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Abstract As fault based cryptanalysis is becoming

more and more of a practical threat, it is imperative

to make efforts to devise suitable countermeasures. In

this regard, the so-called “infective countermeasures”

have garnered particular attention from the community

due to its ability in inhibiting differential fault attacks

without explicitly detecting the fault. We observe that

despite being adopted over a decade ago, a systematic

study of infective countermeasures is missing from the

literature. Moreover, there seems to be a lack of proper

security analysis of the schemes proposed, as quite a few

of them have been broken promptly. Our first contribu-

tion comes in the form of a generalization of infective

schemes which aids us with a better insight into the

vulnerabilities, scopes for cost reduction and possible im-

provements. This way, we are able to propose lightweight
alternatives of two existing schemes. Further we analyze

shortcomings of LatinCrypt’12 and CHES’14 schemes

and propose a simple patch for the former.
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1 Introduction

Fault attacks are becoming a real threat particularly to

small scale devices performing a cryptographic operation.

This type of attack forces a certain device to work under

suboptimal condition resulting in erroneous calculations,

which is then exploited. Differential Fault Analysis or

Differential Fault Attack (DFA) [11], one type of fault

attack, is predominantly used against symmetric key

ciphers. Most, if not all, ciphers which are considered

secure against classical attacks are shown to have severe

weaknesses against DFA. This attack works by injecting

a difference (fault) during the cipher execution, which

normally results in flipping one or more bits of a register.

Then, after analyzing the output difference of the non-

faulty and the faulty outputs of the cipher computations;

the attacker, Eve, is often able to deduce information

on the secret key.

Success of DFA also gave rise to a series of works

attempting to protect ciphers from this attack. Various

types of countermeasures are proposed in the literature.

All of these countermeasures rely on full or partial re-

dundancy either in device, cipher implementation or the

protocol. Broadly, the state-of-the-art schemes can be

classified into three categories:

(i) Using a separate, dedicated device. They can be

either active which uses a sensor to detect any po-

tential fault, such as [24]; or passive, where a shield

to block external interference [4] is used.

(ii) Using redundancy in computation. These type of

countermeasures commonly duplicate (fully/ par-

tially) the circuit, followed by a certain procedure

which dictates what to do in case a fault is sensed

directly or indirectly.
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(iii) Using protocol level technique. Here the underlying

protocol ensures that the conditions required for a

successful fault happens with low probability [18,2].

Our interest lies in the second category of fault pro-

tection (further elaborated in Section 2). In particular,

we focus on the so-called infective countermeasures (or,

infection based countermeasures). These countermea-

sures work by doing two computations of the same

cipher (which we call, actual and redundant); thereafter

computing the difference (XOR) between them (we de-

note it by ∆). This difference serves the purpose of

implicitly detecting the fault — a non-zero difference

implies a fault injection. This difference is further pro-

cessed to produce a random vector in an unintelligible

manner. This random vector is then used to corrupt

(infect) output from the actual computation, which is

then made available to Eve. Hence, the attacker gets

the original (non-faulty) output if no fault is sensed

by the countermeasure; or gets a random output other-

wise — thus she has no meaningful information on ∆.

This makes DFA impossible to mount as it requires the

knowledge of ∆.

This idea of infection was proposed to counter the

shortcomings of the previously proposed detective coun-

termeasures (also referred to as detection based counter-

measures, see Section 2.2 for more details). Incidentally
however, most of the infective countermeasures proposed

in the literature have been broken quite soon (it is even

stated in [7] that, “it is very difficult to design a secure

infective countermeasure”). In fact, after more than a

decade of their first introduction, we only have a handful

of the schemes which are not broken – and yet, they
generally have heavy implementation cost. Our observa-
tion is that almost all of the schemes proposed in this

context are ad-hoc solutions, instead of utilizing already

established design standards. This motivates us to look

further down into the topic to gain better understanding

of the solution that the infective countermeasures in-

tend to provide. To do a more systematic and complete

study on the designs proposed, we first categorize them.

Following this, we revisit the design choices to explore

vulnerabilities and/or improvements.

Our Contributions

Here we mention the key contributions.

– We categorize the existing countermeasures into two

types, so that a more systematic and comprehensive

study is possible. This categorization is done from a

cipher designer’s point-of-view, which is missing in

the existing literature. For convenience, we call these

Type I (Section 2.4.1) and Type II (Section 2.4.2)

countermeasures. The basic difference between them

is that Type I schemes allow the full computations of

the actual and redundant ciphers to run, then com-

putes ∆; in contrast, Type II schemes compute the

difference after each round. Type I countermeasures

are further divided into two sub-categories based on

existing literature; multiplication based (Section 3.1)

and derivative based (Section 3.2). Type II counter-

measures are also referred to as cipher level counter-

measures (described in Section 4).

– Among the schemes in the Type I category, we find
two schemes which are not broken. Although, we

do not find any attack to those schemes, we remark

that, both of them incur a substantial hardware or

software overhead. In this regard, we propose two

hardware efficient alternatives to the countermeasure

described in [33] (Section 3.3.1). Also, we propose

software friendly options for the scheme proposed in

[22], (Section 3.3.2) based on existing ciphers.

– For the Type II schemes, we show (in Section 4.1)

that CHES’14 infective countermeasure proposed in

[46] is not an infective countermeasure at all; thereby

refuting its security claim and showing its weakness

against DFA. This also refutes the security claim

made by the modified infective countermeasure in

[36]. The basic principle of this paper is the same as

that of [46]; certain modifications are done on [46]

to make it better resilient against instruction skip

attacks on a microcontroller1.

– Interestingly though, this CHES’14 scheme is pro-

posed as an improvement on the first cipher level

infective countermeasure presented in [23] (Latin-

Crypt’12), which is broken in [7,46]. We propose a
simple patch (in Section 4.2) on the [23] scheme that

resists the attacks presented in [7,46].

In context of the security proofs of our countermea-

sures/patch, we would like to note that no separate

security proof would be required. Since we reuse the

existing cipher design paradigm, the security proof is

the same as the cipher itself.

As for the practical evaluation of our schemes, we

note the following. Our proposed countermeasures are

designed at the algorithmic level. Hence anyone with

the access to an experimental set-up can validate. Any

hidden vulnerability in the implementation which is

transparent at the algorithmic level is not within the
scope.

1 An instruction skip is considered a separate (non-DFA)
type of fault.
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2 Background

2.1 Context of Differential Fault Analysis

As mentioned earlier, DFA works by injecting a dif-

ference (fault) during cipher computation. This fault

injection can be done by various methods; clock/power

glitch, LASER shot, to name a few. More information

on such fault injecting equipment can be found, for ex-

ample, in [5]. This fault, in effect, results in a few bit(s)

flip of the cipher at a round. Normally, attacker can

choose the round, but unable to precisely target the

words; as a result, she does not know the actual fault

value (the value which is effectively XORed with the

cipher state). This is a very commonly employed model

and termed as random fault model [38,44].

Now, flipping one/few bit(s) of a register works as

a simplified version of the classical Differential Attack

(DA) [10]. In DA, the difference is inserted through the

chosen plaintexts (hence, works at the beginning of the

cipher execution). In contrast, in DFA, the difference

can be inserted at any point of time during execution

(normally it is inserted near the end of the cipher ex-

ecution). Now, since the difference passes through a

small number of rounds of the cipher (can be even one

round), the resistance against differential attack is not

very strong. At the end of the cipher execution, when

attacker gets the corresponding output difference, an

analysis similar to DA may reveal secret information.

Although, DA and DFA work very similarly, one may

notice that the same idea used to thwart DA cannot

be potentially used to thwart DFA. The DA protec-

tion arises from many iterations of the cipher; which is
meaningless in DFA, as attacker is able to attack any

round near the end. Hence, the solutions proposed to

protect against DFA require certain assumption on the

underlying device/communication protocol, rather than

completely relying on the cipher description (which is

the case for DA).

We assume that Eve can inject faults temporarily

(the fault values are not permanent — the device goes

back to its normal situation once the source of fault is re-

voked). This contrasts to the stuck-at/hard fault model

where particular bit(s) are permanently stuck with the

fault value (one may refer to [14] for an example). The

stuck-at model assumes more control for the attacker

and is outside the scope of DFA. Like this, modification

of operation is also a strong attacker model (such as

an instruction skip on a software implementation, as

in [32]), and also not a DFA. In short, DFA assumes

the transient fault model where only the operands are

subject to alteration.

2.2 Early Countermeasures: Detection Based

One of the earliest countermeasures proposed against

DFA is known as detective countermeasure (or detection

based countermeasure). Conceptually, it checks whether

any fault is injected by explicitly checking whether ∆ =

0. If a fault is detected (i.e., ∆ 6= 0), it blocks the device

from producing the faulty output (either the output

from the cipher is suppressed, or an invalid signal (⊥) is

generated, or a random output is generated). This stops

the attacker from getting any meaningful information

regarding the faulty state, which makes DFA impossible.

Ideas in this direction are commonly generated from

coding & information theory, such as linear parity [27],

non-linear (n, k) codes [31], etc.

2.3 Evolution of Infective Countermeasures

It is commonly argued that the concept of explicit equal-

ity checking in detection based countermeasures is sub-
ject to bypassing that step (e.g., [29] or [45, Section 3]).

Generally, such comparisons rely only on one bit (like

the zero flag in a microcontroller); any attack that is able

to flip this bit renders the whole countermeasure use-

less2. Although, injecting two faults in one invocation of
cipher is not a model commonly used; it is commented in

[35] that, one-bit flip is an incidence which may happen

“by chance”. If the attacker is able to flip this particular

bit, even with low probability, the entire security pro-

vided by the detection based countermeasure would be

nullified. In general, the motivation for the improved

version of the detection based countermeasures came

from removing the single point of failure. It is stated in

[45, Section 3]: “. . . the usage of a decision procedure

violates the guarantee of developing a highly reliable

hardware fault immune cryptographic protocol”. More

discussion on the philosophy of infection can be found

at [35, Chapter 3.2.1].

