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Abstract. Consider sources that supply sensitive data to an aggregator.
Standard encryption only hides the data from eavesdroppers, but using
specialized encryption one can hope to hide the data (to the extent pos-
sible) from the aggregator itself. For flexibility and security, we envision
schemes that allow sources to supply encrypted data, such that at any
point a dynamically-chosen subset of sources can allow an agreed-upon
joint function of their data to be computed by the aggregator. A primi-
tive called multi-input functional encryption (MIFE), due to Goldwasser
et al. (EUROCRYPT 2014), comes close, but has two main limitations:

– it requires trust in a third party, who is able to decrypt all the data,
and

– it requires function arity to be fixed at setup time and to be equal
to the number of parties.

To drop these limitations, we introduce a new notion of ad hoc MIFE.
In our setting, each source generates its own public key and issues in-
dividual, function-specific secret keys to an aggregator. For successful
decryption, an aggregator must obtain a separate key from each source
whose ciphertext is being computed upon. The aggregator could obtain
multiple such secret-keys from a user corresponding to functions of vary-
ing arity. For this primitive, we obtain the following results:

– We show that standard MIFE for general functions can be boot-
strapped to ad hoc MIFE for free, i.e. without making any additional
assumption.

– We provide a direct construction of ad hoc MIFE for the inner prod-
uct functionality based on the Learning with Errors (LWE) assump-
tion. This yields the first construction of this natural primitive based
on a standard assumption.

At a technical level, our results are obtained by combining standard
MIFE schemes and two-round secure multiparty computation (MPC)
protocols in novel ways highlighting an interesting interplay between
MIFE and two-round MPC in the construction of non interactive prim-
itives.
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1 Introduction

In modern society, there is an inherent need for external entities to aggregate
and analyze sensitive data from a variety of sources. A few prominent examples
are:

– To track diseases, disease control centers would like hospital patients’ medical
information.

– To determine medication efficacy for a given subpopulation, pharmaceutical
companies would like patients’ genomic information.

– To provide targeted advertising to consumers, corporations would like buy-
ers’ demographic information.

However, this release of sensitive data to external entities is unsettling, as these
entities must now be trusted to preserve the confidentiality of the released data.
We would like to avoid the need for this trust and believe that specialized en-
cryption schemes will be an important tool for doing so. At a high level, we
would like schemes that allow users to encrypt their data before transferring
them to an external entity, such that only certain user-specified joint functions
of the data are revealed to the entity holding it. We would like this security
guarantee to be supported in a flexible way, allowing joint functions of the data
to be revealed by any dynamically-chosen subset of users that permit it.

A primitive that comes close, due to Goldwasser et al. [42], is multi-input
functional encryption (MIFE). To understand MIFE, we first recall the simpler
notion of functional encryption (FE) [19]. Just as in traditional encryption, in
functional encryption ciphertexts can be generated with an encryption key. How-
ever, each decryption key is associated with a function f , and decryption of an
encryption of m using this key results in not m but f(m). Intuitively, security
requires that nothing more than f(m) can be learned from the encryption of m
and the decryption key for f . In MIFE, decryption keys allow computing joint
functions of (possibly) different plaintexts underlying multiple ciphertexts. That
is, decryption takes a key for a function f and ciphertexts c1, . . . cn encrypting
m1, . . . ,mn, and outputs f(m1, . . . ,mn).

However, MIFE has an important drawback: encryption and decryption keys
are generated via a global setup procedure run by an external entity usually
called the key authority. This begs the question of whether putting trust in
the key authority is really better than putting trust in the external entities
that aggregate and analyze the data in the first place. A similar point was
made by Rogaway about identity-based encryption (IBE) [57]. Indeed, removing
this in the simpler case of IBE (and other settings) has been an active area of
investigation, e.g. see [17, 46, 33]. We contend that for MIFE (and indeed FE)
the concern is heightened, as the authority can not only decrypt all the data but
is also the one in charge of which functions of the data other external entities
can compute. Hence, MIFE does not allow users to enforce their own privacy
policies.

Additionally, from a flexibility standpoint, MIFE is limited in that it fixes
the number of senders and function arity at setup time. This does not support
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a dynamic setting in which users can join or leave. Progress on removing this
limitation was made by Badrinarayanan et al. [10], who introduced a notion of
MIFE for unbounded arity functions. However, their notion does not allow any
subset of users to reveal a joint function of their data to an external entity with-
out coordination from all other users, and moreover relies on strong “knowledge
type” assumptions.

1.1 Our Notion: Ad Hoc MIFE

To address the above limitations, we introduce a new notion of ad hoc MIFE. In
ad hoc MIFE, each source (aka. sender or user) will run a local setup procedure
to generate some public parameters as well as a private encryption key. (One can
also consider a public-key setting, but this puts limits on achievable security and
we do not do so in this work.1) Each source publishes their public parameters and
encrypts using their private key. These ciphertexts can be sent to an aggregator
(aka. decryptor). Furthermore, using their private keys, sources can issue “partial
decryption keys” to an aggregator. Each partial decryption key is associated with
an `-ary function f for some ` and is generated using the public keys of `−1 other
(dynamically chosen) sources. If these other `− 1 sources also issue “matching”
partial decryption keys for f to this aggregator, it can decrypt any ` ciphertexts
c1, . . . , c`, each produced by the corresponding source, to f(m1, . . . ,m`) where
m1, . . . ,m` are the plaintexts. One can also consider restricted versions of the
above notion, that bound the number of users or fix ` (or both). In particular,
taking the number of users equal to ` gives a version of MIFE that still drops the
global setup procedure but lacks the dynamic aspect. Finally, we also consider
the restricted notion of bounded ad hoc MIFE, where we place a bound on the
number of “partial decryption keys” a user is allowed to issue. Intuitively, for
security, we require that an aggregator learns only the functions of the data for
which it has been given all of the matching partial decryption keys.

Note that while we assume each source can obtain the authentic public pa-
rameters of other sources with whom it wants to allow joint functions of the data
to be computed, there is no other prior coordination between users. In particu-
lar, there is no external entity that generates public parameters or keys. In some
of our constructions, we work in the common reference string (CRS) model, but
note that this is still much weaker than having an authority who can decrypt all
the data.

1.2 Our Results

Our results may be summarized as follows:

1 In more detail, in the public-key setting a decryptor could launch an attack where
it replaces one user’s input with various values to determine information about the
input of another user.
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– Feasibility result for general functions: First, we show that standard MIFE
for general functions can be bootstrapped to ad hoc MIFE for general func-
tions for free. More specifically, we show that ad hoc MIFE for any func-
tionality is implied by standard MIFE for that functionality combined in a
novel way with general FE and a special type of two-round secure multiparty
computation (MPC) protocol. The latter two are implied by standard MIFE
for general functions.

While very general, the result leaves open the goal of obtaining ad hoc MIFE
under standard assumptions. In general, this is challenging as standard MIFE
is already known to be equivalent to indistinguishability obfuscation [31, 8,
16], which is a central open problem in cryptography. In fact, some negative
evidence about the hardness of obtaining such constructions has also been
provided [35, 36]. Thus, with the goal of moving towards using standard as-
sumptions, we consider the task of ad hoc MIFE for special but natural
functionalities.

– Constructions for Inner Products from Standard Assumptions: We provide
a construction of ad hoc MIFE for the inner product functionality from
standard assumptions, namely LWE.2 Introduced by Abdalla et al. [1] in
the single-input setting, this functionality has applications in data mining
and information retrieval. Our result is obtained via a general paradigm
for constructing ad-hoc MIFE schemes from standard MIFE schemes sat-
isfying certain natural properties; or, what we call “ad hoc friendly” stan-
dard MIFE schemes. We show that certain constructions of standard MIFE
scheme for inner products from the literature [3, 2] based on standard as-
sumptions (DDH, LWE, or DCR) already satisfy these properties. Addition-
ally, we use a specific two-round MPC protocol [54] that can also be obtained
via LWE. We note that by using two-round MPC protocol from any two-
round OT protocol [39, 40, 14] here, we also obtain results for the case of
bounded ad hoc MIFE for inner products — namely, we get bounded ad hoc
MIFE for inner products from DDH, LWE and DCR as well.3 We remark
that since our general construction (first result) already relies on general
MIFE for circuits, there is no advantage to mitigating assumptions for the
two-round MPC protocol in that setting.

We emphasize that our transformation is general. Thus, our transformation
can be used to upgrade the security of any “ad hoc friendly” standard MIFE
for a given to ad hoc MIFE for the same functionality. This result might also
be useful in obtaining future constructions of ah hoc MIFE. Furthermore, the
modularity of this approach allows for simplifications in our constructions.

2 We stress that this functionality outputs inner products in the clear and is therefore
a different type of functionality than that of Katz et al. in [51], which tests if an
inner product is zero or not.

3 Note that semi-honest constructions of two-round OT are known under each of these
assumptions.
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Functionality Assumptions Security CRS? Section

General std. MIFE Semi-honest No 4

General std. MIFE Malicious Yes 4

Inner Product LWE Semi-honest Yes 5

Inner Product LWE Malicious Yes 5

Inner Product (Bounded) DDH, LWE, DCR Semi-honest No 5

Inner Product (Bounded) DDH, LWE, DCR Malicious Yes 5

Fig. 1. Our new constructions of ad hoc MIFE.

We tabulate our results in Figure 1 and provide explanation of which MPC
protocol is needed for each of the results in Section 1.3.

1.3 Technical Overview

In this section, we describe at a high level the challenges involved in constructing
ad hoc MIFE and our techniques for overcoming them.

Ad Hoc MIFE for Arbitrary Functions. Standard MIFE and ad hoc MIFE
can be seen as secure multiparty computation (MPC) prtocols with a particular
allowable interaction pattern and certain additional reuse capabilities.4 To begin,
let us consider the interaction pattern followed by standard MIFE. In standard
MIFE, there is a trusted global setup which receives as input the number of
parties `, and outputs a public key and a set of ` encryption keys. Addition-
ally, global setup on input a function f generates the decryption key DKf . Of
these, the public parameters are broadcast to all users and encryption key EKi
is provided to encryptor i, for i ∈ [`]. The encryptors then compute their ci-
phertexts CT(mi) and send these to the aggregator who may now compute the
function output f(m1 . . . ,m`) using the decryption/function key DKf . Finally,
the system supports arbitrary number of decryption keys and ciphertexts. As ex-
plained in Section 1.1, in ad hoc MIFE, we seek to eliminate the trusted global
procedure as well as support dynamic choice of parties involved in any function
computation.

Challenges Involved. An approach to eliminating the trusted setup from stan-
dard MIFE is to use MPC to replace the global setup. However, naively com-
puting the setup procedure using MPC would introduce interaction between the
parties, which the syntax of MIFE does not allow. Moreover, this (interactive)
procedure would need to be rerun each time a function key is required to be

4 Recall that MPC allows a set of parties to compute a joint function of their inputs
without revealing anything else but in general allows these parties to freely interact
(although restrictions may apply in special cases).
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generated. Using two round MPC, one may hope to overcome the barrier of in-
teraction using the following natural idea: let parties perform a two-round MPC
to perform the setup and key generation for a standard MIFE. In more detail,
parties in the first round could publish as their public parameters the first round
MPC messages with their secret randomness as input. Given the first round mes-
sages, parties could send the second round MPC message to the aggregator, who
could use it to compute the function key. However, this approach does not suffice
since:

1. MIFE requires that the public parameters be published only once whereas
the above template requires publishing fresh public parameters for each func-
tion key.

2. Even more fundamentally, the above approach precludes users from being
able to encrypt, as their encryption keys are not available given just the first
round MPC message.

In particular, the above approach does not decouple ciphertexts and functions
as in traditional MIFE, which leads to the limitation that an evaluator can-
not evaluate the same function on multiple inputs chosen by the parties, nor
evaluate other functions on the same set of inputs. Additionally, the problem
is made challenging by the fact that in MIFE an aggregator might obtain arbi-
trary number of secret keys and an encryptor might generate arbitrary number
of ciphertexts.

Overcoming the first barrier: Function re-runnable two-round MPC. In order to
mitigate the first problem above, we require that the first round MPC message
be sent only once, and reused for all subsequent second round messages thus pro-
viding re-usability/re-runnability for secret key generation. Towards achieving
this re-usability, an idea is to use function rerunnable two-round MPC protocols,
where the same first round message can be reused for multiple functions in the
second round. As we will see, certain existing two-round MPC protocols satisfy
this requirement (see later), but this still does not solve the problem. This is
because in adhoc MIFE, we additionally need that for the MPC protocol, the
function or even its arity are not known at the time the first round message
is sent. We overcome this hurdle by using “function delayed” protocols, which
permit the choice of function to be delayed to the second round of the proto-
col. Together, these special protocols may be used to overcome the first barrier
outlined above.

Overcoming the second barrier: Delaying Encryption. In order to overcome the
second barrier, we allow the encryptor to delay the encryption process until the
encryption keys are known. In more detail, we will have each source indepen-
dently run the setup algorithm of a single input FE scheme, denoted as FE and
compute the first round message of an MPC protocol using the FE master key as
input. This message is published as part of the public key and made available to
all other sources. Additionally, each source provides an encryption of its input
mi using the algorithm FE.Encrypt.
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The sources may choose the function f to be computed and the group that
will participate in the computation dynamically. At this point, each source inde-
pendently executes the partial key generation algorithm as follows: it generates
the second round message of an MPC protocol for a suitable f dependent func-
tionality GenKeysf and sends this to the aggregator. Intuitively, the functionality
GenKeysf has the circuit f hard-coded in it, and enables the aggregator to com-
pute the output.

