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Abstract. In this paper we present the first fully post-quantum proof of
a shuffle for RLWE encryption schemes. Shuffles are commonly used to
construct mixing networks (mix-nets), a key element to ensure anonymity
in many applications such as electronic voting systems. They should pre-
serve anonymity even against an attack using quantum computers in or-
der to guarantee long-term privacy. The proof presented in this paper is
built over RLWE commitments which are perfectly binding and compu-
tationally hiding under the RLWE assumption, thus achieving security in
a post-quantum scenario. Furthermore we provide a new definition for a
secure mixing node (mix-node) and prove that our construction satisfies
this definition.
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1 Introduction

In the last years, several countries have been introducing electronic voting sys-
tems to improve their democratic processes, in particular, they provide voters
with the chance to cast their votes from anywhere. Anonymity and verifiabil-
ity are two fundamental requirements for internet voting systems that seem to
be contradictory. Anonymity requires that the link between the vote and the
voter who has cast it must remain secret during the whole process, while veri-
fiability requires that all the steps of the electoral process - vote casting, vote
storage and vote counting - can be checked by the voters, the auditors or exter-
nal observers. One of the resources used by the actual internet voting systems to
achieve anonymity are mixing networks (mix-nets). Informally we can define a
mix-net as a multiparty protocol that, given a number of encrypted messages at
the input, performs a permutation over them followed by a cryptographic trans-
formation using a re-encryption and/or a decryption algorithm. This operation
is called a shuffle [9] and it is done in such a way that the correlation between
the input and the output of the process is hidden, and it is not possible to trace
it back. The proof of the shuffle guarantees that the ciphertexts at the output of
the mix-net are those at its input permuted and re-encrypted/decrypted, with-
out revealing any secret information. One way to construct a mix-net is to define



several mixing nodes (mix-nodes) each one performing in turns this operation.
It is clear that if at least one of the nodes is honest, unlinkability is preserved.

On the other hand, in order to build verifiable systems one key instrument is
the Bulletin Board: a public place where all the audit information of the election
(encrypted votes, election configuration, proof of a shuffle, . . . ) is published by
authorized parties and can be verified by anyone: voters, auditors or third parties.
However, once published in the Bulletin Board anyone can save a copy, and
long-term privacy may not be ensured by encryption algorithms used nowadays,
for example due to the efficient quantum algorithm given by Shor [29] that
breaks computational problems such as the discrete logarithm (DL) or the integer
factorization problems. Learning how a person voted some years ago may have
political, as well as personal implications.

Some cryptosystems have appeared in the last years that are believed to
be secure against quantum attacks: hash-based, code-based, lattice-based or
multivariate-quadratic-equations. Lattice-based cryptography is a great promise
to get cryptosystems that will remain secure in the post-quantum era [23]. These
ones enjoy strong security guarantees from worst-case hardness, meaning that
breaking their security implies finding an efficient algorithm for solving any in-
stance of the underlying lattice problem, e.g., the Shortest Vector Problem (SVP)
or the Closest Vector Problem (CVP). Furthermore, these constructions mainly
involve linear operations such as matrix and vector sum or multiplication modulo
relatively small integers, which make them highly parallelizable and consequently
faster in certain contexts. Given the interest aroused by this type of cryptogra-
phy, several lattice-based protocols have been proposed like public key encryption
schemes, digital signatures schemes, hash functions, identity-based encryption
schemes or Zero-Knowledge Proofs of Knowledge (ZKPoK). Our contribution
increases the literature of the latter, providing a fully lattice-based proof of a
shuffle that will remain secure in a post-quantum scenario.

To the best of our knowledge there are two proposed e-voting schemes [10,15]
that are constructed using lattices. They both follow an alternative approach
without shuffling, making use of the homomorphic property of their encryption
schemes to compute the tally. However mix-net based schemes are more flexible
and provide a better support for complex electoral processes.

On the other hand [11] and [32] give proofs of a shuffle for lattice-based cryp-
tography. The first requires Pedersen commitments (based on the DL problem).
The latter requires a Fully Homomorphic Encryption scheme, and works with
any homomorphic commitment scheme, that is, using the lattice-based commit-
ment scheme presented in [4] their proof is fully post-quantum.

We propose a proof of a shuffle that is fully constructed over lattice-based
cryptography and the first for RLWE encryption schemes, which makes it secure
in a post-quantum scenario. The proof uses a commitment scheme which is
perfectly binding and computationally hiding under the Learning With Errors
over Rings (RLWE) assumption. This lattice computational problem has been
shown to be as hard as certain worst-case problems in ideal lattices (such as
SVP and CVP in ideal lattices) and thus resistant to quantum attacks. We also
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provide a formal definition for security of a mix-node and prove security of our
proposal using the sequence of games approach.

1.1 Previous work

After the introduction of the idea of a shuffle by Chaum in 1981 [9], several
schemes have been proposed. The first universally verifiable mix-net is presented
in [28] and gives a proof to check the correctness of the shuffle. Later, several
solutions for an efficient universally verifiable mix-net are proposed [1,2,3,22] and
in [17] Furukawa and Sako suggest a paradigm based on permutation matrices
in the common reference string model (CRS) for proving the correctness of a
shuffle, that was improved in [16,20]. The latest proposal for a CRS based proof
of a shuffle is [8] by Bünz et al. Wikström also uses this idea of the permutation
matrix and presents in [37] a proof of a shuffle that can be split in an offline and
online phase in order to reduce the computational complexity in the online part.

On the other hand, Neff [24] proposes another paradigm based on polynomials
being identical under permutation of their roots, obtaining Honest Verifier Zero-
Knowledge (HVZK) proof and improved later in [18,25] with the drawback that
these constructions are 7-move proofs. Unlike previous proposals, Groth and
Ishai [19] and Bayer and Groth [6] give a practical shuffle argument with sub-
linear communication complexity.

The proof of a shuffle presented in this paper requires lattice-based ZKPoK to
prove that some hidden elements have small norm and also that several commit-
ted elements satisfy a polynomial relation. As these proofs are generally costly
we are going to use amortized protocols to reduce the communication cost. The
first amortized protocol is presented in [12] by Cramer et al., it is improved first
by del Pino and Lyubashevsky [14] and later by Baum and Lyubashevsky in [5].

Recently, Costa et al. [11] have presented a proof of a shuffle based on lattices
but it cannot be considered fully post-quantum since they use Pedersen commit-
ments, whose binding property relies on the DL problem. Moreover in [11] there
is no formal definition of security, necessary to precisely know how it can be em-
bedded in a larger construction. Strand [32] presents a verifiable shuffle for the
GSW cryptosystem using homomorphic commitment schemes. Using the lattice-
based commitment scheme [4] makes the proof fully post-quantum. Additionally,
there have been some proposals for a lattice-based universal re-encryption for
mix-nets [30] but none of them give a proof of a shuffle.

In [36] Wikström provides a definition of security for a single re-encryption
mix-node. It is important to note that as Wikström remarks this is not enough
to completely ensure privacy since a definition of security of a complete mix-net
must involve several other aspects, regarding validity of the input messages or
decryption proofs.

1.2 Our contribution

We propose a proof of a shuffle fully constructed over lattices. It is based on the
technique introduced by Bayer and Groth in [6] to construct a shuffle argument;
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nevertheless it is not a direct adaptation of it since working with lattices requires
different techniques to be applied.

The first step of the proof, that is also the first difference with [6], consists on
committing the re-encryption parameters in order to demonstrate that they meet
certain constraints. This is done using the commitment scheme and the ZKPoK
proposed by Benhamouda et al. [7] which are perfectly binding and computa-
tionally hiding under the RLWE assumption and satisfy special soundness and
special HVZK. The next step consists on proving knowledge of the permutation.
The general idea here is to prove that two sets contain the same elements. This is
done by computing two polynomials, each of them having as roots the elements
of each set, and proving that both polynomials are equal.

The last step will prove knowledge of the re-encryption parameters, and
this introduces another difference between Bayer and Groth’s protocol and ours.
While they demonstrate that there exists a linear combination of the parameters
such that an equality holds, we have to use a different technique, since the
re-encryption parameters in a RLWE re-encryption scheme are taken from an
error distribution and a linear combination of them would imply the error grows
uncontrollably, causing decryption errors.

