
Practical Supersingular Isogeny Group Key
Agreement

Reza Azarderakhsh1, Amir Jalali1, David Jao2, and Vladimir Soukharev3

1 Department of Computer and Electrical Engineering and Computer Science,
Florida Atlantic University, FL, USA,
{ajalali2016, razarderakhsh}@fau.edu

2 Department of Combinatorics and Optimization, University of Waterloo, Waterloo,
ON, Canada,

djao@uwaterloo.ca
3 InfoSec Global, Toronto, ON, Canada,
Vladimir.Soukharev@infosecglobal.com

Abstract. We present the first quantum-resistant n-party key agree-
ment scheme based on supersingular elliptic curve isogenies. We show
that the scheme is secure against quantum adversaries, by providing a
security reduction to an intractable isogeny problem. We describe the
communication and computational steps required for n parties to estab-
lish a common shared secret key. Our scheme is the first non-generic
quantum-resistant group key agreement protocol, and is more efficient
than generic protocols, with near-optimal communication overhead. In
addition, our scheme is contributory, which in some settings is a desir-
able security property: each party applies a function of their own private
key to every further transmission. We implement the proposed protocol
in portable C for the special case where three parties establish a shared
secret. Moreover, we benchmark our software on two generations of Intel
processors, highlighting the feasibility and efficiency of using the pro-
posed scheme in practical settings. The proposed software computes the
entire group key agreement in 994 and 1,374 millions of clock cycles on
Intel Core i7-6500 Skylake and Core i7-2609 Sandy Bridge processors,
respectively.
Keywords: Group key agreement, isogenies, post-quantum cryptogra-
phy.

1 Introduction

Many current cryptographic schemes are based on mathematical problems that
are considered difficult for classical computers, but can easily be solved using
quantum algorithms. To prepare for the emergence of quantum computers, we
aim to design cryptographic primitives for common operations, such as encryp-
tion and authentication, which will resist quantum attacks. One family of such
primitives, proposed by De Feo, Jao, and Plût [6, 9], uses isogenies between su-
persingular elliptic curves to construct quantum-resistant cryptographic proto-
cols for public-key encryption, two-party key agreement. One of the still-missing
components is a multi-party key agreement scheme.



In this paper, we present a new protocol for quantum-resistant n-party key
agreement based on the difficulty of computing isogenies between supersingular
elliptic curves. We provide a construction which takes a two-party Diffie-Hellman
style key agreement and transforms it into a n-party key agreement. The proce-
dure is sequential from party to party and ensures that each party, before sending
their next message in the sequence, applies their own private information. This
approach provides authentication capability at no extra cost and has minimal
transmission overhead. We present a high-speed implementation of ephemeral
three-party key agreement software which provides 80 bits of quantum security
and 120 bits of classical security. This implementation provides fast and compact
functions to compute isogeny maps on supersingular Montgomery curves, tak-
ing advantage of their efficient x-coordinate arithmetic. The first version of our
software is written in C and it is portable on various platforms. The benchmarks
on the two generations of x64 Intel processors with and without extended arith-
metic support, show that the whole protocol including key generations takes
reasonable amount of time to compute the shared secret among three parties
without using any assembly optimizations in finite field arithmetic. Moreover,
because of the special design of the proposed protocol, the shared secret key is
established after only four passes.

2 Comparison and related work

Group key exchange is to a large extent an unsolved problem even in the clas-
sical setting, involving some amount of compromise between functionality and
performance. The only known practical one-round multiparty non-interactive
key exchange (NIKE) protocol is the pairing-based protocol of Joux [11], which
only handles the 3-party case. This protocol generalizes in an obvious way to n
parties using multilinear maps, but currently known candidate multilinear map
constructions are, to put it mildly, far from practical. Aside from multilinear
maps, there are to our knowledge no existing proposals for quantum-resistant
group key exchange protocols. Therefore, even relatively inefficient protocols
serve to advance the state of the art in the post-quantum setting.

In the classical (non-quantum-safe) setting, there are a number of different
approaches to transform two-party key agreement into multi-party key agree-
ment. Most such constructions transform DH and ECDH protocols into multi-
party key agreement protocols. Some examples of possible approaches are [1,
2, 7, 10, 12–14, 16], though some of them require a trusted third party (TTP).
The performance of the resulting schemes can be roughly estimated to a first
approximation by counting the number of messaging rounds and transmissions
per round. To obtain an overall value, we multiply these two parameters. Let
n be the number of the parties establishing the common key. For our proposed
scheme, we have 2n−2 rounds with only 1 transmission per round, for an overall
value of 2n− 2, which is close to that of the (classical) optimal multi-party key
agreement scheme, namely n − 1. Many proposed schemes, which extend DH
and ECDH, have a value of n(n − 1). From this viewpoint, our scheme is near



optimal, and moreover the number of transmissions per round is constant and
equal to 1, which may be advantageous in certain situations.

Contrary to some other published approaches, our proposed scheme is con-
tributory : in every round, the transmitting party leaves traces on every param-
eter which they transmit further to the next party. No parts of the transmitted
message are simply re-transmitted; the current party applies a function of their
private key to the message parameters and transmits the results. This feature
prevents many possible man-in-the-middle attacks on the scheme. In addition,
our proposed approach does not require a TTP, which is an important prop-
erty in some settings. However, our scheme does not support dynamic group
membership.