However, recall that the inputs to the GenKeys functionality are not the mes-
sages on which the computation must be performed, but rather the FE master
keys generated independently by each player. To proceed, the functionality in-
stead uses the FE master keys to compute FE function keys for a re-encryption
procedure, which translates FE ciphertexts to MIFE ciphertexts for a freshly gen-
erated (standard) MIFE scheme. During this time, the arity of the function f
is known, so a suitable standard MIFE scheme may be instantiated. It further
outputs an MIFE function key for the function f .

We are almost done: GenKeysf runs the setup procedure for a suitable fixed
arity standard MIFE scheme, computes FE function keys for each party for the
re-encryption functionality, computes the MIFE function key for f and outputs
these. The aggregator uses the FE keys together with the FE ciphertexts provided
by each encryptor to translate FE.Enc(mi) to ci = MIFE.Enc(mi) and then runs
the MIFE decryption procedure to obtain f(m1, . . . ,m`).

Put together, we resolved all difficulties by carefully nesting a a multi-input
FE scheme MIFE, within the single input FE scheme FE, which in turn is nested
within a re-runnable two-round MPC protocol MPC. For the above idea to work,
the MPC protocol must allow the function to be declared after the first round
messages have been sent. Fortunately, we can use the re-runnable two-round
MPC protocols which come with this “function delayed” property to achieve
this.

One final problem remains: the adversary could get some partial information
from an “incomplete” set of partial decryption keys for some function. This
is because standard MPC makes no guarantee when an honest party does not
send their final message. We solve this problem by masking the output of MPC
by pseudorandom values generated for each party. The partial decryption keys
contains the respective user’s pseudorandom masks value so that only a complete
set of user keys can be used to unmask the output.

While security appears to follow intuitively from the security of MPC, FE and
MIFE, the proof must contend with several technical hurdles as we are forced
to deal with indistinguishability style security of FE, MIFE (simulation security
for these primitives is known to be impossible [19, 6]). We argue security via a
careful sequence of hybrids, please see Section 4 for details.

Instantiating MPC. We now discuss possible instantiations of MPC to fit the
above template. Depending on the properties of the underlying two-round MPC
protocol, we obtain different properties of the resulting ad hoc MIFE scheme. In
both the semi-honest (passive decryptor) and the malicious (active decryptor)
settings, the most general function-rerunnable, two-round MPC protocols with-
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out CRS can be constructed [30, 45] from indistinguishability obfuscation [31],
which itself can be constructed from multi-input functional encryption [8]. Fur-
thermore, as already noted in [38], we remark that in the semi-honest setting
the construction of [30] can actually be instantiated in the plain model. This is
based on the observation that the CRS in the protocol of [30] was only needed
for the computation in the second round. Thus semi-honest parties could obtain
a CRS by just performing a one-round coin flipping in the first round. This yields
our first result: we get ad hoc MIFE for general functions from standard MIFE
for general functions. In the semi-honest setting, the ad hoc MIFE construction
is in the plain model. On the other hand, in the malicious setting, these protocols
work in the common reference string (CRS) model.

Alternatively, function-rerunnable two-round MPC in the common reference
string (CRS) model can be constructed [27, 54, 23, 56] from learning-with-errors
(LWE). This yields ad hoc MIFE from LWE and standard MIFE in the CRS
model (either semi-honest or malicious). While bounded two-round MPC in the
CRS model can be constructed from bilinear maps [39] and even two-round obliv-
ious transfer [14, 40, 37] or information theoretically [9, 34], these constructions
are not function-rerunnable so do not suffice for our general construction. We
note that these constructions would suffice for obtaining bounded ad hoc MIFE,
where a user issues only a bounded number of partial decryption keys and main-
tains state across key issues. However, since in our general result we anyway
require the minimum assumption of FE/MIFE, instantiating MPC from weaker
assumptions does not yield any benefits, and we do not discuss this further. Our
results are highlighted in Figure 1.

Ad Hoc MIFE for Inner Products. While our construction of ad hoc MIFE
above applies to arbitrary functionalities, it requires use of standard MIFE for
general functions. Unfortunately, as noted above, standard MIFE implies indis-
tinguishability obfuscation. Hence, there is limited hope of basing it on standard
assumptions. Additionally, our general transformation uses an FE scheme for
a potentially complicated re-encryption functionality and also requires general-
purpose, function-rerunnable two-round MPC for computing a complex func-
tionality. These aspects limit the practical applicability of our general result.

Next, we describe a paradigm for constructing ad-hoc MIFE schemes from
standard MIFE schemes that are “ad hoc friendly” and a (hopefully simple)
two-round MPC protocol. This paradigm significantly simplifies our general con-
struction and provides a way for basing it on standard assumptions. We then
show that the standard MIFE scheme for inner products [3, 2], which may be
based on DDH, LWE or DCR, is ad hoc friendly and the corresponding two-
round MPC protocol is only required to compute inner-products, thus obtaining
an efficient ad hoc MIFE scheme for inner products.

More formally, in the inner product functionality a decryption key corre-
sponds to a concatenated vector y = (y1 ‖ · · · ‖ yn) where yi ∈ Zmq , and
a ciphertext encrypts a vector xi ∈ Zmq . The desired result of decryption is∑n
i=1〈xi,yi〉. Importantly, the decryptor should not learn the partial sums 〈xi,yi〉.
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The inner product functionality has applications in data mining and information
retrieval [1, 3]. We use constructions of standard MIFE for inner product by [3,
2].

Below, we start by summarizing our notion of “ad hoc freindliness,” which
(as we see later) is indeed satisfied by the above mentioned standard MIFE for
inner product by [3, 2]. Our notion of ad hoc friendliness may be summarized as
follows:

1. Decentralized Setup. The MIFE.Setup algorithm of the MIFE is decentralized
in the sense that:
(a) The encryption keys EKi for i ∈ [n] corresponding to party i may be

generated independently of the encryption keys of the remaining parties
[n] \ i.

(b) The master secret key MSK can be decomposed into n components
{MSKi}i∈[n]. The partial MSKi corresponding to party i may be gen-
erated locally by party i, without any interaction or shared state with
the remaining parties.

2. Local Encryption. The encryption algorithm only takes its encryption key
and message as input and does not depend on the number of parties or their
public parameters.

3. Piecewise Master Secret Key. The master secret in standard MIFE
MSK = {MSK1, . . . ,MSKn}, if restricted to some subset S ⊆ [n] with |S| = `,
has the same distribution as a master secret generated for functions of arity
`.

We show that a standard MIFE with the above properties can be upgraded
to ad hoc MIFE described above in a more direct manner than our generic
transformation from standard MIFE to ad hoc MIFE. To see this, recall that
one of the key challenges in ad hoc MIFE is that the encryptor must encrypt
her messages without knowing the encryption key for the underlying standard
MIFE. This is because the members or size of the group that will participate in
the computation are chosen dynamically later.

To handle this, we used single input FE to encrypt messages and the MPC
protocol for functionality GenKeys to sample an MIFE scheme and then translate
the FE ciphertexts to MIFE ciphertexts. In the current setting however, due to
properties (1) and (2) above, the encryption key of each party can be generated
locally and each party can directly perform MIFE encryption locally. Since the
re-encryption functionality involves computing a PRF and computing an MIFE
encryption, the savings accrued by skipping this step are significant.

We will still require MPC to compute the MIFE function key, but no longer
need the MPC functionality to sample the master secret key, so for simple func-
tionalities this protocol may be much leaner than our general MPC protocol. For
instance, in the case of inner products, we show that the required MPC protocol
only needs to support inner product computations.

While the structural requirements described above may seem very strong,
as mentioned earlier, we show that these requirements are enjoyed by the MIFE
for inner products recently constructed by Abdalla et al. [2] and can be used to
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instantiate our compiler providing a very simple and efficient ad hoc MIFE for
inner products. Please see Section 5 for details.

Instantiating MPC. As discussed for the case of our generic construction, we use
two-round MPC protocols to obtain ad hoc MIFE for inner products. Specifi-
cally, since function-rerunnable two-round MPC in the common reference string
(CRS) model can be constructed [27, 54, 23, 56] from learning-with-errors (LWE),
we immediately get ad hoc MIFE from LWE. This result can be upgraded to
the malicious setting at the additional cost of NIZKs. On the other hand, con-
struction of two-round MPC from two-round oblivious transfer [14, 40, 37], yields
bounded ad hoc MIFE for inner products under DDH, LWE or DCR, albeit with
the requirement that the sources maintain state across key issues. One nice fea-
ture of these schemes is that they work without the need for a CRS in the
semi-honest setting and upgrade to the malicious setting can be made just using
CRS. Please see Section 5 for details.

Our results are highlighted in Figure 1.

Related Work. In this section, we discuss the prior work in this area.

Functional Encryption. FE started with the notion of “attribute-based encryp-
tion” [58, 47] and evolved over time to a more general primitive that encompasses
several primitives such as (hierarchical) identity based encryption [18, 28, 21, 41,
24, 4], attribute based encryption [58, 47, 15, 32], predicate encryption [20, 44, 51,
52, 5, 59, 44] and reusable garbled circuits [43]. Formal definitions of the general
primitive were first given in [19, 55]. While there has been substantial progress
in constructing FE from standard assumptions [1, 7, 53], the general notion of
FE for arbitrary polynomial sized circuits was constructed in the breakthrough
work of [31] from indistinguishability obfuscation (iO) [12, 31, 53]. Functional en-
cryption for restricted functionalities such as inner products [1, 7], and quadratic
functions [53, 11] from more standard assumptions has also been developed.

Multi-Input Functional Encryption. Extending the more basic concept of func-
tional encryption (FE) [58, 19, 55], the notion of multi-input function encryption
(MIFE) was first introduced by Goldwasser et al. [42] and there have since been
a number of follow-up works. Ananth and Jain [8] show that private key MIFE
for general polynomial-arity functions implies iO. On the other hand, Braker-
ski, Komargodski and Segev [22] construct private-key MIFE for constant-arity
functions, based on a private-key single-input FE scheme. They achieve adaptive
security but also do not consider sender corruption. Badrinarayanan et al. [10]
construct MIFE schemes for “unbounded arity” functions. More recent work [3,
2] constructs inner-product MIFE.

Multi-Party Computation. Traditional MPC is interactive. Ad hoc MIFE can
be seen as a special form of non-interactive MPC [29, 13, 50]. In particular, ad
hoc MIFE separates inputs and functions, which affords greater flexibility —
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one can use the same encrypted inputs with different functions, or different
encrypted inputs with the same function. Moreover, previous non-interactive
MPC protocols require a global setup procedure. In a recent work, [48] constructs
non-interactive MPC from indistinguishability obfuscation and DDH, assuming
a PKI setup and a CRS, without this requirement. In contrast, our schemes are
based on standard MIFE for a given functionality and do not require a CRS in
general, as we do not necessarily consider sender corruption.

Multi-Authority Functional Encryption. Our work should also be compared to
that of Chandran et al. [25], who proposed a notion of “multi-authority” FE
(MAFE). In MAFE, key authorities independently generate their own keys.
Roughly speaking, to derive a decryption key for a function f , a user must
obtain a partial decryption key for f from each authority. In our context, we
could think of the authorities as sources. However, a fundamental difference be-
tween multi-authority FE and ad hoc MIFE is that in the former, to encrypt,
one needs to know the master public keys of all authorities (users). This is a
severe limitation, as a user may not be aware of which other parties are to be
involved in a computation at the time of encryption. Furthermore, in multi-
authority FE, a given ciphertext can only be used in a computation associated
with one fixed group, unlike ad hoc MIFE, where a ciphertext can be used in
an unbounded number of dynamically-chosen groups. Finally, in MAFE, decryp-
tion only operates on a single ciphertext, unlike our notion which is intrinsically
multi-user.

Decentralized Multi-Client Functional Encryption. Very recently, Chotard et al
[26] proposed the notion of decentralized multi-client functional encryption (D-
MCFE). While the motivation for the two works is similar in removing the
common key authority, our notion of adhoc MIFE is significantly more general
in that:

1. MCFE itself is more restricted than MIFE, since only CTs with the same
labels can be combined. In MIFE there is no such restriction. MIFE for
circuits captures MCFE for circuits (by checking for equal labels within the
MIFE functionality) but not vice versa.

2. Crucially, the setup algorithm in D-MCFE is a protocol that is run between
multiple senders, requiring interaction, whereas our setup algorithm is run
independently by each source and is thus non-interactive. Note that devel-
oping a non-interactive solution is one of the main motivations of this work.

3. The work of Chotard et al [26] only provides a construction for inner prod-
ucts. We provide a general construction as well as one for inner products.
Since our model is stronger, our inner product construction is significantly
more involved than theirs.

4. Decentralized MCFE lacks the dynamic aspect, which is one of the main
contributions of our work. We permit the function arity and participating
parties to be chosen dynamically – a feature no other construction supports
(to the best of our knowledge).
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Non-Interactive MPC. Another related notion is that of non-interactive MPC
(NI-MPC), where a group of asynchronous parties may evaluate a function over
their inputs by sending a single message to an evaluator who computes the
output [49]. While they appear superficially similar, we note that the model of
ad hoc MIFE is fundamentally different from NI-MPC since, unlike NI-MPC,
it separates inputs and functions, i.e. provides ciphertexts and function keys
which allows reusing an input/ciphertext with many different functions, and
a function with many different inputs. On the other hand, NI-MPC does not
support function reusability at all, and only a very restricted version of input re-
usability, namely where only ciphertexts in the same “session” may be combined.
The function arity in NI-MPC is also fixed, unlike ad hoc MIFE.

2 Preliminaries

In this section we define the notation and preliminaries used in our work.

