
Optimized Supersingular Isogeny Key Encapsulation on
ARMv8 Processors

Amir Jalali1, Reza Azarderakhsh1, Mehran Mozaffari Kermani2, Matthew Campagna3, and David
Jao4

1 Department of Computer and Electrical Engineering and Computer Science, Florida Atlantic University,
FL, USA,

{ajalali2016, razarderakhsh}@fau.edu
2 Department of Computer Science and Engineering, University of South Florida, FL, USA,

mehran2@usf.edu
3 Amazon Web Services Inc., Seattle, WA, USA,

campagna@amazon.com
4 Department of Combinatorics and Optimization, University of Waterloo, Waterloo, ON, Canada,

djao@uwaterloo.ca

Abstract. In this work, we present highly-optimized constant-time software libraries for Su-
persingular Isogeny Key Encapsulation (SIKE) protocol on ARMv8 processors. Our optimized
hand-crafted assembly libraries provide the most efficient timing results on 64-bit ARM-powered
devices. Moreover, the presented libraries can be integrated into any other cryptography primi-
tives targeting the same finite field size. We design a new mixed implementation of field arithmetic
on 64-bit ARM processors by exploiting the A64 and Advanced SIMD processing units work-
ing in parallel. Using these techniques, we are able to improve the performance of the entire
protocol by the factor of 5× compared to optimized C implementations on 64-bit ARM high-
performance cores, providing 83-, 124-, and 159-bit quantum-security levels. Furthermore, we
compare the performance of our proposed library with the previous highly-optimized ARMv8
assembly library available in the literature. The implementation results illustrate the overall 10%
performance improvement in comparison with previous work, highlighting the benefit of using
mixed implementation over relatively-large finite field size.

Keywords: ARM assembly, finite field, isogeny-based cryptosystems, key encapsulation mech-
anism, post-quantum cryptography.

1 Introduction

In recent years, extensive amount of research has been devoted to quantum computers. These ma-
chines are envisioned to be able to solve mathematical problems which are currently unsolvable for
conventional computers, because of their exceptional computational power from quantum mechan-
ics. Therefore, if quantum computers are ever built in large scale, they will certainly be able to break
many or almost all of the currently in-use public-key cryptosystems, the threat of which would be catas-
trophic to the confidentiality and integrity of any secure communication. To counteract this problem,
post-quantum cryptography protocols are required to preserve the security in the presence of quantum
adversaries. Regardless of whether we can estimate the exact time for the advent of the quantum com-
puting era, we must begin to prepare the security protocols to be resistant against potentially-malicious
power of quantum computing. Accordingly, NIST initiated a process to evaluate, and standardize one
or more post-quantum public-key cryptography primitives [21]. Recently, the first round of submission
of the post-quantum primitives is completed and all the proposals are publicly available5 to evaluate
in terms of the proof of security and efficiency.

The submitted public-key post-quantum cryptography (PQC) proposals are based on five differ-
ent hard problems and they are categorized as code-based cryptography [24], (ring) lattice-based
cryptography [13,1], hash-based cryptography [25], multivariate cryptography [23], and isogeny-based
cryptography [17]. The isogeny-based cryptography is based on the hardness of computing the isoge-
nies between two isomorphic elliptic curves and it provides a complete key encapsulation protocol. The
proposed method is denoted as Supersingular Isogeny Key Encapsulation (SIKE) [16], and constructed
upon the initial Diffie-Hellman key-exchange scheme proposed by Jao and De Feo [17].

SIKE protocol provides a standard method of key-exchange between two parties, and it has been
claimed to be secure against large-scale quantum adversaries running the Shor’s quantum algorithm
[29]. Compared to other post-quantum candidates, supersingular isogeny problem is a much younger

5 NIST Standardization Process (Accessed Feb. 2019):
https://csrc.nist.gov/projects/post-quantum-cryptography/round-1-submissions

https://csrc.nist.gov/projects/post-quantum-cryptography/round-1-submissions

scheme and its security and performance need to be investigated more. In terms of performance,
SIKE is not a fast protocol due to the extensive number of point arithmetic which are required for
computing large-degree isogenies. However, because of its significant smaller size of secret-key and
public-key compared to other PQC candidates, SIKE is a suitable option for the applications where
communication bandwith is critical. Furthermore, since it is the only post-quantum cryptography
protocol which is constructed on elliptic curves, hybrid cryptography protocols can be derieved from
SIKE and classical elliptic curve cryptography (ECC) to make the transition towards post-quantum
cryptography more convenient and practical.

The initial idea of constructing cryptography schemes from the isogenies of regular elliptic curves
was introduced by Rostovtsev and Stolbunov [26] in 2006. Later, Charles-Lauter-Goren [8] presented
a set of cryptography hash functions constructed from Ramanujan graphs, i.e., the set of supersingu-
lar elliptic curves over Fp2 with `-isogenies. The main breakthrough in constructing a post-quantum
cryptography protocol based on the hardness of computing isogenies was proposed by Jao and De
Feo in 2011 [17]. Their proposed scheme presents a set of public-key cryptography schemes such as
key-exchange and encryption-decryption protocols with a coherent proof of security. Later in 2014, De
Feo et al. [10] presented the first practical implementation of the Supersingular Isogeny Diffie-Hellman
(SIDH) key-exchange protocol using optimized curve arithmetic techniques such as Montgomery arith-
metic. Since the introduction of supersingular isogeny public-key protocol, many different schemes and
implementations such as digital signature [12,33], undeniable signature [18,14], and static-static key
agreement [5] have been proposed which are all built on the hardness of computing isogenies. The fast
hardware architectures for computing isogenies of elliptic curves proposed by Koziel et al. [19] demon-
strated that isogeny-based crptography has the potential to be considered as a practical candidates
on FPGAs. However, the initial performance evaluations in software were not promising compared to
other post-quantum candidates. In particular to those which are constructed over learning with errors
problem [7,3,6]. The SIDH projective formulas and implementation by Costello et al. [9] smashed the
performance bar of the protocol considerably by eliminating field inversions in isogeny computations,
and provided an optimized software for key-exchange protocol on Intel processors, taking advantage of
hand-written assembly implementation of finite field arithmetic. However, their software still suffered
from the large amount of computations due to the arithmetic of elliptic curves. On ARM-powered
devices, the performance evaluations are even worse due to the reduced instruction set computing
(RISC) which concentrates on power-efficiency rather than performance [20,15]. Recently, a new set
of optimizations in computation of Montgomery ladder and field arithmetic operations [11] improved
the performance of the isogeny-based key-exchange protocol further; however, more investigation on
the efficiency of ARM-based implementations is still required.

