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Abstract

Traceable ring signatures are a variant of ring signatures which allows
the identity of a user to be revealed, when it signs two different messages
with respect to the same group of users. It has applications in e-voting and
in cryptocurrencies, such as the well-known Monero. We propose the first
traceable ring signature scheme whose security is based on the hardness
of the Syndrome Decoding problem, a problem in coding theory which is
conjectured to be unsolvable by both classical and quantum algorithms.
To construct the scheme, we use a variant of Stern’s protocol and, by
applying the Fiat-Shamir transform to it in an ingenious way, we obtain
a ring signature that allows traceability. We prove that the resulting
protocol has the standard security properties for traceable ring signatures
in the random oracle model: tag-linkability, anonymity and exculpability.
As far as we know, this is the first proposal for a traceable ring signature
scheme in the post-quantum setting.

1 Introduction

With the National Institute of Standards and Technology (NIST) decision to
standardize quantum-resilient protocols, post-quantum cryptography has become
a hot topic in the cryptographic community. However post-quantum signature
schemes, particularly signatures based on coding theory, are still underdeveloped.
Although most of the operations are relatively efficient and easy to implement
(even in hardware), code-based signature schemes consume too much memory
for practical purposes. If we consider signature schemes with additional properties,
the scenario is even worse since most of these schemes do not even have an
equivalent version based on hard problems from coding theory. In this paper,
we focus on the latter problem by developing a traceable ring signature scheme
whose security is based on the Syndrome Decoding (SD) problem, a problem in
coding theory which is believed to be hard for both classical and quantum
computers. As far as we know, this is the first code-based traceable ring
signature scheme to be proposed and the first one in the post-quantum setting.

Traceable ring signature schemes. Ring signatures [RST01] allow for a
user from a group to sign messages on behalf of the group such that a verifier
is not able to trace the identity of the actual signer. Although in most cases
anonymity is of great importance and should be preserved, in some applications
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it may become a problem, in the sense that a dishonest user can take advantage
of the anonymity to its own interest. Consider, for example, an election where
someone votes once and then tries to create a second vote, claiming to be
someone else. From this example we can see that, in some cases, we may want to
reveal the identity of abusive users. A trivial solution is to use a group signature
scheme [CvH91] (and for which there are code-based versions [ABCG16, ABCG17]),
where a group manager has much more power than the rest of the users and
can open signatures issued by the users of the group. However, in this case,
the group manager would have to open all signatures in order to identify those
issued by an abusive user, jeopardizing anonymity of honest users.

Traceable ring signatures [FS07] are ring signatures where the identity of
a user may be revealed, in the case it signs two messages with respect to the
same group of users and the same issue. In this context, an issue may be
an election or a transaction, for example. Traceable ring signature schemes
solve the problem presented in the previous paragraph: an abusive user in an
election gets caught without compromising the anonymity of the other users.
Traceable ring signature schemes have also found a lot of applications in e-
cash and cryptocurrencies in the last years. In fact, one of the most famous
cryptocurrencies nowadays, Monero [VS13], uses a variant of the scheme by
Fujisaki and Suzuki [FS07].

Traceable ring signature schemes are closely related to linkable ring signature
schemes [LWW04]. Linkable ring signature schemes also allow a verifier to know
if two signatures were issued by the same user in a group of users, but its
anonymity is kept preserved no matter the number of signatures issued by this
user, unlike traceable ring signature schemes where its identity is revealed.

Previous traceable ring signature schemes were all based on the hardness of
the discrete logarithm problem [FS07, Fuj11, ALSY13] which can be solved by
Shor’s algorithm [Sho97] using a quantum computer. Hence, the advent of a
practical quantum computer would turn Monero (with a market value of billions
of dollars) and other cryptocurrencies obsolete.

To overcome this problem, we base the security of our traceable ring signature
scheme on the syndrome decoding problem. This is a classical problem in
coding theory that is conjectured to be hard, even for quantum computers. By
basing the security of cryptographic primitives on this problem, we can design
new protocols that are conjectured to be robust against quantum adversaries.
Therefore, as far as we are aware, the traceable ring signature scheme presented
in this work is the first that is conjectured to be suitable for the post-quantum
era.

Our contribution and techniques. The major contribution of this paper is
the construction of a traceable ring signature scheme based on the SD problem.
To develop the new traceable ring signature scheme, we build on top of a recently
proposed code-based linkable ring signature scheme [BM18]. More precisely, we
consider the GStern’s protocol, a variant of the famous Stern’s protocol [Ste94],
that decides the General Syndrome Decoding (GSD). This protocol allows a
prover to prove the knowledge of a error vector e for two instances of the
Syndrome Decoding (H, s) and (G, r) for an appropriate choice of parameters.
After applying the construction by Cramer, Damg̊ard and Shoemakers [CDS94]
for the OR relation, we obtain a proof of knowledge protocol (

(
N
1

)
-GStern’s
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protocol) where the prover proves that it knows a witness for one of several
instances of the GSD problem.

Let (H, si) be the public key of a party Pi and ei its secret key, such that
HeTi = sTi and ei has small weight. To sign a message using the scheme, a
user collects the public keys of the elements in the ring. Let (H, s1, . . . , sN )
(the matrix H is common to every party’s public key) be the public keys

of the users in the ring. The signer computes H̃eTi = rTi , where H̃ is a
matrix computed using a random oracle and that depends on the ring of users.
It creates random vectors r1, . . . , ri−1, ri+i, . . . , rN for each user of the ring.
Since these vectors must be random, the user computes them using a hash
function and depending on the message. Now, the user creates a signature
by applying the Fiat-Shamir [FS87] to the

(
N
1

)
-GStern’s protocol on input

(H, s1, . . . , sN , H̃, r1, . . . , rN ). Suppose that some user Pi signs creates two
signatures for two different messages. Traceability will be possible by checking
for which i, ri = r′i where ri is part of one signature and r′i is part of the other.

We prove the usual security properties for traceable ring signature schemes
in the Random Oracle Model: tag-linkability, anonymity and exculpability.

