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Abstract. A generalized Feistel cipher is one of the methods to con-
struct block ciphers, and it has several variants. Dong, Li, and Wang
showed quantum distinguishing attacks against the (2d−1)-round Type-1
generalized Feistel cipher with quantum chosen-plaintext attacks, where
d ≥ 3, and they also showed key recovery attacks [Dong, Li, Wang. Sci
China Inf Sci, 2019, 62(2): 022501].
In this paper, we show a polynomial time quantum distinguishing attack
against the (3d−3)-round version, i.e., we improve the number of rounds
by (d − 2). We also show a quantum distinguishing attack against the
(d2 − d + 1)-round version in the quantum chosen-ciphertext setting.
We apply these quantum distinguishing attacks to obtain key recovery
attacks against Type-1 generalized Feistel ciphers.

Keywords: Generalized Feistel cipher · Simon’s algorithm · Grover search
· Quantum cryptanalysis

1 Introduction

Zheng, Matsumoto, and Imai proposed Type-1, Type-2, and Type-3 generalized
Feistel ciphers, which are dn-bit block ciphers composed of n-bit round functions,
where d ≥ 3 [ZMI89]. These constructions are suitable for small-scale implemen-
tations because the internal round function can be smaller as the number of
branches d grows. Several block ciphers are based on this construction, e.g., we
see CAST-256 [AG99] and MAME [YWO+07] (Type-1), CLEFIA [SSA+07] and
RC6 [RRSY98] (Type-2), and MARS [BCD+99] (Type-3).

The seminal work of Shor’s algorithm [Sho97] shows that a wide class of pub-
lic key cryptosystems can be broken once quantum computers are developed. On
the other hand, for symmetric key cryptosystems, Kuwakado and Morii showed
that the impact of the development of quantum computers is also significant.
Specifically, Kuwakado and Morii presented a quantum distinguishing attack
against the 3-round Feistel cipher, where the adversary can make quantum su-
perposition queries [KM10]. Feistel cipher with 3 rounds is known to be secure
in the classical setting [LR88], and hence the result proves that the security sig-
nificantly changes in the quantum setting. They used Simon’s algorithm [Sim97]
that finds a secret cycle-period in polynomial-time. Since then, many quantum
attacks using Simon’s algorithm have been proposed. Examples include a key



recovery attack against Even-Mansour cipher [KM12], forgery attacks on vari-
ous MACs [KLLN16], cryptanalysis of AEZ [Bon17], and distinguishing attacks
against Type-1 and Type-2 generalized Feistel ciphers [DLW19]. Furthermore,
Leander and May [LM17] showed a key recovery attack against FX construction
by combining Grover search [Gro96] and Simon’s algorithm. Given these exam-
ples, it is important to evaluate the impact of quantum attacks on symmetric
cryptosystems.

In the classical setting, Zheng et al. showed that the (2d − 1)-round Type-
1 generalized Feistel cipher is secure against chosen-plaintext attacks [ZMI89].
See also the analyses by Moriai and Vaudenay [MV00], and by Hoang and Rog-
away [HR10]. On the other hand, in the quantum setting, Dong, Li, and Wang
showed a distinguishing attack against the (2d − 1)-round version with quan-
tum chosen-plaintext attacks by using Simon’s algorithm [DLW19]. They also
showed a key recovery attack against the (d2 − d + 2)-round version in time

O(2(
d2

2 − 3d
2 +2)· k2 ) by using the (2d − 1)-round distinguisher, where k is the key

length of the internal round function.

In this paper, we continue the work of Dong, Li, and Wang [DLW19] to eval-
uate the security of Type-1 generalized Feistel cipher against quantum attacks.

– First, we show a polynomial time distinguishing attack against the (3d− 3)-
round version. This improves the number of rounds by (d−2). Our idea is to
shift the position of αb, which is a constant used to define a period, so that
the period is preserved for longer rounds. It turns out that the idea is simple,
but still effective to improve the number of rounds that we can attack.