In this work, we investigate different approaches for implementing highly-optimized arithmetic
libraries on 64-bit ARM processors. We introduce a new way of implementing multi-precision multipli-
cation using mixed A64/ASIMD hand-written assembly along with pure A64 assembly implementation.
All the previous works on this area concentrated on development of highly-optimized implementation
of field arithmetic using pure SIMD instructions [2,20,15], or investigated a combination of SIMD and
general register implementation on 32-bit ARM platforms, taking advantage of a mixture of 128-bit
wide NEON vectors and 32-bit general registers [22,28]. In this work, we show that such a combination
still can be beneficial on 64-bit ARMv8 family of processors by adopting a novel engineering technique
which takes advantage of out-of-order execution pipeline on high-performance ARM cores. We compare
the performance of our arithmetic libraries inside the SIKE reference implementation, and conclude
the benefits of using mixed implementation over relatively-large finite fields.

1.1 Contributions

In this work, we study different approaches of implementing SIKE on 64-bit ARM. We engineer the
finite field arithmetic implementation accurately to provide the fastest timing records of the protocol
on our target platforms. Our contributions can be categorized as follows:

– We propose a new approach for implementing finite field arithmetic on 64-bit ARM processors.
We combine general register and vector limbs in an efficient way to reduce the pipeline stalls and
improve the overall performance. To the best of our knowledge, this work is the first implementation
of such a technique on ARMv8 processors.

– We implement different optimized versions of finite field multiplication using Karatsuba multi-
plication method which outperforms the previous implementation of the field multiplication with
the same size on ARMv8 target platform. The proposed implementations are constant-time and
resistant to timing attacks.

– Our optimized software provides a constant-time implementation of the post-quantum SIKE proto-
col over three different quantum security levels. We state that, this work is the first implementation
of SIKEp964 which provides 159-bit quantum security level.

– We provide a comprehensive timing results of the SIKE protocol, using different hand-written
assembly techniques along with optimized C benchmarks on ARMv8 processors. We are able to
improve the overall performance of the SIKE library significantly on target processors.

In Section 2 we recall the essential concepts from [17,16] which are required in SIKE. In Section 3 we
describe our implementation techniques and methodology to develop a highly-optimized field multiplier
on ARMv8 processors. In Section 4 we present the efficient implementation of key components inside
SHA-3 inside the SIKE protocol. We present performance results of our implementation and the
comparison with previous work in Section 5. We conclude the paper in Section 6.

1.2 Code Availability

For reproducibility, we provide our optimized implementation publicly available. The source codes are
available at: https://github.com/amirjalali65/armv8-sike.

2 Background

This section provides a brief presentation of the SIKE protocol. We refer readers to [17,16] for more
detailed explanation of the supersignular isogeny problem and the base key-exchange protocol which
the SIKE is constructed upon.

2.1 Isogenies of Elliptic Curves

Let p be a prime of the form p = 2eA3e3 − 1, and let E be a supersingular elliptic curve defined
over a field of characteristic p. E can be also defined over Fp2 up to its isomorphism. An isogeny
φ : E → E′ is a non-constant map from E to E′ which translates the identity into the identity. An
isogeny map is defined by its degree and kernel. The degree of an isogeny is its degree as morphism.
An isogeny with degree ` map is called `-isogeny. Let G be a subgroup of points on E which contains
` + 1 cyclic subgroups of order `. This subgroup is the torsion group E[`] and each element of this
group is corresponding to an isogeny of degree `; accordingly, an isogeny also can be identified by G,
i.e., the kernel of isogeny, and it can be computed using Vélu’s formula [32]. We denote this map as
φ : E → E′/〈G〉. Vélu’s formula can only compute the isogeny of small degrees, while isogeny-based
cryptography requires the evaluation of large-degree isogenies on curves. An efficient recursive strategy
of computing large-degree isogeny is described in [17], by representing full binary trees and dynamic
algorithms. The proposed strategy is adopted inside the SIKE software to compute large-degree isogeny.

Isogenies of elliptic curves divide isomorphic curves into isomorphism classes over Fp2 . These classes
of curves are categorized with their j-invariants [30]. This value is unique for isomorphic curves of the
same class.

SIKE implementation is constructed on Montgomery curves, taking advantage of their fast and
compact arithmetic. Let E be a Montgomery curve which defined by E : By2 = x3 +Ax2 +x equation.
The j-invariant of E can be derived by the following equation:

j(E) =
256(A2 − 3)3

A2 − 4
. (1)

Therefore, in order to verify whether two elliptic curves are on the same class of isomorphisms, we can
evaluate their j-invariant values. This feature is exploited to construct the supersingular isogeny key
encapsulation mechanism [16], where two parties compute two isomorphic curves of the same class,
and the shared secret is computed as the shared j-invariant values. Moreover, from (1), in order to
compute the j-invariant of a Montgomery curve E, we only need to push the curve coefficient A into
the formula. Further, we can compute the curve coefficient using the x-abscissas of two points xP and
xQ on the curve as follows:

A =
(1− xPxQ − xPxR − xQxR)2

4xPxQxR
− xP − xQ − xR, (2)

where R = P − Q is also a point on E. Therefore, the j-invariant of a Montgomery curve can be
evaluated using the x-abscissas of two points and their difference. The above abstraction is used inside
the supersingular isogeny encryption procedure which is explained in the next section.

