 94’. An observation in the positive direction we make
refers to the share complexity (per bit) of multi linear schemes (poly-
nomial schemes of total degree 1). We observe that the scheme by Liu
et. al obtaining share complexity O(20.994n) can be transformed into a
multi-linear scheme with similar share complexity per bit, for sufficiently
long secrets. For the next natural degree to consider, 2 in ~r, we have
shown that PSSS where all share polynomials are of exact degree 2 in ~r
(without exact degree 1 in ~r monomials) where Fq has odd characteristic,
can implement only trivial access structures where the minterms consist
of single parties.
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Obtaining improved lower bounds for degree-2 in ~r PSSS, and even
arbitrary degree-1 in ~r PSSS is left as an interesting open question.

On the randomness complexity of polynomial schemes.
We prove that for every degree-2 polynomial secret sharing scheme, there
exists an equivalent degree-2 scheme with identical share complexity with
randomness complexity, RC, bounded by 2poly(SC). For general PSSS, we
obtain a similar bound on RC (preserving SC and Fq but not degree). So
far, bounds on randomness complexity were known only for multi linear
schemes, demonstrating that RC ≤ SC is always achievable. Our bounds
are not nearly as practical as those for multi-linear schemes, and should
be viewed as a proof of concept. If a much better bound for some degree
bound d = O(1) is obtained, it would lead directly to super-polynomial
counting-based lower bounds for degree-d PSSS over constant-sized fields
. Another application of low (say, polynomial) randomness complexity is
transforming polynomial schemes with polynomial-sized (in n) algebraic
formulas C(~s, ~r) for each share , into a degree-3 scheme with only polyno-
mial blowup in share complexity, using standard randomizing polynomials
constructions.

1 Introduction

Secret sharing is a primitive allowing a dealer to share a secret s among n players.
The secret sharing scheme implements a (monotone) access structure A ⊆ 2[n] if
any A ∈ A can learn the secret from their joint share vector (A is called qualified
set), and any set B /∈ A learns nothing about the secret (B is called unqualified
set). Secret sharing was introduced in ’79 by Shamir [39] and Blakley [17] for
threshold access structures, and was followed by thousands of works exploring
the primitive itself, and its many applications found since. Quite early on [15,32]
put forward a first construction realizing any monotone access structure. As a
notable application, secret sharing is used as a key building block in various
secure Multi-Party Computation (MPC) constructions [14,23].

Arguably, the most important complexity measure of a secret sharing scheme
is its share complexity (SC). Share complexity is the maximum, over the parties’
share length, received from the dealer by any of the parties. A somewhat relaxed
measure is its information rate, which is the share complexity per shared bit.
It can be viewed as ‘amortized’ share complexity, which is a useful measure if
secrets are allowed to be long.

Unfortunately, there is a huge gap in our understanding of this measure.
Namely, the best known lower bound on share complexity for a general scheme
is Ω(n/ log(n)) [19], while the best known constructions for certain access struc-
tures have exponential complexity O(20.637n) [4]. In [19], techniques from infor-
mation theory are used, characterizing the existence of a secret sharing scheme
in terms of requirements on the entropy of various distributions . The lower
bound in [19] is on information rate (making it stronger) and states an ex-
plicit access structure for which it holds. It is important to note that counting
arguments do not work for general secret sharing schemes.1

In spite of extensive research attempting to improve [19]’s lower bound, the

1In a nutshell, even if randomness domain is polynomially bounded in the share complex-
ity, we still get a double-exponential number of secret sharing schemes of share complexity
O(n/ log(n)), which is about the number of monotone access structures.
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best known lower bound for general schemes has not improved since (even for
implicit access structures). A major motivation for this work is the hope that
departing from previous approaches relying mostly on information theoretic
techniques, making use of algebraic techniques could potentially yield improved
lower bounds for large classes of schemes, and hopefully eventually for general
schemes. See [7] and references therein, for example, for a more thorough
discussion of the many positive and negative results on share complexity of
secret sharing schemes, as well as their numerous applications.

(Multi-)linear schemes. On the other hand, much more is known about the
share complexity of the well studied family of linear secret sharing schemes,
and more generally multi linear secret sharing schemes. In a nutshell, a linear
scheme is a scheme, where each share is a linear combination of elements from
a finite field F, each of which is either the secret or a random variable, while
a multi-linear scheme is a scheme where the secret can be vector of elements
from F and the shares are a linear combination of these elements and the ran-
dom variables. Linear schemes are relatively easy to design, often exploiting
the insights and intuition we have into linear algebra. Perhaps a more impor-
tant reason for their popularity is their “homomorphic” property. In MPC, for
example, linear schemes are a useful building block, as they allow computing a
sharing of the sum of shared secrets by locally adding the corresponding shares.
Even more importantly, for (multi) linear schemes better lower bounds on share
complexity are also known. In particular, counting arguments yield exponential
lower bounds for non-explicit access structures, and recently, an exponential
lower bound has been obtained on the share complexity of linear schemes for an
explicit access structure. See next section for more details. For now, the obser-
vation important for discussion is that as well as upper bounds, lower bounds
for (multi) linear secret sharing schemes heavily exploit the (linear-)algebraic
structure of the sharing scheme.

Motivated by the hope to narrow the gap between upper and lower bounds
for share complexity and information rate in secret sharing schemes, in this
work, we continue the work of [11], which initiates a study of the power of
non-linear secret sharing schemes. The main motivation in [11] for studying
non-(multi) linear schemes is that most constructions of secret sharing schemes
so far were either linear or multi linear, so new insights both on upper and lower
bounds may be gained. Indeed [11] put forward several innovative secret sharing
schemes for access structures for which linear schemes of comparable complexity
are not known, or even do not exist under reasonable assumptions. In [11] the
authors explore both arbitrary non-linear schemes, and a specific generalization
of linear schemes, they refer to as quasi-linear schemes.

We have the additional motivation of obtaining new lower bounds for a
broader class of schemes than linear and multi linear ones, making a step forward
towards improved lower bounds for general schemes, which proved notoriously
hard so far.

More specifically, we chose to explore the arguably natural extension of multi
linear schemes, we call polynomial schemes, or PSSS. A PSSS is defined as multi
linear scheme over a finite field F, where each share is some polynomial over
F in the secret and randomness elements, rather than necessarily a degree-1
polynomial (corresponding to a multi linear scheme). We hope that the rich
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algebraic structure of polynomials - especially of polynomials of low degree, say
2, would help develop techniques for lower bounds of more algebraic nature, as
they proved useful for linear and multi linear schemes. A slightly more general
notion of polynomial schemes is one where where the secret domain S is a subset
of Fk, rather than the entire set Fk. We refer to such schemes as generalized
polynomial schemes.

Besides the potential for useful analytic techniques, we believe PSSS is a
useful set of schemes to study as it is very broad. In particular, as any function
f : Fn → F can be represented by an n-variate polynomial over F, it takes a
moment to think why not every secret sharing scheme can be represented by
a PSSS with the same share complexity. The reason is that a secret sharing
scheme is a randomized mapping Sh : S × R → S1 × . . . × Sn, rather than
a deterministic function. In Sh, the randomness is uniformly sampled from
a finite set R. Now observe that in any PSSS scheme Sh′ : Fsp × Frp over a
finite field Fp, the probability of outputting any share vector is a multiple of
p−r. The straightforward way to convert from Sh into an equivalent scheme
Sh′ as above is to embed S and R into Fsp,Frp for some s, r respectively, and
evaluate the shares as polynomials corresponding to every share Shi(s, r) (which
are guaranteed to exist). More precisely, arbitrarily partition Frp into |R| equal
parts R′1, . . . , R

′
|R|, the embedding labels every element of R′j by rj and sets Sh′

accordingly. The problem with this approach in perfect secret sharing is that
pr may not be divisible by |R| for any prime p and any r. For instance, for
|R| = 6 in Sh there is no such embedding, as 1/6 can not be written as a

pr for
any prime p and a ∈ N. We note that the above approach of transformation into
PSSS (over any field Fp) does work for statistical secret sharing, by choosing a
sufficiently large r and Rj ’s of almost equal size, making the privacy ‘leakage’
arbitrarily small, and keeping correctness perfect. In this work we focus on the
standard notion of perfect secret sharing schemes, though.

1.1 Our Results

Feasibility and share complexity lens. On the negative side, we show that
a large subclass of PSSS with r-degree 1 is equivalent to multi-linear schemes in
the sense that for each such scheme, a multi-linear scheme for the same access
structure with (almost) the same share complexity per secret bit and over the
same field exists.

Theorem 1.1. (Informal) Let M be a PSSS of degree 1 in ~r, where all share
polynomials are either missing monomials of (exact) degree c ≥ 2 in ~s and 0 in
~r, or all share polynomials miss monomials of exact degree ≥ 1 in ~s and 1 in ~r.
Then there exists an equivalent multi linear scheme M′ with share complexity
at most n times that of M.

We conjecture that all schemes with ~r-degree 1 are as weak as multi-linear
schemes, and leave it as an interesting open problem. See Theorem 3.1 and
Theorem 3.3 for a formal statement and a proof of the above theorem. The
proofs of both theorems are constructive, transforming the r-degree 1 schemes
into multi linear schemes. The validity of the constructions is proved by rather
simple linear algebraic techniques, but the constructions themselves, especially
that of Theorem 3.1 are somewhat surprising, in our opinion.
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Moving to the next natural class of ~r-degree 2, we show that a certain nat-
ural subclass of such PSSS only allows to implement a small subset of access
structures (regradless of share complexity).

Theorem 1.2. (Informal) PSSS of degree exactly 2 in ~r over fields of odd
characteristic capture only access structures where all minterms are singletons.

That is, somewhat intuitively, linear terms are required in degree-2 schemes
for implementing useful access structures. The proof here relies on facts regard-
ing the number of solutions of equations of the form p(x1, . . . , xn) = b, where b
is a quadratic form.

To contrast with the bounds in [31] on functions representable by polynomial-
sized randomizing polynomials with r-degree 2 and any constant degree in s
(over small fields), indicating the corresponding functions are relatively sim-
ple, falling in NC3. The reason why their bound does not directly imply that
PSSS of r-degree 2 and polynomial share complexity works for relatively simple
schemes, is that their bound holds for representations polynomial in input size .
In particular, they assume the randomness vector’s size is polynomially bounded
in the input vector’s size. For PSSS with poly(n) randomness and share com-
plexity we could indeed obtain a similar bound on the type of access structures
for which such PSSS exists. However, lacking bounds on the randomness com-
plexity (see the following section), assuming only polynomial share complexity
does not seem to suffice. 2

On the positive side, we observe that a surprising recent result indicating
all monotone access structures have a scheme construction share complexity
O(20.994n) [36] can be replaced with a multi-linear construction (instead of a
non-polynomial scheme).

We show that there exists (multi) linear secret sharing schemes based on the
multi-linear CDS [2] with information rate O(1) for a certain class (not all) of
access structures for a sufficiently large share domain.3

Observation 1. Let n > 0 be an integer. Then all monotone access structures

on n parties admit a multi-linear scheme over S = FO(2n)
2 with information rate

O(20.994n) per party. (in our language, degree-1 polynomial scheme over F2).

This observation demonstrates the power of amortization (increasing k) all
else kept equal. Additionally, we can obtain a polynomial scheme of (possibly)
high degree with the same share complexity.

Observation 2. Let n > 0 be an integer. Then all monotone access structures
on n parties admit a polynomial scheme over S = F2O(2n) with information rate
of O(20.994n) per party.

2Still, if we had polynomial in share complexity upper bounds on randomness complexity,
a modification of [31]’s result would yield bounds on this type of limited constant degree PSSS
which are stronger than just counting-based bounds for constant-degree PSSS given suitable
bounds on randomness complexity. Namely, not only do access structures that cannot be
implemented efficiently exist, but there are candidates in relatively low complexity classes
(under standard assumptions).

3The following pair of results are simple observations, which may be described and under-
stood within the limits of the introduction, and we think they hope gain intuition on. The
full proof of the first observation relies on particular details of [2]’s construction. The proof
of the second is simple and appears below.
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This is a direct corollary of Theorem 1. This holds due to the simple ob-
servation that any polynomial scheme over Fk′q , where q is a prime power (of
any degree) can be replaced by a scheme where S = Fqk′ , (that is, a scheme
with k = 1) and the sharing polynomials are of possibly higher degree than the
original ones. This is done by thinking of the vector of field elements in parties’
shares and the vector of random field elements as vectors of elements over Fk′q ,

and the secret as an element of Fqk
′

. Then, the fact that any finite field F and
function F1+r′ → F can be represented as a multi-variate polynomial over F im-
plies that the original scheme can be implemented as a polynomial scheme with
k = 1 over Fqk′ . The overall share complexity overhead of this transformation
is at most n, as the overall share complexity is at least log2(|S|) to maintain
perfect correctness. This general observation implies that there is certain redun-
dancy regarding the usefulness of various parameters (k, |F | and total degree)
of polynomial schemes towards reducing share complexity. Namely, if we are
free to adjust F and the degree arbitrarily, then without loss of generality k can
be fixed to 1 without loss of generality.

Randomness complexity lens. An additional aspect that we have studied
is the randomness complexity of PSSS. Here we study what is the best upper
bound on the randomness complexity, as a function of the share complexity of
a scheme – RC(SC). That is, for every scheme in the (sub) class of polynomial
schemes with share complexity SC, there exists an equivalent scheme in the class
with the same share complexity and randomness complexity at most RC(SC).
For linear and multi-linear schemes it is known that their randomness complexity
is (without loss of generality) upper bounded by SC (the equivalent scheme is
also over the same field). To the best of our knowledge, no such bounds appear
in the literature for other broad classes of schemes. In particular, we have not
found a bound for general (perfect) secret sharing schemes (we believe it was
likely previously known).

In this work we put forward an upper bound for randomness complexity for
general secret sharing schemes as well as various types of PSSS.

Theorem 1.3. (Informal) LetM be a secret sharing scheme. Then, there exists
an equivalent scheme M′ with the same share complexity SC and randomness
RC = 2poly(SC) such that if M′ is a PSSS of degree 2, then so is M′, and if M
is a PSSS then so is M. Also, in the two latter cases, M and M′ are defined
over the same field.

To prove the bound for degree-2 PSSS, we restate the privacy requirements
into sets of equality of distributions restrictions for single polynomials obtained
using a variant of Vazirani’s XOR lemma (already satisfied byM). In particular,
we prove there exists a linear mapping from the vector space span(r1, . . . , rt) to
a (much) smaller span(r1, . . . , rt′) and every share polynomial p(~s, ~r) is replaced
by p(~s, L(r1), . . . , L(rn)) so that privacy is still satisfied. The proof is based on
a somewhat involved case analysis based on the theory on output distributions
of quadratic forms. The bound for general secret sharing is proved using the
following approach: given a PSSS scheme, we state the correctness and privacy
requirements for any secret sharing scheme for the same access structure as an
LP . Curiously, the LP formulation makes use of the scheme we already have at
hand (with potentially high RC), rather than just a formulation of correctness
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and privacy. A solution to the LP determines the probabilities of mapping each
secret s to each share vector (~sh1, . . . , ~shn), which easily extends into a PSSS
over the same field and same share complexity. Briefly, the LP variables are
probabilities pi,k where ~si is a secret and ~shk is a share vector. Privacy implies

that for all maxterms A, and share vectors ~shA it must hold that∑
all k for which the projection

of ~shk on A is ~shA

pi,k −
∑

all k for which the projection

of ~shk on A is ~shA

pj,k = 0.

