
Libra: Succinct Zero-Knowledge Proofs with Optimal Prover

Computation

Tiancheng Xie∗ Jiaheng Zhang∗ Yupeng Zhang†

Charalampos Papamanthou‡ Dawn Song∗

Abstract

We present Libra, the first zero-knowledge proof system that has both optimal prover time
and succinct proof size/verification time. In particular, if C is the size of the circuit being proved
(i) the prover time is O(C) irrespective of the circuit type; (ii) the proof size and verification
time are both O(d logC) for d-depth log-space uniform circuits (such as RAM programs). In
addition Libra features an one-time trusted setup that depends only on the size of the input
to the circuit and not on the circuit logic. Underlying Libra is a new linear-time algorithm for
the prover of the interactive proof protocol by Goldwasser, Kalai and Rothblum (also known as
GKR protocol), as well as an efficient approach to turn the GKR protocol to zero-knowledge
using small masking polynomials. Not only does Libra have excellent asymptotics, but it is
also efficient in practice. For example, our implementation shows that it takes 200 seconds to
generate a proof for constructing a SHA2-based Merkle tree root on 256 leaves, outperforming
all existing zero-knowledge proof systems. Proof size and verification time of Libra are also
competitive.

1 Introduction

Zero-knowledge proofs (ZKP) are cryptographic protocols between two parties, a prover and a ver-
ifier, in which the prover can convince the verifier about the validity of a statement without leaking
any extra information beyond the fact that the statement is true. Since they were first introduced
by Goldwasser et al. [33], ZKP protocols have evolved from pure theoretical constructs to practical
implementations, achieving proof sizes of just hundreds of bytes and verification times of several
milliseconds, regardless of the size of the statement being proved. Due to this successful transition
to practice, ZKP protocols have found numerous applications not only in the traditional compu-
tation delegation setting but most importantly in providing privacy of transactions in deployed
cryptocurrencies (e.g., Zcash [11]) as well as in other blockchain research projects (e.g., Hawk [39]).

Despite such progress in practical implementations, ZKP protocols are still notoriously hard
to scale for large statements, due to a particularly high overhead on generating the proof. For
most systems, this is primarily because the prover has to perform a large number of cryptographic
operations, such as exponentiation in an elliptic curve group. And to make things worse the

∗University of California, Berkeley. Email: {tianc.x,jiaheng_zhang,dawnsong}@berkeley.edu.
†University of California, Berkeley and Texas A&M University. Email: zhangyp@tamu.edu.
‡University of Maryland. Email: cpap@umd.edu.

1

asymptotic complexity of computing the proof is typically more than linear, e.g., O(C logC) or
even O(C log2C), where C is the size of the statement.

Unfortunately, as of today we are yet to construct a ZKP system whose prover time is optimal,
i.e., linear in the size of the statement C (this is irrespective of whether the ZKP system has
per-statement trusted setup, one-time trusted setup or no trusted setup at all). The only notable
exception is the recent work by Bünz et al. [18] that however suffers from linear verification time—
for a detailed comparison see Table 1. Therefore designing ZKP systems that enjoy linear prover
time as well as succinct1 proof size and verification time is an open problem, whose resolution can
have significant practical implications.

Our contributions. In this paper we propose Libra, the first ZKP protocol with linear prover time
and succinct proof size and verification time in the size of the arithmetic circuit representing the
statement C, when the circuit is log-space uniform. Libra is based on the doubly efficient interactive
proof protocol proposed by Goldwasser et al. in [32] (referred as GKR protocol in this paper), and
the verifiable polynomial delegation scheme proposed by Zhang et al. in [53]. As such it comes
with one-time trusted setup (and not per-statement trusted setup) that depends only on the size
of the input (witness) to the statement that is being proved. Not only does Libra have excellent
asymptotic performance but also its prover outperforms in practice all other ZKP systems while
verification time and proof size are also very competitive—see Table 1. Our concrete contributions
are:

• GKR with linear prover time. Libra features a new linear-time algorithm to generate a GKR
proof. Our new algorithm does not require any pattern in the circuit and our result subsumes all
existing improvements on the GKR prover assuming special circuit structures, such as regular
circuits in [45], data-parallel circuits in [45, 49], circuits with different sub-copies in [54]. See
related work for more details.

• Adding zero-knowledge. We propose an approach to turn Libra into zero-knowledge efficiently.
In particular, we show a way to mask the responses of our linear-time prover with small random
polynomials such that the zero-knowledge variant of the protocol introduces minimal overhead
on the verification time compared to the original (unmasked) construction.

• Implementation and evaluation. We implement Libra. Our implementation takes an arith-
metic circuit with various types of gates (fan-in 2 and degree ≤ 2, such as +,−,×, AND, XOR,
etc.) and compiles it into a ZKP protocol. We conduct thorough comparisons to all existing
ZKP systems (see Section 1.1). The open-source implementation of our system is released at [5].

1.1 Comparing to other ZKP Systems

Table 1 shows a detailed comparison between Libra and existing ZKP systems. First of all, Libra
is the best among all existing systems in terms of practical prover time. In terms of asymptotics,
Libra is the only system with linear prover time and succinct verification and proof size for log-
space uniform circuits. The only other system with linear prover time is Bulletproofs [18] whose
verification time is linear, even for log-space uniform circuits. In the practical front, Bulletproofs
prover time and verification time are high, due to the large number of cryptographic operations
required for every gate of the circuit.

1In ZKP literature, “succinct” is poly-logarithmic in the size of the statement C.

2

Table 1: Comparison of Libra to existing ZKP systems, where (G,P,V, |π|) denote the trusted setup
algorithm, the prover algorithm, the verification algorithm and the proof size respectively. Also, C
is the size of the log-space uniform circuit with depth d, and n is the size of its input. The numbers
are for a circuit computing the root of a Merkle tree with 256 leaves (511 instances of SHA256).3

libSNARK Ligero Bulletproofs Hyrax libSTARK Aurora Libra

[15] [7] [18] [51] [10] [13]

O(C) O(n)

G per-statement no trusted setup one-time

trusted setup trusted setup

P O(C logC) O(C logC) O(C) O(C logC) O(C log2 C) O(C logC) O(C)

V O(1) O(C) O(C) O(
√
n+ d logC) O(log2 C) O(C) O(d logC)

|π| O(1) O(
√
C) O(logC) O(

√
n+ d logC) O(log2 C) O(log2 C) O(d logC)

G 1027s NA 210s

P 360s 400s 2,555s 1,041s 2,022s 3199s 201s

V 0.002s 4s 98s 9.9s 0.044s 15.2s 0.71s

|π| 0.13KB 1,500KB 2KB 185KB 395KB 174.3KB 51KB

The proof and verification of Libra are also competitive to other systems. In asymptotic terms,
our proof size is only larger than libSNARK [15] and Bulletproofs [18], and our verification is slower
than libSNARK [15] and libSTARK [10]. Compared to Hyrax [51], which is also based on similar
techniques with our work, Libra improves the performance in all aspects (yet Hyrax does not have
any trusted setup). One can refer to Section 5 for a detailed description of our experimental setting
as well as a more detailed comparison.

Finally, among all systems, libSNARK [15] requires a trusted setup for every statement, and
Libra requires an one-time trusted setup that depends on the input size. See Section 5.3 for a
discussion on removing trusted setup in Libra.

Log-space uniform circuits. Though the prover time in Libra is optimal for all circuits, the
verification time is succinct only when the circuit is structured (log-space uniform with logarithmic
depth). This is the best that can be achieved for all ZKP protocols without per-circuit setup, as
the verifier must read the entire circuit, which takes linear time in the worst case. We always refer
to log-space uniform circuits when we say our scheme is succinct in this paper, to differentiate
from schemes with linear verification time on all circuits (irrespective of whether the circuits are
log-space uniform or not). Schemes such as libSTARK [10], zkVSQL [52] and Hyrax [51] also have
such property.

In practice, with the help of auxiliary input and circuit squashing, most computations can be
expressed as log-space uniform circuits with low depth, such as matrix multiplication, image scaling
and Merkle hash tree in Section 5. Asymptotically, as shown in [10, 15, 54], all random memory
access (RAM) programs can be validated by circuits that are log-space uniform with log-depth
in the running time of the programs (but linear in the size of the programs) by RAM-to-circuit
reduction, which justifies the expressiveness of such circuits.

2STARK is in the RAM model. To compare the performance, we convert a circuit of size C to a RAM program
with T = Θ(C) steps.

3

1.2 Our Techniques

Our main technical contributions are a GKR protocol with linear prover time and an efficient
approach to turn the GKR protocol into zero-knowledge. We summarize the key ideas behind
these two contributions. The detailed protocols are presented in Section 3 and 4 respectively.

GKR with linear prover. Goldwasser et al. [32] showed an approach to model the evaluation
of a layered circuit as a sequence of summations on polynomials defined by values in consecutive
layers of the circuit. Using the famous sumcheck protocol (see Section 2.3.1), they developed a
protocol (the GKR protocol) allowing the verifier to validate the circuit evaluation in logarithmic
time with a logarithmic size proof. However, the polynomials in the protocol are multivariate with
2s variables, where S is the number of gates in one layer of the circuit and s = logS. Naively
running the sumcheck protocol on these polynomials incurs S2 prover time, as there are at least
22s = S2 monomials in a 2s-variate polynomial. Later, Cormode et al. [25] observed that these
polynomials are sparse, containing only S nonzero monomials and improved the prover time to
S logS.

In our new approach, we divide the protocol into two separate sumchecks. In each sumcheck,
the polynomial only contains s variables, and can be expressed as the product of two multilinear
polynomials. Utilizing the sparsity of the circuit, we develop new algorithms to scan through each
gate of the circuit and compute the closed-form of all these multilinear polynomials explicitly,
which takes O(S) time. With this new way of representation, the prover can deploy a dynamic
programming technique to generate the proofs in each sumcheck in O(S) time, resulting in a total
prover time of O(S).

Efficient zero-knowledge GKR. The original GKR protocol is not zero-knowledge, since the
messages in the proof can be viewed as weighed sums of the values in the circuit and leak infor-
mation. In [51,52], the authors proposed to turn the GKR protocol into zero-knowledge by hiding
the messages in homomorphic commitments, which incurs a big overhead in the verification time.
In [24], Chiesa et al. proposed an alternative approach by masking the protocol with random poly-
nomials. However, the masking polynomials are as big as the original ones and the prover time
becomes exponential, making the approach mainly of theoretical interest.

In our scheme, we first show that in order to make the sumcheck protocol zero-knowledge, the
prover can mask it with a “small” polynomial. In particular, the masking polynomial only contains
logarithmically many random coefficients. The intuition is that though the original polynomial
has O(2`) or more terms (` is the number of variables in the polynomial), the prover only sends
O(`) messages in the sumcheck protocol. Therefore, it suffices to mask the original polynomial
with a random one with O(`) coefficients to achieve zero-knowledge. In particular, we set the
masking polynomial as the sum of ` univariate random polynomials with the same variable-degree.
In Section 4.1, we show that the entropy of this mask exactly counters the leakage of the sumcheck,
proving that it is sufficient and optimal.

Besides the sumcheck, the GKR protocol additionally leaks two evaluations of the polynomial
defined by values in each layer of the circuit. To make these evaluations zero-knowledge, we mask
the polynomial by a special low-degree random polynomial. In particular, we show that after the
mask, the verifier in total learns 4 messages related to the evaluations of the masking polynomial
and we can prove zero-knowledge by making these messages linearly independent. Therefore, the
masking polynomial is of constant size: it consists of 2 variables with variable degree 2.

4

1.3 Related Work

In recent years there has been significant progress in efficient ZKP protocols and systems. In this
section, we discuss related work in this area, with the focus on those with sublinear proofs.

QAP-based. Following earlier work of Ishai [36], Groth [35] and Lipmaa [40], Gennaro et al. [30]
introduced quadratic arithmetic programs (QAPs), which forms the basis of most recent implemen-
tations [12,16,21,26,29,44,50] including libSNARK [15]. The proof size in these systems is constant,
and the verification time depends only on the input size. Both these properties are particularly
appealing and have led to real-world deployments, e.g., ZCash [11]. One of the main bottlenecks,
however, of QAP-based systems is the high overhead in the prover running time and memory con-
sumption, making it hard to scale to large statements. In addition, a separate trusted setup for
every different statement is required.

IOPs. Based on “(MPC)-in-the-head” introduced in [23, 31, 37], Ames et al. [7] proposed a ZKP
scheme called Ligero. It only uses symmetric key operations and the prover time is fast in practice.
However, it generates proofs of size O(

√
C), which is several megabytes in practice for moderate-size

circuits. In addition, the verification time is quasi-linear to the size of the circuit. It is categorized
as interactive PCP, which is a special case of interactive oracle proofs (IOPs). IOP generalizes the
probabilistically checkable proofs (PCPs) where earlier works of Kilian [38] and Micali [43] are built
on. In the IOP model, Ben-Sasson et al. built libstark [10], a zero-knowledge transparent argument
of knowledge (zkSTARK).libstark does not rely on trusted setup and executes in the RAM model
of computation. Their verification time is only linear to the description of the RAM program, and
succinct (logarithmic) in the time required for program execution. Recently, Ben-Sasson et al. [13]
proposed Aurora, a new ZKP system in the IOP model with the proof size of O(log2C).

Discrete log. Before Bulletproof [18], earlier discrete-log based ZKP schemes include the work of
Groth [34], Bayer and Groth [9] and Bootle et al. [19]. The proof size of these schemes are larger
than Bulletproof either asymptotically or concretely.

Hash-based. Bootle et al. [20] proposed a ZKP scheme with linear prover time and verification
time. The verification only requires O(C) field additions. However, the proof size is O(

√
C) and

the constants are large as mentioned in the paper [20].

Interactive proofs. The line of work that relates to our paper the most is based on interactive
proofs [33]. In the seminal work of [32], Goldwasser et al. proposed an efficient interactive proof
for layered arithmetic circuits. Later, Cormode et al. [25] improved the prover complexity of the
interactive proof in [32] to O(C logC) using multilinear extensions instead of low degree extensions.
Several follow-up works further reduce the prover time assuming special structures of the circuit. For
regular circuits where the wiring pattern can be described in constant space and time, Thaler [45]
introduced a protocol with O(C) prover time; for data parallel circuits with many copies of small
circuits with size C ′, a O(C logC ′) protocol is presented in the same work, later improved to
O(C+C ′ logC) by Wahby et al. in [49]; for circuits with many non-connected but different copies,
Zhang et al. showed a protocol with O(C logC ′) prover time.

In [53], Zhang et al. extended the GKR protocol to an argument system using a protocol
for verifiable polynomial delegation. Zhang et al. [54] and Wahby et al. [51] make the argument
system zero-knowledge by putting all the messages in the proof into homomorphic commitments,
as proposed by Cramer and Damgard in [27]. This approach introduces a high overhead on the
verification time compared to the plain argument system without zero-knowledge, as each addition
becomes a multiplication and each multiplication becomes an exponentiation in the homomorphic

5

commitments. The multiplicative overhead is around two orders of magnitude in practice. Addi-
tionally, the scheme of [51], Hyrax, removes the trusted setup of the argument system by introducing
a new polynomial delegation, increasing the proof size and verification time to O(

√
n) where n is

the input size of the circuit.

Lattice-based. Recently Baum et al. [8] proposed the first lattice-based ZKP system with sub-

linear proof size. The proof size is O(
√
C log3C), and the practical performance is to be explored.

2 Preliminaries

2.1 Notation

In this paper, we use λ to denote the security parameter, and negl(λ) to denote the negligible
function in λ. “PPT” stands for probabilistic polynomial time. We use f(), h() for polynomials,
x, y, z for vectors of variables and g, u, v for vectors of values. xi denotes the i-th variable in x. We
use bold letters such as A to represent arrays. For a multivariate polynomial f , its ”variable-degree”
is the maximum degree of f in any of its variables.