https://github.com/amirjalali65/armv8-sike

Public Parameters

E0/Fp2

p = 2e23e3 − 1

(xP2
, xQ2

, xR2
) ∈ E0[2

e2]

(xP3
, xQ3

, xR3
) ∈ E0[3

e3]

E0

k

e

r(φ
3) = 〈x

P
3 + [

s

k

3]x
Q

3 〉

E3

pk

3
= (φ3(xP2

), φ3(xQ2
), φ3(xR2

))

k

e

r

(φ2
) =
〈xP2

+ [sk2
]xQ2
〉

E2

c0 = (φ2(xP3
), φ2(xQ3

), φ2(xR3
))

k

e

r

(φ
′

2
) =
〈φ3

(xP2
) +

[sk2
]φ3

(xQ2
)〉

k

e

r(φ ′

3) = 〈φ
2 (x

P
3) + [

s

k

3]φ
2 (x

Q
3)〉

c1 = H(j(E3→2))⊕m

H(j(E2→3))⊕ c1 = m

‖

s

k

3 ←
K
3

s

k

2
←
K2

K

e

y

G

e

n

D

e

E

n

E

n

Fig. 1: Supersingular isogeny PKE protocol.

2.2 Supersingular Isogeny Key Encapsulation (SIKE) Mechanism

Public Parameters SIKE protocol [16], like any other supersingular isogeny-based scheme, is defined
over a set of public parameters. These parameters need to be agreed by the parties prior to the key
encapsulation mechanism and they are listed as follows:

– A prime p of the form p = 2e23e3 − 1, where eA, eB are two positive integers. The corresponding
finite field is defined over Fp2 . This explicit form is required for two main reasons. First, the isogeny
computations using Vélu’s formula need to be constructed over two different torsion subgroups,
i.e., E[2e2] and E[3e3] of points on a starting curve for each party. Second, for efficiency reasons,
primes of this form are Montgomery-friendly primes and they provide faster arithmetic [9].

– A starting supersingular Montgomery curve E0 defined over Fp2 .
– Two sets of generators, i.e., 3-tuple x-coordinates from E0[2e2] and E0[3e3]. Note that, as it is

discussed in detail in [9,16], the entire protocol can be defined and implemented only using two
x-coordinates bases of each torsion subgroup, i.e., {xP2 , xQ2} ∈ E[2e2] and {xP3 , xQ3} ∈ E[3e2];
however, for efficiency reasons, two auxiliary x-coordinates are used to encode these bases, i.e.,
xR2

= xP2
− xQ2

and xR3
= xP3

− xQ3
.

In order to describe the SIKE protocol, first, we need to understand the supersingular isogeny public-
key encryption scheme [17], because key encapsulation and decapsulation algorithms are defined based
on supersingular isogeny encryption and decryption operations.

Supersingular Isogeny Public-key Encryption In this section, we recall the public-key encryption
method from the isogenies of supersingular elliptic curves which was first introduced in [17], and it is
recently described with some changes for achieving better performance in [16].

Similar to any public-key encryption schemes, supersingular isogeny PKE contains three main op-
erations, i.e., key-generation (KeyGen), encryption (Enc), and decryption (Dec). Fig. 1 illustrates these
operations from the isogeny map prespective.

Key Generation. The secret-key sk, is a random positive integer which is randomly generated from a
key-space corresponding to each torsion subgroup’s order. We denote them as K2 = {0, ..., 2e2−1} and
K3 = {0, ..., 3e3 − 1}, accordingly. Next, the secret key and the x-coordinates of generators construct
the kernel of the first isogeny φ` such that xS`

= 〈xP`+[sk`]Q`
〉, where ` ∈ {2, 3} is the degree of isogeny.

Subsequently, public-key pk is computed by evaluating the isogeny of (2e2 or 3e3) iteratively from the
small isogeny evaluation and point multiplication as it is discussed previously. Eventually, public-key
contains a 3-tuple of x-coordinates, i.e., pkm = (xPm , xQm , xRm), where xRm = xPm − xQm and m
is the degree of the isogeny. In Fig. 1 we choose sk from K3; therefore, the key generation algorithm
maps E0 to E3.

Encryption. The encryption procedure encrypts an n-bit message m from a message space M =
{0, 1}n, and generates two ciphertexts c0 and c1. As it will be discussed later, in the case of key en-
capsulation mechanism, we need to generate a random string along with the encryption process for

security reason. The secret-key which is generated in the key generation procedure is randomly gen-
erated from either K2 or K3. Let sk3 be the secret-key from key generation algorithm from K3, and
pk3 be its corresponding public key. We choose the other keyspace to generate the randomness inside
the encryption algorithm, i.e., K2. The first ciphertext c0 is generated as a 3-tuple of x-coordinates
from evaluating the large degree 2e2 -isogeny, starting from E0 using the kernel φ2 which is computed
as xS2

= 〈xP2+[sk2]Q2
〉.

The second ciphertext is generated after 3 steps:

1. First, the j-invariant of curve E3→2 is evaluated by computing the large-degree 2e2-isogeny, initial-
izing from the kernel φ′2 = 〈φ3(xP2

) + [sk2]φ3(xQ2
)〉, and a starting curve E3 which is retrieved

from pk3 using equation (2).
2. Second, the hash of the retrieved j-invariant value from Step 1 is computed.
3. Computing the ciphertext as c1 = H(j)⊕m.

The computed pair of ciphertexts is the output of encryption procedure.

Decryption. Decryption algorithm computes m from (c0, c1) using sk3. First, we compute the j-
invariant of curve E2→3 which is computed by evaluating 3e3-isogeny of a starting curve E2 and the
kernel φ′3 = 〈φ2(xP3

) + [sk3]φ2(xQ3
)〉. Note that E2 is the evaluated curve from 3-tuple x-coordinate c0.

Second, we compute hash of the computed j-invariant using the same hash function used in encryption
algorithm. Finally, we retrieve the message using m = H(j)⊕ c1.