The idea of infection, which avoids the dependency

of security of one bit, was first proposed in the context of

public key cryptography [45]. This proposal was claimed

to be weak (see [47]), though, this idea was followed

soon after in the public key cryptogrpahy such as [25,

13].

The concept was adopted in symmetric key setting

[26,20,23,33,46,36,21]. The infective countermeasures

proposed in [26,20] did not involve randomness, and

were attacked in [33]. The authors in [33] also speculate,

randomness may be required in such countermeasures;

although they do not present any formal proof. Anyway,

2 This case is different from the fault injection flipping only
one bit.
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all infective countermeasures proposed thereafter adopt

this idea and use randomness. Still, most schemes pro-

posed in the literature are broken soon. In fact, in our

literature survey we observe that basically 3 different

schemes are proposed which are not considered broken

by DFA.

2.4 Notations and Terminologies

Before proceeding further, we define terms and notations

that we use the subsequent parts.

– Actual & redundant computations As mentioned ear-

lier, infective countermeasures require two compu-

tations of the same cipher. These two are referred

to as actual and redundant computations; and sym-

bolically denoted as C = E1
K(P ) and C ′ = E2

K(P ),

respectively (E is the underlying cipher parameter-
ized by the secret key K with input P , and the

superscript denotes the two separate executions).

Output from the actual cipher is later infected and

made available to the attacker. The notations, C and

C ′, are used in this work to denote the output from

the actual and redundant computations, respectively.

When ∆ is computed after the full iteration of both

the actual and redundant computations are finished;

i.e., in Type I countermeasures; ∆ = C ⊕ C ′.
Also, we assume that the attacker is able to exactly

repeat the same fault, in same location and during
the same round on one particular device; as many

times she wants (as long as it is practical). Thus, we

give the attacker to exactly repeat the same fault

over temporal domain, and to make ∆ constant3.
– η We denote by η the total number of rounds of

the cipher; e.g, for AES, η = 11 (counting the initial
AddRoundKey as a separate round).

– n We use n to denote the block size of the cipher;

e.g., n = 128 for AES.

– RoundFunctionj(·), j = 1, . . . , η. We use

RoundFunctionj(p) to denote the jth round function

of the underlying cipher with the corresponding input

p, j ∈ {1, . . . , η}. Note that, it does not involve the

round key insertion.

For example, in case of AES; RoundFunction1(p) = p;

RoundFunctionj(p) = MixColumns

(ShiftRows(SubBytes(p))) for j = 2, . . . , 10; and
RoundFunction11(p) = ShiftRows(SubBytes(p)). Ba-

sically, when the jth round key kj is inserted with

3 We assume the most common fault attack model, where
the fault value is constant but unknown to the attacker; but
the same fault can be repeated over time by keeping the source
of the fault unchanged. Such model is used, for example, in
[3].

RoundFunctionj(·), it gives the actual jth round of

the cipher. In other words, RoundFunctionj(·) is the

internal diffusion within the state of a cipher (not

involving the round key).

– RoundFunction0(·) By RoundFunction0(p); we de-

note the standard (most frequent) round of a cipher,

with input p (without involving the round key). In

case of AES, RoundFunction0(p)

≡ RoundFunction2(p).

– ξ Generally, cipher designers are conservative in the

sense that the number of rounds (η) in a cipher
is kept more than that of what would be required

to reach a practical security. Often, we may not

need full η rounds of iteration to ensure a prac-

tical security. Instead, with less than η iterations

of RoundFunction0(·), together with corresponding

round key insertions; one can achieve good resis-

tance against classical cryptanalysis techniques such

as differential or linear attacks. We denote, by ξ, the

minimum number of iterations required for a cipher

to offer a practical security.

For an example, consider a reduced version of AES

with 4 RoundFunction0(·) rounds, together with cor-

responding AddRoundKeys. It can be proven to have

no differential path with probability better than

2−113 [28]. Hence, we take ξ = 4 for AES.

– R. By R, we denote an n-bit random vector. When

more than one random vectors are used, we denote

them by R0, R1, . . ., respectively. These vectors are

generated using entropy external to the cipher com-

putation, and hence uncontrollable & unknown to

the attacker. The numeric values of Ri’s change at

every invocation of the countermeasure but fixed
during the course of one invocation of the counter-

measure.

– ~0. We use ~0 to denote an n-bit vector of all 0 bits.

– ~1. Similarly, we use ~1 to denote an n-bit vector of

which most significant n− 1 bits are 0 and the least
significant bit is 1.

2.4.1 Type I

This type of countermeasures allow the two computa-

tions, E1
K(·) and E2

K(·) to finish their iterations full (η)

iterations, the difference ∆ is then obtained by XOR-

ing the outputs from the actual (C) and the redundant

cipher computations (C ′). Figure 1 shows a pictorial

view.

Then, ∆ is passed through a function τ(·), which is

parametrized by R. This τR(∆) is such that, τR(~0) =

0 ∀R; and for any ∆ 6= 0, the distribution of {τR(∆)}
is indistinguishable from the uniform distribution over

Fn
2 .



To Infect Or Not To Infect: A Critical Analysis Of Infective Countermeasures In Fault Attacks 5

C

C ′

∆ τR(∆) C ⊕ τR(∆)

E1
K

P
⊕

τ
⊕

E2
K R

Fig. 1 Type I infective countermeasures

Notice that, the attacker should not be able to de-

duce the input of τR(·) except the case when output

of τR(·) = 0. If, somehow, the attacker is able to do

so, then she can find out ∆ and hence can perform a

DFA. So, one intrinsic property of τR(·) is that, it is not
invertible, except τR(~0) = 0.

The output from τR(·) is XORed with C (the output

from the actual computation), and this is made available.

Hence, the attacker gets, C ⊕ τR(∆), which can be

interpreted as the infected output from the actual cipher.

Examples of this type of countermeasures include

the schemes in [33] (τR(∆) = R ·∆ over GF(2n) multi-

plication) or [22] (τR(∆) = N(R) ⊕N(R ⊕∆), where

N is defined as non-linear hybrid cellular automata).

2.4.2 Type II (Cipher Level)

This new type of infection is introduced in [23], and

also referred to as the cipher level countermeasure. An

schematic view is given in Figure 2. The schemes be-

longing to this type rely on the diffusion property of

the underlying cipher to spread the infection. Instead

of letting both the ciphers to run full (η) rounds, these

schemes try to identify the effect of a fault at an inter-

mediate round.

Say, the registers S0 and S1 are computing the ac-

tual and redundant computations, respectively. In the

actual round (respectively, redundant round), S0 (respec-
tively, S1) is updated only. A meaningful round refers

to either an actual or a redundant round. Then the

XOR difference, δ, is computed (δ = S0 ⊕ S1)4; and

this δ goes through a function σ(·). This function, σ(·)
is such that, it outputs ~0 only when its input is ~0. As

for the choice of σ(·), inversion in GF(28) is proposed

per SBox of AES in [23]. The choice of σ(·) in [46] is

the n : 1 OR gate, although the authors introduce/use

the term BLFN instead of OR gate. The same choice

for σ(·) with the same term is later used in [36] as

well as in its journal extension [37]. The scheme also

takes a random n-bit vector β such that, ∃k0 for which,

k0⊕RoundFunction0(β) gives β. See Section 4 for more

details on Type II countermeasures.

One special register, called the dummy register, de-

noted by S2 here, is initialized with β. In the so-called

4 In our patched version of [23] (Section 4.2), we do not
explicitly compute δ.

δ σ(δ)

S0

⊕
σ S2

S1

β

Fig. 2 Type II infective countermeasures (schematic)

dummy rounds, this register S2 is updated only (so, this

is not a meaningful round). This register S2 is updated

(with influence from δ) by the following rule:

S2 ←
{
β if no fault is injected,

β′ (6= β) if fault is injected.

During the subsequent meaningful rounds, S0 and S1

are updated with influence from S2. So, in case of a fault,

the contents of S0 and S1 are infected, which propagates

further in the subsequent rounds. This ideally makes the

final output, S0, random in case of a fault. In case of no

fault, the content of S0 and S1 are not deviated from its

actual computation – this ensures a proper execution of

the cipher. In our patched version of the LatinCrypt’12

countermeasure (proposed in [23]), we do not update

S0 and S1 during meaningful rounds.

To determine whether a dummy or a meaningful

round will take place, the authors in [23] propose to

use a random bit, λ: λ = 0 means a dummy round,

λ = 1 means a meaningful round. Also, one counter i is

looped from 1 to 2η; within this loop, RoundFunctionj
(·)’s, (1 ≤ j ≤ η) are performed, together with the

corresponding round key insertions. Further, when this
is a meaningful round (i.e., λ = 1), i is even implies

an actual round takes place, and i is odd implies a

redundant round takes place. We make the ordering of

actual, redundant and dummy rounds deterministic in
the patched version; so we do not use λ. In both [23,46], i

is initialized by 1 (odd); which means, a redundant round

always precedes the corresponding actual round. In the

modified scheme in [36], however, the order of execution

of actual and redundant rounds are not predetermined.

2.5 Necessity and Sufficiency of Randomness

It is well-known from [33] that, randomness is required in

infective countermeasures. However, they do not present

any formal proof; rather, their comment is more of an

informal case-study with AES-128 encryption.

The attacker basically exploits the information she

gains from DFA to derive the key K. If Z is the informa-

tion obtained from DFA, then the amount of information
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available about the key can be measured by the mutual

information between random variables K and Z:

I(K;Z) =
∑

k∈K

∑

z∈Z
Pr(k, z) log

(
Pr(k, z)

Pr(k) Pr(z)

)
.