– Next, assuming that we are in the quantum chosen-ciphertext setting, we
show a distinguishing attack against the (d2 − d + 1)-round version. The
number of rounds is significantly larger than the above, and this follows
the intuition in the classical setting where the diffusion of Type-1 general-
ized Feistel cipher in the decryption direction is slow, which is pointed out
in [MV00].

– Finally, we consider key recovery attacks by using the distinguishers. With
the (3d − 3)-round distinguisher, base on Dong et al.’s key recovery at-
tack, we obtain a key recovery attack against the d2-round version in time

O(2(
d2

2 − 3d
2 +2)· k2 ).

With the (d2 − d + 1)-round distinguisher in the decryption direction, we

obtain an r-round key recovery attack in time O(2
(r−(d2−d+1))k

2 ), which is
better than the one with (3d− 3)-round distinguisher when d > 3.

It is interesting to note that our (3d − 3)-round distinguisher outperforms the
classical provable security result, i.e., there are examples where a block cipher
is provably secure in the classical sense with r rounds, and there is a matching
quantum distinguishing attack that breaks the r-round version, but our result
shows an example that a quantum attack can break much more rounds than r.

A summary of key recovery attacks is shown in Table 1.
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Table 1. Key Recovery Attacks against Type-1 Generalized Feistel Cipher

Distinguisher Round Complexity (log)

2d− 1 [DLW19] r ≥ d2 − d + 2 ( 1
2
d2 − 3

2
d + 2) · k

2
+ (r−d2+d−2)k

2

3d− 3 [Ours] r ≥ d2 ( 1
2
d2 − 3

2
d + 2) · k

2
+ (r−d2)k

2

d2 − d + 1 [Ours] r ≥ d2 − d + 1 (r−(d2−d+1))k
2

Paper Outline. This paper is organized as follows: Section 2 describes prelimi-
naries. Section 3 introduces previous work. Section 4 presents our (3d−3)-round
quantum distinguisher against Type-1 generalized Feistel cipher. In Sect. 5, we
show the (d2−d+1)-round quantum distinguisher by using the quantum decryp-
tion oracle. Section 6 presents key recovery attacks against Type-1 generalized
Feistel cipher by using our quantum distinguishers. We conclude the paper in
Sect. 7

2 Preliminaries

2.1 Notation

For a positive integer n, let {0, 1}n be the set of all strings of n bits. Let Perm(n)
be the set of all permutations on {0, 1}n, and let Func(n) be the set of all function
from {0, 1}n to {0, 1}n. For vectors a and b of the same dimension, we denote
their inner product by a · b. In this paper, e denotes Napier’s number.

2.2 Type-1 Generalized Feistel Ciphers

In this section, we describe Type-1 generalized Feistel ciphers [ZMI89]. In Type-1
generalized Feistel cipher, we divide the dn-bit state into d branches, where d ≥ 3
and each branch constitutes an n-bit sub-block. Let Φr denote the encryption al-
gorithm of the r-round Type-1 generalized Feistel cipher, and Φ−1r denote its de-
cryption algorithm. Let R1, R2, . . . , Rr ∈ Func(n) be the keyed round functions
of Φr. We assume that the function Ri takes a k-bit key ki as input (thus the total
key length of Φr is rk bits). Φr takes a plaintext (x00, x

0
1, . . . , x

0
d−1) ∈ ({0, 1}n)d

as input, and outputs a ciphertext (xr0, x
r
1, . . . , x

r
d−1) ∈ ({0, 1}n)d, where the i-th

round is defined as

(xi−10 , xi−11 , . . . , xi−1d−1) 7→ (Ri(x
i−1
0 )⊕ xi−11 , xi−12 , xi−13 , . . . , xi−1d−1, x

i−1
0 ).

The decryption is defined in an obvious way. Figure 1 shows the i-th round of
Type-1 generalized Feistel cipher.