Bilinear pairings. Let G,GT be two groups of prime order p and let g ∈ G be a generator.
e : G × G → GT denotes a bilinear map and we use bp = (p,G,GT , e, g) ← BilGen(1λ) for the
generation of parameters for the bilinear map. Our scheme relies on the q-Strong Bilinear Diffie-
Hellman (q-SBDH) assumption and an extended version of the Power Knowledge of Exponent
(PKE) assumption.

Assumption 1 (q-Strong Bilinear Diffie-Hellman). For any PPT adversary A, the following holds:

Pr


bp← BilGen(1λ)

s
R← Z∗p : (x, e(g, g)

1
s+x)← A(1λ, σ)

σ = (bp, gs, ..., gs
q
)

 ≤ negl(λ)

The second assumption is a generalization of the q-PKE assumption [35] to multivariate poly-
nomials, proposed in [52, 53]. Let W`,d be the set of all multisets of {1, ..., `} with the cardinality
of each element being at most d.

Assumption 2 ((d, `)-Extended Power Knowledge of Exponent). For any PPT adversary A, there
is a polynomial time algorithm E (takes the same randomness of A as input) such that for all benign
auxiliary inputs z ∈ {0, 1}poly(λ) the following probability is negligible:

Pr



bp← BilGen(1λ)

s1, ..., s`, s`+1, α
R← Z∗p , s0 = 1

σ1 = ({g
∏
i∈W si}W∈W`,d,g

s`+1) e(h, gα) = e(h̃, g)

σ2 = ({gα
∏
i∈Wsi}W∈W`,d

, gαs`+1) :
∏

W∈W`,d

gaW
∏
i∈W sigbs`+1 6= h

σ = (bp, σ1, σ2, g
α)

G×G 3 (h, h̃)← A
(

1λ, σ, z
)

(
a0, . . . , a|W`,d|, b

)
← E

(
1λ, σ, z

)



≤ negl(λ)

6

2.2 Interactive Proofs and Zero-knowledge Arguments

Interactive proofs. An interactive proof allows a prover P to convince a verifier V the validity of
some statement. The interactive proof runs in several rounds, allowing V to ask questions in each
round based on P’s answers of previous rounds. We phrase this in terms of P trying to convince
V that f(x) = 1. The proof system is interesting only when the running time of V is less than the
time of directly computing the function f . We formalize interactive proofs in the following:

Definition 1. Let f be a Boolean function. A pair of interactive machines 〈P,V〉 is an interactive
proof for f with soundness ε if the following holds:

• Completeness. For every x such that f(x) = 1 it holds that Pr[〈P,V〉(x) = accept] = 1.

• ε-Soundness. For any x with f(x) 6= 1 and any P∗ it holds that Pr[〈P∗,V〉 = accept] ≤ ε

Zero-knowledge arguments. An argument system for an NP relationship R is a protocol between
a computationally-bounded prover P and a verifier V. At the end of the protocol, V is convinced
by P that there exists a witness w such that (x;w) ∈ R for some input x. We focus on arguments
of knowledge which have the stronger property that if the prover convinces the verifier of the
statement validity, then the prover must know w. We use G to represent the generation phase of
the public key pk and the verification key vk. Formally, consider the definition below, where we
assume R is known to P and V.

Definition 2. Let R be an NP relation. A tuple of algorithm (G,P,V) is a zero-knowledge argument
of knowledge for R if the following holds.

• Correctness. For every (pk, vk) output by G(1λ) and (x,w) ∈ R,

〈P(pk, w),V(vk)〉(x) = accept

• Soundness. For any PPT prover P, there exists a PPT extractor ε such that for every
(pk, vk) output by G(1λ) and any x, it holds that

Pr[〈P(pk),V(vk)〉(x) = accept ∧ (x,w) /∈ R|w ← ε(pk, x)] ≤ negl(λ)

• Zero knowledge. There exists a PPT simulator S such that for any PPT adversary A,
auxiliary input z ∈ {0, 1}poly(λ), (x;w) ∈ R, it holds that
Pr
[
〈P(pk, w),A〉 = accept : (pk, vk)← G(1λ); (x,w)← A(z, pk, vk)

]
=

Pr
[
〈S(trap, z, pk),A〉 = accept : (pk, vk, trap)← S(1λ); (x,w)← A(z, pk, vk)

]
We say that (G,P,V) is a succinct argument system if the running time of V and the total com-
munication between P and V (proof size) are poly(λ, |x|, log |w|).

2.3 GKR Protocol

In [32], Goldwasser et al. proposed an efficient interactive proof protocol for layered arithmetic
circuits, which we use as a building block for our new zero-knowledge argument and is referred as
the GKR protocol. We present the detailed protocol here.

7

Protocol 1 (Sumcheck). The protocol proceeds in ` rounds.

• In the first round, P sends a univariate polynomial

f1(x1)
def
=

∑
b2,...,b`∈{0,1}

f(x1, b2, . . . , b`) ,

V checks H = f1(0) + f1(1). Then V sends a random challenge r1 ∈ F to P.

• In the i-th round, where 2 ≤ i ≤ l − 1, P sends a univariate polynomial

fi(xi)
def
=

∑
bi+1,...,b`∈{0,1}

f(r1, . . . , ri−1, xi, bi+1, . . . , b`) ,

V checks fi−1(ri−1) = fi(0) + fi(1), and sends a random challenge ri ∈ F to P.

• In the `-th round, P sends a univariate polynomial

f`(x`)
def
= f(r1, r2, . . . , rl−1, x`) ,

V checks f`−1(r`−1) = f`(0) + f`(1). The verifier generates a random challenge r` ∈ F. Given oracle
access to an evaluation f(r1, r2, . . . , r`) of f , V will accept if and only if f`(r`) = f(r1, r2, . . . , r`).
The instantiation of the oracle access depends on the application of the sumcheck protocol.

2.3.1 Sumcheck Protocol.

The sumcheck problem is a fundamental problem that has various applications. The problem is to
sum a polynomial f : F` → F on the binary hypercube∑

b1,b2,...,b`∈{0,1}
f(b1, b2, ..., b`).

Directly computing the sum requires exponential time in `, as there are 2` combinations of b1, . . . , b`.
Lund et al. [41] proposed a sumcheck protocol that allows a verifier V to delegate the computation
to a computationally unbounded prover P, who can convince V that H is the correct sum. We
provide a description of the sumcheck protocol in Protocol 1. The proof size of the sumcheck
protocol is O(d`), where d is the variable-degree of f , as in each round, P sends a univariate
polynomial of one variable in f , which can be uniquely defined by d + 1 points. The verifier time
of the protocol is O(d`). The prover time depends on the degree and the sparsity of f , and we
will give the complexity later in our scheme. The sumcheck protocol is complete and sound with
ε = d`

|F| .

2.3.2 GKR protocol

Using the sumcheck protocol as a building block, Goldwasser et al. [32] showed an interactive proof
protocol for layered arithmetic circuits.

Definition 3 (Multi-linear Extension). Let V : {0, 1}` → F be a function. The multilinear
extension of V is the unique polynomial Ṽ : Fl → F such that Ṽ (x1, x2, ..., xl) = V (x1, x2, ..., xl) for
all x1, x2, . . . , xl ∈ {0, 1}l.

8

Ṽ can be expressed as:

Ṽ (x1, x2, ..., xl) =
∑

b∈{0,1}`

∏l

i=1
[((1− xi)(1− bi) + xibi) · V (b)]

where bi is i-th bit of b.

Multilinear extensions of arrays. Inspired by the close form equation of the multilinear exten-
sion given above, we can view an array A = (a0, a1, . . . , an−1) as a function A : {0, 1}logn → F such
that ∀i ∈ [0, n − 1], A(i) = ai. Therefore, in this paper, we abuse the use of multilinear extension
on an array as the multilinear extension Ã of A.

High Level Ideas. Let C be a layered arithmetic circuit with depth d over a finite field F. Each
gate in the i-th layer takes inputs from two gates in the (i+ 1)-th layer; layer 0 is the output layer
and layer d is the input layer. The protocol proceeds layer by layer. Upon receiving the claimed
output from P, in the first round, V and P run the sumcheck protocol to reduce the claim about
the output to a claim about the values in the layer above. In the i-th round, both parties reduce
a claim about layer i − 1 to a claim about layer i through the sumcheck protocol. Finally, the
protocol terminates with a claim about the input layer d, which can be checked directly by V, or
is given as an oracle access. If the check passes, V accepts the claimed output.

Notation. Before describing the GKR protocol, we introduce some additional notations. We
denote the number of gates in the i-th layer as Si and let si = dlogSie. (For simplicity, we assume
Si is a power of 2, and we can pad the layer with dummy gates otherwise.) We then define a
function Vi : {0, 1}si → F that takes a binary string b ∈ {0, 1}si and returns the output of gate
b in layer i, where b is called the gate label. With this definition, V0 corresponds to the output
of the circuit, and Vd corresponds to the input layer. Finally, we define two additional functions
addi,multi : {0, 1}si−1+2si → {0, 1}, referred as wiring predicates in the literature. addi (multi)
takes one gate label z ∈ {0, 1}si−1 in layer i − 1 and two gate labels x, y ∈ {0, 1}si in layer i, and
outputs 1 if and only if gate z is an addition (multiplication) gate that takes the output of gate
x, y as input. With these definitions, Vi can be written as follows:

Vi(z) =
∑

x,y∈{0,1}si+1

(addi+1(z, x, y)(Vi+1(x) + Vi+1(y))

+multi+1(z, x, y)(Vi+1(x)Vi+1(y)))

(1)

for any z ∈ {0, 1}si .
In the equation above, Vi is expressed as a summation, so V can use the sumcheck protocol to

check that it is computed correctly. As the sumcheck protocol operates on polynomials defined on
F, we rewrite the equation with their multilinear extensions:

Ṽi(g) =
∑

x,y∈{0,1}si+1
fi(x, y)

=
∑

x,y∈{0,1}si+1
(˜addi+1(g, x, y)(Ṽi+1(x) + Ṽi+1(y))

+ ˜multi+1(g, x, y)(Ṽi+1(x)Ṽi+1(y))) , (2)

where g ∈ Fsi is a random vector.

9

Protocol. With Equation 2, the GKR protocol proceeds as follows. The prover P first sends
the claimed output of the circuit to V. From the claimed output, V defines polynomial Ṽ0 and
computes Ṽ0(g) for a random g ∈ Fs0 . V and P then invoke a sumcheck protocol on Equation 2
with i = 0. As described in Section 2.3.1, at the end of the sumcheck, V needs an oracle access to
fi(u, v), where u, v are randomly selected in Fsi+1 . To compute fi(u, v), V computes ˜addi+1(u, v)
and ˜multi+1(u, v) locally (they only depend on the wiring pattern of the circuit, but not on the
values), asks P to send Ṽ1(u) and Ṽ1(v) and computes fi(u, v) to complete the sumcheck protocol.
In this way, V and P reduces a claim about the output to two claims about values in layer 1. V
and P could invoke two sumcheck protocols on Ṽ1(u) and Ṽ1(v) recursively to layers above, but the
number of claims and the sumcheck protocols would increase exponentially in d.

Combining two claims: condensing to one claim. In [32], Goldwasser et al. presented a
protocol to reduce two claims Ṽi(u) and Ṽi(v) to one as following. V defines a line γ : F→ Fsi such
that γ(0) = u, γ(1) = v. V sends γ(x) to P. Then P sends V a degree si univariate polynomial
h(x) = Ṽi(γ(x)). V checks that h(0) = Ṽi(u), h(1) = Ṽi(v). Then V randomly chooses r ∈ F and
computes a new claim h(r) = Ṽi(γ(r)) = Ṽi(w) on w = γ(r) ∈ Fsi . V sends r, w to P. In this
way, the two claims are reduced to one claim Ṽi(w). Combining this protocol with the sumcheck
protocol on Equation 2, V and P can reduce a claim on layer i to one claim on layer i + 1, and
eventually to a claim on the input, which completes the GKR protocol.

Combining two claims: random linear combination. In [24], Chiesa et al. proposed an
alternative approach using random linear combinations. Upon receiving the two claims Ṽi(u) and
Ṽi(v), V selects αi, βi ∈ F randomly and computes αiṼi(u) + βiṼi(v). Based on Equation 2, this
random linear combination can be written as

αiṼi(u) + βiṼi(v)

=αi
∑

x,y∈{0,1}si+1

(˜addi+1(u, x, y)(Ṽi+1(x) + Ṽi+1(y)) + ˜multi+1(u, x, y)(Ṽi+1(x)Ṽi+1(y)))

+βi
∑

x,y∈{0,1}si+1

(˜addi+1(v, x, y)(Ṽi+1(x) + Ṽi+1(y)) + ˜multi+1(v, x, y)(Ṽi+1(x)Ṽi+1(y)))

=
∑

x,y∈{0,1}si+1

((αi ˜addi+1(u, x, y) + βi ˜addi+1(v, x, y))(Ṽi+1(x) + Ṽi+1(y))

+ (αi ˜multi+1(u, x, y) + βi ˜multi+1(v, x, y))(Ṽi+1(x)Ṽi+1(y))) (3)

V and P then execute the sumcheck protocol on Equation 3 instead of Equation 2. At the end
of the sumcheck protocol, V still receives two claims about Ṽi+1, computes their random linear
combination and proceeds to an layer above recursively until the input layer.

In our new ZKP scheme, we will mainly use the second approach. The full GKR protocol using
random linear combinations is given in Protocol 2.

Theorem 1. [47] [45] [25] [32]. Let C : Fn → Fk be a depth-d layered arithmetic circuit. Protocol
2 is an interactive proof for the function computed by C with soundness O(d log |C|/|F|). It uses
O(d log |C|) rounds of interaction and running time of the prover P is O(|C| log |C|). Let the optimal
computation time for all ˜addi and ˜multi be T , the running time of V is O(n + k + d log |C| + T).
For log-space uniform circuits it is T = polylog |C|.

10

Protocol 2. Let F be a prime field. Let C: Fn → Fk be a d-depth layered arithmetic circuit. P wants to
convince that out = C(in) where in is the input from V, and out is the output. Without loss of generality,
assume n and k are both powers of 2 and we can pad them if not.

• Define the multilinear extension of array out as Ṽ0. V chooses a random g ∈ Fs0 and sends it to P.
Both parties compute Ṽ0(g).

• P and V run a sumcheck protocol on

Ṽ0(g(0)) =
∑

x,y∈{0,1}s1

˜mult1(g(0), x, y)(Ṽ1(x)Ṽ1(y)) + ˜add1(g(0), x, y)(Ṽ1(x) + Ṽ1(y))

At the end of the protocol, V receives Ṽ1(u(1)) and Ṽ1(v(1)). V computes
˜mult1(g(0), u(1), v(1)), ˜add1(g(0), u(1), v(1)) and checks that ˜mult1(g(0), u(1), v(1))Ṽ1(u(1))Ṽ1(v(1)) +

˜add1(g(0), u(1), v(1))(Ṽ1(u(1)) + Ṽ1(v(1))) equals to the last message of the sumcheck.

• For i = 1, ..., d− 1:

– V randomly selects α(i), β(i) ∈ F and sends them to P.

– P and V run the sumcheck on the equation

α(i)V̇i(u
(i)) + β(i)V̇i(v

(i)) =∑
x,y∈{0,1}si+1

((α(i) ˜multi+1(u(i), x, y) + β(i) ˜multi+1(v(i), x, y))(Ṽi+1(x)Ṽi+1(y))

+(α(i) ˜addi+1(u(i), x, y) + β(i) ˜addi+1(v(i), x, y))(Ṽi+1(x) + Ṽi+1(y))

– At the end of the sumcheck protocol, P sends V Ṽi+1(u(i+1)) and Ṽi+1(v(i+1)).