From correctness, it follows that for every minterm A, for every value ~shA all but
at most ~s, the projection value ~shA is seen with probability 0. This constraint
would result in a degree-2 inequality in the p~s, ~sh’s. To make it linear, the trick
is to require that the 0 probabilities are exactly as in the scheme M. That
is, of every (A, ~shA) we require:

∑
all k for which the projection

of ~shk on A is ~shA
and j /∈I

pj,k = 0, where

I is either {i} for some i, or empty, and is fixed according to M. Finally,
the requirement that (pi,1, . . . , pi,l) is a probability vector is also expressed by
linear inequalities. We look for solutions with small randomness vector length -
as the LP has small integer entries, it easily follows that the probabilities are a
multiple of some 1/L, where L is not very large (exponential in LP dimensions).
In particular, this implies a scheme with R of size L and same share complexity.
This alone, already yields a bound on the randomness complexity (log(|R|)) of
general (perfect) secret sharing schemes. GivenM is a PSSS, to obtain a PSSS
with the required parameters it is necessary and sufficient that additionally the
probabilities in the solution are powers of q = |F|. We formally state both facts
in Theorem A.8 and prove the theorem in Section A.

All of the bounds above are exponential in SC and may serve as a proof of
concept. A strong motivation here is that good upper bounds on randomness
complexity RC(SC) for constant-degree PSSS would lead to good existential
bounds on the share complexity of such PSSS which we do not currently have
(over small enough F). More concretely, for constant F and poly(SC) random-
ness complexity there exist access structures with share complexity 2Ω(n) of
PSSS over F.

We stress that all our upper bounds on randomness complexity are for per-
fect secret sharing schemes, and are therefore require new techniques even in
the general secret sharing and unbounded degree PSSS settings. For general
non-PSSS (or PSSS) statistically secure schemes, partial derandomization tech-
niques from the literature can be applied. In more detail, for ε-statistical secret
sharing, bounds of `(h) = O(SC+log ε) on randomness complexity can be easily
obtained by replacing the randomness with the output of a non-boolean PRG
(nb-PRG) [20] against the sharing algorithm, mapping from `(h) random bits to
h random bits as used by the sharing algorithm. By standard analysis similar to
that in the proof of Claim 2 in [5]’s full version, a random function from ` to h
bits is a suitable nb-PRG. Such results however are not useful for lower bounds,
however. It is unclear whether nb-PRGs can be applied to constant-degree PSSS
to yield even statistical secret sharing schemes, as the resulting sharing scheme
does not necessarily remain low-degree (as the nb-PRG itself may be of high
degree). Thus, good lower bounds for low-degree PSSS even in the statistical
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setting are left as an interesting open problem.

Roadmap. In Section 2 we provide the precise (standard) definition of secret
sharing that we use, and introduce some new definitions and notations for PSSS.
In Section 3, we present our results on feasibility and share complexity. In
Section A we prove out upper bounds on randomness complexity. The bound
for degree-2 PSSS appears in Section A.1, and the result on general secret
sharing schemes and general PSSS in Section A.2. Section D contains a broader
survey of previous work from the perspective of PSSS implicit in it. Suggestions
for future work appear in Section C.

1.2 Open questions

In this work we have obtained some preliminary results on PSSS but many
fundamental questions remain open.

Question 1 (Informal). Do there exist access structures, that have non-polynomial
schemes much more efficient than any PSSS?

There exists certain evidence in the positive direction. In a nutshell, it
considers secret sharing constructions based on large matching vectors families
such as [35], which are known to exist over rings Zm of composite size but
provably do not exist when m is a prime.

Other interesting questions concern understanding the effect of various pa-
rameters of PSSS on their power, in terms of achievable share complexity and
information rate. There are various interesting parameters. One useful param-
eter is k - the length of the vector space Fk constituting the secret domain S.
The distinction between k = 1 and arbitrary k is the difference between linear
and multi-linear schemes, when considering PSSS of total degree d = 1. Gener-
ally, as we discuss below, the distinction between small secrets - k = 1 (or small
k) appears meaningful in terms of achievable information rate. An Additional
question to study is the effect of the particular field Fp on the power of the
induced PSSS class.

A concrete natural question is obtaining lower bounds for low degree PSSS,
say of degree d = O(1). A simple approach for k = 1 would be to bound
|R| as a function of the share complexity, and then rely on the fact that there
are few different degree-d polynomials in R + 1 variables (exponentially many
in the share complexity) for a constant Fp. The number of monotone access
structures is double-exponential in n. For linear schemes, it is well known that
wlog. log(|R|) ≤ share complexity, leading to a 2Ω(n) lower bound on share
complexity of linear schemes over any fixed Fp. However, for any d > 1, there
are no known explicit bounds on |R| in terms of |share complexity|, so this
approach does not currently work. In this work we make a first step in the
direction of filling in the missing component, obtaining certain upper bounds
on |R| (as a function of share complexity). This leaves the following interesting
question open.

Question 2 (informal). Fix some finite field Fq, and d = O(1). Does there
exist a polynomial bound h(·) on |R| as a function of share complexity, such
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that any PSSS over Fq of degree d has an equivalent PSSS over Fq and degree
q with the same share complexity, and |R| ≤ h(SC).4

2 Preliminaries

General notation. In this work we consider finite fields F. We write Fq
to denote a field of size q (some prime power). For matrices M1,M2 (of the
proper sizes) over some field F, we denote by (M1|M2) the matrix resulting from
concatenating M2 to the right of M1, and (M1;M2) results from concatenating
M2 below M1. Vectors are denoted by ~v or just v when there is no risk of
confusion (with scalars), and are by default column vectors. We let Mi denote
the i’th row of M , and M i its i’th column. We let MI (M I) denote a submatrix
with rows (columns) restricted to I. For a matrix M ∈ Fn×n, we denote by
N ∈ Fm×m the matrix resulting from removing all row-column pairs such that
M i = (MT

i ) = ~0.

Secret sharing. We use standard definitions of secret sharing schemes, fol-
lowing [7].

Definition 2.1. [7] Access Structure: For a set of parties {p1, ..pn} a subset
A ⊆ 2{p1,..,pn} is called monotone if B ∈ A and B ⊆ C implies C ∈ A. Sets in
A are called authorized and sets not in A are called unauthorized.

Definition 2.2. [7] Distribution Scheme: Let S,|S| ≥ 2 be a finite set of secrets.
A secret sharing scheme with secrets domain S, is a tuple M =< Sh, µ > where
µ is a probability distribution over some finite set R (called the set of random
strings) and Sh is a mapping from S×R to a set of n-tuples S1×S2× . . .×Sn,
where Sj is called the domain of shares of pj. For a set A ⊆ {p1, . . . , pn}, we
denote Sh(s, r)A as the restriction of Sh(s, r) to its A-entries. Sh satisfies the
following properties:

Perfect Correctness. The secret s ∈ S can be reconstructed by any au-
thorized set of parties. That is, for any set B ∈ A (where B = {pi1 , . . . , pi|B|}),
there exists a reconstruction function ReconB : Si1 × . . . × Si|B| → S such that
for every s ∈ S,

Pr[ReconB(Sh(s, r)B) = s] = 1 (1)

We refer to sets in A as qualified, and to minimal qualified B in the sense that B
is qualified and no B′ ( B is qualified as minterms of A. We refer to maximal
unqualified sets, in the sense that B is unqualified but for all Pi /∈ B, {Pi} ∪B
is qualified as maxterms of A.

Perfect Privacy. Every unauthorized set cannot learn anything about the
secret (in the information theoretic sense) from their shares. Formally, for any
set T /∈ A, for every two secrets a, b ∈ S, and for every possible vector of shares
< ~shj >pj∈T :

Pr[Sh(a, r)T =< ~shj >pj∈T ] = Pr[Sh(b, r)T =< ~shj >pj∈T ] (2)

4A sufficiently small super-polynomial bound on |R| would still imply non-trivial bounds
on share complexity, say better than the best known bound of Ω(n/ logn) for general schemes.

9



Observe that wlog., each share polynomial qi,j has free coefficient 0 (as
any constant may be locally added by Recon). We will assume this implicitly
throughout the paper.

Sometimes, we will be interested in ε statistical secret sharing, where ε er-
ror in correctness is allowed, and the distributions Sh(a, r)T and Sh(b, r)T are
for unqualified T may be at statistical distance up to ε. Our default notion
throughout the paper is that of perfect secret sharing as in Definition 2.2.

(Multi)Linear secret sharing schemes. The most studied and most com-
monly used class of secret sharing schemes is the linear secret sharing schemes
class. This class is subclass of multi-linear secret sharing schemes.

A secret sharing scheme is said to be multi-linear, if S = Fk, R = Fm
for some finite field F, and each share ~shi consists of g linear combinations
li,1(s1, . . . , sk, r1, . . . , rm) . . . , li,g(s1, . . . , sk, r1, . . . , rm) over F. The scheme is
called linear if additionally k = 1.

Complexity measures of secret sharing schemes. The information rate,
IR of a secret sharing schemeM, is the ratio between the maximum length of the
shares and the length of the secret. Formally, IR(M) = (maxi∈[n] log(|Si|))/| logS|,
where the maximum is taken over all dealer’s random strings r.

The share complexity of secret sharing scheme,M, is SC(M) = maxi∈[n] log(|Si|).
We denote the randomness complexity of a secret sharing scheme M by

RC(M)) = dlog2(|R|)e - the number of bits required to represent an element of
R.

2.1 Polynomials over finite fields

In this work we focus on the set Fq[y1, . . . , yn] of multivariate polynomials over
finite fields. We say a polynomial p(y1, . . . , yn) is of degree i if all monomials
in the polynomials have a cumulative degree of at most i. We say p has degree
exactly i if all monomials in p are of cumulative degree exactly i. Similarly, for
a subset I ⊆ [n], we say p is of degree i in xI = {xj |j ∈ I} if every monomial of
p has cumulative degree at most i in the variables from xI (similarly, for exact

degree in xI). In a finite field F = Fp` , where p is prime, let TrF(α) =
∑`−1
i=0 α

pi

is the trace mapping from F to itself.5

2.1.1 Output distributions of degree-2 polynomials

Some of our results require some theory on degree-2 polynomials over finite
fields. In particular, we will reduce understanding the output distributions
of (various subclasses of) degree-2 PSSS to understanding the output distri-
bution of a single degree-2 multivariate polynomial. For (any) polynomial in
p(x1, . . . , xn) ∈ Fq[x1, . . . , xn], we let Nf,b denote the number of solutions in
Fnq for the equation f(x1, . . . , xn) = b. Polynomials in F[x1, . . . , xn]q where all
monomials are of exactly degree 2, called quadratic forms. It is convenient to
represent quadratic forms f(x), by a matrix A ∈ Fn×nq , where f(x) = xTAx.
That is, Ai,j is the coefficient of xixj . We will need the following existing theory

5In fact, the image of TrF is always contained in Fp.
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characterizing Nf,b for f which are quadratic forms over a finite fields, and gen-
eral degree-2 polynomials over fields of characteristic 2. All required theory and
discussions appears in chapter 6 in [34], and is included here for self contain-
ment. Also, some of the theorems we state here are straightforward corollaries
of [34], but were not explicitly stated there.

Fields of odd characteristic. Fix some finite field F of odd charactersitic.
We let η denote the quadratic character on F∗. That is, η(x) = 1 if x is a
quadratic residue modulo q, and −1 otherwise. We extend its definition to 0
via η(0) = 0.

We also let ν : F → Z be ν(b) = −1 for b ∈ F∗, and ν(0) = q − 1. Recall
a quadratic form f over a characteristic field F in variables x1, . . . , xn is a
polynomial where all monomials are of degree exactly 2. It is known that a
quadratic form f(x) in variables x = (x1, . . . , xn) has a representation of the
form f(x) = xTC ·Mf · CTx, where C is an invertible matrix in Fn×n, and
Mf ∈ Fn×nq is diagonal, and all rank(Mf ) non-zero elements in the diagonal
are at entries M [i, i] for i ≤ rank(Mf ). Such a representation Mf is called
canonical. Here, Mf represents a quadratic form p′(v) = vTMfv in a new
vector ~v = (v1, . . . , vn) of variables, obtained from ~x via ~v = CTx. The number
m ≤ n of non-zero elements on Mf ’s diagonal is an invariant for all canonical
representations of f . The function η(det(M−f )) is another invariant, independent
of the concrete canonical representation Mf . (see Theorem 6.21 in [34] and
discussion beforehand for more intuition). We denote the type of a quardatric
form f(x1, . . . , xn) over Fq of odd characteristic as (n,m, η), where (m, η) are
the corresponding values of the above invariants of equivalent canonical forms.

To understand the expression for Nf,b for a quadratic form f , it suffices to
understand Ng,b for the quadratic form g(v1, . . . , vn) in a new vector of variables
v = (v1, . . . , vn), where g(v) = vTMfv where Mf is a canonical representation
of a quadratic form, as Nf,b = Ng,b for all b ∈ Fq. We refer to such g as
canonical forms. This holds as v(x) = CTx is a bijection between the domain
of f(x) and the domain of g(v) satisfying f(x) = g(v(x)) for all x ∈ Fnq . We
say that f is equivalent to a canonical form g as above. We define the type of a
quadratic form f(x1, . . . , xn) of odd characteristic via the triple (n,m, η(det))
(with m, η(det) invariants of canonical forms equivalent to f).

By the above discussion, we may assume wlog. that n = m, and calculate the
number of roots in that case. In the general case of f of type (n,m, η), compute
the number of roots for an equivalent canonical g of type (n = m,m, η), and
multiply by qn−m.

The following theorem now follows directly by combining theorems 6.26, 6.27
from [34]. For a quadratic form f(x) we denote the number of solutions to the
equation f(x) = b by Nf,b,

Theorem 2.1. Let p(x1, . . . , xn) denote a quadratic form over a finite field Fq
of odd characteristic of type (n,m, d). Consider a representation f(x) = vTMfv
as above, x = (x1, . . . , xn) ,and the vi’s are (independent, by choice of C) linear
combinations of the xj’s. Then

1. If m is even, then for every b ∈ F

Nf,b = qn−m(qm−1 + q(m−2)/2ν(b)η((−1)m/2)d).
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2. If m is odd, for every b ∈ F

Nf,b = qn−m(qm−1 + q(m−1)/2η(b(−1)m/2)d).

Following Theorem 2.1, we define the type of a quadratic form f(x1, . . . , xn)
of odd characteristic via (m,det). Evidently, the type of f determines the
distribution of f(x) when x is picked uniformly from Fn. Here we no longer
assume m = n.

Fields of characteristic 2. Let F be a field of characteristic 2. Here we also
have a canonical representation of quadratic forms, albeit somewhat less simple.
Namely, for every quadratic form f(x1, . . . , xn), there exists a number m ≤ n,
and a non-signular matrix C ∈ Fn×n such that f(x) = xTCMfC

Tx, where Mf

has one of the following forms:

1. (Type T = 1) m is even. Mf has 0’s everywhere except for entries M [2i−
1, 2i] for 1 ≤ i ≤ m/2 for some integer m ≤ n, which are all 1.

2. (Type T = 2) m is even. Mf has 0’s everywhere except for entries M [2i−
1, 2i] for all 1 ≤ i ≤ m/2 for some integer m ≤ n which are 1, M [m −
1,m− 1] = 1, and M [m,m] = a, where TrF(a) = 1.