2.3 Simon’s Algorithm

Here we review Simon’s algorithm [Sim97] that is the basis of our distinguishers.
Simon’s algorithm can solve the following problem efficiently.
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Fig. 1. The i-th round of Type-1 generalized Feistel cipher

Problem 1. Given a function f : {0, 1}n → {0, 1}n that has a non-zero period
s ∈ {0, 1}n such that

f(x) = f(x′)⇔ x′ = x⊕ s
for any distinct x, x ∈ {0, 1}n, the goal is to find the period s.

We need O(2n/2) queries to find s in the classical setting. On the other hand,
Simon’s algorithm can find s with O(n) quantum queries.

We explain how Simon’s algorithm works. We assume that we have access
to the quantum oracle Uf , which is defined as Uf |x〉 |z〉 = |x〉 |z ⊕ f(x)〉. For
an n-qubit state |x〉, Hadamard transformation H⊗n is defined as H⊗n |x〉 =
1√
2n

∑
y∈{0,1}n(−1)x·y |y〉. Simon proposed a circuit Sf that computes a vector

that is orthogonal to s for a periodic function f , which is defined as Sf =
(H⊗n ⊗ In) · Uf · (H⊗n ⊗ In) and works as follows.

Sf |0n〉 |0n〉 = (H⊗n ⊗ In) · Uf · (H⊗n ⊗ In) |0n〉 |0n〉

= (H⊗n ⊗ In) · Uf
1√
2n

∑
x

|x〉 |0n〉

= (H⊗n ⊗ In)
1√
2n

∑
x

|x〉 |f(x)〉

=
1

2n

∑
x,y

(−1)x·y |y〉 |f(x)〉 (1)

If f satisfies f(x) = f(x′)⇔ x′ = x⊕ s, then (1) can be rearranged as

1

2n

∑
x∈V,y

((−1)x·y + (−1)(x⊕s)·y) |y〉 |f(x)〉 ,

where V is a linear subspace of {0, 1}n of dimension (n − 1) that partitions
{0, 1}n into cosets V and V +s. The vector y such that y ·s ≡ 1 (mod 2) satisfies
(−1)x·y + (−1)(x⊕s)·y = 0. Therefore, the vector y that we obtain by measuring
Sf |0n〉 |0n〉 satisfies y · s ≡ 0 (mod 2). By repeating this measurement for O(n)
times, we obtain (n− 1) linearly independent vectors that are all orthogonal to
s with a high probability. Then we can recover s by solving the system of linear
equations with O(n3) classical steps.
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2.4 Qunatum Distinguisher based on Simon’s Algorithm

Next, we introduce a quantum distinguisher based on Simon’s algorithm. We
follow the approach of Kaplan et al. [KLLN16] and Santoli and Schaffner [SS17],
and the formalization by Ito et al. [IHM+19]. To recover s with Simon’s algo-
rithm, the function f has to satisfy f(x) = f(x′) ⇔ x′ = x ⊕ s. However, for
distinguishers, the condition can be relaxed.

In more detail, suppose that we are given an oracle O : {0, 1}n → {0, 1}n,
which is either an encryption algorithm EK ∈ Perm(n) or a random permutation
Π ∈ Perm(n), and our goal is to distinguish the two cases. We assume that the
quantum oracles UO and UO−1 are given. The distinguisher in [IHM+19] can
be applied to a function fO : {0, 1}` → {0, 1}m, where there exists a non-zero
period s when O = EK , i.e., fO such that fEK (x) = fEK (x ⊕ s) holds for all
x. We expect that, with a high probability, fΠ does not have any period. The
distinguisher works as follow.

1. Prepare an empty set Y.
2. Measure the first ` qubits of SfO |0`+m〉 and add the obtained vector y to Y

for η times.
3. Calculate the dimension d of the vector space spanned by Y.
4. If d = `, then output O = Π, otherwise output O = EK .