Key Encapsulation Mechanism A key encapsulation mechanism contains 3 main functions: key-
generation, encapsulation, and decapsulation. In this section, we describe the SIKE protocol briefly
based on the supersingular isogeny public-key encryption algorithm. We refer readers to [14] for more
details.

Key Generation. Similar to PKE protocol, the key generation algorithm generates a secret-key
from keyspace K3 and computes the corresponding 3-tuple x-coordinates pk3 by evaluating 3e2-degree
isogeny from starting curve E0. Moreover, an n-bit secret random message s ∈ {0, 1}n is generated
and concatenated to sk3 and pk3 to construct the SIKE secret-key sk3. The generated pk3 and sk3
are the output of this operation.

E0 → E3/〈xP3 + [sk3]xQ3〉 → sk3 : (s, sk3, pk3). (3)

Key Encapsulation. Key encapsulation defines on top of the supersingular isogeny encryption
method. The input of this operation is the public-key pk3 which is generated in key-generation proce-
dure. First, an n-bit random string m ∈ {0, 1}n is generated and concatenated with the public-key pk3.
Next, the result is hashed using a custom-SHAKE256 (cSHAKE256) hash function G. This hash value
is the ephermeral secret-key r, and it is pushed along with pk3 into encryption function to construct
the SIKE ciphertext. The hash function H inside the encryptor is also a cSHAKE256 function. The
generated ciphertexts are further concatinated with m and hashed to generate the secret shared-key
K:

Enc(pk3,m,G(m ‖ pk3))→ (c0, c1) (4)

H(m ‖ (c0, c1))→ K.

Key Decapsulation. The decapsulation algorithm computes the shared-key K from the outputs
of equations (3) and (4). First, 2-tuple ciphertext is decrypted using secret-key sk3 and hashed to
retrieve m′. Further, m′ is concatenated with public-key pk3 and hashed using the G function to
retrieve ephemeral secret-key r′.

Dec(sk3, (c0, c1))→ m′

G(m′ ‖ pk3)→ r′.

Next, c′0 is computed by evaluating 2e2-isogeny of starting curve E0 using the kernel 〈xP2 + [r′]xQ2〉:

E0 → E2/〈xP2
+ [r′]xQ2

〉 → c′0.

The final correction is performed by comparing the c0 value with c′0 and if they are equal, the shared-key
K is computed as K = H(m′ ‖ (c0, c1)), otherwise K = H(s ‖ (c0, c1)).

Table 1: SIKE finite field parameters [16]

p = 2e23e3 − 1
Length

min(3
√

2e2 , 3
√

3e3)
Quantum

(bits) Security

22503159 − 1 503 1.26× 283 83
23723239 − 1 751 1.00× 2124 124
24863301 − 1 964 1.02× 2159 159

Table 2: SIKE base field operation counts over different parameter sets
Scheme mult. red. add. sub.

SIKEp503 195,889 149,138 56,978 83,142
SIKEp751 307,946 234,253 88,764 131,618
SIKEp964 408,786 310,707 117,666 172,910

2.3 SIKE Implementation Parameters

The reference implementation of SIKE [16] contains three sets of parameters which correspond to three
finite fields, denoted as Fp503, Fp751, and Fp964 because of their bit-length. Our optimized software
is forked from the reference implementation and it offers the same security levels using the same
parameters. Table 1 presents the information regarding each prime and its provided quantum security
level. The starting elliptic curve of the reference implementation is defined as E0/Fp2 : y2 = x3+x, with
the cardinality equal to #E0 = (2e23e3)2 and j(E0) = 1728. This special instance of the Montgomery
curve is chosen for efficiency reason, while any other supersingular curve can be used inside the protocol.
We remark that the best known quantum attack on isogeny-based cryptography is based on claw-
finding algorithm using quantum walks [31], which theoretically can find the isogeny between two
curves in O(3

√
`e`), where `e` is the size of the isogeny kernel; accordingly, the provided quantum

security level for each prime in SIKE is determined by the minimum bit-length of each isogeny kernel,
i.e., min(3

√
2e2 , 3
√

3e3). Detailed discussion about the security of the SIKE protocol is out of scope of
this work and we refer the readers to [16] for further details.

3 Optimized Implementation on ARMv8

In this section, we explain our design approach and techniques. Our state-of-the-art implementation
technique concentrates on the field multiplication, since it is the most expensive operation inside the
SIKE protocol.

3.1 SIKE Performance Profiling

The main arithmetic operations inside the SIKE protocol are elliptic curve point arithmetic over
quadratic extension field Fp2 . Since the bit-length of the primes are smaller than the multiple of word
size, in the reference implementation, optimization techniques such as lazy reduction are exploited to
improve the overall performance of Fp2 arithmetic. As a result, finite field multiplication and reduction
are implemented separately, and the reduction is delayed as much as possible to minimize the number
of field arithmetic. In order to optimize the SIKE reference implementation, first we need to profile
the number of operation counts for underlying field arithmetic. Since the isogeny computations for
different degrees require different number of operations in corresponding with the isogeny graph, the
number of field operations is different for each security level. Table 2 presents the number of field
arithmetic operations in the SIKE protocol over different finite fields. This helps us to concentrate
on the performance-bottleneck operations and try to improve them further compared to previous
optimized implementations. As mentioned above, using lazy reduction technique reduces the number of
field reduction to field multiplication significantly. Moreover, projective coordinates arithmetic replaces
all the field inversions with extra multiplications and the performance of multiplier directly affects the
overall performance of the protocol. Therefore, in this work, we focus on the efficiency of the field
multiplication and engineer a highly-optimized multiplier for each quantum-security level. We find
different levels of Karatsuba multiplication very effective to improve the performance compared to
operand-scanning method, while we can exploit a parallel strategy to compute the multiplication of
each half using mixed A64 and ASIMD assembly instructions. We elaborate more on this technique
in this paper , but first we describe the most relevant architectural capabilities of the target platform
which are considered in the design of our optimized library.

a4 a0
64-bit 32-bit

a1a5a2a6a3a7a0a1a2a3

b0b1b2b3b4b5b6b7b0b1b2b3

ah al

bh bl

a0b0

a1b0

a4b0

a2b0

a3b0

a5b0

a6b0

a7b0

a0b0

a1b0

a0b1

a0b2

b

b

b

b

b

b

A64 ASIMD

Fig. 2: 512-bit mixed-multilication implementation overview.