Finally, we give a definition of security, based on the one proposed by Wik-
ström in [36], and we provide a proof of security for our mix-node. His proposal
implies that no adversary can properly compute two indices for the input and
the output respectively such that the messages encrypted in the correspond-
ing ciphertexts are the same, except with a probability negligibly close to the
probability given by a random guess. In his definition the adversary might have
some knowledge of correlations between the input messages. We provide a def-
inition of security allowing the adversary to have full control over the input of
the mix-node, and we prove that our construction meets this definition.

Organization of the paper. In section 2 we introduce some notation and give
some cryptographic background necessary to understand the proof presented
in section 4. In section 3 we describe the computational problem on which the
security of our scheme is based and we also give a description of a RLWE-based
commitment scheme. Finally in section 4 we present our fully post-quantum
proof of a shuffle and the results about the security of the mix-node. We briefly
conclude in section 5.

2 Preliminaries

We denote column vectors by boldface lower-case roman letters, v orw. Matrices
are represented by boldface upper-case roman letters,M orA. Given two vectors
v,w ∈ ZNq , we define the standard inner product in ZNq as 〈v,w〉 =

∑N
i=1 viwi,

the l∞ norm as ‖v‖∞ = max1≤i≤N |vi| and the general norm lp as ‖v‖p =

(
∑N
i=1 |vi|p)1/p for p ≥ 1.

We let bxc denote the largest integer not greater than x, and bxe := bx+1/2c
denote the integer closest to x, with ties broken upward.

4



We write a
$←− A when a is sampled uniformly at random from a set A, and

a
$←− D if it is drawn according to the distribution D.
Finally, in order to avoid confusions we are going to identify the ciphertexts’

elements with the subscript E, and those corresponding to the commitments
with subscript C. When working with lattices we are going to follow the notation
proposed in [21].

The ZKPoK between a prover P and a verifier V constructed in this paper
satisfies the properties of completeness, special soundness and special HVZK as
they are defined in [13]. We will use them to prove knowledge of valid openings
of commitments that satisfy several polynomial relations.

2.1 Generalized Schwartz–Zippel lemma

The proof of a shuffle presented in this paper uses a generalized version of the
Schwartz-Zippel lemma to prove polynomial equalities. This lemma works in gen-
eral commutative rings that are not necessarily integral domains. Unlike Bayer
and Groth we need the generalized version since we work with polynomials whose
coefficients belong to another ring of polynomials.

Lemma 1. Let p ∈ R[x1, x2, . . . , xn] be a non-zero polynomial of total degree
d ≥ 0 over a commutative ring R. Let S be a finite subset of R such that none of
the differences between two elements of S is a divisor of 0 and let r1, r2, . . . , rn
be selected at random independently and uniformly from S. Then:
Pr[p(r1, r2, . . . , rn) = 0] ≤ d

|S| .

We will use this lemma to prove that two polynomials, p1 and p2, are equal
with overwhelming probability if p1(r1, r2, . . . , rn) − p2(r1, r2, . . . , rn) = 0 for

r1, r2, . . . , rn
$←− S. The proof of this generalization directly follows from the

original proof of the lemma. We have included it in appendix A for the reader
interested on it.

3 Ideal Lattices

A lattice is a set of points in an n-dimensional space with a periodic structure. We
are going to work with ideal lattices that have some extra algebraic structure
and introduce some redundancy allowing a more compact representation and
thus reducing significantly the storage space. We refer the interested reader to
[26] for a survey on lattices.

Let Rq = Zq[x]/〈f(x)〉 be the ring of polynomials modulo f(x) = xn + 1 for
n a power of 2, which makes the polynomial irreducible over the rationals. The
ideal lattice L(a) generated by a(x) = a1 + a2x+ . . .+ anx

n−1 ∈ Rq is the set of
polynomials v(x) obtained as v(x) = a(x) · p(x) mod xn + 1, where p(x) ∈ Rq.

There is currently no known way to take a significant advantage of this
extra structure introduced in this class of ideal lattices, and the running time
required to solve lattice problems on such lattices is comparable to that for
general lattices.
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3.1 RLWE problem

The security of lattice-based cryptosystems relies on the hardness of solving some
computational problems on lattices, such as the Learning With Errors (LWE).

Lyubashevsky et al. [21] introduced in 2010 the ideal lattice based variant of
LWE, called Ring Learning With Errors (RLWE). This was motivated by the
necessity of constructing efficient LWE-based cryptosystems.

Definition 1 (RLWE Distribution). For a secret s ∈ Rq, the RLWE dis-
tribution As,χ over Rq × Rq is sampled choosing a ∈ Rq uniformly at random,

e
$←− χn (that is, e ∈ Rq with its coefficients drawn from χ), and outputting

samples of the form (a, b = a · s+ e mod q) ∈ Rq ×Rq.

Analogously to LWE [27], the goal will be either to distinguish random linear
equations, perturbed by a small amount of noise, from truly uniform pairs, or
recover the secret s ∈ Rq from arbitrarily many noisy products. Usually the error
distribution χ is a discrete Gaussian distribution on Z, that is χ = Dσ, where σ
is the standard deviation.

Hardness of RLWE . Certain instantiations of RLWE are supported by worst-
case hardness theorems [21], related to the Shortest Vector Problem (SVP). For
the error distribution χ where σ ≥ ω(

√
log n), and for any ring, there exist a

quantum reduction from the γ(n)-SVP problem to the RLWE problem to within
γ(n) = O(

√
n · q/σ). Additionaly, RLWE becomes no easier to solve even if the

secret s is chosen from the error distribution, rather than uniformly [21].

3.2 RLWE encryption scheme

The additive homomorphic RLWE encryption scheme proposed in [21] consists
of three algorithms (KeyGenE,Encrypt,Decrypt) defined below. We denote the
security parameter as κ.

– KeyGenE(1κ): Given a uniformly random aE ∈ Rq and two small elements
s, e ∈ Rq drawn from the error distribution χn, the public key is an RLWE
sample (aE, bE) = (aE, aE · s+ e) ∈ Rq ×Rq and the secret key is s.

– Encrypt((aE, bE), rE, eE,u, eE,v, z): Given three random small elements rE, eE,u,
eE,v ∈ Rq drawn from the error distribution χn, the encryption of an n-
bit message z ∈ {0, 1}n (identified as a polynomial of degree n − 1 with
coefficients 0 or 1) is (u, v) = (aE · rE + eE,u, bE · rE + eE,v + b q2ez) ∈ Rq ×Rq.

– Decrypt(s,(u,v)): Given the secret key and the ciphertext this algorithm com-
putes: v − u · s = (rE · e− s · eE,u + eE,v) + b q2ez mod q. Then recovers each
bit of z by rounding each coefficient to 0 or b q2e.

Correctness. Notice that in case of lack of error the decryption would always
be correct since the algorithm will return directly 0 or b q2e depending on the
encrypted bit. Given that, a decryption error will occur if the coefficients of
(rE · e− s · eE,u + eE,v) have magnitude greater than q/4.
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As the messages encrypted using this scheme will pass through a mixing
process we will need to also re-encrypt them. Due to the homomorphic property
of the scheme we can compute the re-encryption just adding to the original
ciphertext the encryption of the element 0.

– Re-encrypt((u, v), (aE, bE), r′E, e
′
E,u, e

′
E,v): Given the small elements r′E, e

′
E,u,

e′E,v drawn from the error distribution χn, the re-encryption of a ciphertext
(u, v) is (u′, v′) = (u, v) + Encrypt((aE, bE), r′E, e

′
E,u, e

′
E,v, 0) ∈ Rq ×Rq.

Security. RLWE encryption scheme and consequently the RLWE re-encryption
scheme are semantically secure based on the RLWE assumption. It is demon-
strated that if there exists a polynomial-time algorithm that distinguishes be-
tween two encryptions then there exists another algorithm able to distinguish
between As,χ and a uniformly random distribution over Rq for a non-negligible
fraction of all possible s. Notice that, even though these schemes do not achieve
circuit privacy, the secrecy of the shuffle is not affected since the randomness
used during the encryption and re-encryption procedures is never revealed. In
order to demonstrate that the random values are of the right form, that is, that
they are small enough, we use zero-knowledge proofs.

3.3 Commitments from RLWE

The commitment scheme used to build our proof of a shuffle is that described
by Benhamouda et al. in [7] and consists of the following three algorithms:

– KeyGenC(1κ): given as input the security parameter κ (we omit the details
about κ here and we refer the reader to [7]) this algorithm generates the

public commitment key pkC = (aC, bC) where aC, bC
$←− (Rq)

k
, q ≡ 3 mod 8

is prime and n is a power of 2.

