
A Faster Constant-time Algorithm of CSIDH
keeping Two Points

Hiroshi Onuki1, Yusuke Aikawa2,1, Tsutomu Yamazaki3, and Tsuyoshi Takagi1

1 Department of Mathematical Informatics, University of Tokyo, Japan
{onuki,takagi}@mist.i.u-tokyo.ac.jp

2 Department of Mathematics, Hokkaido University, Japan
yusuke@math.sci.hokudai.ac.jp

3 Graduate School of Mathematics, Kyushu University, Japan
yamazaki.tsutomu.890@s.kyushu-u.ac.jp

Abstract. At ASIACRYPT 2018, Castryck, Lange, Martindale, Panny
and Renes proposed CSIDH, which is a key-exchange protocol based
on isogenies between elliptic curves, and a candidate for post-quantum
cryptography. However, the implementation by Castryck et al. is not
constant-time. Specifically, a part of the secret key could be recovered
by the side-channel attacks. Recently, Meyer, Campos, and Reith pro-
posed a constant-time implementation of CSIDH by introducing dummy
isogenies and taking secret exponents only from intervals of non-negative
integers. Their non-negative intervals make the calculation cost of their
implementation of CSIDH twice that of the worst case of the standard
(variable-time) implementation of CSIDH. In this paper, we propose a
more efficient constant-time algorithm that takes secret exponents from
intervals symmetric with respect to the zero. For using these intervals,
we need to keep two torsion points on an elliptic curve and calculation
for these points. We evaluate the costs of our implementation and that of
Meyer et al. in terms of the number of operations on a finite prime field.
Our evaluation shows that our constant-time implementation of CSIDH
reduces the calculation cost by 28.23% compared with the implementa-
tion by Mayer et al. We also implemented our algorithm by extending
the implementation in C of Meyer et al. (originally from Castryck et al.).
Then our implementation achieved 152.8 million clock cycles, which is
about 29.03% faster than that of Meyer et al. and confirms the above
reduction ratio in our cost evaluation.

Keywords: CSIDH · post-quantum cryptography · isogeny-based cryp-
tography · constant-time implementation · supersingular elliptic curve
isogenies.

1 Introduction

RSA and elliptic curve cryptosystems will no longer be secure once a large-scale
quantum computer is built. Due to this, the importance of post-quantum cryp-
tography (PQC) has increased. In 2017, the National Institute of Standards and

2 H. Onuki, Y. Aikawa, T. Yamazaki, and T. Takagi

Technology (NIST) started the process of PQC standardization [22]. Candidates
for the NIST PQC standardization include supersingular isogeny key encapsu-
lation (SIKE) [18], which is a scheme based on isogenies between elliptic curves.
SIKE is a variant of supersingular isogeny Diffie-Hellman (SIDH), which was
proposed by Jao and De Feo [16] in 2011. SIDH uses isogenies between supersin-
gular elliptic curves over a finite field. SIDH achieves an efficient key-exchange
but needs to send torsion points of an elliptic curve as supplementary informa-
tion. Attacks using this information are discussed in by Galbraith, Petit, Shani,
and Ti [14] and Petit [23].

Isogeny-based cryptography was first proposed by Couveignes [8] in 1997 and
independently rediscovered by Rostovtsev and Stolbunov [24, 26]. Their proposed
scheme is a Diffie-Hellman-style key-exchange based on isogenies between ordi-
nary elliptic curves over a finite field and typically called CRS. CRS does not
need to send any point of elliptic curves, therefore the attacks to SIDH, which is
based on information of points of elliptic curves, cannot be applied to CRS. How-
ever, even after optimizations by De Feo, Kieffer, and Smith [10], CRS is much
slower than SIDH. We recommend De Feo [9] and Galbraith and Vercauteren [15]
as nice introductions to isogeny-based cryptography. In 2018, Castryck, Lange,
Martindale, Panny, and Renes [3] proposed commutative SIDH (CSIDH), which
adopts supersingular elliptic curves to the CRS scheme. They used supersingular
elliptic curves over a finite prime field Fp and their endomorphism rings over Fp.
Since the number of Fp-rational points on a supersingular elliptic curve E over
Fp is p + 1, one can choose p such that #E(Fp) has many small prime factors.
This allows CSIDH to compute isogenies faster than CRS. Furthermore, a sig-
nature scheme using CSIDH was proposed by De Feo and Galbraith [11] and its
speedup was studied by Decru, Panny, and Vercauteren [12].

However, the computational time in the proof-of-concept implementation by
Castryck et al. depends on the associated secret key, so their implementation
of CSIDH is not side-channel resistant. Recently, Meyer, Campos, and Reith
[19] proposed a constant-time implementation of CSIDH and several speedup
techniques for their implementation. They achieved the constant-time imple-
mentation by using dummy isogenies and by changing intervals of key elements
from [−m,m] to [0, 2m], where m ∈ N. Consequently, their constant-time imple-
mentation needs to calculate each degree isogeny 2m times, while the worst case
of the variable-time CSIDH needs only m times. Therefore, the computational
cost of their constant-time implementation is twice as that of the worst case of
the variable-time CSIDH. The constant-time implementation in [19] allows vari-
ance of the computational time of their implementation with randomness that
does not relate to secret information. On the other hand, implementations which
do not allow such variance are proposed by Bernstein, Lange, Martindale, and
Panny [2] and Jalali, Azarderakhsh, Kermani, and Jao [17]. The implementation
in [2] is for evaluating the performance of quantum attacks for CSIDH. It must
not have branches in order to compute in superposition on quantum computers.
The implementation in [17] is for classical computers, but it has no branches. As

A Faster Constant-time Algorithm of CSIDH keeping Two Points 3

a result, it is slower than the implementation in [19]. We discuss the differences
in these implementations in Section 3.2.

