
This article is an amalgamation of prior work of the same authors. Concretely, it combines the contents of
eprint articles 2018/1040 (by Inoue and Minematsu [16]), 2018/1087 (by Poettering [31]), and 2018/1090
(by Iwata [20]) that appeared in November 2018 on closely related topics into a single edited document.
This article should be seen as a successor of all three eprint articles. An extended abstract appears in
the proceedings of CRYPTO 2019 [15] and is available via DOI 10.1007/978-3-030-26948-7_1 from the
Springer website. This is the full version. It will appear in Journal of Cryptology and is available as entry
2019/311 in the IACR eprint archive.

Cryptanalysis of OCB2:
Attacks on Authenticity and Confidentiality

Akiko Inoue1 , Tetsu Iwata2 , Kazuhiko Minematsu1 , and Bertram Poettering3

1 NEC Corporation, Kawasaki, Japan,
a_inoue@nec.com, k-minematsu@nec.com

2 Nagoya University, Nagoya, Japan, tetsu.iwata@nagoya-u.jp
3 IBM Research – Zurich, Switzerland, poe@zurich.ibm.com

Abstract. We present practical attacks on OCB2. This mode of operation of a blockcipher was
designed with the aim to provide particularly efficient and provably-secure authenticated encryption
services, and since its proposal about 15 years ago it belongs to the top performers in this realm.
OCB2 was included in an ISO standard in 2009.
An internal building block of OCB2 is the tweakable blockcipher obtained by operating a regular
blockcipher in XEX∗ mode. The latter provides security only when evaluated in accordance with
certain technical restrictions that, as we note, are not always respected by OCB2. This leads to
devastating attacks against OCB2’s security promises: We develop a range of very practical attacks
that, amongst others, demonstrate universal forgeries and full plaintext recovery. We complete
our report with proposals for (provably) repairing OCB2. As a direct consequence of our findings,
OCB2 is currently in a process of removal from ISO standards. Our attacks do not apply to OCB1
and OCB3, and our privacy attacks on OCB2 require an active adversary.
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1 Introduction

Authenticated encryption (AE) is a form of symmetric-key encryption that simultaneously protects the
confidentiality and authenticity of messages. The primitive is widely accepted as a fundamental tool in
practical cryptography, finding application in many settings, including in SSH and TLS.

Constructions of the AE primitive include the OCB family of blockcipher modes of operation. Its three
members (OCB1, OCB2, OCB3) are celebrated for their beautiful and innovative architecture, and their
almost unrivaled efficiency. In fact, the modes are fully parallelizable and thus effectively as efficient as
the fastest known confidentiality-only modes. The first version (OCB1) was proposed at ACM CCS 2001
by Rogaway et al. [38], the second version (OCB2) at ASIACRYPT 2004 by Rogaway [34] (hereafter
Rog04), and the third version (OCB3) at FSE 2011 by Krovetz and Rogaway [23]. While all three designs
share roughly the same construction principles, differences to note include both the external interface
(while OCB1 is a pure AE mode, its successors OCB2 and OCB3 are AEAD modes where encryption and
decryption is performed with respect to an auxiliary associated-data input) and a core internal building
block (while OCB1 and OCB3 are driven by look-up tables, OCB2 relies on the so-called powering-up
construction).

Each version of OCB has received significant attention from researchers, standardization bodies, and
the industry. In particular, OCB1 is listed in the IEEE 802.11 standard as an option for the protection of
wireless networks, OCB2 was included in the ISO/IEC 19772:2009 [18] standard, and OCB3 is specified
in document RFC 7253 [24] as an IETF Internet standard. Moreover, OCB3 is included in the final
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portfolio of the CAESAR competition4. Various versions of OCB have been implemented in popular
cryptographic libraries, including in Botan, BouncyCastle, LibTomCrypt, OpenSSL, and SJCL.

The security of (all versions of) OCB has been extensively studied. For each version, the designer(s)
provided security reductions to the security of the underlying blockcipher, with additive birthday-bound
tightness of roughly the form O(σ2/2n), where σ indicates the number of processed blocks (message and
associated data) and n is the block size of the cipher. Note that this bound formally becomes pointless if
σ = 2n/2 blocks are involved, and indeed Ferguson [12] and Sun et al. [41] showed collision attacks that
get along with this many processed blocks, implying that the bound is tight. (The attacks do not seem
to be practical, though, as they require processing 300EB (exabytes) of data with a single key, assuming
n = 128.) As discussed below, all further known attacks against the members of the OCB family are in
relaxed security settings (e.g. involving nonce misuse), with the conclusion being that their security is
widely believed to hold (up to the birthday bound, in classic security models).

In this article we invalidate this belief by presenting a series of attacks against OCB2. The most basic
attack requires one encryption and one decryption (of short messages and ciphertexts, respectively) to
create an existential forgery with success probability one. No heavy computation or large amount of
memory is needed for this; rather, performing a couple of XOR computations is sufficient. The attack
is independent of the blockcipher with which OCB2 is operated, including of its key length and its
block length. Further, the message to which the forged ciphertext decrypts is strongly dependent on the
message involved in the initial encryption query, so that most parts of it can be assumed to be known to,
or influenced by, the adversary. Extended versions of our attack achieve forgeries for arbitrary messages
(with full control over nonces and associated data), and full plaintext recovery, at the expense of a slight
increase in the number of required encryption and decryption queries. Long story short: Our attacks on
OCB2 are as critical as attacks on AE schemes can be.

We turn to technical details of our attacks. All members of the OCB family can be seen as modes of
operation of a tweakable blockcipher (TBC, [25]): The message to be encrypted is chunked into blocks,
and each message block is enciphered independently of the others using a tweak that reflects the position
of the block in the message. Special tweaking rules are deployed for the last (possibly padded) message
block and the checksum used for tag generation. In OCB2, the tweakable blockcipher itself is derived
from an underlying regular blockcipher (e.g. AES) using the XEX∗ transform. The latter is a hybrid
of XE (“XOR-encipher”, C = EK(∆ ⊕M)) and XEX (“XOR-encipher-XOR”, C = ∆ ⊕ EK(∆ ⊕M))
where it can be decided on a per-evaluation basis which of the two is used. The flaw of OCB2 that we
identify and exploit is located neither in the general method with which the AEAD scheme is constructed
from a tweakable blockcipher nor in the XEX∗ primitive. The problem is rather hiding in the interplay
between the former and a technical peculiarity of the latter: If XEX∗ is ever evaluated twice on the same
input but in different modes (XE vs. XEX), it gives up on all security promises. While the corresponding
access rule was already identified as necessary by Rog04, it was overlooked that OCB2 actually does not
always satisfy it. Indeed, as we expose in this paper, an attacker can arrange that an XEX evaluation
occurring when encrypting a regular message block and an XE evaluation occurring when decrypting a
(padded) last block of an unauthentic ciphertext are on the same inputs. This issue, that was overlooked
by the cryptographic community for the past 15 years, not only devalidates the formal security argument
for OCB2 but ultimately leads to attacks that completely break the security of this primitive. While,
as we prove, OCB2 can be fixed by replacing certain XE invocations by XEX invocations (with an
associated cost of one additional XOR operation per encryption/decryption operation), the fixed version
unfortunately loses backward compatibility with unmodified OCB2 implementations. We finally note
that OCB1 and OCB3 do not combine the XE and XEX modes in the way OCB2 does, and we did not
find them vulnerable to our attacks.

As our attacks are technical and fairly complex, we confirmed their effectiveness by implementing
them: For our most relevant attacks we have C code that breaks the OCB2 reference implementation5
with the reported high efficiency and success rate. As an example, a part of our code for the minimal
forgery attack (Sec. 4.1) is shown in Appendix E.

4 https://competitions.cr.yp.to/caesar.html
5 by Krovetz, http://web.cs.ucdavis.edu/~rogaway/ocb/code-2.0.htm
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1.1 Impact

OCB2 was standardized in ISO/IEC 19772:2009 about a decade ago [18]. As the scheme offers exceptional
performance that is challenging to rival by purely AES-based constructions, it has to be assumed that
industry widely picked up on it, ultimately incorporating the scheme into products. The consequences of
our findings thus might be severe. We have been in contact with members of ISO/IEC SC 27 Working
Group 2, which is responsible for the standard, to advise on the right interpretation of our results. The
working group has issued a document [19] that acknowledges our findings and makes it clear that OCB2
should no longer be used. Moves are nearing completion to remove the scheme from the international
standard.6

OCB2 was and possibly still is covered by Intellectual Property claims. While such claims don’t nec-
essarily manifest a noticeable obstacle for deployment in industry, for open source software development
efforts they routinely are. As a consequence, a number of relevant open source crypto libraries do not
have an implementation of OCB2 and are thus not affected by our findings. (An exception to this is
Stanford’s SJCL library7, and we have communicated our findings to the SJCL team.) The lack of open
implementations suggests that most affected parties have industrial background. By the very nature
of (IND$ secure) encryption, spotting closed-source products that rely on OCB2 for security and now
became vulnerable remains a challenge.

Some More Details on the Real-World Use of OCB2. As mentioned earlier, there are some
software libraries that implement OCB. Specifically we found SJCL, OpenSSL, Botan, Bouncy Castle,
Libgcrypt, and LibTomCrypt. However, with exception of SJCL, these libraries do not seem to support
OCB2 but instead either OCB1 or OCB3.

Joplin8 is a multi-platform application for taking notes. It uses OCB2 through SJCL according to
the thread on the developer site on github9. In this thread, the developer of Joplin acknowledges to be
aware of the use of OCB2 but communicates to have decided to wait for the reaction of the SJCL team.

1.2 Further Related Work

We already mentioned the attacks of Ferguson [12] and Sun et al. [41] that indicate the tightness of
the birthday-bound claims for OCB. In scenarios where OCB is deployed in a somewhat sloppy way,
e.g. where nonces are repeated (nonce-misuse setting) or where message fragments emerging from par-
tially decrypted ciphertexts are leaked (release of unverified plaintext setting), attacks are identified
by Andreeva et al. [1] and Ashur et al. [3]. Vaudenay and Vizár [42] studied all third-round CAESAR
candidates, including OCB3 but not OCB2.

With the goal of better understanding the security of the OCB schemes, Aoki and Yasuda [2] show
that relaxed assumptions on the underlying blockcipher are sufficient to obtain positive results. Note
that our attacks are in conflict with their claims, indicating that some of their arguments have to be
reconsidered; the authors of [2] confirmed this view to us.

Attacks in the reforgeability setting [8,13] deliver a series of existential forgeries with the specific
property that creating the first forgery is the hardest part. In most cases the hardness notion is based
on computation time. Also our attacks can be seen in the reforgeability setting, but with a different
complexity measure: While the first OCB2 forgery is only existential and requires two queries (one
encryption, one decryption), from just one more encryption query one can create hundreds of independent
universal forgeries.

1.3 Organization and Contributions

We recall notions of tweakable blockciphers and authenticated encryption in Sec. 2. After specifying
the OCB2 algorithms in Sec. 3, we present simple authenticity and confidentiality attacks against them
6 ISO document Draft Amendment ISO/IEC 19772:2009/DAM 1:2019 lists OCB2 as a deprecated scheme. The
document is currently available at https://www.iso.org/standard/77459.html.

7 http://bitwiseshiftleft.github.io/sjcl/
8 https://joplinapp.org/
9 https://github.com/laurent22/joplin/issues/943
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in Sec. 4. While these attacks achieve overwhelming advantages with respect to formal notions of un-
forgeability and indistinguishability, and thus make evident that OCB2 is academically broken, certain
restrictions on the format of forged or distinguished messages remain. We hence develop, in Sec. 5 and
Sec. 6, a set of advanced attacks (including raw blockcipher access, universal forgery, and arbitrary
decryption) that break the scheme also in real-world settings. In Sec. 7 we explore which technical com-
ponent of OCB2 is responsible for its insecurity; as many other schemes in symmetric cryptography use
structures similar to those of OCB2, these reflections might also guide future cryptanalysis efforts. In
Sec. 8 we survey the applicability of our attack strategies to related encryption modes, including to OCB1
and OCB3; however we do not identify any further weaknesses. Finally, in Sec. 9 we consider approaches
to repair OCB2.

2 Preliminaries

2.1 Notation

If A is a finite set we write a $← A for the operation of picking an element of A uniformly at random and
assigning it to the variable a. If B,B′ are set variables we write B ∪← B′ as shorthand for B ← B ∪B′.

Strings and Padding. Let {0, 1}∗ be the set of all binary strings, including the empty string ε. The
bit length of X ∈ {0, 1}∗ is denoted by |X|, and in particular we have |ε| = 0. We write {0, 1}≤n for⋃
l∈{0,...,n}{0, 1}l, where {0, 1}0 = {ε}. The sequence of n zeros is denoted with 0n, with the convention

that 00 = 10 = ε. The concatenation of two bit strings X and Y is written X ‖Y , or XY when no
confusion is possible. The XOR combination of two same-length bit strings X,Y is denoted X ⊕ Y . We
denote with msbc(X) and lsbc(X) the first and last c ≤ |X| bits of X, respectively.

For X ∈ {0, 1}≤n we define the zero padding, written as X ‖ 0∗, and the one-zero padding, written
as X ‖ 10∗, as follows: If |X| = n we let X ‖ 0∗ = X ‖ 10∗ = X, i.e., the padding is trivial. If |X| < n, we
let X ‖ 0∗ = X ‖ 0n−|X| and X ‖ 10∗ = X ‖ 10n−|X|−1.