3. (Type T = 3) m is odd. Mf has 0’s everywhere except for entries M [2i−
1, 2i] for 1 ≤ i ≤ (m− 1)/2 which are all 1, and also M [m,m] = 1.

Similarly to the odd characteristic case, we refer to Mf as a canonical repre-
sentation. By Theorem 6.30 in [34], the number m and T of the canonical Mf is
and invariant depending only on f , and not on the particular representation f .
Thus, we denote the type of a quadratic form f(x1, . . . , xn) as (n,m, T ), accord-
ing to n and the above invariants. For each type, and b ∈ F, a characterization
of Nf,b for quadratic forms is known, as follows from Theorem 6.32 in [34].6

Theorem 2.2. Let p(x1, . . . , xn) denote a quadratic form of type (n,m, T ) over
a finite field Fq of characteristic 2. Then

1. If T = 1, for every b ∈ Fq, Nf,b = qn−m(qm−1 + q(m−2)/2ν(b)).

2. If T = 2, for every b ∈ Fq, Nf,b = qn−m(qm−1 − q(m−1)/2ν(b)).

3. If T = 3, for all b ∈ Fq, Nf,b = qn−1.

2.2 Polynomial Secret Sharing Schemes (PSSS)

In this work, we put forward a natural generalization of (multi)-linear secret
sharing schemes - where shares are allowed to be general polynomials of ~s, ~r,
rather than just linear combinations. Namely:

Definition 2.3 (PSSS:). A polynomial secret sharing scheme (PSSS) M =
(Sh, µ) is a secret sharing scheme specified by (F, t, k, Sh) where F is a finite
field, S = Fk is the domain of secrets, µ is uniform over R = Ft, and t, k ∈
N+. The sharing function Sh(~s;~r)i returns (pi,1(~s, ~r), . . . , pi,li(~s, ~r)) as the i’th
party’s share, where each pi,j(~s, ~r) is a (multivariate) polynomial over F.

6The theorem applies to m = n, but reasoning similar to the odd characteristic case implies
Nf,b for general m,n as a simple corollary.
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We will denote the corresponding classes of polynomial schemes over F via
PSSSregexp[s,r],F, where regexp is a (variant of) a regular expression in r, s, 1.
The syntax and semantics of the expression set is defined recursively as fol-
lows: r encodes the set of polynomials {

∑
j∈[k] ajrj |aj ∈ F}, and s encodes

{
∑
j∈[k] ajsj |aj ∈ F}, 1 encodes {a|a ∈ F}. For a pair of regular expressions

g1, g2; g∗1 encodes the set {p1 · . . . · ph|h ∈ N,∀i ∈ [h], pi ∈ g1}; g1 + g2 encodes
{p1 + p2|p1 ∈ g1, p2 ∈ g2}, and g1 · g2 encodes the set {

∑
j∈[h] p1,j · p2,j |h ∈

N,∀jp1,j ∈ g1, p2,j ∈ g2}. gi1 is a shorthand for g1 · . . . · g1 with i appearances
of g1. We also say that a scheme M has degree at most (exactly) d in r (s), if
each monomial contains at most (exactly) d ri’s (si’s).

For polynomial schemes M, we measure share complexity in field elements,
rather than in bits. Formally, these measures will be denoted by SCF(M etc.
(it always the case IRF(M) = IR(M), as this measure is normalized by secret
size).

Our definition is a generalization of the notion of multi linear secret sharing
in a natural direction, which potentially adds power over multi-linear schemes.
We try to keep it as close as possible to the definition of multi-linear schemes,
and insist that the domain where secrets, randomness and computation are
performed is a finite field.7

A slightly more general notion of polynomial schemes is one where S ⊆
Fk, rather than the entire set Fk.8 We refer to such schemes as generalized
polynomial schemes.

3 On Feasibility and Share Complexity of PSSS

In the next two sections, we present our negative results. Our positive result
on the power of multilinear schemes is a rather simple observation based on
existing work, and is deferred to the full version.

3.1 Bounds on efficiency of degree 1 in r PSSS

We show that a large sub-class of polynomial schemes of degree at most 1 in
r (PSSSs∗·r+s∗) are not more powerful than multi-linear schemes, in the sense
that they can not reduce share complexity super-polynomially over multi-linear
schemes.

Our first result proves that PSSSs∗·r+s can be replaced by a multi-linear
scheme without any loss in parametres.

Theorem 3.1. For every schemeM = (F, t, k, Sh) in PSSSs∗·r+s, there exists
a PSSSs+r schemeM′ = (F, t, k, Sh′) for the same access structure and A with
SC(M′) = SC(M).

Proof idea: Somewhat surprisingly, for any scheme PSSSs+r,F we build
an equivalent multi-linear scheme by replacing the coefficient polynomials of

7Note that some of the schemes appearing in [11] are quite close to ”polynomial” schemes,
but the domains employed there are rings R which are (crucially) not fields, and the secrets
and randomness do not necessarily come from domains of the form Rt, Rk.

8If no restriction on the s-degree are made, we may replace the subset S with any other
subset of the same size, without affecting the other parameters.
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the ri’s in the shares (which have the form p(s)) by constants resulting from
substituting an arbitrary fixed vector s′ ∈ S into the coefficients.

To prove this theorem, let us restate the sharing algorithm Sh more con-
veniently. For such a scheme, Sh(s, r) can be represented as V s + Mr, where
V ∈ Fa×k,M ∈ F[s1, . . . , sn]a×t. Here each entry of M is a formal polynomial
pi,j in s, a the total number of polynomials in the share vector, and V a con-
stant. Ms is a shorthand for M(s) - substituting a concrete value s as the secret
vector, into the matrix of polynomials.

A function ρ : {1, ..., a} −→ {p1, ..., pn} labels each row by a party, so that
party Pi receives the shares corresponding to rows Hi = j|ρ(j) = i. For a set A
of parties, we abbreviate the submatrix pf M involved in generating A’s shares
on secret vector s (aka ∪i∈AHi) as As = (VA|Ms,A).

Claim 3.2. Let M = {F, t, k, (V |M)}, in PSSSs∗r+s,F, be a secret sharing
scheme for an access structure A. The scheme M′ where M is substituted by a
constant matrix M~s1 for some fixed secret ~s1 is a (multi-linear) secret sharing
scheme for the same access structure.

Proof. Fix some secret vector ~s1 as in the statement of the claim. We prove
the scheme remains valid.

Correctness: Consider any ~s0 ∈ Fk. Now we will look at authorized set A.
Let us look at the two share distributions (VA|A~s1) ·(~s1|~r1) and (VA|A~s0) ·(~s0|~r0)
of secrets ~s1 and ~s0, where ~r1, ~r0 ∈ Ft are independent random vectors. The
correctness of M is equivalent to stating that for all pairs ~r0, ~r1, we have:

(VA|A~s1) · (~s1|~r1) 6= (VA|A~s0) · (~s0|~r0)

⇓
VA · (~s0 − ~s1) 6= A~s1 · ~r1 −A~s0 · ~r0.

(3)

It is correct in particular for ~r0 = ~0. Which means that:

VA · (~s0 − ~s1) 6= A~s1 · ~r1 (4)

for all ~r1. Due to the fact that Equation 4 is correct for any ~s0 ∈ Fk and by the
structure of the secret domain, for any two distinct secret vectors ~s2, ~s3 ∈ Fk
there exists ~s0 for which ~s2 − ~s3 = ~s0 − ~s1. From equation 4:

VA · (~s2 − ~s3) 6= A~s1 · r1 (5)

For all ~r1 ∈ Ft. Let ~r2, ~r3 ∈ Ft. Writing ~r1 = ~r3 − ~r2 we conclude that (as
r1 in Equation 5 is arbitrary),

VA · (~s2 − ~s3) 6= A~s1 · ~r1

⇓
(VA|A~s1) · (~s2|~r2) 6= (VA|A~s1) · (~s3|~r3)

(6)

Which is precisely the definition of correctness for the new scheme (as
~r2, ~r3, ~s2 6= ~s3 are otherwise arbitrary).

Privacy : Consider some secret ~s0 6= ~s1 ∈ Fk. It follows directly from privacy
that for each unauthorized set A, for any ~r0 ∈ Ft there exists ~r1 ∈ Ft for which:
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(VA|A~s1) · (~s1|~r1) = (VA|A~s0) · (~s0|~r0)

⇓
VA · (~s0 − ~s1) = A~s1 · ~r1 −A~s0 · ~r0

(7)

In particular this is true for ~r0 = ~0. Then for any ~s0 there exists ~r1 ∈ Ft for
which:

VA · (~s0 − ~s1) = A~s1 · ~r1 (8)

Let ~s2, ~s3 denote a pair of secrets. Fix ~s0 for which ~s2 − ~s3 = ~s0 − ~s1. From 8 it
follows there exists ~r1 for which:

VA · (~s2 − ~s3) = A~s1 · ~r1 (9)

So for any vector r3 ∈ Ft we get:

VA · (~s2 − ~s3) = A~s1 · r1

⇓
VA · (~s2 − ~s3) = A~s1 · (~r3 − (~r3 − ~r1))

⇓
(VA|A~s1) · (~s2|~r3 − ~r1) = (VA|A~s1) · (~s3|~r3)

(10)

We prove that this implies privacy. Picking ~r3 at random, the vector ~r3− ~r1

is a random vector as well. Thus, the left hand size, where ~r3 is picked at
random is distributed precisely as the shares seen by A when sharing ~s2 inM′.
This value is uniform over the affine subspace VA~s2 + colSpan(A~s1). Similarly,
the right hand side is also a random element of an affine subspace of the form
VA~s3 + colSpan(A~s1), and is distributed precisely as a share of ~s3 seen by A at
M ′. By Equation 10, these affine subspaces intersect, so they must be the same
subspace, since both are cosets of colSpan(A~s1). This concludes the proof. �

Next, we prove that a PSSSs∗+r scheme can be replaced by a multi-linear
scheme up to a small loss in rate due to a small reduction in the dimension k
of the secret space. Here, it will be convenient to specify Sh(s, r) by a pair
(v(s),M), where v(s) = (v1(s), . . . , v`(s)) is a vector of (multivariate) polyno-
mials in s, and M is a constant matrix, and

Sh(s, r) = Mr +
∑
i∈[k]

si
v(i)

si
(s) = Mr + v(s) (11)

Such an expression exists as we assume all share polynomials have a non-zero
free coefficient. Here every v(i)(s) is a vector of formal polynomials, comprised
of sums of all monomials in v in which si’s degree is at least 1, and that were
not included in v(j) for j < i (we construct the v(i)’s iteratively, starting from
i = 1).9 In this representation, si appears only in v(j) with j ≤ i. We will
sometimes denote Sh in PSSSs∗+r schemes as a pair (v,M) as above.

Theorem 3.3. For every scheme M = (F, t, k, (v,M)) in PSSSs∗+r there
exists a multilinear scheme M′ = (F, t, k− n, Sh) for the same access structure
A with share complexity SC(M′) ≤ n · SC(M).

9Unlike in the previous section, it is more convenient to denote the formal polynomial
vector by v, rather than vs, in analog to Ms in the previous section, to simplify notation. We
let v(s) denote the evaluation of v on a specific vector s.
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Proof. We construct a multi-linear scheme M′ = (F, t, k′, (V ′|M)), by con-
structing a basis B for V ′’s column space, where Sh(s, r) = (V ′|M)(s, r) is the
sharing algorithm of the multi-linear scheme (note V ′ here is constant). By
Equation 11, for s′ = ~0, the distribution of Sh(s′, r) is therefor uniform over the
zero coset of Mr = colSpan(M). We conclude the following:

Claim 3.4. For all s′ ∈ Fk and every unqualified A, the vector vA(s′) is in
colSpan(MA).

Proof of claim. To see this, consider a representation of Sh as in Equation 11
of the form Sh(s′, r) = Mr + v(s′) as above. Let vA denote v restricted to

entries held by A. We have vA(0, s′2, . . . , s
′
k) = vA(s′) − v(1)

A (s′) (since only v
(1)
A

depends on s1). Since by privacy of M both vA(s′) and vA(0, s′2, . . . , s
′
k) must

belong to colSpan(MA) (as this holds for s′ = ~0), so does v
(1)
A (s′). Since s′

is arbitrary, we conclude that s′′1v
(1)
A (s′′) is in colSpan(MA) for all s′ = s′′.

Now, comparing Sh(s′, r) and s′′ = (s′1, 0, s
′
3, . . . , s

′
k), by similar reasoning to

the above, we conclude that v
(2)
A (s′) is also ~0 in F#rows(MA)/colSpan(MA). This

follows from the fact that v
(j)
A ’s for j > 2 are independent of s2, and the fact

that v
(1)
A (s′) and v

(1)
A (s

′′
) are 0 in F#rows(MA)/colSpan(MA) as we proved before,

so it does not effect the coset. Similarly to the case of j = 2, by induction on

j we can prove that v
(j)
A (s′) equals ~0 in F#rows(MA)/colSpan(MA). Now, as

vA(s′) =
∑
i v

(i)
A (s′), it also equals ~0, as required. �

From Claim 3.4, it follows that taking any V ′ with columns in span({v(s′)|s′ ∈
Fk}, (V ′|M) immediately satisfies privacy. We will indeed pick our basis B out
of span({v(s′)|s′ ∈ Fk}, so we will only need to worry that the resulting scheme
satisfies correctness. The construction is as follows.

1. Initialization: Initialize B = φ (recall span(B) is {~0}).

2. Iteration i > 0: Find some s′ ∈ S, so that for all minterms A ⊆ [n], v(s′)
belongs to a coset of F#rows(MA)/colSpan(MA) that differs from coset(v)
for all v ∈ span(B). Halt if no such s exists. If it does, add one such V s

to B.

We prove by induction that at the end of every iteration i ≤ max(1, k − n),
we B is a size-i independent set in F#rows(M) such that (B|M)(s, r) is correct
for A with secret domain S = Fi (and private, which we observed before).

First, observe that the above procedure will yield at least a single vector. For
every s′ 6= ~0, and every mintermA, vA(s′) is non zero in F#rows(MA)/colSpan(MA)

by correctness ofM. Now, any product α~s′ for α ∈ F will yield a different coset
in F#rows(MA)/colSpan(MA), as vA is non-zero. Thus, we can add vs(s

′) to our
set. By the inductive hypothesis, at the end of iteration i, we have |F|i vectors
already in span(B) - for clarity, denote B at the end of iteration i by B(i). We
observe that for every minterm A all projections vA(s′) are distinct for different
values s′ - which follows from correctness ofM. Therefor, going over all A’s, at
most

(number of minterms)|F|i ≤ 2n|F|i ≤ |F|i+n

vectors are excluded as candidates for the next vs(s
′) to join B. Finally, by

the condition imposed on the new vector to join B, it follows that B(i+1) is a
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size-i + 1 independent set, as satisfies that (B|M) is correct for secret domain
S = Fi+1 (the formal argument is similar to the base case, observing that vA(s′)

is non-zero as a coset of (MA|B(i)
A )). As there are |F|k vectors in M’s domain

to begin with, we conclude (from the proof of the inductive step above) that at
least k − n iterations can be made before running out of vectors to add, which
concludes the proof. �

3.2 PSSSs∗+s∗r2 is very weak

In this section we will show that if the shares are from the class PSSSs∗+s∗r2
(no r-degree 1 part) captures only the access structures consisting of a set of
singletons as its minterms.10

Theorem 3.5. Let F be a finite field of odd characteristic. Then the class
PSSSs∗+s∗r2,F can only implement a simple set of access structures where its
minterms are all singletons.