– Com: in order to commit to a message m ∈ Rq, the algorithm chooses rC
$←−

Rq and eC
$←− Dk

σe conditioned on ‖eC‖∞ ≤ n and computes:

c = ComaC,bC
(m; rC, eC) = aCm+ bCrC + eC

The opening of the commitments is defined as (m, rC, eC, 1).
– Ver: given (c,m′, r′C, e

′
C, f
′) the verification algorithm accepts if and only if:

aCm
′ + bCr

′
C + f ′−1e′C = c ∧ ‖e′C‖∞ ≤

⌊
n4/3

2

⌋
∧ ‖f ′‖∞ ≤ 1 ∧ degf ′ ≤ n

2

This commitment scheme satisfies the security requirements of correctness, per-
fectly binding and computational hiding as they are explained in [7].

The main reason for us to choose this commitment scheme is that [7] gives
efficient ZKPoK to prove knowledge of an opening of a given commitment or
to prove that the messages inside some commitments satisfy any polynomial
relation.
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4 Proof of a shuffle for RLWE encryptions

The existing published proposal for a universally verifiable proof of a shuffle for
RLWE encryptions [11] based on [33], uses Generalized Pedersen commitments
to hide the secret re-randomization elements. This would not be sound in a
post-quantum scenario, as it is based on DL assumptions.

Naively replacing the commitment scheme with the one proposed by Ben-
hamouda et al. yields several difficulties since it is useful when committing to
polynomials, but is quite inefficient if we only want to commit to a bit, as is the
case with the entries of a permutation matrix. The fact that Zq [x] / 〈xn + 1〉 is
not an integral domain also has some implications for the characterization of a
permutation matrix proposed in [33], that cannot be proven directly and would
require additional statements different from the ones discussed in [11].

In this section we construct a post-quantum verifiable mix-node following the
paradigm given by Bayer and Groth in [6] (in appendix B we give some intuitions
about their construction). Once again, replacing Pedersen commitments with the
ones proposed by Benhamouda et al. is not immediate.

We first show an overview of the shuffling protocol, then we present our proof
of a shuffle and give details regarding the ZKPoK involved in the construction
of the main proof and finally we prove that our mix-node is secure based on a
new formal definition of security, stronger than that given in [36].

Proofs of a shuffle commonly require universal verifiability, meaning that
a proof must be generated and also published, so it can be verified by any
observer. Classically, this kind of interactive protocols can be transformed into
non-interactive protocols by means of the Fiat-Shamir heuristics, replacing the
random responses from the verifier with a hash of the previous elements in the
conversation, achieving a protocol secure in the Random Oracle Model (ROM).

However, as it is exposed in [35], this method is not secure anymore in the
Quantum Random Oracle Model (QROM). As far as we know the only quantum
secure general transformation from an interactive protocol to a non-interactive
version is the one described by [34]. Therefore, a universally verifiable version of
our protocol requires further considerations.

4.1 Protocol overview

Given a permutation π and a set of re-encryption parameters
{
r
′(i)
E , e

′(i)
E,u, e

′(i)
E,v

}
for each one of the messages, the shuffling of N RLWE encryptions is defined as(
u′(i), v′(i)

)
= Re-encrypt

((
uπ(i), vπ(i)

)
, r
′(i)
E , e

′(i)
E,u, e

′(i)
E,v

)
.

A mix-node will perform the shuffling over the input ciphertexts and will gen-
erate a proof of a shuffle, see (1), to demonstrate that it knows the permutation

π and the random elements r
′(i)
E , e

′(i)
E,u, e

′(i)
E,v , without revealing any information

about them.
This proof will be published so everybody is convinced that the ciphertexts

have been permuted and re-encrypted without modifying the encrypted plain-
texts (even if some of the nodes are dishonest and leak the permutation).
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The first step of the protocol will be to commit to the encryptions of 0 used to
compute the RLWE re-encryptions and a ZKPoK of the resulting commitments
containing valid encryptions of 0. Additionally, it will also be demonstrated that
the small polynomials r′E, e

′
E,u, e

′
E,v used to compute the re-encryptions have an

infinity norm that is bounded by some parameter δ � q/4.

ZKPoK


π{

r
′(i)
E , e

′(i)
E,u, e

′(i)
E,v

}N
i=1

∣∣∣∣∣∣∣∣∣∣

(
u′(i), v′(i)

)
=

Re-encrypt
((
uπ(i), vπ(i)

)
, r
′(i)
E , e

′(1)
E,u , e

′(i)
E,v

)
∥∥∥r′(i)E

∥∥∥
∞
,
∥∥∥e′(i)E,u

∥∥∥
∞
,
∥∥∥e′(i)E,v

∥∥∥
∞
≤ δ


(1)

As it is explained in [7] for a suitable δ even if this additional restriction on the
re-encryption parameters norm is applied, the re-encryptions remain pseudoran-
dom, as the two probability distributions are statistically close. The last part of
the protocol consists on proving that two sets contain the same elements:{(

u′(i), v′(i)
)
−
(
aEr
′(i)
E + e

′(i)
E,u, bEr

′(i)
E + e

′(i)
E,v

)}N
i=1

=
{(
u(i), v(i)

)}N
i=1

This is done following the strategy proposed by Bayer and Groth in [6], that
consists on building two polynomials, each of them having as roots the elements
of each of the sets and then prove that both polynomials are equal. To convince
a verifier that two polynomials are equal the prover evaluates them in a random
point chosen by the verifier and uses the generalized version of Schwartz-Zippel
lemma (lemma 1). Our polynomials will be evaluated and have coefficients in
Rq, that is, we will work in Rq [A] and the variable A takes values on Rq.

We define the mixing protocol using the following algorithms:

– Setup(1κ): generate parameters (n, q, σ) and run the following algorithms:
• KeyGenE(1κ) to obtain the public and the private key of the RLWE

encryption scheme: (aE, bE) ∈ Rq ×Rq and s ∈ Rq
• KeyGenC(1κ) to generate the public commitment key: aC, bC

$←− (Rq)
k
.

Output {{(aE, bE), s}, (aC, bC)}
– MixVotes(pkE, pkC, {(u(i), v(i))}Ni=1): taking as input a list of N encrypted

messages {(u(i), v(i))}Ni=1 compute the shuffling of these RLWE encryptions.
Generate commitments and ZKPoK (we denote by ZKi its corresponding
protocols and by Σi the proofs they output) as it is explained in section
4.2 in order to demonstrate the correctness of the process. We can ex-
plicitly state the permutation and/or random elements to be used writing

MixVotes(pkE, pkC, {(u(i), v(i))}Ni=1;π, {r′(i)E , e
′(i)
E,u, e

′(i)
E,v}Ni=1).

Output
(
{(u′(i), v′(i))}Ni=1, {(cu(i)

0
, c
v
(i)
0
, cπ(i), cαπ(i))}Ni=1, Σ1, Σ2, Σ3, Σ4

)
.

We denote Σ0 = {c
u
(i)
0
, c
v
(i)
0
, cπ(i), cαπ(i))}Ni=1 to unify the notation of the

output of MixVotes.
– VerifyMix(pkE, pkC, {(u(i), v(i))}Ni=1, {(u′(i), v′(i))}Ni=1, {Σl}4l=0): given an in-

put and an output of the mixing process and the ZKPoK generated, this
algorithm outputs 1 if the proofs are valid and 0 otherwise.
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4.2 Proof of a shuffle

In this subsection we present the proposed proof (see protocol 1.1) and explain
in detail how it can be used as a proof of a shuffle.

Notice that each mix-node runs the algorithm MixVotes and acts as a prover.
He first commits to N encryptions of zero. Each commitment (c

u
(i)
0
, c
v
(i)
0

) is:

(
aC

(
aEr
′(i)
E + e

′(i)
E,u

)
+ bCr

(i)
C,u + e

(i)
C,u,aC

(
bEr
′(i)
E + e

′(i)
E,v

)
+ bCr

(i)
C,v + e

(i)
C,v

)

That is, the commitment is a linear combination of the polynomials, with

the additional condition of r
′(i)
E , e

′(i)
E,u, e

′(i)
E,v , e

(i)
C,u, e

(i)
C,v having small norm.

Then, P sends the commitments to the verifier and proves using the amor-
tized proof of knowledge of secret small elements [14] that the public commit-
ments are indeed commitments to encryptions of zero.