2.1 Notation and Conventions

PPT stands for “probabilistic polynomial time” and PT stands for “polyno-
mial time.” Algorithms are PPT unless otherwise noted. Throughout, κ de-
notes the security parameter and 1κ its unary encoding. For a probabilistic
algorithm A, we denote by A(x; r) the output of A on input x with random
tape r. We denote y←$A(x) as the process of sampling r at random and letting
y ← A(x; r). For a finite set S, we denote x←$ S as the process of sampling
x uniformly from S. For a distribution D we denote x←$D as the process of
sampling x according to D. For k ∈ N we let [k] denote the set {1, · · · , k}.
If s is string then |s| denotes its length and s[i] denotes its i-th bit. If x is
a vector then |x| denotes its number of components and x[i] denotes its i-th
component. We will use negl(·) to denote an unspecified negligible function and
poly(·) to denote an unspecified polynomial. We say that (families of) distribu-
tions {D0,κ}κ∈N, {D1,κ}κ∈N are computationally indistinguishable if for all PPT
adversaries A, Pr [A(D0,κ) = 1 ] − Pr [A(D1,κ) = 1 ] = negl(κ). We write this
D0,κ ≈

C
D1,κ.

2.2 Two-Round MPC

A 2-round MPC protocol MPC for message-space {Mκ}κN and functionality
{Fκ}κ∈N where for each κ ∈ N each f ∈ Fκ is a function on (Mκ)n for some n,
consists of three algorithms with the following syntax:

– RunRoundOne(1κ, 1n, f, i, x): A PPT algorithm taking the security parame-
ter κ, number of users n, a (description of a) function f ∈ Fκ of arity n, an
index i ∈ [n], an input x ∈Mκ, and outputting a first protocol message ρ(1)

and secret s.



Ad Hoc Multi-Input Functional Encryption 13

– RunRoundTwo(s, (ρ
(1)
1 , . . . , ρ

(1)
n )): A PPT algorithm taking a secret s and the

first protocol message for all n parties ρ
(1)
1 , . . . , ρ

(1)
n , and outputting a second

protocol message ρ(2).
– ComputeResult: A PT algorithm taking as input the n second-round protocol

messages ρ
(2)
1 , . . . , ρ

(2)
n for each party and outputting a value y.

Correctness. We say that MPC is correct if for all κ, n,∈ N, x1 . . .xn ∈Mκ and
f ∈ Fκ

Pr

y = f(x)

∣∣∣∣∣∣∣∣
(ρ

(1)
i , si)←$ RunRoundOne(1κ, 1n, f, i,xi) ∀i ∈ [n]

ρ
(2)
i ←$ RunRoundTwo(si, (ρ

(1)
1 , . . . , ρ

(1)
n )) ∀i ∈ [n]

y ← ComputeResult(ρ
(2)
1 , . . . , ρ

(2)
n )

 = 1 .

Remark 1. The above definition of two-round MPC is without setup (i.e., a
CRS). We also consider the case that there is an additional algorithm CRSGen
taking 1κ and outputting a common reference string CRS that is input to the
remaining algorithms. We call this two-round MPC in the CRS model.

We say that MPC is unbounded if the output of RunRoundOne does not de-
pend on n. In this case, we input n to RunRoundTwo instead of RunRoundOne. We
call MPC input-delayed (resp. function-delayed) if the output of RunRoundOne
does not depend on x (resp. f) but just on 1|x| (resp. 1|f |). In this case, we
input x (resp. f) to RunRoundTwo instead of RunRoundOne. We call MPC
input-rerunnable (resp. function-rerunnable) if it is input-delayed (resp. function-
delayed) and if RunRoundTwo can be executed multiple times with different input
choices (resp. function choices) while still preserving the security properties of
the MPC protocol (see below).

Security. Let MPC be a 2-round MPC protocol as above. Let Coins be the coin-
space for the protocol. For an adversary A = (A0,A1) and simulator S, consider
the experiments in Figure 2. We say that A is passive (aka. semi-honest) of
I = ∅. We say that MPC is SIM-secure if for any PPT adversary A there is a
stateful PPT simulator S = ( ˜CRSGen, Ẽxtract, S̃im) such that REALMPC

A (·) and
IDEALMPC

A,S (·) are computationally indistinguishable. Note that simulation of
the first-round protocol messages for the honest parties are independent of the
inputs, so for convenience and ease of presentation we will partition the algorithm
S̃im into two algorithms: S̃im1 and S̃im2, defined as follows:

– S̃im1() 7→ (ρ
(1)
i )i/∈I : Outputs the first-round protocol messages for the honest

parties.
– S̃im2((xi)i∈I , y) 7→ (ρ

(2)
i )i/∈I : On input the inputs of the corrupted parties

along with the target output value of the protocol, S̃im2 outputs the second-
round protocol messages for the honest parties.

Remark 2. We note that by representing the circuit f as an input to the universal
circuit U so that f(x) = U(f, x), we may also hide the circuit f in the above
definition. This will be useful for some of our proofs.
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Experiment REALMPC
A (1κ)

(Optional) crs←$ CRSGen(1κ)
(1n, I, f, (xi)i/∈I)←$A0(1κ)

// f ∈ Fκ of arity n, xi ∈Mκ

((ρ
(1)
i )i∈I , st)←$A1(n, I, f)

For i /∈ I do:
ri←$ Coins(1κ)

(ρ
(1)
i , si)
←$ RunRoundOne(1κ, 1n, f, i, xi; ri)

For i /∈ I do:

ρ
(2)
i

←$ RunRoundTwo(si, (ρ
(1)
1 , . . . , ρ

(1)
n ); ri)

α←$A2(st, (ρ
(1)
i , ρ

(2)
i )i/∈I)

Return α

Experiment IDEALMPC
A,S (1κ)

(Optional) crs←$ ˜CRSGen(1κ)
(1n, I, f, (xi)i/∈I)←$A0(1κ)

// f ∈ Fκ of arity n, xi ∈Mκ

((ρ
(1)
i )i∈I , st)←$A1(n, I, f)

xi ← Ẽxtract(ρ
(1)
i ) ∀i ∈ I

(ρ
(1)
i , ρ

(2)
i )i/∈I

←$ S̃im((xi)i∈I , f(x1, . . . , xn))

α←$A2(st, (ρ
(1)
i , ρ

(2)
i )i/∈I)

Return α

Fig. 2. Experiments for SIM-security of two-round MPC.

Input/Function-Rerunnability. For simplicity, the definition in Figure 2 does
not capture input/function-rerunnability. It is straightforward to see how the
definition can be extended. For example in the case of function-rerunnability
(the situation is analogous for input-rerunnability where inputs and functions
are swapped), the changes to the definition are (1) A0 outputs a set of functions
{fi} instead of a single function, (2) in the real experiment RunRoundTwo is
executed for each function, (3) in the ideal experiement S̃im2 is called for each
function, and (4) the complete set of second-round protocol messages for all
functions is given to A2.

Input Extractability. Our results in this work rely on the simulator’s ability to
extract the inputs of the corrupted parties, hence the need for the Ẽxtract algo-
rithm. In the semi-honest setting, extraction is not necessary. In the malicious
case, both known constructions of two-round MPC [31, 54] for general functions
satisfy the above extractability property, albeit in the CRS model.

2.3 Prefix Punctured Pseudorandom Functions

A PRF F is specified by two algorithms:

– PRF.Setup(1κ) : The setup algorithm takes as input the security parameter
and outputs a description of the key space Kκ, domain X , range Y as well
as the PRF key K.

– PRF.Eval(K,x) : The eval algorithm takes a key K ∈ Kκ and domain point
x ∈ Xκ and outputs a range point y ∈ Yκ.
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We require that for all adversaries A

Pr
[
APRF.Eval(K,·) outputs 1

]
− Pr

[
A$(·) outputs 1

]
is negligible in κ, where K ← PRF.Setup(1κ) and $(·) denotes a random function
from Xκ to Yκ.

A prefix punctureable PRF additionally includes an algorithm PRF.Punc
which takes as input a PRF key K and a prefix x∗ ∈ X and outputs a punctured
key Kx∗ . For correctness, we require that PRF.Eval(Kx∗ , x) = PRF.Eval(K,x)
for all points x that do not have x∗ as a prefix and ⊥ when x has x∗ as a prefix,
i.e. when x = (x∗|y) for some y.

Security of prefix punctured PRF: The security game between the challenger and
the adversary A consists of the following four phases.

Setup Phase: The challenger samples a PRF key K and a random bit b.

Evaluation Query Phase: The adversary A queries for polynomially many
evaluations. For each evaluation query x, the challenger sends F(K,x) to A.

Constrained Key Query Phase: A chooses a challenge prefix x∗ and the
challenger computes Kx∗ ← PRF.Punc(K,x∗) and returns it.

Challenge Phase: A chooses a point x which has x∗ as a prefix and sends it
to the challenger. The challenger chooses a random bit b. If b = 0, it outputs
F(K,x). Else, the challenger outputs y←$ Y chosen uniformly at random.

Guess: The adversary A outputs a guess b′ of b.

The adversary A wins if b′ = b and the adversary did not query for evaluation
on any points with prefix x∗. The advantage of A is defined to be

AdvFA(1κ) = |Pr[A wins]− 1/2|

The PRF F is a secure puncturable PRF if for all probabilistic polynomial
time adversaries A, we have that AdvFA(1κ) is negligible in κ.

2.4 Multi-Input Functional Encryption

An n-input FE scheme [42] MIFE for a message space {Mκ}κ∈N and a function-
ality {Fκ}κ∈N, where for each κ ∈ N, each f ∈ Fκ is a (description of a) function
on (Mκ)n, is given by a set of algorithms with the following syntax:

– MIFE.Setup(1κ, 1n): A PPT algorithm taking the security parameter κ and
number of users n, and outputting the master secret key MSK and encryption
keys (EK1, . . . ,EKn).

– MIFE.KeyGen(MSK, f): A PT algorithm taking a master secret key MSK, a
function f ∈ Fκ and outputting a corresponding decryption key DKf .

– MIFE.Enc(EK,x): A PPT algorithm taking an encryption key EK and a mes-
sage x ∈Mκ, and outputting a ciphertext c.

– MIFE.Dec(DKf , (c1, . . . , cn)): A PT algorithm taking decryption key DKf
and vector of ciphertexts (c1, . . . , cn), and outputting a string y.
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Correctness We say that MIFE is correct if for all κ,∈ N, x1 . . .xn ∈ Mκ and
f ∈ Fκ

Pr

y = f(x1, · · · ,xn)

∣∣∣∣∣∣∣
((EK1, . . . ,EKn),MSK)←$ MIFE.Setup(1κ)
ci←$ MIFE.Enc(EKi,xi) ∀i ∈ [n]
DKf ←$ MIFE.KeyGen(MSK, f)
y ← MIFE.Dec(DKf , (c1, . . . , cn))

 = 1 .

Remark 3. We remark that our formulation of MIFE assumes that the senders
(as in our application an encryptor is referred to as a sender or source) are
ordered. This allows for consistency with our formulation of ad hoc MIFE and
allows us to simplify exposition versus [42].

Indistinguishability-Based Security. For an n-input FE scheme MIFE as above
and adversary A = (A0,A1,A2), consider the experiment in Figure 3.

Experiment INDMIFE
A (1κ)

(I, st)←$A0(1κ)
b←$ {0, 1}
((EK1, . . . ,EKn),MSK)
←$ MIFE.Setup(1κ)

st←$AOenc(·,·,·),Okg(·)
1 (st)

b′←$AOenc(·,·,·),Okg(·)
2 ((EKi)i∈I , st)

Return (b = b′)

Oracle Oenc(i,x0,x1)
If x0,x1 ∈Mκ and |x0| = |x1|
cb←$ MIFE.Enc(EKi,xb)
Return cb

Else Return ⊥

Oracle Okg(f)
If f ∈ Fκ

DKf ←$ MIFE.KeyGen(MSK, f)
Return DKf

Else return ⊥

Fig. 3. Experiment for IND-security of standard MIFE.

We call A legitimate if for all κ ∈ N, in all transcripts INDMIFE
A (1κ) it

holds that for every key generation query f there does not exist two sequences
(y1,0, · · · , yn,0) and (y1,1, · · · , yn,1) such that

f(y1,0, · · · , yn,0) 6= f(y1,1, · · · , yn,1)

and for every j ∈ [n]

– j ∈ I, i.e. j is corrupted (so there is no restriction on yj,0, yj,1 above), or
– there is an encryption query (j,x0,x1) such that yj,0 = x0 and yj,1 = x1.

We assume adversaries are legitimate unless otherwise stated. We call A passive
if I = ∅. We call A selective if A2 makes no queries. We say that MIFE is
IND-secure if for any adversary A

|Pr
[

INDMIFE
A (·) outputs 1

]
− 1/2| = negl(·) .
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2.5 Function-Private Functional Encryption

A functional encryption scheme, denoted as FE [19], is a tuple of algorithms
FE = (FE.Setup,FE.KeyGen,FE.Enc,FE.Dec) for a message space {Mκ}κ∈N and
a functionality {Fκ}κ∈N, where for each κ ∈ N, each f ∈ Fκ is a (description of
a) function onMκ. The syntax is the same as for a 1-input MIFE scheme where
EK1 = MSK and I = ∅. The correctness requirement remains the same, as well
the notion of indistinguishability based security (which we refer to as “message
privacy”).

Function Privacy. We additionally define the notion of function privacy as fol-
lows. For an FE scheme FE as above and adversary A = (A0,A1,A2), consider
the experiment in Figure 4.

Experiment FPFE
A (1κ)

b←$ {0, 1}
MSK←$ FE.Setup(1κ)

b′←$AOenc(·),Okg(·,·)
2 (1κ)

Return (b = b′)

Oracle Oenc(x)
If x ∈Mκ

c←$ MIFE.Enc(MSK,x)
Return c

Else Return ⊥

Oracle Okg(f0, f1)
If f0, f1 ∈ Fκ

DKfb ←$ MIFE.KeyGen(MSK, fb)
Return DKfb

Else return ⊥

Fig. 4. Experiment for FP-security of FE.

