
A Formal Approach to Secure Speculation
Kevin Cheang Cameron Rasmussen Sanjit A. Seshia Pramod Subramanyan

{kcheang,crasmussen,sseshia}@berkeley.edu spramod@cse.iitk.ac.in
University of California, Berkeley Indian Institute of Technology, Kanpur

Abstract—Transient execution attacks like Spectre, Meltdown
and Foreshadow have shown that combinations of microarchi-
tectural side-channels can be exploited to create side-channel
leaks that are greater than the sum of their parts. While both
hardware and software mitigations have been proposed against
these attacks, provable security has remained elusive.

This paper introduces a formal methodology for enabling
secure speculative execution on modern processors. We propose
a new class of information flow security properties called trace
property-dependent observational determinism (TPOD). We use
this class to formulate a secure speculation property. Our prop-
erty formulation and associated adversary models help formalize
the class of transient execution vulnerabilities. We demonstrate
applicability of our methodology by verifying secure speculation
for several illustrative programs.

I. INTRODUCTION

Recently discovered transient execution attacks like Spectre,
Meltdown and Foreshadow [1–13] have shown that side chan-
nel vulnerabilities are more exploitable than was previously
believed. While caches or branch predictors leaking informa-
tion is not exactly news [14–20] in 2019, Spectre is interesting
because it combines side channels to produce a leak that is
“greater than the sum of its parts.” A number of mitigations
have been proposed to these vulnerabilities [9–12, 21–25] and
many of these have been adopted into widely-used software
like the Linux kernel [26, 27], Microsoft Windows [28, 29]
and the Microsoft Visual Studio compilers and associated
libraries [23]. However, these mitigations are not provably
secure and in fact some, e.g. Spectre mitigations in Microsoft
Visual Studio, are known to be incomplete [30].

Transient execution attacks exploit microarchitectural side-
channels present in modern high-performance processors.
High-performance processors contain several microarchitec-
tural optimizations — e.g., branch prediction, data and instruc-
tion caching, out-of-order execution, and speculative memory
address disambiguation, to name just a few — in order to
execute programs more efficiently [31, 32]. Many of these
optimizations rely on the technique of speculation [33–36].
The processor uses a prediction structure to guess whether a
particular execution is likely to occur before its results are
available and speculatively executes as per the prediction. If
the prediction turns out to be wrong, architectural state –
which consists of register and memory values – is restored
to its value before speculative execution started and execution
restarts along the correct path. In many cases, it is possible
to build predictors that mostly guess correctly and speculation
leads to huge performance and power benefits.

It is important to emphasize that when misspeculation is
resolved, only architectural state is restored while microarchi-
tectural state, such as cache and branch predictor state, is not.
Transient execution attacks exploit this fact by mistraining a
prediction structure to speculatively execute vulnerable wrong-
path instructions and exfiltrate confidential information by ex-
amining the microarchitectural side-effects of misspeculation.

The above leads to two obvious templates for preventing
these vulnerabilities: (i) do not speculate, or (ii) do not leak
information through microarchitectural side channels. Many
mitigations do indeed take the first approach by turning off
speculation in a targeted manner [9, 10, 21, 24, 26–29].
While most of these mitigations were developed through
careful manual analysis of known exploitable vulnerabilities,
automated tools for Spectre mitigation also take this ap-
proach [23]. Unfortunately, the latter have been found to be
incomplete [30] while the former do not come with provable
security guarantees. The larger point here is that there is
no formal methodology for reasoning about the security of
mitigations to transient execution vulnerabilities.

Some research has also taken the second approach of
attempting to close the exfiltration side-channel by ensur-
ing it does not leak any information at all. For instance
the Dynamically Allocated Way Guard (DAWG) closes the
cache side-channel by partitioning between protection do-
mains [37]. However, other side-channels (prefetchers, DRAM
row buffers, load store queues, etc.) potentially remain ex-
ploitable with these solutions and partitioning comes with a
significant performance penalty. Here too, it remains unclear
whether partitioning a few exfiltration channels is sufficient to
prevent all transient execution vulnerabilities.

Besides the lack of provable security, another problem
with current approaches are their large performance penalties.
In this context, it is noteworthy that recent versions of the
Linux Kernel have turned off certain Spectre mitigations by
default because performance slowdowns of up to 50% [38, 39]
were observed for certain workloads. We believe these high
overheads are a result of being unable to reason about se-
curity of the mitigations. If we could systematically reason
about security, it will be possible to develop more aggressive
mitigations that disable speculation in a very targeted manner
and have a much lower performance overhead.