It is easy to see that I(K;Z) = 0 if and only if K

and Z independent. Therefore, it is sufficient that Z is

uniformly distributed to make DFA fail.

For instance, in Type I infective countermeasures,

the attacker gets a Z = C ⊕ τR(C ′ ⊕ C) as an output.

Therefore, Z must be random in order to be indepen-

dent of key K. Thus for infective countermeasure it is

necessary and sufficient to have τR(C ′ ⊕ C) random.

On the other hand, in the detective countermeasure,
once we detect the faulty cipher, we can simply output

Z as constant. Here randomness of Z is not necessary

(random Z works too).

Detection based countermeasures set the mutual

information zero by suppressing the (faulty) output. In

contrast, infection based countermeasures apply one-
way functions on the output difference (which contains

non-zero mutual information regarding the secret key)

to reduce the mutual information to zero.

Non-zero mutual information between K and Z

could imply an information leakage. For example, the

mutual information between the XOR of the non-faulty

and the faulty ciphertext, with the key is 32-bits in case

of the diagonal fault attack on AES [39]. For the design

choice of Remark 1, the mutual information is of 1-bit

in case of a fault, hence we modify it to Algorithm 2(b)

(Section 3.3). More quantitative analysis in this direction

can be found in [30], where the authors used CLEFIA as

the benchmark cipher for various DFA approaches.

In all our proposed countermeasures/patch, the mu-

tual information between the key K and the observation

Z which is available to the attacker is zero (in case

of a fault). Therefore, the attacker does not get any

information regarding the key in case of a fault.

2.6 Scope and Applicability

The working procedure of infective countermeasures

relies on the (non-zero) difference between the actual

and redundant computations of the cipher. Hence, if

both the actual and the redundant computations are

infected by identical faults, which result in the same

output in both cases, the corresponding difference will be

zero. In this case, the countermeasure will treat this as

non-faulty; and make the faulty output (from the actual

cipher) available to the attacker (without infection).

Hence, this type of repeated faults can be used to make

the countermeasure invalid. We call this type of faults

a double fault.

However, repeating the identical fault in spatial do-

main would require a very strong adversary model. Such

model, although shown to be effective through experi-

ment (the only case we know is, [42]), is not common. In

a more common model, the authors assume that the at-

tacker can repeat the fault in time domain (such as, the
model used in [3] to break an infective countermeasure).

Dealing with double faults is rather tricky in infective

countermeasure; and we leave this problem open for

future research.

Besides double faults, infective countermeasures can-

not provide safeguard against few other fault models;

for example, Ineffective Fault Attack [14]. Another type

of fault attack, known as Collision Fault Attack (CFA)

[12], injects transient fault near the start of the cipher

(E) execution. This attack works very similarly to DFA.

Suppose, one computation is allowed to run as-is, where

the other computation is injected with a fault (near the

beginning of the cipher execution). If, it happens that,

both the faulty and non-faulty outputs are equal; then

the situation is similar to attacking the inverse of the

cipher (E−1) by DFA (as the fault can be thought to be

injected near the end of execution of E−1). The attacker

may be able to deduce information regarding the early

rounds of the cipher (or equivalently, the later rounds of

E−1). This may eventually help her to find information

on the secret key (by an analysis similar to DFA on

E−1). We note that, while such model cannot be pro-

tected by Type I countermeasures (as both the actual

and redundant computations produce equal output); our

patched version of the LatinCrypt’12 countermeasure
(Section 4.2) can indeed protect against such an attack.

2.6.1 Impeccable Circuits/CRAFT

The authors in [1] presented a novel idea, called impecca-

ble circuits, which allows fault detection using error de-

tecting codes. The idea is later extended to a full-fledged

cipher named CRAFT [9]. Impeccable circuits/CRAFT can

detect faults up to some extent (the fault coverage can

be changed by changing the underlying error detection

code). Also, both the constructions can detect double

fault.

In comparison to that, an infective countermeasure

works on a different principle. It does not rely on an error

detecting/correcting code, but relies on the difference

of the final/intermediate output. While the impeccable

circuits/CRAFT cannot detect faults beyond the permis-

sible coverage of the error detecting code; an infection

countermeasure can take action any such fault, except

double fault. However, we note that an infection scheme
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can be made protected against double faults by employ-

ing a similar concept (different encodings for the actual

and the redundant computations).

2.6.2 Statistical Ineffective Fault Attack (SIFA)

SIFA [17] is a type of IFA, which also makes use of

statistical information. Infective countermeasures do

not have any inherent protection against SIFA (or other

IFA).

At the same time, it is worth noticing that, SIFA

does not necessarily phase out infective countermeasures

in general. We point out the following use-case for infec-

tive countermeasure in presence of a SIFA model. SIFA

requires a large number of faults (typically of the order
of thousands), implying an extensive control over the

target device. DFA, on the other hand, has been shown

to work with as low as only one fault. Hence, SIFA is

more complex in nature compared to DFA. So, there

could be scenarios where the attacker is unable to apply

SIFA may be able to mount DFA; implying the necessity

of a DFA protection.

Basically, the applicability for our countermeasures
can be compared to that of CRAFT [9]. It may be noted

that, although CRAFT is published after SIFA, it is not

protected against SIFA (this is acknowledged by the

authors of CRAFT in [9, Section 1]).

In a nutshell, we highlight the fault attacks that are

generally considered outside the scope of an infective

countermeasure, together with corresponding counter-

measure(s):

– Stuck-at/hard Since the algorithmic description of

the countermeasure can be altered in such cases, we

recommend to employ some dedicated device that is

able to thwart a fault injection (see Section 1).

– Double fault Injecting identical faults at both the

actual and the redundant computation can skip the

infection mechanism. This can be avoided by using

different encodings for the two computations (e.g.,

similar to CRAFT). If the attacker cannot inject iden-

tical faults to more than two computations, then

more redundant computations (such as, triplication

[6]) can be used.

– IFA (SIFA) Any ineffective fault analysis, includ-

ing SIFA, can bypass the infective mechanism as an

ineffective fault does not result in a change of the

target state. In such a case, one can employ some

form of error correction and/or a masking counter-

measure as used in the recent SIFA countermeasures

[40,43,15].

It may be noted that, such countermeasures either are

beyond the control of a cipher designer; or can be non-

trivial/costly to design or implement compared to an

infective countermeasure. Hence, in cases where only

DFA protection is solicited, infective countermeasures

can be used.

2.7 Connection with Side Channel Countermeasures

Side channel countermeasures are not directly consid-
ered in this work, as we focus on DFA. Here we would

like to note that SCA is already known quite powerful.

If the attacker has access to side channel information

then she can choose the degree to which she can use it to

obtain further information – she should not be limited

to recover only ∆. More precisely, she can target other

potentially useful registers as well; which may allow her

to recover the secret key directly, thereby a separate

DFA would not be required. So, if a side channel adver-

sarial model is considered within the scope, the infection

component as well as both the actual and the redundant

computations are required to be protected by some SCA

countermeasure. Hence, we implicitly assume the actual

and the redundant computations are already protected,

and comment on protecting the infection component

here.

In general, the hiding countermeasures [34, Chapter

7] that aim at decreasing the SNR (by increasing noise,

or decreasing signal) require minimal changes to the

underlying cipher, as the countermeasures are applied

at the implementation level. Hence we believe adopting

such countermeasure would be relatively straightforward

on top of our countermeasures.

On the other hand, the masking countermeasures

[34, Chapter 9] rely on randomizing the intermediate

variables so that the power leakage is independent of

those variables. Masking is applied on the algorithmic

level, so applying it to the infective countermeasures

could be of interest. In this regard, we note the following

observations:

– For the multiplication based schemes (Section 3.3.1),

masking can be applied by following the approach

similar to [33]. This is done in Algorithms 3(a) and

3(b) (Section 3.3.1).

– For the derivative based scheme (Section 3.3.2), the

underlying cipher is reused as the building block.

Therefore, only the difference (∆) needs to be pro-

tected by masking. This can be done, for example, by

computing ∆′ = C⊕C ′⊕R′ and redefining τR(∆) as

τR(∆′, R′) = ER(R′)⊕ER(∆′) where R′
$← Fn

2 with

R′ 6= C ⊕C ′,~0. The additional cost incurred for this

protection would be that of an n-bit ⊕ operation

and generation of an n-bit random vector R′.
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– For the patched version of the LatinCrypt’12 coun-

termeasure (Section 4.2), Eve can only target those

steps where S2 is updated (Lines 5, 6, 7, 9 of Al-

gorithm 6), as S0 and S1 are presumably SCA pro-

tected. However, one may notice that S2 is initial-

ized with β (which is randomly generated) (Line 1).

Hence, β inherently works as a mask to S2, and no

other masking would be necessary.

3 Type I Constructions

We describe the Type I schemes here with adequate

details. As already mentioned, the existing schemes in

Type I category can be classified in two sub-categories;

we refer to them as multiplication based (Section 3.1)

and derivative based (Section 3.2). We then propose

our constructions of Type I constructions (Section 3.3)

followed by the corresponding benchmarking results

(Section 3.4).

3.1 Multiplication Based Constructions

To the best of our knowledge, the earliest infective coun-

termeasure, which is still unbroken, is based on the

GF(2n) multiplication proposed in [33] (see Algorithm

1). In our terminology, here τR(∆) = R ·∆, where (·)
refers to a GF(2n) multiplication and given R 6= ~0, ~1.
If R = ~0, then C is available without infection to the

attacker. On the other hand, if R = ~1, then she gets

C ⊕∆ as the output; from where she can compute ∆

(as she knows C).