– V computes the following and checks if it equals to the last message of the sumcheck. For sim-
plicity, let Multi+1(x) = ˜multi+1(x, u(i+1), v(i+1)) and Addi+1(x) = ˜addi+1(x, u(i+1), v(i+1)).

(α(i)Multi+1(u(i)) + β(i)Multi+1(v(i))(Ṽi+1(u(i+1))Ṽi+1(v(i+1)))+

(α(i) ˜Addi+1(u(i)) + β(i) ˜Addi+1(v(i))(Ṽi+1(u(i+1)) + Ṽi+1(v(i+1)))

If all checks in the sumcheck pass, V uses Ṽi+1(u(i+1)) and Ṽi+1(v(i+1)) to proceed to the (i+1)-
th layer. Otherwise, V outputs reject and aborts.

• At the input layer d, V has two claims Ṽd(u
(d)) and Ṽd(v

(d)). V queries the oracle of evaluations
of Ṽd at u(d) and v(d) and checks that they are the same as the two claims. If yes, output accept;
otherwise, output reject.

2.4 Zero-Knowledge Verifiable Polynomial Delegation Scheme

Let F be a finite field, F be a family of `-variate polynomial over F, and d be a variable-degree parameter.
A zero-knowledge verifiable polynomial delegation scheme (zkVPD) for f ∈ F and t ∈ F` consists of the
following algorithms:

• (pp, vp)← KeyGen(1λ, `, d),

• com← Commit(f, rf , pp),

• {accept, reject} ← CheckComm(com, vp),

11

• (y, π)← Open(f, t, rf , pp),

• {accept, reject} ← Verify(com, t, y, π, vp).

A zkVPD scheme satisfies correctness, soundness and zero knowledge, which we formally define below.

Definition 4. Let F be a finite field, F be a family of `-variate polynomial over F, and d be a variable-degree
parameter. A zero-knowledge verifiable polynomial delegation scheme (zkVPD) consists of the following
algorithms: (pp, vp) ← KeyGen(1λ, `, d), com ← Commit(f, rf , pp), {accept, reject} ← CheckComm(com, vp),
(y, π)← Open(f, t, rf , pp), {accept, reject} ← Verify(com, t, y, π, vp), such that

• Perfect Completeness For any polynomial f ∈ F and value t, the following probability is 1.

Pr
rf

(pp, vp)← KeyGen(1λ, `, d)

com← Commit(f, rf , pp) : CheckComm(com, vp) = accept ∧
(y, π)← Open(f, t, rf , pp) Verify(com, t, y, π, vp) = accept


• Binding For any PPT adversary A and benign auxiliary input z1, z2 the following probability is

negligible of λ:

Pr



(pp, vp)← KeyGen(1λ, `, d) CheckComm(com∗, vp) = accept ∧

(π∗, com∗, y∗, state)← A(1λ, z1, pp) : Verify(com∗, t∗, y∗, π∗, vp) = accept ∧

(f∗, t∗, r∗f)← A(1λ, z2, state, pp) com∗ = Commit(f∗, r∗f , pp) ∧
(y∗, π∗) = Open(f∗, t∗, r∗f , pp) ∧

f∗(t∗) 6= y∗


• Zero Knowledge For security parameter λ, polynomial f , adversary A, and simulator S, consider

the following two experiments:

RealA,f (1λ):

1. (pp, vp)← KeyGen(1λ, `, d)

2. com← Commit(f, rf , pp)

3. k ← A(1λ, com, vp)

4. For i = 1, ..., k repeat

(a) ti ← A(1λ, com, y1, ..., yi−1, π1,
..., πi−1, vp)

(b) (yi, πi)← Open(f, ti, rf , pp)

5. b← A(1λ, com, (y1, ..., yk, π1, ..., πk), vp)

6. Output b

IdealA,S(1λ):

1. (com, pp, vp, σ)← Sim(1λ, `, d)

2. k ← A(1λ, com, vp)

3. For i = 1, ..., k repeat:

(a) ti ← A(1λ, com, y1, ..., yi−1, π1,
..., πi−1, vp)

(b) (yi, πi, σ)← Sim(ti, σ, pp)

4. b← A(1λ, com, (y1, ..., yk, π1, ..., πk), vp)

5. Output b

For any PPT adversary A and all polynomial f ∈ F, there exists simulator S such that

|Pr[RealA,f (1λ) = 1]− Pr[IdealA,S(1λ) = 1]| ≤ negl(λ).

3 GKR Protocol with Linear Prover Time

In this section we present a new algorithm (see Algorithm 6) for the prover of the GKR protocol [32] that
runs in linear time for arbitrary layered circuits. Before that, we present some necessary building blocks.

12

Algorithm 1 F ← FunctionEvaluations(f,A, r1, . . . , r`)

Input: Multilinear f on ` variables, initial bookkeeping table A, random r1, . . . , r`;
Output: All function evaluations f(r1, . . . , ri−1, t, bi+1, . . . , b`);

1: for i = 1, . . . , ` do
2: for b ∈ {0, 1}`−i do // b is both a number and its binary representation.

3: for t = 0, 1, 2 do
4: Let f(r1, . . . , ri−1, t, b) = A[b] · (1− t) + A[b+ 2`−i] · t
5: A[b] = A[b] · (1− ri) + A[b+ 2`−i] · ri
6: Let F contain all function evaluations f(.) computed at Step 4
7: return F

3.1 Linear-time sumcheck for a multilinear function [45]

In [45], Thaler proposed a linear-time algorithm for the prover of the sumcheck protocol on a multilinear
function f on ` variables (the algorithm runs in O(2`) time). We review this algorithm here. Recall that in
the i-th round of the sumcheck protocol the prover sends the verifier the univariate polynomial on xi∑

bi+1,...,b`,∈{0,1}

f(r1, . . . , ri−1, xi, bi+1, . . . , b`) ,

where r1, . . . , ri−1 are random values chosen by the verifier in previous rounds. Since f is multilinear, it
suffices for the prover to send two evaluations of the polynomial at points t = 0 and t = 1, namely the
evaluations ∑

bi+1,...,b`,∈{0,1}

f(r1, . . . , ri−1, 0, bi+1, . . . , b`) (4)

and ∑
bi+1,...,b`,∈{0,1}

f(r1, . . . , ri−1, 1, bi+1, . . . , b`) . (5)

To compute the above sums the prover maintains a bookkeeping table A for f . This table, at round i,
has 2`−i+1 entries storing the values

f(r1, . . . , ri−1, bi, bi+1, . . . , b`)

for all bi, . . . , b` ∈ {0, 1} and is initialized with evaluations of f on the hypercube. For every entry of A, the
prover subsequently computes, as in Step 4 of Algorithm 1 FunctionEvaluations3 two values

f(r1, . . . , ri−1, 0, bi+1, . . . , b`) and f(r1, . . . , ri−1, 1, bi+1, . . . , b`) .

Once these function evaluations are in place, the prover can easily sum over them and compute the required
sumcheck messages as reguired by Relations 4 and 5. This is done in Algorithm 2 SumCheck4.

Complexity analysis. Both Algorithms 1 and 2 run in O(2`) time: The first iteration takes O(2`), the
second O(2`−1) and so on, and therefore the bound holds.

3To be compatible with other protocols later, we use three values t = 0, 1, 2 in our evaluations instead of just two.
4We note here that although these two steps can be performed together in a single algorithm and without the

need to store function evaluations, we explicitly decouple them with two different algorithms (FunctionEvaluations
and SumCheck) for facilitating the presentation of more advanced protocols later.

13

Algorithm 2 {a1, . . . , a`} ← SumCheck(f,A, r1, . . . , r`)

Input: Multilinear f on ` variables, initial bookkeeping table A, random r1, . . . , r`;
Output: ` sumcheck messages for

∑
x∈{0,1}` f(x). Each message ai consists of 3 elements

(ai0, ai1, ai2);

1: F ← FunctionEvaluations(f,A, r1, . . . , r`)
2: for i = 1, . . . , ` do
3: for t ∈ {0, 1, 2} do
4: ait =

∑
b∈{0,1}`−i f(r1, . . . , ri−1, t, b) // All evaluations needed are in F .

5: return {a1, . . . , a`};

Algorithm 3 {a1, . . . , a`} ← SumCheckProduct(f,Af , g,Ag, r1, . . . , r`)

Input: Multilinear f and g, initial bookkeeping tables Af and Ag, random r1, . . . , r`;
Output: ` sumcheck messages for

∑
x∈{0,1}` f(x)g(x). Each message ai consists of 3 elements

(ai0, ai1, ai2);

1: F ← FunctionEvaluations(f,Af , r1, . . . , r`)
2: G ← FunctionEvaluations(g,Ag, r1, . . . , r`)
3: for i = 1, . . . , ` do
4: for t ∈ {0, 1, 2} do
5: ait =

∑
b∈{0,1}`−i f(r1, . . . , ri−1, t, b) · g(r1, . . . , ri−1, t, b) // All evaluations needed are in

F and G.

6: return {a1, . . . , a`};

3.2 Linear-time sumcheck for products of multilinear functions [45]

The linear-time sumcheck in the previous section can be generalized to a product of two multilinear functions.
Let now f and g be two multilinear functions on ` variables each, we describe a linear-time algorithm to
compute the messages of the prover for the sumcheck on the product f · g, as proposed in [45]. Note that we
cannot use Algorithm 2 here since f · g is not multilinear. However, similarly with the single-function case,
the prover must now send, at round i, the following evaluations at points t = 0, t = 1 and t = 2∑

bi+1,...,b`,∈{0,1}

f(r1, . . . , ri−1, t, bi+1, . . . , b`) · g(r1, . . . , ri−1, t, bi+1, . . . , b`)

The above can be easily computed by computing evaluations for functions f and g separately using Algo-
rithm 1 and the combining the results using our new Algorithm 3 SumCheckProduct. We now have the
following lemma:

Lemma 1. Algorithm SumCheckProduct runs in time O(2`)

Proof. All loops in SumCheckProduct require time 2` + 2`−1 + . . . = O(2`). Also SumCheckProduct calls
FunctionEvaluations twice (one for f and one for g) and each such call takes O(2`) time.

14

3.3 Linear-time sumcheck for GKR functions

Let us now consider the sumcheck problem on a particular class of functions that are relevant for the GKR
protocol (that is why we call them GKR functions). In particular we want to compute the sumcheck∑

x,y∈{0,1}`
f1(g, x, y)f2(x)f3(y) , (6)

for a fixed point g ∈ F`, where f2(x), f3(x) : F` → F are multilinear extensions of arrays Af2 ,Af3 of size
2`, and function f1 : F3` → F is the multilinear extension of a sparse array with O(2`) (out of 23` possible)
nonzero elements. It is not hard to see that the sumcheck polynomials in GKR given by Equations 2 and 3
satisfy these properties.

We note here that applying Algorithm 1 FunctionEvaluations for this particular class of polynomials would
lead to quadratic prover time. This is because f1 has 22` variables to sum on yielding O(22`) complexity.
However, one could take advantage of the sparsity of f1: the prover can store only the O(2`) non-zero values
of the bookkeeping table A. This is exactly the approach used in many prior work [25, 49, 54]. However,
with this approach, the number of nonzero values that must be considered in Step 2 is always at most 2`,
since it is not guaranteed that this number will reduce to half (i.e., to 2`−i) after every update in Step 5 of
Algorithm 1 because it is sparse. Therefore, the overall complexity becomes O(` · 2`).

In this section we effectively reduce this bound to O(2`). Our protocol divides the sumcheck into two
phases: the first ` rounds bounding the variables of x to a random point u, and the last ` rounds bounding
the variables of y to a random point v. The central idea lies in rewriting Equation 6 as follows

∑
x,y∈{0,1}`

f1(g, x, y)f2(x)f3(y) =
∑

x∈{0,1}`
f2(x)

∑
y∈{0,1}`

f1(g, x, y)f3(y)

=
∑

x∈{0,1}`
f2(x)hg(x) ,

where hg(x) =
∑
y∈{0,1}` f1(g, x, y)f3(y).

3.3.1 Phase one.

With the formula above, in the first ` rounds, the prover and the verifier are running exactly a sumcheck
on a product of two multilinear functions f2 · hg, since functions f2 and hg can be viewed as functions only
in x—y can be considered constant (it is always summed on the hypercube). To compute the sumcheck
messages for the first ` rounds, given their bookkeeping tables, we can call

SumCheckProduct(hg(x),Ahg , f2(x),Af2 , u1, . . . , u`)

in Algorithm 3. By Lemma 1 this will take O(2`) time. We now show how to initialize the bookkeeping
tables in linear time.

Initializing the bookkeeping tables:

Initializing the bookkeeping table for f2 in O(2`) time is trivial, since f2 is a multilinear extension of an
array and therefore the evaluations on the hypercube are known. Initializing the bookkeeping table for hg
in O(2`) time is more challenging but we can leverage the sparsity of f1. Consider the following lemma.

Lemma 2. Let Nx be the set of (z, y) ∈ {0, 1}2` such that f1(z, x, y) is non-zero. Then for all x ∈ {0, 1}`,
it is hg(x) =

∑
(z,y)∈Nx I(g, z) · f1(z, x, y) · f3(y), where I(g, z) =

∏`
i=1((1− gi)(1− zi) + gizi)).

Proof. As f1 is a multilinear extension, as shown in [45], we have f1(g, x, y) =
∑
z∈{0,1}` I(g, z)f1(z, x, y),

where I is the multilinear extension of the identity polynomial, i.e., I(w, z) = 1 iff w = z for all w, z ∈ {0, 1}`.
Therefore, we have

hg(x) =
∑

y∈{0,1}`
f1(g, x, y)f3(y) =

∑
z,y∈{0,1}`

I(g, z)f1(z, x, y)f3(y) =
∑

(z,y)∈Nx

I(g, z) · f1(z, x, y) · f3(y)

15

Algorithm 4 Ahg ← Initialize PhaseOne(f1, f3,Af3 , g)

Input: Multilinear f1 and f3, initial bookkeeping tables Af3 , random g = g1, . . . , g`;
Output: Bookkeeping table Ahg ;

1: procedure G← Precompute(g) // G is an array of size 2`.

2: Set G[0] = 1
3: for i = 0, . . . , `− 1 do
4: for b ∈ {0, 1}i do
5: G[b, 0] = G[b] · (1− gi+1)
6: G[b, 1] = G[b] · gi+1

7: ∀x ∈ {0, 1}`, set Ahg [x] = 0
8: for every (z, x, y) such that f1(z, x, y) is non-zero do
9: Ahg [x] = Ahg [x] + G[z] · f1(z, x, y) ·Af3 [y]

10: return Ahg ;

Moreover, I(w, z) =
∏`
i=1((1−wi)(1− zi) +wizi)) is the unique polynomial that evaluates to 1 iff w = z for

all w, z ∈ {0, 1}`. As the multilinear extension is unique, we have I(g, z) =
∏`
i=1((1−gi)(1−zi)+gizi)).

Lemma 3. The bookkeeping table Ahg can be initialized in time O(2`).

Proof. As f1 is sparse,
∑
x∈{0,1}` |Nx| = O(2`). From Lemma 2, given the evaluations of I(g, z) for all

z ∈ {0, 1}`, the prover can iterate all (z, y) ∈ Nx for all x to compute Ahg . The full algorithm is presented
in Algorithm 4.

Procedure Precompute(g) is to evaluate G[z] = I(g, z) =
∏`
i=1((1−gi)(1−zi)+gizi)) for z ∈ {0, 1}`. By

the closed-form of I(g, z), the procedure iterates each bit of z, and multiples 1− gi for zi = 0 and multiples
gi for zi = 1. In this way, the size of G doubles in each iteration, and the total complexity is O(2`).

Step 8-9 computes hg(x) using Lemma 2. When f1 is represented as a map of (z, x, y), f1(z, x, y) for non-
zero values, the complexity of these steps is O(2`). In the GKR protocol, this is exactly the representation of
a gate in the circuit, where z, x, y are labels of the gate, its left input and its right input, and f1(z, x, y) = 1.