All of the above points to the need for verification tech-
niques for secure speculation. This problem is most closely
related to the secure information flow problem, which has been
studied by a rich body of literature [40–46]. Unfortunately,
existing work on secure information flow is not sufficient to



precisely capture the class of transient execution vulnerabili-
ties. Specifically, it is important to note that traditional notions
of information flow security like non-interference [41] and ob-
servational determinism [42–44] are only satisfied when there
is no information flow from confidential state to adversary
observable state. In the context of Spectre, this would imply
no information flow from confidential memory locations to
microarchitectural side channels. For most programs of inter-
est, e.g., the Linux kernel and Microsoft Windows operating
system, all modern commercial processors do leak information
about confidential operating system state through microarchi-
tectural side channels like caches, prefetchers, DRAM row
buffers, etc. Therefore, traditional formulations of secure infor-
mation flow are always violated for such programs regardless
of whether they are vulnerable to transient execution attacks.

The above points to one of the key challenges in the
verification of secure speculation: formulating the right prop-
erty. We need a way of precisely capturing only the new
leaks introduced by the interaction of microarchitectural side
channels with speculation. These new leaks stand in contrast
to the previously known side-channel leaks which are already
captured via traditional notions of secure information flow
such as noninterference/observational determinism.

A second important challenge is coming up with a general
system and adversary model that can be used to reason about
the category of transient execution attacks, as opposed to
pattern-matching known vulnerabilities. Thirdly, we need a
verification methodology that can be used to prove that specific
programs satisfy secure speculation.

In this paper, we address each of the above challenges.
We introduce a formal methodology for reasoning about
security against transient execution attacks. Our approach is
based on the formulation of a new class of information flow
security properties called trace property-dependent observa-
tional determinism (TPOD). These properties, an extension of
observational determinism, are defined with respect to a trace
property and intuitively TPOD captures the following notion
of security: does violation of the trace property introduce new
counterexamples to observational determinism?

We use TPOD to reason about the security of software-based
Spectre mitigations. For this, we present an assembly inter-
mediate representation (AIR) into which machine code can be
lifted and introduce speculative operational semantics for this
AIR. We introduce a general adversary that captures transient
execution attacks, and define a secure speculation property
against this adversary as an instance of TPOD. We verify
secure speculation in an automated fashion using bounded
model checking and induction in the UCLID5 verification
tool [47, 48] on a suite of small but illustrative benchmarks,
several of which are from the literature on Spectre mitiga-
tions [30].

A. Contributions

This paper’s contributions are the following.
• We introduce a novel methodology for reasoning about

the security of microarchitectural speculation mecha-

nisms. Our methodology can prove that a program is
secure against transient execution vulnerabilities.

• We introduce a new class of information-flow security
properties called trace property-dependent observational
determinism. This class of properties allows us to reason
about information leaks that occur due to interactions
between microarchitectural mechanisms.

• We introduce a speculative operational semantics for an
assembly intermediate representation, an adversary model
for transient execution attacks over this representation and
a secure speculation property. Violations of the property
correspond to transient execution vulnerabilities.

• We demonstrate our methodology by automatically prov-
ing secure speculation for an suite of illustrative pro-
grams.

The rest of this paper is organized as follows. Section II
presents an overview of transient execution attacks. Sec-
tion III reviews observational determinism and introduces trace
property-dependent observational determinism. Section IV de-
scribes the assembly intermediate representation and specula-
tive operational semantics for it. The adversary model and
the secure speculation property are described in Section V.
Sections VI and VII present our verification approach and
case studies. Section VIII reviews related work and Section IX
provides some concluding remarks.

II. OVERVIEW

In this section, we present an overview of transient execu-
tion vulnerabilities as exemplified by Spectre and review the
verification challenges posed by these vulnerabilities.

A. Introduction to Transient Execution Attacks

Transient execution attacks involve two components: an
untrusted component (the attacker) who interacts with a trusted
component (the victim) over some communication interface.
The attacker exfiltrates confidential information from the vic-
tim by exploiting microarchitectural artifacts of misspeculation
in high-performance processors. As shown in Figure 1, a
transient execution attack has four stages. We explain these
four stages using the code snippet shown in Figure 3(a), which
is vulnerable to Spectre variant 1.