Hence, for AES, one has to implement a GF(2128)

multiplication. However, the authors acknowledge that

the GF(2128) multiplication is costly in hardware, al-

though they do not provide any benchmarking result. So,

they come up with the idea of substituting the GF(2128)

multiplication by sixteen independent GF(28) multipli-

cations (which replace the GF(2128) multiplications in

Lines 1, 2, 5 of Algorithm 1). The authors claim, the
security of the scheme will remain unchanged, given

those sixteen random multipliers are independent.

While the original proposal remains unbroken so far;

this lightweight alternative is broken soon afterwards

[7]. We describe the attack here. Assume the attacker is

able to replicate the same fault value in the temporal

domain (i.e., the fault value is constant in all the injec-

tions). Under this assumption, the lightweight variant

will restrict two particular values to output per GF(28)

multiplication; corresponding to the cases when R = ~0

or ~1. So, per GF(28) multiplication, it only outputs 254

values. One of the missing values is the non-faulty output

(C), whereas the other is the faulty output (C ⊕∆). As

explained earlier, leaking C ⊕∆ can lead to a successful

DFA. This breaks the security claim of the lightweight

proposal, as attacker can exhaust 254 cases (then repeat

the procedure till all the key bytes are recovered). For

the original GF(2128) multiplication for AES, it would re-

quire 2128 repeats of the same fault and storage; making

it impractical.

3.2 Derivative Based Constructions

The generic schemes of the derivative based category

follow the concept of the Boolean derivative. More pre-

cisely, they use a non-linear function N(·) and compute

τR(·) as the derivative of N(·) at ∆:

τR(∆) = N(R)⊕N(R⊕∆).

In [21], the authors proposed such a construction

by choosing a quadratic N . However, this scheme was

subsequently broken in [3]. Recall from Section 3 that

τR(·) has to be non-invertible. This claim was shown

to be incorrect in [3], under the assumption that at-

tacker can keep ∆ a constant. Note that derivative of a
quadratic function is affine; further the attack generates

a sequence where in each bit, there is only one term of

the form ∆iri, and rest of terms are independent of R.

So for a constant ∆, it easy to find the value of ri by

seeing the distribution of these bits. Later, the authors
of [21] opt for more complex and high degree function

N(·) based on non-linear cellular automata in [22]; and

this is the only yet unbroken proposal in this category,

to the best of our knowledge.

3.3 New Type I Schemes Proposed in This Work

With the backdrop presented, we now introduce our pro-

posals. The novelty of our proposals lies in the simplicity

and lower implementation cost.

3.3.1 Multiplication Based

As GF(2n) multiplication has a significant hardware

(where n is generally 128), we propose two lightweight

alternatives. First we present a scheme that requires a

significant amount of randomness in Algorithm 2(a). It

generates n fresh random vectors (each of which is of

n bits) R0, . . . , Rn−1 (none of which is equal to ~0,~1).

They are used to generate a random n×n binary matrix

M , which is then multiplied (over GF(2)) with ∆ to

constitute τ(·)(·).
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Algorithm 1 Multiplication based infective countermeasure: FDTC’12

Input: C, C′; R0, R1, R2 . R0, R1 6= ~0; R2 6= ~0,~1
Output: C if no fault; random, otherwise
1: a← R2 · (C ⊕R0) . · refers to GF(2n) multiplication
2: b← R2 · (C′ ⊕R1)
3: c← a⊕ b
4: d← R0 ⊕R1

5: e← R2 · d
6: f ← (C ⊕R0)⊕ c
7: g ← f ⊕ e . g = (C ⊕R0)⊕R2 · (C ⊕ C′)
8: return g ⊕R0

Since this scheme requires a total of n2 bits of en-

tropy; therefore, it may not appear suitable where fre-

quent random number generations is not easy. Hence,

instead of using n2 random bits; we next propose another

scheme that uses 2n bits of entropy, which is described

in Algorithm 2(b). We define the ith cyclic rotation, ρi(·),
on an n-bit vector ~a = (a0, a1, a2, . . . , an−1), recursively

as:

ρ0(~a) = ~a;

ρ1(~a) = (an−1, a0, a1, . . . , an−2);

ρi(~a) = ρi−1(ρ1(~a)) for i = 2, . . . , n− 1.

For example, with the vector ~a = (a0, a1, a2, a3);
we have ρ1(~a) = (a3, a0, a1, a2); ρ2(~a) = ρ1(ρ1(~a)) =

ρ1(a3, a0, a1, a2) = (a2, a3, a0, a1); and so on. Once we

generate an n-bit random vector R0 ( 6= ~0,~1); we create

an (n− 1)×n binary matrix M whose ith row is the ith

cyclic rotation of R0 (for i = 0, . . . , n−2). Following this,

we augment another randomly generated n-bit binary

vector R1 ( 6= ~0,~1) as the last row to M (to make it an

n× n binary matrix). Then, we multiply M and ∆ over

GF(2).

In both the algorithms, if the attacker can guess M ,

then she will be able to deduce information about ∆.

However, guessing M succeeds with probability 1
2n2 for

Algorithm 2(a), and 1
22n for Algorithm 2(b).

Remark 1 One may notice, the structure of M in our

second alternative (Algorithm 2(b)) is same as a cir-

culant matrix, except the last row (it would be a cir-

culant matrix if last row would be equal to n − 1th

cyclic rotation of R0). However, we observe that circu-

lant M reveals one bit of entropy of ∆. Suppose, ∆ =

(∆0, ∆1, ∆2, . . . ,∆n−1)> andR0 = (r0, r1, r2, . . . , rn−1).

So, we have:

τR(∆) = M ·∆

=




r0 r1 r2 . . . rn−1
rn−1 r0 r1 . . . rn−2

...
...

...
. . .

...

r1 r2 r3 . . . r0







∆0

∆1

...

∆n−1




=

[
n−1⊕

i=0

ri∆i, rn−1∆0 ⊕
(

n−2⊕

i=0

ri∆i+1

)
, . . . , r0∆n−1⊕

(
n−1⊕

i=1

ri∆i−1

)]>

XORing all the bits of τR0
(∆) will give:

⊕n−1
i=0

⊕n−1
j=0 ri∆j

=
(⊕n−1

j=0 ∆j

)
(⊕n−1

i=0 ri

)
= (parity of ∆) AND (parity of R0). Now,

since we assume that the attacker is able to replicate

the same ∆ over multiple runs; hence ∆ is constant, so

is parity of ∆. Also, R0 is random, which means; its

parity is 0 with probability 1
2 . Hence,

(parity of ∆) AND (parity of R0)

=

{
0,with probability 1 ⇐⇒ parity of ∆ is 0

0,with probability 1
2 ⇐⇒ parity of ∆ is 1

.

So, just by XORing all the bits, attacker is able to

deduce the parity of ∆. This gives the attacker 1-bit

of mutual information between the observation C ⊕ a
and the key, in case of a fault. For this reason, this idea

is modified to Algorithm 2(b) which is free from this

shortcoming.

Side Channel Protection (Masking) One may note that,

the authors [33] do not explicitly compute ∆ from C

and C ′. This is because they are careful to avoid what

they call combined attacks. Such attacks work by first

injecting the fault to cause a non-zero ∆, then to re-

cover ∆ by side channel attacks (such as the power
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Algorithm 2(a) Multiplication based infective counter-
measure (1st variant)

Input: C;C′ . |C|, |C′| = n
Output: C if no fault; random, otherwise
1: ∆← C ⊕ C′

. ∆ is represented as an n-bit vector
2: for i← 0; i < n; i← i+ 1 do

3: Ri
$← Fn2

4: M ←


R0

R1

...
Rn−1


5: a←M ·∆

. Multiplication is over GF(2)
6: return C ⊕ a

Algorithm 2(b) Multiplication based infective counter-
measure (2nd variant)

Input: C;C′ . |C|, |C′| = n
Output: C if no fault; random, otherwise
1: ∆← C ⊕ C′

. ∆ is represented as an n-bit vector

2: R0, R1
$← Fn2

3: M ←


R0

ρ1(R0)
...

ρn−2(R0)
R1


4: a←M ·∆

. Multiplication is over GF(2)
5: return C ⊕ a

leakage). In this way, attacker can solve for ∆ from the

side channel information, the knowledge of ∆ further

helps to recover the secret key by utilizing DFA. The

authors first mask C and C ′ by XORing them with two

random vectors R0 and R1 respectively; then applying

the GF(2n) multiplications (Lines 1, 2 in Algorithm 1);

and later canceling the effect of unwanted masks. As
our focus is on DFA in Algorithms 2(a) and 2(b), we

do not consider masking ∆. In situation, where SCA

protection is needed, the following Algorithms 3(a) and

3(b) can be used (as replacement for Algorithms 2(a)

and 2(b), respectively). As noted in Section 2.7, the

implicit assumption to apply Algorithms 3(a) and 3(b)

is that the rest (the actual and redundant computations)

is already protected against SCA. As for the overhead

of the masking, n-bit ⊕ (eight times) and · (two times)

are to be performed, apart from generating two n-bit

random vectors.

3.3.2 Derivative Based

Since the constructions in this category use the deriva-

tive of a function, our idea is to use any existing cipher,

rather than the usual approach of using an ad-hoc so-

lution. With our usual notations, this construction can

be described as, τR(∆) = ER(~0)⊕ER(∆), E being any

standard cipher. Figure 3 shows the construction.

We do not impose any restriction on E, so it can be

taken as the underling cipher or can be another cipher.

However, to keep overhead low, we recommend to reuse

the underlying cipher or use an optimized implementa-

tion/lightweight cipher.

Advantages This strategy gives us a few advantages

over the usual ad-hoc approaches, such as:

1. The underlying cipher is already analyzed thoroughly

for weakness. This gives us more confidence (as break-

ing such a countermeasure would probably imply

breaking the cipher used); particularly when com-

pared to the new and ad-hoc approaches.