If fO has the period s, the obtained vector y is orthogonal to s. Therefore the
dimension d of the vector space spanned by Y is at most ` − 1. On the other
hand, if fO has no period, the dimension can reach `. Thus we can distinguish
the two cases by checking the dimension.

This distinguisher fails only if O = Π and the dimension of the vector space
spanned by Y is less than `. To analyze the success probability of the distin-
guisher, define a parameter επf as

επf = max
t∈{0,1}`\{0`}

Pr
x

[fπ(x) = fπ(x⊕ t)] ,

where π ∈ Perm(n) is a fixed permutation. This parameter shows how the di-
mension of y is biased when Π = π. If this parameter is large (i.e., there exists t
that is close to a period), then with a high probability, the vector space spanned
by Y is orthogonal to t. Thus, we take a small constant 0 ≤ δ < 1 arbitrarily,
and we say that a permutation π is irregular if επf > 1 − δ. In addition, define

the set of the irregular permutations irrδf as

irrδf = {π ∈ Perm(n) | επf > 1− δ}.

The following theorem was proved.

Theorem 1 ([IHM+19]). Let ` and m be positive integers that are O(n). As-
sume that we have a quantum circuit with O(poly(`,m)) qubits which computes
fO : {0, 1}` → {0, 1}m by making O(1) queries to O, and runs in time T (`,m).

5



The distinguisher makes O(η) quantum queries, and distinguishes EK from Π
with probability at least

1− 2`

eδη/2
− Pr

Π
[Π ∈ irrδf ].

This shows that the distinguisher succeeds if PrΠ [Π ∈ irrδf ] is a small value.

2.5 Combining Grover Search and Distinguishers

Leander and May combined Grover search and Simon’s algorithm to show a key
recovery attack against FX constructions [LM17]. Hosoyamada and Sasaki [HS18],
and Dong and Wang [DW18] showed key recovery attacks against Feistel ciphers
by using this combining technique.

Grover Search. Grover search provides a quadratic speed up on unsorted-
database search [Gro96]. Let N be the number of elements in the database, and
assume that there exists only one target element. In the classical setting, we can
find the target element in time O(N). However, in the quantum setting, Grover’s
algorithm can find it in time O(

√
N).

This algorithm was generalized later as quantum amplitude amplification by
Brassard et al. as in the following theorem.

Theorem 2 ([BHMT02]). Let A be any quantum algorithm on q qubits that
uses no measurement. Let B : {0, 1}q → {0, 1} be a function that classifies
outcomes of A as good or bad. Let p > 0 be the initial success probability
that a measurement of A |0〉 is good. Set m = bπ/4θpc, where θp is defined
so that sin2(θp) = p and 0 < θp ≤ π/2. Moreover, define the unitary operator
Q = −AS0A−1SB, where the operator SB conditionally changes the sign of the
amplitudes of the good states,

|x〉 7→
{
− |x〉 if B(x) = 1,

|x〉 if B(x) = 0,

while the operate S0 changes the sign of the amplitude if and only if the state
is the zero state |0〉. Then, after the computation of QmA |0〉, a measurement is
good with probability at least max{1− p, p}.

Key Recovery Attack against FX Constructions. FX construction by
Killian and Rogaway is a way to extend the key length of a block cipher [KR96,
KR01]. Let E be an n-bit block cipher that takes an m-bit key k0 as input. FX
construction under two additional n-bit keys k1, k2 is described as

Enc(x) = Ek0(x⊕ k1)⊕ k2.
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Ek0

k1 k2

Fig. 2. FX construction

Figure 2 shows FX construction.
Leander and May constructed a function f(k, x) that is defined as

f(k, x) = Enc(x)⊕ Ek(x) = Ek0(x⊕ k1)⊕ k2 ⊕ Ek(x).