For X ∈ {0, 1}∗, the parsing of X into n-bit blocks is denoted by

(X[1], X[2], . . . , X[m]) n← X,

where m = |X|n
def= d|X|/ne and X[1] ‖X[2] ‖ . . . ‖X[m] = X and |X[i]| = n for 1 ≤ i < m and

0 < |X[m]| ≤ n when |X| > 0. When |X| = 0, we let m = 1 and X[1]← ε.

2.2 (Tweakable) Blockciphers and Finite Fields

A tweakable blockcipher (TBC) [25] is a keyed function Ẽ : K × T × M → M such that for each
(K,T ) ∈ K × T , the partial function Ẽ(K,T, ·) is a permutation of M. Here, K is the key and T is a
public value called tweak, and typically we haveM = {0, 1}n where n is called the block length. (It is safe
to assume n = 128 from here on.) A conventional blockcipher is a TBC where T consists of a singleton
and is written as E : K ×M → M. The enciphering of X ∈ M under key K ∈ K and tweak T ∈ T
is denoted, equivalently, Ẽ(K,T,X) or ẼK(T,X) or ẼTK(X). For blockciphers we correspondingly write
E(K,X) or EK(X). The deciphering is written as Ẽ−1,T

K (Y ) for TBCs and E−1
K (Y ) for blockciphers. For

any K ∈ K and T ∈ T , when Y = ẼTK(X) we have Ẽ−1,T
K (Y ) = X.

When the key K used with a blockcipher or TBC invocation is obvious from the context, we may omit
writing it. Moreover, for a mode of operation that uses a keyed blockcipher instance EK in a black-box
manner, we may treat EK , instead of K, as the key (and correspondingly for a TBC Ẽ).

Security Notions. Consider a TBC of the form Ẽ : K× T ×M→M. A tweakable uniform random
permutation (TURP) for sets T ,M is an information-theoretic TBC that behaves like uniformly picked
from all T -tweaked permutations over M (i.e., like a uniformly picked function f : T ×M → M such
that f(T, ·) is a permutation ofM for all T ∈ T ). We denote TURP instances for Ẽ with P̃.
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We define the Tweakable Pseudorandom Permutation (TPRP) advantage and the Tweakable Strong
PRP (TSPRP) advantage of an adversary A as follows:

Advtprp
Ẽ

(A) def= Pr
[
AẼK ⇒ 1

]
− Pr

[
AP̃ ⇒ 1

]

Advtsprp
Ẽ

(A) def= Pr
[
AẼK ,Ẽ

−1
K ⇒ 1

]
− Pr

[
AP̃,̃P

−1

⇒ 1
]

Here, the probabilities are over the uniform choice of key K ∈ K or P̃, and the randomness of the
adversary. The adversaries perform chosen-plaintext attacks and chosen-ciphertext attacks, respectively,
in both cases with chosen tweaks. (That is, they can query any (T,X) in the enciphering direction and
any (T, Y ) in the deciphering direction (if applicable), with freely chosen tweak T .)

For blockciphers E : K ×M →M we analogously define the PRP advantage Advprp
E (A) and SPRP

advantage Advsprp
E (A), using a URP P as information-theoretic reference point. (A URP uniformly

distributes over all permutations overM.)

Galois Fields. Following [34,21], bit strings a ∈ {0, 1}n can be considered elements of GF(2n), assuming
a representation of the latter with a polynomial basis and seeing the individual bits of a as polynomial
coefficients. The strings 0n−210 and 0n−211 correspond with the polynomials ‘x’ and ‘x + 1’, and we
denote these field elements with ‘2’ and ‘3’, respectively. It is common to refer to the multiplication
of a field element with 2 (read: x) as doubling. For instance, 2ia denotes i-times doubling a. Standard
calculation rules (for fields) apply; in particular we have 3a = 2a ⊕ a and 2i3a = 3(2ia) = 2i+1a ⊕ 2ia
for all i.

OCB2 is based on a blockcipher, and in the spirit of the above it considers the latter’s domain
M = {0, 1}n a Galois field. Concretely, a fixed block length of n = 128 is assumed (which matches that
of AES), and as the (irreducible) reduction polynomial of the GF(2n) representation the lexicographically-
first primitive polynomial is used, which is x128 + x7 + x2 + x + 1. This choice implies that all non-zero
elements of GF(2n) are (cyclically) obtained by continuously doubling the element 2, and further that
the doubling mapping a 7→ 2a can be efficiently implemented as lsbn(a � 1) if msb1(a) = 0 and
lsbn(a � 1) ⊕ (012010000111) if msb1(a) = 1, where (a � 1) denotes the left-shift of a by one bit
position. See [34] for more details on this representation.

2.3 AE and AEAD

For simplicity we refer with the term AE to both: schemes implementing (pure) Authenticated Encryption
and schemes implementing Authenticated Encryption with Associated Data (AEAD) [33]. An AE scheme
Π = (E ,D) is defined over a key space K, a nonce space N , an associated data (AD) space A, a message
space M, and a tag space T = {0, 1}τ for some fixed tag length τ .10 Here, AD is a part of the input
to the encryption and decryption algorithms that is not encrypted but must be authenticated, typically
encoding some kind of context information. Formally, the AEAD encryption algorithm is a function
E : K×N×A×M→M×T , and the decryption algorithm is a functionD : K×N×A×M×T →M∪{⊥},
where symbol ⊥ /∈M is used to report verification failures.

To encrypt plaintext M with nonce N and associated data A under key K, compute (C, T ) ←
EK(N,A,M) to produce ciphertext C and tag T . The tuple (N,A,C, T ) is communicated to the receiver
and the original message M recovered by computing DK(N,A,C, T ).

Security Notions. The security of AE is typically captured with two notions: privacy and authenticity.
Following the definitions of [6,36], authenticity requires that ciphertexts (including nonce, associated
data, and tag) cannot be manipulated or forged, while privacy requires that ciphertexts (including
the tag) cannot be distinguished. More precisely, while [36, Sec. 3] defines privacy as the inability of a
passive adversary (that cannot pose decryption queries) to distinguish ciphertext-tag pairs from random
strings, [36, Sec. 6] gives a second definition that formalizes privacy against active adversaries (that can
pose decryption queries). As noted in [36, Sec. 6], if authenticity is provided by a scheme, the two
privacy notions are equivalent. Since the current article considers an AE scheme that does not provide
10 We do not employ a dedicated symbol for the ciphertext space but instead use the symbolM for both messages

and ciphertexts.
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authenticity, we emphasize that for this scheme the equivalence of the two notions cannot be assumed,
and in fact it does not hold. We correspondingly reproduce the two definitions separately.

We formalize privacy against passive attacks with a pair of games where a nonce-respecting adversary
interacts with an oracle that is called on inputs (N,A,M) and either implements a keyed AEAD instance
that returns the ciphertext (C, T ) = EK(N,A,M), or implements a random-bits oracle $ that returns a
uniformly random string of length |M |+ τ . Here, by writing nonce-respecting we mean that the adversary
uses distinct nonces in its encryption queries. The privacy advantage of a nonce-respecting adversary A
is defined as

Advpriv
Π (A) def= Pr

[
AEK(·,·,·) ⇒ 1

]
− Pr

[
A$(·,·,·) ⇒ 1

]
.

Privacy against active adversaries is defined similarly, but with an added decryption oracle that the
adversary may query on arbitrary tuples (N,A,C, T ) except those where (C, T ) was returned by a
EK(N,A, ·) or $(N,A, ·) query before. There is no restriction on nonces for the decryption queries, and
in particular nonces can be replayed from prior queries.11 The corresponding advantage definition is

Advpriv-cca
Π (A) def= Pr

[
AEK(·,·,·),DK(·,·,·,·) ⇒ 1

]
− Pr

[
A$(·,·,·),DK(·,·,·,·) ⇒ 1

]
.

With respect to the authenticity notion, we deem adversaries A with access to EK and DK oracles
successful if they are effective with creating forgeries. Formally, the authenticity advantage is defined as

Advauth
Π (A) def= Pr

[
AEK(·,·,·),DK(·,·,·,·) forges

]
,

where A forges if it receives a valueM 6= ⊥ from the DK oracle, conditioned on it being nonce-respecting
and not querying tuples (N,A,C, T ) to the DK oracle if it made a query (N,A,M) to EK with result
(C, T ) before.

3 The OCB2 Mode of Operation

The OCB2 authenticated encryption scheme was first described in [34].12 Like its predecessor OCB1 it is
fully parallelizable and rate-1 (requiring one blockcipher invocation per message block), but it replaces
a table-driven component of OCB1 with the ‘powering-up’ construction to compute a sequence of XEX
masks by continuously doubling them. Further, in [34, Sec. 11] OCB2 was first defined as an AE mode
without AD, and subsequently extended to an AEAD mode (then dubbed AEM). When AD is empty,
the algorithm of AEM is identical to (AD-less) OCB2. When AD is non-empty, the tag is an XOR of a
MAC of the AD and the tag of (AD-less) OCB2. The related PMAC construction [9] was identified as a
particularly interesting option for processing the AD as it would allow sharing its blockcipher instance
with that of the OCB2 encryption core.

Our specification of OCB2 is taken from [35, Fig. 3] and supports associated data.13 The mode’s key
space K is that of the underlying blockcipher E, the latter is required to have block length n = 128 (in
particular, AES is suitable), the nonce space is N = {0, 1}n, the message spaceM and the AD space A
are the set {0, 1}∗ of strings of arbitrary length, and the tag space is T = {0, 1}τ for any fixed parameter
τ ≤ n. Note that, as mentioned in Sec. 2, we may simply write E to denote a keyed blockcipher instance
EK : {0, 1}n → {0, 1}n.

The OCB2 algorithms EE and DE are detailed in Fig. 1. The algorithms are further illustrated in
Fig. 2. In the code, forX ∈ {0, 1}≤n, expression len(X) denotes an n-bit encoding of |X|, PMACE(A) de-
notes the PMAC of A computed with the (keyed) blockcipher instance E, and the field operations are
with respect to the GF(2n) setup described in Sec. 2.2. The details of functions len and PMAC are
not relevant for our attacks, so we omit their description here. (For completeness we reproduce them in
Appendix B.)
11 We clarify that the PRIV-CCA notion does not imply the AUTH notion, and in particular not AE. To see

this, modify any PRIV-CCA secure scheme by augmenting the ciphertext space by one additional ciphertext
that always decrypts to some fixed message, independently of the used key, nonce, and associated data. This
modified scheme provides PRIV-CCA but not AUTH.

12 In that paper the mode was actually referred to as OCB1; what we call OCB1 was referred to as OCB in [34].
13 The PMAC version from [35] is slightly different from the initial version [9] in that it uses doublings for mask

generation and is adapted to be computationally independent from the encryption part when combined with
OCB2.
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Algorithm EE(N,A,M)

1. L← E(N)
2. (M [1], . . . ,M [m]) n←M
3. for i← 1 to m− 1
4. C[i]← 2iL⊕ E(2iL⊕M [i])
5. Pad← E(2mL⊕ len(M [m]))
6. C[m]←M [m]⊕ msb|M [m]|(Pad)
7. Σ ← C[m] ‖ 0∗ ⊕ Pad
8. Σ ←M [1]⊕ · · · ⊕M [m− 1]⊕Σ
9. T ← E(2m3L⊕Σ)

10. if A 6= ε then T ← T ⊕ PMACE(A)
11. T ← msbτ (T )
12. return (C, T )

Algorithm DE(N,A,C, T )

1. L← E(N)
2. (C[1], . . . , C[m]) n← C
3. for i← 1 to m− 1
4. M [i]← 2iL⊕ E−1(2iL⊕ C[i])
5. Pad← E(2mL⊕ len(C[m]))
6. M [m]← C[m]⊕ msb|C[m]|(Pad)
7. Σ ← C[m] ‖ 0∗ ⊕ Pad
8. Σ ←M [1]⊕ · · · ⊕M [m− 1]⊕Σ
9. T ∗ ← E(2m3L⊕Σ)

10. if A 6= ε then T ∗ ← T ∗ ⊕ PMACE(A)
11. T ∗ ← msbτ (T ∗)
12. if T = T ∗ return M
13. else return ⊥

Fig. 1. Algorithms of OCB2. See Appendix B for the specifications of functions len and PMAC. Blockcipher E
is implicitly parameterized with the AEAD key.

4 Basic Attacks on Authenticity and Confidentiality

We show that OCB2 provides neither authenticity nor confidentiality by specifying attacks against the
formal definitions of these notions. We start with a minimal attack on unforgeability that gets along
with a single encryption query to produce an existential forgery with probability 1. This attack, while
effective, is rather limited with respect to the choice of involved parameters like message length and tag
length. We thus proceed with giving a more general version that extends the basic attack in terms of
these parameters. We then focus on the confidentiality of OCB2 and observe that our attacks against
authenticity effectively also break the privacy of OCB2.

The attacks considered here neither produce universal forgeries nor serve for decrypting arbitrary
ciphertexts. These more powerful attacks are described in Sec. 6.

4.1 Minimal Forgery Attack

We give the minimal example of our forgery attacks against OCB2. For simplicity, assume τ = n, i.e.,
that tags have maximum length. Note that the attack is independent of both the AD processing function
(PMAC) and the details of the length encoding function len. The following steps of our attack are also
illustrated in Fig. 3 and specified in pseudocode in Fig. 4 (left).