With the bookkeeping tables, the prover runs SumCheckProduct(hg(x),Ahg , f2(x),Af2 , u1, . . . , u`) in
Algorithm 3 and the total complexity for phase one is O(2`).

3.3.2 Phase two.

At this point, all variables in x have been bounded to random numbers u. In the second phase, the equation
to sum on becomes ∑

y∈{0,1}`
f1(g, u, y)f2(u)f3(y)

Note here that f2(u) is merely a single value which we already computed in phase one. Both f1(g, u, y) and
f3(y) are polynomials on y with ` variables. Similar to phase one, to compute the messages for the last `
rounds we can call

SumCheckProduct(f1(g, u, y),Af1 , f3(y) · f2(u),Af3 · f2(u), , v1, . . . , v`) .

Note here that Af1 is the bookkeeping table for f1(g, u, y), not the original sparse function f1(g, x, y).

16

Algorithm 5 Af1 ← Initialize PhaseTwo(f1, g, u)

Input: Multilinear f1, random g = g1, . . . , g` and u = u1, . . . , u`;
Output: Bookkeeping table Af1 ;

1: G← Precompute(g)
2: U← Precompute(u)
3: ∀y ∈ {0, 1}`, set Af1 [y] = 0
4: for every (z, x, y) such that f1(z, x, y) is non-zero do
5: Af1 [y] = Af1 [y] + G[z] ·U[x] · f1(z, x, y)

6: return Af1 ;

Algorithm 6 {a1, . . . , a2`} ← SumCheckGKR(f1, f2, f3, u1 . . . , u`, v1, . . . , v`, g)

Input: Multilinear extensions f1(z, x, y) (with O(2`) non-zero entries), f2(x), f3(y) and their book-
keeping tables Af2 ,Af3 , randomness u = u1, . . . , u` and v = v1, . . . , v` and point g;
Output: 2` sumcheck messages for

∑
x,y∈{0,1}` f1(g, x, y)f2(x)f3(y);

1: Ahg ← Initialize PhaseOne(f1, f3,Af3 , g)
2: {a1, . . . , a`} ← SumCheckProduct(

∑
y∈{0,1}` f1(g, x, y)f3(y),Ahg , f2,Af2 , u1, . . . , u`)

3: Af1 ← Initialize PhaseTwo(f1, g, u)
4: {a`+1, . . . , a2`} ← SumCheckProduct(f1(g, u, y),Af1 , f3(y) · f2(u),Af3 · f2(u), v1, . . . , v`)
5: return {a1, . . . , a2`}

Initializing the bookkeeping table for f1:
It now remains to initialize the bookkeeping table for f1(g, u, y) efficiently. Similar to phase one, we have
the following lemma:

Lemma 4. Let Ny be the set of (z, x) ∈ {0, 1}2` such that f1(z, x, y) is non-zero. Then for all y ∈ {0, 1}`,
it is f1(g, u, y) =

∑
(z,x)∈Ny I(g, z) · I(u, x) · f1(z, x, y).

Proof. This immediately follows from the fact that f1 is a multilinear extension. We have f1(g, u, y) =∑
z,y∈{0,1}` I(g, z) · I(u, x) · f1(z, x, y), where the closed from of I is given in Lemma 2.

Lemma 5. The bookkeeping table Af1 can be initialized in time O(2`).

Proof. Similar to Algorithm 4, he prover again iterates all non-zero indices of f1 to compute it using
Lemma 4.The full algorithm is presented in Algorithm 5.

We now summarize the final linear-time algorithm for computing the prover messages for the sumcheck
protocol on GKR functions. See Algorithm 6 SumCheckGKR.

Theorem 2. Algorithm SumCheckGKR runs in O(2`) time.

Proof. Follows from Lemmata 1, 3 and 5.

17

3.3.3 Generalizations of our technique.

Our technique can be extended to sumchecks of the general type∑
x1,x2,...,xc∈{0,1}c

f0(g, x1, x2, . . . , xc)f1(x1)f2(x2)...fc(xc) ,

where c is a constant, functions fi are multilinear and f0() is sparse and consists of linearly-many nonzero
monomials. We divide the protocol into c phases similarly as above. This generalization captures the
sumcheck in the original GKR paper with identity polynomials (see [32]), and our new algorithms also
improve the prover time of this to linear.

3.4 Putting everything together

The sumcheck protocol in GKR given by Equation 2 can be decomposed into several instances that have the
form of Equation 6 presented in the previous section. The term∑

x,y∈{0,1}si+1

˜multi+1(g, x, y)(Ṽi+1(x)Ṽi+1(y))

is exactly the same as Equation 6. The term
∑
x,y∈{0,1}si+1

˜addi+1(g, x, y)(Ṽi+1(x) + Ṽi+1(y)) can be viewed
as: ∑

x,y∈{0,1}si+1

˜addi+1(g, x, y)Ṽi+1(x) +
∑

x,y∈{0,1}si+1

˜addi+1(g, x, y)Ṽi+1(y)

The first sum can be computed using the same protocol in Algorithm 6 without f3(y), and the second sum
can be computed without f2(x). The complexity for both cases remains linear. Due to linearity of the
sumcheck protocol, the prover can execute these 3 instances simultaneously in every round, and sum up the
individual messages and send them to the veriifer.

Combining two claims. After the sumcheck in the GKR protocol is completed, as described in Section 2.3,
the prover and the verifier need to combine the two claims about Ṽi+1 received at the end of the sumcheck
protocol to one to avoid the exponential blow-up. There are two ways to combine the two claims and we
show how to do each of them in linear time.

The second approach using random linear combinations is rather straight forward. After the output
layers, P and V execute sumcheck protocol on Equation 3 instead of Equations 2, which still satisfies the
properties of Equation 6. One could view it as 6 instances of Equation 6 and the prover time is still linear.
Moreover, there is a better way to further improve the efficiency. Taking

∑
x,y∈{0,1}si+1 (αi ˜multi+1(u, x, y) +

βi ˜multi+1(v, x, y))Ṽi+1(x)Ṽi+1(y) as an example, in Algorithm 4, the prover runs Precompute twice on u and
v to generate two arrays (G1 and G2), and sets G[b] = αiG1[b]+βiG2[b] for all b. The rest of the algorithms
remains the same. This only incurs a small overhead in practice in our implementation, compared to the
original algorithm on Equation 6.

Though with the approach above we already have a linear prover GKR protocol, the technique to
condense two points to one proposed in the original GKR protocol [32] may still be interesting in some
scenarios (e.g., in our implementation, we use this approach in the last layer and only make one query to
the multi-linear extension of the input, which is more efficient practice). We present an algorithm to reduce
the prover time of this approach to linear in Appendix A.

4 Zero Knowledge Argument Protocols

In this section, we present the construction of our new zero-knowledge argument system. In [53], Zhang
et al. proposed to combine the GKR protocol with a verifiable polynomial delegation protocol, resulting
in an argument system. Later, in [51, 52], the construction was extended to zero-knowledge, by sending all

18

the messages in the GKR protocol in homomorphic commitments and performing all the checks by zero-
knowledge equality and product testing. This incurs a high overhead for the verifier compared to the plain
version without zero-knowledge, as each multiplication becomes an exponentiation and each equality check
becomes a Σ-protocol, which is around 100× slower in practice.

In this paper, we follow the same blueprint of combining GKR and VPD to obtain an argument system,
but instead show how to extend it to be zero-knowledge efficiently. In particular, the prover masks the
GKR protocol with special random polynomials so that the verifier runs a “randomized” GKR that leaks no
extra information and her overhead is small. A similar approach was used by Chiesa et al. in [24]. In the
following, we present the zero-knowledge version of each building block, followed by the whole zero-knowledge
argument.

4.1 Zero Knowledge Sumcheck

As a core step of the GKR protocol, P and V execute a sumcheck protocol on Equation 2, during which
P sends V evaluations of the polynomial at several random points chosen by V. These evaluations leak
information about the values in the circuit, as they can be viewed as weighted sums of these values.

To make the sumcheck protocol zero-knowledge, we take the approach proposed by Chiesa et al. in [24],
which is masking the polynomial in the sumcheck protocol by a random polynomial. In this approach, to
prove

H =
∑

x1,x2,...,x`∈{0,1}
f(x1, x2, . . . , x`),

the prover generates a random polynomial g with the same variables and individual degrees of f . She commits
to the polynomial g, and sends the verifier a claim G =

∑
x1,x2,...,x`∈{0,1}

g(x1, x2, . . . , x`). The verifier picks a

random number ρ, and execute a sumcheck protocol with the prover on

H + ρG =
∑

x1,x2,...,x`∈{0,1}
(f(x1, x2, . . . , x`) + ρg(x1, x2, . . . , x`)).

Construction 1. We assume the existence of a zkVPD protocol defined in Section 2.4. For simplicity,
we omit the randomness rf and public parameters pp, vp without any ambiguity. To prove the claim H =∑
x1,x2,...,x`∈{0,1}

f(x1, x2, . . . , x`):

1. P selects a polynomial g(x1, . . . , x`) = a0 + g1(x1) + g2(x2) + . . . + gl(x`), where gi(xi) = ai,1xi +
ai,2x

2
i +. . .+ai,dx

d
i and all ai,js are uniformly random. P sends H =

∑
x1,x2,...,x`∈{0,1}

f(x1, x2, . . . , x`),

G =
∑

x1,x2,...,x`∈{0,1}
g(x1, x2, . . . , x`) and comg = Commit(g) to V.

2. V uniformly selects ρ ∈ F∗, computes H + ρG and sends ρ to P.

3. P and V run the sumcheck protocol on

H + ρG =
∑

x1,x2,...,x`∈{0,1}

(f(x1, x2, . . . , x`) + ρg(x1, x2, . . . , x`))

4. At the last round of the sumcheck protocol, V obtains a claim h`(r`) = f(r1, r2, . . . , r`) +
ρg(r1, r2, . . . , r`). P and V opens the commitment of g at r = (r1, . . . , r`) by (g(r), π) ←
Open(g, r),Verify(comg, g(r), r, π). If Verify outputs reject, V aborts.

5. V computes h`(r`)− ρg(r1, . . . , r`) and compares it with the oracle access of f(r1, . . . , r`).

19

At the last round of this sumcheck, the prover opens the commitment of g at g(r1, . . . , r`), and the verifier
computes f(r1, . . . , rl) by subtracting ρg(r1, . . . , r`) from the last message, and compares it with the oracle
access of f . It is shown that as long as the commitment and opening of g are zero-knowledge, the protocol is
zero-knowledge. Intuitively, this is because all the coefficients of f are masked by those of g. The soundness
still holds because of the random linear combination of f and g.

Unfortunately, the masking polynomial g is as big as f , and opening it to a random point later is
expensive. In [24], the prover sends a PCP oracle of g, and executes a zero-knowledge sumcheck to open it to
a random point, which incurs an exponential complexity for the prover. Even replacing it with the zkVPD
protocol in [52], the prover time is slow in practice.

In this paper, we show that it suffices to mask f with a small polynomial to achieve zero-knowledge. In
particular, we set g(x1, . . . , x`) = a0+g1(x1)+g2(x2)+. . .+g`(x`), where gi(xi) = ai,1xi+ai,2x

2
i +. . .+ai,dx

d
i

is a random univariate polynomial of degree d (d is the variable degree of f). Note here that the size of g is
only O(d`), while the size of f is exponential in `.

The intuition of our improvement is that the prover sends O(d`) messages in total to the verifier during
the sumcheck protocol, thus a polynomial g with O(d`) random coefficients is sufficient to mask all the
messages and achieve zero-knowledge. We present the full protocol in Construction 1.

The completeness of the protocol holds obviously. The soundness follows the soundness of the sumcheck
protocol and the random linear combination in step 2 and 3, as proven in [24]. We give a proof of zero
knowledge here.

Theorem 3 (Zero knowledge). For every verifier V∗ and every `-variate polynomial f : F` → F with variable
degree d, there exists a simulator S such that given access to H =

∑
x1,x2,...,x`∈{0,1} f(x1, x2, . . . , x`), S is

able to simulate the partial view of V∗ in step 1-4 of Construction 1.

Proof. We build the simulator S as following.

1. S selects a random polynomial g∗(x1, . . . , x`) = a∗0 + g∗1(x1) + g∗2(x2) + · · · + g∗` (x`), where g∗i (xi) =
a∗i,1xi + a∗i,2x

2
i + · · · + a∗i,dx

d
i . S sends H, G∗ =

∑
x1,x2,··· ,x`∈{0,1}

g∗(x1, x2, · · · , x`) and comg∗ =

Commit(g∗) to V.

2. S receives ρ 6= 0 from V∗.
3. S selects a polynomial f∗ : F` → F with variable degree d uniformly at random conditioning on∑

x1,x2,··· ,x`∈{0,1}
f∗(x1, x2, · · · , x`) = H. S then engages in a sumcheck protocol with V on H + ρG∗ =∑

x1,x2,··· ,xl∈{0,1}
(f∗(x1, x2, · · · , x`) + ρg∗(x1, x2, · · · , x`))

4. Let r ∈ F` be the point chosen by V∗ in the sumcheck protocol. S runs (g∗(r), π)← Open(g∗, r) and
sends them to V.

As both g and g∗ are randomly selected, and the zkVPD protocol is zero-knowledge, it is obvious that
step 1 and 4 in S are indistinguishable from those in the real world of Construction 1. It remains to show
that the sumchecks in step 3 of both worlds are indistinguishable.

To see that, recall that in round i of the sumcheck protocol, V receives a univariate polynomial hi(xi) =∑
bi+1,...,b`∈{0,1}

h(r1, . . . , ri−1, xi, bi+1, . . . , b`) where h = f + ρg. (The view of V∗ is defined in the same way

with h∗, f∗, g∗ and we omit the repetition in the following.) As the variable degree of f and g is d, P sends
V hi(0), hi(1), . . . , hi(d) which uniquely defines hi(xi). These evaluations reveal d + 1 independent linear
constraints on the coefficients of h. In addition, note that when these evaluations are computed honestly
by P, hi(0) + hi(1) = hi−1(ri−1), as required in the sumcheck protocol. Therefore, in all ` rounds of the
sumcheck, V and V∗ receives `(d+ 1)− (`− 1) = `d+ 1 independent linear constraints on the coefficients of
h and h∗.

20

As h and h∗ are masked by g and g∗, each with exactly `d + 1 coefficients selected randomly, the two
linear systems are identically distributed. Therefore, step 3 of the ideal world is indistinguishable from that
of the real world.

4.2 Zero knowledge GKR

To achieve zero-knowledge, we replace the sumcheck protocol in GKR with the zero-knowledge version
described in the previous section. However, the protocol still leaks additional information. In particular, at
the end of the zero-knowledge sumcheck, V queries the oracle to evaluate the polynomial on a random point.
When executed on Equation 2, this reveals two evaluations of the polynomial Ṽi defined by the values in the
i-th layer of the circuit: Ṽi(u) and Ṽi(v).

To prevent this leakage, Chiesa et al. [24] proposed to replace the multi-linear extension Ṽi with a low
degree extension, such that learning Ṽi(u) and Ṽi(v) does not leak any information about Vi. Define a low
degree extension of Vi as

V̇i(z)
def
= Ṽi(z) + Zi(z)

∑
w∈{0,1}λ

Ri(z, w), (7)

where Z(z) =
∏si
i=1 zi(1− zi), i.e., Z(z) = 0 for all z ∈ {0, 1}si . Ri(z, w) is a random low-degree polynomial

and λ is the security parameter. With this low degree extension, Equation 2 becomes

V̇i(g) =
∑

x,y∈{0,1}si+1

˜multi+1(g, x, y)(V̇i+1(x)V̇i+1(y)) (8)

+ ˜addi+1(g, x, y)(V̇i+1(x) + V̇i+1(y)) + Zi(g)
∑

w∈{0,1}λ
Ri(g, w)

=
∑

x,y∈{0,1}si+1 ,w∈{0,1}λ
(I(~0, w) · ˜multi+1(g, x, y)(V̇i+1(x)V̇i+1(y)) (9)

+ ˜addi+1(g, x, y)(V̇i+1(x) + V̇i+1(y)) + I((x, y),~0)Zi(g)Ri(g, w))

where I(~a,~b) is an identity polynomial I(~a,~b) = 0 iff ~a = ~b. The first equation holds because V̇i agrees with
Ṽi on the Boolean hyper-cube {0, 1}si , as Zi(z) = 0 for binary inputs. The second equation holds because
the mask in V̇i is in the form of a “sum” and can be moved into the sumcheck equation.