As the relation is always the same we will use the amortized proposal by
del Pino and Lyubashevsky [14], which is a direct improvement of the proposal
by Cramer et al. [12]. For a linear function f , a small vector x and its image
y = f(x) we can prove knowledge of a small vector x′ such that f(x′) = y. As
it is usual in this kind of proofs there is a gap τ between the upper bound of
the norm we use for witness x and the upper bound we get for the extracted x′.
This has to be taken into account when determining specific parameters so that
this possible error multiplied by the number of mix-nodes does not exceed the
bounds allowed for a correct decryption. We refer the reader to [14] for details,
as we directly use their protocol as a building block for the ZKPoK of linear
relations in ZK1 (protocol 1.1).

Using the amortization technique of [14] as a way of proving knowledge of
valid openings for [7] has some benefits and some drawbacks. On the one hand
this amortized technique allows us to prove the complex structure with an amor-
tized cost. On the other hand the gap from the bound known by the prover and
the bound he is able to prove is larger than the one originally established in the
ZKPoK for valid commitment openings from [7].

As a result, the prover is only able to prove knowledge of some openings
that would not be valid as originally defined. However, we can prove that, in our
particular case, we can further relax this definition as the openings we obtain
still ensure the binding property of the commitment scheme. Details of this and
a rigorous parameter analysis can be found in appendix C.

In order to commit to a permutation, P starts committing to π(1), . . . , π(N)
in cπ(i) and receives a polynomial α chosen uniformly at random from the subset:

S = {p(x) ∈ Rq | deg p(x) < n/2}

10



Protocol 1.1. Proof of a shuffle

P
(
u(i), v(i), u′(i), v′(i);π, r

′(i)
E , e

′(i)
E,u, e

′(i)
E,v

)
V
(
u(i), v(i), u′(i), v′(i)

)
∀i ∈ [1, . . . , N ]

c
u
(i)
0

= Com
(
aEr
′(i)
E + e

′(i)
E,u

)
c
v
(i)
0

= Com
(
bEr
′(i)
E + e

′(i)
E,v

)
c
u
(i)
0

, c
v
(i)
0−−−−−−−−−−−→

ZKPoK


r
′(i)
E , e

′(i)
E,u, e

′(i)
E,v

r
(i)
C,u, e

(i)
C,u, r

(i)
C,v, e

(i)
C,v

∣∣∣∣∣∣∣∣∣∣∣∣

c
u
(i)
0

= aC

(
aEr
′(i)
E + e

′(i)
E,u

)
+ bCr

(i)
C,u + e

(i)
C,u

c
v
(i)
0

= aC

(
bEr
′(i)
E + e

′(i)
E,v

)
+ bCr

(i)
C,v + e

(i)
C,v∥∥∥r′(i)E

∥∥∥
∞
,
∥∥∥e′(i)E,∗

∥∥∥
∞
≤ τδ,

∥∥∥e(i)C,∗

∥∥∥
∞
≤ τδ′

 (ZK1)

∀i ∈ [1, . . . , N ]

cπ(i) = Com(π(i))
cπ(i)−−−−−−−−−−−→

α
$←− S

α←−−−−−−−−−−−
∀i ∈ [1, . . . , N ]

cαπ(i) = Com
(
απ(i)

)
cαπ(i)

−−−−−−−−−−−→
β, γ

$←− S
β, γ←−−−−−−−−−−−

ZKPoK


mi, ri, eC,i, fi
m̂i, r̂i, êC,i, f̂i

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

(
N∏
i=1

(
βi+ αi − γ

)
=

N∏
i=1

(βmi + m̂i − γ)

)
,

N∧
i=1

(
Ver(cπ(i);mi, ri, eC,i, fi) = accept

)
,

N∧
i=1

(
Ver(cαπ(i) ; m̂i, r̂i, êC,i, f̂i) = accept

)
,

mi ∈ Zq


(ZK2)

ZKPoK


y ∈

{
απ(i)

u
(i)
0

}
i

ry
eC,y
fy

∣∣∣∣∣∣∣∣∣
N∑
i=1

αiu(i) =

N∑
i=1

mαπ(i)

(
u′(i) −m

u
(i)
0

)
∧
y

(
Ver(cy;my, ry, eC,y, fy) = accept

)
 (ZK3)

ZKPoK


y ∈

{
απ(i)

v
(i)
0

}
i,j,l

ry
eC,y
fy

∣∣∣∣∣∣∣∣∣
N∑
i=1

αiv(i) =

N∑
i=1

mαπ(i)

(
v′(i) −m

v
(i)
0

)
∧
y

(
Ver(cy;my, ry, eC,y, fy) = accept

)
 (ZK4)

outputs accept if all
ZKPoK are correct
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Observe that the subset S meets the required conditions for lemma 1, as
all differences of two different elements in S are invertible. This is true as the
condition q ≡ 3 mod 8 required for the Benhamouda et al. commitment scheme
implies that xn + 1 splits into two irreducible polynomials of size exactly n/2.
Then all polynomials of degree smaller that n/2 have an inverse that can be
computed using the Chinese Remainder Theorem.
P commits to each power απ(i) in commitments cαπ(i) and publishes them.

After that, P receives two more random polynomials β, γ
$←− S.

At this point P starts proving that he knows valid integer openings mi ∈
Zq, m̂i ∈ Rq to commitments cπ(i), cαπ(i) that satisfy the following relation (ZK2

in protocol 1.1): ∏N
i=1

(
βi+ αi − γ

)
=
∏N
i=1 (βmi + m̂i − γ) . (2)

In order to prove that some of the messages are integers we will use again the
amortized proposal by del Pino and Lyubashevsky [14]. This time the linear func-
tion we need to consider maps the message, randomness and error (mi, ri, eC,i)
to the commitment aCmi+bri+eC. The only requirement for the mapping is to
be linear, therefore we can define it by construction to take only integer mi as
inputs. Originally [14] was designed for proving knowledge of small preimages,
however everything works the same way if we just require part of the preimage
to be small. The small part of the secret will be hidden with gaussian noise as
before, while the unbounded part will be hidden with uniformly random noise.
The same parameter analysis that was done in appendix C for ZK1 applies here.

In order to verify equation (2) we can use the Σ-protocols from [7] that allow
proving polynomial relations between committed messages.

We can consider the two sides of equation (2) as polynomials in a variable Γ
evaluated in a specific γ ∈ Rq with coefficients in Zq [x] / 〈xn + 1〉. The prover
has shown that they are equal when evaluated in this specific γ chosen by the
verifier, but we would like them to be equal as polynomials in Rq[Γ ]. The left
hand side of the equation has been determined by the choices of the verifier, and
in the right hand side, by the binding property of the commitment scheme, we
know that mi, m̂i were determined before the choice for γ was made.

We have already checked that subset S satisfies the conditions of the Gener-
alized Schwartz-Zippel lemma 1. Using this lemma the verifier is convinced that
with overwhelming probability the two polynomials defined by (2) are indeed
equal in Rq[Γ ].

We would still have to prove that both sets of roots,
{
βi+ αi

}
i
, {βmi + m̂i}i,

are equal. This is not direct in general as Rq is not a unique factorization domain
(in particular it is not even a domain). However, in our particular case, both sets
are going to be equal with overwhelming probability over the choice of β.

For each j ∈ [1, . . . , N ], we are going to study whether βj + αj belongs to

{βmi + m̂i}i. We know it is a root of the polynomial so
∏N
i=1(βmi + m̂i− (βj+

αj)) = 0.
As we stated before, choosing q ≡ 3 mod 8 implies that xn+1 splits into two

irreducible polynomials of degree n/2. We are going to call these polynomials p1

12



and p2 and consider operations modulo both of them. In particular
∏N
i=1(βmi+

m̂i − (βj + αj)) ≡ 0 mod p1 and
∏N
i=1(βmi + m̂i − (βj + αj)) ≡ 0 mod p2.

Given that p1 and p2 are irreducible Zq[x]/ 〈p1〉 and Zq[x]/ 〈p2〉 are fields
and it is possible to ensure that at least one of the factors has to be 0. Let ij1
and ij2 be the indexes such that βmij1 + m̂ij1 − (βj + αj) ≡ 0 mod p1 and
βmij2 + m̂ij2 − (βj + αj) ≡ 0 mod p2.