(S1) Prepare: In the first stage, the attacker prepares the
exfiltration side channel and mistrains the branch predictor in

S1: prepare exfiltration
channel, branch predictors

S2: invocation of victim
(trusted) code

S3: attacker triggered
misspeculation

S4: extract secret from
exfiltration channel

Figure 1: Four Stages of a Speculative Execution Attack.
Execution of untrusted code is shown in red, while trusted
code is in blue. We show the attacker-triggered misspeculation
in the trusted code in the violet dotted box.



order to bring the system into a vulnerable state. A commonly
used exfiltration side channel is the cache. In this context,
preparation refers to priming the cache by executing load/store
instructions with effective addresses that are stored in the
same cache sets as the victim data. One way to mistrain the
branch predictor is to repeatedly execute the victim code with
carefully chosen input arguments so that predictor learns that
a particular branch should always be taken (or not taken).

(S2) Invocation: In the second stage, the attacker invokes
victim code with carefully chosen input arguments to trigger
misspeculation. This invocation occurs over some commu-
nication interface between the untrusted and trusted code.
One such interface is through system calls and returns; here
the attacker is an untrusted user-mode process while the
victim is the operating system kernel. Another example in the
context of browser-based sandboxing, e.g. Native Client [49],
would be function calls and returns. The attacker is untrusted
code running within the sandbox while the victim is NaCl’s
trusted API. Many other vulnerable interfaces exist: hypercalls,
enclave entry, software interrupts, etc. The victim may not
even be explicitly invoked: implicit invocation is possible by
mistraining the branch predictor or by causing a hardware
interrupt to occur! For simplicity, this paper focuses on a
function call/return interface but our techniques are easily
generalized to other interfaces.

(S3) Exploitable Misspeculation: The victim code now
executes. At some point it will misspeculate in an attacker-
controlled manner resulting in the execution of “wrong path”
instructions. These wrong path instructions update specula-
tive architectural state – register and memory values – and
microarchitectural state including caches, branch predictors
and prefetchers. Eventually the wrong path is resolved and its
instructions are flushed. Speculative updates to architectural
state (registers and memory) are flushed, but microarchitec-
tural state (e.g., cache updates) is not restored.

While many past attacks have exploited microarchitectural
side channels to extract confidential data [14–20], the differ-
ence with transient execution vulnerabilities is that the latter
only manifest due to misspeculation in the processor. Even
programs whose architectural (non-speculative) execution is
carefully designed to not have any side-channel leaks could
be vulnerable to transient execution attacks.

(S4) Exfiltration: Finally, control returns to the attacker who
examines microarchitectural side-channel state to exfiltrate
confidential data from the victim. In cache-based attacks, this
involves probing the cache in order to infer secrets.

B. Spectre Variants and Associated Verification Challenges

We now describe the Spectre variant 1 vulnerability and
a few modifications to it as exemplars of transient execution
attacks. We use this discussion to motivate the research chal-
lenges posed by transient execution attacks. While we focus on
Spectre variant 1 for ease of exposition, the research questions
raised here apply to all other transient execution attacks.

We discuss the four code snippets shown in Figure 3. In
each of the snippets, the vulnerable victim function is foo.

This function is trusted but is invoked by an untrusted attacker
with an arbitrary attacker chosen argument i. foo has access
to two arrays: a1 and a2. Note that any architectural execution
of these functions should never see accesses to a1[i] for i
≥ N. Therefore, one might expect that no information could
possibly leak about these values in the array through any side-
channel. As we will see, the Spectre attack shows how these
values can be inferred by a clever attacker.

Attacker primes cache, mistrains branch predictor(S1)

A . . . . . . B . . .

Invoke victim code: call foo(N+ 2)(S2)

A . . . . . . B . . .

Exploitable misspeculation: predict taken on if(i < N)(S3)

A . . . . . . B . . .

load v = a1[i]

A a1[i] . . . B . . .

load a2[v ∗ S]

a2[0] a1[i] . . . B . . . A a1[i] . . . a2[S] . . .

v == 0? v == 1?

Squash misprediction
(note cache unchanged)

a2[0] a1[i] . . . B . . . A a1[i] . . . a2[S] . . .

Return to caller (attacker)

a2[0] a1[i] . . . B . . . A a1[i] . . . a2[S] . . .

Attacker probes A and B in cache to infer a1[N+ 2](S4)

Figure 2: Cache state evolution in Spectre variant 1. The rect-
angular boxes show the addresses that are cached. Untrusted
accesses are red while accesses by trusted code are blue. For
simplicity, we show the attack on a direct-mapped cache.