Indeed, observe that we can not expect a similar result for all fields, as for
F2, for instance, we have r2

i = ri, so one can represent any multi linear scheme
over F2 as a PSSSs∗+s∗r2,F scheme, by replacing every variable ri by r2

i , which
are equal over F2. However, linear schemes over F2 do capture all monotone
access structures (e.g, via the formula-based construction of [16]). See 2 for
required background and notation on quadratic forms.

Furthermore, we have

Observation 3. Let f1(x1, . . . , xn), f2(x1, . . . , xn) be two quadratic forms over
a field Fq of odd characteristic of (possibly same) types (n1,m1, d1), (n2,m2, d2)
respectively. Then for all b ∈ F−{0}, Prx←Fn(f1(x) = 0) 6= Prx←Fn(f2(x) = b).

The observation follows by simple case analysis. In some more detail, by
Theorem 2.1, N(f1(x = 0)) is either a single qx or of the form qx1 ± qx2 ± qx3

for x1 > x2 > x3, while for b 6= 0, N(f2(x = b)) is of the form qx1 ± qx2 for
x1 > x2. So, the probabilities (after dividing both numbers by qn) must differ.
This is regardless of the values of m1,m2.

Now, consider a party Ph that receives a share of the form

f(~s, ~r) = p(~s) +
∑

i,j∈{1,..,n}
i≤j

pi,j(~s)rirj = p(~s) + q~s(~r).

where each q~s(~r) is a polynomial in ~r with coefficients in the ring Fq[s1, . . . , sn],
and p(~s) is non constant over Fnq . First consider the case when p(~s) is non-
constant over Fnq . We prove that there exists a pair of secrets ~s1, ~s2 that Ph
can distinguish by itself. To see this, fix two vectors ~s1, ~s2 such that p(~s1) 6=
p(~s2). By observation 3, it directly follows that the unique probability (over the
choice of ~r) of f(~s1, ~r) hitting p(~s1) equals the probability of q~s1(r) hitting 0,
while the probability of hitting values b 6= p(~s1), equals the probability of q~s1(r)
hitting corresponding non-zero values (indeed, adding a constant permutes the
distribution). A similar situation occurs with f(~s2, ~r) and the ‘spacial’ point
p(~s2). Thus, the points with the ‘special 0-probability for the q~si -part’ for ~s1

10Note that our results only rule out perfect schemes.
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and ~s2 differ for f(~s1, ~r) and f(~s2, ~r). We conclude that the two distributions
f(~s1, r), f(~s2, r) are distinct. To see this, note that the contribution of b = p(~s1)
to the statistical distance between f(~s1, r) and f(~s2, r) is 1/2|Pr[q~s1(~r) = 0] −
Pr[q~s2(~r) = p(~s1)− p(~s2)]|, which is non-zero by Observation 3.

Finally, let us look at all the remaining parties with only shares where p(~s)
is constant (zero, wlog. since the free coefficient is 0). Such parties receive only
shares of the form f(~s, ~r) = q~s(~r), where every q~s is a quadratic form. Therefore,
for any ~s ∈ S we have fp(~s,~0) = 0. Thus, all these parties together can not
reconstruct the secret with probability 1, implying that the singletons above are
the only minterms of the access structure.
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A On the randomness complexity of polynomial
schemes

In this section we will focus on bounding the randomness complexity needed for
secret sharing.

A.1 Bounding the Number of Random Variables in Quadratic
Secret Sharing Schemes

Theorem A.1. For any scheme M = (Fq, t, k, Sh) ∈ PSSSs∗+r2+rs+r for
an access structure A ⊆ 2[n] there exists a scheme M′ = (Fq, t′, k, Sh′) ∈
PSSSs∗+r2+rs+r, with the same share complexity, where t′ ≤ 2Õ(SC(M)).

The proof idea is to replace the space Ft from which the random variables
inM are sampled with a carefully chosen subspace A ⊆ Ft in such a way that if
we sample our input ~r to the share polynomials of the original scheme from this
smaller space, the privacy and correctness will be preserved. Preservation of cor-
rectness is immediate, since correctness was originally perfect. Thus A will be
determined using only the privacy requirement. We will build such a subspace
iteratively adding vectors to a basis. More precisely, we set a linear mapping L
from the Fq-vector space Vr,t = span(1, r1, . . . , rt), where the formal variables
1, r1, . . . , rt are viewed as vectors, to the Fq-vector space Vr̃ = span(1, r̃1, . . . , r̃t′)
where t′ << t is to be fixed later. To obtain Sh′, we replace every share polyno-
mial pi,j(~s, r1, . . . , rt) output by Sh by the polynomial pi,j((~s, L(r1), . . . , L(rt))),

resulting in a degree-2 polynomial in ~s, ~̃r, where ~̃r is of length only t′. We set
L(1) = 1.11 For a subset A ⊆ Vr,t, we denote L(A) = {L(a)|a ∈ A}. For a sub-

set I ⊆ [t′], Define by Vr̃,I = span({r̃i|i ∈ I}). For a linear subspace Ṽ ⊆ Vr̃,t′

we let projṼ (x) return the projection of x ∈ Vr̃,t′ onto Ṽ (a similar notion will
occasionally be used for any linear space and a subspace thereof).

Before we prove the above theorem, we start with some notation and more
technical observations about degree-2 polynomials.

Observation 4. Let p(r) = r2 +ar+c be a univariate degree-2 polynomial over
Fq of characteristic 2. Denote q = 2l. Then if a = 0, the output distribution
of the random variable p(r), where r is sampled uniformly from Fq is uniform
over Fq. Now consider Fq as a F2-vector space of dimension l. If a 6= 0 p(r)

11We added 1 to the vector spaces to simplify the proof, L(1) is not directly used by Sh′

above.
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is uniform over a coset of a linear subspace B of Fq of dimension l − 1. B is
determined only by a.

Proof. The observation is proved by noticing that p′(r) = p(r)−c is a linearizing
polynomial, satisfying p′(x+y) = p′(x)+p′(y), and only {0, a} = span({a}) are
0’s of the polynomials, and thus equal the kernel of p as a linear mapping. Thus,
Image(p′) is uniform over a subspace B of dimension l − 1 if a 6= 0, otherwise
the mapping p′, and also p is a bijection. For a 6= 0, Image(p) is uniform over
B+ c, which equals B iff. c ∈ B. Indeed, B = Image(p′) depends only on a, as
Kernel(p′) depends only on k.

Lemma A.2. Consider a degree 2 polynomial p(~r) = fp(~r)+lp(~r) where ~r ∈ Fnq .
Then there exists an affine transformation H : Fn → Fn, such that H(~r) =

C~r′+~b where C is non-singular such that the following holds (we thereby refer to
this transformation as a non-singualr affine transfomration).12 Let p(H(r)) =

p′(r′1, . . . , r
′
n) where p′(~r′) = fp′(r

′
1, . . . , r

′
m) + lp′(r

′
m, r

′
m+1, . . . , r

′
n) + ap′ for

some m ≤ n, and fp′ is a canonical quadratic form. Additionally, if r′m has a
non-zero coefficient in lp′ , then Fq has characteristic 2, and fp′(~r

′) is of type
(n,m, T = 3).Furthermore, C depends only on fp. We refer to p′ as above as a
canonical degree-2 polynomials (generalizing the concept of a canonical quadratic
form), and we say p is equivalent to p′ when a transformation H as above exists.

We extend the notion of a type of quadratic forms to general canonical
p′ as in Lemma A.2. For a canonical p′(~r′) =

∑
i<j a

′
i,jr
′
ir
′
j +

∑
i a
′
ir
′
i + a′p

as in Lemma A.2, let (n,m, d) or (n,m, T ) (according to the parity of the
characteristic of Fq) denote the type of fp′ . Let lp′ =

∑t
i=m a

′
ir
′
i we de-

note maskp′(~r′) =
∑t
i=m+1 a

′
i < α′i, ~r > if a′i > 0 for some i > m. In this

case, we say p′ is of lin0. Otherwise, if fp′ is of type (n,m, T = 3) we let

maskp′(~r′) = a′m,m(< α′m, ~r >)2 + a′m < α′m, ~r >, in this case we say the poly-
nomial is of type lin1 if a′m = 0, and type lin2 otherwise. Otherwise, we let

maskp′(~r′) = 0 and refer to the polynomial as of non-linear type. For conve-
nience, we unify the types of odd characteristic and characteristic 2 and denote
the type by a 5-tuple (Fq, n,m, y, b), where Fq is the field over which p is defined,
y is either d or T depending on whether Fq has characteristic 2. The part states
linearly. If p′ is lin0 or lin1, b = 0 or b = 1 respectively. Otherwise, for lin3
(happens only together with T = 3), apply Observation 4 to r2

m + brm + ap′ .
Then b = (3, B, b′), where B is the linear subspace in Observation 4 (specified
by l−1 field elements which are a basis of B), b′ = 0 if the coset supporting the
output distribution of r2

m + brm + ap′ contains ~0. Finally, for non-linear type
polynomials, b = 3. Indeed, the type of any degree-2 p is well-defined as:

Observation 5. For a degree-2 polynomial p(r1, . . . , rn), all canonical polyno-
mials p′(r′1, . . . , r

′
n) equivalent to p are of the same type (Fq, n,m, y, b).

The proof of Observation 5 is a direct corollary of the following observation
and the fact that the transformation from p(~r) to a canonical polynomial p′(~r′)
preserves the output distribution.

12More precisely, we view this transformation as mapping from Fq-linear spaces spanned by
the formal variable sets {r1, . . . , rn} and {r′1, . . . , r′n} respectively.
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Observation 6. Let p1(r′1, . . . , r
′
n), p2(r′1, . . . , r

′
n) be a pair of canonical polyno-

mials. Then their output distributions (for ~r′ uniformly sampled from Fnp ) are
equal iff. they are of the same type.

We will need the notion of an almost canonical polynomial. We say a degree-
2 polynomial p(~r) = fp + lp + ap is almost canonical if fp(~r) if it is obtained
from a canonical polynomial p′(~r′) of type (Fq, n,m, y, b) by replacing each r′i
by an affine combination

∑
j∈[n] αi,jrj+bi =< αi, ~r > +bi, where all < αi, ~r >’s

are all linearly independent elements of Vr,t. (equivalently, by replacing ~r′ by

~r obtained from ~r′ by means of a non-singular affine mapping ~r′ = H ′ · ~r +
~b′). If the < αi, ~r >’s are not necessarily linearly independent, we say p is
somewhat canonical. For a somewhat (almost) canonical p, we refer to p(~r′) as
the associated canonical polynomial for p. For (any) quadratic form p(~r), we
denote by span(p) the set {lfp(r1+∆1,...,rn+∆n) ∈ Vr,n|∆ ∈ Fnq }.

We have the following characterization of the ‘linearity status’ b in the type
of almost canonical polynomials.

Lemma A.3. Let p(r1, . . . , rn) be an almost canonical polynomial, with an
associated canonical polynomial p′(~r′) of type (Fq, n,m, y, b). Then, the (partial)
type of p as a polynomial in ~r satisfies:

1. p is of type lin0 iff. lp(~r) is not spanned by r′1, . . . , r
′
m (all as elements of

Vr,n). Equivalently, lp(~r) is not in span(p).13

2. p is lin1 iff. char(Fq) = 2, y = 3 and lp is spanned by {r′1, . . . , r′m−1}.

3. p is lin2 iff. char(Fq) = 2, y = 3, and lp is spanned by r′1, . . . , r
′
m−1, r

′
m,

but not by r′1, . . . , r
′
m−1

4. p is non-linear type iff. it satisfies none of the conditions above.

The proof of the lemma is not hard, and makes observations along the lines
of the proof of Lemma A.2.

Proof of lemma A.2 First, let ~r = C ~r′′ where C is non-singular, and

fp(r) = ~r′′
T
Mfp′′

~r′′, where fp′′ is a canonical quadratic form of type (t,m, T ).

Now, substituting ~r = C−1 ~r′′ into lp(~r) + ap we obtain lp′′( ~r′′) + ap′′ , we ob-

tain p(~r) = p′′( ~r′′) (as formal polynomials) where fp′′ is a canonical quadratic
form. Next, we divide the analysis according to characteristic of Fq. We start

with charactersitic 2. We iteratively transform ~r′′ into ~r′ via non-singular affine
transformations as above starting from p′′(~r′) resulting in p′(~r′) with the re-

quired properties. The composition of the trasnformation above from ~r to ~r′′

with these transformations will result in a non-singular affine transformation
~r → ~r′. Each transformation will not change fp′′ (keeping it canonical), and
remove one variable from the lp′′ part. Let i denote the highest index among
[m] where air

′′
i in lp′′ has a non-zero ai. For simplicity of notation, we will refer

to the polynomials after each transformation as p′′, and to its variable vectors
as ~r′′ (rather than a new set of variables as results after each transformation).
If no such i exists, we are done. Otherwise, there are several cases.

case 1 : Assume 1 ≤ i ≤ m − 2. (Regardless of T type of fp′′ .) assume

fp′′( ~r′′) = r′′1 r
′′
2 + ... + r′′i r

′′
i+1 + . . . . Let ~r′′ = H(~r′) (~r′ is the new vector of

13It is not necessarily equivalent for somewhat canonical polynomials p.
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variables for the resulting polynomial) be r′′i+1 = r′′i+1 +a and r′′j = r′j otherwise.
Then in p′(H(r′)) the coefficient of r′i is ar′i + ar′i = 0. By maximality of i,
ap′ = ap′′ . Also, fp′ = fp′′ . Similarly, if fp′′ = r′′1 r

′′
2 + ... + r′′i−1r

′′
i + . . ., we set

r′′i−1 = r′i−1 + a and r′′j = r′j otherwise. As before, the coefficient of r′i becomes
0, fp′ remains unchanged and the free coefficient possibly changes.

case 2 : Assume i = m− 1 or i = m for type 1.
The same transformation from the previous case will work here too.
case 3 : if i = m− 1 or i = m for type 2.
Similarly to the previous case, if i = m−1 we set H so that ~r′′i+1 = ~r′′i+1+1.

This keeps fp′′ unchanged, cancels r′i and does not add new linear terms. In

particular, note that br′′
2
m does not contribute to the linear part lp′ , as 2ab = 0

in Fq. The free coefficient changes by ba2 due to br′′
2
m’s contribution. A similar

transformation (letting r′′m−1 = r′m−1 + a) works for i = m.
case 4 : Assume i = m for type 3. In this case do noting.
In all cases, proceed to eliminating the next largest ar′i in p′ (to which we

now refer as p′′), if exists. The process takes at most m steps until terminating.
After the above procedure terminates, it is easy to see that there is either no
intersection in the variables appearing in fp′ and lp′ , or they only have only r′m
in common, in which case fp′′ is of type (t,m, T = 3).

Next, we move to odd characteristic, where the situation is quite simple.
Starting from p′′( ~r′′) above, where fp′′ = a1,1r

′′2
1 + a2,2r

′′2
2 + . . . + am,mr

′′2
m.

Now, we make a single transformation ~r′′ = H( ~r′′) where for every i ≤ m, we
let r′′i = r′i + ai/2, where ai is the coefficient of r′′i in lp′′ (this is well-defined,
since 2 6= 0 for fields of odd characteristic).

�
Proof of Theorem A.1:
In our proof we will use a variant of Vazirani’s xor lemma from [28] over

general finite fields.