1. Encrypt (N,A,M) where N is any nonce, A = ε is empty, and M is the 2n-bit message M =
M [1] ‖M [2] where

M [1] = len(0n)

and M [2] is any n-bit block. The encryption oracle returns a pair (C, T ) consisting of a 2n-bit
ciphertext C = C[1] ‖C[2] and a tag T .

2. Decrypt (N ′, A′, C ′, T ′) with |C ′| = n such that

N ′ = N,

A′ = ε,

C ′ = C[1]⊕ len(0n)
T ′ = M [2]⊕ C[2] (1)

Note that C ′ 6= C (as they have different lengths), so we have a successful forgery if (N ′, A′, C ′, T ′)
is indeed accepted by the decryption algorithm. To see that this is the case, observe first that by the
encryption algorithm we have

C[1] = 2L⊕ E(2L⊕ len(0n))
C[2] = M [2]⊕ Pad, (2)
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Fig. 2. OCB2 encryption and decryption in the case of empty AD.

where L = E(N) and Pad = E(22L ⊕ len(0n)). Let Pad′ and Σ′ be the intermediate values computed
during decryption. Then C ′ is decrypted to

M ′ = C ′ ⊕ Pad′

= C ′ ⊕ E(2L⊕ len(0n))
= C[1]⊕ len(0n)⊕ E(2L⊕ len(0n))
= 2L⊕ E(2L⊕ len(0n))⊕ len(0n)⊕ E(2L⊕ len(0n))
= 2L⊕ len(0n),

and the tag is recovered as

T ∗ = E(2 · 3L⊕Σ′)
= E(2 · 3L⊕ C ′ ⊕ Pad′)
= E(2 · 3L⊕M ′)
= E(2 · 3L⊕ 2L⊕ len(0n))
= E(22L⊕ len(0n)) (3)
= Pad
= T ′, (4)

where (3) follows from the identity 2 · 3L = 22L ⊕ 2L and (4) follows from (1) and (2). The conclusion
is: We have T ∗ = T ′ and thus tuple (N ′, A′, C ′, T ′) is (falsely) accepted as an authentic ciphertext. This
breaks the authenticity of OCB2.

4.2 Forgeries for Longer Messages

The attack of Sec. 4.1 can be generalized, without increasing the number of encryption or decryption
queries, to allow forging ciphertexts for arbitrarily long messages. The generalized attack further drops
the requirement A = ε for the encryption query, and relaxes the τ = n requirement on the tag length.
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Fig. 3. Minimal forgery attack (see Sec. 4.1).

Intuitively, the latter two improvements are possible because A and τ exclusively influence the tag T
returned by the encryption algorithm, and because the attack of Sec. 4.1 is independent of this value.

The attack described below requires encrypting a message M = M [1] ‖ · · · ‖M [m] with only one
special block: While for the penultimate block we require M [m − 1] = len(0n) = 0120107 (fifteen null
bytes followed by byte value 128, see also Appendix B), all other blocks may have arbitrary contents
and the last block may be partial (i.e., 0 < |M [m]| ≤ n).14 We believe this format is not too special and
could naturally occur in applications, e.g., if plaintexts receive a length padding before being encrypted.
The attack steps are as follows.

1. Encrypt (N,A,M) where N and A are arbitrary, M = M [1] ‖ · · · ‖M [m− 1] ‖M [m] is an m-block
message satisfying

M [m− 1] = len(0n),

and M [m] is any s-bit string such that τ ≤ s ≤ n. The encryption oracle returns a pair (C, T ) where
C = C[1] ‖ · · · ‖C[m− 1] ‖C[m] and |C[m]| = s and |T | = τ .

2. Decrypt (N ′, A′, C ′, T ′) where N ′ = N , A′ = ε, and C ′ = C ′[1] ‖ · · · ‖C ′[m−2] ‖C ′[m−1] has m−1
(full) blocks such that

C ′[i] = C[i] for 1 ≤ i ≤ m− 2

C ′[m− 1] = C[m− 1]⊕ len(M [m])⊕
m−2∑

j=1
M [j]

T ′ = msbτ (M [m]⊕ C[m]).

14 The attack does not require knowledge of the contents of blocks M [1], . . . ,M [m− 2], but does depend on their
sum M [1]⊕ · · · ⊕M [m− 2].
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To see that this tuple is accepted as authentic (and thus manifests a forgery), let T ′ be the reconstructed
(untruncated) tag in the decryption query. We have

T
′ = E(2m−13L⊕Σ′)

= E
(

2m−13L⊕
(
C ′[m− 1]⊕ Pad′

)
⊕
m−2∑

j=1
M ′[j]

)
.

As Pad′ is computed as Pad′ = E(2m−1L⊕len(C ′[m−1])) = 2m−1L⊕2m−1L⊕E(2m−1L⊕len(0n)) =
2m−1L⊕ C[m− 1] and we have M ′[j] = M [j] for all 1 ≤ j < m− 1, we obtain

T
′ = E

(
2m−13L⊕ C ′[m− 1]⊕ (2m−1L⊕ C[m− 1])⊕

m−2∑

j=1
M [j]

)
.

By the identity 2m−13L⊕ 2m−1L = 2mL and the specification of C ′[m− 1], this implies that

T
′ = E(2mL⊕ len(M [m]))

= Pad
= M [m]⊕ C[m].

This in particular means that T ∗ = msbτ (T ′) = msbτ (M [m] ⊕ C[m]) = T ′, i.e., the forged ciphertext is
accepted as authentic.

4.3 Confidentiality Attack

In Sec. 4.1 we have seen a basic attack that breaks the authenticity of OCB2. Perhaps surprisingly at
first, the very same attack (formally) also breaks the privacy of the scheme. In the following we de-
scribe a corresponding two-query adversary against the PRIV-CCA notion that achieves a distinguishing
advantage of almost 1.

Attacking the PRIV-CCA and PRIV-CV notions. The intuition behind our adversary is simple:
It poses the same encryption and decryption queries as the adversary from Sec. 4.1, but then considers
whether the value M ′ returned by the decryption oracle indicates that the ciphertext is valid or not.
Precisely, if M ′ ∈M, it outputs b = 1; otherwise, if M ′ = ⊥, it outputs b = 0. Note that if the adversary
interacts with legit E and D oracles then the forgery will be successful (by what we proved in Sec. 4.1)
and we have the b = 1 case. On the other hand, if it interacts with $ and D, the probability that M ′ 6= ⊥
is only 2−τ , and thus b = 0 is output with high probability.

We turn to describing this attack in the terms of formal definitions of confidentiality. In Sec. 2.3 we
formalized the two notions PRIV and PRIV-CCA, where the former did not have a decryption oracle and
targeted fully passive adversaries. We note that a variant of PRIV that provides a ciphertext verification
oracle would interpolate between the two. We call this notion PRIV-CV (for ciphertext verification). The
new oracle tries to decrypt any provided ciphertext and returns a bit, encoded as >/⊥, that indicates
whether the ciphertext is valid or not. Obviously, any adversary that breaks PRIV-CV in particular also
breaks PRIV-CCA. We give the formal details of the above attack using the PRIV-CV formalism. The
corresponding code is in Fig. 4 (right), where we denote the verification oracle with V.

Attacking the IND-CCA notion. A different formalization of confidentiality is given by the IND-
CCA notion [36]. It does not require that ciphertexts look like random strings but instead focuses on the
bare semantic security aspect of encryption. It is easy to modify our above attack to be successful in the
IND-CCA sense: In the classic left-or-right setting, the left message would be chosen according to our
authenticity attack (e.g., ML = len(0n) ‖ 0n), while the right message would be chosen to be something
unrelated (e.g.,MR = 02n). As above, the adversary would output b = 1 iff its forgery attempt is deemed
valid.
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Adversary AE(·,·,·),D(·,·,·,·)

1. Step 1:
2. M [1]← len(0n)
3. Pick any M [2] ∈ {0, 1}n
4. M ←M [1] ‖M [2]
5. Pick any N ∈ {0, 1}n
6. Query (C, T )← E(N, ε,M)
7. Step 2:
8. C[1] ‖C[2] n← C
9. C′ ← C[1]⊕ len(0n)

10. T ′ ←M [2]⊕ C[2]
11. Query M ′ ← D(N, ε, C′, T ′)
12. Stop

Adversary AE/$(·,·,·),V(·,·,·,·)

1. Step 1:
2. M [1]← len(0n)
3. Pick any M [2] ∈ {0, 1}n
4. M ←M [1] ‖M [2]
5. Pick any N ∈ {0, 1}n
6. Query (C, T )← [E/$](N, ε,M)
7. Step 2:
8. C[1] ‖C[2] n← C
9. C′ ← C[1]⊕ len(0n)

10. T ′ ←M [2]⊕ C[2]
11. Query z ← V(N, ε, C′, T ′)
12. if z = > then b← 1 else b← 0
13. Stop with b

Fig. 4. Left: Minimal attack on authenticity. Right: Minimal attack on privacy (version with ciphertext verifi-
cation oracle).

4.4 Relaxing the Attack Conditions

We can relax the conditions from Sec. 4.1 and Sec. 4.2 on the last two message blocks in the encryption
query, namely M [m− 1] = len(0n) and |M [m]| ≥ τ , at the cost of a decreased success probability. First,
the attacks also work for some values M [m− 1] 6= len(0n). For example, suppose the minimal case with
m = 2 and τ = n, where the adversary sets M [m − 1] = M [1] = len(0n−i) for some 0 < i < n. Then,
the adversary creates the forgery attempt by using (n − i)-bit C ′ = msbn−i(C[m − 1] ⊕ len(0n)) and
T ′ = C[2]⊕M [2]. The forgery is accepted if T ′ = T ∗ (the true tag) holds, which implies

22L⊕ len(0n) = 2 · 3L⊕Σ′,

where Σ′ = C ′ ‖ 0i⊕Pad′ and Pad′ = EK(2L⊕len(0n−i)). This equation is equivalent to lsbi(EK(2L⊕
len(0n−i))) = lsbi(2L ⊕ len(0n)), which holds with probability about 1/2i assuming EK is perfect.
Hence, the forgery is still successful if i is small. If the adversary encrypts 2i messages with different
nonce values and mounts the above attack for each message, we can expect one successful forgery. The
generalizations to long messages and to the case τ < n are immediate.

Second, when j = len(M [m]) < τ , the adversary only knows the first j bits of the true tag, i.e,
msbj(T ∗) = msbj(Pad). By guessing the remaining τ−j bits of T ∗, the attack will succeed with probability
1/2τ−j . Thus, the attack is still practical when len(M [m]) is close to τ .

5 Raw Blockcipher Access

The attacks that we demonstrated in Sec. 4 are powerful and general, but not universal. For instance, our
attacks on authenticity succeeded with deriving non-authentic valid ciphertexts from authentic ones, but
they did not provide full control over the forged message, nonce, and AD. Also our confidentiality attack
could only distinguish encryptions, rather than recover plaintexts. We present correspondingly stronger
attacks in Sec. 6. They are based on a toolbox of the three attack algorithms SamplePairs, VecEncipher,
and VecDecipher that we present in this section.

Generally speaking, the best achievable result in symmetric cryptanalysis is key recovery: If the
adversary obtains a full copy of the instance key, it is on par with the regular participants and can do
everything they can do. For the wide range of modes of operation of blockciphers that reduce the role of
the blockcipher to that of a privately accessible random permutation (this includes the three members
of the OCB family), a key recovery attack cannot be expected to exist. This holds even for the weakest
such candidate, simply because a mode that does not get in contact with the key, also cannot leak it.
The situation becomes different, however, when slightly changing the point of perspective: If we see such
modes as being keyed with a private permutation rather than with a blockcipher key,15 a key recovery
15 See Fig. 1 for an example: Our notation EE(N,A,M) suggests that the mode’s key is the access to E and its

inverse; the key K does not appear at this level of abstraction.
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attack would be one where the adversary, through the attack, obtains unrestricted access to the private
permutation. This is what we develop in this section: Algorithms VecEncipher and VecDecipher leverage
on access to a keyed OCB2 instance to provide unrestricted (bidirectional) access to the underlying
blockcipher instance EK .

Assuming a fixed blockcipher instance E = EK , we refer to any pair (X,Y ) ∈ {0, 1}n × {0, 1}n
satisfying E(X) = Y as an input-output pair or mapping of the blockcipher. The regular deployment of
OCB2 does not expose such pairs. (This is not coincidental as the XEX∗ construction becomes insecure
when such pairs become public.) However, as we observe and explore in the following, the decrypted
message resulting from a successful forgery against OCB2 does leak one or more input-output pairs.
The task of our SamplePairs algorithm is to gather such pairs and store them in a set variable E. Our
VecEncipher and VecDecipher algorithms, which emulate direct blockcipher access, will consult this set,
for instance when they are in need of a fresh nonce N with an a priori known value L = E(N) (see
line 1 in Fig. 1). After the set variable has been initialized as per E ← ∅, each invocation of one of the
three algorithms populates it with new elements. At any point the invariants E ⊆ {0, 1}n × {0, 1}n and
(X,Y ) ∈ E⇒ E(X) = Y hold.