If k = k0, f(k, x) satisfies f(k, x) = f(k, x⊕ k1) for all x ∈ {0, 1}n. That is, the
function f(k0, ·) has a period k1. However, if k 6= k0, with a high probability, the
function f(k, ·) does not have any period. Then they apply Grover search over
k ∈ {0, 1}m. They construct the classifier B that identifies the sates as good if
k = k0 by using Simon’s algorithm to f(k, ·). The complexity of Grover search is
O(2m/2) and Simon’s algorithm runs in time O(n) in the classifier B. Thus this
attack runs in time O(2m/2). For more details, see [LM17].

3 Previous Attacks

In this section, we review the quantum attacks against Type-1 generalized Feistel
ciphers by Dong et al. [DLW19]. They showed a (2d − 1)-round distinguishing
attack and a (d2 − d+ 2)-round key recovery attack.

We first review the distinguishing attack. Let α0, α1 ∈ {0, 1}n be two arbi-
trary distinct n-bit constants, and x01, x

0
2, . . . , x

0
d−2 ∈ {0, 1}n be arbitrary n-bit

constants. Given the oracle O, they define a function fO as

fO : {0, 1} × {0, 1}n → {0, 1}n
(b, x) 7→ αb ⊕ y1,

where (y0, y1, . . . , yd−1) = O(αb, x
0
1, x

0
2, . . . , x

0
d−2, x). (2)

Let the intermediate state value after the first i rounds be (xi0, x
i
1, . . . , x

i
d−1).

If O is Φ2d−1, then the function fO is described as

f(b, x) = αb ⊕ x2d−11

= αb ⊕ xd0
= αb ⊕Rd(xd−10 )⊕ αb
= Rd(Rd−1(Rd−2(· · ·R2(R1(αb)⊕ x01)⊕ x02 · · · )⊕ x0d−2)⊕ x), (3)

where in the second equality, we use the fact that xi0 = xi+1
d−1 = xi+2

d−2 = · · · =

xi+d−11 (See Fig. 3). Let h(·) = Rd−1(Rd−2(· · ·R2(R1(·)⊕ x01)⊕ x02 · · · )⊕ x0d−2).
We see that h(·) is a function that is independent of the input (b, x), since
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Fig. 3. (2d− 1)-round distinguishing attack

x01, x
0
2, . . . , x

0
d−2 are constants. By using h(·), we can describe (3) as fO =

Rd(h(αb)⊕ x), and fO satisfies

f(b, x) = Rd(h(αb)⊕ x)

= Rd(h(αb⊕1)⊕ h(α0)⊕ h(α1)⊕ x)

= f(b⊕ 1, x⊕ h(α0)⊕ h(α1)).

This implies that the function fO has the period (1, h(α0)⊕ h(α1)).

If fO is Π, then with a high probability, fO does not have any period.
Therefore, PrΠ [Π ∈ irrδf ] is a small value and we can distinguish the two cases.

We next review the key recovery attack. We recover the key of the (d2−d+2)-
round Type-1 generalized Feistel cipher by appending (d2− 3d+ 3) rounds after
the (2d−1)-round distinguisher (See Fig. 4). The subkey length that we need to

recover is (d
2

2 − 3d
2 +2)k bits. Thus, the time complexity of the exhaustive search

for (d2 − d+ 2) rounds by Grover search is O(2(
d2

2 − 3d
2 +2)· k2 ). The distinguisher

runs in time O(n) and the time complexity of this attack is O(2(
d2

2 − 3d
2 +2)· k2 ).

We see that this attack is better than the direct application of Grover search
to the entire (d2 − d + 2)k-bit subkey. If we recover the key of r > d2 − d + 2

8



R8

R9

R10

R11

R12

R13

R14

x7
1

x8
0 x8

3

x9
2 x9

3

x10
1 x10

2

x11
0 x11

1 x11
3

x12
0 x12

2 x12
3

x13
1 x13

2 x13
3

x14
0 x14

1 x14
2 x14

3

7-round Distinguisher

x0
0 x0

1 x0
2 x0

3

Fig. 4. (d2 − d + 2)-round key recovery attack for d = 4

rounds, the time complexity is O(2(
d2

2 − 3d
2 +2)· k2+

(r−d2+d−2)k
2 ), since the subkey

length that we need to recover becomes (d
2

2 − 3d
2 + 2)k + (r − d2 + d− 2)k bits

in total.