3.2 Target Architecture

We present a new design of arithmetic implementation on ARMv8 platforms by combining A64 and
ASIMD instructions. To have these units working in parallel, the target platform should support out-
of-order super-scalar pipeline. This feature is provided by ARMv8 high-performance cores such as
Cortex-A57, Cortex-A72, and Cortex-A73. Therefore, we expect to get the best performance results of
our mixed implementation on these family of processors, while our A64 implementation is anticipated
to outperform the mixed version on power-efficient cores such as Cortex-A53.

ARMv8 Cortex-A57 and Cortex-A72 This family of processors are designed for the high-
performance applications where they combine with power-efficient cores to achieve power-performance
efficiency in the ARM big.LITTLE technology. Instructions are fetched and decoded in order into inter-
nal micro-operations (µops), and issued out-of-order to one of eight execution pipelines [4]; accordingly,
two separate pipelines are dedicated for A64 and ASIMD µops. Once A64 instructions are dispatched
through the integer pipeline, they are queued to be executed. Meanwhile, ASIMD pipeline can execute
vector operations in the background when the A64 pipeline is stalled. This approach removes pipeline
stalls to some extent and it is expected to boost the performance of arithmetic. We exploited this
capability to implement optimized Fp multiplication.

We implement the field multiplication using two different strategies for each level of security. First,
we implemented the straightforward A64 implementation using one-level Karatsuba technique. Next,
we designed a mixed version of Karatsuba multiplication to be utilized in our target architecture.

3.3 Karatsuba Multiplication in A64

Previous implementations of field multiplication over Fp751 [9,15] and Fp964 [15] are based on Comba-
based and two-level Karatsuba multiplication, respectively. In this work, we propose one-level Karat-
suba multiplication method for both Fp503 and Fp751, while we follow two-level implementation over
Fp964 for achieving better performance as discussed in [15]. In particular, we achieved better perfor-
mance results over Fp751 using Karatsuba multiplication compared to previous Comba-method imple-
mentations.

Using A64 assembly instructions, one-level Karatsuba implementation is straightforward; field
operands are represented in radix-264 and two n-bit field elements, e.g., a and b are divided into
two n

2 -bit halves, i.e., ah2
n
2 + al and bh2

n
2 + bl. Consequently, one n-bit long multiplication is replaced

with three n
2 -bit multiplications, at the cost of extra additions/subtractions: c = (ah + al).(bh + bl)−

ahbh − albl.
Multiplication implementation in A64 starts with loading input operands into general 64-bit reg-

isters using ldp instruction which can load a pair of 64-bit data in each instruction. Next, the mul-
tiplication of 64-bit registers is implemented using mul and umulh instructions, computing the low
and high halves of the 128-bit result, respectively. The intermediate additions, subtractions, and carry
propagations are performed using adcs and sbcs. Eventually, the result is stored back to memory
iteratively in pairs of 64-bit wide using stp instruction.

3.4 Mixed A64-ASIMD Karatsuba Multiplication

One of the benefits of using divide-and-conquer method such as Karatsuba multiplication is that the
parts which build the final result, e.g., (ah+al).(bh+bl), ahbh, and albl can be computed independently.

s0s1s2s3

s0s1s2s3

Vt0

Vt1

trn2 Vt1
.4s,Vt0

.4s,Vt1
.4s

trn1 Vt0
.4s,Vt0

.4s,Vt1
.4s

s0s1s2s3

s0s1s2s3

Vt0

Vt1

Fig. 3: Transposition of data into two vectors to handle carry-overflow.

This fact is in contrast with other multiplication methods such as Comba-method which requires the
carry to be propagated step-by-step between each slot of the final result; as a result, the divided parts
can be computed in parallel and combined at the end. In our mixed version of implementation, we
exploit this advantage and compute ahbh and albl concurrently. We choose to implement ahbh using
A64 and albl using ASIMD assembly instructions. Fig. 2 illustrates the overall overview of our mixed
A64-ASIMD multiplication for 512-bit input operands.

As it is already discussed in details [15,14], it is rather inefficient to attempt ASIMD implementation
for field arithmetic on 64-bit ARM due to the smaller radix representation of operands, i.e., radix-232

and therefore extended number of arithmetic operations. However, in our engineered mixed implemen-
tation, many pipeline stalls are removed; this may result in improvement in overall performance the
multiplication.

The first step to design our mixed multiplier is to choose what algorithm to use for each half
of multiplication, i.e., ahbh and albl. For A64 implementation, we found the Comba-multiplication
method fast and optimum. In particular, since the multiplication size is cut in half (n

2 -bit), we have
access to redundant number of 64-bit general registers that can be used to implement the operand-
scanning method without any need to load/store data back and forth in the middle of process. On
the other hand, for the ASIMD implementation of albl, Comba-multiplication is not a suitable option
due to the lack of carry-propagation instruction. Previous works on the efficient implementation of
multi-precision multiplication on ARMv7 NEON [27,20] present an efficient field multiplication using
parallel school-book method. We adopted the same strategy; however, since the vector manipulation
in ARMv8 ASIMD is totally different from ARMv7 NEON, we customized our version of school-book
multiplication on ARMv8 platforms.

A64-based product-scanning method is implemented by loading the most significant halves of in-
put operands, and computing each slot of the result by multiplication and addition of corresponding
input words. ASIMD-based school-book multiplication, however, is more complicated to implement.
We explain the implementation steps in detail in the following:

1. After loading the least-significant halves of input operands into vectors using ld1 instruction, one of
the input vectors is rearranged in correspond with the intermediate additions positions (highlighted
words in Fig. 2) using transpose instructions trn1 and trn2. Note that, ASIMD multiplication
instructions compute two 32×32-bit multiplications concurrently, i.e., a0b0 and a4b0 are computed
using one multiplication instruction in parallel.