5.1 Extracting Random Blockcipher Mappings

We develop a procedure that, on input an integer m, performs a specific OCB2 forgery attack and
extracts roughly m input-output pairs from the result. As our procedure does not control the points
X,Y for which it finds the pairs we refer to the process as ‘random mapping extraction’.

Recall that in our authenticity attack from Sec. 4.1 the adversary learns the valueM ′ = 2L⊕len(0n)
and thus E(N) = L = (M ′ ⊕ len(0n))/2 from the forgery. Note that the pair (N,L) is the first example
of an extracted input-output pair. In fact, inspection of the OCB2 algorithms in Fig. 1 shows that also
(2L⊕len(0n), 2L⊕C[1]) and (22L⊕len(0n), C[2]⊕M [2]) are input-output pairs of E. In addition, but
only if tags are not truncated, we can obtain one more such pair from Σ and T .

Similar observations hold for our long-message forgery attack of Sec. 4.2, and the number of ex-
tractable input-output pairs is even higher (linear in the length of the message). Our SamplePairs proce-
dure, specified in Fig. 5 and illustrated in Fig. 6, mechanizes the input-output pair gathering by crafting,
in the spirit of Sec. 4.2, a forgery for a long all-zero message. Precisely, the procedure takes on input a
value m ≥ 2 and extracts at least m+ 1 input-output pairs16 from an invocation of its E and D oracles.
One such pair is extracted from the nonce N and corresponding value L; a total of m − 1 pairs are
extracted from all but the last message block; one pair is extracted from the padding used to encrypt
the last block; and, if tags are not shortened, one more pair is extracted from the checksum and tag. The
correctness of the procedure follows from inspection and the correctness of our attack from Sec. 4.2.

5.2 Extracting Specific Blockcipher Mappings

Once a non-empty set E is obtained with the SamplePairs procedure, we can implement a second procedure
that takes an arbitrary vector (X1, X2, . . .) of blockcipher inputs and returns the vector (Y1, Y2, . . .) such
that E(Xi) = Yi for all i. The underlying idea is to pick from E a random input-output pair (N,L), to
use N as a (hopefully fresh) nonce in an encryption query of a message M , and to exploit the a priori
knowledge of value L (that would normally remain hidden) to carefully prepare message M such that
the blockcipher invocations induced by the encryption process coincide exactly with the points Xi. The
corresponding values Yi can then be extracted from the ciphertext.17

The specification of the corresponding VecEncipher procedure is in Fig. 7. See Fig. 8 for an illustration.
The nonce generation in line 2 assumes that set E was populated before by at least one invocation of
procedure SamplePairs. The likely most interesting detail of the procedure is that while the first m − 1
values Xi are embedded directly into (the first m − 1 blocks of) the message M , the one remaining
16 The number of pairs can be fewer than m+ 1 if collisions occur. This happens, however, only with negligible

probability.
17 The technique of first learning value L in order to then attack the security of OCB was already explored in

prior work. While Ferguson [12] recovered L from collisions arising during the encryption of very long messages,
Vaudenay and Vizár [42] achieved L-recovery in a setting that is not nonce-respecting. Notably, [42] observed
that learning L suffices to recover arbitrary blockcipher mappings.
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Procedure SamplePairsE(·,·,·),D(·,·,·,·)(m)

1. Global variable: E
2. M [1, . . . ,m− 2,m]← 0n
3. M [m− 1]← len(0n)
4. M ←M [1] ‖ . . . ‖M [m]
5. N $← {0, 1}n
6. (C, T )← E(N, ε,M)
7. C[1] ‖ . . . ‖C[m] n← C
8. C[m− 1]← C[m− 1]⊕ len(0n)
9. C′ ← C[1] ‖ . . . ‖C[m− 1]

10. T ′ ← msbτ (C[m])
11. M ′ ← D(N, ε, C′, T ′)
12. M ′[1] ‖ . . . ‖M ′[m− 1] n←M ′

13. L← 2−(m−1)(M ′[m− 1]⊕ len(0n))
14. for i← 1 to m− 1
15. (Xi, Yi)← (2iL⊕M [i], 2iL⊕C[i])
16. Xm ← 2mL⊕ len(0n)
17. Ym ← C[m]
18. E ∪← {(N,L)}
19. E ∪← {(X1, Y1), . . . , (Xm, Ym)}
20. if τ = n then
21. XT ← 2m3L⊕ len(0n)
22. YT ← T
23. E ∪← {(XT , YT )}
24. return

Fig. 5. Extraction of a random collection of at least m+ 1 pairs (Xi, Yi) such that E(Xi) = Yi for all i.

value Xm is only implicitly embedded: We carefully choose the last message block M [m] such that the
checksum Σ = M [1]⊕ · · ·⊕M [m] used to derive the authentication tag is such that the tag is computed
as T = E(Xm). Observe that the full T , and thus Ym, is visible to the adversary only if τ = n, i.e., if the
tag is not truncated. Correspondingly, our procedure translates Xm to Ym only in this case. Otherwise,
if τ < n, only for X1, . . . , Xm−1 the corresponding value Yi is identified and returned. Note that we feed
back all extracted pairs (Xi, Yi) into the set E, giving more choice to pick a fresh nonce in line 2 of a
later invocation of VecEncipher.

5.3 Extracting Specific Blockcipher Inverse Mappings

We next present our third procedure: VecDecipher. It takes an arbitrary vector (Y1, Y2, . . .) of blockcipher
outputs and returns the vector (X1, X2, . . .) of blockcipher inputs such that E(Xi) = Yi for all i, i.e., this
procedure extracts specific blockcipher inverse mappings. The idea underlying the procedure is similar to
that of VecEncipher: We pick from set E an input-output pair (N,L), and prepare ciphertext C and tag
T such that the inverse blockcipher invocations induced by the decryption process are on the points Yi.
The corresponding values Xi can be obtained from the recovered message.

We specify the VecDecipher procedure in Fig. 9 and provide an illustration in Fig. 10. In the following
we explain the details, always assuming L = E(N). For any given vector (Y1, . . . , Ym′), consider the
message M ′ := (M ′[1], . . . ,M ′[m]) of m := 2m′ + 1 blocks (implicitly) defined as

M ′[i] :=





2iL⊕Xdi/2e for i = 1, 3, 5, . . . , 2m′ − 1,
2iL⊕Xi/2 for i = 2, 4, 6, . . . , 2m′,
S ⊕ 22m′+13L⊕N for i = 2m′ + 1,

where S := (21 + 22 + · · ·+ 22m′)L and (X1, . . . , Xm′) is the target vector we would like to extract. En-
crypting M ′ = (M ′[1], . . . ,M ′[2m′+ 1]) in the configuration (N, ε,M ′) results in a pair (C, T ) consisting
of a ciphertext C = (C[1], . . . , C[2m′ + 1]) and a tag T . See Fig. 10. Our approach is to construct (C, T )
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Fig. 6. Top: Line 2–6 of SamplePairs. Bottom: Line 7–11 of SamplePairs. In the bottom figure, M ′[m − 1] is
2m−1L⊕ len(0n), and note that 2m−1L⊕ 2m−13L = 2mL holds.

from (Y1, Y2, . . .) and other known information, and to let the decryption oracle, on input (N, ε, C, T ),
recover M ′ for us, from which, in turn, we recover the vector (X1, X2, . . .).

Observe that the message M ′ is defined to meet the following three conditions:
– Knowledge of M ′ is sufficient to obtain (X1, . . . , Xm′). This condition is indeed met as we know the

value of L.
– We can compute all ciphertext components C[1], . . . , C[2m′ + 1]. Also this condition is met: The

values of C[1], . . . , C[2m′] can be derived directly from the inputs (Y1, . . . , Ym′), and the last block
C[2m′ + 1] can be derived from E(2mL ⊕ len(0n)). (Note that computing the last block typically
requires invoking the VecEncipher procedure of Fig. 7 as a subroutine.)

– We can compute the tag T . To verify this condition, first consider that the checksum of M ′ is the
known value Σ′ = 2m3L ⊕N . This is so as M ′[1] ⊕ · · · ⊕M ′[2m′] = S (as the contributions of the
individual Xi terms cancel out in the sum), and thus

Σ′ = M ′[1]⊕ · · · ⊕M ′[2m′]⊕M ′[2m′ + 1] = S ⊕ (S ⊕ 2m3L⊕N) = 2m3L⊕N.

To complete the argument, note that Σ′ = 2m3L⊕N implies that T = L.
We see that we can first put together the correct encryption (C, T ) of inputs (N, ε,M ′), and then extract
the vector (X1, . . . , Xm′) from the result of a corresponding decryption query. The precise steps are
worked out in procedure VecDecipher in Fig. 9.

6 Universal Forgery and Decryption

In this section we target the most powerful goals of encryption scheme cryptanalysis: We contribute a
universal forgery attack and a full plaintext recovery attack for arbitrary ciphertexts.
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Procedure VecEncipherE(·,·,·)(X1, . . . , Xm−1, Xm)

1. Global variable: E
2. (N,L) $← E
3. for i← 1 to m− 1
4. M [i]← 2iL⊕Xi
5. Σ ← 2m3L⊕Xm
6. M [m]←M [1]⊕ . . .⊕M [m− 1]⊕Σ
7. M ←M [1] ‖ . . . ‖M [m]
8. (C, T )← E(N, ε,M)
9. C[1] ‖ . . . ‖C[m] n← C

10. for i← 1 to m− 1
11. Yi ← 2iL⊕ C[i]
12. X ′ ← 2mL⊕ len(0n)
13. Y ′ ←M [m]⊕ C[m]
14. E ∪← {(X1, Y1), . . . , (Xm−1, Ym−1)}
15. E ∪← {(X ′, Y ′)}
16. if τ = n then
17. Ym ← T
18. E ∪← {(Xm, Ym)}
19. return (Y1, . . . , Ym−1, Ym)

Fig. 7. Look-up, given values X1, . . . , Xm−1, of values Y1, . . . , Ym−1 such that E(Xi) = Yi for all i. If τ = n
(gray part), even one more mapping Xm → Ym can be processed. (If τ < n, use any value for Xm in line 5, e.g.,
Xm = 0n.) To ensure that a fresh nonce can be picked in line 2, procedure VecEncipher may only be invoked after
SamplePairs has been.

6.1 Universal Forgeries

In a universal forgery attack the adversary chooses any N$ ∈ N , any M$ ∈ M, and any A$ ∈ A,
and creates a forgery (C$, T $) such that the decryption algorithm DK(N$, A$, C$, T $) returns M$. We
present a universal forgery attack for OCB2 that is based on the two sub-routines SamplePairs and
VecEncipher that we described in Sec. 5. In fact, given these algorithms it is actually immediate to
compute forgeries on any combination of nonce N , message M , and AD A: It simply suffices to execute
OCB2’s encryption algorithm EE from Fig. 1 on input N,A,M , emulating all blockcipher evaluations
with invocations of VecEncipher. The resulting forgeries are perfect and fresh (non-trivial). Note further
that OCB2 is parallelizable, that is, most of the blockcipher evaluations of an encryption operation
happen concurrently of each other. This property makes forging very efficient (in terms of the number
of required encryption queries), as all concurrent enciphering operations can be batch-processed with a
single VecEncipher call.

When closely looking at the details it however becomes apparent that universally forging cannot be
performed with a single VecEncipher invocation. As a matter of fact, not all enciphering operations related
to an encryption are concurrent: In OCB2’s EE algorithm, tag T is computed by enciphering a value
dependent on Pad which is a blockcipher output by itself. These computations cannot be parallelized,
and it becomes clear that universal forging requires at least two succeeding VecEncipher invocations.
A similar observation can be made for the PMAC algorithm (see Fig. 15 in Appendix B) where the
finalization step requires enciphering an intermediate sum that is computed by adding up outputs of
other enciphering operations. The latter, in turn, depend on the value E(0n), so the minimal number of
VecEncipher invocations increases to three. (Of course E(0n) could be cached from a prior forgery but a
worst-case analysis cannot assume that.)

We complete this discussion by showing that three VecEncipher invocations are sufficient in all cases.
We do this by describing the full set of instructions to compute a forgery (C$, T $) for input data
N$,M$, A$.

The attack successively calls SamplePairs and VecEncipher. The first call is used to retrieve E(N$)
and E(0n), the second is used to retrieve the encipherings needed for encrypting M$ and PMAC-ing A$

except the tag and the last AD block, and the third is used for processing the tag and the last AD block.
Specifically, the steps for the universal forgery are as follows:
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C[2]

M [m − 1]
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C[m − 1]

len(M [m])

2mL

msb|M [m]|

C[m]

Σ

2m3L

T

2L 22L 2m−1L msbτ

M [1]

=

M [2]

= =

len(0n)

= =

M [m]

2L ⊕ X1 22L ⊕ X2 2m−1L ⊕ Xm−1 2m3L ⊕ Xm

Fig. 8. Line 2–8 of VecEncipher. Note that M [m] is M [1]⊕ · · · ⊕M [m− 1]⊕Σ.