4 (3d − 3)-Round Distinguishing Attack

In this section, we present our distinguishing attacks against (3d − 3)-round
Type-1 generalized Feistel ciphers. We improve the number of rounds that we
can distinguish from (2d− 1) rounds to (3d− 3) rounds by shifting the position
of αb in the plaintext.

As before, we first fix two arbitrary distinct constants α0, α1 ∈ {0, 1}n and
fix arbitrary constants x00, x

0
1, . . . , x

0
d−3 ∈ {0, 1}n. Given the oracle O, we define
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Fig. 5. (3d− 3)-round distinguishing attack

a function fO as

fO : {0, 1} × {0, 1}n → {0, 1}n
(b, x) 7→ αb ⊕ y1,

where (y0, y1, . . . , yd−1) = O(x00, x
0
1, . . . , x

0
d−3, αb, x).
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Observe that the difference from (2) is the position of αb.
If O is Φ3d−3, let (xi0, x

i
1, . . . , x

i
d−1) be the intermediate state value after the

first i rounds. Now fO is described as

fO(b, x) = αb ⊕ y1
= αb ⊕ x3d−31

= αb ⊕ x2d−20 , (4)

since xi0 = xi+1
d−1 = xi+2

d−2 = · · · = xi+d−11 (See Fig. 5).
Our main observation is the following lemma.

Lemma 1. If O is Φ3d−3, then for any b ∈ {0, 1} and x ∈ {0, 1}n, the function
fO satisfies

fO(b, x) = fO(b⊕ 1, x⊕Rd−1(C ⊕ α0)⊕Rd−1(C ⊕ α1)),

where C = Rd−2(Rd−3(· · ·R1(x00)⊕ x01 · · · )⊕ x0d−3). That is, fO has the period
s = (1, Rd−1(C ⊕ α0)⊕Rd−1(C ⊕ α1)).

Proof. We first consider the intermediate state value after the first (d−2) rounds
in which αb reaches the leftmost position (See the red lines in Fig. 5). The value
is described as

(xd−20 , xd−21 , . . . , xd−2d−1) = Φd−2(x00, x
0
1, . . . , x

0
d−3, αb, x)

= (Rd−2(xd−30 )⊕ αb, x, x00, x10, . . . , xd−30 ).

For 1 ≤ i ≤ d− 3, xi0 is described as

xi0 = Ri(Ri−1(· · ·R1(x00)⊕ x01 · · · )⊕ x0i−1)⊕ x0i ,

and xi0 is a constant that is independent of the input (b, x), since x00, x
0
1, . . . , x

0
d−3

are constants. Let C = Rd−2(xd−30 ), which is independent of (b, x) and hence can
be treated as a constant. The output after one more round, which is the output
after the first (d− 1) rounds, is described as

(xd−10 , xd−11 , . . . , xd−1d−1) = (Rd−1(C ⊕ αb)⊕ x, x00, x10, . . . , xd−30 , C ⊕ αb).

Now we consider the value of x2d−20 . This is the intermediate state value after
the first (2d − 2) rounds in which αb ⊕ C reaches the leftmost position again,
and is described as

x2d−20 = R′(Rd−1(C ⊕ αb)⊕ x)⊕ αb ⊕ C, (5)

where R′(·) = R2d−2(R2d−3(· · ·Rd+1(Rd(·)⊕x00)⊕x10 · · · )⊕xd−30 ) (See the green
lines in Fig. 5). R′(·) is a function that is independent of the input (b, x), since
x00, x

1
0, . . . , x

d−3
0 are constants. From (4) and (5), the function fO is described as

fO(b, x) = αb ⊕R′(Rd−1(C ⊕ αb)⊕ x)⊕ αb ⊕ C
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= R′(Rd−1(C ⊕ αb)⊕ x)⊕ C.