3 Isogeny-based key agreement

3.1 Key Agreement

In PQCrypto 2011, Jao and De Feo [6, 9] proposed a new collection of quantum-
resistant public-key cryptographic protocols for entity authentication, key ex-
change, and public-key cryptography, based on the difficulty of computing isoge-
nies between supersingular elliptic curves. We review here the operation of the
most fundamental protocol in the collection, the key exchange protocol, which
forms the building block for our group key exchange protocol. Fix a prime p of
the form `aA`

b
B ·f±1 where `A and `B are small primes, a and b are positive inte-

gers, and f is some (typically very small) cofactor. Also, fix a supersingular curve
E defined over Fp2 , and bases {PA, QA} and {PB , QB} which generate E[`eAA ]
and E[`eBB ] respectively, so that 〈PA, QA〉 = E[`eAA ] and 〈PB , QB〉 = E[`eBB ]. Al-
ice chooses two random elements mA, nA ∈R Z/`eAA Z, not both divisible by `A,
and computes an isogeny φA : E → EA with kernel KA := 〈[mA]PA + [nA]QA〉.
Alice also computes the auxiliary points {φA(PB), φA(QB)} ⊂ EA obtained by
applying her secret isogeny φA to the basis {PB , QB} for E[`eBB ], and sends
these points to Bob together with EA. Similarly, Bob selects random elements
mB , nB ∈R Z/`eBB Z and computes an isogeny φB : E → EB having kernel
KB := 〈[mB ]PB + [nB ]QB〉, along with the auxiliary points {φB(PA), φB(QA)}.
Upon receipt of EB and φB(PA), φB(QA) ∈ EB from Bob, Alice computes an
isogeny φ′A : EB → EAB having kernel equal to 〈[mA]φB(PA) + [nA]φB(QA)〉;
Bob proceeds mutatis mutandis. Alice and Bob can then use the common j-
invariant of

EAB = φ′B(φA(E)) = φ′A(φB(E)) =

E/〈[mA]PA+[nA]QA,[mB ]PB+[nB ]QB〉

to form a secret shared key.
Alice’s auxiliary points {φA(PB), φA(QB)} allow Bob (or any eavesdropper)

to compute Alice’s isogeny φA on any point in E[`eBB ]. This ability is necessary
in order for the scheme to function, since Bob needs to compute φA(KB) as part
of the scheme. However, Alice must never disclose φA(PA) or φA(QA) (or more



generally any information that allows an adversary to evaluate φA on E[`eAA ]),
since disclosing this information would allow the adversary to solve a system of
discrete logarithms in E[`eAA ] (which are easy since E[`eAA ] has smooth order) to
recover KA.

4 From Two-Party to Three-Party Key Agreement

For a simple, but nontrivial example that illustrates the main idea, we work
out the 3-party case. Similar to two-party key exchange, we define a set of
global parameters which are agreed among three parties prior to key agreement
protocol.

4.1 Global Parameters

We select a prime of the form:

p = `eAA · `eBB · `eCC · f ± 1,

where `A, `B , and `C are small primes and f is a co-factor.
Let E be a supersingular elliptic curve defined over Fp2 (finite field of size

p2).
We define the following torsion groups and the corresponding generators:

E[`eAA ] = 〈PA, QA〉, E[`eBB ] = 〈PB , QB〉, E[`eCC ] = 〈PC , QC〉.

4.2 Key Generation

Each party generates two scalars as their private key and computes the cor-
responding isogeny kernel. The resulting curve and the image of other parties’
bases points on that curve is the public key. We illustrate the whole three-party
key agreement protocol in Fig. 1. The isogeny computations by each party is
separated.
First, A, B, and C generate their secret-key and public-key. The secret-key is an
integer randomly generated from each party subgroup order, i.e. m,n ∈ Z`e .

4.3 Key Agreement

To establish a common shared secret key, the three parties could naively perform
the two-party key exchange protocol with each other, and as a result of this first
round, establish three secret keys. Then, they will need three more passes to
finally establish a common key. This approach would take nine passes in total.
Here, we present our approach, described in previous section, that takes only
four passes.



mA, nA ∈ {0 · · · ℓeAA − 1}
KA = [mA] · PA + [nA] ·QA

φA:E → EA = E/〈KA〉
PKA= [EA, φA(PB), φA(QB), φA(PC), φA(QC)]

Key Generation
A B C

mB, nB ∈ {0 · · · ℓeBB − 1}
KB = [mB] · PB + [nB] ·QB

φB:E → EB = E/〈KB〉
PKB= [EB, φB(PA), φB(QA), φB(PC), φB(QC)]

mC, nC ∈ {0 · · · ℓeCC − 1}
KC = [mC ] · PC + [nC] ·QC

φC :E → EC = E/〈KC〉
PKC= [EC , φC(PA), φC(QA), φC(PB), φC(QB)]

Public AB

PKA

KAB= [mB] · φA(PB) + [nB] · φA(QB)

φAB:EA → EAB = EA/〈KAB〉
Pub.AB= [EAB, φAB(φA(PC)), φAB(φA(QC))]

PKB, Pub.AB

Public BC, Shared Secret C

KBC= [mC ] · φB(PC) + [nC ] · φB(QC)

φBC :EB → EBC = EB/〈KBC〉
Pub.BC= [EBC , φBC(φB(PA)), φBC(φB(QA)]

KABC= [mC ] · φAB(φA(PC)) + [nC ] · φAB(φA(QC))

EABC = EAB/〈KABC〉
SharedSecretC = j(EABC)

Public AC, Shared Secret A

PKC, Pub.BC

KCA= [mA] · φC(PA) + [nA] · φC(QA)

φCA:EC → ECA = EC/〈KCA〉
Pub.AC= [EAC , φCA(φC(PB)), φCA(φC(QB)]

KBCA= [mA] · φBC(φB(PA)) + [nA] · φBC(φB(QA))

EBCA = EBC/〈KBCA〉
SharedSecretA = j(EBCA)

Shared Secret B

Pub.AC

KCAB= [mB] · φCA(φC(PB)) + [nB] · φCA(φC(QB))

ECAB = EAC/〈KCAB〉
SharedSecretB = j(ECAB)

Fig. 1: Three-party group key agreement diagram

1. A to B (pass one). A sends to B its public-key which contains EA and
the image of PB , QB , PC , and QC on EA. B, upon receiving data from A,
computes the shared public-key Pub.AB by computing the curve EAB and
the image of PC and QC on EAB .