In this paper, we propose a new constant-time implementation, which is
faster than the constant-time implementation by Meyer et al. [19]. Our imple-
mentation is “constant-time” in the same sense as that of [19]. In other words,
the computational time and the order of scalar multiplications and isogenies in
our implementation do not depend on a secret key. We use the dummy isogenies
proposed by [19]. but do not change the key intervals of CSIDH, i.e., we use the
interval [−m,m]. To achieve a constant-time implementation without changing
the key intervals, we need to keep two torsion points of both E[π−1] and E[π+1]
and calculation associated with these points, where π is the Frobenius endomor-
phism of an elliptic curve E. As a result, our implementation needs almost twice
as many scalar multiplications on elliptic curves and twice as many calculations
of images of points under isogenies as the worst case of the variable-time CSIDH.
However, the number of calculations of the images of curves is the same as in the
worst case of the variable-time CSIDH, and scalars in a part of additional scalar
multiplications on elliptic curves are smaller. Therefore, our implementation is
faster than the implementation in [19]. Furthermore, we propose a cost model
of CSIDH that evaluates the cost by counting the number of operations on Fp.
On the basis of this cost model, we propose a parameter set of the speedup
techniques of [19] for our implementation. Our cost model shows that after this
speedup, our implementation reduces the cost by 28.23% compared with the
implementation in [19]. We implemented our algorithm in C and compared its
cycle count and running time with those of the implementation in [19]. Our ex-
periment shows that the cycle count of our implementation is 29.03% less than
that of the implementation in [19]. This confirms our cost model.

Organization. The rest of this paper is organized as follows. The following
section describes CSIDH. Section 3 explains a constant-time implementation
and some speedup techniques for it of [19]. and briefly introduces constant-time
implementations based on another definition. We give the details of our new
constant-time implementation of CSIDH in Section 4. In Section 5, we propose
a cost model for CSIDH, evaluate the costs of several implementations of CSIDH
by this model, present experimental results, and discuss the security of a speedup
technique for CSIDH. We conclude our work in Section 6.

2 CSIDH

In this section, we overview the protocol of CSIDH and its mathematical back-
grounds. For more details, see Castryck et al. [3].

2.1 Protocol of CSIDH

For describing the protocol of CSIDH, we define the following notations. Let p be
a prime number, CL(Z[

√
−p]) the ideal class group of Z[

√
−p] and ELLFp

(Z[
√
−p])

4 H. Onuki, Y. Aikawa, T. Yamazaki, and T. Takagi

a set of Fp-isomorphism classes of supersingular elliptic curves whose endomor-
phism ring is isomorphic to Z[

√
−p]. Then we can define an action

CL(Z[
√
−p])× ELLFp(Z[

√
−p]) → ELLFp(Z[

√
−p]), (a, E) 7→ a ∗ E.

We call this action the class group action. The details of these notations and the
action are described in the next subsection. CSIDH is a Diffie-Hellman style key
exchange as follows:
Alice and Bob share an elliptic curve E0 ∈ ELLFp(Z[

√
−p]) as a public parame-

ter. Alice chooses an ideal a ∈ CL(Z[
√
−p]) as her secret key and sends the curve

a ∗ E to Bob as her public key. Bob proceeds in the same way by choosing a
secret key b ∈ CL(Z[

√
−p]). Then, both parties can compute the shared secret

ab ∗ E = ba ∗ E. Note that CL(Z[
√
−p]) is commutative.

2.2 Supersingular elliptic curves over Fp

Let p be a large prime of the form 4ℓ1 · · · ℓn−1, where ℓ1, . . . , ℓn are small distinct
odd primes. For a supersingular elliptic curve E defined over Fp, the p-th power
Frobenius endomorphism π satisfies a characteristic equation

π2 + p = 0,

and the Fp-endomorphism ring of E is isomorphic to an order Z[
√
−p] or Z[1+

√
−p

2]
(see [13] for details). By the characteristic equation, π corresponds to

√
−p or

−
√
−p in the order. We use the same symbol for an element of the order and a

Fp-endomorphism.
The set ELLFp

(Z[
√
−p]) is not an empty set, and for all classes E in this set,

there exists one and only one A ∈ Fp such that the curve EA : y2 = x3+Ax2+x
belongs to the class E ([3, Theorem 8]). In other words, a class in ELLFp(Z[

√
−p])

contains a unique Montgomery curve.
The ideal class group CL(Z[

√
−p]) of Z[

√
−p] acts on ELLFp

(Z[
√
−p]) in the

following way. For simplicity, we use the same symbol for a Fp-isomorphism class
and its representative curve and for an ideal class and its representative ideal.
Furthermore, we always take an integral ideal as a representative of an ideal
class. For E ∈ ELLFp(Z[

√
−p]) and a ∈ CL(Z[

√
−p]), there are an elliptic curve

E′ ∈ ELLFp(Z[
√
−p]) and an isogeny φ : E → E′, with the kernel E[a] = {P ∈

E | [α]P = ∞, ∀α ∈ a}. The isogeny φ and its codomain E′ are unique up
to Fp-isomorphism. The map (a, E) 7→ E′ does not depend on the choices of
the representatives E and a or of the isogeny φ. This map defines an action
of CL(Z[

√
−p]) on ELLFp

(Z[
√
−p]). We denote the curve E′ described above

by a ∗ E. The action (a, E) 7→ a ∗ E is free and transitive ([3, Theorem 7]).
According to the Brauer-Siegel theorem [25], the cardinality of CL(Z[

√
−p]) is

asymptotically

#CL(Z[
√
−p]) ≈ √

p.

This is the size of the key space of CSIDH.

A Faster Constant-time Algorithm of CSIDH keeping Two Points 5

To compute the action of an ideal a ∈ CL(Z[
√
−p]) on an elliptic curve

E ∈ ELLFp
(Z[

√
−p]), we express a by a product of some small prime ideals

whose action can be computed efficiently.