2 Notation and preliminaries

We begin by presenting some notation. We will use bold lower cases to denote
vectors (like x) and bold capital letters to denote matrices (like H). We denote
the usual Hamming weight of a vector x by w(x). If A is an algorithm, we
denote y ← A(x) the output y when running A with input x. If S is a finite
set, |S| denotes its cardinality and y←$S means that y was chosen uniformly
at random from S. By negl(n) we denote a function F that is negligible on the
parameter n, i.e., F < 1/poly(n) where poly(n) represents any polynomial in
n. The acronym PPT means probabilistic polynomial-time.

Due to the lack of space, we refer the reader to Appendix A for a brief
introduction on sigma protocols1, the Fiat-Shamir transform [FS87], the Cramer-
Damg̊ard-Shoenmakers (CDS) construction for the OR relation [CDS94] and the
original Stern’s protocol [Ste94].

2.1 Hard problems in coding theory

We present the search version of the Syndrome Decoding (SD) problem, a hard
problem in coding theory, proven to be NP-complete [BMvT78] in the worst-
case. The problem states that it is hard to decode a random linear code. Recall
that a k-dimensional code C of length n can be represented by its parity-check

matrix H ∈ Z(n−k)×n
2 .

Problem 1 (Syndrome Decoding). Given H ∈ Z(n−k)×n
2 , s ∈ Zn−k2 and t ∈ N,

find e ∈ Zn2 such that w(e) ≤ t and HeT = sT .

The problem is also widely believed to be hard on the average-case since the
best known generic decoding classical and quantum attacks still take exponential
time [CC98, Ber10, MMT11, BJMM12, CTS16] and, when e is chosen uniformly
at random from the set of vectors with weight t and the matrix H is chosen

1We refer the reader to [Dam02] for a more detailed introduction on sigma protocols.
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uniformly at random from Z(n−k)×n
2 , the statistical distance between (H,HeT )

and the uniform distribution over Z(n−k)×n
2 × Zn−k2 is negligible [ELL+15].

Next, we present a lemma which will be useful to prove the completeness of
the proposed protocols. It states that the equation HxT = sT will most likely
have a solution (not necessarily with w(x) ≤ t) with H and s chosen at random.

Lemma 2. Let n, k′ ∈ N such that k′ ≤ n/2. Given H←$Zk
′×n

2 and s←$Zk′2 ,
the probability of existing a vector x ∈ Zn2 such that HxT = sT is, at least,
1− negl(n).

The proof is presented in Appendix B.1

Corollary 3. Let n, k′ ∈ N such that k′ ≤ n/4. Given H,G←$Zk
′×n

2 and

s, r←$Zk′2 , the probability that there is a vector x ∈ Zn2 such that HxT = sT

and GxT = rT is 1− negl(n).

The Corollary can be easily proved by observing that(
H
G

)
xT =

(
sT

rT

)
is a special case of the previous lemma.

For our purpose, we want the equation HxT = sT to have solutions, where

H ∈ Z(n−k)×n
2 . Hence, we just need to consider n − k = k′ ≤ n/4, that is,

k ≥ 3n/4. To this end, we take k = 3n/4.
We now present the Generalized Syndrome Decoding (GSD) problem.

Problem 4. Given H,G ∈ Z(n−k)×n
2 , s, r ∈ Zn−k2 and t ∈ N, find e ∈ Zn2 such

that w(e) ≤ t, HeT = sT and GeT = rT .

Note that the SD problem can be trivially reduced to GSD, by choosing
as inputs of the reduction H = G and s = r, and so GSD is a NP-complete
language.

The next protocol is a proof of knowledge protocol for the GSD problem.
We will call GStern’s protocol to the protocol presented in Algorithm 1.2

In the protocol, presented in Algorithm 1, observe that, when b = 1, V can
check that c1 was honestly computed by verifying whether H(y + e)T + sT =
HyT and G(y + e)T + rT = GyT . Also, the verifier can check that it is the
same error vector e that was used to compute the syndrome vectors s and r.

The protocol is proven to be complete, special sound and honest-verifier
zero-knowledge (HVZK) [BM18]. Nevertheless, we sketch the proof here. It is
easy to see that, from two valid transcripts (com, ch, resp) and (com, ch ′, resp′)
of GStern’s protocol, with ch 6= ch ′, there is a simulator that can extract a valid
witness. For instance, when ch = 0 and ch ′ = 1, the simulator can extract the
secret e from y and y + e. In a similar way, it can always extract e in the other
two cases. To prove HVZK, note that: i) when b = 0, the simulator just has
to reveal a random vector y and a random permutation δ; ii) when b = 1, the
simulator has to reveal a vector x such that HxT = sT (but not necessarily
with w(x) = t). Note that this is possible due to Corollary 3; finally, iii) when
b = 2, the simulator just has to reveal a vector with weight t.

2The name GStern’s protocol comes from Generalized Stern’s protocol.
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Algorithm 1 GStern’s protocol

1. Public information: H,G ∈ Z(n−k)×n
2 and s, r ∈ Zn−k2 .

2. Secret information: e ∈ Zn2 such that HeT = sT , GeT = rT and
w(e) = t.
3. Prover’s commitment:

• P chooses y←$Zn2 and a permutation δ;

• P computes c1 = h(δ,HyT ,GyT ), c2 = h (δ(y)) and c3 = h (δ(y + e));

• P sends c1, c2 and c3.

4. Verifier’s Challenge: V sends b←$ {0, 1, 2}.
5. Prover’s answer:

• If b = 0, P reveals y and δ;

• If b = 1, P reveals y + e and δ;

• If b = 2, P reveals δ(y) and δ(e).

6. Verifier’s verification:

• If b = 0, V checks if h(δ,HyT ,GyT ) = c1 and h (δ(y)) = c2;

• If b = 1, V checks if h(δ,H(y + e)T + sT ,G(y + e)T + rT ) = c1 and
h (δ(y + e)) = c3;

• If b = 2, V checks if h (δ(y)) = c2, h(δ(y) + δ(e)) = c3 and w (δ(e)) = t.

To build our signature scheme, we apply the CDS construction [CDS94] to
GStern’s protocol. We will call the resulting protocol

(
N
1

)
-GStern’s protocol.

We assume that the matrices H and G, and t are the same for every instance
of the GSD problem. In the following, com, ch and resp are commitments,
challenges and responses, respectively, of GStern’s protocol repeated O(1/ε)
times. Moreover, the challenges are expressed as bit strings. The protocol is
presented in Algorithm 2.