2. B to C (pass two). After computing, B sends its public-key and the com-
puted Pub.AB to C. C, upon receiving data from B, C can compute the
shared secret-key and the Pub.BC using B’s public key.

3. C to A (pass three). After computing Pub.BC , C sends its public-key
and the generated Pub.BC to A. A, upon receiving data from C, computes
the shared-secret key and Pub.AC to pass to B for the final round of the
protocol.

4. A to B (pass four). After computing Pub.AC , A sends only the generated
Pub.AC to B. Upon receiving the shared data between A and C (second
round) from A, B can compute the shared secret-key.



The shared key is j(EABC). Note that all resulting curves, EABC , EBCA, and
ECAB are isomorphic to E/〈KA,KB ,KC〉 and hence have the same j-invariant.
Observe that the above scheme has only four passes, namely, A to B, B to C,
C to A, and A to B (second time).

5 Proposed n-party Key Agreement Protocol

Let n be the number of parties, where n ≥ 2. Let U1, U2, . . . , Un be any n parties.

5.1 Protocol Parameters

Let p be a prime of the form `e11 `
e2
2 · · · `enn · f ± 1, where `i’s are small distinct

primes. Fix a supersingular curve E : y2 = x3 +x with j-invariant 1728 over Fp2

together with bases {P1, Q1}, {P2, Q2}, . . . , {Pn, Qn} of E[`e11 ], E[`e22 ], . . . , E[`enn ],
respectively.

5.2 Key Generation

A party Ui generates two secret random integers mi, ni ∈ Z/`eii Z, not both
divisible by `i, obtains Ki = [mi]Pi + [ni]Qi and computes Ei = E/〈Ki〉. Let φi
be the isogeny from E to Ei. Then, Ui computes

φi(P1), φi(Q1), φi(P2), φi(Q2),

. . . , φi(Pi−1), φi(Qi−1),φi(Pi+1), φi(Qi+1), . . . ,

φi(Pn), φi(Qn).

Thus, for each party Ui:

• Private key: mi, ni ∈ Z/`eii Z.
• Public key: Ei and

φi(P1), φi(Q1), φi(P2), φi(Q2),

. . . , φi(Pi−1), φi(Qi−1),φi(Pi+1), φi(Qi+1), . . . ,

φi(Pn), φi(Qn) ∈ Ei.

5.3 Protocol

Suppose, parties U1, U2, . . . , Un wish to establish a common secret key. This will
involve passes and calculations by each party.

There will be two rounds of passes. We begin with the first round. For
i ∈ {2, . . . , n}, the following passes and computations take place (sequentially).
Define N = {1, 2, . . . , n}. Let Pi,w the value of the point Pi, evaluated by all
isogenies, sequentially, mapping from curve E to Ew. Qi,w is defined similarly
for the point Qi.

U(i−1) sends to Ui the following:



• Ei−1, E(i−2)(i−1), . . . , E12···(i−1)
• φ(i−1)(Pj), φ(i−1)(Qj),∀j ∈ N \ {i− 1}
• Pj,(i−2)(i−1), Qj,(i−2)(i−1),∀j ∈ N \ {i− 2, i− 1}

...
• Pj,12···(i−1), Qj,12···(i−1),∀j ∈ N \ {1, . . . , i− 2, i− 1}
Ui computes the following:

• φ(i−1)i : E(i−1) → E(i−1)i =
E(i−1)/〈[mi]φ(i−1)(Pi) + [ni]φ(i−1)(Qi)〉

• φ(i−2)(i−1)i : E(i−2)(i−1) → E(i−2)(i−1)i =
E(i−2)(i−1)/〈[mi]Pi,(i−2)(i−1) + [ni]Qi,(i−2)(i−1)〉
...

• φ12···(i−1)i : E12···(i−1) → E12···(i−1)i =
E12···(i−1)/〈[mi]Pi,12···(i−1) + [ni]Pi,12···(i−1)〉

• Pj,(i−1)i, Qj,(i−1)i,∀j ∈ N \ {i− 2, i− 1, i}
• Pj,(i−2)(i−1)i, Qj,(i−2)(i−1)i,∀j ∈ N \ {i− 2, i− 1, i}

...
• Pj,12···(i−1)i, Qj,12···(i−1)i,∀j ∈ N \ {1, . . . , i− 1, i}

This process continues until Un−1 sends the data to Un. Un performs a stan-
dard computation and then uses the curve E12···(n−1)n to compute its j-invariant,
which becomes the common shared secret key. Then Un sends to U1 all the curves,
except E12···(n−1)n and the corresponding images of bases points.

The next round of passes begins. For i ∈ {1, . . . , n− 2}, the following passes
and computations take place (sequentially).

Ui computes the following:

• φ(i+1)(i+2)···n12···(i−1)i :
E(i+1)(i+2)···n12···(i−1) → E(i+1)(i+2)···n12···(i−1)i =
E(i+1)(i+2)···n12···(i−1)/〈[mi]Pi,(i+1)(i+2)···n12···(i−1)+[ni]Qi,(i+1)(i+2)···n12···(i−1)〉

• φ(i+2)···n12···(i−1)i :
E(i+2)···n12···(i−1) → E(i+2)···n12···(i−1)i =
E(i+2)···n12···(i−1)/〈[mi]Pi,(i+2)···n12···(i−1) + [ni]Qi,(i+2)···n12···(i−1)〉
...