Since the prime p is of the form 4
∏

i ℓi − 1 and the elliptic curve E is super-
singular, the primes ℓi split in Z[

√
−p] as (ℓi) = līli, where li = (ℓi, π − 1) and

l̄i = (ℓi, π + 1). For E ∈ ELLFp(Z[
√
−p]), the torsion subgroups of these ideals

can be written as

E[li] = E[ℓi] ∩ E[π − 1] = E[ℓi] ∩ E(Fp),

E [̄li] = E[ℓi] ∩ E[π + 1] = E[ℓi] ∩ {Q ∈ E | π(Q) = −Q}.

The second equation means that E [̄li] ̸⊂ E(Fp) but E [̄li] ⊂ E(Fp2), and if E
is a Montgomery curve, the x-coordinate of a point of E [̄li] is in Fp. Since x-
coordinate only formulae for scalar multiplications [21] and odd degree isogenies
[5, 20] are known, the actions of li and l̄i can be computed efficiently. In the ideal
class group, l̄i is the inverse of li, so we can compute the action of an ideal of
the form le11 · · · lenn , e1, . . . , en ∈ Z by the composition of the actions of li and l̄i.
Castryck et al. [3] showed that under some heuristics, le11 · · · lenn , −m ≤ ei ≤ m
represent uniformly “almost” all the ideal classes in CL(Z[

√
−p]), where m ∈ N

such that (2m + 1)n ≥ #CL(Z[
√
−p]). We denote the exponents (ei) by secret

exponents.

2.3 Computing the class group action a ∗ E

As stated above, we can express a supersingular elliptic curve in ELLFp
(Z[

√
−p])

by A ∈ Fp and an ideal class in CL(Z[
√
−p]) by secret exponents (e1, . . . , en)

in the intervals [−m,m]n. Then the class group action can be computed as de-
scribed in Algorithm 1. In this algorithm, we use the XZ-only Montgomery
curve arithmetic [21] in the computation for the arithmetic of elliptic curves.
This allows us to compute an action of an ideal class on an elliptic curve only by
operations on Fp. Algorithm 1 consists of three main parts: (1) scalar multiplica-
tions in the outer loop (line 13), (2) scalar multiplications in the inner loop (line
15), and (3) isogenies (lines 17–18). We denote (1) by the outer SM 4 and (2) by
the inner SM. The outer SM generates a k-torsion point, where k is the product
of all primes whose exponents have the same sign as s. By using this point, the
inner SM generates a ℓi-torsion point Q. If Q is not the point at infinity, Q is a
generator of E[li] if s = 1, or E [̄li] if s = −1, i.e., a generator the kernel of an
isogeny that we should compute. In this case, we compute the isogeny φ with
kernel ⟨Q⟩ and update the curve coefficient, the point P , the product of primes
k and an exponent ei. Note that we can update k to k/ℓi because the ℓi-torsion
part of P is in the kernel of the isogeny φ. Updating k reduces the scalar of the
next scalar multiplication in the inner loop.

4 The acronym SM stands for “scalar multiplication.”

6 H. Onuki, Y. Aikawa, T. Yamazaki, and T. Takagi

Algorithm 1 Evaluating the class group action in CSIDH

Input: A ∈ Fp, m ∈ N, a list of integers (e1, . . . , en) s.t. −m ≤ ei ≤ m for i = 1, . . . , n,
and distinct odd primes ℓ1, . . . , ℓn s.t. p = 4

∏
i ℓi − 1.

Output: B ∈ Fp s.t. EB = (le11 · · · lenn) ∗ EA, where li = (ℓi, π − 1) for i = 1, . . . , n,
and π is the p-th power Frobenius endomorphism of EA.

1: while some ei ̸= 0 :
2: Sample a random x ∈ Fp\{0}.
3: if x3 +Ax2 + x is a square in Fp :
4: s← +1.
5: else
6: s← −1.
7: end if
8: Let S = {i | eis > 0}.
9: if S = ∅ :
10: Go to line 2.
11: end if
12: Set P = (x : 1) and k =

∏
i∈S ℓi.

13: Let P ← [(p+ 1)/k]P .
14: for i ∈ S :
15: Q← [k/ℓi]P .
16: if Q ̸=∞ :
17: Compute an isogeny φ : EA → EB with kerφ = ⟨Q⟩.
18: Let A← B, P ← φ(P), k ← k/ℓi, and ei ← ei − s.
19: end if
20: end for
21: end while
22: return A.

3 Previous works for constant-time implementation of
CSIDH

In this section, we explain a constant-time implementation of CSIDH and its
speedup techniques proposed by Meyer et al. [19] and briefly describe related
works.

3.1 Constant-time implementation

As already mentioned by Castryck et al. [3], Algorithm 1 is not side-channel resis-
tant because the computational time for a public key and a shared secret depends
on the associated secret key. To solve this problem, Meyer et al. [19] proposed
a constant-time implementation of CSIDH. According to [19], “a constant-time
implementation” means an implementation whose computational time and order
of scalar multiplications of each size and isogenies of each degree do not depend
on a secret key. Their constant-time implementation is described in Algorithm 2.
Note that they allowed the computational time of their implementation to vary
with random choices of a point P on an elliptic curve in line 5 in Algorithm 2,

A Faster Constant-time Algorithm of CSIDH keeping Two Points 7

Algorithm 2 Constant-time evaluation of the class group action in CSIDH [19]

Input: A ∈ Fp, m ∈ N, a list of integers (e1, . . . , en) s.t. 0 ≤ ei ≤ 2m for i = 1, . . . , n,
and distinct odd primes ℓ1, . . . , ℓn s.t. p = 4

∏
i ℓi − 1.