The
(
N
1

)
-GStern’s protocol is a PoK that is complete, special sound and

HVZK. This fact is a direct consequence of the results in [CDS94]. We briefly
give the sketch of the proof.

Suppose that the prover has a secret for instance j. To prove completeness,
note that a honest prover can always create valid transcript for instance j. This
follows from the completeness of GStern’s protocol. It can also create valid
transcripts for the other instances from the HVZK of GStern’s protocol. Thus,
a prover holding a secret for instance j can always create valid transcripts for(
N
1

)
-GStern’s protocol.

As usual, to prove special soundness of
(
N
1

)
-GStern’s protocol, the simulator

runs the prover and gets two valid transcripts (Com,Ch,Resp) and (Com,Ch ′,
Resp′), where Com = {comi}i, Ch = {chi}i, Ch ′ = {ch ′i}i, Resp = {respi}i,
Resp′ = {resp′i}i,

∑
i chi = b and

∑
i ch ′i = b′. Suppose that the prover has the

secret for the instance j. Then chi = ch ′i and respi = resp′i for every i 6= j.
Also, chj 6= ch ′j and respj 6= resp′j , except with negligible probability. Thus,
by the special soundness of the GStern’s protocol, the simulator can extract a
valid witness for instance j from these transcripts.

To prove HVZK, we have to show that there is a simulator capable of creating
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Algorithm 2
(
N
1

)
-GStern’s protocol

1. Public information: N instances of the GSD problem
(H, s1, . . . , sN ,G, r1, . . . , rN , t)
2. Secret information: e ∈ {0, 1}n such that w(e) = t, HeT = sTi and
GeT = rTi for some i ∈ {1, . . . , N}.
3. Prover’s commitment:

• P∗ simulates transcripts (comj , chj , respj) using the simulator S for j 6=
i according to GStern’s protocol;

• P∗ computes comi according to GStern’s protocol;

• P∗ sends com1, . . . , comN .

4. Verifier’s challenge: V sends b←$C.
5. Prover’s answer:

• P computes chi = b+
∑
j 6=i chj ;

• P computes respi according to comi and chi;

• Sends (comj , chj , respj) for every j.

6. Verifier’s verification:

• V checks that (comj , chj , respj) is valid according to GStern’s protocol,
for every j;

• V checks that b =
∑
j chj ;

• V accepts if it passes all the verification tests.

valid transcripts for
(
N
1

)
-GStern’s protocol, even when not holding a witness for

any of the instances. But observe that, by the HVZK property of the GStern’s
protocol, the simulator can create valid transcripts for each of the instances.
Hence, a valid transcript for

(
N
1

)
-GStern’s protocol follows from these transcripts

of GStern’s protocol.
Therefore, we can use the Fiat-Shamir transform to create a secure signature

scheme [AABN02].

2.2 Traceable ring signature schemes

We present the definition of traceable ring signature scheme along with the
security model we consider, originally presented in [FS07]. In the following, let
pk = (pk1, . . . , pkN ), issue be a string denoting the goal of the signature (for
example, an election or a transaction) and L = (issue,pk). We will call L the
tag of the signature.

Definition 5. A traceable ring signature scheme is defined by a tuple of algorithms
(KeyGen,Sign,Ver ,Trace) where:

• (pk, sk)← KeyGen(1κ) is a PPT algorithm that takes as input a security
parameter κ and outputs a pair of public and secret keys (pk, sk);

• σ ← Sign(ski, L,M) is a PPT algorithm that takes as input a secret key
ski, a tag L = (issue,pk) and a message to be signed M and outputs a
signature σ.
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• b ← Ver(L,M, σ) is a deterministic algorithm that takes as input a tag
L = (issue,pk), a signature σ and a message M and outputs a bit b such
that b = 1 if the signature is valid and b = 0 otherwise.

• s ← Trace(L,M1, σ1,M2, σ2) is a deterministic algorithm that takes as
input a tag L = (issue,pk) and two pairs of messages and corresponding
signatures (M1, σ1) and (M2, σ2) and outputs a string s that is either
equal to indep, linked or to an element pk ∈ pk such that, if σ1 ←
Sign(ski, L,M1) and σ2 ← Sign(skj , L,M2), then

Trace(L,M1, σ1,M2, σ2) :=


indep if i 6= j,

linked else if M1 = M2,

pki otherwise.

The security requirements for a traceable ring signature scheme are three:
tag-linkability, anonymity and exculpability. Unforgeability comes from tag-
linkability and exculpability. In the following, let κ be a security parameter, N
be the number of users in the ring, L = (issue,pk) where pk = (pk1, . . . , pkN )
are the public keys of each user and Sign(sk, ·) is a signing oracle that receives
queries of the form (L,M) and outputs σ ← Sign(sk, L,M).

Tag-linkability. Informally, it must be infeasible for an adversary to create
N + 1 signatures having access to N pairs of public and secret keys. Let A be
a PPT adversary. Consider the following game:

Game
tagLink
A (κ,N) :

1 : (L, (M1, σ1) , . . . , (Mn+1, σn+1))← A(1κ)

2 : bi ← Ver(L,Mi, σi) ∀i ∈ {1, . . . , N + 1}
3 : si,j ← Trace(L,Mi, σi,Mj , σj) ∀i, j ∈ {1, . . . , N + 1} ∧ i 6= j

4 : return b1, . . . , bN+1, s1,1, s1,2, . . . , sN+1,N+1

where L = (issue,pk) and pk = {pk1, . . . , pkN}.
We define

Adv
tagLink
A (κ,N) := Pr

N+1∧
i=1

bi = 1 ∧
N+1∧
i,j=1
i6=j

si,j = indep

 .
If, for all PPT adversaries A we have that Adv

tagLink
A (κ,N) ≤ negl(κ,N ) then

we say that the traceable ring signature scheme is tag-linkable.

Anonymity. Informally, it must be infeasible for an adversary to know who
signed the message. Let A be a PPT adversary. Consider the following game:

GameanonA (κ,N) :

1 : (pki, ski)← KeyGen(1κ), i = 0, 1

2 : b←$ {0, 1}
3 : b′ ← ASign(skb,·),Sign(sk0,·),Sign(sk1,·)(pk0, pk1)

4 : return b′
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where the adversary is not allowed to ask queries with different tags to Sign(skb, ·)
nor to ask queries with the same tag to both Sign(skb, ·) and Sign(sk0, ·) or to
both Sign(skb, ·) and Sign(sk1, ·). We do not allow this to happen to avoid the
trivial attacks.