When executing the zero-knowledge sumcheck protocol on Equation 8, at the end of the protocol, V re-
ceives V̇i+1(u) and V̇i+1(v) for random points u, v ∈ Fsi+1 chosen by V. They no longer leak information about
Vi+1, as they are masked by Zi+1(z)

∑
w∈{0,1}λ Ri+1(z, w) for z = u and z = v. V computes ˜multi+1(g, u, v)

and ˜addi+1(g, u, v) as before, computes Zi(g), I(~0, c), I((u, v),~0) where c ∈ Fλ is a random point chosen by
V for variable w, opens Ri(g, w) at c with P through a polynomial commitment, and checks that together
with V̇i+1(u), V̇i+1(v) received from P they are consistent with the last message of the sumcheck.V then uses
V̇i+1(u), V̇i+1(v) to proceed to the next round.

Unfortunately, similar to the zero-knowledge sumcheck, the masking polynomial Ri is very large in [24].
Opening Ri at a random point takes exponential time for P either using a PCP oracle as in [24] or potentially
using a zkVPD, as R has si + 2si+1 + λ variables.

In this section, we show that we can set Ri to be a small polynomial to achieve zero-knowledge. In
particular, Ri has only two variables with variable degree 2. This is because in the (i − 1)-th round, V
receives two evaluations of Vi, V̇i(u) and V̇i(v), which are masked by

∑
w Ri(u,w) and

∑
w Ri(v, w); in

the i-th sumcheck, V opens Ri at Ri(u, c) and Ri(v, c). It suffices to make these four evaluations linearly
independent, assuming the commitment and opening of Ri are using a zkVPD. Therefore, we set the low-
degree term in Equation 7 as Zi(z)

∑
w∈{0,1}Ri(z1, w), i.e. Ri only takes two variables, the first variable z1

of z and an extra variable w ∈ {0, 1} instead of {0, 1}λ, with variable degree 2.
The full protocol is presented in Construction 2. Here we use superscriptions (e.g., u(i)) to denote random

numbers or vectors for the i-th layer of the circuit.

21

Construction 2. 1. On a layered arithmetic circuit C with d layers and input in, the prover P
sends the output of the circuit out to the verifier V.

2. P randomly selects polynomials R1(z1, w), . . . , Rd(z1, w) : F2 → F with variable degree 2. P
commits to these polynomials by sending comi ← Commit(Ri) to V for i ∈ [1, d].

3. V defines V̇0(z) = Ṽ0(z), where Ṽ0(z) is the multilinear extension of out. V̇0(z) can be viewed as
a special case with R0(z1, w) being the 0 polynomial. V evaluates it at a random point V̇0(g(0))
and sends g(0) to P.

4. P and V execute the zero knowledge sumcheck protocol presented in Construction 1 on

V̇0(g(0)) =
∑

x,y∈{0,1}s1

˜mult1(g(0), x, y)(V̇1(x)V̇1(y))

+ ˜add1(g(0), x, y)(V̇1(x) + V̇1(y))

If u
(1)
1 = v

(1)
1 , P aborts. At the end of the protocol, V receives V̇1(u(1)) and V̇1(v(1)). V computes

˜mult1(g(0), u(1), v(1)), ˜add1(g(0), u(1), v(1)) and checks that

˜mult1(g(0), u(1), v(1))V̇1(u(1))V̇1(v(1)) + ˜add1(g(0), u(1), v(1))(V̇1(u(1)) + V̇1(v(1)))

equals to the last message of the sumcheck (evaluation oracle).

5. For layer i = 1, . . . , d− 1:

(a) V randomly selects α(i), β(i) ∈ F and sends them to P.

(b) Let Multi+1(x, y) = α(i) ˜multi+1(u(i), x, y) + β(i) ˜multi+1(v(i), x, y) and
Addi+1(x, y) = α(i) ˜addi+1(u(i), x, y)+β(i) ˜addi+1(v(i), x, y). P and V run the zero knowledge
sumcheck on the equation

α(i)V̇i(u
(i)) + β(i)V̇i(v

(i)) =∑
x,y∈{0,1}si+1

w∈{0,1}

(I(~0, w) ·Multi+1(x, y)(V̇i+1(x)V̇i+1(y))

+Addi+1(x, y)(V̇i+1(x) + V̇i+1(y))

+ I((x, y),~0)(α(i)Zi(u
(i))Ri(u

(i)
1 , w) + β(i)Zi(v

(i))Ri(v
(i)
1 , w)))

If u
(i+1)
1 = v

(i+1)
1 , P aborts.

(c) At the end of the zero-knowledge sumcheck protocol, P sends V V̇i+1(u(i+1)) and V̇i+1(v(i+1)).

(d) V computes

ai+1 = α(i) ˜multi+1(u(i), u(i+1), v(i+1)) + β(i) ˜multi+1(v(i), u(i+1), v(i+1))

and
bi+1 = α(i) ˜addi+1(u(i), u(i+1), v(i+1)) + β(i) ˜addi+1(v(i), u(i+1), v(i+1))

locally. V computes Zi(u
(i)), Zi(v

(i)), I(~0, c(i)), I((u(i+1), v(i+1)),~0) locally.

(e) P and V open Ri at two points Ri(u
(i)
1 , c(i)) and Ri(v

(i)
1 , c(i)) using Open and Verify.

22

(f) V computes the following as the evaluation oracle and uses it to complete the last step of
the zero-knowledge sumcheck.

I(~0, c(i))(ai+1(V̇i+1(u(i+1))V̇i+1(v(i+1)))+

bi+1(V̇i+1(u(i+1)) + V̇i+1(v(i+1))))+

I((u(i+1), v(i+1)),~0)(α(i)Zi(u
(i))Ri(u

(i)
1 , c(i)) + β(i)Zi(v

(i))Ri(v
(i)
1 , c(i)))

If all checks in the zero knowledge sumcheck and Verify passes, V uses V̇i+1(u(i+1)) and
V̇i+1(v(i+1)) to proceed to the (i+ 1)-th layer. Otherwise, V outputs reject and aborts.

6. At the input layer d, V has two claims V̇d(u
(d)) and V̇d(v

(d)). V opens Rd at 4 points Rd(u
(d)
1 , 0),

Rd(u
(d)
1 , 1), Rd(v

(d)
1 , 0), Rd(v

(d)
1 , 1) and checks that V̇d(u

(d)) = Ṽd(u
(d))+Zd(u

(d))
∑

w∈{0,1}
Rd(u

(d)
1 , w)

and V̇d(v
(d)) = Ṽd(v

(d)) + Zd(v
(d))

∑
w∈{0,1}

Rd(v
(d)
1 , w), given oracle access to two evaluates of Ṽd

at u(d) and v(d). If the check passes, output accept; otherwise, output reject.

Theorem 4. Construction 2 is an interactive proof protocol per Definition 1, for a function f defined by a
layered arithmetic circuit C such that f(in, out) = 1 iff C(in) = out. In addition, for every verifier V∗ and
every layered circuit C, there exists a simulator S such that given oracle access to out, S is able to simulate
the partial view of V∗ in step 1-5 of Construction 2.

The completeness follows from the construction explained above and the completeness of the zero knowl-
edge sumcheck. The soundness follows the soundness of the GKR protocol with low degree extensions, as
proven in [32] and [24]. We give the proof of zero knowledge here.

Proof. With oracle access to out, and the simulator Ssc of the zero-knowledge sumcheck protocol in Sec-
tion 4.1 as a subroutine, we construct the simulator S as following:

1. S sends the out to V∗.
2. S randomly selects polynomials R∗1(z1, w), . . . , R∗d(z1, w) : F2 → F with variable degree 2. S commits

to these polynomials by sending comi ← Commit(R∗i) to V∗ for i ∈ [1, d].

3. S receives g(0) from V∗.
4. S calls Ssc to simulate the partial view of the zero knowledge sumcheck protocol on

V̇0(g(0)) =
∑

x,y∈{0,1}s1

˜mult1(g(0), x, y)(V̇1(x)V̇1(y)) + ˜add1(g(0), x, y)(V̇1(x) + V̇1(y))

If u
(1)
1 = v

(1)
1 , S aborts. At the end of the sumcheck, S samples V̇ ∗1 (u(1)) and V̇ ∗1 (v(1)) such that

˜mult1(g(0), u(1), v(1))V̇ ∗1 (u(1))V̇ ∗1 (v(1)) + ˜add1(g(0), u(1), v(1)) (V̇ ∗1 (u(1)) + V̇ ∗1 (v(1))) equals to the last
message of the sumcheck.

5. For layer i = 1, . . . , d− 1:

(a) S receives α(i), β(i) from V∗.
(b) Let Multi+1(x, y) = α(i) ˜multi+1(u(i), x, y) + β(i) ˜multi+1(v(i), x, y) and

Addi+1(x, y) = α(i) ˜addi+1(u(i), x, y) + β(i) ˜addi+1(v(i), x, y). S calls Ssc to simulate the partial
view of the zero knowledge sumcheck protocol on

23

α(i)V̇i(u
(i)) + β(i)V̇i(v

(i)) =∑
x,y∈{0,1}si+1

w∈{0,1}

(I(~0, w) ·Multi+1(x, y)(V̇i+1(x)V̇i+1(y))

+Addi+1(x, y)(V̇i+1(x) + V̇i+1(y))

+ I((x, y),~0)(α(i)Zi(u
(i))Ri(u

(i)
1 , w) + β(i)Zi(v

(i))Ri(v
(i)
1 , w)))

If u
(i+1)
1 = v

(i+1)
1 , S aborts.

(c) At the end of the zero-knowledge sumcheck protocol, if u
(i+1)
1 = v

(i+1)
1 , S aborts. Otherwise,

S samples V̇ ∗i+1(u(i+1)) and V̇ ∗i+1(v(i+1)) randomly such that the following equals to the last
message of the sumcheck protocol.

I(~0, c(i))(ai+1(V̇ ∗i+1(u(i+1))V̇ ∗i+1(v(i+1))) + bi+1(V̇ ∗i+1(u(i+1)) + V̇ ∗i+1(v(i+1))))

+I((u(i+1), v(i+1)),~0)(α(i)Zi(u
(i))R∗i (u

(i)
1 , c(i)) + β(i)Zi(v

(i))R∗i (v
(i)
1 , c(i)))

ai+1 = α(i) ˜multi+1(u(i), u(i+1), v(i+1)) + β(i) ˜multi+1(v(i), u(i+1), v(i+1)) and
bi+1 = α(i) ˜addi+1(u(i), u(i+1), v(i+1)) + β(i) ˜addi+1(v(i), u(i+1), v(i+1)). S sends V̇i+1(u(i+1)) and
V̇i+1(v(i+1)) to V∗.

(d) V∗ computes the corresponding values locally as in step 5(d) of Construction 2.

(e) S opens R∗i at two points R∗i (u
(i)
1 , c(i)) and R∗i (v

(i)
1 , c(i)) using Open.

(f) V∗ performs the checks as in step 5(f) of Construction 2.

Note here that V∗ can actually behave arbitrarily in step 5(d) and 5(f) above. We include these steps
to be consistent with the real world in Construction 2 for the ease of interpretation.

To prove zero-knowledge, step 1,3, 5(a), 5(d) and 5(f) are obviously indistinguishable as S only receives
messages from V∗. Step 2 and 5(e) of both worlds are indistinguishable because of the zero knowledge
property of the zkVPD, and the fact that R∗ and R are sampled randomly in both worlds. Step 4 and 5(b)
are indistinguishable as proven in Theorem 3 for Ssc.

It remains to consider the messages received at the end of step 4 and in step 5(c), namely V̇i(u
(i)), V̇i(v

(i))
and V̇ ∗i (u(i)), V̇ ∗i (v(i)) for i = 1, . . . , d. In the real world, V̇i(z) is masked by

∑
w∈{0,1}

Ri(z1, w) (Z(z) is publicly

known), thus V̇i(u
(i)) and V̇i(v

(i)) are masked by
∑

w∈{0,1}
Ri(u

(i)
1 , w) and

∑
w∈{0,1}

Ri(v
(i)
1 , w) correspondingly.

In addition, in step 5(e), V∗ opens Ri at Ri(u
(i)
1 , c(i)) and Ri(v

(i)
1 , c(i)). To simplify the notation here,

we consider only a particular layer and omit the subscription and superscription of i. Let R(z1, w) =
a0 + a1z1 + a2w + a3z1w + a4z

2
1 + a5w

2 + a6z
2
1w

2, where a0, . . . , a6 are randomly chosen. We can write the
four evaluations above as

2 2u1 1 u1 2u21 1 u21
2 2v1 1 v1 2v21 1 v21
1 u1 c cu1 u21 c2 c2u21
1 v1 c cv1 v21 c2 c2v21

× [a0 a1 a2 a3 a4 a5 a6
]T

After row reduction, the left matrix is
2 2u1 1 u1 2u21 1 u21
0 2(v1 − u1) 0 v1 − u1 2(u21 − v21) 0 u21 − v21
0 0 2c− 1 (2c− 1)u1 0 2c2 − 1 (2c2 − 1)u21
0 0 0 (2c− 1)(v1 − u1) 0 0 (2c2 − 1)(v21 − u21)



24

As u1 6= v1, the matrix has full rank if 2c2 − 1 6= 0 mod p, where p is the prime that defines F. This holds
if 2−1 is not in the quadratic residue of p, or equivalently p 6≡ 1, 7 mod 8.5 In case p ≡ 1, 7 mod 8, we can
add a check to both the protocol and the simulator to abort if 2c2 − 1 = 0. This does not affect the proof
of zero knowledge, and only reduces the soundness error by a small amount. 6

Because of the full rank of the matrix, the four evaluations are linearly independent and uniformly
distributed, as a0, . . . a6 are chosen randomly. In the ideal world, R∗(u1, c) and R∗(v1, c) are independent
and uniformly distributed, and V̇ ∗(u), V̇ ∗(v) are randomly selected subject to a linear constraint (step 5(c)),
which is the same as the real world. Therefore, they are indistinguishable in the two worlds, which completes
the proof.

4.3 Zero knowledge VPD

In this section, we present the instantiations of the zkVPD protocol, as defined in Definition 4. For every
intermediate layer i, we use the same zkVPD protocol as proposed by Zhang et al. in [52] to commit and open
the masking polynomials gi(x), Ri(z1, w). In fact, as we show in the previous sections, these polynomials
are very small (gi is the sum of univariate polynomials and Ri has 2 variables with variable degree 2), the
zkVPD protocols become very simple. The complexity of KeyGen,Commit,Open,Verify and proof size are all
O(si) for gi and are all O(1) for Ri. We omit the full protocols due to space limit.

For the zkVPD used for the input layer, we design a customized protocol based on the zkVPD protocol
in [52]. Recall that at the end of the GKR protocol, V receives two evaluations of the polynomial V̇d(z) =
Ṽd(z) +Zd(z)

∑
w∈{0,1}Rd(z1, w) at z = u(d) and z = v(d). In our zero knowledge proof protocol, which will

be presented in Section 4.4, P commits to V̇d(z) using the zkVPD at the beginning, and opens it to the two
points selected by V.