Output: B ∈ Fp s.t. EB = (le11 · · · lenn) ∗ EA, where li = (ℓi, π − 1) for i = 1, . . . , n,
and π is the p-th power Frobenius endomorphism of EA.

1: Set e′i = 2m− ei for i = 1, . . . , n.
2: while some ei ̸= 0 or e′i ̸= 0 :
3: Set S = {i | ei ̸= 0 or e′i ̸= 0}.
4: Set k =

∏
i∈S ℓi.

5: Generate a point P ∈ EA[π − 1] by Elligator.
6: Let P ← [(p+ 1)/k]P .
7: for i ∈ S :
8: Set Q = [k/ℓi]P .
9: if Q ̸=∞ : /∗ branch not involving secret information ∗/
10: if ei ̸= 0 : /∗ branch involving secret information ∗/
11: Compute an isogeny φ : EA → EB with kerφ = ⟨Q⟩.
12: Let A← B, P ← φ(P), and ei ← ei − 1.
13: else
14: Dummy computation.
15: Let A← A, P ← [ℓi]P , and e′i ← e′i − 1.
16: end if
17: end if
18: Let k ← k/ℓi.
19: end for
20: end while
21: return A.

which do not relate to secret information. These choices decide the conditional
branch if Q ̸= ∞ in line 9 and affect the computational time.

To achieve a constant-time implementation, they used dummy isogenies and
changed the intervals of the integer key elements from [−m,m] to [0, 2m]. We
explain these techniques below. In this algorithm, one samples a point on an
elliptic curve by using Elligator [1] for CSIDH, which was proposed by Bernstein,
Lange, Martindale, and Panny [2]. Elligator enables us to generate x-coordinates
of points with suitable y-coordinate by computing only one Legendre symbol.
For the details, see Bernstein et al. [2].

Dummy isogenies. It seems that one should compute a constant number of
isogenies of each degree ℓi and only use the ones required by the secret key.
However, to do this, one should compute additional scalar multiplications on
elliptic curves in line 18 in Algorithm 1, because one needs to drop the ℓi-torsion
part of a point P . Meyer and Reith [20] proposed a technique that uses the kernel
generation in the isogeny computation to compute the scalar multiplication [ℓi]P .
By using this technique, one achieves dummy isogenies with two extra differential
additions on an elliptic curve. For more details, see [20, 19].

8 H. Onuki, Y. Aikawa, T. Yamazaki, and T. Takagi

Changing the key intervals. By using dummy isogenies, the number of
isogeny computations is fixed. However, this is not sufficient to achieve a constant-
time implementation, since the sizes of the scalar multiplications in lines 13 and
15 in Algorithm 1 vary in accordance with the signs of secret exponents. The
sizes of the scalar multiplications vary, because the integer k in Algorithm 1
depends on the signs of secret exponents. To remove this effect, Meyer et al. [19]
proposed changing the intervals from [−m,m] to [0, 2m].

3.2 Constant-time implementations based on another definition

As we stated above, Meyer et al. [19] allow variance of the computational time
of their implementation with randomness that does not relate to secret informa-
tion (caused by the branch if Q ̸= ∞ in line 9 in Algorithm 2). On the other
hand, constant-time implementations that do not allow this variance are known.
Bernstein et al. [2] constructed a constant-time implementation of CSIDH for
evaluating the performance of quantum attacks. For calculating the class group
actions in superposition on a quantum computer, a completely constant-time
implementation is required. Therefore, their constant-time implementation has
no branches (such as if branch). Jalali, Azarderakhsh, Kermani, and Jao [17]
proposed a constant-time implementation for classical computers, which also
has no branches. As a result of removing all branches, these implementations
are slower than that of [19]. We propose a constant-time implementation based
on the definition in [19], i.e., our implementation allows branches which do not
depend on secret information.

3.3 Speedup techniques for CSIDH

Meyer et al. [19] proposed several techniques to speedup their constant-time
implementation of CSIDH. These can be also applied to our algorithm. We briefly
explain two of them here.

SIMBA (Splitting isogeny computations into multiple batches). SIMBA
splits the set S in Algorithm 2 into small sets. This decreases the value of
k =

∏
i∈S ℓi. Therefore, this reduces the cost of a scalar multiplication in line 8

in Algorithm 2, while this increases the cost of a scalar multiplication in line 6
in Algorithm 2. The number of the latter scalar multiplications in one execution
of the algorithm is much smaller than that of the former, so SIMBA reduces the
total cost of the algorithm. Furthermore, Meyer et al. [19] proposed merging the
splitting sets after a certain number of steps of the while loop in Algorithm 1.
This is because after more than 2m steps of the loop, SIMBA could backfire, see
[19] for details. The same as [19], we denote the technique that splits S into ν
small sets and merges after µ steps by SIMBA-ν-µ.

A Faster Constant-time Algorithm of CSIDH keeping Two Points 9

Sampling secret exponents from different intervals. Instead of sampling
all secret exponents from the same interval [−m,m] (or [0, 2m] for the imple-
mentation by [19].), one can choose the key elements from different intervals for
each isogeny degree. This means that one changes the set of the secret keys to

{(e1, . . . , en) ∈ Zn | −mi ≤ ei ≤ mi, for i = 1, . . . , n},

where mi ∈ N are new bound for ei. One can reduce the cost of computing
the isogenies by using smaller mi for high degree isogenies and larger mi for
low degree isogenies. The same technique for CRS using ordinary curves is pro-
posed by De Feo, Kieffer, and Smith [10]. We call this technique weighted secret
exponents. We discuss its effect on the security of CSIDH in Section 5.4.

4 Our constant-time implementation

In this section, we propose a new constant-time implementation that is faster
than that of [19].

The constant-time implementation in [19]. requires the cost to be the same
as that of calculating the action of the ideal class corresponding to secret expo-
nents (2m, . . . , 2m). This cost is twice the cost corresponding to secret exponents
(m, . . . ,m), which is the worst case in the variable-time CSIDH. We mitigate the
cost for achieving constant-time by using positive and negative secret exponents.