• φn12···(i−1)i :
En12···(i−1) → En12···(i−1)i =
En12···(i−1)/〈[mi]Pi,n12···(i−1) + [ni]Qi,n12···(i−1)〉

• Pj,(i+2)···n12···(i−1)i, Qj,(i+2)···n12···(i−1)i for j ∈ {i+ 1}
• Pj,(i+3)···n12···(i−1)i, Qj,(i+3)···n12···(i−1)i for j ∈ {i+ 1, i+ 2}

...
• Pj,n12···(i−1)i, Qj,n12···(i−1)i for j ∈ {i+ 1, i+ 2, . . . , n− 1}

Then Ui computes the j-invariant of E(i+1)(i+2)···n12···(i−1)i, which is the com-
mon shared secret key.

Ui sends to Ui+1 the following:



• E(i+2)···n12···(i−1)i
• E(i+3)···n12···(i−1)i

...
• En12···(i−1)i
• Pj,(i+2)···n12···(i−1)i, Qj,(i+2)···n12···(i−1)i for j ∈ {i+ 1}
• Pj,(i+3)···n12···(i−1)i, Qj,(i+3)···n12···(i−1)i for j ∈ {i+ 1, i+ 2}

...
• Pj,n12···(i−1)i, Qj,n12···(i−1)i for j ∈ {i+ 1, i+ 2, . . . , n− 1}

This continues until the final pass from Un−2 to Un−1. Finally Un−1 computes
En12···(n−1) = En12···(n−2)/〈[mn−1]Pn−1,n12···(n−2)+[n(n−1)]Qn−1,n12···(n−2)〉 and
its j-invariant, which is the common shared secret key.

At this point, all n parties U1, U2, . . . , Un possess the common shared secret
key, which they can use now for their group communication purposes.

Figure 2 summarizes which curves generated by each respective user and then
all of the the, except the ones in red, are passed on to the the next user.

5.4 Communication Overhead

Each party performs 2 passes, except for Un−1 and Un, who perform one pass.
The total number of passes is 2n−2. In the first n−1 passes, the communication
overhead of the pass from party Ui to Ui+1 includes i elliptic curves and i(2n−
1−i)/2 corresponding pairs of points. For the next pass from Un to U1, there are
n− 1 elliptic curves and n(n− 1)/2 pairs of points. For the last n− 2 passes, the
pass from party Ui to Ui+1 includes n−1−i elliptic curves and (n−1−i)(n−i)/2
pairs of points.

Overall, each party sends n− 1 elliptic curves and n(n− 1)/2 pairs of elliptic
curve points. In general, without compression or optimization, it takes two finite
field elements to represent the curve and one finite field element plus one bit to
represent the point. If p is a k-bit prime, then each party transfers:

(n− 1) · 2 · (2k) + (n(n− 1)/2) · (2k + 1) bits.

A time-space trade-off is possible: For any collection of points lying on the
same curve and having orders which are pairwise relatively prime, we can trans-
mit this entire collection by sending only a single point on the curve, using the
projection onto the elliptic curve of the standard Chinese Remainder Theorem
isomorphism Z/a×Z/b ∼= Z/ab, valid for gcd(a, b) = 1. The trade-off is that per-
forming this conversion each way takes time. In our software we do not perform
this conversion.

5.5 Protocol Optimization

The group key protocol which is explained above is an instance of ”book” de-
scription of the protocol following the notation of the original Diffie-Hellman



U1 E1

U2 E2 E12

U3 E3 E23 E123

Un En E(n−1)n · · · · · · E23···n E12···n

U1 En1 E(n−1)n1 · · · · · · E23···n1

Un−2 En12···(n−2) E(n−1)n1···(n−2)

Un−1 En1···(n−1)

Fig. 2: Protocol Diagram

key exchange protocol by Jao and De Feo [9] which can be adopted on generic
form of elliptic curves. However, we can reduce the size of the overhead and
computations by applying optimization techniques similar to the ones in [5]. We
briefly describe these optimization techniques in the following, and further we
adopt them in the practical implementation of our proposed protocol in section
8.

5.6 Projective points and curve coefficient.

Following [5], and setting up the base curve as an instance of a supersingular
Montgomery curve, we can perform all the isogeny computations in projective
coordinates, taking advantage of fast arithmetic associated with Kummer va-
rieties of Montgomery curves. Therefore, all the points are represented by x-
coordinate in P1, and all the field inversions are eliminated except for the very
last step of each party computations. Using this technique, we can compute the



field inversion using constant-time algorithms such as FLT, providing a fast and
constant-time implementation of the protocol. We adopt the same technique
inside our software, More details are given in section 8.

5.7 Communication overhead.

For each pair of elliptic curve points (P,Q) can be represented by three x-
coordinates of P,Q, and R = P −Q. Using this representation, we do not need
extra information for the curve coefficient as long as we are working on the
Montgomery curves, and we can retrieve the curve coefficient A using the x-
coordinates of these three points anytime inside the protocol computations as it
is described in details in section 8.2. In that case, we get the following overhead
size:

(n(n− 1)/2) · (6k) bits,

where k is the prime bit-length. Note that, on average, each pass is half the size
of what is stated above.

6 Complexity Assumptions

The complexity assumptions for this scheme are the same as for the original
scheme by Jao, De Feo and Plût [6]. We list them here.

As before, let p be a prime of the form `e11 `
e2
2 · · · `enn · f ± 1, and fix a super-

singular curve E over Fp2 together with bases {P1, Q1}, {P2, Q2}, . . . , {Pn, Qn}
of E[`e11 ], E[`e22 ], . . . , E[`enn ], respectively.

Originally these assumptions were stated for primes p constructed from two
primes `1 and `2. However, the general case can actually be viewed as a special
case of the two-prime case, since the extra primes can be incorporated into the
cofactor f .

6.1 Decisional Supersingular Isogeny (DSSI) problem.

Let Ei be another supersingular curve defined over Fp2 . Decide whether Ei is
`eii -isogenous to E.

Computational Supersingular Isogeny (CSSI) problem Let the map
φi : E → Ei be an isogeny whose kernel is 〈[mi]Pi + [ni]Qi〉, where mi and
ni are chosen at random from Z/`eii Z and not both divisible by `i. Given Ei and
the values φi(Pj), φi(Qj), for j 6= i, find a generator Ri of 〈[mi]Pi + [ni]Qi〉.