2. The cipher to be protected can be reused. This avoids

the necessity to build a new hardware/code afresh

for a new component. In that case, we only have

performance penalty in terms of throughput.

Further, as already mentioned, instead of the full ci-
pher; ξ rounds of RoundFunction0(·), together with

the corresponding round key insertion can be used

with minimal compromise to security.

3. One may notice, for example, the derivative based

construction in [22] is only defined for block size,

n = 128. Although, in theory, the concept can be

generalized for other block sizes (e.g., for a 64-bit

block); one has to go through the lengthy design pro-

cess, and has to guarantee its security from scratch.

In our construction, one can easily choose from a

pool of already analyzed ciphers (including the un-

derlying cipher itself).

Remark 2 Since this type of construction does not re-

quire inversion, any hash function can be used in place

of E. For a hash function H (which does not involve a

key), we propose to use τR(∆) = H(R)⊕H(R⊕∆).

Remark 3 If the cipher E is invertible, then a new con-

struction of τ(·)(·) can be given. The cipher, E, takes a

random vector R as its key and ~0 as input. Then it XORs

∆ with ER(~0). This is then decrypted using the same key

R. So, τR(∆) is given by: τR(∆) = E−1R (ER(~0)⊕∆). We

call this type of construction as encrypt-XOR-decrypt

based design. A pictorial description is given in Fig-

ure 4. This may, however, cost more due to inverse key

schedule, inverse SBox etc. during decryption.

3.4 Benchmarking Results for Type I Schemes

Here, we present benchmarking results for Type I schemes.

The extra component needed to provide external ran-
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Algorithm 3(a) Multiplication based infective counter-
measure (1st variant) with masking

Input: C;C′ . |C|, |C′| = n
Output: C if no fault; random, otherwise
1: for i← 0; i < n+ 2; i← i+ 1 do

2: Ri
$← Fn2 . R0, R1 6= ~0

3: M ←


R2

R3

...
Rn+1


4: a←M · (C ⊕R0) . · refers to GF(2n) multiplication
5: b←M · (C′ ⊕R1)
6: c← a⊕ b
7: d← R0 ⊕R1

8: e←M · d
9: f ← (C ⊕R0)⊕ c

10: g ← f ⊕ e
. g = (C ⊕R0)⊕M · (C ⊕ C′)

11: return g ⊕R0

Algorithm 3(b) Multiplication based infective counter-
measure (2nd variant) with masking

Input: C;C′ . |C|, |C′| = n
Output: C if no fault; random, otherwise
1: ∆← C ⊕ C′
2: R0, R1, R2, R3

$← Fn2 . R0, R1 6= ~0

3: M ←


R2

ρ1(R2)
...

ρn−2(R2)
R3


4: a←M · (C ⊕R0) . · refers to GF(2n) multiplication
5: b←M · (C′ ⊕R1)
6: c← a⊕ b
7: d← R0 ⊕R1

8: e←M · d
9: f ← (C ⊕R0)⊕ c

10: g ← f ⊕ e
. g = (C ⊕R0)⊕M · (C ⊕ C′)

11: return g ⊕R0

Table 1 Software benchmarking results (clock cycles, code size) for Type I schemes

Construction
Clock cycles Code size

Reference
AVR MSP AVR MSP

AES Encryption

(unprotected)

1.00

(14775)?
1.00

(14842)?
1.00

(2444)†
1.00

(3234)†
–

GF(2128) Multiplication 2.28 2.57 0.28 0.47 [33], Section 3.1

Algorithm 2(b) 41.86 34.06 0.28 0.35 Section 3.3.1

Cellular Automata ≈ 2700 ≈ 3400 0.82 0.88 [22], Section 3.2

AES Encryption

Derivative‡
z = 11 1.65 1.81 1.42 1.35

Section 3.2
z = 4 0.64 0.63 1.06 1.36

?† Parenthesized values are the benchmarking costs in clock cycles (?) or bytes (†)
‡ z is a dummy parameter that can take any integer from [ξ, η]

R

•

~0 ER ER

⊕

∆

Fig. 3 Derivative based construction of τR(∆): Our design

R

•

~0 ER

⊕
E−1R

∆

Fig. 4 Encrypt-XOR-decrypt based design of τR(∆)

domness is not considered, following the previous papers

(such as [2]). We consider AES encryption as the under-

lying cipher, so we implement it to get a perspective of

overhead (so, n = 128, η = 11).

For the GF(2128) multiplication in [33], we choose

the irreducible polynomial as, x128 +x7 +x2 +x+1 (the

same polynomial used in AES-GCM). Also, since we do

not consider the combined attacks (i.e., the fault attacks

coupled with side channel attacks; see Section 3.1), we

perform this field multiplication only once (instead of 3

times, as in Algorithm 1). We only implement Algorithm

2(b) (second hardware friendly alternative, see Section

3.3.1), as the other alternative (Algorithm 2(a)) can be

considered a part of it. We also implement the non-linear

hybrid cellular automata based design in [22] (Section

3.2). For the derivative based construction that relies

on a standard cipher, we take AES encryption.

All Type I schemes are implemented as stand-alone

module, which means; one has to account for the addi-

tional clock cycles/circuitry needed to run the actual

and the redundant cipher, as well as other subsidiary

modules (such as, XORing the outputs of the actual

and the redundant ciphers etc.).

For software, we implement two versions of the

derivative and encrypt-XOR-decrypt based implemen-

tations; corresponding to z = 4 and z = 11, where we

consider the cipher constituted by z-rounds of Round

Function0(·), with corresponding AddRoundKeys. Note
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that z is a parameter, whereas ξ is a constant for a

given cipher (e.g., ξ = 4 for AES). So, z can take any

integer value from [ξ, η]. Such reduced round version

helps to reduce latency. In Table 1, we present the soft-

ware performance results (both the clock cycles and

code size) of our Type I proposals, along with the exist-

ing ones. These are given relative to 1.00× that of the

unprotected AES encryption. The data presented here

are taken as the average of multiple runs. We use open

source codes available in FELICS tool [16] for AVR and

MSP architectures.
As it can be seen, the derivative scheme based on

AES (with z = 4) outperforms other schemes in software

(0.64× in AVR and 0.63× in MSP) in terms of clock

cycles. Technically, these are equivalent to 8 rounds of

AES, minus the key schedule. In terms of relative code

size, the Algorithm 2(b) works similar to, if not better,

than a single GF(2128) multiplication [33].

The data in the previous table may appear counter-

intuitive; particularly noticing the GF(2128) multiplica-

tion takes less clock cycles than the matrix multiplica-

tion in Algorithm 2(b). However, one should keep in

mind that:

1. All implementations are quite basic. There are scopes

to optimize the codes keeping clock cycles/code size

in mind. The reason behind this is to get a fair

comparison among the constructions. For example,
the matrix multiplication in Algorithm 2(b) is done

on bit-by-bit basis. In the 8-bit AVR microcontroller,

this can be sped up by using byte-by-byte operations.

2. The FELICS framework takes the input and output

test vectors in (arrays of) bytes. This is helpful, e.g.,

for AES; but causes extra overhead for bit-oriented
constructions. For the bit-oriented matrix multipli-

cation in Algorithm 2(b), one has to go through

additional conversion from byte to bit (at the begin-

ning) and from bit to byte (at the end); which adds

unnecessary costs.

As for the hardware benchmark, we choose the Spar-

tan 3 (3s1500fg676-4) and Virtex 6 (6vcx75tff484-1)

FPGA families, and report the results in Table 2. Here,

our hardware friendly approach, Algorithm 2(b) outper-

forms all other designs in both the families. In fact, the

relative amount of resource utilization in the devices are

negligibly small.

4 Type II (Cipher Level) Constructions

Here we focus on the Type II constructions for infective

countermeasures. At first, the n-bit random vectors

β and k0
5 are so chosen that, RoundFunction0(β) =

5 It is to be observed that k0 is not a round key.

β⊕k0. Finding such pairs is easy in SPN ciphers – one

can set a β randomly, then compute, k0 = β⊕
RoundFunction0(β). Notice that, β uniquely identifies

k0; so once a k0 is fixed (based on a β), for β′ ( 6=
β), RoundFunction0(β′) ⊕ k0 will not give β. Both β

and k0 are (re-)generated at each invocation of the

countermeasure, but are fixed during one invocation.

These are kept secret from the attacker.

However, finding such (β, k0) pair for Feistel con-

structions can be tricky in general. In a Feistel cipher,

the f function can map n1 bits to n2 (6= n1) bits — in

such a case, such k0 does not exist (as length of β and

k0 are different). Further, the round keys can be non-
linearly mixed (in contrast to the SPN ciphers, where

these are commonly XORed). In this case, one has to go

through a rigorous computation to get k0 for a given β,

which may turn out to be quite costly. Hence we keep

the Type II schemes for Feistel ciphers out of scope for

this work. There can be Feistel ciphers, where these

countermeasures are applicable at ease; but it has to be

possibly checked on a case by case basis, and may not

be generalized.

We use the following notations: ¬ for logical negation,
∧ for logical AND, ∨ for logical OR, + for arithmetic

addition, × for arithmetic multiplication, d·e for the

ceiling function, x ·~y for scalar x multiplication with the

vector ~y over GF(2), ]x(~y) for number of occurrence(s)

of element x in vector ~y.

We now briefly describe how infection in [23] works

(see Algorithm 4). A variable, i, loops from 1 until it

reaches 2η. At each round, a randomly generated bit,
λ, determines whether this round will be a dummy

round (i is not incremented) or a meaningful (actual or

redundant) round (i is incremented by 1). When λ = 0,

a dummy round occurs. It sets the value β to the register

S2 (S2 is also initialized with β). When λ = 1, an actual

or a redundant round occurs, depending on whether i

is even or odd, respectively.