4.1 Basic idea

To achieve a constant-time implementation without fixing the signs of secret
exponents, we compute isogenies corresponding to positive and negative secret
exponents in the same round in the while loop in Algorithm 1. This requires
keeping two points of both E[π − 1] and E[π + 1] and computing scalar multi-
plications and images under isogenies for both points. This means that our new
method needs almost twice as many scalar multiplications and twice as many
computations of images of points per isogeny calculation (the reason we need
“almost” twice as many scalar multiplications is explained later). However, it
needs only one computation for an isogenous curve coefficient. Therefore, the
cost of our method is less than twice of the worst case of the variable-time
CSIDH. Combining this method and dummy isogenies of [20, 19], we achieve a
more efficient constant-time implementation.

4.2 Proposed algorithm

Our constant-time implementation for computing the class group action is de-
scribed in Algorithm 3.

In Algorithm 3, the points P0 and P1 are k-torsion of E[π− 1] and E[π+1],
respectively. The indicator s is the sign bit of a secret exponent ei (line 8), i.e.,
s = 0 if ei ≥ 0 and s = 1 if ei < 0. This can be computed by bit operations.

10 H. Onuki, Y. Aikawa, T. Yamazaki, and T. Takagi

Algorithm 3 Our constant-time evaluation of the class group action in CSIDH

Input: A ∈ Fp, m ∈ N, a list of integers (e1, . . . , en) s.t. −m ≤ ei ≤ m for i = 1, . . . , n,
and distinct odd primes ℓ1, . . . , ℓn s.t. p = 4

∏
i ℓi − 1.

Output: B ∈ Fp s.t. EB = (le11 · · · lenn) ∗ EA, where li = (ℓi, π − 1) for i = 1, . . . , n,
and π is the p-th power Frobenius endomorphism of EA.

1: Set e′i = m− |ei| for i = 1, . . . , n.
2: while some ei ̸= 0 or e′i ̸= 0 :
3: Set S = {i | ei ̸= 0 or e′i ̸= 0}.
4: Set k =

∏
i∈S ℓi.

5: Generate points P0 ∈ EA[π − 1] and P1 ∈ EA[π + 1] by Elligator.
6: Let P0 ← [(p+ 1)/k]P0 and P1 ← [(p+ 1)/k]P1.
7: for i ∈ S :
8: Set s the sign bit of ei.
9: Set Q = [k/ℓi]Ps.
10: Let P1−s ← [ℓi]P1−s.
11: if Q ̸=∞ : /∗ branch not involving secret information ∗/
12: if ei ̸= 0 : /∗ branch involving secret information ∗/
13: Compute an isogeny φ : EA → EB with kerφ = ⟨Q⟩.
14: Let A← B, P0 ← φ(P0), P1 ← φ(P1), and ei ← ei − 1 + 2s.
15: else
16: Dummy computation.
17: Let A← A, Ps ← [ℓi]Ps, and e′i ← e′i − 1.
18: end if
19: end if
20: Let k ← k/ℓi.
21: end for
22: end while
23: return A.

For example, s = ei ≫ 7 if ei is stored as a signed 8-bit integer. The point Q is
ℓi-torsion of E[π − 1] if ei ≥ 0 or of E[π + 1] is ei < 0 (line 9). Therefore, the
algorithm computes the isogeny corresponding to the sign of ei in line 13–17.
Note that we need a scalar multiplication on P1−s by ℓi in line 10 because the
ℓi-torsion parts of P0 and P1 should drop in order to update k to k/ℓi. The
ℓi-torsion part of Ps is Q and drops by the isogeny φ, since Q is in the kernel of
φ. In contrast, the ℓi-torsion part of P1−s does not drop by φ. We also note that
we need to calculate this scalar multiplication even when Q = ∞, i.e., one fails
to obtain a generator of the kernel of an isogeny. The equation Q = ∞ means
the ℓi-torsion part of Ps has already vanished but does not mean the ℓi-torsion
part of P1−s has vanished. Therefore, for updating k to k/ℓi, we need the scalar
multiplication on P1−s by ℓi. In contract, in the variable-time CSIDH algorithm,
one calculates nothing when Q = ∞. This is why we said “we need “almost”
twice as many scalar multiplications” in the previous subsection. However, the
number of these additional scalar multiplications is much smaller than the total
number of scalar multiplications. For example, it is about 2% of the total number

A Faster Constant-time Algorithm of CSIDH keeping Two Points 11

of scalar multiplications in CSIDH-512, which is the parameter set for CSIDH
proposed by Castryck et al. [3].

Remark 1. The same as in the implementation in [19], we use Elligator for
CSIDH. It enables us to generate x-coordinates of P0 and P1 in line 5 in Algo-
rithm 3 by computing only one Legendre symbol. For the details, see Bernstein
et al. [2].

Remark 2. Our dummy isogeny includes a dummy calculation corresponding to
evaluations of P1 under φ not only of P0 so that the calculation costs of lines
13–14 and lines 16–17 in Algorithm 3 are the same.

4.3 Security comparison with the implementation by Meyer et al.

We claim that the security of our implementation against side-channel attacks
is equivalent to that of the implementation in [19]. Although Algorithm 3 con-
tains a conditional branch on secret information, one can replace the branch by
conditional swaps and implement it without conditional branches and memory
accesses which depend on secret information.

Meyer et al. [19] claimed that their implementation is constant-time in the
sense that it can prevent the two leakage scenarios they consider [19, §3]: timing
leakage and power analysis. Timing leakage is leaking information on a secret
key by the computational time. Power analysis measures the power consumption
of the algorithm and determines blocks that represent the two main primitives
in CSIDH, scalar multiplications, and isogeny computation. Their implementa-
tion prevents these leakage scenarios because the computational time and the
order of scalar multiplications of each size and isogenies of each degree in their
implementation do not depend on a secret key.