The function fO has the claimed period since it satisfies

fO(b⊕ 1, x⊕Rd−1(C ⊕ α0)⊕Rd−1(C ⊕ α1))

= R′(Rd−1(C ⊕ αb⊕1)⊕Rd−1(C ⊕ α0)⊕Rd−1(C ⊕ α1)⊕ x)⊕ C
= R′(Rd−1(C ⊕ αb)⊕ x)⊕ C
= fO(b, x),

and hence the lemma follows. ut
Therefore, we can distinguish the (3d − 3)-round Type-1 generalized Feistel

cipher by using the function fO. The success probability of the distinguishing

attack with measuring (4n + 4) times is at least 1 − (2/e)n+1 − Pr[Π ∈ irr
1/2
f ],

where we use δ = 1/2 and η = 4n+ 4. Pr[Π ∈ irr
1/2
f ] is a small value, since with

a high probability, the function fO does not have any period when O is Π.

5 (d2 − d + 1)-Round Distinguishing Attack

If we can use the decryption oracle in the quantum setting, we can construct a
distinguishing attack against the (d2 − d + 1)-round Type-1 generalized Feistel
cipher. We write the i-th round function in decryption as Ri. Note that this is
different from the notation in Sect. 4.

We fix two distinct constants α0, α1 and (d − 1) constants x01, x
0
2, . . . , x

0
d−2,

which are all n bits. Given the decryption oracle O−1, we define fO
−1

as

fO
−1

: {0, 1} × {0, 1}n → {0, 1}n
(b, x) 7→ αb ⊕ y0,

where (y0, y1, . . . , yd−1) = O−1(x, x01, x
0
2, . . . , x

0
d−2, αb).

Consider the case O−1 = Φ−1d2−d+1, and let the intermediate state value after

the first i rounds be (xi0, x
i
1, . . . , x

i
d−1). O−1 is described as

fO
−1

(b, x) = αb ⊕ y0
= αb ⊕ xd

2−d+1
0

= αb ⊕ xd
2−2d+2

1 , (6)

since xi1 = xi+1
2 = xi+2

3 = · · · = xi+d−10 (See Fig. 6).
The following lemma holds.

Lemma 2. If O−1 is Φ−1d2−d+1, then for any b ∈ {0, 1} and x ∈ {0, 1}n, the

function fO
−1

satisfies

fO
−1

(b, x) = fO
−1

(b⊕ 1, x⊕R1(α0)⊕R1(α1)).

That is, fO
−1

has the period s = (1, R1(α0)⊕R1(α1)).

12



Rd

Fig. 6. (d2 − d + 1)-round distinguishing attack

Proof. In the first round, R1(αb) is xored to x. In the d-th round, the value
R1(αb)⊕ x is used as the input of Rd, and the output of Rd is xored to x01. This
implies that xd1 is

xd1 = Rd(R1(αb)⊕ x)⊕ x01. (7)

See the green lines in Fig. 6. The function R(·) = Rd(·) ⊕ x01 is independent of
the input (b, x), since x01 is a constant. Therefore, (7) can be described as

xd1 = R(R1(αb)⊕ x)

with some function R ∈ Func(n). After additional (d − 1) rounds, this value is
used as the input of R2d−1, and the output of R2d−1 is xored to the sub-block
which was x02 at the input. The sub-block which was x02 at the input is a constant
because it is not xored by the value that includes b nor x. Therefore, for some

13



function R′ ∈ Func(n), the value of x2d−11 is described as

x2d−11 = R′(R1(αb)⊕ x).