Lets write it as affine equations on β:

(mij1 − j)β + (m̂ij1 − αj) ≡ 0 mod p1

(mij2 − j)β + (m̂ij2 − αj) ≡ 0 mod p2
(3)

First of all we need to see that, since mi and m̂i were committed before β
was honestly chosen uniformly from S, it is very unlikely that for any triplet
i, j ∈ [1, . . . , N ], b ∈ {1, 2} we have (mi − j)β + (m̂i − αj) ≡ 0 mod pb unless
(mi − j) ≡ 0 mod pb. As we are now working in a field Zq[x]/ 〈pb〉 having
(mi− j) 6≡ 0 mod pb implies there is only one possible β satisfying the equation
for each triplet (i, j, b). Notice that as elements of S have degree smaller than
n/2 determining β mod pb also determines it in Rq. There are 2N2 possible
βijb ≡ (mi − j)−1(αj − m̂i) mod pb, but β is chosen uniformly at random from
S, that has cardinal qn/2 and therefore the probability of choosing one of these
conflicting values is negligible.

Provided that previous proofs in ZK2 ensure that mi ∈ Zq is a constant
polynomial we have that mijb ≡ j mod pb implies mijb ≡ j mod xn + 1. Since
for each j we have mij1 = mij2 = j this implies ij1 = ij2 and we can directly
call it ij and write the equations mod xn + 1.

As a direct consequence we would also have m̂ij = αj mod xn + 1 via the
Chinese Reminder Theorem.

Finally we can ensure that, with overwhelming probability over the choice
of β both sets commit to the same elements. Notice we have seen only one set
inclusion, but since both sets contain the same number of elements and ij 6= ij′

if j 6= j′ this is everything we need.
Let π̃ be the permutation such that j = π̃(ij). Then, with overwhelming

probability, mi = π̃(i) and m̂i = απ̃(i) for every i ∈ [1, . . . , N ].
We abuse notation and call mαπ(i) to m̂i, as it has to be απ(i), but under-

standing it is indexed by i and not the evaluation π(i) that is unknown to the
verifier.

This means that cαπ(i) are indeed commitments to α with exponents from 1
to N permuted in an order that was fixed by cπ(i) before α was chosen.

Then we again need to prove polynomial relations between committed mes-
sages using the Σ-protocols from [7]. We get that the input and output of the
mix-node hold the following relation (ZK3 and ZK4 in protocol 1.1).∑N

i=1 α
iu(i) =

∑N
i=1mαπ(i)

(
u′(i) − aEr′(i)E − e′(i)E,u

)
We already know that mαπ(i) = απ(i) for a secret π and that the claimed

small elements used for the re-encryption are in fact small.
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∑N
i=1 α

iu(i) =
∑N
i=1 α

π(i)
(
u′(i) − aEr′(i)E − e′(i)E,u

)
Once again we can see them as polynomials in Rq[A] with coefficients in Rq

that are equal when evaluated in α.
Both polynomials were determined before α was picked up, so we can apply

lemma 1 and conclude that with overwhelming probability they are equal as
polynomials, and so:

u′(i) = uπ(i) + aEr
′(i)
E + e

′(i)
E,u v′(i) = vπ(i) + bEr

′(i)
E + e

′(i)
E,v

The verifier V can conclude that the mix-net has behaved properly and the
output is a permuted re-encryption of the input. Completeness, zero-knowledge
and soundness follow from this reasoning and are discussed in appendix D.

4.3 Security

Finally we propose a security definition and provide a proof of security for our
proposed mix-node. Informally, a mix-node should ensure that it is not possible
to link an input ciphertext with its corresponding output. However, there might
be more than one ciphertext encrypting the same message (this is particularly
the case in an election with many voters and only a few voting options), and we
have to precisely say that it is not possible to link an input of the mix-node to
an output encrypting the same message.

Some security definitions assume that the original messages are indepen-
dently and uniformly distributed over the message space, but it was pointed out
by Wikström in [36] that there might be known correlations between some of
the input plaintexts that cannot be ignored.

We base our secure mix-node definition in the one presented by Wikström
in [36], but we notice that he assumes that the inputs of the mix-node are
correctly computed encryptions of the messages. However the input of each mix-
node comes from the (possibly malicious) previous node, and while the proofs
of a shuffle ensure that the input is a set of valid encryptions we do not know
if the re-encryption parameters have been drawn randomly from the adequate
distributions or specifically chosen by the possibly malicious previous nodes.
Therefore we present a stronger definition where we even allow an adversary A
to choose the messages and compute something of the form of an encryption, that
is, a pair of polynomials in Rq, allowing him to completely determine the input
of the mix-node. Even though, he should not be able to identify an input and
output index corresponding to the same message with a probability significantly
greater than a random guess. Let MixVotes be an algorithm that performs a
shuffle and outputs a zero-knowledge proof Σ. Then we can define:
ExpsecA (κ)

– (pk, sk)← Setup(1κ)

– (z(1), . . . , z(N), aux)
$←− A(pk)
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– for k ∈ {1, . . . , N}
(u(k), v(k))

$←− A(pk, z(k), aux)
end for

– π
$←− SN

–
(
{(u′(k), v′(k))}Nk=1, Σ

)
← MixVotes(pk, {(u(k), v(k))}Nk=1;π)

– (iA, jA)
$←− A({(u(k), v(k))}Nk=1, {(u′(k), v′(k))}Nk=1, Σ, aux)

– if z(iA) = zπ(jA) then Return 1 else Return 0

Now we can formalize our security definition saying that no adversary can
have a significant advantage over a random guess.

Definition 2 (Secure Mix-Node). Let J be a uniform random variable taking
values in [1, . . . , N ]. We say that a mix-node defined by an algorithm MixVotes is
secure if the advantage of any PPT adversary A over a random guess is negligible
in the security parameter. That is, for all c there exists a κ0 such that if κ ≥ κ0:

AdvsecA (κ) =
∣∣∣Pr
[
z(iA) = zπ(jA)

]
− Pr

[
z(iA) = zπ(J)

]∣∣∣
=
∣∣∣Pr [ExpsecA (κ) = 1]− Pr

[
z(iA) = zπ(J)

]∣∣∣ < 1

κc

We allow the adversary to corrupt all mix-nodes except one, and the non-
corrupted one is that considered in the experiment ExpsecA . In order to take into
account any possible control of the adversary over those other corrupted nodes
and possibly a subset of the voters we even allow him to fully control all the
input of the mix-node. Even though, if at least one of the mix-nodes is honest,
the link between the ciphertexts at the output and those at the input of the
mix-net remains completely hidden.

Observe that this security definition has to be complemented with additional
security proofs when this mix-node is used as a building block in a larger scheme.
For instance Wikström in [36] shows how a malleable cryptosystem can be used
to break anonymity. Therefore additional validity proofs are required to enforce
non-malleability, as well as strict decryption policies to prevent any leakage of
information during the decryption phase.

Theorem 1. The proposed mix-node given by our MixVotes algorithm is a se-
cure mix-node according to definition 2, under the RLWE hardness assumption.

The proof of theorem 1 is given in appendix E.

5 Conclusions

We present a shuffle that consists of a permutation and re-encryption of a set of
RLWE ciphertexts. The lattice-based encryption scheme used is that proposed
by Lyubashevsky et al. and we provide a proof of correctness of the shuffle using a
lattice-based commitment scheme proposed by Benhamouda et al. Furthermore
we give a security definition and we prove that our shuffle satisfies it.
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As future work it would be worthy to have an implementation with concrete
parameters in order to accurately test efficiency in a real setting. We also re-
mark that this shuffle has to be combined with additional security requirements
regarding how the input is generated as well as how the output is decrypted,
in order to guarantee privacy for the overall scheme that uses this shuffle as a
building block, and these requirements will depend on the specific application.
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A Proof of Generalized Schwartz–Zippel lemma

Lemma 1 (Generalized Schwartz-Zippel lemma).

Let p ∈ R [x1, x2, . . . , xn] be a non-zero polynomial of total degree d ≥ 0
over a commutative ring R. Let S be a finite subset of R such that none of the
differences between two elements of S is a divisor of 0 and let r1, r2, . . . , rn be
selected at random independently and uniformly from S.

Then Pr [p(r1, r2, . . . , rn) = 0] ≤ d
|S| .

Proof. The condition imposed on S implies that a degree d univariate non-zero
polynomial f ∈ R[x] can only have d roots in S. We can prove this by induction.

Case d = 0 is trivially true.

Assume the inequality holds for polynomials of degree smaller or equal to
d and let f(x) be a polynomial of degree d + 1 with d + 2 different roots
a1, a2, . . . , ad+2 ∈ S. The polynomial reminder theorem implies that we can
write f(x) = (x− ad+2)g(x) for some polynomial g(x) of degree d.