Our implementation also prevents the above two leakage scenarios. Its com-
putational time does not depend on information on a secret key because of
dummy isogenies. By calculating isogenies whose exponents have different signs
in the same loop, the order of scalar multiplications of each size and isogenies
of each degree do not depend on information on a secret key. Furthermore, our
implementation has two branches, the same as the implementation in [19]. The
first is if Q ̸= ∞ in line 11 in Algorithm 3, which does not involve secret in-
formation and affects the computational time (the corresponding branch in the
implementation in [19] is in line 9 in Algorithm 2). The second is if ei ̸= 0,
line 12 in Algorithm 3, which involves secret information and does not affect the
computational time (the corresponding branch in the implementation in [19] is in
line 10 in Algorithm 2). This branch can be removed by using conditional swaps
and implemented securely. See the code of [19], that is available at https://

zenon.cs.hs-rm.de/pqcrypto/constant-csidh-c-implementation. We note
that our implementation switches calculation for isogenies associated to positive
and negative secret exponents by the indicator s in line 8 in Algorithm 3, which
can be computed by bit operations. There are memory accesses which depend on
the secret bit s in line 9–10 in Algorithm 3. But one can implement it securely

12 H. Onuki, Y. Aikawa, T. Yamazaki, and T. Takagi

by using a conditional swap to swap the values of P0 and P1. As a result, we
conclude that our implementation is constant-time as that of [19].

5 Evaluation of our implementation

In this section, we discuss the computational cost of constant-time implemen-
tations of CSIDH. We focus on CSIDH-512 [3], which uses the characteristic of

the definition field p = 4
∏74

i=1 ℓi − 1, where ℓi is the i-th odd prime number for
i = 1, . . . , 73 and ℓ74 = 587.

5.1 Cost model

First, we explain our cost model for CSIDH that evaluates the cost as the num-
ber of operations on Fp. Our model computes the arithmetic of elliptic curves by
a Montgomery ladder [7] and isogenies by the formula of Costello and Hisil
[5] and Meyer and Reith [20]. Table 1 shows the cost of functions we use.
We use LADDER for scalar multiplications on elliptic curves and Kernel Points,
OddIsogeny Points and OddIsogeny Curve for isogenies. OddIsogeny Points

is a function that outputs the image of a point under an isogeny and is called
OddIsogeny by Costello and Hisil [5]. We use this name in order to distinguish
this function from OddIsogeny curve. The function OddIsogeny Curve outputs
the image curve under an isogeny by using the method described by Meyer and
Reith [20, §4.2]. In the table, M, S, and a mean the numbers of multiplications,
squarings, and additions on Fp respectively. t is the bit size of a for computing
scalar multiplication [a]P , and for computing an isogeny of degree ℓ, d = (ℓ−1)/2
and t′ is the bit size of ℓ.

Table 1. The number of operations on Fp in functions for CSIDH.

Function M S a

xDBLADD [6] 8 4 8

xADD [6] 4 2 6

xDBL [6] 4 2 4

LADDER [7] 8t− 4 4t− 2 8t− 6

Kernel Points [5] 4(d− 1) 2(d− 1) 2(3d− 4)

OddIsogeny Points [5] 4d 2 2(d+ 1)

OddIsogeny Curve [20] 2d+ t′ 2t′ + 6 6

As we stated in Section 2.3, the algorithm of CSIDH consists of three main
parts. In Algorithm 3, the outer SM is in line 6, the inner SM is in lines 9–10,
and the isogenies are in lines 13–14 and 16–17. The number of operations on
Fp in these parts accounts for more than 99.9% of all operations on Fp, so we
regard this cost as the total cost of the class group action in CSIDH.

A Faster Constant-time Algorithm of CSIDH keeping Two Points 13

5.2 Our proposed parameters

By using our cost model for CSIDH, we evaluated the cost of various choices
of parameters for the speedup techniques we described in Section 3.3. The best
parameters we found by heuristic experiments are SIMBA-3-8 and weighted
secret exponents −mi ≤ ei ≤ mi for i = 1, . . . , 74, where

(mi) = (5, 6, 7, 7, 7, 7, 7, 8, 8, 8, 9, 10, 10, 10, 10, 9, 9, 9, 8, 7, 7, 7, 7, 7, 7, 7, 7, 7,

7, 7, 7, 6, 6, 6, 6, 6, 5, 5, 5, 5, 5, 5, 5, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4,

3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 2, 2, 2, 2, 2, 1).

On the other hand, the parameters proposed in [19] are SIMBA-5-11 and the
secret exponents 0 ≤ ei ≤ mi for i = 1, . . . , 74, where

(mi) = (13, 13,

13, 13, 13, 13, 13, 13, 13, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11,

11, 11, 11, 8, 8, 8, 8, 8, 8, 8, 7, 5).

Note that our (mi) do not line up in descending order for the following reason.
One fails to obtain a generator for the kernel of an isogeny of small degree with
a higher probability than that of a higher degree. In particular, the probability
of the failure for the degree ℓ is 1/ℓ. Therefore, small degree isogenies are left
to compute when large degree isogenies are finished. The number of the outer
while loops in the algorithm is determined by an isogeny left at the end. We can
decrease this number by taking small intervals for small degree isogenies.

5.3 Comparison with the implementation by Meyer et al.

We construct a program that counts the numbers of operations on Fp in the class
group action of CSIDH-512. Because the costs vary with random choices of points
on elliptic curves, we ran this program 10,000 times for each implementation and
took the average of the numbers of each operation. We give the numbers of each
operation on Fp in the constant-time implementations in [19] and by ourselves.
We used speedup parameters proposed by [19, §6] for the implementation in [19].
In the following tables, the notation M means the cost measured in the number
of multiplications, assuming S = 0.8M and a = 0.05M the same as [20]. Table
2 shows the numbers of operations on Fp in the implementation in [19] with the
speedup techniques in Section 3.3, and Table 3 shows that of our implementation
with the parameters in Section 5.2. The cost of our implementation is 962,022
M, which is about 28.23% less than that of the implementation in [19].