Supersingular Computational Diffie-Hellman (SSCDH) problem Let
φi : E → Ei be an isogeny whose kernel is equal to 〈[mi]Pi + [ni]Qi〉, and let
φj : E → Ej (j 6= i) be an isogeny whose kernel is 〈[mj ]Pj + [nj ]Qj〉, where
mi, ni (respectively mj , nj) are chosen at random from Z/`eii Z (respectively
Z/`ejj Z) and not both divisible by `i (respectively `j). Given the curves Ei, Ej

and the points φi(Pj), φi(Qj), φj(Pi), φj(Qi), find the j-invariant of
E/〈[mi]Pi + [ni]Qi, [mj ]Pj + [nj ]Qj〉.



Supersingular Decision Diffie-Hellman (SSDDH) problem Given a tuple
sampled with probability 1/2 from one of the following two distributions:

• (Ei, φi(Pj), φi(Qj), Ej , φj(Pi), φj(Qi), Eij), wherein the quantities Ei, φi(Pj),
φi(Qj), Ej , φj(Pi), and φj(Qi) are as in the SSCDH problem and

Eij
∼= E/〈[mi]Pi + [ni]Qi, [mj ]Pj + [nj ]Qj〉,

• (Ei, φi(Pj), φi(Qj), Ej , φj(Pi), φj(Qi), EC), wherein the quantities Ei, φi(Pj),
φi(Qj), Ej , φj(Pi), and φj(Qi) are as in the SSCDH problem and

EC
∼= E/〈[m′i]Pi + [n′i]Qi, [m

′
j ]Pj + [n′j ]Qj〉,

where m′i, n
′
i (respectively m′j , n

′
j) are chosen at random from Z/`eii Z (re-

spectively Z/`ejj Z) and not both divisible by `i (respectively `j),

determine from which distribution the tuple is sampled.

7 Security

The presented protocol, just like the original two-party key agreement, is session-
key secure in the authenticated-links adversarial model similar to Canetti and
Krawczyk [3] model for two-party key agreement under the assumption that
SSDDH is hard.

The proof of Theorem 5.4 from [9] can be easily adapted to prove security of
the protocol presented in this paper. We provide an outline for the proof.

It is obvious that, if all the parties are uncorrupted, they will produce the
same key as the output. We are going to prove that the advantage of an adversary
making the right guess is negligible. Assume the contrary, that it is not negligible
and that we have an oracle which solves that with an advantage ε. The adversary
can take control and pretend to be all the parties except the target two parties Ui

and Uj , which communicate, meaning that i = j± 1. Without loss of generality,
assume i = j − 1. The goal is to determine whether the observed curve Eij is a
valid curve produced by Ui and Uj , or is it a random curve. For all the parties
under control of the adversary, the values of the private scalars can be all set to
zero and 1 (or any other value coprime to the order Qi’s). This makes the final
expected output to be of the form E12···ij···n. Adversary runs the protocol with
the two parties Ui and Uj and observes their auxiliary points and has the final
curve. He runs the oracle to check if the final curve is valid. If the final curve is
valid, then this means that Eij is valid. Otherwise, it would mean that Eij is
invalid. Assume there are k sessions. The adversary can solve this problem using
the given oracle with an advantage ε, if the session matches. Given that the
adversary can run at most k sessions (where k is an upper bound on the number
of sessions activated by the adversary in any interaction), we have 1/k chance
that the session actually matches. Solving this problem now directly yields a
solution to SSDDH. Hence we get an advantage of ε/k, which is non-negligible.



It should be noted that proposed parameters become heavily unbalanced
when the number of parties grows which makes our proposed scheme vulnerable
to a passive key recovery attack by Petit in [15]. Based on the discussion on that
paper, the attack against the unbalanced version of SIDH is applicable as soon
as n exceeds a certain bound. Heuristically, the attack becomes applicable when
n exceeds the bit length of `e, which is three times the desired security level.
Therefore for a typical size of `e (∼ 3 · 128 bits) our scheme becomes insecure as
soon as about 400 parties run the protocol. This number is large enough that it
should not affect most applications.

7.1 Parameter Sizes

We need to state parameter sizes to provide a given security level. Assume that
we require an s-bit quantum security level. The best know quantum attack is
an exponential time complexity attack of cube root of the degree of the isogeny
(i.e. cube root of `eii ). Hence, for each party i the size of `eii must be 3s bits. In
case of a key agreement for n parties, the size of the prime p needs to be 3ns.

8 Supersingular Isogeny Group Key Performance

In this section, we present the implementation detail of the supersingular isogeny
group key agreement protocol in the case of three parties. The parties compute
different large-degree isogenies over different torsion subgroups of a supersingular
elliptic curve to efficiently establish a shared secret key. Our software is publicly
available4 for evaluation and reproducibility.

8.1 Implementation Summary

Public parameters The finite field is constructed over a special form 747-bit
prime

p747 = 2260 · 3153 · 5105 − 1,

which provides three different torsion subgroups, i.e. E[2260], E[3153], and E[5105]
for isogeny computations. Moreover, the subgroup orders 2260 ≈ 3153 ≈ 5105 are
almost equal for achieving a balance security among parties. Note that since the
group key protocol is established by three parties, the overall security level of
the protocol for the same size finite field is less than two parties Diffie-Hellman
like key exchange. Therefore, the proposed prime provides 80-bit quantum and
120-bit classical security level, respectively.

The special form of the proposed prime helps us to exploit the customized
Montgomery reduction algorithm which is discussed in details in [5]. Similar to
other optimized implementation of supersingular isogeny-based protocols, we set
the starting curve E as the special instance of supersingular Montgomery curve

4 https://github.com/amirjalali65/PQCisogenyGroupKey



E/Fp2 : y2 = x3 + x with #E(Fp2) = (2260 · 3153 · 5105)2 and j-invariant equal
to 1728.