Lemma A.4 (Vazirani’s XOR lemma). Let Fq be a finite field, and let ~X =

(X1, . . . , Xn), ~Y = (Y1, . . . , Yn) denote random variables over Fnq . Then ~X, ~Y
are identically distributed iff. for all ~α ∈ Fnq ,

∑
i αiXi and

∑
i αiYi are identi-

cally distributed.

As an immediate corollary, we obtain the following.

Claim A.5. Consider a PSSSs∗+sr+r+r2 scheme M(Fq, t, k, Sh) for an ac-
cess structure A. Recall the polynomials in the share of Pi are labeled by
pi,1, . . . , pi,li . Then M is private iff. for every maxterm M = {Pi1 , . . . , Pih}
of A and every α ∈ F

∑
j≤h lij

q all polynomials in the set GM,α = {pM,α,~s(~r) =∑
j≤h

∑
l≤lij

αij ,lpij ,l(~s, ~r)|~s ∈ Fkq} have identically distributed outputs (for ran-

dom inputs ~r).

By Claim A.5, for a given (M,α), all polynomials in GM,α’s have the same
output distribution (over inputs in Ftq). We will go over all (M,α) pairs one by
one, and update the mapping L, specified over a certain basis of Ftq (this basis
will also be determined adaptively, for a more convenient proof). The exact t′

will also be determined in the process. Then, we will prove that indeed for each
(M,α), all polynomials pM,α,~s(L(r1), . . . , L(rn)) = p̃M,α,~s(~̃r) in GM,α have the
same output distribution.
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For every pM,α,~s(~r), we rewrite it in canonical form p′M,α,~s(
~r′)(~r′), as guar-

anteed in Lemma A.2 but consider them as polynomials in new variables ~r′′,
where for each ~r′i =< α′1, ~r > +b′1 we have ~r′′i =< α′1, ~r >. We denote the new
representation by the polynomial p′′(~r′′). To clarify what we mean, consider for
example the (Fq, n,m, T = 1, 3)-type polynomial p′(~r′). We get

p′′(~r) = (a′1,2(r′′1 + b′1)(r′′2 + b′2) + . . .+ (a′m−1,m(r′′m−1 + b′m−1)(r′′mb
′
m)) =

a′1,2r
′′
1 r
′′
2 + a′3,4r

′′
3 r
′′
4 + . . .+ a′m−1,mr

′′
m−1r

′′
m+

a′1,2b
′
1r
′′
2 + a′′1,2b

′
2r
′′
1 . . .+ am−1,mb

′
m−1r

′′
m + am−1,mb

′
mr
′′
m−1+

a′1,2b
′
1b
′
2 + . . .+ a′m−1,mb

′
m−1b

′
m =

fp′′( ~r′′) + lp′′( ~r′′) + ap′′ (12)

where each αi ∈ Fnq , b′i ∈ Fq. We will mostly think of the p′′’s as polynomials

in ~r, which is common for all our polynomials, unlike the ~r′ which may differ
among the polynomials, as evident from Lemma A.2. What have we gained
from this back-and-forth transformation? A more convenient restatement of
the polynomials, from which the canonical form is evident. Finally, we note
that among the polynomials p in some GM,α, however, only the lp, ap parts may
differ among the resulting polynomials p′′.

Observation 7. For a fixed (M,α), all polynomials p(~r) ∈ GM,α have the same
fp-part (and the r′′’s are also the same as functions of ~r).

This stems from the fact that all share polynomials in a PSSSs∗+(s+1)r+r2

are of total degree 2, so all monomials in pM,α,~s of r-degree 2 do have s-degree
0, and from the fact that the C-part in the transformation H in Lemma A.2
depends only on fp (and therefor, also in the inverse transformation H−1(~r′) =
C−1~r−C−1b). In the following, we slightly abuse notation and identify between
p(~r) and p′′(~r) (as we only care about output distributions). Note that the p′′’s
are almost canonical (as the p′’s are canonical). We proceed to constructing
L. Roughly, for each (M,α), we require that certain properties satisfied by the
original polynomials p ∈ GM,α are satisfied by L(p). This will ensure that the
L(p)’s retain equal distributions.

1. (Collecting independence constraints): Here we fix a set of independence
requirements that L needs to maintain. Go over all (M,α) pairs.

(a) If all p ∈ GM,α are of type lin0, for each p ∈ GM,α add the constraint
that L(lp′′) is not spanned by A = L({r′′1 , . . . , r′′m}) to Sind (note
the concrete r′′1 , . . . , r

′′
m may differ among the different polynomials

in GM,α). We store the constraint in Sind as a tuple (lp′′ , A), where
A is a set spanning a subspace of Vr,t.

14

(b) If all p ∈ GM,α are of type (Fq, n,m, y, b) of type lin1 or lin2, for
each p ∈ GM,α add the requirement that r′′m is not spanned by
{r′′1 , . . . , r′′m−1} to Sind.

2. (Collecting dependence constraints). Here we fix a set of dependence
requirements that L needs to maintain. Go over all (M,α) pairs.

14As L is linear, we can represent the constraint by the pair lp′′ , A before the transformation.
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(a) If all p ∈
⋃
M,αGM,α are of non-linear type, for each p ∈ GM,α add

the requirement that lp is spanned by span(p′′) to Sdep. Crucially,
unlike in Sind, here we store the constraint as a tuple (lp, fp′′), rather
than span(p′′), as span(p′′). The relevant subspace will be derived
from fp′′ and the current value of L upon ‘implementing’ that par-
ticular constraint.15

(b) If all p ∈
⋃
M,αGM,α are of type lin1, for each p ∈ GM,α add the

requirement that lp′′ is spanned by span(p′′) to Sdep. Again, the
requirement is represented by (lp′′ , fp′′)

(c) If all p ∈
⋃
M,αGM,α are of type lin2, for each p ∈ GM,α add the

requirement that lp′′ is spanned by span(p′′) ∪ {r′′m} to Sdep. The
requirement here is represented by (lp′′ , (fp′′ , r

′′
m)).

3. (implementing constraints).

(a) Go over the set of elements {v ∈ Vr,t|(v,A) ∈ Sind}. Let B1 =
{b1, . . . , bh} denote a basis for these elements. Set L(bi) = r̃i for each
bi ∈ Vr,t. Complement B1 into a basis of Vr,t \ {1} arbitrarily, and
let B2 = {bh+1, . . . , bt} denote the added basis vectors. Set z = h.

(b) Go over the constraints (v,A) ∈ Sind. Extend the mapping L into L′

as guaranteed by Claim A.6 applied to L,B′ = B1, V = A, l = lp′′ .
Update z ← z + 1. Set L← L′′.16

(c) Go over the constraints (v,A) ∈ Sdep.
• Extend the mapping L (to Vr,z) into a mapping L′ to Vr,z+1 as

obtained by applying Claim A.7 to L,B′ = B1, V = fp′′ , l = lp′′ .
Update z ← z + 1, L← L′′.

Note that the mapping L : Vr,t → Vr̃,t′ resulting at the end of the proccess
indeed satisfies all dependence and independence constraints. This easily follows
by induction on the constraint number handled by the above construction in
step 3. The base case holds since the inputs to the claims satisfy the claims’
precondition by construction (the definition of L and B1). In particular, in
Claim A.6, indeed l always belongs to span(B′) (B′ = B1), and L is invertible
over B′. The step holds roughly due to the ‘moreover’ part in Claim A.6 and
Claim A.7. Also, t′ is of size

t′ ≤ |S| × |{(M,α)}| ≤ |S|2nqn·SC/log(q) ≤ 2n+n·SC(M)+k

As k ≤ SC(M), we have.

RC(M) ≤ t′ ≤ 2O(n·SC(M) (13)

as stated in the theorem.

Claim A.6. Let B′ = {b1, . . . , bu′} denote a basis of a subspace V ′ ⊆ Vr,t. Let L
denote a linear mapping from Vr,t to Vr̃,u for some u′ ≤ u ≤ t which has kernel
{0} when restricted to V ′. Let V denote a subspace of Vr,t, and l ∈ span(B′)\V .

15This is the case as span(p′′(L(~r))) may not equal L(span(p′′)), but rather be a strict
subset of the latter.

16Both Claim A.6 and Claim A.7 could return L′ = L, so increasing the dimension of the
image space by 1 could be avoided. For simplicity, we do not make this optimization.
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Then there exists a linear mapping L′ : Vr,t → Vr̃,u+1 ‘extending’ L′ satisfying:17

(1) L′(bi) = L(bi) for all bi ∈ B′. (2) projVr̃,u(L′(v)) = projVr̃,u(L′(v)) for all
v ∈ Vr,t. (3) L′(l) is not spanned by L′(V ). (4) Moreover, every L′′ : Vr,t →
Vr̃,t that agrees with L on B′, and for every x ∈ Vr,t, projVr̃,u+1

(L′′(x)) =
projVr̃,u+1

(L′(x)) satisfies (3) (that is, L′′(l) /∈ span({L′′(r′i)}i∈[m])).

Claim A.7. Let B′ = {b′1, . . . , b′u′} denote a basis of a subspace V ′ ⊆ Vr,t.
Let L denote a linear mapping from Vr,t to Vr̃,u for some u′ ≤ u ≤ t which has
kernel {0} when restricted to V ′. Additionally, let p(r1, . . . , rt) denote an almost
canonical polynomial with associated canonical polynomial p′(r′1, . . . , r

′
t) of type

(Fq, n,m, y, b) where b 6= 0, and l ∈ span(L({r′1, . . . , r′m})).18 Then there exists
a mapping ‘extending’ L in the following way: (1) L′(bi) = L(bi) for all bi ∈ B′.
(2) projVr̃,u(L′(v)) = projVr̃,u(L′(v)) for all v ∈ Vr,t. (3) L′(l) is spanned
by span(L′(span(p))) if p is not of type lin2. Otherwise, L′(l) is spanned by
span(L′(fp))∪ {L′(r′m)}). (4) Moreover, every L′′ : Vr,t → Vr̃,t that agrees with
L on B′, and for every x ∈ Vr,t, projVr̃,u+1

(L′′(x)) = projVr̃,u+1
(L′(x)) satisfies

(3) as well.

We will sketch the proofs of the above claims at the end of this proof. Next,
we prove that if all constraints are satisfied, then the new scheme is private. That
is, for all (M,α) all output distributions of polynomials p̃(L(r1), . . . , L(rn)) for
p ∈ (M,α) are identical. We demonstrate the claim for the case of (all polyno-
mials in) GM,α are of type lin2, which is relatively involved. Other types are
similar, by analyzing the particular output distribution of canonical polynomi-
als of that type. Consider a pair p′′1(~r), p′′2(~r) of polynomials in GM,α of type
lin1. By Lemma A.3, p′′1(~r′′) (p′′1(~r′′)) satisfies that lp′′1 (p′′1(~r′′)) is spanned by its
corresponding {r′′1 , . . . , r′′m}, but not by {r′′1 , . . . , r′′m−1}. By construction, as we
observed above, the polynomials L(p′′1), L(p′′2) satisfy the same constraints. Let
∆1 ∈ Ft′q be a vector such that lfL(p′′1 )(r̃1+∆1,...,r̃n+∆n) + cL(r′′m) = lp′′1 for some

c 6= 0, as guaranteed by the dependence constraints. Therefor, L(p′′1)(r̃−Delta1)

is a polynomial of the form p̃1(L(r′′1 ), . . . , L(r′′m−1)) + L(r′′
2
m) + (L(r′′m))2 +

cL(r′′m) + d for some c 6= 0 and quadratic form p̃1 (not necessarily canoni-
cal), where L(r′′m) is not spanned by {L(r′′1 ), . . . , L(r′′m)}, as guaranteed by the
independence constraints. Thus, the output distribution of

L(p′′1(~r −∆1)) = p̃1(L(r′′1 ), . . . , L(r′′m−1)) + p̃1,m(L(r′′m))

is a sum of two independent random variables. Its output distribution is the
same as L(p′′1( ~r′′))’s since adding a constant to each r̃i does not change the
polynomials output distribution. Making a similar transformation for p′′2 , we
obtain

L(p′′2(~r −∆2)) = p̃2(L(r′′1 ), . . . , L(r′′m−1)) + p̃2,m(L(r′′m))

Since the quadratic part in p1, p2 was initially the same, p̃1 = p̃2. Also, as p′′1 , p
′′
2

are almost canonical of the same type, before the transformation their r′′
2
m +

cr′′m+d-parts had the same output distribution (the r′′m in p′′1 , p
′′
2 are possibly dif-

ferent elements of Vr,t). As we only replaced r′′m by L(r′′m) mapping to a non-zero
elements of Vr̃,t′ , these parts (p̃2,m, p̃1,m) keep their (equal) distributions (and

17Intuitively, we say it ‘extends’ L as it only defines a coefficient in r̃u+1 - the ‘new’ vector
in its output, and keeps to coefficients of ‘old’ variables r̃i for i ≤ u the same as in L.

18Again, viewing the r′i’s as elements of Vr,t.

28



are possibly no longer in canonical form). The p̃2(L(r′′1 ), . . . , L(r′′m−1)), p̃1(L(r′′1 ), . . . , L(r′′m−1))
parts are equal, because the quadratic parts in the original polynomial are equal.
Thus, in both we have a sum of two independently distributed random variables
A1,1 +A1,2 for L(p′′1) and A2,1 +A2,2 for L(p′′2), where every pair A1,1, A2,1 has
the same output distribution. 19

It remains to prove the claims hold.

Claim A.6. Assume L′ satisfies (1), (2), (3). We prove L′ satisfies (4). By
the assumption L′ is a linear mapping L′ : Vr,t → Vr̃,u+1 satisfying that L(l)
is not spanned by L(V ). By a duality argument, this holds iff. there exists
v /∈ Ker(L(l)), but v ∈ Ker(V ). Extending L′ into L′′ arbitrarily, there now
exists v′ as above, by simply letting v′ to equal v on the first u coordinates (that
is, projVr̃,u(v′) = v), and set the other t− u coordinates to 0. Let us represent
the required L′ as a matrix M ′ of size h×(u+1), where h is the dimension of V ,
the rows are labeled by g0 = l, g1, g . . . , gh, where B′′ = {g1, . . . , gh} is a basis
of V . Entry Mi,j = projVr̃,{j}(L

′(gi)). We define a similar matrix M ∈ Fh×u

for L. For convenience, assume wlog. that r̃1, . . . , r̃u′ satisfy r̃i = L(b′i), and
that B′′ ∩ span(B){g1, . . . , gh′} for some h′ ≤ h. Assume wlog. that I = [h′],
and that all gi for i ∈ [h′′] for some h′′ < h are in span(B′), and all gj for
j ∈ [h′] \ [h′′] are not in span(B′). Let v = (v1, . . . , vu′ , 0, . . . , 0) ∈ Fuq denote a
vector for which < L(gi), v >= 0 for all i ∈ [h′], and < L(l), v >6= 0. It exists
as l /∈ span({g1, . . . , gh′}) (as it’s not even in span({g1, . . . , gh}), l ∈ span(B′)
and L is 1-1 on B′). Now, extend v into v′ = (v1, . . . , vu′ , 0, . . . , 0, 1) ∈ Fu+1

q ,
and extend L on the (linearly independent set) {l, g1, . . . , gh′} according to (1)
(setting projVr̃,[u+1]

(·) to 0). Finally, set M ′i,u+1 for all i ∈ [h] \ [h′] to − <

v,Mi > - note that if [h] \ [h′] is empty, there is nothing to set, and we could
actually have L′ = L (and would not actually need the u + 1’th coordinate).
In all cases, note that < M[h] · v′ = 0 >, while < M0 · v′ > 6= 0, implying
L′(l) /∈ L′(span(V )), as required.