Procedure VecDecipherE(·,·,·),D(·,·,·,·)(Y1, . . . , Ym′)

1. Global variable: E
2. m← 2m′ + 1
3. Fix any (N,L) ∈ E
4. S ← 0n
5. for i← 1 to m− 1
6. S ← S ⊕ 2iL
7. C[i]← 2iL⊕ Ydi/2e
8. Pad← E(2mL⊕ len(0n))
9. C[m]← S ⊕ 2m3L⊕N ⊕ Pad
10. C ← C[1] ‖ . . . ‖C[m]
11. T ← msbτ (L)
12. M ′ ← D(N, ε, C, T )
13. M ′[1] ‖ . . . ‖M ′[m] n←M ′

14. for i← 1 step 2 to m− 2
15. Xdi/2e ← 2iL⊕M ′[i]
16. E ∪← {(X1, Y1), . . . , (Xm′ , Ym′)}
17. return (X1, . . . , Xm′)

Fig. 9. Look-up, given values Y1, . . . , Ym′ , of values X1, . . . , Xm′ such that E(Xi) = Yi for all i. The invocation of
E in line 8 shall be implemented via a VecEncipher invocation. (Note that the input 2mL⊕len(0n) to the latter is
independent of Y1, . . . , Ym′ , meaning that the result Pad might be cacheable across invocations of VecDecipher.)

1. The adversary invokes SamplePairs(2). With overwhelming probability, we assume the nonce sampled
in SamplePairs(2), N ′, is different from N$. Then she obtains a set of distinct pairs written as
E = {(N ′, L′), (X ′, Y ′), (X ′′, Y ′′)}.

2. If (N$, EK(N$)), (0n, EK(0n)) ∈ E, she goes to the next step. Otherwise, she invokes VecEncipher(N$,
0n, 0n) and obtains L := EK(N$) and V := 32EK(0n).

3. Let

Xi := M$[i]⊕ 2iL for 1 ≤ i ≤ m− 1,
Xm := len(M$[m])⊕ 2mL,
XA
i := A$[i]⊕ 2iV, for 1 ≤ i ≤ a− 1,

where (M$[1], . . . ,M$[m]) n←M$ and (A$[1], . . . , A$[a]) n← A$. She obtains Yi = EK(Xi) (1 ≤ i ≤ m)
and Y Ai = EK(XA

i ) (1 ≤ i ≤ a− 1) by performing VecEncipher(X1, . . . , Xm, X
A
1 , . . . , X

A
a−1, 0n).

4. Let Xm+1 := Σ$ ⊕ 2m · 3L, where

Σ$ = M$[1]⊕ . . .⊕M$[m− 1]⊕ (M$[m] ‖ lsbn−|M$[m]|(Ym)).
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Fig. 10. The encryption process of (N, ε,M ′) in VecDecipher, where M ′ = (M ′[1], . . . ,M ′[m]) and m = 2m′ + 1.
Note that M ′[m] = S ⊕ 2m3L⊕N , where S = (21 + 22 + · · ·+ 22m′)L. Observe that the only unknown block in
(C, T ) is C[m], which can be computed with VecEncipher. It follows that the decryption oracle returns M ′ for a
query (N, ε, C, T ).

If |A$[a]| = n, let XA
a :=

∑a−1
i=1 Y

A
i ⊕A$[a]⊕2a ·3V and else, XA

a :=
∑a−1
i=1 Y

A
i ⊕(A$[a] ‖ 10∗)⊕2a ·32V .

She obtains Ym+1 = EK(Xm+1) and Y Aa = EK(XA
a ) by calling VecEncipher(Xm+1, X

A
a , 0n).

5. She creates (N$, A$, C$, T $), where

C$ = (Y1 ⊕ 2L) ‖ · · · ‖ (Ym−1 ⊕ 2m−1L) ‖ (msb|M$[m]|(Ym)⊕M$[m]),

T $ = msbτ (Ym+1 ⊕ Y Aa ).

This tuple (N$, A$, C$, T $) will be accepted as valid by D, with return value M$.

6.2 Plaintext Recovery

We consider an attack setting that closely follows [28]: Fix a triple consisting of a nonce N∗, associated
data A∗, and a plaintext M∗ according to any distribution such that the adversary does not have full
a priori knowledge of M∗. Let a challenger pick a key K uniformly at random from the key space and
compute the encryption (C∗, T ∗)← EK(N∗, A∗,M∗). The adversary obtains a copy of (N∗, A∗, C∗, T ∗)
and the attack goal is to accurately recover the unknown parts of message M∗. The adversary is assisted
by encryption and decryption oracles, where three conditions have to be met: No two encryption queries
may use the same nonce (nonce-respecting property), an encryption query with nonce N∗ may not be
posed (variant of nonce-respecting property), and the tuple (N∗, A∗, C∗, T ∗) may not be queried for
decryption.

We present two plaintext recovery attacks against OCB2. The first attack uses the SamplePairs,
VecEncipher, and VecDecipher procedures from Sec. 5 to directly emulate the decryption process of
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(N∗, A∗, C∗, T ∗). The second plaintext recovery attack employs SamplePairs and VecEncipher, plus a
single decryption query. While the first attack works for any challenge (N∗, A∗, C∗, T ∗), the second
attack requires that M∗ and thus C∗ have a length of at least three blocks. On the other hand, while
both attacks are quite efficient, the first attack requires decryption queries on longer ciphertexts.

In both scenarios, we first recover L∗ := EK(N∗). This can be done by using SamplePairs and
VecEncipher as follows: The adversary first calls SamplePairs(2), and with overwhelming probability, we
assume nonce N ′ sampled in SamplePairs(2) is different from N∗. Then she obtains a set of distinct
pairs E = {(N ′, L′), (X ′, Y ′), (X ′′, Y ′′)}. If (N∗, EK(N∗)) ∈ E, then we have L∗. Otherwise, she invokes
VecEncipher(N∗, 0n) to obtain L∗.

Let m∗ be the number of blocks of C∗. The first attack faithfully emulates the decryption process
of (N∗, A∗, C∗, T ∗). That is, to recover M∗ from the challenge and L∗, it is enough to compute 2iL∗ ⊕
E−1
K (2iL∗⊕C∗[i]) for 1 ≤ i ≤ m∗−1 to obtain M∗[1], . . . ,M∗[m∗−1], and EK(2m∗L⊕len(C∗[m∗])) to

compute M∗[m∗]. See the bottom figure in Fig. 2. The first m∗ − 1 blockcipher decryption calls can be
performed with VecDecipher procedure, and the last blockcipher encryption call can be performed with
VecEncipher procedure. The entire attack can be formalized as follows:

1. From the challenge (N∗, A∗, C∗, T ∗), compute L∗ := EK(N∗) as described above. We need one call
to SamplePairs and one call to VecEncipher.

2. Invoke VecDecipher(2L∗ ⊕ C∗[1], . . . , 2m∗−1L∗ ⊕ C∗[m∗ − 1]) to obtain X1, . . . , Xm∗−1, where Xi =
E−1
K (2iL∗ ⊕ C∗[i]). Perform VecEncipher(2m∗L ⊕ len(C∗[m∗]), 0n) to obtain Pad∗ = EK(2m∗L ⊕

len(C∗[m∗])).
3. She createsM∗ = (M∗[1], . . . ,M∗[m∗]), whereM∗[i] := 2iL∗⊕Xi for 1 ≤ i ≤ m∗−1, andM∗[m∗] :=

msb|C∗[m∗]|(Pad∗)⊕ C∗[m∗].

We see thatM∗ is the target message to recover, and the attack succeeds with an overwhelming probabil-
ity. Therefore, it is possible to mount a plaintext recovery attack against any challenge (N∗, A∗, C∗, T ∗).

We next present another attack to recover M∗ by using SamplePairs, VecEncipher, and a decryption
query. The attack requires that M∗ (and hence C∗) consist of at least three blocks. The attack works as
follows:

1. The adversary first recovers L∗ = EK(N∗) for the challenge (N∗, A∗, C∗, T ∗). This step needs one
call to SamplePairs and one call to VecEncipher.

2. Then she modifies C∗ to make a decryption query. Specifically, let C∗ = (C∗[1], . . . , C∗[m∗]) be
the challenge ciphertext broken into blocks, and we first fix two distinct indices j, k ∈ {1, . . . ,m∗ −
1}. Note that we are assuming that M∗ is long and m∗ ≥ 3. The adversary then defines C$ =
(C$[1], . . . , C$[m∗]) as follows:
– C$[i] := C∗[i] for i ∈ {1, . . . ,m∗} \ {j, k}
– C$[j] := C∗[k]⊕ 2kL∗ ⊕ 2jL∗
– C$[k] := C∗[j]⊕ 2kL∗ ⊕ 2jL∗

3. Next, the adversary makes a decryption query (N∗, A∗, C$, T ∗). Note that this is almost the same as
the challenge query, but the j-th and k-th blocks of C∗ are masked and swapped. We have C$ = C∗

only with a negligible probability (e.g., if C∗[j] = C∗[k] and L∗ = 0n). We see that the query will be
accepted since the checksum remains the same. Thus, the adversary obtains M$.

4. The target of the attack, M∗, is obtained by swapping the j-th and k-th blocks of M$ and making
necessary modifications. Precisely, from M$ = (M$[1], . . . ,M$[m∗]), the adversary obtains M∗ =
(M∗[1], . . . ,M∗[m∗]) as follows:
– M∗[i] := M$[i] for i ∈ {1, . . . ,m∗} \ {j, k}
– M∗[j] := M$[k]⊕ 2kL∗ ⊕ 2jL∗
– M∗[k] := M$[j]⊕ 2kL∗ ⊕ 2jL∗

See Fig. 11 for the encryption process of (N∗, A∗,M∗) and the decryption process of (N∗, A∗, C$, T ∗).

We note that in the first attack, the decryption query (within VecDecipher) has a ciphertext of 2m∗−1
blocks, while it is only m∗ blocks in the second attack.
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Fig. 11. Top: The encryption process of (N∗, A∗,M∗). Bottom: The decryption process of (N∗, A∗, C$, T ∗). In
the bottom figure, we have C$[j] = C∗[k] ⊕ 2kL∗ ⊕ 2jL∗ and C$[k] = C∗[j] ⊕ 2kL∗ ⊕ 2jL∗, and it follows that
M∗[j] = M$[k]⊕ 2kL∗ ⊕ 2jL∗ and M∗[k] = M$[j]⊕ 2kL∗ ⊕ 2jL∗. We see that the checksum remains the same.

7 Design Flaw of OCB2

The root of the flaw in OCB2 is in the instantiation of AE using XEX∗. Here, XEX∗ is a mode of
operation that constructs a TBC based on a blockcipher, and in fact it combines two modes, XEX and
XE. For blockcipher EK , let

XEXN,i,jE (X) def= E(2iL⊕X)⊕ 2iL,

XEN,i,jE (X) def= E(2i3jL⊕X),

where L = E(N) for nonce N , for i = 1, 2, . . . and j = 0, 1, . . . . Here, j is always set to 0 for XEX. XEX∗
unifies them by introducing one bit b to the tweak. That is,

XEX∗,b,N,i,jE (X) =
{
XEXN,i,jE (X) if b = 1;
XEN,i,jE (X) if b = 0.

Decryption is trivially defined, and is never invoked when b = 0 (for security; see Definition 1). Rog04
refers b to tag; not to be confused with the tag in the global interface of AE.

Suppose an encryption query of the form (N,A,M), whereA = ε andM is parsed as (M [1], . . . ,M [m]),
is given to OCB2. It encrypts M by using XEX∗,1,N,i,0E for M [i] with i = 1, . . . ,m− 1, and XEX∗,0,N,m,0E

for M [m]. The checksum, Σ, is encrypted by XEX∗,0,N,m,1E to create the (untruncated) tag.
In the proof of OCB2, we first apply the standard conversion from computational to information-

theoretic security [5] and focus on the security of OCB2 instantiated by an n-bit uniform random per-
mutation (URP), P, denoted by OCB2P. Then, the proof of OCB2P has two main steps: the indistin-
guishability of XEX∗P, and the privacy and authenticity of AE18 which replaces XEX∗P in OCB2P with
an ideal primitive, a tweakable random permutation P̃. The latter step is not relevant to our attacks.

For the first step, Rog04 proved that XEX∗P is indistinguishable from P̃ for any adversary who queries
to both encryption and decryption of XEX∗P and respects the semantics of tag b. More precisely, the
conditions for the adversary are as follows.

Definition 1. We say an adversary querying XEX∗ is tag-respecting when
18 An equivalent mode for OCB3 is called ΘCB3 [23].
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Algorithm ΘCB2.E
Ẽ

(N,A,M)

1. (M [1], . . . ,M [m]) n←M
2. for i = 1 to m− 1
3. C[i]← Ẽ∗,1,N,i,0(M [i])
4. Pad← Ẽ∗,0,N,m,0(len(M [m]))
5. C[m]←M [m]⊕ msb|M [m]|(Pad)
6. Σ ← C[m] ‖ 0∗ ⊕ Pad
7. Σ ←M [1]⊕ · · · ⊕M [m− 1]⊕Σ
8. T ← Ẽ∗,0,N,m,1(Σ)
9. return (C, T )

Algorithm ΘCB2.D
Ẽ

(N,A,C, T )

1. (C[1], . . . , C[m]) n← C
2. for i = 1 to m− 1
3. M [i]← (Ẽ∗,1,N,i,0)−1(C[i])
4. Pad← Ẽ∗,0,N,m,0(len(C[m]))
5. M [m]← C[m]⊕ msb|C[m]|(Pad)
6. Σ ← C[m] ‖ 0∗ ⊕ Pad
7. Σ ←M [1]⊕ · · · ⊕M [m− 1]⊕Σ
8. T ∗ ← Ẽ∗,0,N,m,1(Σ)
9. if T = T ∗ return M

10. else return ⊥

Fig. 12. Algorithms of ΘCB2. For simplicity, τ = n and A = ε.