The protocol in [52] works for any polynomial with ` variables and any variable degree, and is particularly
efficient for multilinear polynomials. We modify the protocol for our zero-knowledge proof scheme and
preserve the efficiency. Note that though V̇d(z) is a low degree extension of the input, it can be decomposed
to the sum of Ṽd(z), a multilinear polynomial, and Zd(z)

∑
w∈{0,1}Rd(z1, w). Moreover, Zd(u

(d)) and Zd(v
(d))

can be computed directly by V. Therefore, in our construction, P commits to Ṽd(z) and
∑
w∈{0,1}Rd(z1, w)

separately, and later opens the sum together given Zd(u
(d)) and Zd(v

(d)), which is naturally supported
because of the homomorphic property of the commitment. Another optimization is that unlike other layers
of the circuit, Rd(z1, w) itself is not opened at two points (V does not receive Rd(u

(d), c(d)) and Rd(v
(d), c(d))

in Construction 2). Therefore, it suffices to set V̇d(z) = Ṽd(z) +Zd(z)Rd(z1), where Rd is a univariate linear
polynomial. The full protocol is presented in Construction 3.

Theorem 5. Construction 3 is a zero-knowledge verifiable polynomial delegation scheme as defined by Def-
inition 4, under Assumption 1 and 2.

The proof of completeness, soundness and zero knowledge is similar to that of the zkVPD protocol in [52].
We only add an extra univariate linear polynomial R(x1), which does not affect the proof. We omit the
proof due to space limit.

In Appendix B, we describe new algorithms to commit and open multilinear extensions directly in linear
time. With the new algorithms, KeyGen, Commit and Open takes O(2`) field operations and multiplications
in the base group of the bilinear map, Verify takes O(`) time and the proof size is O(`).

5From the reduced matrix, we can see that setting a2 = a3 = a4 = 0 does not affect the rank of the matrix, which
simplifies the masking polynomial R in practice.

6If one is willing to perform a check like this, we can simplify the masking polynomial R to be multilinear. The
reduced matrix will be the first 4 columns of the matrix showed above, and it has full rank if c 6= 2−1.

25

Construction 3. Let F be a prime-order finite field. Let V̇ (x) : F` → F be an `-variate polynomial such

that V̇ (x) = Ṽ (x) + Z(x)R(x1), where Ṽ (x) is a multilinear polynomial, Z(x) =
∏`
i=1 xi(1 − xi) and

R(x1) = a0 + a1x1.

• (pp, vp)← KeyGen(1λ, `): Select α, t1, t2, · · · , tl, t`+1 ∈ F uniformaly at random, run bp← BilGen(1λ)
and compute pp = (bp, gα, gt`+1 , gαt`+1 , {g

∏
i∈W ti , gα

∏
i∈W ti}W∈W`

), whereW` is the set of all subsets
of {1, . . . , `}. Set vp = (bp, gt1 , . . . , gt`+1 , gα).

• com← Commit(V̇ , rV , rR, pp): Compute c1 = gṼ (t1,t2,··· ,t`)+rV t`+1 , c2 = gα(Ṽ (t1,t2,··· ,t`)+rV t`+1), c3 =
gR(t1)+rRt`+1 and c4 = gα(R(t1)+rRt`+1) output the commitment com = (c1, c2, c3, c4).

• {accept, reject} ← CheckComm(com, vp): Output accept if e(c1, g
α) = e(c2, g) and e(c3, g

α) = e(c4, g).
Otherwise, output reject.

• (y, π) ← Open(V̇ , rV , rR, u, pp): Choose r1, . . . , r` ∈ F at random, and compute polynomials qi such
that

Ṽ (x) + rV x`+1 + Z(u)(R(x1) + rRx`+1)− (Ṽ (u) + Z(u)R(u1)) =∑̀
i=1

(xi − ui)(qi(xi, . . . , x`) + rix`+1) + x`+1(rV + rRZ(u)−
∑̀
i=1

ri(xi − ui)).

Set π = ({gqi(ti...,t`)+rit`+1 , gα(qi(ti...,t`)+rit`+1)}i∈[1,`], grV +rRZ(u)−
∑`
i=1 ri(ti−ui),

gα(rV +rRZ(u)−
∑`
i=1 ri(ti−ui))) and y = Ṽ (u) + Z(u)R(u1).

• {accept, reject} ← Verify(com, u, y, π, vp): Parse π as (πi, παi) for i ∈ [1, ` + 1]. Check e(πi, g
α) =

e(παi, g) for i ∈ [1, `+ 1]. Check e(c1c
Z(u)
3 /gy, g) =

∏`
i=1 e(πi, g

ti−ui) · e(gπ`+1 , gt`+1). Output accept
if all the checks pass, otherwise, output reject.

4.4 Putting Everything Together

In this section, we present our zero knowledge argument scheme. At a high level, similar to [51–53], V can
use the GKR protocol to verify the correct evaluation of a circuit C on input x and a witness w, given an
oracle access to the evaluation of a polynomial defined by x,w on a random point. We instantiate the oracle
using the zkVPD protocol. Formally, we present the construction in Construction 4, which combines our
zero knowledge GKR and zkVPD protocols. Similar to the protocols in [51, 52], Step 6 and 7 are to check
that P indeed uses x as the input to the circuit.

Theorem 6. For an input size n and a finite field F, Construction 4 is a zero knowledge argument for the
relation

R = {(C, x;w) : C ∈ CF ∧ |x|+ |w| ≤ n ∧ C(x;w) = 1},
as defined in Definition 2, under Assumption 1 and 2. Moreover, for every (C, x;w) ∈ R, the running time
of P is O(|C|) field operations and O(n) multiplications in the base group of the bilinear map. The running
time of V is O(|x|+ d · log |C|) if C is log-space uniform with d layers. P and V interact O(d log |C|) rounds
and the total communication (proof size) is O(d log |C|). In case d is polylog(|C|), the protocol is a succinct
argument.

Proof Sketch. The correctness and the soundness follow from those of the two building blocks, zero
knowledge GKR and zkVPD, by Theorem 4 and 5.

To prove zero knowledge, consider a simulator S that calls the simulator SGKR of zero knowledge GKR
given in Section 4.2 as a subroutine, which simulates the partial view up to the input layer. At the input layer,
the major challenge is that S committed to (a randomly chosen) V̇ ∗d at the beginning of the protocol, before

26

Construction 4. Let λ be the security parameter, F be a prime field, n be an upper bound on input size,
and S be an upper bound on circuit size. We use VPD1,VPD2,VPD3 to denote the zkVPD protocols for
input layer, masking polynomials gi and Ri described in Construction 2.

• G(1λ, n, S): run (pp1, vp1) ← VPD1.KeyGen(1λ, log n), (pp2, vp2) ← VPD2.KeyGen(1λ, logS),
(pp3, vp3)← VPD3.KeyGen(1λ). Output pk = (pp1, pp2, pp3) and vk = (vp1, vp2, vp3).

• 〈P(pk, w),V(vk)〉(x): Let C be a layered arithmetic circuit over F with d layers, input x and witness w
such that |x|+ |w| ≤ n, |C| ≤ S and C(x;w) = 1. Without loss of generality, assume |w|/|x| = 2m−1
for some m ∈ N.

1. P selects a random bivariate polynomial Rd with variable degree 2 and commits to the input of
C by sending comd ← VPD1.Commit(V̇d, rV , rR, pp1) to V, where Ṽd is the multilinear extension
of array (x;w) and V̇d = Ṽd +Rd

2. V runs VPD1.CheckComm(comd, vp1). If it outputs reject, V aborts and outputs reject.

3. P and V execute Step 1-5 of the zero knowledge GKR protocol in Construction 2, with the
zkVPDs instantiated with VPD2 and VPD3. If Construction 2 rejects, V outputs reject and
aborts. Otherwise, by the end of this step, V receives two claims of V̇d at u(d) and v(d).

4. P runs (y1, π1) ← VPD1.Open(V̇ , rV , rR, u
(d), pp1), (y2, π2) ← VPD1.Open(V̇ , rV , rR, v

(d), pp1)
and sends y1, π1, y2, π2 to V.

5. V runs Verify(comd, u
(d), y1, π1, vp1) and Verify(comd, v

(d), y2, π2, vp1) and output reject if either
check fails. Otherwise, V checks V̇d(u

(d)) = y1 and V̇d(v
(d)) = y2, and rejects if either fails.

6. V computes the multilinear extension of input x at a random point rx ∈ Flog |x| and sends rx to
P.

7. P pads rx to r′x ∈ Flog |x| × 0log |w| with log |w| 0s and sends V (yx, πx) ←
VPD1.Open(Ṽd, rV , rR, r

′
x, pp1). V checks Verify(comd, r

′
x, yx, πx, vp1) and yx equals the eval-

uation of the multilinear extension on x. V outputs reject if the checks fail. Otherwise, V
outputs accept.

knowing the points u(d), v(d) to evaluate on. If S opens the commitment honestly, with high probability the
evaluations are not consistent with the last message of the GKR (sumcheck in layer d− 1) and a malicious
V∗ can distinguish the ideal world from the real world. In our proof, we resolve this issue by using the
simulator SV PD of our zkVPD protocol. Given the trapdoor trap used in KeyGen, SV PD is able to open the
commitment to any value in zero knowledge, and in particular it opens to those messages that are consistent
with the GKR protocol in our scheme, which completes the construction of S.

The complexity of our zero knowledge argument scheme follows from our new GKR protocol with linear
prover time, and the complexity of the zkVPD protocol for the input layer analyzed in Section 4.3. The
masking polynomials gi, Ri and their commitments and openings introduce no asymptotic overhead and are
efficient in practice.

Removing interaction. Our construction can be made non-interactive in the random oracle model using
Fiat—Shamir heuristic [28]. Though GKR protocol is not constant round, recent results [14, 22] show that
applying Fiat-Shamir only incurs a polynomial soundness loss in the number of rounds in GKR. In our
implementation, the GKR protocol is on a 254-bit prime field matching the bilinear group used in the
zkVPD. The non-interactive version of our system provides a security level of 100+ bits.

27

5 Implementation and Evaluation

Software. We fully implement Libra, our new zero knowledge proof system in C++. There are around
3000 lines of code for the zkGKR protocol, 1000 lines for the zkVPD protocol and 700 lines for circuit
generators. Our system provides an interface to take a generic layered arithmetic circuit and turn it into a
zero knowledge proof. We implement a new class for large integers named u512, and use it together with
the GMP [2] library for large numbers and field arithmetic. We use the ate-pairing [1] library on a 254-bit
elliptic curve for the bilinear map used in zkVPD. We plan to open-source our system.

Hardware. We run all of the experiments on Amazon EC2 c5.9xlarge instances with 70GB of RAM and
Intel Xeon platinum 8124m CPU with 3GHz virtual core. Our current implementation is not parallelized
and we only use a single CPU core in the experiments. We report the average running time of 10 executions.

More gate types with no overhead. We first present a concrete optimization we developed during the
implementation to support various types of gates with no extra overhead. In our protocol in Section 3 and 4,
we only consider addition and multiplication gates, as they are enough to represent all arithmetic circuits.
However, in practice, the size of the circuit can be reduced significantly if we introduce other types of gate.
The GKR protocol still works with these new gates, but they incur an overhead on the prover time for a
circuit of the same size. Therefore, in prior work such as [48,54], this is considered as a trade-off.

Our protocol supports any gate with fan-in ≤ 2 and degree ≤ 2 with no overhead on the prover. Recall
that in the GKR protocol, the values in layer i is represented as a sumcheck of values in layer i+ 1 and the
wiring predicates, as shown in Equation 2. With a set of gate types T , we can write the polynomial in the
sum as ∑

j∈T

˜gate
(j)
i (g, x, y)G

(j)
i (Ṽi+1(x), Ṽi+1(x)),

where G
(j)
i () is the computation of gate type j (e.g., for addition gates, G

(j)
i (Ṽi+1(x), Ṽi+1(x)) = Ṽi+1(x) +

Ṽi+1(x)). As the gates have fan-in ≤ 2 and degree ≤ 2, G
(j)
i has up to 2 variables and total degree at most 2

for all j. Therefore, each G
(j)
i can be expressed explicitly as a0 +a1Ṽi+1(x)+a2Ṽi+1(y)+a3Ṽi+1(x)Ṽi+1(y)+

a4Ṽi+1(x)2+a5Ṽi+1(y)2, at most 6 nonzero monomials. The prover can then combine all the wiring predicates

˜gate
(j)
i (g, x, y) for the same monomial through a summation. With this approach, when generating the proof

in Algorithm 4 and 5, the prover only allocates one array for each monomial, and initializes all 6 arrays with
one scan through all the gates in Init PhaseOne and Init PhaseTwo. In this way, the prover time remains the
same regardless of the number of gate types.

In our experiments, useful types of gates include subtraction, relay, multiply by constant, x(1 − x) for
binary check, NOT,AND,OR,XOR, etc.

5.1 Improvements on GKR protocols

In this section, we compare the performace of our new GKR protocol with linear prover time with all variants
of GKR in the literature on different circuits.

Methodology and benchmarks. For fair comparisons, we re-implement all of these variants in C++
with the same libraries. The variants include: (1) O(C) for regular circuits, proposed in [45], where the two
inputs of a gate can be described by two mapping functions with constant size in constant time. See [45] for
the formal definition of regular circuits. (2) O(C + C ′ logC ′) for data-parallel circuits with a small copy of
size C ′, proposed in [49]. (3) O(C logC ′) for circuits with non-connected different copies of size C ′, proposed
in [54]. (4) O(C logC) for arbitrary circuits, proposed in [25].

We compare our GKR protocol to these variants on the benchmarks below:

• Matrix multiplication: P proves to V that it knows two matrices whose product equals a public matrix.
The representation of this function with an arithmetic circuit is highly regular7. We evaluate on different

7We use the circuit representation of matrix multiplication with O(n3) gates for fair comparisons, not the special
protocol proposed in [45].

28

Matrix
multiplication

Matrix size 4x4 16x16 64x64 256x256
[45] 0.0003s 0.006s 0.390s 29.0s

Ours 0.0004s 0.014s 0.788s 50.0s

Image scaling
#pixels 112x112 176x176 560x560 1072x1072

[49] 0.445s 0.779s 7.54s 29.2s
Ours 0.337s 1.25s 19.8s 79.2s

Image scaling with
different parameters

#pixels 112x112 176x176 560x560 1072x1072
[53] 5.45s 21.8s 348s 1441s

Ours 0.329s 1.22s 19.3s 77.2s

Random circuit
#gates per layer 28 212 216 220

[25] 0.008s 0.179s 3.79s 83.1s
Ours 0.002s 0.039s 0.635s 10.8s

Table 2: Prover time of our linear GKR and previous GKR variants.

dimensions from 4× 4 to 256× 256 and the elements in the matrices are 32-bit integers.

• Image scaling: It computes a low-resolution image by scaling from a high-resolution image. We use
the classic Lanczos re-sampling [46] method. It computes each pixel of the output as the convolution of
the input with a sliding window and a kernel function defined as: k(x) = sinc(x)/sinc(ax), if − a < x <
a; k(x) = 0, otherwise, where a is the scaling parameter and sinc(x) = sin(x)/x. This function is data
parallel, where each sub-circuit computes the same function to generate one pixel of the output image.
We evaluate by fixing the window size as 16× 16 and increase the image size from 112x112 to 1072x1072.
The pixels are 8-bit integers for greyscale images.

• Image scaling of different parameters: It is the same computation as above with different scaling
parameters in the kernel function for different pixels. The circuit of this function consists of different
sub-copies. We evaluate it with the same image sizes as above.

• Random circuit: It is randomly generated layered circuit. We randomly sample the type of each gate,
input value and the wiring patterns. We fix the depth as 3 and increase the number of gates per layer
from 28 to 220.