Since, λ = 1 makes i from even to odd, or vice-
versa; both the actual and redundant rounds are carried

out η times. The two registers, S0 and S1 are used to

compute the actual and redundant rounds, respectively.

The variables a and b are updated such that:

a =





0 if λ is 1 and i is even (actual round),

1 if λ is 1 and i is odd (redundant round),

2 if λ is 0 (dummy round);

b =

{
0 if λ is 0 (dummy round),

di/2e otherwise (meaningful round).
.

Effectively, a determines which register (among S0, S1,

S2) to update; and b determines which RoundFunction(·)
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Table 2 Hardware benchmarking results (FPGA) for Type I schemes

Construction
Spartan 3 Virtex 6

Reference
Slices

Slice
F/Fs

4-input
LUTs

Slice
Registers

Slice
LUTs

AES Encryption
(unprotected)

1931
(14)

785
(2)

3551
(13)

540†
1402
(3)

–

GF(2128) Multiplication
8398
(63)

–
16496
(61)

–
7264
(15)

[33]
Section 3.1

Cellular Automata
214
(1)

136†
406
(1)

136† 210†
[22]

Section 3.2
Algorithm 2(b) 91† 130† 88† 130† 56† Section 3.3.1

(·) indicates % resource utilization † indicates negligible utilization

(·) and which round key/k0 to use (Sa ←
RoundFunctionb(Sa)⊕ kb, Line 8).

Since we start i from 1 (odd), the redundant round

always precedes the actual round. Three back-up regis-

ters, T0, T1, T2 are also updated based on a. Basically,

Ta holds a copy of Sa. Then ∆ is computed by T0 ⊕ T1,
which is passed through a function σ(·) which has the

property of returning ~0 as output if the input is ~0. The

variable c is updated with the following rule:

c =





σ(T0 ⊕ T1) if λ is 1 and i

is even (actual round),

~0 otherwise.

Basically, c determines whether the output of σ(T0⊕T1)

(which is ~0 for no fault, or non-zero for a fault) can be
infected to S2 (Line 11) and S0 (Line 12). The authors

propose to use inversion in GF(28) per SBox of AES as

σ(·)6.

Finally, to infect the fault which is injected at the

last round (when i = 2η− 1 or 2η); the authors propose

to update S0 one last time based on S2 (Line 14: S0 ←
S0 ⊕ RoundFunction0(S2)⊕ k0 ⊕ β). This ensures, any

infection passes through at least one RoundFunction0
(·).

If no fault is injected, then both the actual and

redundant states (S0, S1) as well as T0, T1 contain the

same computation of the cipher; and the dummy state

S2 as well as T2 contain β. Injecting a fault during

a dummy round (λ = 0) will not give attacker any

meaningful information. If a fault is injected during an

actual round (S0), then it will infect both S0 and S2

(Lines 12, 13). Note that, this infection will spread in S0

in the subsequent actual rounds. Also, notice that, the c

is zero for a redundant round, that is due to the fact that

the corresponding actual round is not computed (but

the redundant round is computed). Now, the infection

in S2 will change the subsequent update of S2 from β

6 However, they keep the choice for σ(·) relaxed, so other
σ(·) can also be used with their scheme.

(Line 8); this will change T2 from β (Line 9). Now that

T2 6= β, in all the subsequent rounds (actual, redundant

and dummy alike) T0, T1 and T2 will be infected further.

In turn, this will infect subsequent S0 and S2 further.

Finally, each of S0, S1, S2, T0, T1, T2 will contain random

values.

If the attacker chooses a redundant round (when S1

is updated) to inject a fault, then it will cause infection

to S0 and S2 in the next actual round. Then, by a similar

process, all three registers will be infected.

Despite its promise, this first cipher level protection

was attacked soon afterwards in [7], and later in [46].

The basic observation that leads to the attack is, when

a fault is injected at the last round (i = 2η − 1 or

2η), infection passes through only one RoundFunction0
(·) (Line 14). One round of diffusion is not generally

sufficient to resist Eve to recover information on the

faulty state. Hence, attacker can still perform DFA by

injecting at the last round of the cipher computation.

The CHES’14 countermeasure, given in [46] (see

Algorithm 5), is similar to that of the LatinCrypt’12.

The variable, c is still updated the same way, but it

now returns a bit instead of an n-bit vector; as σ(·) now

returns 1-bit as output (the n : 1 OR gate, denoted by

BLFN in the paper, is chosen as σ(·)). Another major

difference is, this scheme computes another 1-bit variable

d, which is updated such that (Line 8):

d =

{
σ(S2 ⊕ β) if λ is 0 (dummy round),

0 otherwise (meaningful round).

Then, if (c ∨ d) is 1, then S0 is substituted by S2 (Line

11: S0 ← (¬(c ∨ d) · S0)⊕ ((c ∨ d) · S2). This overwrites

the content of S0, and makes it random, as content of

S2 (= β) is random. Figure 5 depicts the work-flow. We

next show why this is a problem.

4.1 Critical Look at CHES’14 Countermeasure

We would like to point out that the scheme proposed

in CHES’14 [46] does not fit in the philosophy of in-
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Algorithm 4 Infective countermeasure: LatinCrypt’12
(for SPN)

Input:


P

β; k0

round keys kj ; j = 1, . . . , η

derived from K

. RoundFunction0(β) = β ⊕ k0

Output:

{
EK(P ) if no fault

random otherwise

1: S0 ← P . Actual state
S1 ← P . Redundant state
S2 ← β . Dummy state

2: T0 ← 0; T1 ← 0; T2 ← β
3: i← 1
4: while i ≤ 2η do

5: λ
$← F1

2

6: a← (i ∧ λ)⊕ ((¬λ)× 2)
7: b← di/2e × λ
8: Sa ← RoundFunctionb(Sa)⊕ kb
9: Ta ← Sa ⊕ T2 ⊕ β

10: c← (λ ∧ (¬(i ∧ 1))) · σ(T0 ⊕ T1)
11: S2 ← S2 ⊕ c
12: S0 ← S0 ⊕ c
13: i← i+ λ

14: S0 ← S0 ⊕ RoundFunction0(S2)⊕ k0 ⊕ β
15: return S0

Algorithm 5 Infective countermeasure: CHES’14 (for
SPN)

Input:



P

β; k0

security level t (≥ 2η)

round keys kj ; j = 1, . . . , η

derived from K

. RoundFunction0(β) = β ⊕ k0

Output:

{
EK(P ) if no fault

random otherwise

1: S0 ← P . Actual state
S1 ← P . Redundant state
S2 ← β . Dummy state

2: i← 1; q ← 1
3: rstr ← Ft2 3 ]1(rstr) = 2η
4: while q ≤ t do
5: λ← rstr[q]
6: a← (i ∧ λ)⊕ ((¬λ)× 2)
7: b← di/2e × λ
8: Sa ← RoundFunctionb(Sa)⊕ kb
9: c← (λ ∧ (¬(i ∧ 1))) ∧ σ(S0 ⊕ S1)

10: d← (¬λ) ∧ σ(S2 ⊕ β)
11: S0 ← (¬(c ∨ d) · S0)⊕ ((c ∨ d) · S2)
12: i← i+ λ
13: q ← q + 1

14: return S0

Yes

c← 1

No
c← 0

Yes

d← 1

No
d← 0

1

Meaningful
round

fault?

c ∨ d? S′
0 ← S2 = β

Dummy
round

fault?

Fig. 5 Fault detection work-flow in CHES’14 countermeasure

fective countermeasures, rather it is a fault detection

technique. Being a detective countermeasure, [46] does

protect a cipher from DFA. However, at the same time,

it is susceptible to 1-bit judgment condition, as dis-

cussed in Section 2.3. The work of [46] is well-cited as

an infective countermeasure, such as [36,37,8,17,41].

For better understanding of both the infective and de-
tective countermeasures we feel to throw light on the

proper categorization of the [46] countermeasure.

In the subsequent parts, we reveal our analysis after

a detailed inspection of [46]. At this point, it would be

helpful to recall the philosophy of infective schemes: To

diffuse the fault to the entire state of the cipher in a non-

deterministic way. This philosophy is already described

in the existing literature, e.g., [33,22]. We show that the

CHES’14 countermeasure does not actually diffuse the

fault in the state. Thus, it does not follow the infection

philosophy.

In order to do a comparative analysis, one may recall

their descriptions from Algorithm 4 and Algorithm 5.

We start by doing dry runs of the algorithms for two

main cases (namely, for the final and the penultimate

rounds). This analysis can be easily extended for earlier

rounds.

Case 1: Last (Actual) Round Fault

We start by analyzing a fault injection in the last actual

round. Dry Run 1 traces the relevant steps of Algorithm

4. It can be seen that, once the fault is injected in the

round; it is diffused. The faulty state is stored in T0 and

continues further using c before the last call to the round

function, after which, the infected state is returned.

The CHES’14 scheme (Algorithm 5) is traced by

Dry Run 2. It can be noticed that the faulty state S′0
has no contribution to the final state that is returned

(this is merely a random state β). The 1-bit variables

c and d implicitly detect the fault in meaningful or

dummy rounds, respectively. If detected, the scheme

simply replaces the faulty state by a random state;
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– Initial conditions: i = 2η;λ = 1
– Assume fault injection in Line 8 of Algorithm 4 and in Line 8 of Algorithm 5

Dry Run 1 Algorithm 4, Lines 6 – 15
1: a← 0 . i is even
2: b← η

3: S′0
fault←−−− RoundFunctionη(S0)⊕ kη

4: T0 ← S′0 . Infection begins
5: c8 0
6: S′2 ← S2 ⊕ c
7: S′0 ← S′0 ⊕ c
8: i← 2η + 1
9: S′0 ← S′0 ⊕ RoundFunctionk0

(S′2)⊕ β
10: return S′0 . S′0 is the infected state

Dry Run 2 Algorithm 5, Lines 6 – 14
1: a← 0 . i is even
2: b← η

3: S′0
fault←−−− RoundFunctionη(S0)⊕ kη

4: c← 1
5: d← 0
6: S′0 ← S2 = β . No infection
7: i← 2η + 1
8: q ← t+ 1
9: return S′0

. S′0 is just a random state

thereby, deviating from the basic notion of infection.