After that, for each (d− 1) rounds, this value is used as the input to the round
function and the output is xored to the sub-block which was x0i at the input, for
i = 3, 4, . . . , d − 2. Since the sub-block is a constant that is independent of the

input (b, x), the value of x
2d−1+(d−1)×(d−4)
1 = xd

2−3d+3
1 is described as

xd
2−3d+3

1 = R′′(R1(αb)⊕ x)

for some function R′′ ∈ Func(n).
In the (d2−2d+ 2)-th round, Rd2−2d+2(R′′(R1(αb)⊕x)) is xored to the sub-

block which was αb at the input. Since only the value that does not include b nor
x is xored to the sub-block which was αb, with some function R′′′ ∈ Func(n),

the value of xd
2−2d+2

1 is described as

xd
2−2d+2

1 = R′′′(R1(αb)⊕ x)⊕ αb. (8)

From (6) and (8), the function fO
−1

can be written as

fO
−1

(b, x) = αb ⊕R′′′(R1(αb)⊕ x)⊕ αb
= R′′′(R1(αb)⊕ x).

The function fO satisfies

fO
−1

(b⊕ 1, x⊕R1(α0)⊕R1(α1)) = R′′′(R1(αb⊕1)⊕ x⊕R1(α0)⊕R1(α1))

= R′′′(R1(αb)⊕ x)

= fO
−1

(b, x),

and hence we have the lemma. ut

The success probability of the distinguishing attack using the function fO
−1

with measuring (4n + 4) times is at least 1 − (2/e)n+1 − Pr[Π ∈ irr
1/2
f ], where

we use δ = 1/2 and η = 4n+ 4. We see that Pr[Π ∈ irr
1/2
f ] is a small value, and

hence the attack succeeds with a high probability.

6 Key Recovery Attacks

Similarly to the previous key recovery attacks by Dong et al. that combine Grover
search and the distinguisher, we can construct key recovery attacks against Type-
1 generalized Feistel cipher based on our distinguishers.

With the (3d − 3)-round distinguisher, we can recover the key of the d2-

round Type-1 generalized Feistel cipher in time O(2(
d2

2 − 3d
2 +2)· k2 ) by replacing

the (2d− 1)-round distinguisher in Dong et al.’s attack with our (3d− 3)-round

14



distinguisher. In general, the key recovery attack against the r-round version,

where r ≥ d2, runs in time O(2(
d2

2 − 3d
2 +2)· k2+

(r−d2)k
2 ).

With the (d2 − d + 1)-round distinguisher, by using the decryption oracle,
we can recover the key of the r-round Type-1 generalized Feistel cipher for

r ≥ d2−d+ 1 in time O(2
(r−(d2−d+1))k

2 ), because the subkey length that we need
to recover is (r − d2 + d− 1)k bits.

If d = 3, the time complexity of these two key recovery attacks is the same

because (d
2

2 − 3d
2 + 2) · k2 + (r−d2)k

2 − (r−(d2−d+1))k
2 = k(d−2)(d−3)

4 . If d > 3, the
key recovery attack with the (d2 − d+ 1)-round distinguisher is better than the
one with the (3d− 3)-round distinguisher.

7 Concluding Remarks

In this paper, we presented the (3d−3)-round distinguisher against Type-1 gener-
alized Feistel cipher with quantum chosen-plaintext attacks that can distinguish
more rounds than the previous distinguisher. We also gave the (d2 − d + 1)-
round distinguisher by using the quantum decryption oracle. Based on these
distinguishers, we presented quantum key recovery attacks. Our quantum key
recovery attacks against the r-round Type-1 generalized Feistel cipher recover

keys in time O(2(
d2

2 − 3d
2 +2)· k2+

(r−d2)k
2 ) with the (3d− 3)-round distinguisher and

O(2
(r−(d2−d+1))k

2 ) with the (d2 − d+ 1)-round distinguisher.
As an open question, the tight bound of the number of rounds that we can

distinguish is not known. There is a possibility that we can distinguish more
than (3d− 3) rounds, and we may distinguish more than (d2 − d+ 1) rounds in
the quantum chosen-ciphertext setting.
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