Three pairs of base points are defined corresponding to each torsion sub-
groups such that {P2, Q2, R2} ∈ E[2260], {P3, Q3, R3} ∈ E[3153], and {P5, Q5, R5} ∈
E[5105], where we use an auxiliary point Ri = Qi − Pi, i ∈ {2, 3, 5} to encode
the base points following [8].

Key generation Each party randomly generates a secret key K ∈ {0 · · · `e−1}
from the key-space corresponding to their subgroup order and computes the
isogeny kernel R = P +[K]Q. This kernel point is further used to compute isoge-
nies using optimal strategy. Furthermore, each party needs to compute the image
of the base points which are belong to the torsion subgroups of other parties, us-
ing their secret isogeny. Since our software computes the key agreement among
three parties, we denote these parties as A, B, and C and the corresponding
public keys are defined as:

PKA = [φA(xPB ), φA(xQB ),

φA(xRB ),φA(xPC ), φA(xQC ), φA(xRC )] ∈ F6
p2 ,

PKB = [φB(xPA), φB(xQA),

φB(xRA),φB(xPC ), φB(xQC ), φB(xRC )] ∈ F6
p2 ,

PKC = [φC(xPA), φC(xQA),

φC(xRA),φC(xPB ), φC(xQB ), φC(xRB )] ∈ F6
p2 .

We state that encoding the base points using the auxiliary point R is very useful
for computing 5-degree isogenies which is explained in more details in the following
section.

Shared public keys Communication parties also require to generate a shared public
key with other communication parties and pass it to their neighbor as it was discussed
in details in section 4.

These shared public keys are generated based on other party’s public key as follows:

Pub.AB = [φB(φA(xPC )), φB(φA(xQC )), φB(φA(xRC ))] ∈ F3
p2 ,

Pub.BC = [φC(φB(xPA)), φC(φB(xQA)), φC(φB(xRA))] ∈ F3
p2 ,

Pub.AC = [φA(φC(xPB )), φA(φC(xQB )), φA(φC(xRB ))] ∈ F3
p2 .

Shared secret key. Upon receiving the shared public keys, each party performs the
final isogey computations using the private kernels to reach the final curve. Finally, the
common j-invariant is regarded as the group shared secret. In our software this key for
each party is computed as follows:

SharedSKA = j(EABC) ∈ Fp2 ,

SharedSKB = j(EBAC) ∈ Fp2 ,
SharedSKC = j(ECAB) ∈ Fp2 ,

where j(EABC) = j(EBAC) = j(ECAB). In the following section, we describe the
implementation detail of computing isogenies and curve coefficients for each party.



8.2 Isogenies and Curve Coefficients Computations

In order to implement three-party group key agreement we need to have three differ-
ent torsion subgroups from which each communication party can construct the secret
isogeny map. In this work, we chose to work with isogenies of degree 3, 4, and 5 due
to their efficient and compact formulas. For the isogeny map and evaluation of degree
3 and 4, we followed the same implementation from SIDH/SIKE library5, while we
developed a new set of functions for computing degree 5 isogeny, based on the pro-
posed algorithms in [4]. These formulas are derived from Vélu’s formula for computing
small degree isogenies, while they are projectivized and customized for a special form
of the Montgomery curves in this work. We refer the readers to [6, 5, 4] for further detail.

3-isogeny. Following [5], computing the image of a projective point P = (X : Z)
and the projective curve coefficients (A : C) via 3-isogeny map can be efficiently com-
puted as:

(A′ : C′) = (Z4
3 + 18X2

3Z
2
3 − 27X4

3 : 4X3Z
3
3 ),

(X ′ : Z′) = (X(X3X − Z3Z)2 : Z(Z3X −X3Z)2),

where P3 = (X3 : Z3) is a kernel point of order 3 on the curve.

4-isogeny. Computing 4-isogeny evaluation and map are expressed in projective coor-
dinates as:

(A′ : C′) = (2(2X4
4 − Z4

4 ) : Z4
4 ),

(X ′ : Z′) = (X(2X4Z4Z −X(X2
4 + Z2

4 ))(X4X − Z4Z)2 :

Z(2X4Z4X − Z(X2
4 + Z2

4 ))(Z4X −X4Z)2),

where P4 = (X4, Z4) is a projective kernel point of order 4 on the curve [5].

Note that, as the degree of isogeny grows, the number of required arithmetic op-
erations for computing an `-isogeny is increased notably. However, the total number
of isogeny walks, i.e., e to compute `e-isogeny is decreased. For instance, in our pro-
posed prime, 2-isogeny, 3-isogeny, and 5-isogeny are evaluated by 260, 153, and 105
compositions, respectively.

As a result, there is a trade-off between choosing the degree of isogeny which defines
a single isogeny computation performance, and the total number of steps to compute
the `e large-degree isogeny. However, from the implementation viewpoint, smaller de-
gree isogenies can be implemented using more compact functions and they are more
desirable.

5-isogeny. Computing isogenies with degree larger than 4 require at least two points
as the input. In particular, torsion subgroup of 5 on an elliptic curve can be denoted
as E[5] = {−2P5,−P5,O, P5, 2P5} where P5 = (X5, Z5) is a projective point of order
5 on the curve. Based on Vélu’s formula [17], we need to push the coordinates of P5

and 2P5 to evaluate the 5-isogeny map. Therefore, before each 5-isogeny computation,
the projective coordinates of isogeny kernel P5 = (X5 : Z5) and 2P5 = (X ′5 : Z′5) are
required to be computed using point doubling formula.