Next, we sketch the proof of Claim A.7.

Claim A.7. Let l =
∑
i ∆iL(r′i). Let us focus on the case of p with (Fq, n,m, y =

1, b = 3) with char(q) = 2. That is, the associated canonical p′(r′1, . . . , r
′
m) has

fp′ = r′1r
′
2 + . . . + r′m−1r

′
m. Other cases rely on similar ideas. First observe

that replacing each L(r′2i) by L(r′2i) + ∆2i−1 and L(r′2i−1) + ∆2i would yield
lfp′ (~r′+∆) = l, as required. The problem is that some < ~r′,∆ >’s may not be in

span(L(fp)), as the L(r′i)’s are not necessarily linearly independent (note that
for all v ∈ span(L(fp)), v ∈ span({L(r′1), . . . , L(r′m)})). To achieve a given
arbitrary ∆ in span(L′(fp)) let projVr̃,u+1

(L′(r′2i)) (2i− 1) to be ∆2i−1 (∆2i),

except for those that are in span(B′). Then, it is easy to prove that the +~∆ can
be emulated in by replacing r̃u+1 = r̃u+1 + 1, and the r̃i’s for i ≤ u by r̃i + δi
in such a way that for L(r′2i) (2i− 1), L(r′2i)’s (2i− 1) resulting added constant
equals ∆2i−1 (2i) for r. This can be achieved as L restricted to span(B′) has
kernel {0}, and all r′i’s are linearly independent.

19Intuitively, the only chance for the distributions to differ was that the linear part would
no longer be canceled out in p1 but not in p2 after the transformation, as possibly ∆1 used
in the almost canonical polynomial would not be generated by the lower-dimension ~̃r. The
dependence constraints make sure it does not occur.
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A.2 Bounding the Number of Random Variables in (gen-
eral) PSSS

In this section we will present a bound on the number of random variables in
(perfectly correct and private) PSSS and general secret sharing schemes.

Theorem A.8. Let M denote a secret sharing scheme implementing an ac-
cess structure A (with perfect privacy and correctness). Then there exists an

equivalent secret sharing scheme with RC(M) = 2Õ(SC(M)). Furthermore, if
M = (Fqd , t, k, Sh) is a PSSS, then there exists an equivalent PSSS scheme

M′ = (Fqd , t′, k, Sh′) with SC(M′) = SC(M) and RC(M′) = 2poly(SC(M)).

Notation and some facts on Linear programs. For a PSSS schemeM =
(Fqd , t, k, Sh), let us denote by sc the number of polynomial evaluations (field
elements) output by Sh. Thus, sc ≥ k (since the set of sharings must be at
least as large as S). We will need some theory of linear programs (LP). Here
we will only care about the feasible region of a linear program (LP), and will
not have a target function to optimize. Without loss of generality we consider
LP’s comprised of systems of inequalities of the form Ax = b, x ≥ 0, where
A, b are over R, all b’s components are non-negative. We denote such LP’s by
(A, b). We may also assume without loss of generality that A ∈ Rm×n, where
m ≤ n, and A has full rank (m). We say that a solution to the system is a basic
feasible solution (BFS) if x only has non zero coordinates corresponding to an
invertible submatrix of A (taking a subset of columns). For a finite set B ⊆ Rm
of vectors, a convex combination of B is a linear combination

∑
b∈B αbb, so that∑

b∈B αb = 1, and ∀b ∈ B,αb ≥ 0. The convex hall of a set A ⊆ Rm is the set
of all linear combinations of finite subsets B ⊆ A. We denote it as CH(A). We
say a set A ⊆ Rm is convex if CH(A) = A. An extreme point of a convex set
A is a point y ∈ A such that if y is a convex combination of {x, z} ⊆ A, then
either x = y or z = y. It is well known that the set of solutions of an LP is
convex. We say an LP has a bounded solution set X, if there exists an integer
N , such that `∞(x) ≤ N for all x ∈ X.

For a set A = {a1, . . . , at} ⊆ Rm, the affine dimension of A, aff(A), is the
dimension of {a2−a1, . . . , at−a1}. We say that a set A has full affine dimension
if aff(A) = |A| − 1.

Theorem A.9. [ [25], chapter 2]
The set of extreme points B of a bounded non-empty solution set X of an LP

(A, b) ∈ Rm×n × Rm×1 is non empty, and X = CH(B). Furthermore, the set
B is precisely the set of BFS’s of (A, b). Furthermore, Any solution p of (A, b)
is a convex combination of a subset {p1, . . . , p`} ⊆ B of full affine dimension,
where ` ≤ m+ 1.

Lemma A.10. [Cramer’s rule] Let A ∈ Rm×m denote an invertible matrix.
Then, A−1

i,j = |Ai,j |/|A|. Here Ai,j is the (i, j)’th cofactor of A, obtained from
removing the i’th column and j’th row from A.

Lemma A.11. Let A ∈ Rm×m denote a matrix whose entries ai,j all satisfy
|ai,j | ∈ {0} ∪ [δ, 1] for 0 < δ. Then every entry a′i,j in A−1 satisfies

|a′i,j | or |a′i,j | ≥ δm/mm.
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Additionally, if the ai,j’s are integers, then the |a′i,j |’s are multiples of a constant
0 < L ≤ mm.

The proof of the above lemma follows directly from Lemma A.10.

Proof. (Of Theorem A.8) The proof consists of several steps:
step 1: Let us consider the given polynomial scheme M as in the theorem

statement. We denote Q = qd, SC = QSC(M), and sc = logQ(SC).

We denote the share vector output by Sh for any ~s ∈ S by ~sh = (sh1, ..., shn) ∈
FscQ ). For every secret ~si ∈ S, and for every possible ~shj ∈ FscQ let us denote by

pi,j the probability to receive ~shj as the share vector on input ~si. (For each ~si,
there are Qsc such probabilities.)

Now we will build a matrix that will hold all the constraints on the prob-
abilities pi,j for a scheme M′ with S, S1 × . . . × Sn for A. Let pM denote the
probabilities vector induced by M. Our set of requirements will be stronger
than stating thatM′ is a secret sharing scheme for A, as it will additionally re-
quire thatM′ is “similar” toM in a certain way. A solution will be guaranteed
to exist, as pM is such a solution (M is “similar” to itself).

The constraints are divided into 3 sets:
privacy : For any max unqualified set A, for every two secrets si, sj ∈ S the
probability of getting the same shares (for this specific set) should be equal.

That is to say, for any two secrets si, sj ∈ S and projection of shares on A, ~sh
′

(some specific share that parties in A receive).

∑
all k for which the projection

of ~shk on A is ~sh
′

pi,k =
∑

all k for which the projection

of ~shk on A is ~sh
′

pj,k

Reorganizing, we get.∑
all k for which the projection

of ~shk on A is ~sh
′

pi,k −
∑

all k for which the projection

of ~shk on A is ~sh
′

pj,k = 0 (14)

correctness: For any minimal qualified set A, for every two secrets si, sj ∈ S

there are no share ~shk for which both pi,k and pj,k are not zero. That is to

say, for every two secret si ∈ S and projection of shares on A ~sh
′

(some specific

share that parties in A receive), for each sj so that Pr(Sh(sj , r)A = ~sh
′
) = 0∑

all k for which the projection

of ~shk on A is ~sh
′

and j 6=i

pj,k = 0 (15)

By correctness, for each ~sh
′
, there are at least |S| − 1 such j’s.

probability restrictions: For any secret ~si ∈ S∑
j

pi,j = 1 (16)
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That is to say, that for every secret the sum of all the probabilities to get any
share is 1.Another constraint is for every i and j.

0 ≤ pi,j (17)

We stress that the privacy and probability constraints follow from the re-
quirements on any secret sharing scheme implementing A. The correctness
constraints are constructed based on the concrete scheme M.

The matrix M1 defining our LP will be built from these three sets of equa-
tions 14, 15, 16, where the variables are the the pi,j-s. In addition we will remove
all the rows that depend on other rows, so our matrix M1 will have a full rank.
Let us denote:

r = 2n|FkQ|SC ≤ SC3 (18)

Here the inequality holds since n, k ≤ sc. There are at most r columns in M1

thus and at most r rows.20

This LP is solvable since pM is a solution for it. The right hand side b is the
vector obtained from Equations 14, 15, 16 (0, 0, . . . , 0, 1, . . . , 1) (with |S| 1’s at
the end).

Observation 8. In the LP (M1, b) above, all the entries in M1 and in b are 1,
−1 or 0.

step 2: Now, any solution ~p′ to the LP specified by (M1, b) defines a secret
sharing scheme for the desired access structure. Namely, assuming all entries in
a solution ~p are multiples of some 1/L for some integer, we can set R to be of
size L, and an arbitrary mapping Sh from (~s, ~r)’s to share vectors in FscQ that
agree with the probabilities in ~p.

The problem is that if the elements in ~p′ will be not multiples ofQ−t
′
for some

t′ it will be impossible to present this secret sharing scheme with polynomials
over FQ. We know one solution pM that has probabilities which are multiples
of Q−t for some, possibly very large, t (the one induced by M). Now we want

to show that there exists t′ = 22poly(SC)

, for which there is solution p′ to (M1, b)
where all probability pi,j are multiples of Q−t

′
, which will prove the theorem.

By theorem A.9, there is a set of BFS’s G = {p1, ..., p`} for the system, so that
there exists a solution (the one induced byM) pM ∈ CH(G).21. Next, we prove
that the entries of all pi ∈ G are of “low” resolution.

Claim A.12. For every g ∈ G, there exists an integer 0 < L ≤ r2r, every entry
gi of g is a multiple of 1/L.

Proof. This follows from the fact that the BFS in G is of the form M−1
1,Hb,

where M1,H is a subset of M1’s columns corresponding to an invertible (square)
matrix so that the entries in b corresponding to the other columns are all 0’s.
As M1, b have entries in {0, 1,−1} by Observation 8, the claim follows from
Lemma A.11. �

For any G, if the resulting scheme M′ is not required to be a PSSS, then
we are also done, as we can take (e.g.) p1 ∈ G as a basis for the scheme,

20The second inequality follows from correctness of the scheme.
21Note that (M1, b)’s solution set is indeed bounded, as all coordinates of a solution p are

in the range [0, 1].
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and set R of size L ≤ 22r as guaranteed by Lemma A.12. The randomness

complexity of the resulting scheme is log2(L) = 2Õ(SC(M)). Additionally, for
the case of M is a PSSS, M′ is as in the theorem if |G| = 1, then p1 must be a
single solution, and its entries are already multiples of qd, and we are done, as

M ≤ r2r ≤ 22Õ(SC(M))

. Therefor, the solution vector p1 induces a PSSS where

t = logQ(M) = 2Õ(SC(M)). This is also the case if some BFS pi ∈ G happens

to have entries which are all multiples of Q−t
′

for some t′. Otherwise, we prove
below that CH(G) contains some solution where all entries are multiples of Q−t

′

where t′ = 2poly(SC).
From now on we assume from now on that |G| ≥ 2. In particular, we may

also assume that |G| ≤ r, by the bound on the number of rows in M1.
Let G = [p1| . . . |p`]. The LP ([G,1], (pM, 1)) is solvable.22. Next, we observe

that the system remains solvable if the right hand size is modified into any
b′2 = (b′, 1) so that b′ remains within CH(G). Any such b′ is a feasible solution
for the original LP (M1, b).

The additional requirement we introduce is that all b′’s components are
multiples of Q−t

′
for a t′ which is not too large.

In fact, we will drop the last equation and enforce it “manually”, by only
considering b′’s in CH(G). As a second step, we will make sure that among
those, we pick one that also satisfies the second requirement. Let (M ′2 = G, b′)
denote the LP induced by some b′ = p′. In the next step we find the subset of
CH(G) that we will focus on.

step 3:
We rewrite (any) LP (M ′2, b2 = p) defined above to obtain an equivalent LP:

A solution to the LP satisfies:
∑`
i=1 αi = 1.

So:

α1 = 1−
∑`
i=2 αi

m
p1(1−

∑`
i=2 αi) +

∑`
i=2 αipi = ~p

m∑`
i=2 αi(pi − p1) = ~p− p1

Let us denote βi = αi+1 for 1 ≤ i ≤ ` − 1. And we will receive a system of
equations:

`−1∑
i=1

βi(pi+1 − p1) = ~p− p1

0 ≤ βi∑
i

βi ≤ 1

(19)

step 4: The above system defines an LP with
M2 =

[
p2 − p1| p3 − p1| ...| pn − p1

]
and b2 = p − p1. This LP, together

with the constraint that
∑`−1
i=1 βi ≤ 1 and that βi ≥ 0 for all i is equivalent

22The additional row is to require the combination is a convex one.
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to the original one. Let us consider the LP (M2, b2), again deliberately leaving
out the requirement of the coordinate sum being at most 1. As before we will
take care of this requirement “manually”. Also, there is no guarantee that
b2 ≥ 0, but this can be taken care of by multiplying the rows corresponding
to negative b2-coordinates by −1. Thus, we assume without loss of generality
that (M2, b2) satisfies b2 ≥ 0. We will move back and forth between the two
equivalent representations of the LP, dubbed β-representation (M2, b2 − p1) for
the latter and the α-representation (M ′2, b2). They are equivalent in the sense
that there exists a (simple) bijection between the solution sets of the two LP’s
(with the convexity requirement).

To find b′ as we seek, let us consider the first rank(M2) rows of M2 that are
linearly independent. We denote the submatrix of M2 restricted to these rows
by M3, and let b3 denote the entries of b′ corresponding to the selected rows in
M3. Similarly, we denote by G3 the projeciton of G onto this set of coordinates.
From Lemma A.11 we know that all the denominators of all the entries in M3

and b3, |b3,i| are (reduced) fractions h/w with w ≤ r2r. For a point v ∈ Rn,
let us denote by ball∞ε (v) the set of points Rn at `∞ distance ≤ ε from v. We
show there exists a (not very small) ε > 0, and point p′3 ∈ CH(G3) such that
the ball∞ε (p′3) ⊆ CH(G3). In particular, all points p′ corresponding to points in
that ball are solutions to the original LP (M1, b) (p′3 uniquely determines p′).
Next, we provide a lower bound on the possible value of ε. This will require the
following technical Lemma.

Claim A.13. Let A ∈ Rm×m+1 denote a matrix whose set of columns has full
affine dimension. Assume also that there exists an integer M ∈ N+ such that
all coordinates in A satisfy |Ai,j | = w/h ∈ [0, 1] where w/h is a reduced fraction
where h ≤ M . Then there exists ε ≥ 1/2mmM2 and a point p ∈ CH(cols(A))
such that ball∞ε (p) ⊆ CH(cols(A)).

Proof. Denote G = {g1, . . . , gm+1} the set of points in G. Consider the point
p = g1 + 0.5

∑
2≤i≤m+1(gi − g1). It is not hard to see that CH(A) equals

{g1 +
∑
i∈[m] αi(gi+1 − g1)}α≥0,

∑
i∈[m] αi≤1. Equivalently, CH(A) = p + {g1 +∑

i∈[2,m+1] αi(gi+1 − g1)}α≥0,
∑
i∈[m] αi≤0.5. Next, by definition of affine dimen-

sion of the set {∆i|∆i = gi+1 − g1|i ∈ [m]} is m. By the upper bound on the
coordinates of the gi’s we have that each coordinate ∆i,j satisfies |∆i,j | = w/h|,
where w/h is a reduced fraction where h ≤ M2. In particular, all entries are
either 0 or at least 1/M2. Also, as the gi’s are all in [0, 1]. Thus, for all i, j ∈ [m]
|∆i,j | ≤ 1. Let B = [∆1, . . . ,∆m]. We ask for which h, the unique solution x
to the equation Bx = h satisfies `∞(x) ≤ 0.5. From the bound on the |∆i,j |’s
and Lemma A.11, we have that x = B−1h ≤ `∞(h)mm ·M2. Thus, setting
ε = `∞(h) = 1

2mmM2 .