We define

AdvanonA (κ,N) := Pr [b = b′]− 1

2
.

If for all PPT adversaries A we have that AdvanonA (κ,N) ≤ negl(κ,N ) then we
say that the traceable ring signature scheme is anonymous.

Exculpability. Informally, it must be infeasible for an adversaryA to produce
two pairs of messages and respective signatures that seem to be issued by some
user i, without knowledge of the secret key. In this case, we say that A frames
user i. Let A be a PPT adversary. Consider the following game:

GameexcA (κ,N) :

1 : (pk, sk)← KeyGen(1κ)

2 : (L,M1, σ1), (L,M2, σ2)← ASign(sk,·)(pk)

3 : s← Trace(L,M1, σ1,M2, σ2)

4 : return s

where Ver(L,M1, σ1) = 1, Ver(L,M2, σ2) = 1, pk ∈ pk and at least one of the
signatures must not be linked3 to any query to Sign(sk, ·) made by A (to avoid
the trivial attacks).

We define
AdvexcA (κ,N) := Pr [s = pk] .

If for all PPT adversaries A we have that AdvexcA (κ,N) ≤ negl(κ,N ) then we
say that the traceable ring signature scheme is exculpable.

Unforgeability comes directly from the properties of tag-linkability and exculpa-
bility, as the next theorem states.

Theorem 6 ([FS07]). Assume that a traceable ring signature scheme is tag-
linkable and exculpable, then it is unforgeable.

3 A code-based traceable ring signature scheme

In this section we propose a new traceable ring signature scheme based on the
SD problem.

The scheme is presented in Algorithm 3. In a nutshell, the traceable ring
signature scheme is obtained by applying the Fiat-Shamir transform to the(
N
1

)
-GStern’s protocol. To achieve traceability, we construct a set of random

syndromes r1 . . . , rN of a random matrix H̃ (generated via a cryptographic hash
function g and depending on the tag L), where one of the ri is the syndrome
of the secret vector known by the actual signer. When signing two different

3That is, at least one of the messages (M1 or M2) was not asked in a query to the oracle
Sign(sk, ·).
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messages with respect to the same tag, this syndrome will be the same in both
signatures and, thus, we can identify the signer of the message. To prevent the
signer from cheating when signing, we force it to generate the other syndromes
with another cryptographic hash function f in such a way that the verifier will
be able to check that these syndromes were honestly and randomly generated.

The new traceable ring signature scheme is presented in Algorithm 3. In
the following, let pk = (pk1, . . . , pkN ) be the set of public keys of the users
P1, . . . ,PN in the ring and L = (issue,pk) be a tag. Let s = (s1, . . . , sN ),
r = (r1, . . . , rN ) and H be a parity-check matrix of a random code.

Let f , f̄ , g and h be four different cryptographic hash functions (modeled as
random oracles). The function h is the one used in the

(
N
1

)
-GStern’s protocol,

f̄ is the one used in the Fiat-Shamir transform, g : Z∗2 → Z(n−k)×n
2 is used to

compute a matrix from the issue L and f : Z∗2 → Zn−k2 is used to compute
random syndromes to allow traceability (as mentioned before). By f i(x) we
denote the function f applied i times on input x.

Note that, by Corollary 3, the probability that the prover cannot simulate
transcripts for the keys that it does not know is negligible since it can easily find

a solution x ∈ Zn2 for an equation of the type HxT = sT where H ∈ Z(n−k)×n
2

and s ∈ Zn−k2 (when k = 3n/4). Thus, Corollary 3 guarantees the correctness
of the protocol.

4 Security analysis

In this section we give the security proofs for the proposed traceable ring
signature scheme. Recall that unforgeability for the scheme follows from the
tag-linkability and exculpability properties. We begin by proving tag-linkability
for our scheme, but first we present two lemmas. Detailed proofs are in the full
version of this paper.

Lemma 7. Given a valid signature (L,M, σ), the probability that∣∣∣{i ∈ N : ∃e ∈ Zn2 w(e) = t ∧HeT = sTi ∧ H̃eT = rTi }
∣∣∣ = 1

is 1− negl(n).

Lemma 8. Given two valid signatures (L,M, σ) and (L,M ′, σ′) such that they
are independent (that is, Trace(L,M, σ,M ′, σ′) = indep) the probability that
|traceList | > 1 is negl(n).

Theorem 9 (Tag-linkability). The traceable ring signature scheme proposed is
tag-linkable in the ROM.

Before proving anonymity, note that, given an instance of the SD problem
where we know the position of t/2 non-null coordinates of the error vector, this is
still an instance of the SD problem, for an appropriate choice of parameters. So,
it is still a hard problem to find the rest of the t/2 non-null positions of the error
vector. We briefly sketch the reduction here: suppose that we have an algorithm
A that solves the SD problem knowing t/2 positions of the error vector. The
algorithm that breaks the SD problem receives as input (H, sT = HeT , t/2).

Then it computes a new matrix H′ = (H|R) where R←$Z(n−k)×t/2
2 and it
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Algorithm 3 A new traceable ring signature scheme

1. Parameters: n, k, t ∈ N such that k = 3n/4, H←$ {0, 1}(n−k)×n
2. Key Generation: Each user Pi:
• Chooses ei←$ {0, 1}n such that w(ei) = t

• Computes sTi = HeTi

Public key of user Pi: H, si
Secret key of user Pi: ei such that w(ei) = t and HeTi = sTi

3. Sign: To sign message M , user Pi:
• Computes matrix g(L) = H̃ and H̃eTi = rTi ;

• Sets A0 = ri + f(M) + · · ·+ f i(M);

• Compute rj = A0 + f(M) + f2(M) + · · ·+ f j(M), for j 6= i;

• Applies the Fiat-Shamir transform to
(
N
1

)
-GStern’s protocol on input

(H, s, H̃, r) where s = (s1, . . . , sN ) and r = (r1, . . . , rN ):

– Computes the commitments Com according to
(
N
1

)
-GStern’s

protocol;

– Simulates the verifier’s challenge as Ch = f̄(Com,M);

– Computes the corresponding responses Resp according to
(
N
1

)
-

GStern’s protocol;

– Outputs the transcript T = (Com,Ch,Resp).