We implemented our algorithm with the speedup techniques in C. Our code
is based on the code by Meyer et al. [19] 5. (originally from Castryck et al. [3]).

5 The code by Meyer et al. is available for download at https://zenon.cs.hs-rm.

de/pqcrypto/constant-csidh-c-implementation. The commit ID of the version
we used is 7fc2abdd, the latest version on 15 Feb, 2019.

14 H. Onuki, Y. Aikawa, T. Yamazaki, and T. Takagi

Table 2. The numbers of operations on Fp in the implementation by Meyer et al. with
the speedup techniques in Section 3.3.

Outer SM
(line 6 in Algorithm 2)

Inner SM
(line 8 in Algorithm 2)

Isogenies
(lines 11–12, 14–15
in Algorithm 2)

Total number

M 220,178 227,810 560,961 1,008,950

S 110,089 113,905 127,467 351,462

a 220,050 226,238 562,459 1,008,749

M 319,252 330,247 691,058 1,340,558

Table 3. The numbers of operations on Fp in our implementation with the parameters
in Section 5.2.

Outer SM
(line 6 in Algorithm 3)

Inner SM
(lines 9–10 in Algorithm 3)

Isogenies
(lines 13–14, 16–17
in Algorithm 3)

Total number

M 176,891 187,422 368,651 732,966

S 88,445 93,711 61,681 243,838

a 176,784 185,770 318,246 680,801

M 256,487 271,680 433,908 962,077

Table 4 shows the cycle counts and running times for our implementation and
that in [19] For the implementation in [19], we used the code on which our code
is based (the code in the footnote 5). We ran both codes on an Intel Xeon Gold
6130 Skylake processor running Ubuntu 16.04.5 LTS. Our implementation has
29.03% fewer clock cycles than the implementation in [19], which is almost the
same as the reduction ratio expected by the evaluation of our cost model.

Table 4. Performance comparison, averaged over 10,000 runs.

Cost evaluation Clock cycles ×106 Wall clock time

Implementation in [19] 1,340,558M 215.3 102.742ms

Our implementation 962,077M 152.8 72.913ms

5.4 Security of weighted secret exponents

We discuss the security of using weighted secret exponents. According to the
same discussion by Castryck et al. [3, §7.1], we can expect ideals of the form

A Faster Constant-time Algorithm of CSIDH keeping Two Points 15

le11 · · · lenn with weighted secret exponents to represent uniformly “almost” all the
ideal classes in CL(Z[

√
−p]).

By a heuristic of Cohen and Lenstra [4], we assume that CL(Z[
√
−p]) is

“almost cyclic,” i.e., CL(Z[
√
−p]) has a cyclic subgroup of order N such that

N ≈ #CL(Z[
√
−p]). We define

ρ : CL(Z[
√
−p]) → Z/NZ

by a projection to the large subgroup and αi = ρ(li). The number of generators
of Z/NZ is ϕ(N), where ϕ is Euler’s totient function. The probability that a
random element of Z/NZ is a generator is ϕ(N)/N ≥ 1/2. Therefore, at least
one αi generates Z/NZ with high probability. We may assume α1 = 1. We show
that for any M ∈ Z, the congruence

e1 + e2α2 + · · ·+ enαn ≡ M (mod N)

has solutions (ei) such that −mi ≤ ei ≤ mi, i = 1, . . . , n and the number of
the solutions does not depend on M . This means that the restriction of ρ to
the set of the ideal classes of the form le11 · · · lenn is surjective and uniform. Since
N ≈ #CL(Z[

√
−p]), this is what we should show. We define a lattice L in Rn

spanned by the rows of the matrix

L =


N 0 0 · · · 0
−α2 1 0 · · · 0
−α3 0 1 · · · 0
...

...
. . .

...
−αn 0 · · · 0 1

 ,

a set

B = {(x1, . . . , xn) ∈ Rn | −mi − 1/2 < xi < mi + 1/2 for i = 1, . . . , n}

and a set BM = B + (M, 0, . . . , 0). The number of the solutions for the above
congruence in the intervals [−mi,mi] is the same as the number of elements in
L ∩BM . The Gaussian heuristic claims

#(L ∩BM) ≈ vol(BM)/ det(L) =
∏
i

(2mi + 1)/N.

Therefore, if
∏

i(2mi + 1) ≥ N , the above congruence has a solution in the
intervals [−mi,mi] and the number of the solutions does not depends on M .
As stated in Section 2.2, we have #CL(Z[

√
−p]) ≈ √

p, so we may choose (mi),
which satisfies

∏
i(2mi + 1) ≥ √

p.

6 Conclusion

We improved a constant-time implementation of commutative supersingular
isogeny Diffie-Hellman (CSIDH), which is isogeny-based Diffie-Hellman-style key

16 H. Onuki, Y. Aikawa, T. Yamazaki, and T. Takagi

exchange and a candidate for post-quantum cryptography. Our implementation
is based on the constant-time implementation in Meyer et al. [19]. Whereas they
used only non-negative key intervals, we used key intervals symmetric with re-
spect to zero. To achieve a constant-time implementation using these intervals,
we constructed a new algorithm that keeps two torsion points on an elliptic curve.
The additional cost for calculation associated with this point is less than the ad-
ditional cost in [19] to achieve constant-time. Consequently, our implementation
is faster than the implementation in [19].