We call A legitimate if for all κ ∈ N, in all transcripts FPFE
A (1κ) it holds that

for every key generation query f0, f1 there does not exist an encryption query
x ∈Mκ such that

f0(x) 6= f1(x) .

We assume adversaries are legitimate unless otherwise stated. We say that FE is
FP-secure if for any adversary A

|Pr
[

FPFE
A (·) outputs 1

]
− 1/2| = negl(·) .

3 Ad hoc Multi-Input Functional Encryption

We are now ready to define our new notion of ad hoc multi-input functional
encryption (MIFE). For simplicity, we define ad hoc MIFE in the private-key
setting only. We leave the study of ad hoc MIFE in the public-key setting for
future work.
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3.1 Syntax and Correctness

An ad hoc multi-input functional encryption scheme aMIFE for a message space
{Mκ}κ∈N and a functionality {Fκ}κ∈N, where for each κ ∈ N, each f ∈ Fκ is
a (description of a) function on (Mκ)` for some ` (which may depend on f), is
given by a set of algorithms with the following syntax:

– aMIFE.Setup(1κ): A PPT algorithm taking the security parameter κ, and
outputting the master secret key MSK and the public parameters PP.

– aMIFE.KeyGen(i,MSKi, (PP1, · · · ,PP`), f): A PT algorithm taking an index
i ∈ [`], a master secret key MSKi corresponding to PPi, a set of public
parameters PP1, · · · ,PP`, a function f ∈ Fκ of arity `, and outputting a
corresponding partial decryption key PDKi,f .

– aMIFE.Enc(MSK,x): A PPT algorithm taking a master secret key MSK and
a message x ∈Mκ, and outputting a ciphertext c.

– aMIFE.Dec((PDK1,f , . . . ,PDK`,f ), (c1, . . . , c`)): A PT algorithm taking par-
tial decryption keys (PDK1,f , . . . ,PDK`,f ) and ciphertexts (c1, . . . , c`), and
outputting a string y.

Definition 4 (Correctness). We say that aMIFE is correct if for all κ ∈ N
and ` = poly(κ), all x1 . . .x` ∈Mκ and all f ∈ Fκ of arity `

Pr

y = f(x1, · · · ,x`)

∣∣∣∣∣∣∣∣
(PPi,MSKi)←$ aMIFE.Setup(1κ) (∀i ∈ [`])
ci←$ aMIFE.Enc(MSKi,xi)
PDKi,f ←$ aMIFE.KeyGen(i,MSKi, (PPi)i∈[`], f)
y ← aMIFE.Dec((PDKi,f )i∈[`], (ci)i∈[`])

 = 1 .

Remark 5. We highlight two ways that ad hoc MIFE differs from standard
MIFE [42]. First, the aMIFE.Setup algorithm is run per user and does not output
all of the MSK1, . . .MSKn at once. Second, the total number of users n and the
function arity ` are not fixed and input to the aMIFE.Setup algorithm. We also
note that for simplicity in our formulation of ad hoc MIFE the public parameters
of the parties input to the key generation algorithm are ordered.

Remark 6. We can allow an additional algorithm CRSGen taking 1κ and out-
putting a common reference string CRS that is input to the remaining algo-
rithms. We refer to this as ad hoc MIFE in the CRS model. The CRS model is
weaker than having a key generation authority who can decrypt all the data.

3.2 Indistinguishability-Based Security

We first present an indistinguishability-based security notion. We note that the
fact that the public parameters of the parties input to the key generation algo-
rithm are ordered allows us to work with a somewhat simpler definition than
the corresponding one in [42] for the standard MIFE case.

For an ad hoc MIFE scheme aMIFE as above and adversaryA = (A0,A1,A2),
consider the experiment in Figure 5.
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Experiment INDaMIFE
A (1κ)

(1n, I, (PPi)i∈I , st)←$A0(1κ)
b←$ {0, 1}
For all i /∈ I do:

(MSKi,PPi)←$ aMIFE.Setup(1κ)

st←$AOenc(·,·,·),Okg(·,·,·)
1 (st)

b′←$AOenc(·,·,·),Okg(·,·,·)
2 ((PPi)i/∈I , st)

Return (b = b′)

Oracle Oenc(i,x0,x1)
If x0,x1 ∈Mκ and |x0| = |x1|
cb←$ aMIFE.Enc(MSKi,xb)
Return cb

Else Return ⊥

Oracle Okg(i, (i1, . . . , i`), f)
If i ∈ {i1, · · · , i`}
and f ∈ Fκ of arity `

PDKi,f ←
aMIFE.KeyGen(i,MSKi, (PPij ), f)

Return PDKi,f
Else return ⊥

Fig. 5. Experiment for IND-security of ad hoc MIFE.

We say that f ∈ Fκ is queried if for every user associated with its input
wires, either the user is corrupt, or has submitted it’s partial decryption key to
the adversary. Formally, for every k ∈ ` where ` is the arity of f either ik ∈ I,
i.e. user corresponding to ik is corrupted or there is a key-generation query
(ik, (PPi1 , · · · ,PPi`), f).

We call A legitimate if for all κ ∈ N, in all transcripts INDaMIFE
A (1κ) it holds

that for every queried f ∈ Fκ, there do not exist two sequences (yi1,0, · · · , yi`,0)
and (yi1,1, · · · , yi`,1) such that

f(yi1,0, · · · , yi`,0) 6= f(yi1,1, · · · , yi`,1)

and for every j ∈ {i1, · · · , i`}

– There is an encryption query (j,x0,x1) such that yj,0 = x0 and yj,1 = x1,
or

– j ∈ I, i.e. j is corrupted (so there is no restriction on yj,0, yj,1 above)

We assume adversaries are legitimate unless otherwise stated. We call A
passive if I = ∅. We call A selective if A2 makes no queries. We say that aMIFE
is IND-secure if for any adversary A

|Pr
[

INDaMIFE
A (·) outputs 1

]
− 1/2| = negl(·) .

4 Ad Hoc Multi Input Functional Encryption for General
Functionalities

We show how to construct of ad hoc MIFE for any polynomial sized circuit from
standard MIFE for the same functionality and a two-round MPC protocol.
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Building Blocks. Our scheme will be using the following building blocks:

– A MIFE scheme

MIFE = (MIFE.Setup,MIFE.KeyGen,MIFE.Enc,MIFE.Dec)

for some message-space {Mκ}κ∈N and functionality {Fκ}κ∈N. For simplicity,
we assume MIFE.KeyGen is deterministic; note that this is without loss of
generality since it can be made so by using a PRF.

– A two-round two-round MPC protocol

MPC = (MPC.RunRoundOne,MPC.RoundRoundTwo,MPC.ComputeResult)

for programs of the form GenKeysf in Figure 6 for f ∈ Fκ. We assume MPC
is function-rerunnable, unbounded and without setup (we discuss the other
cases below).

– A PRF F and a prefix punctured PRF puncF. We leave the domain and
ranges implicit for readability, taking the output to be sufficiently long.

– A private-key single input functional encryption scheme

FE = (FE.Setup,FE.KeyGen,FE.Enc,FE.Dec)

{Kκ}κ∈N,

4.1 Construction

Below we provide our construction for adhoc MIFE for general circuits. Note that
setup, encryption and key generation are done independently and in parallel by
all the parties in the system. Also note that there is no interaction between
different parties in the system.

aMIFE.Setup(1κ): Upon input the security parameter, do the following:

1. Sample the seed of PRF K←$ PRF.Setup(1κ) and the seed of a punc-
turable PRF Kpunc←$ PRF.Setup(1κ). Puncturing will only be required
in the proof.

2. Invoke the single input FE scheme, (PPFE,MSKFE)←$ FE.Setup(1κ).
3. Invoke the first round of the MPC protocol

(ρ(1), s)←$ MPC.RunRoundOne(1κ, (K,MSKFE))

Note that the function is specified later.
4. Return (PP = ρ(1),MSK = (K,Kpunc,MSKFE, s)).

aMIFE.KeyGen((PPi)i∈[`], f,MSK): Upon input the public parameters of the `
parties that are chosen to participate in the computation, and the master
secret key, do the following:
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1. Parse the public parameters of each party as the first message in an MPC

protocol, i.e. ρ
(1)
i ← PPi ∀i ∈ [`].

2. Parse the master secret key as (K,Kpunc,MSKFE, s)← MSK
3. Run round two of the MPC protocol using round 1 messages as input,

for the functionality GenKeys described in Figure 6:

ρ(2)←$ MPC.RunRoundTwo(s,GenKeys(PPi)i∈[`],f
, (ρ

(1)
i )i∈[`])

4. Compute the mask s← PRF.Eval(K, 0 ‖ (PPi)i∈[`] ‖ f)

5. Return (ρ(2), s).

aMIFE.Enc(MSK,x): Upon input the master secret key and the message x, do
the following:
1. Parse the master secret key as (K,Kpunc,MSKFE, s)← MSK.
2. Sample the tag T ←$ {0, 1}κ.
3. Initialize the data structure Trap defined in Figure 8 by setting mode-real =

1 and all other fields as ⊥. This indicates that we are in the real system.
The remaining fields are only relevant in the proof.

4. Compute the ciphertext c←$ FE.Enc(MSKFE, (x, T,K
punc,Trap)).

5. Return c.

aMIFE.Dec((PDKi,f )i∈[`], (ci)i∈[`]): Upon input the partial decryption keys from
all relevant parties, as well as ciphertexts from all relevant parties, do the
following:

1. Parse (ρ
(2)
i , si)← PDKi,f ∀i ∈ [`]

2. Compute the output of the MPC protocol as Z ← MPC.ComputeResult((ρ
(2)
i )i∈[`])

3. Unmask the output using partial shares provided by all parties. In more
detail, compute S ←

⊕
i∈[`] si ; Z ← Z⊕S.

4. Parse the output of the MPC computation as (SKf ,SKFE1 , . . . ,SKFE`
)←

Z.
5. Perform decryption of the single input FE scheme to obtain MIFE ci-

phertexts ψi ← FE.Dec(SKFEi
, ci) ∀i ∈ [`].

6. Perform decryption of the MIFE scheme to obtain the output y ←
MIFE.Dec(SKf , ψ1, . . . , ψ`).

7. Return y.

Correctness. Correctness follows from the correctness of MPC, MIFE and FE.
In more detail, we have:

1. Step 1: MPC: By correctness of MPC, we have that the decryptor recovers
the output S⊕(SKf ,SKFE1

, . . . ,SKFE`
). Next, if each party i ∈ [`] provides

a partial decryption key for f , then this contains partial mask si as part
of the output of aMIFE.KeyGen. Using these, the decryptor can compute
S ←

⊕
i∈[`] si and recover (SKf ,SKFE1

, . . . ,SKFE`
).
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Function GenKeys(PPi)i∈[`],f
((K1,MSKFE1), . . . , (K`,MSKFE`))

1. For i ∈ [`], compute randomness to be used for algorithms below:

ri ← PRF.Eval(Ki, 1 ‖ (PPi)i∈[`] ‖ f), r′i ← PRF.Eval(Ki, 2 ‖ (PPi)i∈[`] ‖ f)

2. Run the MIFE setup algorithm for the desired arity as:

((EK1, . . . ,EK`),MSK)← MIFE.Setup(1κ; r1 ⊕ · · · ⊕ r`)

3. For i ∈ [`], generate the single input FE function key:

SKFEi ← FE.KeyGen(MSKFEi ,ReEncEKi,⊥; r′i)

4. Compute the MIFE secret key as SKf ← MIFE.KeyGen(MSK, f)
5. Sample the mask si for each partial key and compute the mask S as:

∀i ∈ [`], si ← PRF.Eval(Ki, 0 ‖ (PPi)i∈[`] ‖ f), S ←
⊕
i∈[`]

si

6. Return the masked output S⊕(SKf , SKFE1 , . . . , SKFE`)

Fig. 6. Functionality computed by the MPC protocol to generate single and multi
input FE keys.

Function ReEncEK,ctr(x, T,K,Trap)

1. Let r ← PRF.Eval(K, 0 ‖ EK ‖ T ).
2. If mode = Real then compute MIFE.Enc(EK,x; r) and return it.
3. If mode = Trap and ctr < Trap.index then compute MIFE.Enc(EK,Trap.val1; r) and

return it.
4. If mode = Trap and ctr > Trap.index then compute MIFE.Enc(EK,Trap.val0; r) and

return it.
5. If mode = Trap and ctr = Trap.index then output Trap.CT.

Fig. 7. Functionality for translating the ciphertext from FE to MIFE using dynamically
generated encryption keys

2. Step 2: FE: Next, by correctness of FE, we have that if

ψi = FE.Dec(SKFEi
, ci) ∀i ∈ [`]

Then, ψi are the MIFE ciphertexts computed as MIFE.Enc(EKi,xi; ri).

3. Step 3:MIFE: Finally, by correctness of MIFE, we have that

f(x1, . . . ,x`) = MIFE.Dec(SKf , ψ1, . . . , ψ`)
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4.2 Security Proof

In this section, we argue that the scheme described above is secure. In more
detail:

Theorem 7. Assume that:

1. MPC is a 2-round MPC protocol satisfying SIM security as defined in Section
2.2.

2. MIFE satisfies selective security as defined in Section 2.4.
3. FE is a single key FE scheme satisfying selective security with function pri-

vacy, as defined in Section 2.5.
4. puncF is a prefix punctured PRF satisfying security defined in Section 2.3.
5. F is a secure PRF.

Then our construction satisfies selective security as defined in Section 3.2.

Proof. The proof of security makes use of a trapdoor data structure which is
defined in Figure 8.