• Outputs the signature (L,M, σ) where σ = (A0,Com,Resp).

4. Verify: To verify, the verifier:

• Computes rj = A0 +f(M)+f2(M)+ · · ·+f j(M) for all j ∈ {1, . . . , N};
• Computes Ch = f̄(Com,M);

• Verifies that T = (Com,Ch,Resp) is a valid transcript, according to(
N
1

)
-GStern’s protocol.

5. Trace: Given two signatures (L,M, σ) and (L,M ′, σ′) where σ =
(A0,Com,Resp) and σ′ = (A′0,Com ′,Resp′) such that Ver(L,M, σ) = 1 and
Ver(L,M ′, σ′) = 1, the verifier:

• Computes rj = A0+f(M)+f2(M)+· · ·+f j(M) and r′j = A′0+f(M ′)+

f2(M ′) + · · ·+ f j(M ′) for all j;

• Checks if rj = r′j . If this happens, it stores pkj in a list traceList , which
is initially empty, for all j;

• Outputs the only pki ∈ traceList if |traceList | = 1; else if traceList =
pk = {pk1, . . . , pkN} it outputs linked ; else it outputs indep.
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computes the vector s′ = s + R(1, . . . 1)T where (1, . . . , 1) has size t/2. Now
we call the algorithm A on input H′, s′, t/2 and the last positions of the error
vector. The reduction is obviously not tight. We take in account this fact when
proposing parameters for the scheme.

We now turn our attention to the anonymity of the scheme. In order to prove
anonymity for the proposed traceable ring signature scheme, we reduce a variant
of the decision version of the GSD problem to the problem of breaking the
anonymity of the scheme. This variant is the GSD problem when t/2 positions
of the error vector are known. Note that this does not threat the security since,
even when knowing half of the positions of the error vector, the GSD problem
is still computationally hard.

We need to know t/2 positions of the error vector because of following
technical reason: we know how the algorithm that breaks the anonymity behaves
when it is given two valid public keys or when it is given two random values
as public keys. However, we do not know how it behaves when it is given one
valid public key and one random value as public key. More precisely, given
a tuple (H, s,G, r, t), we do not know if this represents a valid public key of
the signature scheme or if it is a random tuple. However, if we know part of
the secret, we are able to construct another tuple (H, s′,G, r′, t) that is a GSD
tuple, if (H, s,G, r, t) is a GSD tuple, or that is a random tuple, otherwise. We
elaborate more on this in the proof of anonymity in Appendix C.4.

Theorem 10 (Anonymity). The traceable ring signature scheme proposed is
anonymous in the ROM, given that the language

GSD =
{

(H, s,G, r, t) : ∃e ∈ Zn2 w(e) ≤ t ∧HeT = sT ∧GeT = rT
}

is hard to decide knowing t/2 positions of the error.

Finally, we prove that our scheme is exculpable.

Theorem 11 (Exculpability). The traceable ring signature scheme proposed is
exculpable in the ROM and given that the GSD problem is hard.

5 Parameters and key size

To conclude, we propose parameters for the scheme and analyze its signature and
key size. For the cheating probability of GStern’s protocol to be approximately
2−128, it has to be iterated 220 times. Recall that anonymity for our traceable
ring signature scheme is proven when knowing t/2 positions of the error vector.
Hence, to yield the standard security of approximately 128 bits for signature
schemes according to the generic decoding attack in [BJMM12], we consider a
code with n = 4150, k = 3n/4 and t = 132 (similar to [CTS16]). Note that a
code with these parameters has a security of approximately 128 bits even when
knowing t/2 positions of the error vector. This is necessary to maintain the
anonymity of the scheme. Let N be the number of users in the ring.

Size of the sigma protocol. The
(
N
1

)
-GStern’s protocol has approximately

8700N bits of exchange information in each round.
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Signature size. The signature size is approximately 240N kBytes. For example,
for a ring with N = 100 users, the signature size is approximately 24 MBytes.

Public key size. The public key is approximately 12918950+1037 bits, which
is linear in the number of users in the ring. For example, for a ring with N = 100
users, the public key has size approximately 1.6 MBytes.

6 Conclusion

Traceable ring signature schemes have a wide range of applications. Currently
they are used in the implementation of Monero, one of the most famous cryptocur-
rencies, but they also have other applications, such as, in e-voting. However,
the constructions for traceable ring signatures that exist in the literature are all
based on the discrete logarithm problem and, thus, they can be broken using
Shor’s algorithm.

We proposed the first traceable ring signature whose security does not rely on
the discrete logarithm problem, but rather on the SD problem, a problem that
is conjectured to be unsolvable in polynomial time by any classical or quantum
computer. Our construction is conjectured to be robust to quantum attacks.
We proved the usual security properties for traceable ring signature schemes in
the ROM.

However, the key and signature size of the protocol are too large for some
applications. This is a common problem to all code-based cryptosystems. Finding
new techniques to reduce the key and the signature size of code-based signature
schemes is an obvious direction for future work.

We also leave as an open question to prove the security of the protocol in
the Quantum Random Oracle Model (QROM) [BDF+11], where the parties can
query random oracles in superposition. Note that our proofs do not apply to
the quantum setup. For example, observe that the proof of exculpability uses
a rewind technique and the problem of quantum rewind is more subtle than in
the classical setup [ARU14]. Also, Unruh [Unr17] proved that the Fiat-Shamir
transform can be applied to obtain secure signature schemes in the QROM,
under certain conditions. However these results are not known to hold for the
case of ring signatures constructed using the Fiat-Shamir transform.
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Appendix A Sigma protocols

A.1 Fiat-Shamir transform

A sigma protocol (P,V) is a three-round protocol between a prover P and a
verifier V where the prover tries to convince the verifier about the validity of
some statement. In this work, we are only interested in a particular case of sigma
protocols which are proof of knowledge (PoK) protocols. Here, the prover P
convinces the verifier V, not only about the veracity of the statement, but also
that P has a witness for it. The three rounds of any sigma protocol are the
commitment (com) by the prover, the challenge (ch) by the verifier and the
response (resp) by the prover. A transcript (com, ch, resp) is said to be valid if
the verifier accepts it as a valid proof.