Moreover, we need to develop a quintupling function inside the optimal strategy for
isoegny computations to compute the coordinates of [5]P . We developed this function

5 https://github.com/Microsoft/PQCrypto-SIDH



based on the Montgomery ladder algorithm using point doubling and differential addi-
tion projectively. In our software, xQNTPL function implements quintupling of a point
based on curve projective coefficients A and C.

Costello et al. [4] proposed a set of projective compact and efficient algorithms
for computing arbitrary odd degree isogenies. Following their work, we developed a
function for computing the image of a projective point P = (X : Z) via 5-isogeny
map. Since the explicit formula for 5-isogeny point evaluation is relatively long, we
avoid providing it in this section and we just state that each 5-isogeny map costs
8M+2S+6a6. We refer the readers to the implementation of eval 5 isog function
inside our software for further detail.

For the curve coefficient map, implementation is more complicated. In particular,
we note that there are two different ways suggested in [4] for retrieving the isomorphic
curve coefficient of an odd isogeny map. The first method computes the curve coefficient
a as:

a =
(1− xPxQ − xPxR − xQxR)2

4xpxQxR
− xp − xQ − xR, (1)

where P , Q, and R = Q − P are three points on the isomorphic curve. This function
requires one expensive inversion, and it is not efficient to use it as it is for 5-isogeny
map computations. Alternatively, we can use the projective version of the above for-
mula which costs 8M+5S+11a when the coordinates of P , Q, and R are available.
Fortunately, this is the case in group key agreement protocol for the key generation
and the shared public key generation procedure. However, for the group secret shared
key computations, we have to compute three redundant 5-isogeny evaluations in each
step to be able to use this technique. We implemented the projective version of (1),
denoted by get AC proj inside our software. This function computes (A + 2C : 4C)
values which are required to pass to the xQNTPL function.

The second method of computing the odd isogeny map, as discussed in details in
[4], is by evaluating 2-torsion points. The idea is based on the relation between 2-
torsion point Pα = (α, 0) which projectively denoted as P = (Xα : Zα), and the curve
coefficient a on the Montgomery curve defined by E : y2 = x3 + ax2 + x. In this case,
we can retrieve curve coefficients as:

(A+ 2C : 4C) = ((Xα + Zα)2 : (Xα − Zα)2 − (Xα + Zα)2),

using 2S+3a. However, before this operation, the coordinates of Pα need to evaluated
on the isomorphic curve using 5-isogeny evaluation. Therefore the total cost of this
technique is 8M+4S+9a which is slightly faster than the first method. We also im-
plemented this technique as get AC alpha function in our library. Since this function
is slightly faster than get AC proj, it is more efficient to only use this method for 5-
isogeny map, however, in our library and considering our parameters set, we have to
use both approaches for the following reason.

The 2-torsion technique is only meaningful for odd degree isogeny when the order of
2-torsion points are preserved through isogeny evaluations. Considering our parameter
set, party A computes 4-isogeny. Party C requires to receive the image of Pα on EAB to
compute the shared secret, i.e. j(ECAB) by computing 5-isogeny steps on this curve.
However, since A computes even degree 4-isogeny, the order of Pα on EAB is not
preserved and we cannot use this technique for computing 5-isogeny maps during the

6 We use M, S, and a to denote multiplication, squaring, and addition/subtraction in
Fp2



Table 1: Cycle counts (presented in millions of clock cycles) for Ephemeral isogeny-
based group key agreement. Timing benchmarks were taken on an Intel Core i7-6500
Skylake processor running Ubuntu 16.04 LTS and an Intel Core i7-2609 Sandy Bridge
with TurboBoost disabled. Executables are generated by GNU-gcc version 5.4.0.

Operation Skylake Sandy Bridge

Keygen A 113 168

Keygen B 111 166

Keygen C 149 227

SharedPublic B 97 144

SharedPublic + SharedSecret C 269 400

SharedPublic + SharedSecret A 174 269

SharedSecret B 81 134

Total 994 1,374

shared secret computations for party C. However, we still can benefit from 2-torsion
evaulation for the key generation of C.

Considering the above statements, for achieving more efficiency, we use 2-torsion
point technique for 5-isogeny map inside the ephemeral key generation of C, while we
evaluate the curve coefficients using get AC proj for shared public key and secret key
computations.

8.3 Implementation Results and Discussion

In this section, we present the performance of our three-party ephemeral group key
agreement. This version of our software is a fully portable implementation in C, sup-
porting both 32- and 64-bit processors. We developed both field and quadratic ex-
tension field arithmetic operations by modifying the arithmetic functions inside the
SIDH/SIKE library, customizing them for our special prime. At the API level, our
software provides interfaces for each party and efficiently generates public keys, shared
public keys, and shared secret keys. Party B requires separate functions to generate
shared public key and shared secret key since this party should wait for the Pub.AC ,
generated by A during the final pass, to be able to compute the group shared secret.

We benchmarked our software on two popular families of Intel processors, an Intel
i7-6700 Skylake processor, running Ubuntu 16.04 LTS, and an Intel i7-2609 Sandy
Bridge processor running Ubuntu 14.04.5 LTS. Table 1 presents the performance of
each group key agreement operation presented in millions of clock cycles. We state that
the significant performance difference between the two generation of target processors is
not only related to the improvements in micro-architecture design, but it is also because
of extended arithmetic support, i.e. MULX and ADDX operations on Skylake processors.

Based on the optimized results in [5, 8], we expect to achieve significant performance
improvement by implementing target-specific finite field arithmetic in AMD assembly
language. We leave the design of hardened and more optimized implementations for
future work.



9 Conclusion

We present the first isogeny-based multi-party group key agreement scheme that is
secure against quantum adversaries. Our construction is based on the two-party key
agreement scheme by De Feo, Jao, and Plût [6, 9]. The transformation from 2-party to
n-party key agreement is inspired by previous work, but is not identical to any previ-
ously published transformation. The resulting scheme has the same security reduction
as the original (two-party) key agreement scheme. Our scheme is contributory with
an optimal number of transmissions per round and a near-optimal number of rounds.
The overhead size is close to optimal, as the isogeny-based schemes are known to have
the lowest communication overhead, combining with almost minimal number of passes,
which enables us to obtain optimal results.