In a field, a1, a2, . . . , ad+1 being roots of f(x) and not of (x − ad+2) would
imply that they are roots of g(x). But we are working with a polynomial ring,
that may not be an integral domain, and this may not always be true.

However as a1, . . . , ad+2 belong to S we know that (ai−ad+2) is not a divisor
of 0 and we can ensure that g(ai) has to be 0 for a1, . . . , ad+1.

Then g(x) would have d+ 1 different roots in S, this time contradicting the
induction hypothesis and proving the result for the univariate case.

In order to prove the multivariate case we can follow the standard proof of
the Schwartz–Zippel lemma, by induction on n.

Case n = 1 is the univariate case that we have already proved.

Assume the lemma is true for polynomials of n or less variables. We can write
an (n+ 1)-variate polynomial as:

f(x1, . . . , xn+1) =
∑
i≤d′

xin+1fi(x1, . . . , xn)

Where fd′ is non-zero. As an n-variate polynomial, by the induction hypoth-
esis, we have:

Pr
[
fd′(x1, . . . , xn) = 0

]
≤ deg(fd′)

|S|

If fd′(a1, . . . , an) 6= 0, by the base case of the induction hypothesis we have:

Pr
[
f(a1, . . . , an, xn+1) = 0

]
≤ d′

|S|

And finally:
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Pr
[
f(a1, . . . , an, an+1) = 0

]
= Pr

[
f(a1, . . . , an, an+1) = 0 ∧ fd′(a1, . . . , an) = 0

]
+ Pr

[
f(a1, . . . , an, an+1) = 0 ∧ fd′(a1, . . . , an) 6= 0

]
≤ Pr

[
fd′(a1, . . . , an) = 0

]
+ Pr

[
f(a1, . . . , an, an+1) = 0

∣∣∣fd′(a1, . . . , an) 6= 0
]

≤ deg(fd′)

|S|
+

d′

|S|

≤ d

|S|

Now we need to define a suitable subset S ⊆ Zq [x] / 〈xn + 1〉 for which the
condition holds.

We can guarantee it if all differences of elements in S are invertible. We
choose:

S =
{
p(x) ∈ Zq [x] / 〈xn + 1〉

∣∣∣deg p(x) < n/2
}

Observe that the proposed subset S meets the required condition for lemma
1, as all differences of two polynomials in S are invertible. This is true as the
condition q ≡ 3 mod 8 implies that xn+1 splits into two irreducible polynomials
of degree exactly n/2 (lemma 3 in [31]). Then all polynomials of degree smaller
that n/2 have an inverse that can be computed using the Chinese Remainder
Theorem. The number of elements in S is still exponential in n, so we can use
it as a set of challenges.

B Technique: Bayer and Groth Shuffle Argument

As mentioned in the introduction, our proposal is based on the shuffle argument
given by Bayer and Groth in [6]. Although is not a direct adaptation of it, we
want to give some intuitions here in order to better understand our construction
presented in section 4.

The general idea of the shuffle argument is to demonstrate knowledge of a
permutation π and some re-encryption parameters {ρi}Ni=1 such that the set of ci-
phertexts at the output of the shuffle {C ′i}Ni=1 are those at the input {Ci}Ni=1 per-
muted and re-encrypted using the equation C ′i = Cπ(i)Encryptpk(1; ρi). In order
to construct the proof Bayer and Groth use the combination of two arguments:
the multi-exponentiation (Σmulti-exp) and the product argument (Σprod-arg). We
are not going to enter into details about them since they are specific to ElGamal
encryption and Pedersen commitment.

The proof can be divided in several steps (full proof is shown in protocol
1.2):
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– The prover computes the permutation of the indexed set of elements {1, . . . ,
N}: a = {π(i)}Ni=1. It also computes the commitment to this indexed set of
values: cA.

– The verifier sends a challenge x and the prover computes b = {xπ(i)}Ni=1.
Again, these values are committed: cB.

– It is demonstrated that the permutation used to compute a and b is the
same, meaning that the prover has a commitment to {x1, . . . , xN} permuted
in an order that was fixed before receiving x. This demonstration is done
in the following way: the verifier sends two values y and z and the prover
builds two polynomials, one using y, z,a and b and the second one with
y, z, {1, . . . , N} and {xi}Ni=1. He proves, using the product argument, that
both polynomials are equal, they have the same roots but in permuted order.

– Finally the prover demonstrates using the multi-exponentiation argument
that he knows the re-encryption parameters such that

N∏
i=1

Cx
i

i = Encryptpk(1; ρ)

N∏
i=1

(C ′i)
xπ(i)

where ρ = −ρ · b. Given the homomorphic properties of the encryption
scheme, the verifier can deduce from the above equation

N∏
i=1

Mxi

i =

N∏
i=1

(M ′i)
xπ(i)

and taking discrete logarithms we have

N∑
i=1

log(Mi)x
i =

N∑
i=1

log(M ′π−1(i))x
i.

As it is argued in [6], there is negligible probability over the choice of x that
this equality holds true unless M ′1 = Mπ(1), . . . ,M

′
N = Mπ(N).

– The verifier accepts if the product and the multi-exponentiation arguments
are both valid.
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Protocol 1.2. Shuffle argument

P (pk, ck,C,C′;π,ρ) V (pk, ck,C,C′)

r
$←− Zmq

a = {π(i)}Ni=1

cA = Comck(a; r)
cA−−−−−−−−−−−→

x
$←− Z∗q

x←−−−−−−−−−−−
s ∈ Zmq
b = {xπ(i)}Ni=1

cB = Comck(b; s)

cB−−−−−−−−−−−→
y, z

$←− Z∗q
y, z←−−−−−−−−−−−

c−z = Comck(−z, . . . ,−z;0)
cD = cA

ycB
d = ya+ b
t = yr + s
cDc−z = Comck(d− z; t)∏N
i=1(di − z) =

∏N
i=1(yi+ xi − z)

ρ = −ρ · b
x =

(
x1, x2, . . . , xN

)
Cx = Encryptpk(1; ρ)C′b

Σmulti-exp, Σprod-arg−−−−−−−−−−−→
outputs accept if all
ZKPoK are correct

C Amortized Commitment Proof Analysis

Del Pino and Lyubashevsky show in [14] how to prove knowledge of small screts
with an amortized cost. In order to do so their proof consists of two steps,
an imperfect proof of knowledge, where the prover is able to prove knowledge of
N−τ(λ) out of N secrets, and a compiler (adapted from [12]), used to transform
an imperfect proof of knowledge into a regular proof of knowledge. The function
τ(λ) defined for a security parameter λ is called imperfection.

Their initial imperfect proof has a soundness slack that depends on a param-
eter r and an imperfection τ(λ) = λ

logα + 1. This r has to be an integer greater
or equal than 128 and α is another parameter that controls the minimal amount
of samples required for amortization. They provide an example that suits our
demands, for α = 210 one can create amortized proofs for as few as 853 secrets
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with a security parameter λ = 128. The compilation step adds extra soundness
gap, and as a result [14] claims that the final ZKPoK for a secret bounded by β
has a slack of 4

√
rλβ/ logα for a security parameter λ.

In our case we use n as a security parameter and consider the error term of
the commitment scheme also bounded by n. Using this kind of amortized proofs
we would be able to prove that the error is bounded by 4

√
128n

(
n
10

)
. This is

greater than n4/3/2, as required by the definition of a valid opening. However no
invertible f is involved, and we can just redo the original binding proof and show
how, for a suitable set of parameters, with overwhelming probability over the
choice of the commitment public key, if a valid commitment exists and a prover
uses this particular amortized proof to prove knowledge of another opening, then
the message cannot be a different one. This binding property is what is required
for the soundness of our protocol.

Lemma 2 (Extended binding property). Let (m′, r′, e′, f ′), (m′′, r′′, e′′, 1)
be such that c = aCm

′ + bCr
′ + f ′−1e′ = aCm

′′ + bCr
′′ + e′′ where ‖e′‖∞ ≤

bn4/3/2c, ‖f ′‖∞ ≤ 1, deg f ′ < n/2 and ‖e′′‖∞ ≤ 4
√

128n
(
n
10

)
. Then, provided

that parameters are chosen appropriately, with overwhelming probability over the
choice of aC and bC, we have m′ = m′′.

Proof. Our goal is to find conditions on k and γ (defined as in [7], k is the
dimension of aC and γ is such that q ≥ nγ) such that this lemma holds.