Moving from (M3, b3) back to the α-representation results in (M ′3, b
′
3) of full

affine degree (as M3 is of full rank). Thus, from Claim A.13 and Claim A.12
we obtain a point p′3 and a hypercube with edge size ε = 1

2r3r around it so that
for any p′′3 ∈ ballε(p′3) (M ′3, p

′′
3) has a solution α satisfying < 1, α >= 1. Moving

back to the β-representation, the vector α translates into a solution β for the
corresponding beta-representation (M3, b3 = p′′3 − p1,3).23 In particular, the set
of vectors corresponding to the set of p′′’s above is precisely p′ − p1 + ballε. As

23This notation means p′′ − p1, both restricted to the rows of M3.
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M3 ∈ Rh×h (for some h) has degree h, it spans M2. Thus, b3 can be uniquely
completed into a vector of full length b′ ∈ Rr that falls into CH(G).

This is the case since b3 = M3β, but the other rows M4 of M2 (besides the
last one) are spanned by the rows of M3, as follows:

∀(h < j ≤ r)M2,j =

h∑
i=1

ki,jM3,1 (20)

We denote this set of p′′’s by

Good1 = {p′′|p′′3 ∈ ballε(p′3)}

Next, we show how to choose p′′ ∈ Good1 so that every coordinate of p′′ is a
multiple of Q−t

′
where t′ is not very large.

step 5: In this step we characterize requirement (2) in a way that will help
us find p′′ satisfying the requirement.

As a recap on notation, M2 = (M3,M4), with corresponding b2 = (b3, b4).
A vector p so that the system (M2, b2 = p − p1) has a solution, iff p itself

satisfies the following system of equations in the p3,i’s (the β’s have been elim-
inated). We find p3 ∈ CH(cols(M3)), so that the resulting p is a multiple of
Q−t

′
for a relatively small t′.

pj = p1,j +

h∑
i=1

ki,j(pi − p1,i)

h < j ≤ r

(21)

By similar reasoning to some previous arguments, we conclude that the
denomenators of all coefficients involved in the above equation are not very
large.

Observation 9. In Equation 21, all coefficients ki,j , p1,i, p1,j are reduced frac-

tions of the form w/h, where h ≤ rr2+r.

Proof. The observation for the p1,i, pi,j ’s follows from Claim A.12. For the ki,j ’s
it follows from the fact that for each j > h, kj = (k1,j , . . . , kh,j) satisfies

kjM3 = M3,j

Since all entires in M3 are of the form w/h ∈ [0, 1] with h ≤ rr. Thus, from
Lemma A.11, we conclude that the entries of kj are reduced fractions with
h ≤ r2r2+r.

From the fact that we started from a given secret sharing scheme we know
that system of equations 19 has solution pM which all entries are multiplies of
Qt
′

for some t that can be very big.
Let M = Qt̃R denote the common denominator of all coefficients of Equa-

tion 21, together with all denomenators of pM. Here R is coprime to Q.
Let us spell out the denominator and numerator of all coefficients in equa-

tion 21. We assume without loss of generality that each entry pi of p is a multiple
of Q−t̃, and its representation w/h as a fraction needs not be reduced. The de-
nomenator of every other coefficient of the equation is a reduced w/h, where
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the highest divider of the form Qt
′

of such h satisfies t′ ≤ t̃. The assumption on
the pi’s is indeed without loss of generality as we are looking for Qt̃ which is up
to 2poly(r), so there is no problem going slightly beyond the existing coefficients,
and expand the fraction by number Qt

′
(or even more if necessary).

Let kji =
˜
kji /M a reduced fraction. Introducing similar notation for this and

all other elements of the equation system we get.

∀i ≤ h∀j > h
˜
kji = kjiM = ∀i ≥ 1,

bji
Dk
i,j

M

∀i ≥ 1 ˜p1,i = p1,iM =
c1,i
D1,i

M

∀i ≤ h p̃i = piM =
li

Qt̃
M = liR

(22)

Again, the fractions on the right in the first and second line are reduced.
When multiplying both sides of all the equations in 21 by M2 we get:

ljRM = p̃jM = ˜p1,jM +

h∑
i=1

˜
kji (p̃i − ˜p1,i) (23)

And we already incorporated the requirements that pi’s for i ≤ h are mul-
tiples of Q−t̃ into Equation 22 (third line). It remains to make sure that the

p̃i’s are such that p̃j for j > h are as well multiples of Q−t̃. This requirement is
equivalent to the following modular system of equations modulo MR

∀j > h, ˜p1,jM +

h∑
i=1

˜
kji (p̃i − ˜p1,i) ≡ 0 (mod MR) (24)

We already know that it has a solution (p).
If we denote D′ = lcm({Di,j}∪{Dk

i,j}) and D = D′2 we can factor out MR
D :

∀j > h,
MR

D
(c1,j

D

D1,j
Qt̃ +

h∑
i=1

(bji
D

Dk
i,j

li − bji c1,i
D

Dk
i,jD1,i

Qt̃)) ≡ 0 (mod MR)

(25)
The main observation that will be crucial in the sequel, is that the above

system of equations is equivalent to the following system of equations modulo
D.

∀j > h c1,j
D

D1,j
Qt̃ +

h∑
i=1

(bji
D

Dk
i,j

li − bji c1,i
D

Dk
i,jD1,i

Qt̃) ≡ 0 (mod D) (26)

Note that due to the choice of D all coefficients in this equations above are
indeed integers 24

step 6: So far, we have formulated the two requirements on p′′ we are search-
ing for.

24E.g D
Dki,jD1,i

is an integer - this “worst” case led us to choosing D = D′2, rather than

just D = D′.
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1. p′′ is in Good1. This implies that the resulting p′′ is a feasible solution to
the original LP (M1, b).

2. p′′’s coordinates are all multiples of Q−t̃.

Requirement (2) is taken care of by picking some t̃, and formulating a system

of modular equations modulo M2, where M = Qt̃R. The crucial observation
is that most of the components of this equation system are independent of the
particular choice of t̃ (and thus M). First, indeed R depends on the vectors
in G, and does not depend on the choice of M . In particular, the equivalent
system of equations 26 modulo D, including the value of D and “almost” all
coefficients of that equations are independent of D does not depend on t̃. 25.
The “almost” here is because Qt̃ does depend on t̃ (while all other components
like c1,j , the Dki,j ’s etc. do not).

Now, we know the system has a solution l (modulo D) for M = Qt̃R. If we
let M = Qt

′
R such that

Qt
′
≡ Qt̃(modD)

This system would be solvable, since we know of a particular value t̃ leads to
a solvable system. Thus, there exists a value v modulo D, so that system of
Equations 26 is solvable if Qt̃ is replaced with v. Now, clearly, there exists
at least one value t′ = t̃ such that Qt

′ ≡ v mod D. Now, there are two
possible cases. There could be only one such value t′ = t̃, which occurs only
if 1 /∈ {Qt mod D|t ∈ N}. In this case, we must have t̃ ≤ D (by pigeon hole
principle). Otherwise, there are more than one suitable t′. In this case, there
are in fact infinitely many such values t′

Good = {a+ iz ∈ N|a ∈ [D], i ∈ N, Qz ≡ 1 mod D}.

satisfying this requirement. Similarly to the first case, k ≤ D.
Let us obtain a gross upper bound on D.

D = lcm({Di,j} ∪ {Dk
i,j}) ≤ (r2r)

r2+r
= rO(r3). (27)

In the first case, we just learn that

t̃ ≤ D.

So this bounds the randomness complexity of the scheme by rO(r3) = SCO(SC9)

elements over Fq. This is (at least) double exponential in the share complexity
sc = logq(SC) in case the secret domain equals Fq (that is, k = 1).

In the second case, we pick some t′ in Good that satisfies t′ = rO(r3). Con-
sider a solution l to the set of modular equations 26. That is, any l such that
all li’s have the “right” values (v1, . . . , vh) modulo D. To satisfy the first re-
quirement we want that p′′3 = (l1/Q

t′R, . . . , lh/Q
t′R) ∈ ballε(p′3). This can be

done by adding multiples of D/M to any coordinate of to p′′ (that is Dk/M
for k ∈ Z). In parituclar, we are allowed to move at most ε in each coordinate
(in both directions) from p′3 to stay inside ballε(p

′
3). On the other hand, we

25As mentioned before, we only assume that Qt̃ is divisible by all Q-powers in all coefficients
in Equation 26
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would need to move from p′3 by at most QD/M in each coordinate, to satisfy
the constraint system 26.

We therefore require

QD/M ≤ ε⇔ Qt
′
≥ QD

εR
⇔ t′ ≥ logq(r

O(r3)) = D + Õ(r2) (28)

Observation 9, also implies Qt
′ ≥ rO(r2) ⇒ t′ ≥ Õ(r2) suffices.

Overall, both the above restrictions allow to set t′ = rO(r3) for sufficiently
large r.

Substituting back r = O(SC3), we get a bound of 2Õ(SC9) on RC(M′).

B Evidence of the Power of Multi-Linear Schemes

In this section we sketch the proof of Theorem 1.

Proof of Theorem 1. Here our starting point is the construction of [36] for a
general access structure on n parties for k = 1. On a high level, their construc-
tion is a monotone formula with unbounded AND, OR gates, and additionally
more complex gates for access structures that have secret sharing scheme based
on a (h, n)-CDS with h =

√
n and n = O(log(m)). Their scheme now proceeds

as in [32] to perform the sharing.

• The formula is evaluated recursively top-down. The secret is assigned to
the top gate. Now, for an AND gate g′ with an assigned label sg′ , each
of its child gates g but the first one are assigned a fresh random bit rg,
and the last child gate is assigned ri ⊕

∑
g>1 rg. That is, sg′ is shared

via (n, n)-threshold secret sharing. Similarly, an OR gate labeled by sg′

passes this label to each of its children.

• In the CDS-based nodes always have a copy of all input wires entering
it. Every such gate implements an access function f ′ : {0, 1}m → {0, 1}
implies by a (n = O(logm), h = O(

√
n))-CDS for a certain predicate

depending on f ′. Here the best known scheme has complexity 2Õ(
√
n) =

2Õ((logm)0.5) per party. The scheme is implied by [35]’s MV-based general
CDS. The construction of the secret sharing scheme from the CDS scheme
for that particular type of f is a clever specialized transformation, and
is not quite the straightforward generic construction of m = O(n1/hh)
secret sharing from (n, h)-CDS, that in particular does not yield the types
of schemes f that we need. In particular, several calls to the CDS are
made by the sharing scheme, and the overhead over the share complexity
of the CDS is therefor large relatively to the share complexity of CDS
n = O(logm). Each CDS call yields CDS-shares for an input secret which
is some linear combination over F2 of the original secret bit and random
bits. Each of these shares is shared via a multi-linear scheme A among the
parties (the CDS-shares are strings). The scheme has share complexity
O(n|s|), where s is the size of CDS shares, and such a scheme exists for
all |s| ∈ N. Also, the secret s itself is shared among certain subsets via
Shamir secret sharing.
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• Each party Pi is given the shares implied by the CDS scheme, and labels
assigned to input wires bi entering an AND or an OR gate.

• To reconstruct the secret, a set of parties evaluates it from the bottom
up using the shares it holds, and learns the secret bit s iff the formula
evaluates to 1.

This scheme results in information rateO(20.994m) and O(20.999m) for gen-
eral and linear secret sharing schemes respectively. This difference stems only
from the differences in the best information rate of known CDS protocols. This

complexity is 2Õ(
√

log(m)) for the best known general CDS and higher for linear
secret sharing. Now, our main observation is that if the secret bit is replaced by
a vector of elements of F2, the entire construction goes through, as AND gates
can now be extended to use strings for masking, and OR gates just copy the
share vector k. In leaf gates that can be implemented by reduction to CDS as
above, we can replace the best known CDS implementation by an implemen-

tation with information rate O(1) for secrets of length k = O(22n) = 2m
O(1)

.
Now, that the CDS shares themselves are (multi) linear functions of the share
elements (in F2) and random field elements, the shares resulting from this re-
sulting are a composition of multi-linear schemes, resulting in a multi-linear
scheme. Furthermore, the Shamir secret sharing, which is linear over F2g for
a sufficiently large g (with k = 1!), can be viewed as a multi=linear scheme
over Fg2. This can be seen by examining multiplication and even more easily
addition over the field F2g - as operations modulo n irreducible polynomial in
F2[x] of degree g. Analyzing the resulting sharing scheme, and the information
rate of the entire formula-based resulting construction, information rate of at
most O(20.994m) is obtained.26

C Motivation for the Framework and Future Work

Our long term goal is to put forward a useful and general framework for study-
ing secret sharing schemes and their share complexity. We chose the setting of
PSSS as believe this framework will prove useful due to the rich algebraic struc-
ture of (multi-variate) polynomials. For example, polynomials have additional
nice mathematical properties, such as the Schwartz-Zippel theorem stating that
polynomial’s outputs don’t have outputs with “too many” preimages, which
could possibly come in handy, hopefully even in developing new methods for
lower bounds on share complexity. Moreover, any function f : Ft → F can be
encoded as a multivariate polynomial p(x1, . . . , xt) over F (of degree at most
|F− 1|(t− 1), as a linear combination of Lagrange polynomials).

A statistical PSSS is a PSSS that allows some error ε in privacy and correct-
ness. A moments’ thought shows that such schemes are very general indeed.
Any secret sharing scheme for sharing a single bit can be replaced by a statisti-
cal polynomial scheme over F2 with the same share complexity and only a small
increase in randomness complexity27.

26We did not perform the full analysis, but the bound increases monotonously with the CDS
complexity. Improved CDS complexity would imply a better bound on the share complexity
of the resulting scheme.

27If the original scheme was perfect, its security degrades to statistical, though. In terms of
feasibility for all monotone access structures, there exists a linear scheme over any finite field
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This is done by sampling the randomness of the original scheme via a circuit
(simple, NC1 [26] circuit) accepting a uniform vector Fm2 for some sufficiently
large m = O(log(|R|) + k), treating it as an integer and reducing it modulo
|R| (where R is the original randomness domain sampled uniformly). Then, to
generalize to any share domain S, we can embed S in Ft2 for a sufficiently large
t, and represent each share separately - using the fact that any function can be
represented as a multi-variate polynomial.

Although this leaves the question of perfect (the default) secret sharing open,
the above observation implies that PSSS is a very general framewok.

Two general questions are of interest:

Question 3. What is the largest gap between the best share complexity of a
(perfect) PSSS over some field Fkq and the best share complexity for some access
structure?

Question 4. Among polynomial schemes, how influential are various param-
eters on the achievable share complexity. In particular, all other parameters
kept the same (Fq, k), how much does increasing the degree of the polynomial,
for starters, from the traditional value of 1 to O(1) affect share complexity. In
particular, what can be said for degree 2?