1) Spectre Variant 1: Figure 3a shows a snippet of code that
demonstrates vulnerability to the Spectre variant 1 attack [2,
3]. To help explain the vulnerability, we show how cache state
evolves during each stage of the attack in Figure 2.
S1 First, the attacker sets up (“primes”) the cache by bring-

ing two addresses A and B into the cache. These addresses
are carefully chosen so as to reside in the same cache
set as the subsequently-accessed addresses a2[0] and
a2[S] respectively. Next, the attack mistrains the pre-
dictor to speculate that the branch on line 4 will be taken.
Now, the attack is ready to be launched.

S2 The attacker invokes foo with an argument i = N + 2.



1 uint8_t a1[M];
2 uint8_t a2[P];
3 uint8_t foo(unsigned i) {
4 if (i < N) {
5 uint8_t v = a1[i];
6 return a2[v*S];
7 }
8 return 0;
9 }

(a) Spectre v1 vulnerability.

1 uint8_t a1[M];
2 uint8_t a2[P];
3 uint8_t foo(unsigned i) {
4 if (i < N) {
5 _mm_lfence();
6 return a2[a1[i]*S];
7 }
8 return 0;
9 }

(b) Fix for Spectre v1.

1 uint8_t a1[M];
2 uint8_t a2[P];
3 uint8_t foo(unsigned i) {
4 if (i < N) {
5 uint8_t v = a1[0];
6 return a2[v*S]+i;
7 }
8 return 0;
9 }

(c) Conditionally vulnerable variant.

1 uint8_t a1[M], a2[P];
2 uint8_t foo(unsigned i) {
3 if (i < N) {
4 uint8_t v = a1[i];
5 _mm_lfence();
6 return a2[v*S];
7 }
8 return 0;
9 }

(d) Another fix for Spectre v1.

Figure 3: Illustrative examples for verification of secure speculation. In all code snippets assume that M > N and that argument
i is an untrusted (low-security) input to the trusted (high-security) function foo.

S3 The argument i = N + 2 along with branch predictor
mistraining in S1 triggers a misspeculation on line 4.
This results in a1[N+2] and a2[a1[N+2]*S] being
speculatively brought into the cache. Eventually, the
processor realizes that the branch prediction was incorrect
and “undoes” modifications to architectural state, but
cache state is not restored.

S4 In the final stage, the attacker exploits the fact that the
address brought into the cache on line 6 depends on the
value (not address) of a1[N+2]. The attacker determines
this address by loading A and B. One of these will miss
in the cache and this timing channel allows the attacker
to infer the value of a1[N+2].

2) Fixes to Spectre Variant 1: As the leaks in Spectre are
due to interactions between the branch predictor and the cache,
a straightforward fix is to prevent speculation. We can make
the code in Figure 3a secure by inserting a load fence [9, 22] as
shown in Figures 3b and 3d. Figure 3b is easy to understand:
the load fence on line 5 ensures that no memory accesses are
made until the processor is sure that the branch will be taken.

Figure 3d is slightly more involved. The load fence executes
after the first load and before the second load. At first glance,
it may appear to be insecure, because a1[i] can still be
brought into the cache speculatively. However i is attacker-
chosen while the base address of a1 can also be inferred by
the attacker. Therefore, bringing a1[i] into the cache leaks
no additional information. Figure 3d is secure.

3) Conditional Vulnerability: Figure 3c presents an inter-
esting variation of Figure 3a. In this case, the first memory load
always accesses a1[0]. Since this value is leaked through the
cache (when i < N) even without misspeculation, it would
seem that this code is not vulnerable to transient execution

attacks. However, if N = 0, then a1[0] should not be
accessed. But the attacker can mistrain the branch predictor
to predict that the branch on line 4 is taken1 and then infer
the value of a1[0]. This code exhibits transient execution
vulnerabilities when N = 0 but not when N > 0!

4) Verification Challenges: In Figure 3a, information about
a1[i] leaked when i = N + 2. For this value of i,
foo should not have performed any memory/cache accesses.
This points to one challenge in verifying secure speculation:
the verification model needs to capture interactions between
microarchitectural side-channels to detect leaks.

Another challenge is demonstrated by Figures 3b, 3c and
3d. Identifying the vulnerability requires precise semantic
analysis of program behavior. Simply matching vulnerable
code patterns (e.g., branches followed by dependent loads)
results in both false positives and negatives.