Assume by contradiction that m′ 6= m′′. Subtracting the two different expres-
sions for c we get aCm+bCr = f ′−1e′−e′′, for some m, r ∈ Rq with m 6= 0. Lets
fix these values m, r, f ′, e′, e′′ and check that the chances of this being possible
are negligible.

Here we use again the fact that, since q ≡ 3 mod 8, xn + 1 splits into two
irreducible polynomials p1 and p2 of degree n/2. As m 6= 0 we have m 6= 0
mod pb at least for one b ∈ {1, 2}. Considering all possible ai ∈ Rq we have that
aim takes all qn/2 possible equivalence classes mod pb with uniform probability.
This is independent for every i, as a result only a fraction 1

qkn/2
of all possible

(aC, bC) would satisfy the required equation.

Now, as we started fixing m, r, f ′, e′, e′′ we have to apply a union bound for
all their possible values. That is qn for m, qn for r, 3n/2 for f ′, (n4/3)kn for e′

and
(
8
√

128n
(
n
10

))kn
for e′′.

If this union bound is negligible then with overwhelming probability over
the choice of (aC, bC) there are no m, r, f ′, e′, e′′ satisfiying the equation with
m 6= 0. It would imply that m has to be 0, and the commitment would be
binding even when considering this relaxed opening verifications that come from
the amortized proofs.
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The only missing step is to check when the following quantity is negligible:

q2n3n/2(n4/3)kn
(
8n
√

128 n
10

)kn
qkn/2

=

(
q2−k/231/2(n4/3)k

(
211/2n2

5

)k)n

We know k > 6 from [7], then 2− k/2 < 0 and we can use q ≥ nγ as defined in
[7]:

≤

(
n2γ−kγ/231/2(n4/3)k

(
211/2n2

5

)k)n

=

(
n2γ+k(10/3−γ/2)31/2

(
211/2

5

)k)n
=
(
n2γ+k(10/3−γ/2+log(211/2/5)/ log(n))31/2

)n
And we want to impose that this quantity is negligible, that is:

≤
(

1

2

)n
This is equivalent to:

1√
12
≥ n2γ+k(10/3−γ/2+log(211/2/5)/ log(n))

And taking logarithms:

log
(
1/
√

12
)

log(n)
≥ 2γ + k(10/3− γ/2 + log(211/2/5)/ log(n))

0 ≥ 2γ + k(10/3− γ/2 + log(211/2/5)/ log(n)) +
log(12)

2 log(n)

Notice how the contribution of the 1
log(n) terms is positive. Therefore if the

inequality is satisfied for some n0 it would also be satisfied for any n ≥ n0.
Therefore we can just plug in here the minimum value we want to consider for
n, in this case n = 29 to achieve minimal security for the commitment scheme:

0 ≥ 2γ + k

(
71− 2 log(5)− 9γ

18

)
+

log(12)

18

Following the same reasoning, and using again 2 − k/2 < 0 we notice that
whenever this condition is satisfied for one γ0 it will also be satisfied for any
other γ ≥ γ0.
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In order for the inequality to hold the coefficient of k, 71−2 log(5)−9γ
18 , has to be

negative. This imposes γ ≥ 8, and once we have this condition if the inequality
holds for a given k0 it will also be satisfied for any other k ≥ k0.

Summarizing, we just need to find the minimal pairs of (k0, γ0) ∈ Z2 satis-
fiying the following three conditions, and that would imply that any pair (k, γ)
with k ≥ k0 and γ ≥ γ0 would be feasible too.

• γ ≥ 8
• k > 18γ

3γ−16

• 0 ≥ 2γ + k
(

71−2 log(5)−9γ
18

)
+ log(12)

18

The region of feasible parameters can be found in figure 1. As long as we choose
our parameters inside the green area the probability of the existence of non-zero
solutions would be negligible and the commitment scheme will have the required
extended binding property.

D Completeness, Zero-Knowledge and Soundness

If the prover P chooses all re-encryption parameters from the appropriate dis-
tribution χ conditioned to have norm smaller than δ, correctly builds the com-
mitments to the encryptions of 0 and follows the small secrets proof the answer
will be accepted. This is also the case for the proof of the committed permuted
powers of α, as products

∏N
i=1

(
βi+ αi − γ

)
and

∏N
i=1 (βmi + m̂i − γ) are ex-

actly equal, just in permuted order. Finally the two last ZKPoK are accepted as
the output is exactly a permutation and re-encryption of the input, and we have
built a polynomial subtracting the re-encryptions and inverting the permutation.
To summarize, the protocol is complete as all the ZKPoK involved are accepted
if an honest prover follows the protocols.

The special HVZK property is achieved as the only published elements are
commitments (with a computationally hiding property based on the hardness of
RLWE) and outputs of lattice-based ZK-protocols (that can be simulated and
therefore leak no information).

Soundness follows with overwhelming probability from the soundness proper-
ties of the ZK-protocols for the commitments and the small elements, the binding
property of the commitment scheme and also from the generalized Schwartz-
Zippel lemma.

We start with ZK1, if δ′ is such that τδ′ ≤
⌊
n4/3

2

⌉
the extractor of this zero-

knowledge proof given by Del Pino and Lyubashevsky provides us with valid
openings of c

u
(i)
0

and c
v
(i)
0

to a valid encryption of 0.

Then, we analyze ZK2, using the extractor of Benhamouda et al. we obtain
valid openings for cπ(i) and cαπ(i) that satisfy the equation

∏N
i=1

(
βi+ αi − γ

)
=∏N

i=1 (βmi + m̂i − γ). The order in which all polynomials have been determined,
generalized Schwartz-Zippel and the previously discussed argument guarantees
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Fig. 1. Region of feasible parameters satisfying the binding property.

that, with overwhelming probability, those extracted messages are permuted
integers from 1 to N and powers of α in the same order.

Finally we have ZK3 and ZK4, using the extractor of these proofs we obtain
openings of cπ(i), cαπ(i) , c

u
(i)
0
, c
v
(i)
0

. Given that the commitment scheme is bind-

ing we know from previous proofs that those openings are π(i), απ(i), u
(i)
0 , v

(i)
0 .

Then, the relations held by the messages committed that were written in terms

of my are exactly
∑N
i=1 α

iu(i) =
∑N
i=1 α

π(i)(u′(i) − u
(i)
0 ) and

∑N
i=1 α

iv(i) =∑N
i=1 α

π(i)(v′(i) − v
(i)
0 ). Applying the generalized Schwartz-Zippel lemma we

can ensure with overwhelming probability that u(i) = u′π
−1(i) − u

π−1(i)
0 and
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v(i) = v′π
−1(i) − vπ

−1(i)
0 . And this implies that the mix-node has performed a

correct shuffle on the input votes.

E Proof of Theorem 1

Proof. We prove the security of a mix-node defining a sequence of games be-
tween a challenger and an adversary. Beginning from Game 0, that represents
the original attack game with respect to a given efficient adversary, we use a
sequence of hybrid arguments, Game 0, Game 1, Game 2 and Game 3, and we
show that each game is indistinguishable from the previous one. Transitions be-
tween games are done applying very small changes to the defined experiment
and we demonstrate that if an adversary can detect them, it would imply an
efficient method of distinguishing between two distributions that are computa-
tionally indistinguishable under the corresponding assumptions. When Game 3
is reached, ciphertexts at the output of the mix-net are not RLWE samples any
more, and are independent from the input.

Game 0 models the probability of an adversary getting output 1 from the
experiment.

In Game 3 we have an output which is completely independent from the
input and the original messages, and the permutation π is still chosen uniformly
at random. Therefore the probability of guessing a correct pair of indices (iA, jA)
is equivalent to choosing the second index uniformly at random from [1, . . . , N ],
that is, sampling J .

This is the sequence of games:

Game (G0).

• Run Setup algorithm. (((aE, bE), s) , (aC, bC))
$←− Setup(1κ).

pkE = (aE, bE) pkC = (aC, bC)

• The adversary chooses the messages. ({z(i)}Ni=1, aux)
$←− A1 (pkE, pkC).

• The adversary also computes the input of the mix-node.({
(u(i), v(i))

}N
i=1

)
$←− A2

({
z(i)
}N
i=1

, aux

)
• Mix the encrypted votes:

1. Choose a random permutation π
$←− SN .

2. Choose the re-encryption parameters {r′(i)E , e
′(i)
E,u, e

′(i)
E,v}Ni=1 from the ap-

propriate distribution.
3. Compute the output of the mixing process with their corresponding

proofs using the MixVotes algorithm. ({(u′(i), v′(i))}Ni=1, {Σl}4l=0) ←

MixVotes

(
pkE, pkC,

{
(u(i), v(i))

}N
i=1

;π,
{
r
′(i)
E , e

′(i)
E,u, e

′(i)
E,v

}N
i=1

)
• A outputs (iA, jA)

$←− A3({(u(i), v(i))}Ni=1, {(u′(i), v′(i))}Ni=1, {Σl}4l=0, aux).
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• Check whether z(iA)
?
= zπ(jA).