We use red to indicate infection, and blue to indicate

substitution.

Case 2: Penultimate (Actual) Round Fault

Here, we investigate how a fault propagates through

multiple rounds of Algorithms 4 and 5, by targeting the

penultimate actual round for fault injection.

Like before, it can be observed from Dry Run 3

(tracing steps of Algorithm 4) and 4 (tracing steps of

Algorithm 5) that; while for the LatinCrypt’12 counter-

measure, the induced fault is diffused across the actual

rounds; the CHES’14 countermeasure ends up substi-

tuting the faulty state with a random state (= β).

It is understood from the existing literature that

detection countermeasures can be rendered useless if

the bit that senses the presence of fault is altered. In
fact, the main motivation for adopting the infective

countermeasures (instead of the detective counterpart)

was to protect the first order fault plus one-bit fault, as

stated in [45, Section 3] (note that this paper introduced

the concept of infection). If we only consider first order

faults (i.e., the attacker can only target once during the

cipher execution), then detective countermeasures would

be sufficient (no need for infection). Hence, although the

CHES’14 countermeasure protects against first order

DFA; it does not inherently imply the infective nature.

It may be noted that, the same weakness has been

pointed out in an independent work [19]. More pre-

cisely, it is mentioned in [19, Section VIII.A], “Similar

to the consistency check in the detection countermea-

sure, BLFN brings about a 1-bit judgment condition.

Therefore, the malicious modification on the result of

BLFN may lead to infection failure”. This observation

further reinforces our claim.

Hence, the inability to thwart a single-bit judgment

condition invalidates the claim that this countermeasure

is infective. A similar argument works for the modi-

fied countermeasure in [36,37], rendering it outside the

domain of the infective countermeasures.

4.2 Our Patch for LatinCrypt’12 Countermeasure

One may observe that if a fault is injected in a sufficiently

early round, then it passes through sufficient rounds of

diffusion, thus making it random to the attacker. This
is valid regardless of the nature (actual, redundant or

dummy) of the round. Hence, to make the [23] scheme

sound, what we need is the assurance that no matter

which round attacker chooses; the countermeasure goes

through sufficient rounds of diffusion.

This observation leads us to propose a simple patch
for the aforementioned scheme. Recall (Section 4) that

attacker can choose the last meaningful round as the
target for fault injection, which goes through only one

round of diffusion (Line 14 of Algorithm 4). So, our

patch for this scheme works basically by retaining the

preceding part of Algorithm 4 (with few amendments);
mainly to insert more diffusion at Line 14. In fact, we

make use of the following interesting property:

β = RoundFunction0(β)⊕ k0
= RoundFunction0(RoundFunction0(β)⊕ k0)⊕ k0.

We now define z-nested round function, denoted by

RoundFunctionz(· , ·); z = 1, 2, . . . , η; recursively as:

RoundFunctionz(x, y)

=





RoundFunction0(x)⊕ y
if z = 1,

RoundFunction0(RoundFunctionz−1(x, y))⊕ y
otherwise.
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– Initial conditions: i = 2η − 2;λ = 1
– Assume fault injection in Line 8 of Algorithm 4 and in Line 8 of Algorithm 5

Dry Run 3 Algorithm 4, Lines 5 – 15

Iteration 1: (i = 2η − 2) < 2η
1: λ = 1 . (Say)
2: a← 0 . Actual Round
3: b← η − 1

4: S′0
fault←−−− RoundFunctionη−1(S0)⊕ kη−1

5: T0 ← S′0 . Infection begins
6: c8 0
7: S′2 ← S2 ⊕ c
8: S′0 ← S′0 ⊕ c
9: i← 2η − 2 + 1

Iteration 2: (i = 2η − 1) < 2η
10: λ = 1 . (Say)
11: a← 1 . Redundant Round
12: b← η
13: S1 ← RoundFunctionη(S1)⊕ kη
14: T1 ← S1

15: c8 0
16: S′2 ← S2 ⊕ c
17: S′0 ← S′0 ⊕ c
18: i← 2η − 1 + 1

Iteration 3: (i = 2η)
19: λ = 1 . (Say)
20: a← 0 . Actual Round
21: b← η
22: S′0 ← RoundFunctionη(S′0)⊕ kη
23: T0 ← S′0 . Infection continues
24: c8 0
25: S′2 ← S′2 ⊕ c
26: S′0 ← S′0 ⊕ c
27: i← 2η + 1
28: S′0 ← S′0 ⊕ RoundFunction0(S′2)⊕ k0 ⊕ β
29: return S′0 . S′0 is the infected state

Dry Run 4 Algorithm 5, Lines 5 – 14

Iteration 1: (q = t− 2) < t
1: λ = 1 . (Say)
2: a← 0 . Actual Round
3: b← η − 1

4: S′0
fault←−−− RoundFunctionη−1(S0)⊕ kη−1

5: c← 1
6: d← 0
7: S′0 ← S2 = β . No infection
8: i← 2η − 1
9: q ← t− 2 + 1

Iteration 2: (q = t− 1) < t
10: λ = 1 . (Say)
11: a← 1 . Redundant Round
12: b← η
13: S1 ← RoundFunctionη(S1)⊕ kη
14: c← 1
15: d← 0
16: S′0 ← S2 = β . No infection
17: i← 2η
18: q ← t− 1 + 1

Iteration 3: (q = t)
19: λ = 1 . (Say)
20: a← 0 . Actual Round
21: b← η
22: S′0 ← RoundFunctionη(S′0 = β)⊕ kη
23: c← 1
24: d← 0
25: S′0 ← S2 = β . No infection
26: i← 2η + 1
27: q ← t+ 1
28: return S′0

. S′0 is just a random state

It can be checked, independent of z, RoundFunctionz

(β, k0) = β. Hence, we propose to substitute Line 14 of

Algorithm 4:

S0 ← S0 ⊕ RoundFunction0(S2)⊕ k0 ⊕ β

by

S0 ← S0 ⊕ RoundFunctionz(S2, k0)⊕ β
where z (≥ ξ) is predetermined. It may be noted that,

the overhead for nested round function is on the tempo-

ral domain and not on the spatial domain.

In a nutshell, we incorporate the following amend-

ments:

– We observe the back-up registers, T0, T1, T2 are in-

deed redundant – the same functionality can be

obtained by using actual (S0), redundant (S1) and

dummy registers (S2) only. So, we do not use them.

– We remove λ altogether. Instead of running the mean-

ingful/dummy rounds in a random order, we simplify

our scheme by running them in a deterministic order.

Within a loop of i from 1 to η, we run the redun-

dant round, actual round and the dummy round (in

this order). After this, we compute the nested round

function on a loop of j, counting from 1 to z (≥ ξ).
– We only infect the dummy register within loop over i,

that goes from 1 to η (neither S0, nor S1 is infected

within this loop). This makes sure that S2 contains

β (in case of no fault) or something other than β (in
case of a fault). Introduction of nested round function

ensures S2 gets sufficient diffusion, no matter which

round attacker targets. At then end, we infect S0 by

S0 ← S0⊕S2⊕β. Since, S2⊕β works like a one time

pad (similar to the case of Type I countermeasures),

in case of a fault, attacker gets no information on

S0.

– The reason we do not infect S0 within the loop of

i is, attacker can simply bypass any infection in S0

within the loop of i by injecting fault at the last

actual round.
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– We do not infect the redundant state S1 at all. This is

inspired from the observation that, attacker actually

gets the infected S0 (and not S1).

– Instead of computing δ (i.e., δ ← S0 ⊕ S1; S2 ←
S2 ⊕ δ) explicitly; we do the computation implicitly

(S2 ← S0 ⊕ S2; S2 ← S1 ⊕ S2). This modification

helps to prevent any attack on δ (such as resetting

it to ~0 before it updates S2; or skipping the XOR of

δ with S2).

– We choose σ(·) as the identity function for simplic-

ity7. Although we do not compute δ (= S0 ⊕ S1)
explicitly; technically speaking, we XOR (S0 ⊕ S1)

directly to S2.

One motivation for keeping random ordering of

dummy/ meaningful round (through λ), based on [23], is

to have a somewhat protection against side channel anal-
ysis. The authors speculate that, since the operations

in dummy rounds mimic that of a meaningful round;

attacker cannot identify a meaningful round (with prob-
ability > 1

2 ). However, this does not amount for secure

enough protection against side channel analysis. For ex-

ample, say, the attacker can get λ itself by side channel

analysis; thus the assumed SCA security does not hold

anymore. At the same time, we emphasize that; making

the meaningful/dummy round computation determin-

istic does not incur additional vulnerability from the

perspective of DFA. Another reason for keeping the ran-

dom ordering would be to reduce the success rate of the

fault injecting attacker [36,37]. In this regard, we would

like to note that our infection schemes are independent

on the success rate of the attacker. Even if the attacker

succeeds to inject a fault with probability 1, the security

claims of our schemes would still hold. Hence, we believe

making the execution sequence random would not add

any extra protection.