Finally, it is important to note that the secure versions foo
in Figures 3b and 3d do not satisfy traditional notions of
information flow security [40]: noninterference [41] or ob-
servational determinism [42–44] because there is information
flow from a1 to the cache side-channel even if the function
is executed on a processor without a branch predictor.

III. SPECIFICATION USING TRACE PROPERTY-DEPENDENT
OBSERVATIONAL DETERMINISM

To address the challenges raised in § II-B4, this paper
formulates a secure speculation property that precisely cap-
tures transient execution vulnerabilities. Toward this end, in
this section we first review observational determinism [42–
44], a class of security properties that can capture certain

1One way to do this might be to exploit aliasing in branch predictor indexing
by training a different branch which maps to the same predictor index.



π0
1

π0
2

≈
L

. . .

. . .

≈
L

πi1

πi2

πi+1
1

πi+1
2

≈
L

πi+2
1

πi+2
2

≈
L

. . .

. . .

≈
L

πj1

πj2

≈
L

πj+1
1

πj+1
2

L

L

H1

H2

L

L

H1

H2

L . . .

L . . .

Figure 4: Illustrating observational determinism: low instructions are labelled L, while high instructions are labelled H1 and
H2, proof obligations are shown in green and assumptions are shown in blue.

notions of confidentiality. We then motivate and describe trace
property-dependent observational determinism: a novel class
of information flow properties that includes secure speculation.

A. Preliminaries

We model system behavior using traces which are a se-
quence of system states. The definition of system states is left
abstract for now. We refer to traces using π, π1, π2, etc. and
states by s, s0, s1, etc. The notation πi refers the ith element
of the trace; e.g., if π = 〈s0, s1, s2, s3, s4, . . .〉, then π3 = s3.

We consider concurrent systems consisting of two com-
ponents: an untrusted low-security component and a trusted
high-security component. These components interact via some
interface (e.g., system calls and returns) which prompt tran-
sitions from the low component to the high component or
vice versa. A typical confidentiality requirement is that the
low component must not be able to distinguish between secret
states of the high component.

1) Low-Equivalence of States: The above notion of indis-
tinguishability is expressed via low-equivalence of states. We
say that two states s and s′ are low-equivalent if they are
indistinguishable to the low component. This is denoted by
s ≈L s′. Like system states, the definition of low-equivalence
is left abstract for now. Low-equivalence is extended to traces
in the obvious way. Two traces are low-equivalent if all their
states are low-equivalent: π1 ≈L π2 if ∀i. πi1 ≈L πi2.

2) Modeling Computation: The system computes by iden-
tifying an operation to execute and transitioning to the next
state based on its transition relation  . If system state si can
transition to state sj , then (si, sj) ∈  , which we write as
si  sj . As with states, we leave  abstract for now.

The operation executed by the low component in a particular
state s is denoted by opL(s); opL(s) is ⊥ if the low compo-
nent is not being executed in state s. Similarly, the operation
executed by the high component in the state s is denoted by
opH(s). We will overload notation and refer to opL(π) and
opH(π) to denote the trace of operations executed by the low
and high components respectively in π.

B. Observational Determinism

A system satisfies observational determinism if for every
pair of traces of the system such that: (i) the two traces’ initial
states are low-equivalent, and (ii) the low operations executed
at every step of the two traces are identical, then the two traces
are also low-equivalent. Equation 1 shows this definition.

∀π1, π2. (1)(
π0
1 ≈L π0

2 ∧ opL(π1) = opL(π2)
)

=⇒
(
π1 ≈L π2

)
Observational determinism is shown pictorially in Figure 4.

The figure shows a pair of traces with their initial states being
low-equivalent. In subsequent steps, the low operations are
identical and this is denoted by labelling low transitions as L.
However, high operations may differ between the traces, so we
label its transitions as H1 and H2. Observational determinism
holds if every corresponding pair of states in these two traces
are low-equivalent. A violation of observational determinism is
some sequence of low operations that can distinguish between
some two secret states of the high component.

1) Limitations of Observation Determinism for Secure
Speculation: As a strawman proposal, consider an observa-
tional determinism property that attempts to capture secure
speculation by requiring that the trace of memory accesses
by function foo in Figure 3a be identical for all pairs of
invocations where the untrusted argument i is equal.