Game (G1).

• Run Setup algorithm. (((aE, bE), s) , (aC, bC))
$←− Setup(1κ).

pkE = (aE, bE) pkC = (aC, bC)

• The adversary chooses the messages. ({z(i)}Ni=1, aux)
$←− A1 (pkE, pkC).

• The adversary also computes the input of the mix-node.({
(u(i), v(i))

}N
i=1

)
$←− A2

({
z(i)
}N
i=1

, aux

)
• Mix the encrypted votes:

1. Choose a random permutation π
$←− SN .

2. Choose the re-encryption parameters {r′(i)E , e
′(i)
E,u, e

′(i)
E,v}Ni=1 from the ap-

propriate distribution.
3.→ Compute the output of the mixing process and simulate their corre-

sponding proofs.

(u′(i), v′(i))← Re-encrypt
(
pkE, u

π(i), vπ(i); r
′(i)
E , e

′(i)
E,u, e

′(i)
E,v

)
{Σl}4l=1

$←− Simulator

(
pkE, pkC,

{
(u(i), v(i))

}N
i=1

,
{

(u′(i), v′(i))
}N
i=1

)
Since the zero-knowledge proofs are simulated, they are now independent
from the commitments in Σ0 and we can use their hiding property to
substitute each one of them by random samples, without giving to the
adversary more advantage in this game than the probability of breaking
the RLWE assumption.

• A outputs (iA, jA)
$←− A3({(u(i), v(i))}Ni=1, {(u′(i), v′(i))}Ni=1, {Σl}4l=0, aux).

• Check whether z(iA)
?
= zπ(jA).

Game (G2).

•→ Run Setup algorithm. (((aE, bE), s), (aC, bC))
$←− Setup(1κ).

a′E, b
′
E

$←− Zq [x] / 〈xn + 1〉 pkE = (a′E, b
′
E) pkC = (aC, bC)

• The adversary chooses the messages. ({z(i)}Ni=1, aux)
$←− A1 (pkE, pkC).

• The adversary also computes the input of the mix-node.({
(u(i), v(i))

}N
i=1

)
$←− A2

({
z(i)
}N
i=1

, aux

)
• Mix the encrypted votes:

1. Choose a random permutation π
$←− SN .
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2. Choose the re-encryption parameters {r′(i)E , e
′(i)
E,u, e

′(i)
E,v}Ni=1 from the ap-

propriate distribution.
3. Compute the output of the mixing process and simulate their corre-

sponding proofs.

(u′(i), v′(i))← Re-encrypt
(
pkE, u

π(i), vπ(i); r
′(i)
E , e

′(i)
E,u, e

′(i)
E,v

)
{Σl}4l=0

$←− Simulator

(
pkE, pkC,

{
(u(i), v(i))

}N
i=1

,
{

(u′(i), v′(i))
}N
i=1

)
• A outputs (iA, jA)

$←− A3({(u(i), v(i))}Ni=1, {(u′(i), v′(i))}Ni=1, {Σl}4l=0, aux).

• Check whether z(iA)
?
= zπ(jA).

Game (G2,j). We define G3 to be G2,N and observe that G2,0 is exactly G2.

• Run Setup algorithm. (((aE, bE), s), (aC, bC))
$←− Setup(1κ).

a′E, b
′
E

$←− Zq [x] / 〈xn + 1〉 pkE = (a′E, b
′
E) pkC = (aC, bC)

• The adversary chooses the messages. ({z(i)}Ni=1, aux)
$←− A1 (pkE, pkC).

• The adversary also computes the input of the mix-node.

({(u(i), v(i))}Ni=1)
$←− A2({z(i)}Ni=1, aux)

• Mix the encrypted votes:

1. Choose a random permutation π
$←− SN .

2.→ Choose random polynomials and re-encryption parameters from the ap-
propriate distribution.

w′(i)u , w′(i)v
$←− Zq [x] / 〈xn + 1〉 ∀i ∈ [1, j]

{r′(i)E , e
′(i)
E,u, e

′(i)
E,v}

N
i=1

$←− χn ∀i ∈ [j + 1, N ]

3.→ Compute the modified output of the mixing process and simulate their
corresponding proofs.

(u′(i), v′(i)) = (uπ(i), vπ(i)) + (w′(i)u , w′(i)v ) ∀i ∈ [1, j]

(u′(i), v′(i))← Re-encrypt(pkE, u
π(i), vπ(i); r

′(i)
E , e

′(i)
E,u, e

′(i)
E,v)

∀i ∈ [j + 1, N ]

{Σl}4l=0
$←− Simulator(pkE, pkC, {(u(i), v(i))}Ni=1, {(u′(i), v′(i))}Ni=1)

• A outputs (iA, jA)
$←− A3({(u(i), v(i))}Ni=1, {(u′(i), v′(i))}Ni=1, {Σl}4l=0, aux).

• Check whether z(iA)
?
= zπ(jA).

Lemmas 3, 4 and 5 prove that, under RLWE assumptions, all four games
above defined are equivalent. For any PPT adversary A the probability of win-
ning in one of the games is at negligible distance to the probability of winning
in any of the other games.

This proves the theorem and ensures that our mix-node is indeed secure.
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We let S∗ be the event that z(iA) = zπ(jA) in game G∗.

Lemma 3. G0 and G1 are statistically indistinguishable.

Proof. In G1 instead of generating the proofs Σ1, Σ2, Σ3, Σ4 using the witnesses,
we simulate them. As simulated conversations are statistically close to real ones
both games are indistinguishable in probabilistic polynomial time. Additionally,
given that the commitment scheme is computationally hiding under the RLWE-
assumption, we substitute each commitment in Σ0 by random samples.

Then

|Pr{S0} − Pr{S1}| ≤ εzkmix + εhid

where εzkmix is the advantage of an adversary against the zero-knowledge prop-
erty of Σ1, Σ2, Σ3 and Σ4 and εhid is the advantage of an adversary against the
RLWE problem, which are negligible.

Lemma 4. G1 and G2 are computationally indistinguishable if the RLWE prob-
lem is hard.

Proof. This is immediate as we have just substituted the RLWE sample (aE, bE)

by a uniform sample (a′E, b
′
E)

$←− R2
q .

Then

|Pr{S1} − Pr{S2}| ≤ εdRLWE

where εdRLWE is the advantage of an adversary against the decisional RLWE
problem, which is negligible.

Lemma 5. G2 and G3 are computationally indistinguishable if the RLWE prob-
lem is hard.

Proof. We can define N intermediate games between G2 and G3. G2,0 will be

G2, G2,N will be G3 and in each G2,j we add random (w
′(i)
u , w

′(i)
v ) for the first j

encryptions and we use the Re-encrypt algorithm for all the others from j + 1 to
N , with correctly chosen re-encryption parameters.

Indistinguishability follows from the indistinguishability of any pair of games
G2,j and G2,j+1.

If they were not indistinguishable we could use them to correctly guess if
two pairs of elements (g1, h1) and (g2, h2) are RLWE samples or uniformly ran-
dom samples. We would just need to modify G2,j+1 assigning a′E = g1, b

′
E =

g2, w
′(j+1)
u = h1, w

′(j+1)
v = h2. If the samples came from a RLWE distribution

the game would be exactly G2,j , while if samples are uniformly random the game
would be G2,j+1.

Then

|Pr{S2,j−1} − Pr{S2,j}| ≤ εdRLWE

where εdRLWE is the advantage of an adversary against the decisional RLWE
problem, which is negligible.
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Finally, as in G3 all the re-encryptions are uniformly random samples, it is
clear that

Pr{S3} = Pr
[
z(iA) = zπ(J)

]
.

Combining all the probabilities we obtain the advantage of the adversary

AdvsecA (κ) =
∣∣∣Pr [ExpsecA (κ) = 1]− Pr

[
z(iA) = zπ(J)

]∣∣∣
= |Pr{S0} − Pr{S3}| ≤ εzkmix + εhid + (N + 1)εdRLWE

which is negligible since εzkmix, εhid and εdRLWE are negligible.
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