The trapdoor data structure. Here, mode is used to indicate whether we are in
the real mode Real or trapdoor mode Trap. CT indicates the hardwired MIFE
CT which must be output if the field index equals the counter ctr set in the FE
key. The fields val0 and val1 are used to indicate the values corresponding to bit
0 and bit 1 respectively, where the latter is used when index > ctr and the former
when index < ctr.

mode CT index val0 val1

Fig. 8. Data Structure Trap used for Proof

The Hybrids. We prove the theorem via a hybrid argument. We describe our
hybrids below.

Hybrid 0: This is the real game in which on every encryption query (i,x0,x1),
x0 is encrypted.

Suppose there are Qc encryption queries (made selectively). For each k ∈
[Qc], let i be the party index queried, x0 and x1 the challenge plaintexts, let T
be the tag used during encryption and I be the set of users corrupted by the
adversary. We use these definitions in the remainder of the proof.

Hybrid 1: The change in this hybrid is twofold.

1. Simulate the Public Parameters. We set the first-round protocol mes-

sage ρ
(1)
i for MPC in the public parameters to the output of the simulator

S̃im1 for each uncorrupted user i /∈ I.
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2. Simulate the Function Key. For each key generation query (i, (i1, . . . , i`), f),
we do the following.

(a) Let J , I ∩ {i1, . . . , i`} be the subset of corrupted users and J̄ =
{i1, . . . , i`} \ J be the subset of honest users.

(b) We use the simulator’s Ẽxtract algorithm to compute xj ← Ẽxtract(ρ
(1)
j )

for each corrupted party j ∈ J where PPj = ρ
(1)
j , then compute y =

GenKeysf (xi1 , . . . ,xi`) where xj for j ∈ J̄ is (honest) party j’s input to
the MPC protocol.

(c) Compute (ρ
(2)
j )j∈J̄ ← S̃im2((xj)j∈J , y) and s← PRF.Eval(Ki, 0 ‖ (PPij )j∈[`]‖f).

Return (ρ
(2)
i , s).

See Figure 9 for a formal description.

Indistinguishability of the hybrids follows from the SIM-security of the MPC
protocol. As we see in Figure 9, the only difference from Hybrid 0 is that the

inputs of the corrupt parties are extracted using the Ẽxtract algorithm and the
protocol transcript is generated using the MPC simulator. Hence, an adversary
who distinguishes between Hybrids 0 and 1 implies an adversary against the
MPC protocol by a standard reduction.

Hybrid 1:
(1n, I, (PPi)i∈I , st)←$A0(1κ)
b←$ {0, 1}
∀i /∈ I:
(PPFEi ,MSKFEi)←$ FE.Setup(1κ)
Ki←$Kκ
Kpunc
i ←$Kκ

(ρ
(1)
i )i/∈I ←$ S̃im1()

PPi ← ρ
(1)
i

st←$AOenc(·,·,·),Okg(·,·,·)
1 (st)

b′←$AOenc(·,·,·),Okg(·,·,·)
2 ((PPi)i/∈I , st)

Return (b = b′)

Oracle Oenc(i,x0,x1)
T ←$ {0, 1}κ
Return FE.Enc(MSKFEi , (x0, T,K

punc
i ,Trap))

Oracle Okg(i, (i1, . . . , i`), f)
J ← I ∩ {i1, . . . , i`}; J̄ ← {i1, . . . , i`} \ J
(Kj ,MSKFEj )← Ẽxtract(ρ

(1)
j ) ∀j ∈ J

y ← GenKeysf ((Ki1 ,MSKFEi1
), . . . , (Ki` ,MSKFEi`

)

(ρ
(2)
j )j∈J̄ ←$ S̃im2(Kj ,MSKFEj )j∈J , y)

s← PRF.Eval(Ki, 0 ‖ (PPij )j∈[`] ‖ f)

Return (ρ
(2)
i , s).

Fig. 9. Hybrid 1

Hybrid 2: In this hybrid, we replace the outputs of the PRF on key Ki for the
honest users i with uniformly random strings in the function GenKeys described
in Figure 6. For every key query pertaining to parties (i1, . . . , i`) and function
f and every honest party i, we replace PRF.Eval(Ki, k ‖ (PPij )j∈[`] ‖ f) for
k ∈ {0, 1, 2} as in Hybrid 1 with a fresh uniformly random string. The changes
are formally described in Figure 10 wherein the algorithm R is used to generate
random strings and keep track of those previously generated.
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Indistinguishability of Hybrid 1 and Hybrid 2 follows from the security of
the PRF. More precisely, a standard argument iterates through sub-hybrids for
each honest party, replacing the PRF outputs with uniformly random strings.

Hybrid 2:
(1n, I, (PPi)i∈I , st)←$A0(1κ)
b←$ {0, 1}
∀i /∈ I:
(PPFEi ,MSKFEi)←$ FE.Setup(1κ)

((((((
Ki←$Kκ
Kpunc
i ←$Kκ

Γ ← ∅
(ρ

(1)
i )i/∈I ←$ S̃im1()

PPi ← ρ
(1)
i

st←$AOenc(·,·,·),Okg(·,·,·)
1 (st)

b′←$AOenc(·,·,·),Okg(·,·,·)
2 ((PPi)i/∈I , st)

Return (b = b′)

Oracle Oenc(i,x0,x1)
T ←$ {0, 1}κ
Return FE.Enc(MSKFEi , (x0, T,K

punc
i ,Trap))

Oracle Okg(i, (i1, . . . , i`), f)
J ← I ∩ {i1, . . . , i`}; J̄ ← {i1, . . . , i`} \ J
(Kj ,MSKFEj )← Ẽxtract(ρ

(1)
j ) ∀j ∈ J

(γ
(0)
j , γ

(1)
j , γ

(2)
j )←$RΓ (j, (i1, . . . , i`), f) ∀j ∈ J̄

∀m ∈ {0, 1, 2}, j ∈ J :

γ
(m)
j ← PRF.Eval(Kj ,m ‖ (PPik )k∈[`] ‖ f)

S ←
⊕

j∈J∪J̄ γ
(0)
j

y ← S ⊕ GenKeys′({(rk, r′l,MSKFEk )}k∈[`])

(ρ
(2)
j )j∈J̄ ←$ S̃im2(Kj ,MSKFEj )j∈J , y)

Return (ρ
(2)
i , s := γ

(0)
i )

Algorithm GenKeys′({(rk, r′l,MSKFEk )}k∈[`])
({EKk}k∈[`],MSK)← MIFE.Setup(1κ; ⊕

k∈[`]
rk)

SKf ← MIFE.KeyGen(MSK, f)
∀i ∈ [`]:
SKFEi ← FE.KeyGen(MSKFEi ,ReEncEKi,⊥; r′i)
Return (SKf , SKFE1 , . . . , SKFE`)

Algorithm RΓ (i, (i1, . . . , i`, f)

If (i, (i1, . . . , i`), f, γ
(0), γ(1), γ(2)) ∈ Γ

Return (γ(0), γ(1), γ(2))
Else

γ(j)←$ {0, 1}rp ∀j ∈ {0, 1, 2}
// where rp is the range of the PRF

Γ ← Γ ∪ {(i, (i1, . . . , i`), f, γ(0), γ(1), γ(2))}
Return (γ(0), γ(1), γ(2))

Fig. 10. Hybrid 2

Hybrid 3: In this hybrid, we change how y (the target output passed to S̃im2) is
generated in each query ((i1, . . . , i`), f). In this hybrid, y is randomly sampled.
Furthermore for a pair ((i1, . . . , i`), f) that is fully queried i.e. a partial decryp-
tion query (i, (i1, . . . , i`), f) is made for each i ∈ {i1, . . . , i`} \ I, the final partial
decryption key that is issued has its masking value, i.e. the second component
of the partial decryption key, generated differently. It is generated as

s← y ⊕ S1 ⊕ S2 ⊕ GenKeys′′((r′1,MSKFE1
), . . . , (r′`,MSKFE`

))

Here S1 and S2 are computed so as to satisfy requisite dependencies. Figure 11
captures these changes formally.
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Hybrid 3:
(1n, I, (PPi)i∈I , st)←$A0(1κ)
b←$ {0, 1}
∀i /∈ I:
Kpunc
i ←$Kκ

(PPFEi ,MSKFEi)←$ FE.Setup(1κ)
Γ ← ∅
Y ← ∅
Q← ∅
(ρ

(1)
i )i/∈I ←$ S̃im1()

PPi ← ρ
(1)
i ∀i /∈ I

st←$AOenc(·,·,·),Okg(·,·,·)
1 (st)

b′←$AOenc(·,·,·),Okg(·,·,·)
2 ((PPi)i/∈I , st)

Return (b = b′)

Algorithm GenKeys′′f ({(r′k,MSKFEk )}k∈[`]

((EK1, . . . ,EK`),MSK)← MIFE.Setup(1κ)
SKf ← MIFE.KeyGen(MSK, f)
∀i ∈ [`], do:
SKFEi ← FE.KeyGen(MSKFEi ,ReEncEKi,⊥; r′i)
Return (SKf , SKFE1 , . . . , SKFE`)

Oracle Oenc(i,x0,x1)
T ←$ {0, 1}κ
Return FE.Enc(MSKFEi , (x0, T,K

punc
i ,Trap))

Oracle Okg(i, (i1, . . . , i`), f)
J ← I ∩ {i1, . . . , i`}; J̄ ← {i1, . . . , i`} \ J
(αj , rj ,Kj)← Ẽxtract(ρ

(1)
j ) ∀j ∈ J

y←$RY ((i1, . . . , i`), f)
If ((i1, . . . , i`), f, J̄

′) /∈ Q
J̄ ′ ← ∅

J̄ ′ ← J̄ ′ ∪ {i}
Q← Q ∪ ((i1, . . . , i`), f, J̄

′)

(ρ
(2)
j )j∈J̄ ←$ S̃im2((αj , rj ,Kj)j∈J , y)

∀j ∈ J̄ :

(γ
(0)
j , γ

(1)
j , γ

(2)
j )←$RΓ (j, (i1, . . . , i`), f)

∀m ∈ {0, 1, 2}, j ∈ J ,

γ
(m)
j ← PRF.Eval(Kj ,m ‖ (PPik )k∈[`] ‖ f)

If J̄ ′ = J̄ // if fully queried

S1←$
⊕

j∈J̄,j 6=i γ
(0)
j

S2←$
⊕

j∈J γ
(0)
j

s← y ⊕ S1 ⊕ S2⊕
GenKeys′′({(γ(2)

ik
,MSKFEik

)}k∈[`])

Else

s← γ
(0)
i

Return (ρ
(2)
i , s)

Algorithm RΓ (i, (i1, . . . , i`, f)

If (i, (i1, . . . , i`), f, γ
(0), γ(1), γ(2)) ∈ Γ

Return (γ(0), γ(1), γ(2))
Else

γ(j)←$ {0, 1}rp ∀j ∈ {0, 1, 2}
// where rp is the range of the PRF

Γ ← Γ ∪ {(i, (i1, . . . , i`), f, γ(0), γ(1), γ(2))}
Return (γ(0), γ(1), γ(2))

Algorithm RY ((i1, . . . , i`, f)
If ((i1, . . . , i`), f, y) ∈ Y

Return y
Else
y←$ {0, 1}rp
Y ← Y ∪ {((i1, . . . , i`), f, y)}
Return y

Fig. 11. Hybrid 3

Hybrid 2 and Hybrid 3 are distributed identically. First, y is distributed
uniformly in both hybrids for all group-function pairs ((i1, . . . , i`), f) that are
not fully queried. In the case of a group-function pair ((i1, . . . , i`), f) that is fully

queried, each partial decryption key (ρ
(2)
i , si) for i ∈ {i1, . . . , i`} is such that

y ⊕
⊕
i∈[`]

si = GenKeys′′((r′1,MSKFE1), . . . , (r′`,MSKFE`
))
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This is distributed the same as the output of GenKeys′ in the previous hybrid.
Hence the y values are distributed identically in both hybrids.

Hybrid 4: Let Qk be the number of subset-function pairs that are fully queried.
In this hybrid, the key generation algorithm keeps track of the query number
ctr ∈ [Qk] in the ad hoc MIFE function keys. In more detail, the algorithm
GenKeys′′ invoked for query index j for all j ∈ [Qk] is modified to invoke ReEnc
with parameter ctr = j (please refer to Figure 7) instead of ⊥.

Claim. Assume that FE satisfies function hiding selective security. Then, hybrids
3 and 4 are indistinguishable.

Proof. Note that since mode = Real in all the FE ciphertexts, changing the ctr
value in the FE key has no effect on the decryption value obtained, since this
field is only relevant in the trapdoor mode, i.e. when mode = Trap. Hence, the
decryption values for both keys remain exactly the same. Then, by security of
FE, we have that Hybrids 3 and 4 are indistinguishable. The formal reduction is
standard, and constructs everything except the FE ciphertexts and FE function
keys as in the previous hybrid, which are obtained using the FE challenger.

We construct a series of subhybrids, one for each i /∈ I, where in Hybrid
(4, i), the change above is made to the function key associated with the FE
instance for party i. Let Hybrid (4, 0) denote Hybrid 3 and let Hybrid (4, |n\ I|)
denote Hybrid 4. We now give the formal reduction to FE function hiding for
distinguishing Hybrid (4, i−1) and Hybrid (4, i) (for ease of notation, we assume
that the indices i are consecutive). Thus, given an adversary A that distinguishes
hybrids (4, i− 1) and (4, i), we construct an adversary B against function hiding
FE as follows.

1. Setup. First B receives the public parameters PP from the FE challenger.
Then it receives (1κ, I, (PPj)j∈I) from the adversary A. Next it runs Step 2
to Step 10 on the left hand side of Figure 12 and passes (PPj)j /∈I (see Step
10) to A.