To the best of our knowledge, question 3, hasn’t been looked at. And the
trade-offs between different parameters of polynomial schemes have been (im-
plicitly) studied (partially addressing question 4), as we discussed it in literature
review. In this paper, we make some progress on the second question. We ob-
tain results in two directions. One type of results refers to the share complexity
of natural subclasses of polynomial schemes. Certain subclasses are shown to
be too weak to implement most access structures (even regardless of share com-
plexity). The second type of results deals with share complexity.

Another fundamental question that remains open is whether there exists a
degree > 2 PSSS of constant degree that has better sharing complexity than any
multi-linear secret sharing scheme for some access structure and some fields.

As to schemes with k = 1 and constant field size, it is interesting to develop
techniques for lower bounding share complexity of polynomial schemes of de-
gree higher than 1. This can be done by further improving the upper bounds
on randomness complexity. For degree-2, we need a bound of RC = 2O(SC)

for a sufficiently low constant in the exponent to beat the best known lower
bound on SC for general secret sharing schemes (which is n2/log(n) for total
share complexity). Another interesting question open for degree-2 polynomials
is understanding the complexity of access structures admitting a PSSS with
d = 2 with poly(n) share complexity over some field. For degree-1 this set is
contained in NC.28

Finally, for degree-1, it would be nice to generalize [37]’s lower bounds from
the linear to the multi-linear setting.

F. The construction here is a straightforward generalization of [15]. That is, a polynomial
scheme of degree 1 and k = 1 always exists. In fact, this particular scheme generalizes to any
cyclic group Zm.

28In [31], the authors provide a bound along these lines for randomizing polynomials, but
it does not directly apply here, as in secret sharing there are generally exponentially many
minterms.
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D Additional Previous Work

In the following, we provide an overview of research on the effect of various
parameters of the PSSS framework mentioned above appearing in previous work.

D.0.1 Linear Secret Sharing Schemes

The most studied and most commonly used class of secret sharing schemes is the
linear secret sharing schemes class. In a linear scheme, the secret is viewed as an
element of a finite field (in our terminology k = 1), the randomness is comprised
of vectors over the finite field, and the shares are obtained by applying a linear
mapping to the secret and several independent random field elements.

A particularly useful access structure is the (t, n)-threshold access structure,
where qualified sets are those including t or more participants. For this particu-
lar access structure, tight bounds on share complexity are known. In particular,
Shamir’s secret sharing scheme [39] is an ideal secret sharing schemes - having
information rate 1 (which is optimal) for sufficiently large secret domain. It also
provides the best known upper bound for 1-bit secrets on the share complexity
of threshold schemes [18]. This scheme is linear over Fpk if portrayed over a
secret domain S = Fpk for any pk > n.

Share complexity of general linear secret sharing. Unlike the useful
special case of threshold access structures, as we mentioned before, the share
complexity of schemes for general access structures is far from resolved. This is
the case even for linear schemes, although quite some progress has been made
in this realm. In our view, linear schemes correspond to polynomials of degree
1 in the random elements ri and in secret elements si.

In a seminal work, among other things, initiating the systematic study of lin-
ear secret sharing schemes, Karchmer and Wigderson introduced in [33] a linear
algebraic computational complexity model of computation, the span program
(SP) and monotone span program (MSP). They proved that MSP is equivalent
to linear secret sharing schemes. That is, an access structure has an MSP of
size m over a field F for a monotone access structure f : {0, 1}n → {0, 1} iff it
has a secret sharing scheme giving m field elements to the parties implementing
the access structure defined by f .

Known lower bounds on the size of monotone span programs. As
mentioned above, unlike for general schemes, a simple counting approach is
useful for proving almost tight lower bounds on the share complexity of linear
schemes. More precisely, for any constant-sized field Fp, it is easy to obtain

a lower bound of Ω̃(2n/2) on the share complexity of most access structures
for linear schemes over Fp. This result has recently been extended to obtain a

bound of Ω̃(2n/3) on the share complexityfor all linear schemes (over any field),
exploiting the connection between representable matroids and linear secret shar-
ing schemes [8]. In a nutshell, it relies on an upper bound on the number of
representable matroids over a given finite set.

The state of affairs for explicit access structures is also much better for
linear secret sharing schemes. The techniques used there deviate from [19]’s
information-theoretic approach for general schemes, instead heavily exploiting
the (linear) algebraic properties of the sharing scheme.
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The first lower bounds for monotone span programs, due to Karchmer and
Wigderson [33], showed that all threshold functions over GF (2) require mono-
tone span programs of size Ω(n log(n)). The first super-polynomial lower bounds,
on the order of nΩ(logn/ log logn), were obtained by Babai [6] against a function in
NP. These bounds were simplified and improved by Gál [21] to nΩ(log(n)). Beimel

and Weinreb [13] later gave nΩ(
√

logn) lower bounds for a function in uniform
NC2 (and therefore in P), proving that the languages captured by monotone
span programs do not contain polynomial time.

The technique of [21] is notable, as it generalizes many of the previous results
in a very useful way. This technique is based by observing a connection between
lower bounds on MSP size, and a combinatorial-algebraic measure of covers
which has been used to prove (superpolynomial) lower bounds on other models
such as monotone formula size by Razborov [38].29

Very recently, in a break-through result, [37] demonstrated exponential lower
bounds on MSP size for the function GENn - namely, they obtained a lower
bound on share complexity of 2n

ε

for some constant ε > 0. This work relies
on clever analysis of Razborov’s Rank method, which so far only yielded quasi-
polynomial lower bounds on MSP size.

D.0.2 Multi-linear Secret Sharing Schemes

Another class of secret sharing schemes that was also heavily studied is multi-
linear secret sharing schemes. In such schemes the secret is a vector of some
field elements, and the sharing is done by applying some linear mapping on this
elements and some other random field elements. This class is an extension of
the linear class. Linear secret sharing schemes are multi-linear schemes with
only one secret field element. In our terminology, these schemes are polynomial
schemes of total degree 1 (and no apriori bound on the number of secret field
elements).

Lower bounds on multi-linear schemes. Above, we have seen superpoly-
nomial lower bounds on MSP size over any field for explicit access structures.
Next, we review a more recent result, extending the lower bound to the multi-
linear setting. In fact, the result holds for certain access structures for which
the MSP lower bounds above hold. This is non-trivial, because increasing the
number of field elements in the secret could potentially save on information rate
(although clearly not on absolute share complexity). On the flip side, in this
section we will survey evidence to the usefulness of increasing k for degree-1
sharing.

Beimel, Ben-Efraim, Padró and Tyomkin proved in [9] that ideal multi-
linear secret-sharing schemes in which the secret is composed of p field elements
are more powerful than schemes in which the secret is composed of less than p
field elements (for every prime p). Similarly to linear schemes, In addition, they
prove a super-polynomial lower bound on the share size nΩ(logn) in multi-linear
secret sharing schemes for an explicit access structure.

The authors in [9] proved that multi-linear schemes are equivalent to a com-
plexity theoretic model generalizing MSP, they dubbed Multi-Target Monotone
Span Program - MTMSP (again, the equivalence is in terms of share complexity

29In particular, note that formula size is a lower bound on MSP size, as follows from [15]
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vs. MTMSP size, and over the same field). They generalize a rank method-
based approach for MSP’s to the MTMSP setting, and prove an nlog(n) lower
bound on share complexity of multi-linear schemes (this improves over the lower
bound for linear schemes, as this prove that amortization by increasing k does
not help avoid the lower bound proved for k = 1).

On the benefit of increasing k for degree-1 polynomial schemes. (multi-
linear vs. linear schemes) In [9] a (constant) gap between linear and multi-
linear information rate for certain access structures is demonstrated for certain
F. According to recent evidence, (very) large values of k(n) allow for optimal -
O(1) information rate per party for a large set of access structures, where the
sharing algorithm has degree 1 (multi-linear) [2]. Namely, this holds for the so-
called d-uniform access structures for constant d, to be defined below, a scheme
with information rate of O(1) over F2 exists. On the flip side, the same family
of access structures only admits linear (k = 1) scheme with share complexity
Ω(n(d−1)/2)). This yields an arbitrarily large provable gap of Ω(n(d−1)/2)) be-
tween the lowest possible and large enough value of k for degree 1 for certain
access structures.30

Quite surprisingly, a very recent work of [36] demonstrated a degree-1 poly-
nomial construction with share complexity O(20.999n) can be obtained for k = 1
over F2, and share complexity of O(20.994n) can be obtained for non linear (in
fact, non-polynomial) schemes. This result was improved in [3] to a share com-
plexity O(20.942n) for linear schemes and to O(20.892n) for general schemes. This
result is not a provable separation, but a gap between the best known schemes.
It is however particularly exciting, as it contradicts a long held conjecture that
optimal share complexity corresponds to the complexity of implementing the ac-
cess structure f in some complexity model, likely (even non-monotone) circuits,
while worst case complexity circuit complexity is 2(1−o(1))n.

In this work, we also observe that a multi-linear scheme over F2 can do as
well as the non-polynomial scheme from [36] for sufficiently large (exponential)
k(n).

D.0.3 Beyond Degree-1 PSSS

General low-degree polynomials. An interesting setting generalizing the
most studied setting of degree is that of polynomials with relatively low degree.
Low degree polynomials have found many uses in cryptography and complexity
theory. One notable use is encoding functions by a vector of (randomized) low
degree polynomials [29] [30]. Quite surprisingly, it turns out that all functions
can be encoded via a vector of degree-3 polynomials. In a nutshell, a randomized
encoding of a function f(x) is a function g(x; r) taking an auxiliary input r. The
output of g is a distribution resulting from sampling r uniformly at random
from its domain R. The encoding should preserve correctness and privacy of
the function in the sense that g(x; r) reveals f(x), and only it. Such encodings
are useful in MPC as the degree of a function f typically corresponds to the
round complexity of most protocols from the literature.

Due to the privacy of randomized encodings, securely evaluating the encod-
ing indeed results in secure evaluation of the original function. Thus, evaluating

30In fact, their work implies a slightly super-polynomial gap for d-uniform access structures
for slightly super-constant d.
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low degree randomized encodings of a function via standard protocols [14] is a
simple approach to obtaining general constant round MPC protocols in various
settings.

In [13] super-polynomial lower bounds are obtained on quasi-linear schemes
for certain access structures. Obtaining strong lower bounds for other broader-
than-linear classes of schemes is definitely an important goal. Our hope is
that future research will obtain such bounds for the broader (than multi-linear)
class of polynomial schemes of degree 1 > d = O(1) for some fixed Fq and
k = 1. These bounds would hopefully be better than the best known bounds for
general schemes [19] based on lower bounds on the normalized entropy function
describing a valid secret sharing scheme - using Shannon inequalities. This
bound can prove at most O(n) bounds on the share complexity of a single
party.

The Case of k = 1 - increasing degree helps. Quite recently, a flurry of
work on conditional disclosure of secrets (CDS) has led to exciting progress on
upper bounds for share complexity in secret sharing schemes using non-linear
schemes.

Non-linear schemes were studied by [35] from the perspective of CDS. CDS
is a “non-monotone” variant of secret sharing. In CDS for a predicate P , the
parties hold x, y respectively, and are given shares ~shx, ~shy respectively of the

secret s.31 The secret is disclosed given x, y ∈ {0, 1}n/2 and ~shx, ~shy if x, y sat-

isfy a (not necessarily monotone) predicate P (x, y). Otherwise, ~shx, ~shy reveal
nothing about the secret. The “share complexity” measure of CDS is the same
as for secret sharing. Every 2-party CDS problem is naturally equivalent to
an access structure specified by a bipartite graph G(V1, V2, E) of m = 2n/2+1

vertices, where (x, y) ∈ V1 × V2 iff P (x, y) = 1 [12]. The corresponding access
structure has minterms (minimal qualified sets) that are either pairs {x, y} ∈ E
or sets of 3 vertices (one can move back and forth with essentially the same
share complexity). This class of access structures is referred as bipartite forbid-
den graph access structures. Transforming CDS schemes into secret sharing for
the corresponding access structure and vice versa incur only linear blowup in
share complexity. It can be further demonstrated that 2-party CDS for all pred-
icates with maximum (over all predicates P ) share complexity sh implies secret
sharing with share complexity O(sh ·m) (where m is the number of parties) for
a generalized set of forbidden graph access structures on m = 2n/2+1 vertices
specified by any, not necessarily bi-partite graphs [10] (edges in the graph or
sets of size 3 are the minterms here). Forbidden graph access structures are also
called 2-uniform access structures. d-uniform schemes studied in [2] to which
we referred in Section D.0.2 are a generalization of 2-uniform access structures
to ones specified by hypergraphs where edges contain exactly d vertices, and the
minterms are either all vertices in an edge, or sets of size d+ 1 vertices.

Via a CDS construction of [35], a secret sharing scheme of total share com-
plexity Õ(m1/3) is obtained for 2-uniform access structures. More precisely, for
all prime q, a polynomial scheme over Fq of degree 2 (with k = 1) with share
complexity as above exists. These properties are directly “inherited” from the
original CDS construction.

31In the literature, CDS is usually viewed as an MPC protocol among 2 senders and a
receiver, and the shares referred as messages.
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In comparison, there exist 2-party CDS schemes [22, 35] translating into
linear secret sharing schemes (with k = 1) with share complexity Õ(m1/2) for
2-uniform access structures. In [10], this is shown to be optimal for this type
of access structures and k = 1, thereby demonstrating a separation between
attainable share complexity between degree-2 polynomial schemes and degree-
1 polynomial schemes over S = F2. See discussion below on k > 1, where the
situation is quite different. It is an interesting open problem to separate between
degree-2 and higher degree polynomial schemes (starting with k = 1 and same
field)

Even more recently [35] introduced a framework for transforming 2-party
CDS into k-party CDS for other values of k with similar complexity to the
corresponding 2 party CDS. In these schemes the input (x, y) is distributed
among k parties.

One instantiation of their framework generalizes the construction from [22]
over F2 to work for any number k > 2 parties with similar complexity to
the original 2-party schemes. Similarly to the 2-party case, there exists a
transformation from schemes for h-party CDS predicates P : {0, 1}n → {0, 1}
into a corresponding secret sharing scheme on graphs with vertex set V =
{v1,1, v1,2n/h , . . . , vn,1, vk,2n/h} with minterms of the form {v1,g1 , . . . , vn,gh) such

that P (g1, . . . , gh) = 1, and sets of size h+ 1, overall this is a m = k2n/k party
access structure. In particular, for h = n we get m = 2n. In this case, the

family Am consists of 22m/2 (out of the 22m−O(log(m))

possible) access structures.
In particular, the linear CDS from [22] translates into a linear scheme with

share complexity O(2m/2) for the family Am.
The matching vectors (MV) based scheme from [35] translates into a scheme

with 2Õ((log(m))0.5) for the same set of schemes. This scheme is also not polyno-
mial.

The technique used in [35] reducing CDS for large k to CDS with k = 2
employs the beautiful and simple idea of emulating each of the parties in the
2-party CDS by PSM [27] among several parties that each holds a part of the
input bits of x or y (there are O(log(m)) such parties, each holding a single bit
in the variant that yields secret sharing schemes for Am). The PSM outputs
are the pair of original CDS shares.

The goal is to devise a PSM with particularly good communication complex-
ity that incurs small overhead over its output size, which is the share complexity
of the original CDS.

It is an interesting open question whether a similar general technique applies
to the degree-2 construction from [35] which also results in a polynomial CDS
scheme. This would, at best, yield improved polynomial schemes for a large
family of access structures with share complexity O(2m/3).
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