2. Each 32-bit limb of ”non-shuffled” operand is multiplied to the entire shuffled operand in each
step using umull and umull2 instructions. These instruction computes the multiplication of a
32-bit limb to the first and second halves of a 128-bit ASIMD vector, respectively. We use these
instructions only in the first step of the multiplication process since we need no addition. For
the next steps, we exploit umlal and umlal2 instructions which compute the multiplication and
addition at the same time.

3. Vectorized additions are performed in parallel and can add two 128-bit vector using only one add

instruction. However, vectorized addition does not handle carry-propagation between vector slots;
accordingly, intermediate multiplication results need to be transposed from 4× 32-bit values into
2× 32-bit ones, while the remaining two slots are preserved for carry overflows. Fig. 3, shows this
process for a 128-bit wide ASIMD vector. This transposition is performed by compounding the
multiplication result vector (Vt0) with a zero vector (Vt1) using trn1 and trn2 instructions.

4. The ASIMD-based multiplication performs Steps 2 and 3 iteratively for each 32-bit word of the
second operand. In the final step we compute the last additions and carry propagations and move
the result vectors into general registers using umov instruction to perform subtraction (ahbh−albl).

Table 3: Performance results (presented in millions of clock cycles) of the proposed softwares in com-
parison with reference implementation on ARMv8 platforms. (Benchmarks were obtained on 1.95 GHz
Cortex-A57 and 2.4 GHz Cortex-A72 cores running Android 7.1.1 and 8.1.0, respectively)

Scheme Operation
A64 assembly (ASIMD + A64) assembly Optimized C

Cortex-A57 Cortex-A72 Cortex-A57 Cortex-A72 Cortex-A57 Cortex-A72

SIKEp503

KeyGen. 31.2 31.2 31.2 33.6 150.1 147.5
Encap. 50.7 50.4 52.6 55.2 245.7 245
Decap. 54.6 54.1 56.5 57.6 261.3 260
Total 136.5 135.7 140.3 146.4 657.1 652.5

SIKEp751

KeyGen. 101.4 100.8 99.4 98.4 528.4 512.5
Encap. 163.8 162.6 161.8 161.2 858 835
Decap. 175.5 174.8 173.5 172.4 922.3 892.5
Total 440.7 438.2 434.7 432 2,308 2,255

SIKEp964

KeyGen. 222.3 220.8 216.4 214.2 1,201.2 1,167.6
Encap. 374.4 372 362.7 361.1 2,020.2 1,918.8
Decap. 393.9 393.6 382.2 380.7 2,131.3 2,090.9
Total 990.6 986.4 961.3 956 5,352.7 5,177.3

We implement the rest of Karatsuba multiplication operations, i.e., (ah+al).(bh+bl) and subtractions,
using A64 instruction, taking advantage of its 64-bit wide arithmetic. Furthermore, we design 512-,
768-, and 1024-bit mixed Karatsuba multiplication using the above technique and integrate them into
the SIKE software, providing three different quantum security levels.

We remark that since all the curve arithmetic in SIKE implementation is performed on Montgomery
space, the most optimized algorithm for reduction is Montgomery reduction which is already used in
the SIKE implementation submission. Moreover, SIKE primes, i.e., Fp503, Fp751, and Fp964, have a
special form which is utilized to improve the reduction algorithm by eliminating several single-precision
multiplications; we refer the reader to [9,15] for more details. Therefore, we believe the most efficient
implementation of reduction algorithm on ARMv8 is based on product-scanning method using A64
assembly instructions.

4 Optimized SHA-3 implementation

SIKE reference implementation requires three hash functions F , G, and H which are used inside
encapsulation and decapsulation algorithms. These hash functions are all instances of cSHAKE256 with
different custom input strings which is based on SHA-3 library and specified by NIST. Compared to
isogeny computations, the computational cost of these functions is negligible and they barely affect the
overall performance of the SIKE protocol. However, in this work, we focus on using the most efficient
implementation of this protocol on ARMv8 platforms; therefore, we replace the generic implementation
of SHA-3 with the hand-written assembly version developed by OpenSSL6 project authors in our
software. The essential function inside the SHA-3 is the Keccak-1600 function which performs the
core permutations. Note that, the optimized implementation of this function is developed using A64
assembly instructions without taking advantage of ASIMD vectors for the following reason. Addressing
64-bit lanes of ASIMD vectors is not as trivial as 32-bit NEON on ARMv7 processors. In particular,
we found it is rather complicated to perform rotate operation using available ASIMD instructions on
64-bit lanes which adds up significant number of clock cycles to the overall timing results. Therefore,
64-bit ASIMD implementation of Keccak-1600 is slower than A64 general register implementation on
ARMv8 processors.

5 Implementation Details and Performance Results

In this section, we present our benchmark procedure and provide SIKE performance evaluation results
on two famous ARMv8 family of processors, i.e., Cortex-A57 and Cortex-A72.

5.1 Implementation Details

As it is mentioned before, our optimized implementation targets high-performance ARMv8 proces-
sors which support out-of-order pipeline. We use a Huawei Nexus 6P cellphone, running Android

6 Available in: https://github.com/openssl/openssl

https://github.com/openssl/openssl

Table 4: Performance comparison of this work with the previous ARMv8 optimized implementation of
SIKEp751 on a Cortex-A57 core presented in millions of clock cycles

Implementation KeyGen Encap. Decap. Total

This Work 99.4 161.8 173.5 434.7

SIDHv3.0∗ 109.2 179.4 193.2 481.8

* Supports optimized ARMv8 implementation of SIKEp751

Nougat 7.1.1 and a Google Pixel 2, running Android Oreo v8.1.0, for benchmarking our software on
Cortex-A57 and Cortex-A72, respectively. The binaries are cross-compiled with clang 5.0.3 using
-O3 -fomit-frame-pointer -pie flags and run via adb-shell. The -pie flag is used to generate
position independent executables which can be run on cellphones. We benchmarked the executables on
one high-performance core using taskset command to ensure power-efficient cores were not involved.