To be consistent with the next section, all the protocols are executed on a 254-bit prime field. This does not
affect the comparison at all, as all the protocols are in the same field. In Table 2, we report the prover time
of the protocols. The proof size and the verification time of all the variants are similar.

Results. As shown in Table 2, the performance of our GKR protocol is comparable to those special protocols
for structured circuits, and much better than the state-of-the-art on generic circuits. For example, for matrix
multiplication, our protocol is slower by 1.3− 2.4×, because the protocol in [45] writes the wiring of matrix
multiplication explicitly and does not need to compute ˜add and ˜mult. For image scaling, our protocol is
slower by 2.5− 4×. This gap would become even smaller when the size of each sub-copy is larger. Here we
use a small 16× 16 block, while the number of copies is 49–4489.

For image scaling with different parameters and generic random circuits, our protocol has a speedup of
4− 8×, and the speedup will increase with the scale of the circuits, as indicated by the complexity.

Besides the speedup on complicated circuits, a significant advantage of our new GKR protocol is on the
prover interface of the system. In prior work such as [49, 54], as the protocols are particularly efficient for
structured circuits, the circuits must be represented as small copies and the numbers of each copy. Even
worse, the structure is explored per layer of the circuit, making the numbers of each copy potentially different
in different layers. (E.g., 6 gates may be considered 3 copies with 2 gates and 2 copies with 3 gates in two
different layers for efficiency purposes.) This constraint makes the interface of these systems hard to use and
generalize. Our result gives a unified solution for arbitrary circuits, and it is the main reason that our prover
can take the description of any layered arithmetic circuit potentially generated by other tools like Verilog.

29

5.2 Comparing to Other ZKP Schemes

In this section, we show the performance of Libra as a whole and compare it with several state-of-the-art
zero knowledge proof systems.

Methodology. We compare with the following systems: libSNARK [15], Ligero [7], libSTARK [10], Hyrax [51],
Bulletproofs [18] and Aurora [13]. See Section 1 for more explanations of these systems and their asymptotic.

• libSNARK: We use jsnark [4] to write the circuits (rank one constraint system (R1CS)), which compiles
them to zero knowledge proofs using the libSNARK backend [6].

• Ligero: As the system is not open-source, we use the same number reported in [7] on computing hashes.

• libSTARK: After communications with the authors of [10], we obtain numbers for proving the same number
of hashes in the 3rd benchmark below from the authors. The experiments are executed on a server with
512GB of DDR3 RAM (1.6GHz) and 16 cores (2 threads per core) at speed of 3.2GHz.

• Hyrax: We use the open-source implementation of the system at [3].

• Bulletproofs: We use the system re-implemented by [51] at [3] for the first two benchmarks. We obtain
numbers for proving the same number of hashes in the 3rd benchmark through communications with the
authors of [18].

• Aurora: As a recently accepted paper, the system is not available and we extrapolate its performance using
the numbers reported in the paper [13] for circuits with 210 − 220 R1CS constrains.

Benchmarks. We evaluate the systems on three benchmarks: matrix multiplication, image scaling and
Merkle Tree [42], which are used in [51]. Matrix multiplication and image scaling are the same as explained
in Section 5.1. In the third benchmark, P proves to V that it knows the value of the leaves of a Merkle
tree [42] that computes to a public root value [17]. We use SHA-256 for the hash function. We implement
it with a flat circuit where each sub-computation is one instance of the hash function. The consistency of
the input and output of corresponding hashes are then checked by the circuit. There are 2M − 1 SHA256
invocations for a Merkle tree with M leaves. We increase the number of leaves from 16 to 256. We use the
SHA-256 implemented by jsnark [4] in R1CS format to run libSNARK and estimate Aurora, and we use the
SHA-256 arithmetic circuit implemented by Hyrax to run Hyrax, Bulletproofs and Libra. We only show the
performance of Ligero and libSTARK on the third benchmark.

We report the prover time, proof size and verification time in Figure 1.

Prover time. As shown in Figure 1(a)(b)(c), the prover in Libra is the fastest among all systems in all three
benchmarks we tested. Ligero is one of the best existing ZKP systems on prover time as it is purely based
on symmetric key operations. Comparing to Ligero, the prover time of Libra is 1.15× faster on a Merkle tree
with 2 leaves and 2× faster with 256 leaves. Comparing to other systems, Libra improves the prover time by
3.4− 8.9× vs. Hyrax, 7.1− 16.1× vs. Aurora, 10.1− 12.4× vs. libSTARK and 13− 33× vs. Bulletproof.

Libra is also faster than libSNARK on general circuits by 5 − 10×, as shown in Figure 1(a) and 1(b).
The performance of Libra is comparable to libSNARK on Merkle trees in Figure 1(c). This is because (1)
most values in the circuit of SHA256 are binary, which is friendly to the prover of libSNARK as the time of
exponentiation is proportional to the bit-length of the values; (2) The R1CS of SHA256 is highly optimized
by jsnark [4] and real world products like Zcash [11]. There are only 26,000 constrains in one hash. In the
arithmetic circuit used by Libra, there are 60,000 gates with 38,000 of them being multiplication gates. Even
so, Libra is still as fast as libSNARK on a Merkle tree with 2 leaves and 2× faster with 256 leaves. We plan
to further optimize the implementation of SHA256 as an arithmetic circuit in the future.

The gap between Libra and other systems will become bigger as the size of the circuit grows, as the prover
time in these systems (other than Bulletproof) scales quasi-linearly with the circuit size. The evaluations
justify that the prover time in Libra is both optimal asymptotically, and efficient in practice.

Verification time. Figure 1(d)(e)(f) show the verification time. Our verifier is much slower than libSNARK
and libSTARK, which runs in 1.8ms and 28-44ms respectively in all the benchmarks.

30

24 25 26 27 28

#matrix column

10−2
10−1
100
101
102
103
104

pr
ov

er
ti

m
e(

s)

(a) P time: MatMul.

104 105 106

#pixel

100

101

102

103

104

pr
ov

er
ti

m
e(

s)

(b) P time: 16x Lanczos

21 22 23 24 25 26 27 28

#leave

100

101

102

103

104

p
ro

ve
ti

m
e(

s)

(c) P time: Merkle tree

24 25 26 27 28

#matrix column

10−3
10−2
10−1
100
101
102
103

ve
ri

fic
at

io
n

ti
m

e(
s)

(d) V time: MatMul.

104 105 106

#pixel

10−3
10−2
10−1
100
101
102
103

ve
ri

fic
at

io
n

ti
m

e(
s)

(e) V time: 16x Lanczos

21 22 23 24 25 26 27 28

#leave

10−3
10−2
10−1
100
101
102
103

ve
ri

fic
at

io
n

ti
m

e(
s)

(f) V time: Merkle tree

24 25 26 27 28

#matrix column

10−1

100

101

102

p
ro

of
si

ze
(k

B
)

(g) Proof size: MatMul.

104 105 106

#pixel

10−1

100

101

102

p
ro

of
si

ze
(k

B
)

(h) Proof size: 16x Lanczos

21 22 23 24 25 26 27 28

#leave

10−1

100

101

102

103

p
ro

of
si

ze
(k

B
)

(i) Proof size: Merkle tree

Ours
Hyrax

Bulletproofs
Ligero

libSNARK
libSTARK

Aurora

Figure 1: Comparisons of prover time, proof size and verification time between Libra and existing
zero knowledge proof systems.

Other than these two systems, the verification time of Libra is faster, as it grows sub-linearly with the
circuit size. In particular, our verification time ranges from 0.08 − 1.15s in the benchmarks we consider.
In Figure 1(f), the verification time of Libra is 8× slower than Aurora when M = 2, and 15× faster when
M = 256. Libra is 2.5× slower than Ligero with M = 2 and 4× faster with M = 256. Comparing to Hyrax
and Bulletproof, our verification is 1.2− 9× and 3− 100× faster respectively. Again, the gap increases with
the scale of the circuits as our verification is succinct.

Proof size. We report the proof size in Figure 1(g)(h)(i). Our proof size is much bigger than libSNARK,
which is 128 bytes for all circuits, and Bulletproof, which ranges in 1.5− 2KBs. The proof size in Libra is in
the range of 30-60KBs, except for the matrix multiplications where it reduces to 5 − 9KBs. This is better
than Aurora, Hyrax and libSTARK, which also have poly-logarithmic proof size to the circuit. Finally, the
proof size in Ligero is O(

√
C) and grows to several megabytes in practice.

31

Setup time. Among all the systems, only Libra and libSNARK require trusted setup. Thanks to the
optimization described in the beginning of this section, it only takes 202s to generate the public parameters
in our largest instance with n = 224. Libra only needs to perform this setup once and it can be used for all
benchmarks and all circuits with no more inputs. libSNARK requires a per-circuit setup. For example, it
takes 1027s for the Merkle tree with 256 leaves, and takes 210s for 64× 64 matrix multiplications.

5.3 Discussions

In this section, we discuss some potential improvements for Libra.

Improving verification time. As shown in the experiments above, the verification time in Libra is already
fast in practice compared to other systems, yet it can be further improved by 1-2 orders of magnitude.

Within the verification of Libra, most of the time (more than 95% in the evaluations above) is spent on
our zkVPD protocols using bilinear pairings. In our current protocol, we use the pairing-based zkVPD both
for the input layer and for the masking polynomials gi, Ri in each intermediate layer. Although the masking
polynomials are small, the verification of our zkVPD still requires O(si) pairings per layer for gi, which is
asymptotically the same as the input layer. For example, for the SHA256 circuit with 12 layers, the zkVPD
verification of each gi is around 46ms, 1

16 of the total verification time.
However, there are many zkVPD candidates for these masking polynomials. Recall that the size of gi is

only O(si), logarithmic on the size of the circuit. We could use any zkVPD with up to linear commitment size,
prover time, proof size and verification time while still maintaining the asymptotic complexity of Libra. The
only property we need is zero knowledge. Therefore, we can replace our pairing-based zkVPD with any of the
zero knowledge proof systems we compare with as a black-box. Ligero and Aurora are of particular interest as
their verification requires no cryptographic operations. If we use the black-box of these two systems for the
zkVPD of gi, Ri, the prover time and proof size would be affected minimally, and the verification time would
be improved by almost d times, as only the zkVPD of the input layer requires pairings after the change.
This is a 1-2 orders-of-magnitude improvement depending on the depth of the circuit. In addition, it also
removes the trusted setup in the zkVPD for the masking polynomials. We plan to integrate this approach
into our system when the implementations of Ligero and Aurora become available.

Removing trusted setup. After the change above, the only place that requires trusted setup is the
zkVPD for the input layer. However, replacing our pairing-based zkVPD with other systems without trusted
setup may affect the succinctness of our verification time on structured circuits. For example, using Ligero,
Bulletproof and Aurora as a black-box would increase the verification time to O(n), and using Hyrax would
increase the proof size and verification time to O(

√
n). Using libSTARK may keep the same complexity, as

polynomial evaluation is a special function with short description, but the prover time and memory usage
is high in STARK as shown in the experiments. Designing an efficient zkVPD protocol with logarithmic
proof size and verification time without trusted setup is left as an interesting future work and we believe
this paper serves as an important step towards the goal of efficient succinct zero knowledge proof without
trusted setup.

Acknowledgments

This material is in part based upon work supported by DARPA under Grant No. N66001-15-C-4066 and
Center for Long-Term Cybersecurity (CLTC). Any opinions, findings, and conclusions or recommendations
expressed in this material are those of the author(s) and do not necessarily reflect the views of DARPA or
CLTC. Charalampos Papamanthou’s work was supported by NSF grants #1652259 and #1514261 and by
a NIST grant.

References

[1] Ate-pairing. https://github.com/herumi/ate-pairing

32

https://github.com/herumi/ate-pairing

[2] The GNU multiple precision arithmetic library. https://gmplib.org/

[3] Hyrax reference implementation. https://github.com/hyraxZK/hyraxZK

[4] jsnark. https://github.com/akosba/jsnark

[5] Libra implementation. https://github.com/sunblaze-ucb/Libra

[6] libsnark. https://github.com/scipr-lab/libsnark

[7] Ames, S., Hazay, C., Ishai, Y., Venkitasubramaniam, M.: Ligero: Lightweight sublinear arguments
without a trusted setup. In: Proceedings of the ACM SIGSAC Conference on Computer and Commu-
nications Security (2017)

[8] Baum, C., Bootle, J., Cerulli, A., Del Pino, R., Groth, J., Lyubashevsky, V.: Sub-linear lattice-based
zero-knowledge arguments for arithmetic circuits. In: Annual International Cryptology Conference. pp.
669–699. Springer (2018)

[9] Bayer, S., Groth, J.: Efficient zero-knowledge argument for correctness of a shuffle. In: Annual Interna-
tional Conference on the Theory and Applications of Cryptographic Techniques. pp. 263–280. Springer
(2012)

[10] Ben-Sasson, E., Bentov, I., Horesh, Y., Riabzev, M.: Scalable, transparent, and post-quantum secure
computational integrity. Cryptology ePrint, 2018

[11] Ben-Sasson, E., Chiesa, A., Garman, C., Green, M., Miers, I., Tromer, E., Virza, M.: Zerocash: Decen-
tralized anonymous payments from bitcoin. In: Proceedings of the Symposium on Security and Privacy
SP, 2014 (2014)

[12] Ben-Sasson, E., Chiesa, A., Genkin, D., Tromer, E., Virza, M.: SNARKs for C: Verifying program
executions succinctly and in zero knowledge. In: CRYPTO 2013

[13] Ben-Sasson, E., Chiesa, A., Riabzev, M., Spooner, N., Virza, M., Ward, N.P.: Aurora: Transparent
Succinct Arguments for R1CS. Cryptology ePrint, 2018

[14] Ben-Sasson, E., Chiesa, A., Spooner, N.: Interactive oracle proofs. In: Theory of Cryptography Con-
ference. pp. 31–60. Springer (2016)

[15] Ben-Sasson, E., Chiesa, A., Tromer, E., Virza, M.: Succinct Non-Interactive Zero Knowledge for a von
Neumann Architecture. In: Proceedings of the USENIX Security Symposium, 2014

[16] Ben-Sasson, E., Chiesa, A., Tromer, E., Virza, M.: Scalable zero knowledge via cycles of elliptic curves.
In: CRYPTO 2014, pp. 276–294 (2014)

[17] Blum, M., Evans, W., Gemmell, P., Kannan, S., Naor, M.: Checking the correctness of memories.
Algorithmica 12(2-3), 225–244 (1994)

[18] Bünz, B., Bootle, J., Boneh, D., Poelstra, A., Wuille, P., Maxwell, G.: Bulletproofs: Short proofs for
confidential transactions and more. In: Proceedings of the Symposium on Security and Privacy (SP),
2018. vol. 00, pp. 319–338

[19] Bootle, J., Cerulli, A., Chaidos, P., Groth, J., Petit, C.: Efficient zero-knowledge arguments for arith-
metic circuits in the discrete log setting. In: International Conference on the Theory and Applications
of Cryptographic Techniques (2016)

[20] Bootle, J., Cerulli, A., Ghadafi, E., Groth, J., Hajiabadi, M., Jakobsen, S.K.: Linear-time zero-
knowledge proofs for arithmetic circuit satisfiability. In: International Conference on the Theory and
Application of Cryptology and Information Security. pp. 336–365. Springer (2017)

[21] Braun, B., Feldman, A.J., Ren, Z., Setty, S.T.V., Blumberg, A.J., Walfish, M.: Verifying computations
with state. In: ACM SIGOPS 24th Symposium on Operating Systems Principles, SOSP, 2013

33

https://gmplib.org/
https://github.com/hyraxZK/hyraxZK
https://github.com/akosba/jsnark
https://github.com/sunblaze-ucb/Libra
https://github.com/scipr-lab/libsnark

[22] Canetti, R., Chen, Y., Holmgren, J., Lombardi, A., Rothblum, G.N., Rothblum, R.D.: Fiat-shamir
from simpler assumptions. Tech. rep., IACR Cryptology ePrint Archive, 2018: 1004 (2018)