We evaluated these costs by counting the number of operations on Fp. This
evaluation showed that our implementation reduces the cost by 28.23% compared
with the implementation in [19]. We tested this reduction ratio by implementing
our algorithm in C and measuring its clock cycles. The reduction ratio measured
by clock cycles is 29.03%. This confirms the evaluation results by our cost model.
Furthermore, we considered a representation of ideal classes that are used in
CSIDH. We showed that our new parameter for the representations is at least
as secure as that of the original CSIDH.

References

1. D. J. Bernstein, M. Hamburg, A. Krasnova, T. Lange.: Elligator: Elliptic-curve
points indistinguishable from uniform random strings. Proceedings of the 2013 ACM
Conference on Computer & Communications Security, 967–980 (2013).

2. D. J. Bernstein, T. Lange, C. Martindale, L. Panny.: Quantum circuits for the
CSIDH: Optimizing quantum evaluation of isogenies. IACR Cryuptography ePrint
Archive 2018/1059; https://eprint.iacr.org/2018/1059 (to appear at Eurocrypt
2019).

3. W. Castryck, T. Lange, C. Martundale, L. Panny, J. Renes.: CSIDH: An efficient
post-quantum commutative group action. ASIACRYPT 2018, LNCS 11274, 395–427
(2018).

4. H. Cohen and H. W. Lenstra, Jr.: Heuristics on class groups of number fields. Num-
ber Theory, Noordwijkerhout 1983, 33–62 (1984).

5. C. Costello, H. Hisil.: A simple and compact algorithm for SIDH with arbitrary
degree isogenies. ASIACRYPT 2017, LNCS 10625, 303–329 (2017).

6. C. Costello, P.Longa, M. Naehrig.: Efficient algorithms for supersingular isogeny
Diffie-Hellman. CRYPTO 2016, LNCS 9814, 572–601 (2016).

7. C. Costello, B. Smith.: Montgomery curves and their arithmetic. Journal of Cryp-
tographic Engineering 8(3), 227–240 (2018).

8. J-M. Couveigne.: Hard homogeneous spaces. IACR Cryptology ePrint Archive
2006/291; https://eprint.iacr.org/2006/291.

9. L. De Feo.: Mathematics of isogeny based cryptography. arXiv:1711.04062 (2017).
10. L. De Feo, J. Kieffer, B. Smith.: Towards practical key exchange from ordinary

isogeny graphs. ASIACRYPT 2018, LNCS 11274, 365–394 (2018).
11. L. De Feo, S. D. Galbraith.: SeaSign: Compact isogeny signatures from class group

actions. IACR Cryptology ePrint Archive 2018/824; https://eprint.iacr.org/
2018/824 (to appear at Eurocrypt 2019).

12. T. Decru, L. Panny, F. Vercauteren.: Faster SeaSign signatures through improved
rejection sampling. Cryptology ePrint Archive, Report 2018/1109; https://eprint.
iacr.org/2018/1109 (to appear at PQCrypto 2019).

A Faster Constant-time Algorithm of CSIDH keeping Two Points 17

13. C. Delfs, S. D. Galbraith, Computing isogenies between supersingulrar elliptic
curves over Fp. Designs, Codes and Cryptography 78(2), 425–440 (2016).

14. S. D. Galbraith, C. Petit, B. Shani, Y. B. Ti.: On the security of supersingular
isogeny cryptosystems. ASIACRYPT 2016, LNCS 10031, 63–91 (2016).

15. S. D. Galbraith, F. Vercauteren.: Computational problems in supersingular elliptic
curve isogenies. Quantum Information Processing 17(10), 265 (2018).

16. D. Jao, L. De Feo.: Towards quantum-resistant cryptosystems from supersingular
elliptic curve isogenies. PQCrypto 2011, LNCS 7071, 19–34 (2011).

17. A. Jalali, R. Azarderakhsh, M. M. Kermani, D. Jao.: Towards optimized and
constant-time CSIDH on embedded devices. IACR Cryptology ePrint Archive
2019/297; https://eprint.iacr.org/2019/297. (to apper at COSADE 2019).

18. D. Jao, R. Azarderakhsh, M. Campagna, C. Costello, L. De Feo, B. Hess, A.
Jalali, B. Koziel, B. LaMacchia, P. Longa, M. Naehrig, J. Renes, V. Soukharev, D,
Urbanik.: Supersingular isogeny key encapsulation. Submission to the NIST Post-
Quantum Cryptography Standardization project; https://sike.org.

19. M. Meyer, F. Campos, S. Reith.: On Lions and Elligators: An efficient constatn-
time implementation of CSIDH. IACR Cryptology ePrint Archive 2018/1198;
https://eprint.iacr.org/2018/1198 (to appear at PQCrypto 2019).

20. M. Meyer, S. Reith.: A faster way to the CSIDH. INDOCRYPT 2018, LNCS 11356,
137–152 (2018).

21. P. L. Montgomery.: Speeding the Pollard and elliptic curve methods of factoriza-
tion. Mathematics of Computation 48(177), 24–264 (1987).

22. National Institute of Standards and Technology (NIST): NIST Post-
Quantum Cryptography Standardization; https://csrc.nist.gov/Projects/

Post-Quantum-Cryptography, (2016).
23. C. Petit.: Faster algorithms for isogeny problems using torsion point images. ASI-

ACRYPT 2017, LNCS 10625, 330-353 (2017).
24. A. Rostovtsev, A. Stolbunov.: Public-key cryptosystem based on isogenies. IACR

Cryptology ePrint Archive 2006/145; https://eprint.iacr.org/2006/145.
25. C. Siegel.: Über die Classenzahl quadratischer Zahlkörper. Acta Arithmetica 1(1)

83–86 (1935).
26. A. Stolbunov.: Constructing public-key cryptographic schemes based on class group

action on a set of isogenous elliptic curves, Advances in Mathematics of Communi-
cations 4(2), 215–235 (2010).