We implemented a special case three-party key agreement to evaluate the per-
formance of the proposed scheme at 80-bit quantum and 120-bit classical security
level. Using a set of fast and compact isogeny evaluation functions, we show that the
group shared secret for three communication parties can be generated efficiently in a
practical performance. Moreover, based on the previous optimized implementation of
isogeny-based Diffie-Hellman key exchange, we expect to obtain further performance
enhancement by developing target-specific implementation. We leave the investigation
of optimized assembly implementation of our library for future work.

References

1. Emmanuel Bresson, Olivier Chevassut, and David Pointcheval. Dynamic group
Diffie-Hellman key exchange under standard assumptions. In Lars R. Knudsen, ed-
itor, Advances in Cryptology — EUROCRYPT 2002: International Conference on
the Theory and Applications of Cryptographic Techniques Amsterdam, The Nether-
lands, April 28 – May 2, 2002 Proceedings, pages 321–336, Berlin, Heidelberg, 2002.
Springer Berlin Heidelberg.

2. Mike Burmester and Yvo Desmedt. A secure and efficient conference key distri-
bution system. In Alfredo De Santis, editor, Advances in Cryptology — EURO-
CRYPT’94: Workshop on the Theory and Application of Cryptographic Techniques
Perugia, Italy, May 9–12, 1994 Proceedings, pages 275–286, Berlin, Heidelberg,
1995. Springer Berlin Heidelberg.

3. Ran Canetti and Hugo Krawczyk. Analysis of key-exchange protocols and their use
for building secure channels. In Birgit Pfitzmann, editor, EUROCRYPT, volume
2045 of Lecture Notes in Computer Science, pages 453–474. Springer, 2001.

4. Craig Costello and Huseyin Hisil. A simple and compact algorithm for SIDH
with arbitrary degree isogenies. In International Conference on the Theory and
Application of Cryptology and Information Security, pages 303–329. Springer, 2017.

5. Craig Costello, Patrick Longa, and Michael Naehrig. Efficient algorithms for super-
singular isogeny Diffie-Hellman. In Matthew Robshaw and Jonathan Katz, editors,
Advances in Cryptology – CRYPTO 2016: 36th Annual International Cryptology
Conference, Santa Barbara, CA, USA, August 14-18, 2016, Proceedings, Part I,
pages 572–601, Berlin, Heidelberg, 2016. Springer Berlin Heidelberg.

6. Luca De Feo, David Jao, and Jérôme Plût. Towards quantum-resistant cryptosys-
tems from supersingular elliptic curve isogenies. J. Math. Cryptol., (to appear).
http://eprint.iacr.org/2011/506.



7. Lein Harn and Changlu Lin. Efficient group Diffie-Hellman key agreement proto-
cols. Comput. Electr. Eng., 40(6):–, August 2014.

8. David Jao, Reza Azarderakhsh, Matthew Campagna, Craig Costello, Amir Jalali,
Brian Koziel, Brian LaMacchia, Patrick Longa, Michael Naehrig, Joost Renes,
Vladimir Soukharev, and David Urbanik. Supersingular isogeny key encapsulation.
NIST submissions, 2017.

9. David Jao and Luca De Feo. Towards quantum-resistant cryptosystems from su-
persingular elliptic curve isogenies. In Bo-Yin Yang, editor, PQCrypto, volume
7071 of Lecture Notes in Computer Science, pages 19–34. Springer, 2011.

10. Nam-Su Jho, Myung-Hwan Kim, Dowon Hong, and Byung-Gil Lee. Multiparty key
agreement using bilinear map. IACR Cryptology ePrint Archive, 2007:439, 2007.

11. Antoine Joux. The Weil and Tate pairings as building blocks for public key cryp-
tosystems. In Algorithmic number theory (Sydney, 2002), volume 2369 of Lecture
Notes in Comput. Sci., pages 20–32. Springer, Berlin, 2002.

12. Jonathan Katz and Moti Yung. Scalable protocols for authenticated group key
exchange. In Dan Boneh, editor, Advances in Cryptology - CRYPTO 2003: 23rd
Annual International Cryptology Conference, Santa Barbara, California, USA, Au-
gust 17-21, 2003. Proceedings, pages 110–125, Berlin, Heidelberg, 2003. Springer
Berlin Heidelberg.

13. Young-Ran Lee, Hyang-Sook Lee, and Ho-Kyu Lee. Multi-party authenticated key
agreement protocols from multi-linear forms. Applied Mathematics and Computa-
tion, 159(2):317 – 331, 2004.

14. S. Mandal and S. Mohanty. Multi-party key-exchange with perfect forward secrecy.
In 2014 International Conference on Information Technology, pages 362–367, Dec
2014.

15. Christophe Petit. Faster algorithms for isogeny problems using torsion point im-
ages. In Tsuyoshi Takagi and Thomas Peyrin, editors, Advances in Cryptology -
ASIACRYPT 2017 - 23rd International Conference on the Theory and Applica-
tions of Cryptology and Information Security, Hong Kong, China, December 3-7,
2017, Proceedings, Part II, volume 10625 of Lecture Notes in Computer Science,
pages 330–353. Springer, 2017.

16. Michael Steiner, Gene Tsudik, and Michael Waidner. Diffie-Hellman key distribu-
tion extended to group communication. In Proceedings of the 3rd ACM Conference
on Computer and Communications Security, CCS ’96, pages 31–37, New York, NY,
USA, 1996. ACM.

17. Jacques Vélu. Isogénies entre courbes elliptiques. C. R. Acad. Sci. Paris Sér. A-B,
273:A238–A241, 1971.