2. Encryption Queies. On an encryption query (i′,x0,x1) with i′ 6= i, the
query is handled the same as Oenc in Figure 12. On an encryption query
(i,x0,x1), a tag T ←$ {0, 1}κ is sampled and B makes a call to the FE en-
cryption oracle with message (x0, T,K

punc
i ,Trap := (mode := R,⊥,⊥,⊥,⊥))

and returns the returned ciphertext.
3. Key Queries. Key generation queries are handled as in Okg in Figure 12

with one exception, namely the secret keys SKFEi′ are computed as in GenKeys′′′

except for the case i′ = i; the secret key SKFEi
is obtained by making a call

to the FE key generation oracle with functions (ReEnci,⊥,ReEnci,ctr).
4. Guess. When A outputs a guess, B outputs the same.

Note that if the FE challenger’s bit is 0, then B perfectly simulates Hybrid 4, i−1
and if the FE challenger’s bit is 1, then B perfectly simulates Hybrid 4, i.

For j ∈ [Qk], we define:
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Hybrid 4:
(1n, I, (PPi)i∈I , st)←$A0(1κ)
b←$ {0, 1}
∀i /∈ I:
Kpunc
i ←$Kκ

(PPFEi ,MSKFEi)←$ FE.Setup(1κ)
Γ ← ∅
Y ← ∅
Q← ∅
q ← 0

(ρ
(1)
i )i/∈I ←$ S̃im1()

PPi ← ρ
(1)
i ∀i /∈ I

st←$AOenc(·,·,·),Okg(·,·,·)
1 (st)

b′←$AOenc(·,·,·),Okg(·,·,·)
2 ((PPi)i/∈I , st)

Return (b = b′)

Algorithm GenKeys′′′f ((r′k,MSKFEk )k∈[`], ctr)
((EK1, . . . ,EK`),MSK)←
MIFE.Setup(1κ)
SKf ← MIFE.KeyGen(MSK, f)
∀i ∈ [`], do:
SKFEi ← FE.KeyGen(MSKFEi ,ReEncEKi,ctr; r

′
i)

Return (SKf , SKFE1 , . . . , SKFE`)

Oracle Oenc(i,x0,x1)
T ←$ {0, 1}κ
Return FE.Enc(MSKFEi , (x0, T,K

punc
i ,Trap))

Oracle Okg(i, (i1, . . . , i`), f)
J ← I ∩ {i1, . . . , i`}; J̄ ← {i1, . . . , i`} \ J
(αj , rj ,Kj)← Ẽxtract(ρ

(1)
j ) ∀j ∈ J

y←$RY ((i1, . . . , i`), f)
If ((i1, . . . , i`), f, J̄

′) /∈ Q
J̄ ′ ← ∅

J̄ ′ ← J̄ ′ ∪ {i}
Q← Q ∪ ((i1, . . . , i`), f, J̄

′)

(ρ
(2)
j )j∈J̄ ←$ S̃im2((αj , rj ,Kj)j∈J , y)

∀j ∈ J̄ :

(γ
(0)
j , γ

(1)
j , γ

(2)
j )←$RΓ (j, (i1, . . . , i`), f)

∀m ∈ {0, 1, 2}, j ∈ J ,

γ
(m)
j ← PRF.Eval(Kj ,m ‖ (PPik )k∈[`] ‖ f)

If J̄ ′ = J̄ // if fully queried
q ← q + 1

S1←$
⊕

j∈J̄,j 6=i γ
(0)
j

S2←$
⊕

j∈J γ
(0)
j

s← y ⊕ S1 ⊕ S2⊕
GenKeys′′′({(γ(2)

ik
,MSKFEik

)}k∈[`], q)

Else

s← γ
(0)
i

Return (ρ
(2)
i , s)

Algorithm RΓ (i, (i1, . . . , i`, f)

If (i, (i1, . . . , i`), f, γ
(0), γ(1), γ(2)) ∈ Γ

Return (γ(0), γ(1), γ(2))
Else

γ(j)←$ {0, 1}rp ∀j ∈ {0, 1, 2}
// where rp is the range of the PRF

Γ ← Γ ∪ {(i, (i1, . . . , i`), f, γ(0), γ(1), γ(2))}
Return (γ(0), γ(1), γ(2))

Algorithm RY ((i1, . . . , i`, f)
If ((i1, . . . , i`), f, y) ∈ Y

Return y
Else
y←$ {0, 1}rp
Y ← Y ∪ {((i1, . . . , i`), f, y)}
Return y

Fig. 12. Hybrid 4

Hybrid 5j,1: In this hybrid, we hardwire all the Qc MIFE CTs that are output
by the jth function query in the corresponding single input FE ciphertexts in the
field Trap.CT and set mode = T .

In more detail, for key query j, we generate the encryption keys exactly as
in Figure 6. Now, encryptor i ∈ [n] computes Qc ciphertexts as follows:
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1. For k ∈ [Qc], let ri,j,k ← PRF.Eval(Kpunc
i , j ‖ EKi,j ‖ Ti,k)

2. For k ∈ [Qc], let ψi,j,k = MIFE.Enc(EKi,j ,xi,k; ri,j,k)

For k ∈ [Qc], encryptor i ∈ [n] sets Trap so as to program it for the jth function
query as follows:

Trap.mode = T, Trap.CT = ψi,j,k, Trap.index = j, val0 = x0,i,k, val1 = x1,i,k

Please see Figure 13 for the complete description.

Claim. Assume that FE satisfies selective IND security. Then, hybrids 4 and
(5, j, 1) are indistinguishable.

Proof. Note that the hardwired ciphertext is only output for query j, the outputs
for the other queries are exactly equal to those in the previous hybrid. Now, for
query j, the ciphertext is hardwired and output is set to be equal to what
was output in the previous hybrid. It follows that the output of FE decryption
remains exactly the same as in the previous hybrid. Thus, by security of FE, we
have that the two hybrids are indistinguishable.

In more detail, we have a series of subhybrids, one for each i /∈ I, where
in Hybrid 5j,1,i, the change above is made to the ciphertext associated with
the FE instance for party i. Let Hybrid 5j,1,0 denote Hybrid 4 and let Hybrid
5j,1,|n\I| denote Hybrid 5j,1. We now give the formal reduction to FE semantic
security for distinguishing Hybrid 5j,1,i−1 and Hybrid 5j,1,i (for ease of notation,
we assume that the indices i are consecutive). Assume there exists an adversary
A who distinguishes Hybrid 5j,1,i−1 and Hybrid 5j,1,i. We construct an adversary
B who breaks the IND security of FE as follows.

1. Setup. To begin, B receives the public parameters PP from the FE chal-
lenger. Then it receives (1κ, I, (PPj)j∈I) from A. Next it runs Step 2 to Step
11 on the left hand side of Figure 13 and passes (PPj)j /∈I (see Step 11) to
A.

2. Encryption Queries. On an encryption query (i′,x0,x1) with i′ 6= i, the
query is handled the same as Oenc in Figure 13. On an encryption query
(i,x0,x1), a tag T ←$ {0, 1}κ is sampled, then r ← PRF.Eval(Kpunc

i , j ‖
EKi,j ‖ T ), ψ ← MIFE.Enc(EKi,j ,x0; r), Trap0 ← (mode := R,⊥,⊥,⊥,⊥)
and Trap1 ← (mode := Trap, ψ, j,x0,x1) are computed and B makes a
call to the FE encryption oracle with messages (x0, T,K

punc
i ,Trap0) and

(x0, T,K
punc
i ,Trap1), and returns the returned ciphertext.

3. Key Generation Queries. Key generation queries are handled as in Okg

in Figure 13 with one exception, namely the secret keys SKFEi′ are computed
as in GenKeys′′′′ except for the case i′ = i; the secret key SKFEi is obtained
by making a call to the FE key generation oracle for function ReEnci,ctr.

4. Guess. When A outputs a guess, B outputs the same.

If the FE challenger’s bit is 0, then B perfectly simulates Hybrid 5j,1,i−1 and if
the FE challenger’s bit is 1, then B perfectly simulates Hybrid 5j,1,i.
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Hybrid 5j,1:
(1n, I, (PPi)i∈I , st)←$A0(1κ)
b←$ {0, 1}
∀i /∈ I:
Kpunc
i ←$Kκ

(PPFEi ,MSKFEi)←$ FE.Setup(1κ)
Γ ← ∅
Y ← ∅
Q← ∅
q ← 0
mkeys := ((EK1,j, . . . ,EKn,j),MSKj)←$ MIFE.Setup(1κ)

(ρ
(1)
i )i/∈I ←$ S̃im1()

PPi ← ρ
(1)
i ∀i /∈ I

st←$AOenc(·,·,·),Okg(·,·,·)
1 (st)

b′←$AOenc(·,·,·),Okg(·,·,·)
2 ((PPi)i/∈I , st)

Return (b = b′)

Algorithm GenKeys′′′′f ((r′k,MSKFEk )k∈[`], ctr,mkeys)
If ctr = j

((EK1, . . . ,EK`),MSK)← mkeys
Else

((EK1, . . . ,EK`),MSK)← MIFE.Setup(1κ)
SKf ← MIFE.KeyGen(MSK, f)
∀i ∈ [`], do:
SKFEi ← FE.KeyGen(MSKFEi ,ReEncEKi,ctr; r

′
i)

Return (SKf , SKFE1 , . . . , SKFE`)

Oracle Oenc(i,x0,x1)
T ←$ {0, 1}κ
r ← PRF.Eval(Kpunc

i , j ‖ EKi,j ‖ T )
ψ ← MIFE.Enc(EKi,j,x0; r)
Trap← (mode := Trap,CT := ψ,
index := j, val0 := x0, val1 := x1)
Return FE.Enc(MSKFEi , (x0, T,K

punc
i ,Trap))

Oracle Okg(i, (i1, . . . , i`), f)
J ← I ∩ {i1, . . . , i`}; J̄ ← {i1, . . . , i`} \ J
(αj , rj ,Kj)← Ẽxtract(ρ

(1)
j ) ∀j ∈ J

y←$RY ((i1, . . . , i`), f)
If ((i1, . . . , i`), f, J̄

′) /∈ Q
J̄ ′ ← ∅

J̄ ′ ← J̄ ′ ∪ {i}
Q← Q ∪ ((i1, . . . , i`), f, J̄

′)

(ρ
(2)
j )j∈J̄ ←$ S̃im2((αj , rj ,Kj)j∈J , y)

∀j ∈ J̄ :

(γ
(0)
j , γ

(1)
j , γ

(2)
j )←$RΓ (j, (i1, . . . , i`), f)

∀m ∈ {0, 1, 2}, j ∈ J ,

γ
(m)
j ← PRF.Eval(Kj ,m ‖ (PPik )k∈[`] ‖ f)

If J̄ ′ = J̄ // if fully queried
q ← q + 1

S1←$
⊕

j∈J̄,j 6=i γ
(0)
j

S2←$
⊕

j∈J γ
(0)
j

s← y ⊕ S1 ⊕ S2⊕
GenKeys′′′′({(γ(2)

ik
,MSKFEik

)}k∈[`], q,mkeys)

Else

s← γ
(0)
i

Return (ρ
(2)
i , s)

Algorithm RΓ (i, (i1, . . . , i`, f)

If (i, (i1, . . . , i`), f, γ
(0), γ(1), γ(2)) ∈ Γ

Return (γ(0), γ(1), γ(2))
Else

γ(j)←$ {0, 1}rp ∀j ∈ {0, 1, 2}
// where rp is the range of the PRF

Γ ← Γ ∪ {(i, (i1, . . . , i`), f, γ(0), γ(1), γ(2))}
Return (γ(0), γ(1), γ(2))

Algorithm RY ((i1, . . . , i`, f)
If ((i1, . . . , i`), f, y) ∈ Y

Return y
Else
y←$ {0, 1}rp
Y ← Y ∪ {((i1, . . . , i`), f, y)}
Return y

Fig. 13. Hybrid 5j,1.

Hybrid 5j,2: In this hybrid, we use a prefix punctured PRF to generate the
MIFE CTs in the ReEnc functionality encoded in the FE function keys. The
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PRF key for party i is punctured at prefix j so that the randomness ri,j,k de-
fined above, for i ∈ [n], k ∈ [Qc] cannot be generated. All MIFE ciphertexts
corresponding to other function queries can be generated as before.

In more detail:

1. For i ∈ [n], party i punctures the PRF key Kpunc
i at prefix j, i.e.

Kpunc
i,j ← PRF.Punc(Kpunc

i , j)

2. The ith encryptor computes FE.enc
(
MSKFE, (x0,i,k, Ti,k,K

punc
i,j ,Trap)

)
where

all other fields are set as in the previous hybrid.

During FE decryption, for any query j′ 6= j, we now obtain:

ri,j′,k ← puncF(Kpunc
i,j , j′ ‖ EKi,j′ ‖ Ti,k)

for k ∈ [Qc]. Everything else is as in the previous hybrid. For query j, the
hardwired CT is output, and the punctured PRF key is not used to generate
randomness. Please see Figure 14 for the complete description.

Claim. If FE satisfies selective IND security, then hybrids 5j,1 and 5j,2 are in-
distinguishable.

Proof. We have by correctness of the punctured PRF that for any j′ 6= j, all
the computed ri,j′,k are exactly equal to those computed in the previous hybrid,
where the normal PRF key was used. For query j, the PRF is not used and the
hardwired value is output in both hybrids. Hence, the outputs of FE decryption
are equal in both hybrids. Thus, indistinguishability follows from security of FE.

In more detail, we have a series of subhybrids, one for each i /∈ I, where in
Hybrid 5j,2,i, the change above is made to the ciphertext associated with the
FE instance for party i. Let Hybrid 5j,2,0 denote Hybrid 5j,1 and let Hybrid
5j,2,|n\I| denote Hybrid 5j,2. We now give the formal reduction to FE semantic
security for distinguishing Hybrid 5j,2,i−1 and Hybrid 5j,2,i (for ease of notation,
we assume that the indices i are consecutive).