A PoK must have the following properties: i) completeness, which ensures
that the verifier will accept the proof with high probability if the prover has the
secret; ii) special soundness, which ensures that there is an extractor such that,
given two valid transcripts (com, ch, resp) and (com, ch ′, resp′) where ch 6= ch ′,
then it can extract the secret; and iii) honest-verifier zero-knowledge (HVZK)
which ensures that no information is gained by the verifier just by looking at

15



the transcript. This is usually proven by showing the existence of a simulator
that can generate transcripts that are computationally indistinguishable from
transcripts generated by the interaction between the prover and the verifier. A
detailed survey on sigma protocols can be found in [Dam02].

The Fiat-Shamir transform [FS87] is a generic method to convert any PoK
protocol that is complete, special sound and HVZK into a signature scheme.
The security of the Fiat-Shamir transform is proven to be secure both in the
random oracle model (ROM) [AABN02] and in the quantum random oracle
model (QROM) [Unr17], under certain conditions.

The idea behind the Fiat-Shamir transform is that the prover simulates
the challenge that is usually sent by the verifier. Since this challenge should
be chosen uniformly at random, the prover sets the challenge according to a
cryptographic hash function receiving as input the message to be signed and the
commitment chosen previously by the prover. More precisely, given a proof of
knowledge (P,V), the prover computes com, then it sets ch = f̄(com,M) where
f̄ is a cryptographic hash function and M is the message to be signed. Finally,
it computes resp such that (com, ch, resp) is a valid transcript. The signature
of M is (com, resp). To verify the validity of the signature, one just has to
compute ch = f̄(com,M) and check that (com, ch, resp) is a valid transcript.

A.2 CDS construction

The Cramer-Damg̊ard-Shoenmakers (CDS) construction [CDS94] is a generic
way to construct a proof of knowledge (P∗,V∗) where the prover proves knowledge
of the solution to some subset of instances of a problem, given any PoK protocol
(P,V) and a secret sharing scheme SS.

Given N instances of a problem, let A be the set of indexes for which the
prover P∗ knows the solution. The idea behind the CDS construction is that
the new prover P∗ simulates transcripts (comj , chj , respj) for the instances it
does not know the solution, that is, for j /∈ A. For the instances that it knows
the secret, it computes the commitment comi, for i ∈ A, following the protocol
(P,V). After receiving the commitments for all instances, the verifier sends
a random bit string b to the prover. The string b will be interpreted as the
secret in SS and the challenges chj , for j /∈ A, as shares such that they form
an unqualified set. Now, this set of shares can be extended to a qualified set by
choosing properly the challenges chi, for i ∈ A. The prover then computes valid
transcripts (comi, chi, respi) for i ∈ A. It can do this because it has witnesses for
these instances. Finally, the prover P∗ sends the transcripts (comi, chi, respi)
for all i to the verifier. The verifier can check that these are valid transcripts
and that the shares chi constitute a qualified set for SS.

A.3 Stern’s protocol

Stern’s protocol [Ste94] is a protocol in which, given a matrix H and a syndrome
vector s, a prover proves the knowledge of an error vector e with w(e) = t and
syndrome s. The protocol is presented in Algorithm 4. Here, h denotes a
cryptographic hash function.

The security of Stern’s protocol is based on the hardness of the SD problem.
The protocol has been proven to be complete, special sound and HVZK and,
furthermore, has a cheating probability of 2/3 [Ste94].
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Algorithm 4 Stern’s protocol

1. Public information: H ∈ Zn×(n−k)2 and s ∈ Zn−k2

2. Secret information: e ∈ Zn2 such that HeT = sT and w(e) = t.
3. Prover’s commitment:

• P chooses y←$Zn2 and a permutation δ;

• P computes c1 = h(δ,HyT ), c2 = h (δ(y)) and c3 = h (δ(y + e));

• P sends c1, c2 and c3.

4. Verifier’s challenge: V sends b←$ {0, 1, 2}.
4. Prover’s answer:

• If b = 0, P reveals y and δ;

• If b = 1, P reveals y + e and δ;

• If b = 2, P reveals δ(y) and δ(e).

6. Verifier’s verification:

• If b = 0, V checks if h(δ,HyT ) = c1 and h (δ(y)) = c2;

• If b = 1, V checks if h(δ,H(y + e)T + sT ) = c1 and h (δ(y + e)) = c3;

• If b = 2, V checks if h (δ(y)) = c2, h(δ(y) + δ(e)) = c3 and w (δ(e)) = t.

Appendix B Auxiliary results

B.1 Proof of Lemma 2

The probability of existing a vector x such that HxT = sT is the probability of
H being a matrix representing a surjective application, i.e., it is the probability
of H being a full rank matrix. Hence, we have to compute the probability of
choosing k′ linearly independent vectors of size n to form the rows of H. We
have

Pr
[
∃x ∈ Zn2 : HxT = sT

]
=

(2n − 1)(2n − 2) . . . (2n − 2k
′
)

2k′n
.

Since (2n− 1) ≥ (2n− 2k
′
), (2n− 2) ≥ (2n− 2k

′
) and (2n− 2k

′−1) ≥ (2n− 2k
′
),

we have that

(2n − 1)(2n − 2)(2n − 4) . . . (2n − 2k
′
)

2k′n
≥

(
2n − 2k

′
)k′+1

2k′n
≥

(
2n − 2k

′
)k′

2k′n
.

Now, note that(
2n − 2k

′
)k′

2k′n
=

(
2n(1− 2k

′−n)
)k′

2k′n
=

(
1− 1

2n−k′

)k′
.

So, it remains to show that(
1− 1/2n−k

′
)k′

= 1− negl(n)
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for k′ ≤ n/2. Note that the expression decreases with k′ and so it is enough to
show for k′ = n/2.

Expanding the expression on the left using the Binomial theorem we get(
1− 1

2n/2

)n/2
=

n/2∑
i=0

(
n/2

i

)(
− 1

2n/2

)i
.

When i = 0 we have (
n/2

i

)(
− 1

2n/2

)i
= 1.