Our optimized software libraries using both A64 and mixed-assembly are publicly available7 for
different levels of security.

5.2 Results and Discussion

Table 3 presents benchmark results of our SIKE implementation on target platforms for different
security levels. The results highlight the performance of our optimized ARMv8 assembly implementa-
tion using A64 assembly and mixed assembly in comparison with the portable optimized C reference
implementation [16]. Results are averaged over 103 iterations and converted to clock cycle counts
corresponding to the target processor frequency. Based on the benchmark results, the optimized arith-
metic libraries provide roughly 5× faster results than generic implementation on the target platforms.
Moreover, we notice that for larger finite fields, our mixed ASIMD/A64 version outperforms the A64
optimized library by a very small factor, while in relatively smaller fields, the A64 implementation
is more efficient. This highlights the fully pipeline utilization that we obtain using mixed assembly
implementation. However, as it is discussed before, since ASIMD arithmetic operations are performed
in radix-232, the overall performance improvement is not remarkable. We also observe that the clock
cycle count on Cortex-A72 core is slightly less than Cortex-A57. This performance enhancement is
related to architecture design improvements in Cortex-A72 family of processors which contain many
micro-architecture updates for performance improvement compared to its prior generation.

In order to evaluate the efficiency of Karatsuba multiplication over Fp751, we compared our mixed
optimized library with the only available8 highly-optimized ARMv8 SIKE implementation. We com-
pared the performance of the SIDH v3.0 which supports optimized ARMv8 SIKE implementation
with our software for the only available security level, i.e., SIKEp751. We have noticed the available
ARMv8 implementation of SIKEp503 inside the SIDHv3.0 library is implemented in C and therefore
the performance comparison with this work is not fair. Table 4 presents the performance evaluation of
the SIKE implementation inside SIDHv3.0 in comparison with this work. The presented benchmarks
show roughly 10% performance improvement of our library over highly-optimized previous library for
the same field size. We state that the performance improvement of this results corresponds to different
multiplication algorithm and implementation technique that we use in this work. Moreover, it proves
the fact that ARMv8 vector instructions can still be useful inside field arithmetic operations. In par-
ticular, using mixed implementation and taking advantage of 256-bit wide ASIMD vectors can result
in performance improvement over larger fields. That is because the scarce number of available 64-bit
general registers enforces an excessive number of memory-register load and stores instructions, and
using vectors will reduce these costly operations, and improve the overall performance.

6 Conclusion

The main motivation behind this work was to push the performance bar of the post-quantum SIKE
protocol further on 64-bit ARM-powered embedded devices; we presented an optimized implementation
of SIKE protocol on 64-bit high-performance ARM processors. We investigated different design of
implementing multi-precision multiplication on ARMv8 processors, with and without using ASIMD
vectorization. We showed that incorporating ASIMD implementation, mixed with A64 design, over

7 https://github.com/amirjalali65/armv8-sike
8 https://github.com/microsoft/pqcrypto-sidh (accessed in Feb. 2018)

https://github.com/amirjalali65/armv8-sike
https://github.com/microsoft/pqcrypto-sidh

relatively large finite fields, can improve the overall performance of projective coordinates cryptography
protocols such as SIKE.

Our proposed approach can be used inside any other cryptography primitives which require signifi-
cant amount of field multiplication over large primes. Moreover, we benchmarked our implementations
on two popular Android cellphones to evaluate the practical efficiency of the SIKE protocol. We com-
pared our results with the previous SIKE optimized implementation to justify the performance benefits
we gained using our proposed implementation techniques. We believe the proposed method can be used
on other platforms which support out-of-order execution pipeline, improving the overall performance
of the protocol by reducing pipeline stalls. We plan to investigate this possibility in the future works.

We hope this work motivates researchers and engineers to investigate further into the efficiency of
the SIKE protocol on various platforms.

References

1. Ajtai, M.: Generating hard instances of lattice problems. In: Proc. ACM Symp. on Theory of computing.
pp. 99–108. ACM (1996)

2. Ali, S., Cenk, M.: Faster residue multiplication modulo 521-bit mersenne prime and an application to ECC.
IEEE Trans. on Circuits and Systems 65-I(8), 2477–2490 (2018)

3. Alkim, E., Ducas, L., Pöppelmann, T., Schwabe, P.: Post-quantum key exchange-a new hope. Tech. rep.,
Cryptology ePrint Archive, Report 2015/1092 (2015), http://eprint.iacr.org (accessed Feb. 2018)

4. ARM Limited: Cortex-A57 Software Optimization Guide (2016), http://infocenter.arm.com/help/

topic/com.arm.doc.uan0015b/cortex_a57_software_optimization_guide_external.pdf (accessed
Feb. 2018)

5. Azarderakhsh, R., Jao, D., Leonardi, C.: Post-quantum static-static key agreement using multiple protocol
instances. In: Proc. Int. Conf. on Selected Areas in Cryptography. pp. 45–63. Springer (2017)

6. Bos, J., Costello, C., Ducas, L., Mironov, I., Naehrig, M., Nikolaenko, V., Raghunathan, A., Stebila,
D.: Frodo: Take off the ring! practical, quantum-secure key exchange from lwe. In: Proc. ACM SIGSAC
Conference on Computer and Communications Security. pp. 1006–1018. ACM (2016)

7. Bos, J.W., Costello, C., Naehrig, M., Stebila, D.: Post-quantum key exchange for the tls protocol from
the ring learning with errors problem. In: Proc. IEEE Symp. on Security and Privacy. pp. 553–570. IEEE
(2015)

8. Charles, D.X., Lauter, K.E., Goren, E.Z.: Cryptographic hash functions from expander graphs. J. Cryp-
tology 22(1), 93–113 (2009)

9. Costello, C., Longa, P., Naehrig, M.: Efficient algorithms for supersingular isogeny Diffie-Hellman. In:
Advances in Cryptology. Springer (2016)