1. XEX∗,0,N,i,j is only queried in encryption queries for any (N, i, j);
2. Once XEX∗,b,N,i,j is queried in either encryption or decryption, then it is not allowed to query

XEX∗,1−b,N,i,j, for any (N, i, j).

Let ΘCB2
Ẽ

be the mode of operations of TBC ẼK which has the same interface as XEX∗E . The
pseudocode is shown in Fig. 12. Then, ΘCB2XEX∗

E
is equivalent to OCB2E .

Let P̃ be TURP which has the same interface as XEX∗. Rog04 showed that, for any privacy-adversary
A and authenticity-adversary A±,

Advpriv
OCB2P

(A) = Advpriv
ΘCB2XEX∗P

(A) ≤ Advtprp
XEX∗P

(B) + Advpriv
ΘCB2̃

P
(A), (5)

Advauth
OCB2P

(A±) = Advauth
ΘCB2XEX∗P

(A±) ≤ Advtsprp
XEX∗P

(B±) + Advauth
ΘCB2̃

P
(A±) (6)

hold for some CPA-adversary B and CCA-adversary B±, which are tag-respecting and can simulate the
privacy and the authenticity games involving ΘCB2XEX∗P and A and A±, respectively. From Rog04, we
have

Advtprp
XEX∗P

(B) ≤ 4.5q2

2n and Advtsprp
XEX∗P

(B±) ≤ 9.5q2

2n (7)

for any B and B± that are tag-respecting and use at most q queries.19 The last terms of (5) and (6)
are proved to be almost ideally small: zero for privacy and 2n−τ/(2n − 1) for authenticity with single
decryption query.

The privacy bound is obtained from the first inequality of (7) and (5). However, to derive the authen-
ticity bound, we need to identify B± that can simulate A±, where A± must compute the decryption of
ΘCB2, even with single decryption query. Depending on A±, there are cases that no tag-respecting B±
can simulate A±. For example, let us assume that A± first queries (N,A,M) of |M | = 2n to the encryp-
tion oracle and then queries (N ′, A′, C ′, T ′) to the decryption oracle, where N ′ = N , A′ = ε and |C ′| = n,
where the attack in Sec. 4.1 is an example case. Then, B± who simulates A± first queries to XEX∗,1,N,1,0
and XEX∗,0,N,2,0 and XEX∗,0,N,2,1. For the second query, it queries to XEX∗,0,N,1,0 and XEX∗,0,N,1,1.
Thus both XEX∗,1,N,1,0 and XEX∗,0,N,1,0 are queried, which implies a violation of the second condition
of Definition 1. Consequently, the authenticity proof of Rog04 does not work, hence our attacks. At the
same time, this also implies that the privacy (confidentiality) attack under CPA, i.e. distinguishing the
ciphertext from random using only encryption queries, is not possible. This shows a sharp difference
between CPA and CCA queries, where the latter easily break confidentiality (see Sec. 4.3).

8 Applicability to Related Schemes

Other OCB Versions. To the best of our knowledge, our attacks do not apply to OCB1 and OCB3.
For OCB1, the last block is encrypted by XE with a clearly separated mask. For OCB3, the last block is
19 We note that the constant 9.5 in Advtsprp

XEX∗P
(B±) in (7) was improved to 4.5 in [29].

20



encrypted by XEX when it is n bits long, and otherwise by XE with a mask separated from those used
by XEX.

Designs based on OCB. We have not found other AE algorithms based on OCB that could be affected
by our attacks. OTR [27] is an inverse-free (for the absence of the blockcipher decryption in the scheme)
parallelizable AE mode that has a similar structure as OCB. As it only uses XE for the whole process,
it is safe from our attacks. OPP [14] is a permutation-based AE based on OCB. It always uses XEX,
or more precisely, a variant of XPX [26], because otherwise an offline permutation inverse query easily
breaks the scheme. It is safe because of this consistent use of XPX. ZOCB [4] is a TBC-based AE whose
structure is similar to ΘCB2. Unlike ΘCB2, it utilizes mask values applied to the underlying TBC, for
a combined, faster AD processing than ΘCB2. This makes ZOCB also similar to OCB2. It adopts (a
variant of) XEX for the last message block, hence our attacks do not apply. Finally, OCB-hc [17] is a
revised version of OCB2 that has a smaller state size. It is safe since it adopts XEX for the last message
block.

9 Fixing OCB2

In this section, we discuss several ways to prevent our attacks in practice. In principle, each of our
suggestions would require its own formal security analysis. However, we provide one only for the “XEX
for the last plaintext block” fix presented in Sec. 9.1 and the “XE for the last message block” fix presented
in Sec. 9.2. Our other proposals intuitively lead to a secure scheme, however, without conducting further
research we cannot fully vouch for their security because these proposals do not allow the proof strategy
that we adopt for OCB2f.20 That is, the abstraction by TBC cannot work anymore.

Always using AD. Our forgery attacks from Sec. 4 have the property that the AD of the forgeries have
to be the empty string. This was unavoidable as for A 6= ε we would have had to predict PMACE(A) but
we are not aware of a way to do so. (Of course, if we could use the VecEncipher algorithm of Sec. 5.2 then
computing PMAC values is not a challenge; however, VecEncipher can only be invoked after SamplePairs,
and the latter implicitly conducts a forgery with A = ε.) Overall we note that a forgery with A = ε is a
key component of all our attacks on OCB2. This observation immediately suggests a fix: If the involved
users agree that all encryption/decryption operations are with respect to a non-empty AD, then it seems
(to us) that all problems go away. An easy way to implement this strategy generically is to prepend
a fixed string (e.g. the single letter “A” or the all-zero block 0n) to every occurring AD (including the
empty AD).

Always using PMAC. Recall from line 10 of EE and line 10 of DE in Fig. 1 that PMACE(A) is XOR-
ed into the tag only if A 6= ε. We discuss the case that this condition is removed, and PMACE(A) is
always XOR-ed into the tag, also when A = ε. An initial analysis of the PMAC algorithm (see Fig. 15 in
Appendix B) shows that the value PMACE(ε) is unpredictable, and also cannot be replayed from other
ciphertexts, so that also this modification of OCB2 promises to be a secure candidate.

Counter-cryptanalysis. The two countermeasures just discussed require that the code of both the
sender and the receiver would have to be adapted. It might be impossible to do so for instance if OCB2 is
included in already shipped products that cannot be updated remotely. In such settings the following two
options might be interesting: The sender is modified to never encrypt a message where the second-last
block is len(0n) while the receiver remains unchanged, or the sender remains unchanged and the receiver
is modified to never decrypt to a message where the last block would be of the form 2mL ⊕ len(0n).21
While such changes would (marginally) influence the correctness of the encryption scheme, they seem to
make our attacks impossible. To patch a live system this might be a viable option.
20 Recent work on AEAD combiners [32] suggests operating multiple AEAD schemes and combining their results,

with the effect that the result is secure if at least one of the ingredient schemes is. This approach might be
interesting if the unproven methods proposed here are used.

21 We caution that this change might not be sufficient. Our results from Sec. 4.4 indicate that more plaintexts
and ciphertexts have to be rejected: on the encryptor’s side all messages with M [m− 1] = len(0n−s) for some
s = 1, . . . , n, and on the decryptor’s side all ciphertexts that would result, when decrypted, in M∗[m − 1] =
len(0n−s) for some s = 1, . . . , n. We are still investigating which conditions would be necessary/sufficient for
security.
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Use of XEX+. Minematsu and Matsushima [29] proposed an extension of XEX∗ called XEX+. The
latter allows to use plain blockcipher calls in combination with XEX and XE. The authors in particular
suggest how to use XEX+ to instantiate a variant of OCB, where the last message block is encrypted by
an unmasked blockcipher. This variant of OCB is not affected by our attacks and provably secure.

9.1 XEX for The Last Message Block

Recall that the vulnerabilities of OCB2 stem from a bad interaction of the XE and XEX components
in XEX∗ and the fact that XE is used for the last block of encryption. A simple way to fix OCB2 is
to use XEX also for the last block. We call the resulting scheme OCB2f. Its pseudocode is obtained by
changing line 5 of EE in Fig. 1 to

Pad← 2mL⊕ E(2mL⊕ len(M [m]))

and line 5 of DE to
Pad← 2mL⊕ E(2mL⊕ len(C[m])).

Similarly to OCB2, OCB2f is a mode of XEX∗, since the tweak spaces of XE and XEX in OCB2f are
distinct. Specifically, we define ΘCB2f

Ẽ
as a mode obtained by changing Ẽ∗,0,N,m,0 to Ẽ∗,1,N,m,0 in

line 4 of ΘCB2.E
Ẽ

and in line 4 of ΘCB2.D
Ẽ

in Fig. 12. Then ΘCB2f
Ẽ

is equivalent to OCB2fE if ẼK
is XEX∗E . To handle the case of non-empty AD, we also define PMAC

Ẽ
as a mode of TBC ẼK defined

in the same way as ΘCB2 (see Fig. 15 in Appendix B). As Fig. 15 shows, PMACXEX∗
E
is equivalent to

PMACE . We finally add

if A 6= ε then T ← msbτ (T ⊕ PMAC
Ẽ

(A))
else T ← msbτ (T )

after line 8 in ΘCB2.E
Ẽ

in Fig. 12 and

if A 6= ε then T ∗ ← msbτ (T ∗ ⊕ PMAC
Ẽ

(A))
else T ∗ ← msbτ (T ∗)

after line 8 in ΘCB2.D
Ẽ

to make it AEAD. We prove the security of OCB2f using a hybrid argument
involving ΘCB2f. To simplify the argument, we also define ΘCB2f′ by converting PMAC

Ẽ
in ΘCB2f to

a URF (uniform random function) R : {0, 1}∗ → {0, 1}n. The security bounds of OCB2f are the same as
those claimed for OCB2:

Theorem 1. Let A and A± denote the adversaries against AEAD in the privacy and authenticity games.
We assume A± uses qv decryption queries. We have

Advpriv
OCB2fP(A) = Advpriv

ΘCB2fXEX∗P
(A) ≤

5σ2
priv

2n ,

Advauth
OCB2fP(A±) = Advauth

ΘCB2fXEX∗P
(A±) ≤ 5σ2

auth
2n + 4qv

2τ ,

where σpriv and σauth are the number of queried blocks (the number of invocations of XEX∗) in the
privacy game and the authenticity game, respectively.

Intuitively, the security of OCB2f holds because (1) OCB2f is ΘCB2f using Ẽ instantiated by XEX∗,
and (2) ΘCB2f and ΘCB2f′ are indistinguishable (up to collision), and (3) ΘCB2f′ in the privacy and
authenticity games do not force the adversary to violate the access rules (Definition 1). Combining the
known bounds of XEX∗ and PMAC

Ẽ
and the proofs of ΘCB2P̃ with minor changes gives the desired

results. A full proof is given in Appendix C.
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9.2 XE for The Last Message Block

In Sec. 9.1, we use XEX for the last block instead of XE. This simple fix, however, does not respect
(what we believe) the original concept of OCB2, that is, the TBC should avoid the use of outer XOR of
mask when it is not needed. Here, we propose another way to fix OCB2 that uses XE for the last block,
but with a different constant from the original to thwart attacks. As we have a large number of possible
options, listing all of them is rather impractical. Instead, we present several representative options that
require minimum modifications to the original algorithms.

To start with, let us redefine XEX∗ as follows:

XEX∗,b,N,i1,i2,i3E (X) =
{
E(αi11 α

i2
2 α

i3
3 L⊕X)⊕ αi11 α

i2
2 α

i3
3 L if b = 1;

E(αi11 α
i2
2 α

i3
3 L⊕X) if b = 0,

where L = E(N), α1, α2, α3 ∈ (GF(2n))×, and (i1, i2, i3) ∈ I1 × I2 × I3 ⊂ Z3. The specification of XEX∗
in OCB2 uses α1 = 2 and α2 = 3, and there is no α3. The proper definitions of the parameters α1, α2,
α3 and I1, I2, I3 depend on n and the primitive polynomial defining GF(2n). In any case, the mapping
Φα1,α2,α3 : I1 × I2 × I3 → (GF(2n))×, where

Φα1,α2,α3(i1, i2, i3) := αi11 α
i2
2 α

i3
3 , (8)

must be injective. We also need to exclude (i1, i2, i3) = (0, 0, 0) to thwart a chosen-ciphertext attack
against XEX, as in the case of the original XEX∗.

OCB2 can be fixed by properly setting the above index vector (i1, i2, i3) used for the last message
block and the tag generation, where both use b = 0 (XE). We detail possible instantiations for some
concrete values of n.

Case of n = 128. Rog04 showed that, when GF(2128) = GF(2)[x]/(x128 +x7 +x2 +x+1), the index set
(α1, α2, α3) = (2, 3, 7) and the domain I1 × I2 × I3 = {−2108, . . . , 2108} × {−27, . . . , 27} × {−27, . . . , 27}
yield a secure instance of XEX∗. Therefore, we can change EE in Fig. 1 as follows:

line 5: Pad← E(2m−13L⊕ len(M [m])),
line 9: T ← E(2m−13 · 7L⊕Σ).