The expression is maximal when i = n/4. Hence, if we show that(
n/2

i

)(
− 1

2n/2

)i
= negl(n)

when i = n/4, then

n/2∑
i=0

(
n/2

i

)(
− 1

2n/2

)i
= 1 +

n/2∑
i=1

(
n/2

i

)(
− 1

2n/2

)i
= 1− negl(n) .

In fact, it can be proved using Stirling approximation (which is tight) for n!
that

lim
n→∞

nb
(
n/2

n/4

)(
− 1

2n/2

)n/4
= 0

for any b ∈ N. Hence, we have shown that the expression
(
n/2
n/4

) (
− 1

2n/2

)n/4
goes

to zero faster than any function of the form 1/nb, for any b ∈ N. Thus, the
expression is negligible in n and the result follows.

Appendix C Security proofs

C.1 Proof of Lemma 7

We will prove that

Pr
[∣∣∣{i ∈ N : ∃e ∈ Zn2 w(e) = t ∧HeT = sTi ∧ H̃eT = rTi

}∣∣∣ 6= 1
]

= negl(n)

and the results follows. We divide the proof in two cases.

Case 1. Pr
[∣∣∣{i ∈ N : ∃e ∈ Zn2 w(e) = t ∧HeT = sTi ∧ H̃eT = rTi

}∣∣∣ < 1
]

If the signature is valid, but there is no e ∈ Zn2 such that w(e) = t, HeT = sTi
and H̃eT = rTi , then the signer was able to forge a proof of knowledge for

(
N
1

)
-

GStern’s protocol. But this would break the soundness of the protocol, and
recall that the probability of this event is negligible.

Case 2. Pr
[∣∣∣{i ∈ N : ∃e ∈ Zn2 w(e) = t ∧HeT = sTi ∧ H̃eT = rTi

}∣∣∣ > 1
]

If the signature is valid, then there is at least one index i such that there is
ei ∈ Zn2 that satisfies w(ei) = t, HeTi = sTi and H̃eTi = rTi . The probability of
existing more than one index that satisfies these conditions is the probability
that ri + x (where x is a random vector) gives the actual syndrome of another
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ej by the matrix H̃. That is, it is the probability of fixing an sj , such that there
is a vector ej with w(ej) = t and HeTj = sTj , and choosing x to be such that

H̃eTj = (ri + x)T . Since f is treated has a random oracle, then the probability

that the former happens for some index other than the actual signer is qf/2
n−k

where qf is the number of queries to f . Since there are N users, the total
probability is Nqf/2

n−k.

C.2 Proof of Lemma 8

The proof follows from noticing that |traceList | > 1 only happens if collisions
for one of the cryptographic hash function used in the protocol are found, given
that the signatures were traced. Given two valid pairs of message and signature
(L,M, σ) and (L,M ′, σ′) such that Trace(L,M, σ,M ′, σ′) = indep, this means
that |traceList | 6= 1 and |traceList | 6= {pk1, . . . , pkN}. If both signatures are
valid, then there are indexes i and j for which there are unique vectors e and
e′ such that both have weight t and HeT = sTi , H̃eT = rTi , He′T = sTj and

H̃e′T = rTj , with probability very close to one by the previous lemma. So,
the probability that both signatures have more than two error vectors is the
probability that collisions are found for the hash function f which is equal to
qf/2

n−k, where qf is the number of queries to f .

C.3 Proof of tag-linkability

To prove tag-linkability we have to prove that the advantage of a adversary A in
the tag-linkability game is negligible. Assume that there is an adversary A with
non-negligible probability of breaking tag-linkability of the proposed traceable
ring signature scheme. Then, A can find a tag L = (issue,pk), where pk =
{pk1, . . . , pkN}, and N + 1 pairs of message and signature (Mi, σi) such that
Ver(L,Mi, σi) = 1 and Trace(L,Mi, σi,Mj , σj) = indep for i, j ∈ {1, . . . , N+1}
and i 6= j.

By Lemma 8, we have that

Pr [|traceListi,j | = 0 | Trace(L,Mi, σi,Mj , σj) = indep] = 1− negl(n)

for any i 6= j and where traceList i,j is the list obtained by applying Trace
algorithm to (L,Mi, σi,Mj , σj). Remark that, if |traceList | = 1, then the Trace
algorithm would not output indep but rather the only element in the list.

On the other hand, by Lemma 7, we have that

Pr
[∣∣∣{i : ∃e ∈ Zn2 w(e) = t ∧He = si ∧ H̃e = ri}

∣∣∣ = 1
]

= 1− negl(n) .

By the pigeonhole principle (there are only N different syndromes si but there
are N + 1 valid signatures), with overwhelming probability, there are i, j ∈
{1, . . . , N + 1}, where i 6= j, and a position k such that rk = r′k where rk is
part of the signature σi and r′k is part of the signature σj . This contradicts
Lemma 8. So, we conclude that the advantage of A is negligible.

C.4 Proof of anonymity

We will prove that, given an adversary B that breaks anonymity of our protocol
with some non-negligible advantage ε, then we can build an A algorithm that
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decides language GSD given t/2 positions of the error vector as input.
The adversary A works in the following way. First, A receives as input a

tuple (H, s,G, r, t) and t/2 of non-null positions of a solution of HeT = sT and
GeT = rT . Recall that the goal of A is to decide whether (H, s,G, r, t) ∈ GSD.

The algorithmA starts by choosing a random bit b←$Z2 and setting pkb = s.
Now, consider the set of all vectors that have non-null entries in the t/2 positions
received as input by A. A chooses randomly e′ with weight t from this set, and
sets pkT1−b = He′T + sT . Note that, if (H, s,G, r, t) ∈ GSD, both the witnesses
e and e′ will have weight t and non-null values in these t/2 positions, received
as input by A. When (H, s,G, r, t) is a random tuple, then pk1−b will also be
a random tuple. Since pk1−b depends on pkb, either both keys produce valid
signatures or both keys produce non-valid signatures. This is necessary because
we know how B behaves when it is given two valid public keys (it outputs
an answer with an advantage of ε) or when it is given two random values as
public keys (here, it has no advantage at all and its best guess is to choose at
random). On the other hand, we do not know what happens when B is given
a random value and a valid public key. For example, it could be the case that
B distinguishes random tuples from valid public keys with probability 1, before
distinguishing signatures, and this would give B an advantage of 1.