10. De Feo, L., Jao, D., Plût, J.: Towards quantum-resistant cryptosystems from supersingular elliptic curve
isogenies. J. of Mathematical Cryptology 8(3), 209–247 (2014)

11. Faz-Hernández, A., López, J., Ochoa-Jiménez, E., Rodŕıguez-Henŕıquez, F.: A faster software implemen-
tation of the supersingular isogeny diffie-hellman key exchange protocol. IEEE Trans. Comput. (2017)

12. Galbraith, S.D., Petit, C., Silva, J.: Signature schemes based on supersingular isogeny problems. Tech.
rep., Cryptology ePrint Archive, Report 2016/1154 (2016 (accessed Feb 2018))

13. Hoffstein, J., Pipher, J., Silverman, J.H.: NTRU: A ring-based public key cryptosystem. In: Proc. Int.
Symp. on Algorithmic Number Theory. pp. 267–288. Springer (1998)

14. Jalali, A., Azarderakhsh, R., Mozaffari-Kermani, M.: Efficient post-quantum undeniable signature on 64-bit
arm. In: Proc. Int. Conf. on Selected Areas in Cryptography. pp. 281–298. Springer (2017)

15. Jalali, A., Azarderakhsh, R., Mozaffari Kermani, M., Jao, D.: Supersingular isogeny diffie-hellman key
exchange on 64-bit arm. IEEE Trans. Depend. Secure Comput. (2017)

16. Jao, D., Azarderakhsh, R., Campagna, M., Costello, C., Jalali, A., Koziel, B., LaMacchia, B., Longa,
P., Naehrig, M., Renes, J., Soukharev, V., Urbanik, D.: Supersingular isogeny key encapsulation. NIST
submissions (2017)

17. Jao, D., De Feo, L.: Towards quantum-resistant cryptosystems from supersingular elliptic curve isogenies.
In: Proc. Int. Workshop on Post-Quantum Cryptography. pp. 19–34. Springer (2011)

18. Jao, D., Soukharev, V.: Isogeny-based quantum-resistant undeniable signatures. In: Proc. Int. Workshop
on Post-Quantum Cryptography. pp. 160–179. Springer (2014)

19. Koziel, B., Azarderakhsh, R., Kermani, M.M., Jao, D.: Post-quantum cryptography on FPGA based on
isogenies on elliptic curves. IEEE Trans. on Circuits and Systems 64-I(1), 86–99 (2017)

20. Koziel, B., Jalali, A., Azarderakhsh, R., Jao, D., Mozaffari-Kermani, M.: NEON-SIDH: efficient imple-
mentation of supersingular isogeny Diffie-Hellman key exchange protocol on ARM. In: Proc. Int. Conf. on
Cryptology and Network Security. pp. 88–103. Springer (2016)

21. Lange, T.: PQCRYPTO Project in the EU. NIST Workshop on Cybersecurity in a Post-
Quantum World (2015), http://csrc.nist.gov/groups/ST/post-quantum-2015/presentations/

session7-lange-tanja.pdf (accessed Feb. 2018)
22. Longa, P.: Fourqneon: Faster elliptic curve scalar multiplications on ARM processors. In: Selected Areas

in Cryptography - SAC 2016 - 23rd International Conference,. pp. 501–519 (2016)

http://eprint. iacr. org
http://infocenter.arm.com/help/topic/com.arm.doc.uan0015b/cortex_a57_software_optimization_guide_external.pdf
http://infocenter.arm.com/help/topic/com.arm.doc.uan0015b/cortex_a57_software_optimization_guide_external.pdf
http://csrc.nist.gov/groups/ST/post-quantum-2015/presentations/session7-lange-tanja.pdf
http://csrc.nist.gov/groups/ST/post-quantum-2015/presentations/session7-lange-tanja.pdf

23. Matsumoto, T., Imai, H.: Public quadratic polynomial-tuples for efficient signature-verification and
message-encryption. In: Proc. Workshop on the Theory and Application of of Cryptographic Techniques.
pp. 419–453. Springer (1988)

24. McEliece, R.: A public-key cryptosystem based on algebraic. Coding Thv 4244, 114–116 (1978)
25. Merkle, R.C., Charles, R., et al.: Secrecy, authentication, and public key systems. PhD thesis, Stanford

University (1979)
26. Rostovtsev, A., Stolbunov, A.: Public-key cryptosystem based on isogenies. IACR Cryptology ePrint

Archive 2006, 145 (2006)
27. Seo, H., Liu, Z., Großschädl, J., Choi, J., Kim, H.: Montgomery Modular Multiplication on ARM-NEON

Revisited. In: Proc. Int. Conf. on Information Security and Cryptology. pp. 328–342. Springer (2014)
28. Seo, H., Liu, Z., Longa, P., Hu, Z.: SIDH on ARM: faster modular multiplications for faster post-quantum

supersingular isogeny key exchange. IACR Trans. Cryptogr. Hardw. Embed. Syst. 2018(3), 1–20 (2018)
29. Shor, P.W.: Algorithms for quantum computation: Discrete logarithms and factoring. In: Proc. Foundations

of Comput. Science Symp. pp. 124–134. IEEE (1994)
30. Silverman, J.H.: The arithmetic of elliptic curves, vol. 106. Springer Science & Business Media (2009)
31. Tani, S.: Claw finding algorithms using quantum walk. Theoretical Computer Science 410(50), 5285–5297

(2009)
32. Vélu, J.: Isogénies entre courbes elliptiques. CR Acad. Sci. Paris Sér. AB 273, A238–A241 (1971)
33. Yoo, Y., Azarderakhsh, R., Jalali, A., Jao, D., Soukharev, V.: A post-quantum digital signature scheme

based on supersingular isogenies. In: Proc. Int. Conf. on Financial Cryptography and Data Security. pp.
163–181. Springer (2017)

	Optimized Supersingular Isogeny Key Encapsulation on ARMv8 Processors
	Amir Jalali, Reza Azarderakhsh, Mehran Mozaffari Kermani, Matthew Campagna, and David Jao