[23] Chase, M., Derler, D., Goldfeder, S., Orlandi, C., Ramacher, S., Rechberger, C., Slamanig, D., Za-
verucha, G.: Post-quantum zero-knowledge and signatures from symmetric-key primitives. In: Proceed-
ings of the 2017 ACM SIGSAC Conference on Computer and Communications Security. pp. 1825–1842.
ACM (2017)

[24] Chiesa, A., Forbes, M.A., Spooner, N.: A Zero Knowledge Sumcheck and its Applications. CoRR
abs/1704.02086 (2017), http://arxiv.org/abs/1704.02086

[25] Cormode, G., Mitzenmacher, M., Thaler, J.: Practical Verified Computation with Streaming Interactive
Proofs. In: Proceedings of the 3rd Innovations in Theoretical Computer Science Conference. ITCS ’12

[26] Costello, C., Fournet, C., Howell, J., Kohlweiss, M., Kreuter, B., Naehrig, M., Parno, B., Zahur, S.:
Geppetto: Versatile verifiable computation. In: S&P 2015

[27] Cramer, R., Damg̊ard, I.: Zero-knowledge proofs for finite field arithmetic, or: Can zero-knowledge be
for free? In: Annual International Cryptology Conference, 1998

[28] Fiat, A., Shamir, A.: How to prove yourself: Practical solutions to identification and signature problems.
In: Conference on the Theory and Application of Cryptographic Techniques. pp. 186–194. Springer
(1986)

[29] Fiore, D., Fournet, C., Ghosh, E., Kohlweiss, M., Ohrimenko, O., Parno, B.: Hash first, argue later:
Adaptive verifiable computations on outsourced data. In: Proceedings of the ACM SIGSAC Conference
on Computer and Communications Security (2016)

[30] Gennaro, R., Gentry, C., Parno, B., Raykova, M.: Quadratic span programs and succinct NIZKs without
PCPs. In: EUROCRYPT 2013. pp. 626–645 (2013)

[31] Giacomelli, I., Madsen, J., Orlandi, C.: Zkboo: Faster zero-knowledge for boolean circuits. In: USENIX
Security Symposium. pp. 1069–1083 (2016)

[32] Goldwasser, S., Kalai, Y.T., Rothblum, G.N.: Delegating Computation: Interactive Proofs for Muggles.
J. ACM 62(4), 27:1–27:64 (Sep 2015)

[33] Goldwasser, S., Micali, S., Rackoff, C.: The knowledge complexity of interactive proof systems. SIAM
Journal on computing 18(1), 186–208 (1989)

[34] Groth, J.: Linear algebra with sub-linear zero-knowledge arguments. In: Advances in Cryptology-
CRYPTO 2009, pp. 192–208. Springer (2009)

[35] Groth, J.: Short pairing-based non-interactive zero-knowledge arguments. In: International Conference
on the Theory and Application of Cryptology and Information Security. pp. 321–340. Springer (2010)

[36] Ishai, Y., Kushilevitz, E., Ostrovsky, R.: Efficient arguments without short pcps. In: 22nd Annual IEEE
Conference on Computational Complexity (CCC 2007)

[37] Ishai, Y., Kushilevitz, E., Ostrovsky, R., Sahai, A.: Zero-knowledge from secure multiparty computation.
In: Proceedings of the annual ACM symposium on Theory of computing. pp. 21–30. ACM (2007)

[38] Kilian, J.: A note on efficient zero-knowledge proofs and arguments (extended abstract). In: Proceedings
of the ACM Symposium on Theory of Computing (1992)

[39] Kosba, A., Miller, A., Shi, E., Wen, Z., Papamanthou, C.: Hawk: The blockchain model of cryptography
and privacy-preserving smart contracts. In: Proceedings of Symposium on security and privacy (SP),
2016

[40] Lipmaa, H.: Progression-free sets and sublinear pairing-based non-interactive zero-knowledge argu-
ments. In: Theory of Cryptography Conference (2012)

34

http://arxiv.org/abs/1704.02086

[41] Lund, C., Fortnow, L., Karloff, H., Nisan, N.: Algebraic Methods for Interactive Proof Systems. J.
ACM 39(4), 859–868 (Oct 1992)

[42] Merkle, R.C.: A digital signature based on a conventional encryption function. In: Conference on the
theory and application of cryptographic techniques (1987)

[43] Micali, S.: Computationally sound proofs. SIAM J. Comput. (2000)

[44] Parno, B., Howell, J., Gentry, C., Raykova, M.: Pinocchio: Nearly practical verifiable computation. In:
S&P 2013. pp. 238–252 (2013)

[45] Thaler, J.: Time-Optimal Interactive Proofs for Circuit Evaluation. In: Canetti, R., Garay, J.A. (eds.)
Advances in Cryptology – CRYPTO 2013 (2013)

[46] Turkowski, K.: Filters for common resampling tasks. In: Graphics gems. pp. 147–165. Academic Press
Professional, Inc. (1990)

[47] Vu, V., Setty, S., Blumberg, A.J., Walfish, M.: A Hybrid Architecture for Interactive Verifiable Com-
putation. In: Proceedings of the 2013 IEEE Symposium on Security and Privacy. SP ’13 (2013)

[48] Wahby, R.S., Howald, M., Garg, S., Shelat, A., Walfish, M.: Verifiable asics. In: Security and Privacy
(SP), 2016 IEEE Symposium on. pp. 759–778. IEEE (2016)

[49] Wahby, R.S., Ji, Y., Blumberg, A.J., Shelat, A., Thaler, J., Walfish, M., Wies, T.: Full accounting
for verifiable outsourcing. In: Proceedings of the 2017 ACM SIGSAC Conference on Computer and
Communications Security. ACM (2017)

[50] Wahby, R.S., Setty, S.T., Ren, Z., Blumberg, A.J., Walfish, M.: Efficient ram and control flow in
verifiable outsourced computation. In: NDSS (2015)

[51] Wahby, R.S., Tzialla, I., Shelat, A., Thaler, J., Walfish, M.: Doubly-efficient zkSNARKs without trusted
setup. In: 2018 IEEE Symposium on Security and Privacy (SP). pp. 926–943. IEEE (2018)

[52] Zhang, Y., Genkin, D., Katz, J., Papadopoulos, D., Papamanthou, C.: A Zero-Knowledge version of
vSQL. Cryptology ePrint, 2017

[53] Zhang, Y., Genkin, D., Katz, J., Papadopoulos, D., Papamanthou, C.: vSQL: Verifying arbitrary SQL
queries over dynamic outsourced databases. In: Security and Privacy (SP), 2017 IEEE Symposium on.
pp. 863–880. IEEE (2017)

[54] Zhang, Y., Genkin, D., Katz, J., Papadopoulos, D., Papamanthou, C.: vRAM: Faster verifiable RAM
with program-independent preprocessing. In: Proceeding of IEEE Symposium on Security and Privacy
(S&P) (2018)

35

A Condensing to One Point in Linear Time

In this section, we present an algorithm to reduce two claims about Ṽi+1 to one in linear time. Recall that
as described in Section 2.3, in the i-th layer, after the sumcheck, the verifier receives two claims Ṽ (u), Ṽ (v).
(Again we omit the superscript and subscript of i for the ease of interpretation.) She then defines a line
γ(x) : F → Fs such that γ(0) = u, γ(1) = v and the prover needs to provide Ṽ (γ(x)), a degree s univariate
polynomial, to V. If the prover computes it naively, which was done in all prior papers, it incurs O(s2s)
time, as it is equivalent to evaluating Ṽ () at s+ 1 points.

Algorithm 7 Compute Ṽ (γ(x)) =
∑

y∈{0,1}s I(γ(x), y)Ṽ (y)

1: Initialize a binary tree T with s levels. We use Tj [b] to denote the b-th node at level j.
2: for b ∈ {0, 1}s do
3: Ts[b] = Ṽ (b).
4: Multiply Ts[b] with bs(csx+ ds) + (1− bs)(1− csx− ds).
5: for j = s− 1, . . . , 1 do
6: for b ∈ {0, 1}j do
7: Tj [b] = Tj+1[b, 0] + Tj+1[b, 1].
8: Tj [b] = Tj [b] · (bj(cjx+ dj) + (1− bj)(1− cjx− dj)).
9: Output T1[0].

In our new algorithm, we write Ṽ (γ(x)) =
∑
y∈{0,1}s I(γ(x), y)Ṽ (y), where I(a, b) is an identity poly-

nomial I(a, b) = 0 iff a = b. This holds by inspection of both sides on the Boolean hypercube. We then
evaluate the right side in linear time with a binary tree structure. The key observation is that the identity
polynomial can be written as I(a, b) =

∏s
j=1(ajbj +(1−aj)(1− bj)), and we can process one variable (aj , bj)

at a time and multiply them together to get the final result.
We construct a binary tree with 2s leaves and initialize each leaf b ∈ {0, 1}s with Ṽ (b). As γ(x) is a linear

polynomial, we write it as γ(x) = [c1, . . . , cs]
Tx + [d1, . . . , ds]

T . At the leaf level, we only consider the last
variable of I(γ(x), y). For each leaf b ∈ {0, 1}s, we multiply the value with bs(csx+ds)+(1−bs)(1−csx−ds),
the result of which is a linear polynomial. For a node b ∈ {0, 1}j in the intermediate level j, we add the
polynomials from its two children, and multiply it with bj(cjx + dj) + (1 − bj)(1 − cjx − dj), the part in I
that corresponds to the j-th variable. In this way, each node in the j-th level stores a degree j polynomial.
Eventually, the root is the polynomial on the right side of degree s, which equals to Ṽ (γ(x)). The algorithm
is given in Algorithm 7.

To see the complexity of Algorithm 7, both the storage and the polynomial multiplication at level j is
O(s− j+ 1) in each node. So the total time is O(

∑s
j=1 2j(s− j+ 1)) = O(2s), which is linear to the number

of gates in the layer.
An alternative way to interpret this result is to add an additional layer for each layer of the circuit in

GKR relaying the values. That is,

Ṽi(g) =
∑

x∈{0,1}si
I(g, x)Ṽi+1(x),

where Ṽi = Ṽi+1. Then when using the random linear combination approach, the sumcheck is executed on

αṼi(u) + βṼi(v) =
∑

x∈{0,1}si
(αI(u, x) + βI(v, x))Ṽi+1(x).

36

Algorithm 8 Committing and opening the multilinear extension of vector V of size 2`.

1: procedure pp← KeyGen(`, 1λ)
2: Select α, t1, t2, . . . , t` ∈ F randomly and run bp← BilGen(1λ).
3: for k = 1, . . . , ` do
4: for all b ∈ {0, 1}k do

5: Compute g
∏k
i=1 χbi (ti), gα

∏k
i=1 χbi (ti)

6: ppk = (g
∏k
i=1 χbi (ti), gα

∏k
i=1 χbi (ti)) for all b ∈ {0, 1}k.

7: Output pp = (pp1, . . . , pp`).

8: procedure com← Commit(pp,V)

9: Compute com = (
∏
b∈{0,1}`(g

∏`
i=1 χbi (ti))V[b],

∏
b∈{0,1}`(g

α
∏`
i=1 χbi (ti))V[b].

10: procedure (y, π)← Open(V, u, pp)
11: Set R` = V
12: for k = `, . . . , 1 do
13: Initialize two arrays Qk and Rk−1 of size 2k−1

14: for b ∈ {0, 1}k−1 do
15: Qk[b] = Rk[b, 1]−Rk[b, 0]
16: Rk−1[b] = Rk[b, 0] · (1− uk) + Rk[b, 1] · uk
17: Compute πk = (

∏
b∈{0,1}k(g

∏k
i=1 χbi (ti))Qk[b],

∏
b∈{0,1}k(gα

∏k
i=1 χbi (ti))Qk[b])

18: Output π = (π1, . . . , π`).

At the end of the sumcheck, the verifier receives a single claim on Ṽi+1 = Ṽi. The sumcheck can obviously
run in linear time, and the relay layers do not change the result of the circuit. This approach is actually the
same as the condensing to one point in linear time above conceptually.

B Committing and Opening MLE in Linear Time

Using the algorithms proposed in [54], given a multilinear polynomial, Commit and Open of our zkVPD
protocol in Construction 3 take linear time. However, in our new zero knowledge proof protocol in 4, the
prover commits to the multilinear extension of the input and the witness, and later opens to the evaluation of
a random point. Converting an MLE to the corresponding multilinear polynomial in the form of coefficients
takes quasi-linear field operations (the algorithm is analogous to fast Fourier transform). To achieve linear
prover time for our ZKP protocol, we propose new algorithms to commit and open directly on MLE.

Recall from Section 2.3 that an array V of size 2` can be viewed as a function V : {0, 1}` → F such that
V (b) = V[b], and its MLE Ṽ can be expressed as

Ṽ (x1, x2, ..., x`) =
∑

b∈{0,1}`
(
∏`

i=1
χbi(xi)) · V (b),

where χbi(xi) = (1 − bi)(1 − xi) + bixi. That is, χbi(xi) = 1 − xi if bi = 0 and χbi(xi) = xi if bi = 1.
Therefore, to commit to an MLE, instead of generating pp as all the monomials of multilinear polynomials
on the exponent, we compute the products of χbi on the exponent for all possible b ∈ {0, 1}k for k ≤ `. The
new public parameters can either be computed from scratch in KeyGen, or be derived from the original pp in
linear time. With the new public parameters, the commitment of an MLE can be computed in linear time
simply by multiplying each public parameter with the corresponding element in the array.

In addition, to open the polynomial to the evaluation of a point, the proofs can also be computed in
linear time through a dynamic programming algorithm. We present the algorithms in Algorithm 8. For

37

simplicity, we focus on the version without zero knowledge and only present KeyGen,Commit,Open that are
modified. The rest of the algorithms remain the same, and it is straight forward to extend the scheme to
a zkVPD using the same approach in Construction 3. In particular, in every iteration of Open, the prover
divides the current polynomial by (xk − uk). Because of the structure of MLE, all the elements with indices
with least-significant-bit (LSB) 0 are multiplied by 1− xk, and with LSB 1 are multiplied by xk. Moreover,
two elements v0, v1 with indices with the same prefix other than LSB are multiplied by the same polynomial,
which is a term in the MLE with one less variable. Therefore, their contribution to the quotient polynomial
is v1 − v0, and to the remainder polynomial is v0(1− uk) + v1uk. They are computed in Step 15 and 16 in
Algorithm 8. Note that the quotient polynomial and the remainder polynomial are also MLEs of Qk and
Rk−1. Therefore, we can repeat the algorithm in the next iteration on Rk−1 recursively, and generate the
proof πk using the public parameter ppk and Qk in linear time to the size of the array in each iteration. As
the size of the array is shrinking by half in each iteration, the total complexity of Open is also linear.

38

	Introduction
	Comparing to other ZKP Systems
	Our Techniques
	Related Work

	Preliminaries
	Notation
	Interactive Proofs and Zero-knowledge Arguments
	GKR Protocol
	Sumcheck Protocol.
	GKR protocol

	Zero-Knowledge Verifiable Polynomial Delegation Scheme

	GKR Protocol with Linear Prover Time
	Linear-time sumcheck for a multilinear function JTThesis
	Linear-time sumcheck for products of multilinear functions JTThesis
	Linear-time sumcheck for GKR functions
	Phase one.
	Phase two.
	Generalizations of our technique.

	Putting everything together

	Zero Knowledge Argument Protocols
	Zero Knowledge Sumcheck
	Zero knowledge GKR
	Zero knowledge VPD
	Putting Everything Together

	Implementation and Evaluation
	Improvements on GKR protocols
	Comparing to Other ZKP Schemes
	Discussions

	Condensing to One Point in Linear Time
	Committing and Opening MLE in Linear Time