Alternatively, we could use Pad← E(2m−17L⊕ len(M [m])) in line 5. DE is changed accordingly.

Case of n = 64. When GF(264) = GF(2)[x]/(x64 +x4 +x3 +x+1), the index set (α1, α2, α3) = (2, 3, 11)
and the domain I1 × I2 × I3 = {−244, . . . , 244} × {−27, . . . , 27} × {−27, . . . , 27} yield a secure setting as
shown by Rog04. The element 7 ∈ GF(264) cannot be used because 264 = 32 · 7 holds over GF(264).
Similarly to the case of n = 128, we can change EE in Fig. 1 as follows:

line 5: Pad← E(2m−13L⊕ len(M [m])),
line 9: T ← E(2m−13 · 11L⊕Σ).

Alternatively, we could use Pad ← E(2m−111L ⊕ len(M [m])) in line 5, and the decryption is changed
accordingly.

Generalizing the above two cases, we define a fix of OCB2, called OCB2ff, in Fig. 13. Assuming |I1| is
sufficiently large, OCB2ff needs at least {0, 1, 2, 3, 4}× {0, 1} ⊆ I2 × I3. Similarly to OCB2f, OCB2ff can
be interpreted as a mode of TBC, which we call ΘCB2ff as described in Fig. 14. ΘCB2ff equals to OCB2ff
when the inner TBC Ẽ is XEX∗. Since the tweak spaces of XE and XEX in OCB2ff are disjoint, the
adversary against XEX∗ can simulate the privacy and authenticity games of ΘCB2ff without violating
the tag-respecting rule. Therefore, we can prove the security of OCB2ff by using the hybrid argument.
We remark that the proof is similar to that of OCB2f, although it is not identical due to the difference
in the last block encryption; in OCB2f, the last block encryption is not explicitly separated (by tweaks)
from the non-last block encryptions, while OCB2ff explicitly separates them.

The security bounds are the same as OCB2f. We present them for completeness:
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Algorithm OCB2ff.EE(N,A,M)

1. L← E(N)
2. (M [1], . . . ,M [m]) n←M
3. for i← 1 to m− 1
4. C[i]← αi1L⊕ E(αi1L⊕M [i])
5. Pad← E(αm−1

1 · α2L⊕ len(M [m]))
6. C[m]←M [m]⊕ msb|M [m]|(Pad)
7. Σ ← C[m] ‖ 0∗ ⊕ Pad
8. Σ ←M [1]⊕ · · · ⊕M [m− 1]⊕Σ
9. T ← E(αm−1

1 · α2 · α3L⊕Σ)
10. if A 6= ε then T ← T ⊕ PMACE(A)
11. T ← msbτ (T )
12. return (C, T )

Algorithm OCB2ff.DE(N,A,C, T )

1. L← E(N)
2. (C[1], . . . , C[m]) n← C
3. for i← 1 to m− 1
4. M [i]← αi1L⊕ E−1(αi1L⊕ C[i])
5. Pad← E(αm−1

1 · α2L⊕ len(C[m]))
6. M [m]← C[m]⊕ msb|C[m]|(Pad)
7. Σ ← C[m] ‖ 0∗ ⊕ Pad
8. Σ ←M [1]⊕ · · · ⊕M [m− 1]⊕Σ
9. T ∗ ← E(αm−1

1 · α2 · α3L⊕Σ)
10. if A 6= ε then T ∗ ← T ∗ ⊕ PMACE(A)
11. T ∗ ← msbτ (T ∗)
12. if T = T ∗ return M
13. else return ⊥

Fig. 13. Algorithms of OCB2ff.

Algorithm ΘCB2ff.E
Ẽ

(N,A,M)

1. (M [1], . . . ,M [m]) n←M
2. for i = 1 to m− 1
3. C[i]← Ẽ∗,1,N,i,0,0(M [i])
4. Pad← Ẽ∗,0,N,m−1,1,0(len(M [m]))
5. C[m]←M [m]⊕ msb|M [m]|(Pad)
6. Σ ← C[m] ‖ 0∗ ⊕ Pad
7. Σ ←M [1]⊕ · · · ⊕M [m− 1]⊕Σ
8. T ← Ẽ∗,0,N,m−1,1,1(Σ)
9. if A 6= ε then T ← T ⊕ PMAC

Ẽ
(A)

10. T ← msbτ (T )
11. return (C, T )

Algorithm ΘCB2ff.D
Ẽ

(N,A,C, T )

1. (C[1], . . . , C[m]) n← C
2. for i = 1 to m− 1
3. M [i]← (Ẽ∗,1,N,i,0,0)−1(C[i])
4. Pad← Ẽ∗,0,N,m−1,1,0(len(C[m]))
5. M [m]← C[m]⊕ msb|C[m]|(Pad)
6. Σ ← C[m] ‖ 0∗ ⊕ Pad
7. Σ ←M [1]⊕ · · · ⊕M [m− 1]⊕Σ
8. T ∗ ← Ẽ∗,0,N,m−1,1,1(Σ)
9. if A 6= ε then T ∗ ← T ∗ ⊕ PMAC

Ẽ
(A)

10. T ∗ ← msbτ (T ∗)
11. if T = T ∗ return M
12. else return ⊥

Fig. 14. Algorithms of ΘCB2ff. Ẽ is any TBC which has the same arguments as XEX∗.

Theorem 2. Let A and A± denote the adversaries against AEAD in the privacy and authenticity games.
We assume A± uses qv decryption queries. We have

Advpriv
OCB2ffP

(A) = Advpriv
ΘCB2ffXEX∗P

(A) ≤
5σ2

priv

2n ,

Advauth
OCB2ffP

(A±) = Advauth
ΘCB2ffXEX∗P

(A±) ≤ 5σ2
auth
2n + 4qv

2τ ,

where σpriv and σauth are the number of queried blocks (the number of invocations of XEX∗) in the
privacy game and the authenticity game, respectively.

A proof is presented in Appendix D.

Further Options. We close this section by briefly describing some possible options when the tweak set
does not satisfy the condition for OCB2ff. Unlike the previous options, we need to do more than changing
two lines. First, if the function Φ in (8) does not have the third element α3 and {0, 1, 2, 3, 4, 5} ⊆ I2 holds,
where the latter condition is to implement PMAC, we modify the algorithm of OCB2ff.EE in Fig. 13 as
follows:

line 9: T ← E(αm−1
1 · α2

2L⊕Σ).
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We also modify the decryption accordingly, and moreover, the algorithm of PMACE in Fig. 15 should
be changed as follows:

line 2: V ← α3
2E(0n),

line 5: S ← S ⊕ E(αi1V ⊕A[i]),
line 8: Q← E(αa−1

1 · α2V ⊕ S),
line 9: else Q← E(αa−1

1 · α2
2V ⊕ S).

With these modifications, the security can be proved in the same manner as OCB2ff, at the cost of
additional change to PMAC. This fix works for n = 64 and n = 128 by using the concrete examples
by Rog04. However, to the best of our knowledge, it does not work with other masking functions for
n /∈ {64, 128} known in literature. For example, Minalpher [39] (a candidate of CAESAR competition)
defines a masking function for n = 256, and it does not have the third element and I2 = {0, 1, 2}. In
such a case, we can compensate for the lack of the elements of I2 by excluding 0n from the possible
nonce values. This separates the AE part from the MAC part in terms of the tweaks, and it allows to
instantiate a fix of OCB2 with a masking function with two elements α1, α2 and I2 = {0, 1, 2}.

In addition, we can interpret α1, α2, α3 as maps on {0, 1}n. When n = 1024, Granger et al. [14]
proposed word-based masking functions to define a permutation-based analog of OCB. Suppose that
(x0, . . . , x15) ∈ {0, 1}1024, where x0, . . . , x15 ∈ {0, 1}64. Let α : {0, 1}1024 → {0, 1}1024 be the linear map
such that

(x0, . . . , x15) 7→ (x1, x2, . . . , x15, (x0 ≪ 53))⊕ (x5 � 13)),
where (x ≪ `) denotes the left-rotation of x by ` bits and (x� `) denotes the left-shift of x by ` bits.
Accordingly, a binary 1024 × 1024 matrix M such that α(x) = M · x can be defined. Granger et al.
defined the mask functions and the corresponding domains as follows.

αi11 (x) := M i1 · x, αi22 (x) := (M + I)i2 · x, αi33 (x) := (M2 +M + I)i3 · x,
(i1, i2, i3) ∈ I1 × I2 × I3 = {0, 1, . . . , 21020 − 1} × {0, 1, 2, 3} × {0, 1},
Φα1,α2,α3 : (i1, i2, i3) 7→ αi11 ◦ α

i2
2 ◦ α

i3
3 ,

where I denotes the identity matrix. Although the above masking function cannot be used to instantiate
OCB2ff since {0, 1, 2, 3, 4} * I2, we can fix OCB2 with this masking function in a similar fashion, say by
seeing the pair (α2, α3) as the second element of the tweak that has 4 × 2 = 8 variations and adopting
the two-element solution described earlier.

Finally, Elephant family [7] from the round 2 of NIST Lightweight Cryptography Standardization
project22 also introduces a set of word-based masking functions for n ∈ {160, 176, 200}. Their masking
function does not have the third element α3 and I2 = {0, 1, 2}, thus we have to use the same technique
as in the case of Minalpher.

10 Conclusions

We have presented practical forgery and decryption attacks against OCB2, a high-profile ISO-standard
authenticated encryption scheme. This was possible due to the discrepancy between the proof of OCB2
and the actual construction, in particular the interpretation of OCB2 as a mode of a TBC which combines
XEX and XE. While the latest OCB version, OCB3, has a superior software performance than the
previous versions, and is clearly recommended by the designers, we believe OCB2 is still quite influential
for its simple description and the sophisticated modular design based on a TBC. Our attacks show that,
while the approach introduced by Rog04 is invaluable, we could not directly derive a secure AE from it
without applying a fix.

We comment that, due to errors in proofs, ‘provably-secure schemes’ sometimes still can be broken,
or schemes remain secure but nevertheless the proofs need to be fixed. Even if we limit our focus to AE,
we have many examples for this, such as NSA’s Dual CTR [37,11], EAX-prime [28], GCM [22], and some
of the CAESAR submissions [30,10,40]. We believe our work emphasizes the need for quality of security
proofs, and their active verification.
22 https://csrc.nist.gov/Projects/Lightweight-Cryptography
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A Brief History of This Paper

A frequent question we have received is how we came to find the flaws, and how they lead to the
devastating attacks. The current article is based on three prior ones [16,31,20] that appeared in late 2018
on the IACR ePrint archive. That OCB2 might be flawed was first identified by the authors of [16] when
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Algorithm PMACE(A)

1. S ← 0n
2. V ← 32E(0n)
3. (A[1], . . . , A[a]) n← A
4. for i← 1 to a− 1
5. S ← S ⊕ E(2iV ⊕A[i])
6. S ← S ⊕A[a] ‖ 10∗
7. if |A[a]| = n
8. Q← E(2a3V ⊕ S)
9. else Q← E(2a32V ⊕ S)

10. return Q

Algorithm PMAC
Ẽ

(A)

1. S ← 0n
2. (A[1], . . . , A[a]) n← A
3. for i← 1 to a− 1
4. S ← S ⊕ Ẽ∗,0,0n,i,2(A[i])
5. S ← S ⊕A[a] ‖ 10∗
6. if |A[a]| = n

7. Q← Ẽ∗,0,0
n,a,3(S)

8. else Q← Ẽ∗,0,0
n,a,4(S)

9. return Q

Fig. 15. Left: The algorithm PMACE for the use in OCB2. Right: A TBC-based PMAC, PMAC
Ẽ
.

they re-examined the proofs of OCB2 for educational purposes and searched for potential improvements.
Instead they came to find a seemingly tiny crack in the proof that they first tried to fix as they strongly
believed OCB2 was a secure design, but after several tries they ended up with existential and (near-
)universal forgeries. Only two weeks after these findings became public (in [16]), the author of the second
ePrint article [31] announced an IND-CCA vulnerability and first steps towards plaintext recovery, and
again three days later, the author of the third ePrint article [20] announced full plaintext recovery. This
series of happenings is a good example of “attacks only get better” and how seemingly minor error
conditions can rapidly grow to nullify the security of a renowned scheme.

B Left-out Details of OCB2

We complete our OCB2 description from Sec. 3 by specifying the details of the PMAC and len functions.
For the former see Fig. 15. The latter takes a string X ∈ {0, 1}≤n and encodes its lengths |X| as per
len(X) = 0n−8‖`X , where `X denotes the standard binary encoding of |X|. For example, len(0n) for
n = 128 is 0120107.

C Proof of OCB2f

We first prove the privacy bound. Let Advcpa
PMAC̃

P
,R(A) denote the PRF advantage of PMACP̃ for CPA-

adversary A. Rog04 showed that it is bounded by 0.5q2/2n for A with q queries. Then we have

Advpriv
OCB2fP(A) = Advpriv

ΘCB2fXEX∗P
(A)

≤ Advtprp
XEX∗P

(B) + Advpriv
ΘCB2f̃

P
(A)

≤ Advtprp
XEX∗P

(B) + Advcpa
PMAC̃

P
,R(C) + Advpriv

ΘCB2f′
P̃

(A) (9)

≤
4.5σ2

priv

2n +
0.5σ2

priv

2n + 0,

for B and C using σpriv CPA-queries. Here, the first inequality follows from the fact that possible tweak
values of XE and XEX in OCB2f are distinct and A is tag-respecting. The last inequality follows from (7)
and the aforementioned bound of PMAC, and that the last term of (9) is zero as well as ΘCB2 as shown
by Rog04.