In Algorithm 6, we present an algorithmic descrip-

tion of our patched scheme. As already described, here

we iterate over a loop of i, from 1 through η. Within

this loop, we deterministically compute the actual, re-
dundant and the dummy round, in this order. After the

actual and the redundant round computations are done,

we update the dummy register S2 (S2 ← S0 ⊕ S1 ⊕ S2:

Lines 5, 6). S2 is also initialized with β (Line 1). Hence,

any fault in actual or redundant round will result S2

to contain a value different from β. This change in S2

will affect the dummy round computation, ensuring S2

does not contain β (Line 7). In case of no fault, S2

will continue to contain β. When this loop is over; the

following loop over j, from 1 to z (≥ ξ), will ensure the

diffusion is spread sufficiently on S2 (in case of fault)/S2

7 It is recommended in [23] to use a non-linear function as
σ(·). However, we believe this is not a necessary condition.

still contains β (otherwise) by additional dummy rounds.

Finally, S0 is returned after it is XORed with S2 ⊕ β
(Line 10). It can be noted that, injecting fault anywhere

during the loop over j will not yield useful information

to the attacker.

Now let us revisit the patched scheme for its usability

against CFA (Section 2.6). When Eve injects fault at

any meaningful round, it sets a β′ (6= β) at S2; so S2

is now infected (Lines 5, 6). The infection spreads on

S2 over subsequent rounds. Even after several rounds

of iteration, if S0 becomes equal to S1 (which is the

case CFA wants to utilize), S2 will still be infected (i.e.,

S2 will contain something 6= β). The next loop over j

will also spread the infection to S2. Hence, S2 will be

random (Line 10); this means, S0 will be XORed by

by a random vector. Thus, in case of a CFA, attacker

will always get a random (infected) output; and cannot

mount the attack. To the best of our knowledge, this is

the first CFA countermeasure reported in the literature.

In the light of [36] (i.e., resilience of infective counter-

measures against the instruction skip attack), one may

notice the interesting observations: Under non-faulty

situation, Lines 5 — 7 of Algorithm 6 are idempotent.

So, it does not affect the non-faulty computation of the
cipher if these lines are iterated, say, µ (> 1) times:

1: for m = 1;m ≤ µ+ z;m← m+ 1 do

2: S2 ← S0 ⊕ S2

3: S2 ← S1 ⊕ S2

4: S2 ← RoundFunction0(S2)⊕ k0

In case of a fault, this will help the infection to propagate

further in S2. Similarly, the Line 10 is still vulnerable

to one instruction skip. As this line is idempotent under

non-faulty situation; we can substitute it by:

1: for m = 1;m ≤ µ;m← m+ 1 do

2: S0 ← S0 ⊕ S2 ⊕ β
. S2 = RoundFunctionz(S2, k0)

This ensures that the Line 10 is protected against µ− 1

instruction skip attack. Altogether, it can be claimed

that the overall construction can withstand up to µ− 1

instruction skips. This can pave the pathway to an in-

fective countermeasure which is guaranteed to have a

certain protection against instruction skips. We believe

the arguments presented in algorithmic terms are still

valid when the proposed strategy is expressed in terms

of instructions instead. The underlying property that is

used here still applies when the algorithm is expressed

as an equivalent sequence of instructions. Hence the

implementation-level idempotency condition can be as-

certained from the algorithmic description.
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Algorithm 6 Our patched version of LatinCrypt’12 countermeasure (for SPN)

Input:


P

β; k0

round keys kj ; j = 1, . . . , η derived from K

z (≥ ξ)
. RoundFunction0(β) = β ⊕ k0

Output:

{
EK(P ) if no fault

random otherwise

1: S0 ← P . Actual state
S1 ← P . Redundant state
S2 ← β . Dummy state

2: for i← 1; i ≤ η; i← i+ 1 do
3: S0 ← RoundFunctioni(S0)⊕ ki . Actual round
4: S1 ← RoundFunctioni(S1)⊕ ki . Redundant round
5: S2 ← S0 ⊕ S2

6: S2 ← S1 ⊕ S2

7: S2 ← RoundFunction0(S2)⊕ k0 . Dummy round

8: for j ← 1; j ≤ z; j ← j + 1 do
9: S2 ← RoundFunction0(S2)⊕ k0 . Dummy round

10: S0 ← S0 ⊕ S2 ⊕ β . S2 = RoundFunctionz(S2, k0)
11: return S0

Benchmarking

In Table 3, we present the software benchmarking re-

sults (clock cycles and code size) for the basic patched

version of the LatinCrypt’12 scheme (Algorithm 6), for
AVR and MSP architectures. We take AES encryption

as the underlying cipher. As before, we use the source

codes from the FELICS [16] tool. However, unlike the

benchmarking in Type I schemes, which are done as

standalone implementations; this one is done together

with AES actual and redundant encryptions (because

of the intrinsic nature of this scheme). We choose two

different nested round functions; corresponding to 11

and 4, respectively. As before, we do not consider the

cost due to generation of external entropy. Also, we

assume β and k0 are provided to the algorithm. The

figures given here are taken after averaging multiple

runs with different test vectors; and are relative to un-

protected AES in × 1.00 unit (the numeric figures for

this implementation can be found in Table 1). For the

11-nested rounds, the relative clock cycles is slightly

bigger than 3×; this is due to the fact that now AES is

running 3 times together with few other computations8.

The relative code sizes are less than 3×, as part of the

same code can be reused (such as the SBox). For the

4-nested round, the relative clock cycles is less than 3

for AVR as now less than 3× AES is computed; but the

relative code size remains roughly the same as 11-nested

rounds. However, for MSP architecture, although the

8 The actual and the redundant computations are basically
identical except near the very end, hence the compiler possibly
optimizes the code that reduces the clock cycles.

relative clock cycles reduces from the 11-nested rounds;

the relative code size has a slight increase (2.31× in

11-nested to 2.58× in 4-nested). This is probably due

to some optimization done by the compiler; which is

more efficient when almost three identical computations

are running, compared to the case where one of them is

slightly different.
Since the same hardware (that is used to design the

underlying cipher) can be reused to build this scheme

(with degraded throughput), we do not provide any sep-

arate hardware benchmarking here. Roughly, it can be

estimated that 11-nested round countermeasure is com-

parable to 4× unprotected AES, whereas 4-nested would

be around 3.12× unprotected AES. So, the throughputs

can be estimated to be downgraded roughly by this

scale.

5 Conclusion

In this work, we study the infective countermeasures,

which are used to protect ciphers against certain classes

of fault attacks (including the most common differential

fault attacks in symmetric key cryptography). This is

the first work studying these countermeasures in de-

tails. Apart from providing a systematic classification,

we show several new results. These results range from

proposing new type of countermeasures (that relies on

already established standards instead of the usual ad-

hoc approaches), to proposing new lightweight schemes

(in both software and hardware). We also show a flaw

in the scheme from [46] published at CHES’14. More-

over, we fix a broken scheme with a little amendment.
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Table 3 Software benchmarking results (clock cycles, code size) for our patch

Construction Countermeasure Architecture Clock cycles Code size

AES Encryption (unprotected) –
AVR 1.00 1.00
MSP 1.00 1.00

AES Encryption
(protected by Algorithm 6)

11-nested round
AVR 3.25 2.94
MSP 3.69 2.31

4-nested round
AVR 2.90 2.94
MSP 3.13 2.58

Our work underlies the need for more rigorous analy-

sis of not only the standard ciphers, but also the fault

countermeasures.

The main differences between the two types of infec-

tive countermeasures are listed here. First, unlike Type

I countermeasures; cipher level countermeasures do not

construct a separate diffusion function τR(·), rather they

rely on the round function of the underlying cipher to
infect the actual computation. Second, cipher level coun-

termeasures rely on sensing the infection round by round;

whereas Type I countermeasures let both the actual and
redundant executions to finish before infection. Third,

Type II countermeasures compute a so called dummy

round, which is idempotent in case of no fault; which is

missing in Type I. Fourth, the function τ(·)(·) in Type

I is recommended to be highly non-linear; in contrast,

the non-linearity in Type II countermeasures come from
the non-linearity of RoundFunction0(·), (not from σ(·))
hence σ(·) can be linear. Fifth, a Type I construction

can be adopted to non-SPN designs, such as a Feistel

network based block cipher or a stream cipher easily;

whereas it may be rather non-trivial to do the same

with a Type II construction.

Focusing only on DFA countermeasures gives us the
advantage to explore the domain more extensively. For

this purpose, the side channel protection is not directly

considered within the scope. Our schemes can be pro-

tected by incorporating standard SCA countermeasures,

refer to Section 2.7 for more details.

Multiple works can be considered in the future scope,

here we list a few. First, one may look into constructing

an integrated DFA and side channel countermeasure.

Second, protecting against double faults (that identically

affect both the actual and the redundant ciphers) is an

interesting problem. Third, designing infective counter-

measures which are more resilient against other types

of faults, such as instruction skip or double fault or IFA

(SIFA, in particular), can be an interesting direction to

pursue. Finally, a cipher may be constructed which is

more suitable to deploy together with an infective coun-

termeasure (possibly equipped with an error detecting

code).
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27. Karri, R., Kuznetsov, G., Gössel, M.: Parity-based concur-
rent error detection of substitution-permutation network
block ciphers. In: Cryptographic Hardware and Embed-
ded Systems - CHES 2003, 5th International Workshop,
Cologne, Germany, September 8-10, 2003, Proceedings,
pp. 113–124 (2003). DOI 10.1007/978-3-540-45238-6 10.
URL https://doi.org/10.1007/978-3-540-45238-6_10

28. Keliher, L., Sui, J.: Exact maximum expected differential
and linear probability for two-round advanced encryption
standard. IET Information Security 1(2), 53–57 (2007)

29. Kim, C.H., Quisquater, J.J.: Fault attacks for crt based
rsa: New attacks, new results, and new countermea-
sures. In: D. Sauveron, K. Markantonakis, A. Bilas, J.J.
Quisquater (eds.) Information Security Theory and Prac-
tices. Smart Cards, Mobile and Ubiquitous Computing
Systems, pp. 215–228. Springer Berlin Heidelberg, Berlin,
Heidelberg (2007)
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