Let A be the adversary who distinguishes Hybrid 5j,2,i−1 and Hybrid 5j,2,i.
We construct an adversary B to break the selective security of FE as follows.

1. Setup. B receives the public parameters PP from the FE challenger. It
receives (1κ, I, (PPj)j∈I) from A. It runs Step 2 to Step 12 on the left hand
side of Figure 14 and passes (PPj)j /∈I (see Step 12) to A.

2. Encryption Queries. It handles encryption queries as follows. On an en-
cryption query (i′,x0,x1) with i′ 6= i, the query is handled the same as Oenc

in Figure 14. On an encryption query (i,x0,x1) it sets

T ←$ {0, 1}κ, r ← PRF.Eval(Kpunc
i , j ‖ EKi,j ‖ T ),Kpunc

i,j ← PRF.Punc(Kpunc
i , j)

ψ ← MIFE.Enc(EKi,j ,x0; r), Trap← (mode := Trap, ψ, j,x0,x1)

queries the FE encryption oracle with messages (x0, T,K
punc
i ,Trap) and

(x0, T,K
punc
i,j ,Trap). It returns this ciphertext to A.
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Hybrid 5j,2:
(1n, I, (PPi)i∈I , st)←$A0(1κ)
b←$ {0, 1}
∀i /∈ I:
Kpunc
i ←$Kκ

Kpunc
i,j ← PRF.Punc(Kpunc

i , j)

(PPFEi ,MSKFEi)←$ FE.Setup(1κ)
Γ ← ∅
Y ← ∅
Q← ∅
q ← 0
mkeys := ((EK1,j, . . . ,EKn,j),MSKj)
←$ MIFE.Setup(1κ)

(ρ
(1)
i )i/∈I ←$ S̃im1()

PPi ← ρ
(1)
i ∀i /∈ I

st←$AOenc(·,·,·),Okg(·,·,·)
1 (st)

b′←$AOenc(·,·,·),Okg(·,·,·)
2 ((PPi)i/∈I , st)

Return (b = b′)

Algorithm GenKeys′′′′f ((r′k,MSKFEk )k∈[`], ctr,mkeys)
If ctr = j

((EK1, . . . ,EK`),MSK)← mkeys
Else

((EK1, . . . ,EK`),MSK)← MIFE.Setup(1κ)
SKf ← MIFE.KeyGen(MSK, f)
∀i ∈ [`], do:
SKFEi ← FE.KeyGen(MSKFEi ,ReEncEKi,ctr; r

′
i)

Return (SKf , SKFE1 , . . . , SKFE`)

Oracle Oenc(i,x0,x1)
T ←$ {0, 1}κ
r ← PRF.Eval(Kpunc

i , j ‖ EKi,j ‖ T )
ψ ← MIFE.Enc(EKi,j,x0; r)
Trap← (mode := Trap,CT := ψ,
index := j, val0 := x0, val1 := x1)
Return FE.Enc(MSKFEi , (x0, T,K

punc
i,j ,Trap))

Oracle Okg(i, (i1, . . . , i`), f)
J ← I ∩ {i1, . . . , i`}; J̄ ← {i1, . . . , i`} \ J
(αj , rj ,Kj)← Ẽxtract(ρ

(1)
j ) ∀j ∈ J

y←$RY ((i1, . . . , i`), f)
If ((i1, . . . , i`), f, J̄

′) /∈ Q
J̄ ′ ← ∅

J̄ ′ ← J̄ ′ ∪ {i}
Q← Q ∪ ((i1, . . . , i`), f, J̄

′)

(ρ
(2)
j )j∈J̄ ←$ S̃im2((αj , rj ,Kj)j∈J , y)

∀j ∈ J̄ :

(γ
(0)
j , γ

(1)
j , γ

(2)
j )←$RΓ (j, (i1, . . . , i`), f)

∀m ∈ {0, 1, 2}, j ∈ J ,

γ
(m)
j ← PRF.Eval(Kj ,m ‖ (PPik )k∈[`] ‖ f)

If J̄ ′ = J̄ // if fully queried
q ← q + 1

S1←$
⊕

j∈J̄,j 6=i γ
(0)
j

S2←$
⊕

j∈J γ
(0)
j

s← y ⊕ S1 ⊕ S2⊕
GenKeys′′′′({(γ(2)

ik
,MSKFEik

)}k∈[`], q,mkeys)

Else

s← γ
(0)
i

Return (ρ
(2)
i , s)

Algorithm RΓ (i, (i1, . . . , i`, f)

If (i, (i1, . . . , i`), f, γ
(0), γ(1), γ(2)) ∈ Γ

Return (γ(0), γ(1), γ(2))
Else

γ(j)←$ {0, 1}rp ∀j ∈ {0, 1, 2}
// where rp is the range of the PRF

Γ ← Γ ∪ {(i, (i1, . . . , i`), f, γ(0), γ(1), γ(2))}
Return (γ(0), γ(1), γ(2))

Algorithm RY ((i1, . . . , i`, f)
If ((i1, . . . , i`), f, y) ∈ Y

Return y
Else
y←$ {0, 1}rp
Y ← Y ∪ {((i1, . . . , i`), f, y)}
Return y

Fig. 14. Hybrid 5j,2.

3. Key Queries. Key generation queries are handled as in Okg in Figure 13
with one exception, namely the secret keys SKFEi′ are computed as in GenKeys′′′′
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except for the case i′ = i; the secret key SKFEi
is obtained by making a call

to the FE key generation oracle for function ReEnci,ctr.
4. Guess. When A outputs a guess, B outputs the same.

If the FE challenger’s bit is 0, then B perfectly simulates Hybrid 5j,2,i−1 and if
the FE challenger’s bit is 1, then B perfectly simulates Hybrid 5j,2,i. Hence the
advantage of the adversary A directly translates to the advantage of B against
the FE scheme.

Hybrid 5j,3: In this hybrid, we switch the randomness used in the hardwired
MIFE CT to be true randomness. That is, ri,j,k is sampled uniformly at ran-
dom for i ∈ [n], k ∈ [Qc]. We have by the security of the punctured PRF that
given the punctured key, the PRF evaluations at the punctured points are in-
distinguishable from random. Hence, indistinguishability follows from security
of punctured PRF.

Claim. If the prefix punctured PRF is secure, then hybrids 5j,2 and 5j,3 are
indistinguishable.

Proof. In more detail, we have a series of subhybrids, one for each i /∈ I. Let
Hybrid 5j,3,0 denote Hybrid 5j,2 and let Hybrid 5j,3,|n\I| denote Hybrid 5j,3.
We now give the formal reduction to PRF security for distinguishing Hybrid
5j,3,i−1 and Hybrid 5j,3,i (for ease of notation, we assume that the indices i are
consecutive).

Let A be an adversary that distinguishes the two hybrids. We construct an
adversary B against the prefix punctured PRF as follows.

1. Setup. First B receives (1κ, I, (PPj)j∈I) from A. Next it runs
– For all i′ /∈ I, i′ 6= i:
• Kpunc

i′ ←$ PRF.Setup(1κ)
• Kpunc

i′,j ← PRF.Punc(Kpunc
i′ , j)

Then it sends a challenge prefix j to the PRF challenger and receives a
punctured key; call this Kpunc

i,j . Next B runs Step 5 to Step 12 on the left
hand side of Figure 14 and passes (PPj)j /∈I (see Step 12) to A.

2. Key Queries. It handles key generation queries as in the previous hybrid.
3. Encryption Queries. On an encryption query (i′,x0,x1) with i′ 6= i, the

query is handled the same as Oenc in Figure 14. On an encryption query
(i,x0,x1), the query is handled the same as Oenc in Figure 14 except Step
2 of Oenc where r is computed. To obtain r, the PRF evaluation oracle is
queried at the point (j ‖ EKi,j ‖ T ) where T is derived in Step 1 of Oenc.

4. Guess. When A outputs a guess, B outputs the same.

Note that if the PRF challenger’s bit is 0, the string r will be computed using
the PRF and B perfectly simulates 5j,3,i−1. On the other hand, if the PRF
challenger’s bit is 1, the string r will be uniformly random because the queried
evaluation point begins with the challenge prefix j (i.e. the PRF is punctured at
that prefix) and so B perfectly simulates Hybrid 5j,3,i.
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Hybrid 5j,4: In this Hybrid, the protocol GenKeys′′′′ is modified further so that
for key j, MIFE.Setup or MIFE.KeyGen are not invoked. Rather, the output of
the MIFE.KeyGen algorithm is hardwired and output for key j.

Claim. If MPC is secure, then Hybrid 5j,3 and 5j,4 are indistinguishable.

Proof. Note that the only difference between the two hybrids is that GenKeys′′′′

contains the output of MIFE.KeyGen algorithm hardwired for key j. The hard-
wired value is exactly the same as in the previous hybrid, hence the two circuits
are equivalent in functionality and differ only in representation. Thus, indistin-
guishability holds by security of MPC by also viewing the MPC functionality as
an input to be hidden (please see remark 2). A standard reduction invokes the
MPC simulator to produce the output receives identical inputs in both hybrids
and hence produces indistinguishable outputs in the two hybrids.

Hybrid 5j,5: In this hybrid, we switch the hardwired MIFE CTs within the FE
CTs to use bit b = 1.

Claim. If MIFE satisfies selective IND security, Hybrid 5j,4 and 5j,5 are indistin-
guishable.

Proof. Indistinguishability follows from MIFE security. In more detail, we fix
query j. Let A be an adversary who distinguishes between Hybrid 5j,4 and 5j,5.
We construct an adversary B which plays against the MIFE challenger as below.
B computes everything as in the previous hybrid except that the hardwired
ciphertexts for the jth copy of MIFE, which it receives from the MIFE challenger
as below:

1. Setup. B requests for MIFE key corresponding to function fj which it re-
ceives. It hardwires this into functionality GenKeys.

2. Ciphertext Queries. For i ∈ [n], k ∈ [Qc], the challenge ciphertexts for
party i are set as (x0,i,k, Ti,k,K

punc
i,j ) and (x1,i,k, Ti,k,K

punc
i,j ). The reduction

receives ψi,j,k for i ∈ [n] and k ∈ [Qc]. It hardwires these into the FE cipher-
texts as discussed above.

3. Key Queries. These are handled as in the previous hybrid.

It is evident that if b = 0 then we are in Hybrid 5j,4 and if b = 1 we are in
Hybrid 5j,5. Thus, an adversary that distinguishes between these two hybrids
can be used to break the security of the jth MIFE scheme.

Now that the bit b has been switched for query j, we roll back our changes.
Arguments of indistinguishability are analogous to the above and are skipped.
Hybrid 5j,6: Change GenKeys′′ to invoke MIFE.Setup and MIFE.KeyGen as be-
fore.

Hybrid 5j,7: Switch randomness in the hardwired CT back to PRF randomness.

Hybrid 5j,8: Switch punctured PRF key back to normal PRF key.
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Hybrid 5j,9: Increment Trap.index by 1. At this point, for key j, we have
ctrj < Trapindex, hence by the design of the ReEnc algorithm, we have that the bit
b = 1 is used for MIFE encryption. This is indistinguishable from the previous
hybrid by security of FE because decryption values are exactly the same in both
the hybrids.

Hybrid 5j+1,1: This Hybrid is analogous to Hybrid 5j,1. Indistinguishability
follows by security of FE as discussed above.

Finally, in Hybrid 5Qk,9, all the keys are outputting MIFE CTs correspond-
ing to b = 1.

Hybrid 6: In this hybrid, use message corresponding to b = 1 and mode = R.
Again, indistinguishability follows by security of FE since the outputs are the
same.

Hybrid 7: Undo the changes made in Hybrid 4, namely the algorithm GenKeys′′

invoked for query index j for all j ∈ [Qk] is modified to invoke ReEnc with param-
eter ctr = ⊥. Indistinguishability follows analogously to the transition between
Hybrid 3 and Hybrid 4.

Hybrid 8: Undo the changes made in Hybrid 3. Specifically, we generate y (the

target output passed to S̃im2) and s (the masking value component of the partial
decryption key) the same as in Hybrid 2 for each query ((i1, . . . , i`), f). Indistin-
guishability follows analogously to the transition between Hybrid 2 and Hybrid 3.

Hybrid 9: Undo the changes made in Hybrid 2. More precisely, we replace
the uniformly random strings used in the function GenKeys for the honest users
i with the outputs of the PRF. Indistinguishability follows analogously to the
transition between Hybrid 1 and Hybrid 2.

Hybrid 10: Undo the changes made in Hybrid 1, that is, we generate the first-

round protocol messages ρ
(1)
i (in the public parameters) and second-round pro-

tocol messages ρ
(2)
i (in the partial decryption keys) for MPC as in the real system

for each uncorrupted user i /∈ I. Indistinguishability follows analogously to the
transition between Hybrid 0 and Hybrid 1.

Hybrid 10 is the real world with bit b = 1.

We discuss suitable MPC protocols in Appendix A.
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5 Ad Hoc Friendly MIFE and its Application to Inner
Products

In this section, we describe a paradigm for constructing ad-hoc MIFE schemes
from MIFE schemes that are “ad hoc friendly” and a (hopefully simple) two-
round MPC protocol. This paradigm significantly simplifies our general con-
struction. We then show that the standard MIFE scheme for inner products [3,
2], which may be based on DDH, LWE or DCR, is ad hoc friendly and the corre-
sponding two-round MPC protocol is only required to compute inner-products,
thus obtaining an efficient ad hoc MIFE scheme for inner products.