Next, A feeds pk0 and pk1 to B. The adversary B will now make queries to
h, f, g and f̄ (here, treated as random oracles) and to the oracles Sign(sk0, ·),
Sign(sk1, ·) and Sign(skb, ·). We describe how A can simulate each one of these
oracles.

Simulation of h, f and f̄ : B can submit two types of queries: a new one,
or one that has already been asked before. When B submits a new query, A
chooses uniformly at random an output value and sends it to B. If the query was
already asked before, A returns precisely the same value that it had returned
before.

Simulation of g: Similarly to previous case, when B submits a new query, A
chooses a random invertible square matrix P and returns PG. If the query was
already asked, A returns the same value that it had returned before.

Simulation of the oracle Sign(skb, ·): When B submits a query (L,M) to
the oracle Sign(skb, ·), A chooses a random invertible square matrix P and sets
g(L) = PG and rb = Pr. Moreover, A chooses a random value for A0 and
for the several calls of oracle f . Furthermore, A simulates a proof for the

(
N
1

)
-

GStern’s protocol setting f̄(Com,M) to something thatA knows how to answer.
Of course there is the risk of collisions for g, but the probability of such event is
negligible. If the query was already asked before, A returns the same signature
that it had returned before.

Simulation of the oracle Sign(skb−1, ·): When B submits a query (L,M)
to the oracle Sign(skb−1, ·), A chooses a random full rank square matrix P and
sets g(L) = PG and rb−1 = PGe′+ Pr. It generates a signature by simulating
a proof for the

(
N
1

)
-GStern’s protocol, in a similar way as above. If the query

was already asked before, A returns the same signature that it had returned
before.
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The adversary B can query these oracles a polynomial number of times.
Eventually, B outputs a bit b′. If b = b′, then A outputs 1; else, it outputs
a bit b′′←$Z2.

It remains to analyze the advantage of A, defined as

Pr [1← A | (H, s,G, r, t) ∈ GSD]− Pr [1← A | (H, s,G, r, t) /∈ GSD] .

We start by the term Pr [1← A | (H, s,G, r, t) ∈ GSD] . Note that

Pr [1← A| (H, s,G, r, t) ∈ GSD] = Pr [b = b′ | (H, s,G, r, t) ∈ GSD] +

Pr [b′′ = 1 | (H, s,G, r, t) ∈ GSD ∧ b 6= b′] Pr [b 6= b′ | (H, s,G, r, t) ∈ GSD] .

Moreover, by assumption, we have that:

1. Pr [b = b′ | (H, s,G, r, t) ∈ GSD] = 1/2 + ε;

2. Pr [b 6= b′ | (H, s,G, r, t) ∈ GSD] = 1− 1/2− ε.

Furthermore, by construction of A, we have

Pr [b′′ | (H, s,G, r, t) ∈ GSD ∧ b 6= b′] = 1/2.

Hence, Pr [1← A | (H, s,G, r, t) ∈ GSD] = 3/4 + ε/2.
Concerning the second term of the advantage of A, we have that

Pr [1← A|(H, s,G, r, t) /∈ GSD] = Pr [b = b′ | (H, s,G, r, t) /∈ GSD] +

Pr [b′′ = 1 | (H, s,G, r, t) /∈ GSD ∧ b 6= b′] Pr [b 6= b′ | (H, s,G, r, t) /∈ GSD]

which is equal to 1/2 + 1/22 = 3/4 since the bit b is perfectly hidden from D.
We conclude that the advantage of A is at least ε/2 minus the probability of

A setting the same random value for different queries to the random oracles.

C.5 Proof of exculpability

Suppose that there is a polynomial-time adversary B that breaks exculpability
of the proposed scheme with a non-negligible advantage of ε. We will show that,
in this case, we can conceive a polynomial-time algorithm A that solves the SD
problem with some non-negligible probability.

First, A receives as input an instance (H, s, t) of the SD problem. The goal
of A is to find an error vector e such that w(e) = t and HeT = sT , given access
to B. A sets the public key pk as (H, s, t) and feeds it to B.

As in the previous proof, we have to specify how does A simulate the oracles
for B.

Simulation of the oracles h, f , g and f̄ : When B submits a new query
to one of these oracles, A chooses a random value an returns it to B. If the
query was already asked by B, A returns the same value that it had previously
returned. Note that the probability that A returns the same value for two
different queries to the same oracle is negligible.
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Simulation of Sign(sk, ·): When B submits a new query (L,M) to Sign(sk, ·),
A chooses a random invertible square matrix P and sets g(L) = PH and ri =
Ps. A generates a signature in a similar way as in the previous proof: it
simulates a proof for

(
N
1

)
-GStern’s protocol setting Ch = f̄(Com,M) to some

challenge for which it knows the correct answer. Again, note that it is possible
that the query L to g and query (Com,M) to f̄ were previously asked and set
to a different value by A, but the probability of this event is negligible. A stores
all these queries and respective answers in a list QSign .

At some point, B outputs two signatures (L,M, σ) and (L,M ′, σ′) such that
user i is framed by B with non-negligible advantage ε, that is,

Pr [Trace(L,M, σ,M ′, σ′) ≥ pki] = ε.

Note that, at least, one of the signatures was not asked by B to Sign(sk, ·). Let us
assume that the first one (L,M, σ) was not asked to the signing oracle, without
loss of generality. We now use a similar technique as the one used in [FS07]. A
reruns adversary B giving it the same values for the random oracles and signing
oracle, except that A chooses another random value for Ch ′′ = f̄(Com,M)
in the generation of the signature. B will output a new signature (L,M, σ′′)
with some non-negligible probability by the forking lemma [PS00]. Now, A can
check if chi 6= ch ′′i and if this happens, it can recover the secret by the special
soundness of the

(
N
1

)
-GStern’s protocol. Recall that the

(
N
1

)
-GStern’s protocol

is special sound (as the original Stern’s protocol [Ste94]) since one needs to
open the three commitments in order to extract the witness. Since in each valid
transcript, two commitments are opened, we just need two valid transcripts to
extract a witness. Note that, the probability that chi = ch ′′i is negligible.

The advantage of A is the probability of B outputting a valid signature
(L,M, σ′′) given that it succeeded in the first run, which is non-negligible as
we have seen. Hence, we conclude that A has a non-negligible probability of
solving the GSD problem and we conclude the proof.
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