For the authenticity bound, we have

Advauth
OCB2fP(A±) = Advauth

ΘCB2fXEX∗P
(A±)

≤ Advtsprp
XEX∗P

(B±) + Advcpa
PMAC̃

P
,R(C) + Advauth

ΘCB2f′
P̃

(A±) (10)

≤ 4.5σ2
auth

2n + 0.5σ2
auth

2n + qv

(
2
2τ + 2

2n

)
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for B± using σauth CCA-queries and C± using σauth CPA-queries. Here, the first inequality follows from
the same reason as the case of privacy bound, and the second follows from an improved CCA bound of
XEX∗ [29] and PMAC bound.

All that remains is to prove thatAdvauth
ΘCB2f′

P̃

(A±) (the last term of (10)) is at most qv(2/2n+2/2τ ). We

first prove the case of qv = 1. Let (Ni, Ai,Mi, Ci, Ti) for i = 1, . . . , q be the tuples obtained by q encryption
queries and let (N ′, A′, C ′, T ′) be the decryption query. Let T ∗ denote the valid tag corresponding to
(N ′, A′, C ′). Without loss of generality, we assume the decryption query is made after all the encryption
queries. We need to consider the following cases for (N ′, A′, C ′, T ′).

1. N ′ /∈ {N1, . . . , Nq}
Since the tag (T ∗) computation is done by TURP taking a new tweak, T ∗ is completely random.
Thus the forging probability is 1/2τ .

2. 1 ≤ ∃α ≤ q, N ′ = Nα, C ′ = Cα, A′ 6= Aα
Let |C ′|n = |Cα|n = mc. We have sub-cases:

(a) Let A′ = ε and Aα 6= ε. Then

T ∗ = msbτ (P̃
∗,0,Nα,mc,1(Σα)) = Tα ⊕ msbτ (R(Aα))

holds. The adversary has to guess msbτ (R(Aα)) to forge T ∗. Thus the forging probability is 1/2τ .
(b) Let A′ 6= ε, A′ = Aj for some j ∈ {1, . . . , q} and Aj 6= Aα. We have

T ∗ = msbτ (P̃
∗,0,Nα,mc,1(Σα)⊕ R(Aj)).

To correctly guess T ∗, the adversary needs to guess msbτ (R(Aj)), thus the forging probability is
1/2τ .

(c) Let A′ 6= ε and A′ /∈ {A1, . . . , Aq}. We have

T ∗ = msbτ (P̃
∗,0,Nα,mc,1(Σα)⊕ R(A′)).

The same as (b): the adversary needs to guess msbτ (R(A′)), thus the forging probability is 1/2τ .
3. 1 ≤ ∃α ≤ q, N ′ = Nα, C ′ 6= Cα, |C ′|n = |Cα|n = mc

In this case, the adversary learns Tα = msbτ (P̃
∗,0,N ′,mc,1(Σα) ⊕ R(Aα)) from encryption queries.

The TURP P̃
∗,0,N ′,mc,1 is invoked again at the decryption query to produce T ∗. The case A′ 6= Aα

can be analyzed in the same way as Case 2. Thus we assume A′ = Aα in this case. Let Σ∗ and
M∗ denote the valid values of the checksum and plaintext corresponding to (N ′, C ′). We define
Zα := (Nα, Aα,Mα, Cα, Tα), and we can bound the forging probability as follows:

Pr[T ′ = T ∗|Zα] ≤ Pr[T ′ = T ∗|Σ∗ 6= Σα, Zα] + Pr[Σ∗ = Σα|Zα] (11)

(a) For 1 ≤ ∃i ≤ mc and ∀j ∈ {1, . . . ,mc} \ {i}, we assume C ′[i] 6= Cα[i], C ′[j] = Cα[j]. We obtain
Σ∗ 6= Σα because M∗[i] 6= Mα[i] holds, and M∗[j] = Mα[j] holds for all j ∈ {1, . . . ,mc} \ {i}.
From (11), we obtain the forging probability as follows.

Pr[T ′ = T ∗|Zα] ≤ Pr[T ′ = T ∗|Σ∗ 6= Σα, Zα] + Pr[Σ∗ = Σα|Zα]

≤ 2n−τ

2n − 1 ≤
2
2τ .

(b) For 1 ≤ ∃i < ∃j ≤ mc, we assume C ′[i] 6= Cα[i] and C ′[j] 6= Cα[j]. We also define ∆M [i] :=
M∗[i]⊕Mα[i] 6= 0n and ∆M [j] := M∗[j]⊕Mα[j] 6= 0n. As described above, we have

Pr[T ′ = T ∗|Zα]
≤ Pr[T ′ = T ∗|Σ∗ 6= Σα, Zα] + Pr[Σ∗ = Σα|Zα],
≤ Pr[T ′ = T ∗|Σ∗ 6= Σα, Zα] + max

∀δ∈{0,1}n
Pr[∆M [i]⊕∆M [j] = δ|Zα],

≤ 2n−τ

2n − 1 + 1
2n − 1 = 2n−τ + 1

2n − 1 ≤ 2
2τ + 2

2n .
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4. N ′ = Nα, C ′ 6= Cα, |C ′|n < |Cα|n
Let |C ′|n = mc′ and |Cα|n = mc. In this case, unlike ΘCB2, P̃

∗,1,N ′,mc′ ,0 is invoked to decrypt C ′[mc′ ],
while P̃

∗,1,N ′,mc′ ,0 is also used in an encryption query. Since the adversary knows P̃
∗,1,N ′,mc′ ,0(Mα[mc′ ]),

she can manipulate the last block of plaintext M∗[mc′ ] if Mα[mc′ ] = len(C ′[mc′ ]). Then she can
control the value of Σ∗. Nevertheless, she has to guess T ∗ without access to P̃

∗,0,N ′,mc′ ,1, which has
never been invoked in encryption, since mc′ 6= mc. Therefore, the forging probability is 1/2τ .

5. N ′ = Nα, C ′ 6= Cα, |C ′|n > |Cα|n
As above, the forging probability is 1/2τ .

From these five cases, the bound is 2/2τ + 2/2n for qv = 1. Finally, we apply the standard conversion
from single to multiple decryption queries [5] and obtain the bound qv (2/2τ + 2/2n) for qv ≥ 1. This
concludes the proof. ut

D Proof of OCB2ff

For the privacy bound, we have

Advpriv
OCB2ffP

(A) = Advpriv
ΘCB2ffXEX∗P

(A)

≤ Advtprp
XEX∗P

(B) + Advpriv
ΘCB2ff̃

P
(A)

≤ Advtprp
XEX∗P

(B) + Advcpa
PMAC̃

P
,R(C) + Advpriv

ΘCB2ff′
P̃

(A) (12)

≤
4.5σ2

priv

2n +
0.5σ2

priv

2n + 0,

for B and C using σpriv CPA-queries. Here, the first inequality follows since possible tweak values of XE
and XEX in OCB2ff are distinct and A is tag-respecting. The last inequality follows from (7) and the
bound of PMAC, and the last term of (12) is zero with the same reasoning as ΘCB2 shown by Rog04.

For the authenticity bound, we have

Advauth
OCB2ffP

(A±) = Advauth
ΘCB2ffXEX∗P

(A±)

≤ Advtsprp
XEX∗P

(B±) + Advcpa
PMAC̃

P
,R(C) + Advauth

ΘCB2ff′
P̃

(A±) (13)

≤ 4.5σ2
auth

2n + 0.5σ2
auth

2n + qv

(
2
2τ + 2

2n

)

for B± using σauth CCA-queries and C± using σauth CPA-queries. Note that the algorithm of ΘCB2ff′ is
obtained by replacing PMAC of ΘCB2ff with a URF R. Then the first inequality follows from the same
reason as the case of privacy bound, and the second follows from an improved CCA bound of XEX∗ [29]
and PMAC bound.

It remains is to prove that Advauth
ΘCB2ff′

P̃

(A±) (the last term of (13)) is at most qv(2/2n + 2/2τ ). We
first prove the case of qv = 1. We use the same case analysis as ΘCB2f.

1. N ′ /∈ {N1, . . . , Nq}
Since the tag (T ∗) computation is done by TURP taking a new tweak, T ∗ is completely random.
Thus the forging probability is 1/2τ .

2. 1 ≤ ∃α ≤ q, N ′ = Nα, C ′ = Cα, A′ 6= Aα
Let |C ′|n = |Cα|n = mc. The analysis of this case is almost the same as that of Case 2 in Appendix C
except for the indices of tweaks. We have sub-cases:

(a) Let A′ = ε and Aα 6= ε. Then

T ∗ = msbτ (P̃
∗,0,Nα,mc−1,1,1

(Σα)) = Tα ⊕ msbτ (R(Aα))

holds. The adversary has to guess msbτ (R(Aα)) to forge T ∗. Thus the forging probability is 1/2τ .
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(b) Let A′ 6= ε, A′ = Aj for some j ∈ {1, . . . , q} and Aj 6= Aα. We have

T ∗ = msbτ (P̃
∗,0,Nα,mc−1,1,1

(Σα)⊕ R(Aj)).

To correctly guess T ∗, the adversary needs to guess msbτ (R(Aj)), thus the forging probability is
1/2τ .

(c) Let A′ 6= ε and A′ /∈ {A1, . . . , Aq}. We have

T ∗ = msbτ (P̃
∗,0,Nα,mc−1,1,1

(Σα)⊕ R(A′)).

The same as (b): the adversary needs to guess msbτ (R(A′)), thus the forging probability is 1/2τ .
3. 1 ≤ ∃α ≤ q, N ′ = Nα, C ′ 6= Cα, |C ′|n = |Cα|n = mc

The analysis of this case is exactly the same as that of Case 3 in Appendix C. Thus the forging
probability can be evaluated as 2/2τ + 2/2n.

4. N ′ = Nα, C ′ 6= Cα, |C ′|n < |Cα|n
Let |C ′|n = mc′ and |Cα|n = mc. In the proof of ΘCB2f, we had to take care of the fact that the
adversary can control the last block of M∗ because the last block of C ′ is decrypted by TURP which
has been invoked in the α-th encryption query. In the case of ΘCB2ff, however, we do not have to
care such a case since TURP to decrypt C ′[mc′ ] takes a new tweak and the adversary cannot control
M∗[mc′ ] at all. Moreover, she has no information about P̃

∗,1,N ′,mc′−1,1,1
which produces T ∗, since

mc′ 6= mc. Therefore, the forging probability is 1/2τ .
5. N ′ = Nα, C ′ 6= Cα, |C ′|n > |Cα|n

As above, the forging probability is 1/2τ .

From these five cases, the bound is 2/2τ + 2/2n for qv = 1. Finally, we apply the standard conversion
from single to multiple decryption queries [5] and obtain the bound qv (2/2τ + 2/2n) for qv ≥ 1. This
concludes the proof. ut

E Code Example for Minimal Forgery Attack

1. Retrieve OCB2 reference code from http://web.cs.ucdavis.edu/~rogaway/ocb/code-2.0.htm
and AES reference code (rijndael-alg-fst.c).

2. Change the main routine of ocb.c to the following snippet:

int
main(void)
{

block nbits = {0};
block N = {0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15};
block K = {0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15};
byte Hatk[0]; /* any */
byte Matk[32] = {0};
byte Catk[32] = {0};
byte Hforge[0]; /* must be empty */
byte Cforge[16] = {0};
byte Mforge[16] = {0};
block T,Tatk,Tforge;
int res;
ocb_state *state;

/* Test for the minimal attack */
printf("Test for minimal attack \n");
state = ocb_init((byte *)"abcdefghijklmnop",
sizeof(T),sizeof(N),AES128);
memset(nbits,0,sizeof(block));
nbits[sizeof(block)-1] = 16 * 8; /* 128 bits */
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memcpy(Matk,nbits,sizeof(block));
printf("Encryption query:\n");
pbuf(N,16, " Nonce");
pbuf(Matk,32, " Plaintext");
pbuf(Hatk,sizeof(Hatk), " AD");
ocb_provide_header(state,Hatk,sizeof(Hatk));
ocb_encrypt(state,N,Matk,sizeof(Matk),Catk,Tatk);
pbuf(Catk,32, " Ciphertext");
pbuf(Tatk,16, " Tag");
printf("Decryption query (forgery):\n");
memcpy(Cforge, Catk, 16);
xor_block(Cforge, Cforge, nbits);
pbuf(N,16, " Forged Nonce (the same as encryption)");
pbuf(Hforge, sizeof(Hforge), " Forged AD (empty)");
pbuf(Cforge,16, " Forged Ciphertext");
memcpy(Tforge, Matk+16, 16);
xor_block(Tforge, Tforge, Catk+16);
pbuf(Tforge, 16, " Forged Tag");
ocb_provide_header(state,Hforge,sizeof(Hforge));
res = ocb_decrypt(state,N,Cforge,sizeof(Cforge),Tforge,Mforge);
ocb_zeroize(state);
printf("Tags match: %i.\n", res); /* 1 is "matched" */
pbuf(Mforge, sizeof(Mforge), " Forged Plaintext");
return 0;

}
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