Ad Hoc Friendliness. In more detail, we define a notion of “ad hoc friendly”
standard MIFE which satisfies the following properties:

– Decentralized Setup. The MIFE.Setup algorithm of the MIFE is decen-
tralized in the sense that:

1. The encryption keys EKi for i ∈ [n] corresponding to party i may be
generated independently of the encryption keys of the remaining parties
[n] \ i. In more detail, the algorithm (EK1, . . . ,EKn) ← MIFE.Setup(1κ)
may be decomposed into n invocations EKi ← MIFE.SetupLocal(1κ) for
i ∈ [n], which can be run locally by each party.

2. The master secret key MSK can be decomposed into n components
{MSKi}i∈[n]. The partial MSKi corresponding to party i may be gen-
erated locally by party i, without any interaction or shared state with
the remaining parties.

– Local Encryption. The MIFE.Enc algorithm of the MIFE is “local” in that
it does not take as input the total number of parties or the public parameters
of other parties. In more detail, MIFE.Enc algorithm only takes as input its
encryption key EKi and its input xi, and nothing else.

– Piecewise Master Secret Key. In standard MIFE schemes, the function
is assumed to have fixed arity n. However, in ad hoc MIFE, we allow the
function to have arity ` < n. To support this, we require that the master
secret in standard MIFE MSK = {MSK1, . . . ,MSKn}, if restricted to some
subset S ⊆ [n] with |S| = `, has the same distribution as a master secret
generated for functions of arity `.

Formally, let MSK = {MSK1, . . . ,MSKn} ← FE.Setup(1κ, 1n) and MSK′ =
{MSK′1, . . . ,MSK′`} ← FE.Setup(1κ, 1`). Then, we require that MSK restricted
to subset S, namely (MSKS[1], . . . ,MSKS[`]) has the same distribution as
MSK′.

Since the intuition was discussed in Section 1, we proceed to our construction
of ad hoc MIFE for inner products.
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5.1 Ad Hoc MIFE for Inner Products

Inner-product functionality. We recall the multi-input inner-product function-
ality over Zp for a prime p, adapted from Abdalla et al. [2, Section 2.3]. For
m,n ∈ N, this is the functionality

IPmp,n = {ipy1,...,yn
: (Zmp )n → Zp}

defined by

ipy1,...,yn
(x1, . . . ,xn) =

n∑
i=1

〈xi,yi〉 mod p .

We omit parameters p,m, n when they are arbitrary or clear from context.

5.2 Building Blocks

In the context of ad hoc MIFE for inner products, we want to evaluate a function-
ality given by a sequence of vectors y = (y1, . . . ,yn) where yi ∈ Zmq . Evaluating
the function on inputs {xi}i∈[n] where xi ∈ Zmq reveals

∑
i∈[n]〈xi,yi〉 and noth-

ing more. In particular the evaluator should not be able to learn the partial sums
〈xi,yi〉.

Our scheme will be using the following building blocks:

– A 2-round function-rerunnable MPC for a functionality GenKey-ip, which
must be support inner product computation.

– A standard MIFE with for the inner product functionality, denoted by MIFEip,
satisfying the aforementioned ad hoc friendly properties.

The MIFE scheme(s) of Abdalla et al. [2] : Abdalla et al. [2] provide two multi-
input encryption schemes for inner products, one for computing inner products
over some finite ring ZL, and the second for computing bounded-norm inner
products over the integers. Both schemes rely on:

1. An information theoretic scheme for inner products where only one cipher-
text query is supported.

2. A single input functional encryption scheme FE for inner products which is
applied on top of the above one time scheme.

Unrolling the above two components, the final MIFE scheme(s) of [2] have algo-
rithms of the form described below.

Below, we unroll the above two components to establish that the schemes of
[2] satisfy ad hoc friendliness.

1. Decentralized Setup. The encryption keys EKi corresponding to party i
may be generated independently of the encryption keys of the remaining par-
ties [n] \ i. In more detail, the setup algorithm is defined as:

MIFE.Setup(1κ, n): Do the following:
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– For i ∈ [n], sample ui ← ZmL .
– For i ∈ [n], sample (FE.PKi,FE.MSKi)← FE.Setup(1κ, 1m).
– Output PPi = FE.PKi and EKi = (FE.MSKi, ui) for i ∈ [n].

Then, we may define:

(a) MIFE.SetupLocal(1κ, n): Do the following:
– Sample u← ZmL .
– Sample (FE.PK,FE.MSK)← FE.Setup(1κ, 1m).
– Output PP = FE.PP and EK = (FE.MSK, u).

To compute the set of n encryption keys, the algorithm MIFE.SetupLocal(1κ, n)
is invoked n times. Additionally, in [2], the master secret key can be decom-
posed into n components by setting:

MSKi = EKi = (FE.MSKi,ui) ∀ i ∈ [n]

2. Local Encryption. The encryption algorithm only takes its encryption key
and message as input and does not depend on the number of parties or their
public parameters. In more detail, the encryption algorithm is defined as:

MIFE.Enc(EKi,xi): Do the following:
– Parse EKi = (FE.MSKi, ui).
– Compute yi = xi + ui mod L.
– Compute ci = FE.Enc(FE.MSKi,yi).
– Output (yi, ci).

Thus, the ciphertext encoding party i’s input may be computed indepen-
dently by party i.

3. Piecewise Master Secret Key. For the inner product functionality, if
MSK = (MSK1, . . . ,MSKn) is the master secret key for function vector
y = (y1‖...‖yn) then for any S ⊆ [n], we have the corresponding master
key
MSK′ = (MSKS[1], . . . ,MSKS[`]) is a well formed master secret key for the
vector y′ = (yS[1]‖ . . . ‖yS[`]). In more detail, the key generation algorithm
is defined as:

MIFE.KeyGen(MSK,y): Do the following:
– Output DKy ←

(
{FE.KeyGen(MSKi,yi)}i∈[n],

∑
i∈[n]

〈ui, yi〉
)
.

It is easy to see that the function key for y′ can be obtained from the above
by simply setting yi = 0 for i /∈ S.

5.3 Our Construction

We are now ready to present the construction. Note that for ease of presentation,
we describe the scheme for all n users but we remark that it works for any subset
of ` ≤ n users.
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aMIFE.Setup(1κ, 1m): Upon input the security parameter and the dimension of
the input vector for each party, do the following:
1. Run the partial MIFE setup algorithm to obtain the public parameters

and encryption key: (MIFE.PP,MIFE.EK)←$ MIFE.SetupLocal(1κ, 1m)
2. Invoke the first round of the MPC protocol with the encryption key as

input:
(ρ(1), s)←$ MPC.RunRoundOne(1κ,EK)

3. Return PP := (MIFE.PP, ρ(1)),MSK := (MIFE.EK, s)

aMIFE.Enc(EK,x): Upon input the encryption key and the input, compute
MIFE.enc(EK,x) and output it.

aMIFE.KeyGen((PPi)i∈[`],y,MSKi): Upon input the public parameters of the
` parties, the function vector y and the master secret key MSKi, do the
following:

1. Parse (MIFE.EK, s)← MSKi and (MIFE.PPj , ρ
(1)
j )← PPj ∀j ∈ [`]

2. Parse (y1, . . . ,y`)← y where yj ∈ Zmq for j ∈ [`].
3. Invoke round 2 of the MPC protocol GenKey-ipy as defined in Figure 15

ρ(2)←$ MPC.RunRoundTwo(s, ρ
(1)
1 , . . . , ρ

(1)
` , )

4. Return PDK := ρ(2).

aMIFE.Dec((PDKi,f )i∈[`], (ci)i∈[`]): Upon input the partial decryption keys from
all relevant parties, as well as ciphertexts from all relevant parties, do the
following:
1. Compute the output of the MPC protocol as

MIFE.DKy ← MPC.ComputeResult((ρ
(2)
i )i∈[`])

2. Compute MIFE.Dec(MIFE.DKy,y, c1, . . . , c`) and output it.

Function GenKey-ipy(EK1, . . . ,EK`)

1. Parse EKi = (ui,FE.MSKi). Let MIFE.MSK = (EK1, . . . ,EK`).
2. Compute MIFE.KeyGen(MIFE.MSK,y) and output it.

Fig. 15. Functionality for computing the MIFE function key.

Note that for the inner product functionality, the MIFE key generation algo-
rithm is very simple and in some cases only involves computing inner products,
please see [2] for details.
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Correctness. Correctness follows from correctness of the MPC protocol and of
the standard MIFE scheme. We have by correctness of the MPC protocol, that
the output MIFE.DKy = MIFE.KeyGen(MSK,y) is produced correctly. Since the
encryptors encrypted ci = MIFE.Enc(EKi,xi), it follows from the correctness of
MIFE that MIFE.Dec(MIFE.DKy,y, c1, . . . , c`) outputs

∑
i∈[`]

〈yi, xi〉 as desired.

Security. Given the proof of security in Section 4, the proof of security of
the present construction is straightforward, since the present construction is
a (much) simplified instance of the general construction. Intuitively, the security
of MPC ensures that the output MIFE.DKy, which is computed using inputs
(MSKi,yi)i∈[`] of ` disjoint parties, is indistinguishable from the output of a
“global” MIFE key generation algorithm which takes the entire (MSK,y) as in-
put. The encryption algorithm is exactly the same as that of the standard MIFE
scheme, with the result that the decryptor sees exactly the same view as in the
standard MIFE scheme.

Theorem 8. If the MIFE constructed by [2] is a selectively IND-secure MIFE
scheme and MPC is a SIM-secure 2-round MPC protocol, then our construction
is selectively IND-secure.

Proof. The proof follows easily from the proof of theorem 7. For simplicity, we
describe the proof for the case of a single key query. The case of multiple queries
is handled exactly as in the proof of theorem 7. In more detail, we define:

Hybrid 0: This is the real game in which on every encryption query (i,x0,x1),
x0 is encrypted.

Hybrid 1: Exactly as in the proof of theorem 7, the MPC transcript in this
hybrid is simulated. Indistinguishability follows as in the proof of theorem 7.

Hybrid 2: In this hybrid, we switch the bit in the MIFE ciphertexts to 1. In-
distinguishability follows via a reduction, in which the MIFE function key and
ciphertexts are obtained from the MIFE challenger. The MIFE function key is
input to the MPC simulator and the MPC transcript and MIFE ciphertexts are
returned to the adversary.

To support multiple keys, we proceed as in the proof of theorem 7 and change
the bit used in the MIFE encryption from 0 to 1 key by key.

Instantiating MPC. Since function-rerunnable two-round MPC in the common
reference string (CRS) model can be constructed [27, 54, 23, 56] from learning-
with-errors (LWE), we get ad hoc MIFE for inner products from LWE. This
result can be upgraded to the malicious setting as the additional cost of NIZKs.

While function rerunnable two-round MPC in the CRS model can be con-
structed from bilinear maps [39] and even two-round oblivious transfer [14, 40,
37] or information theoretically [9, 34], these constructions are not function-
rerunnable so do not suffice for multi-key ad hoc MIFE. However, if we restrict
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ourselves to the setting of bounded ad hoc MIFE, where a user issues only a
bounded number of partial decryption keys and additionally maintains state
across key issues, we may use the above MPC protocols (just via repetition).
This yields such a bounded ad hoc MIFE under DDH, LWE or DCR for the
both the semi-honest and malicious cases. One nice feature of the semi-honest
construction is that it does not use a common random string and is in the plain
model.

Note that all the above MPC protocols require a bound on the arity of the
function being computed (but not the number of users), in order to set the
parameters. This implies a bound on the function arity in the setup phase of our
ad hoc MIFE for inner products construction.
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SUPPLEMENTARY MATERIAL

A Candidate MPC Protocols for general Ad Hoc MIFE

Depending on the two-round MPC you get different properties in the ad hoc
MIFE such as: (1) bounded (n needs to be given as input to aMIFE.Setup) vs
unbounded (2) single-key vs multi-key (key corresponding only one choice of `
and other parties can be issued) (3) plain model vs in the CRS model, and (4)
passive vs active security.

For unbounded (1) we need the MPC to be function-delayed. For multikey
(2) we need the MPC to be input-rerunnable. For the protocol to be plain model
(3) we need the MPC in plain model and for active security (4) we need MPC
to be maliciously secure. We cannot get (3) and (4) simultaneously.

– Indistinguishability obfuscation [30, 45] can be used to get (1), (2), and (3 or
4). As already noted in [38], we remark that in the semi-honest setting the
construction of [30] can actually be instantiated in the plain model. This
is based on the observation that the CRS in the protocol of [30] was only
needed for the computation in the second round. Thus semi-honest parties
could obtain a CRS by just performing a one-round coin flipping in the first
round. This yields our first result: we get ad hoc MIFE for general functions
from standard MIFE for general functions. In the semi-honest setting, the
ad hoc MIFE construction is in the plain model. On the other hand, in
the malicious setting, these protocols work in the common reference string
(CRS) model.

– Multi-key FHE can be used to get (1), and (2). Additionally, (4) can be
added at the cost of additionally using NIZKs. In more detail, function-
rerunnable two-round MPC in the common reference string (CRS) model can
be constructed [27, 54, 23, 56] from learning-with-errors (LWE). This yields
ad hoc MIFE from LWE and standard MIFE in the CRS model (either
semi-honest or malicious).

– Bounded two-round MPC in the CRS model can be constructed from bilinear
maps [39] and even two-round oblivious transfer [14, 40, 37] or information
theoretically [9, 34], these constructions are not function-rerunnable so do
not suffice for our general construction. We note that these constructions
would suffice for obtaining bounded ad hoc MIFE, where a user issues only
a bounded number of partial decryption keys and maintains state across key
issues. However, since in our general result we anyway require the minimum
assumption of FE/MIFE, instantiating MPC from weaker assumptions does
not yield any benefits.

We note that even though MIFE is a necessary assumption in our construc-
tion, and MIFE for general functions is known to imply iO [8], to construct ad
hoc MIFE for some function class, we only need MIFE for the same function
class. Hence, instantiating the MPC protocol from weaker assumptions is still
meaningful if considering restricted function classes.