Two such pairs of traces are shown in Figure 6. N=4 in both
pairs; in (a), i=0 and the program does not misspeculate while
in (b), i=5 and the program misspeculates. The values v1 and
v2 correspond to the confidential data stored at the location
a1[i]. We see that the property is violated in (b) as the
traces of memory addresses differ if v1 6= v2. This violation is
due to the transient execution vulnerability. It is also violated
in (a) because the program leaks a1[i] even though there
is no misspeculation. The larger point is that observational
determinism can capture transient execution vulnerabilities
only if the program satisfies the observational determinism
property – has zero violations of the property – in the absence
of misspeculation. Most programs of interest (e.g., the Linux
kernel) do not satisfy such a property. Applying the strawman
methodology to these programs results in a flood of coun-
terexamples to observational determinism that are completely
unrelated to speculation, rendering the methodology useless.

We wish isolate violations of observational determinism
solely caused by the satisfaction/violation of a particular
property of the trace (e.g., misspeculation). As noted above,
observational determinism does not allow us to do this gen-
erally for different programs.2 In the following, we capture
this security requirement in the form of a 4-safety property to
isolate these trace property-dependent violations.

2We explain this further in Section VI.



π0
1

π0
2

≈
L

. . .

. . .

≈
L

πi1

πi2

πi+1
1

πi+1
2

≈
L

πi+2
1

πi+2
2

≈
L

. . .

. . .

≈
L

πj1

πj2

≈
L

πj+1
1

πj+1
2

L

L

H1

H2

L

L

H1

H2

L . . .

L . . .

π0
3

π0
4

≈
L

. . .

. . .

≈
L

πi3

πi4

πi+1
3

πi+1
4

≈
L

πi+2
3

πi+2
4

≈
L

. . .

. . .

≈
L

πj3

πj4

≈
L

πj+1
3

πj+1
4

L

L

H1

H2

L

L

H1

H2

L . . .

L . . .

π1, π2 ∈ T

π3, π4 6∈ T

Figure 5: Illustrating trace property-dependent observational determinism. As in Figure 4 low instructions are labelled L, while
high instructions are labelled H1 and H2, proof obligations are shown in green and assumptions are shown in blue.

4

4

5

a1

5

a1

6

a2 + v1 · S

6

a2 + v2 · S

8

8

4

4

5

a1 + 5

5

a1 + 5

6

a2 + v1 · S

6

a2 + v2 · S

8

8

foo(0) foo(5)

Figure 6: Illustrating the strawman observational determinism
property for Figure 3a. Numbers within each state refer to
program counter values (shown as line numbers). Labels above
each state indicates the data memory address accessed (if any).
States shown in dotted circles are specuative states.

C. Trace Property-Dependent Observational Determinism

In a processor that never misspeculates – either because
it does not have a branch predictor or because the branch
predictor is perfect – there is no information leakage due
to transient execution. Therefore, finding transient execution
vulnerabilities is equivalent to finding information leaks that
would not have occurred in the absence of misspeculation.

1) Definition of TPOD: To formulate the above notion
of information leakage, we introduce a class of information
flow properties called trace property-dependent observational
determinism (TPOD), a hyperproperty over four traces that is
defined with respect to a trace property. Let the four traces be
π1, π2, π3, π4, and the trace property T .

Suppose the following assumptions hold:
1) traces π1 and π2 satisfy the trace property T ,
2) traces π3 and π4 do not satisfy the trace property T ,
3) all four traces execute the same low operations,
4) traces π3 and π4 execute the same high operations as π1

and π2 respectively,
5) traces π1 and π2 are low-equivalent and the initial states

of π3 and π4 are low-equivalent.
Then, TPOD is satisfied if π3 and π4 are low-equivalent. High

operations in π1, π3 and π2, π4 respectively must be identical;
they are not necessarily identical in π1, π2 or π3, π4.

∀π1, π2, π3, π4.
π1 ∈ T ∧ π2 ∈ T ∧ π3 6∈ T ∧ π4 6∈ T =⇒
opL(π1) = opL(π2) = opL(π3) = opL(π4) =⇒
opH(π1) = opH(π3) ∧ opH(π2) = opH(π4) =⇒
π1 ≈L π2 ∧ π0

3 ≈L π0
4 =⇒

π3 ≈L π4 (2)

TPOD is shown in Equation 2 and depicted in Figure 5.3

A violation of TPOD corresponds to a sequence of low
operations that were unable to distinguish between high states
when the trace property T was satisfied, but are able to
distinguish between high states when T is not satisfied. In
other words, violation of the trace property T introduced a
new counterexample to observational determinism.

2) Refinement and TPOD: In general, hyperproperties may
not be preserved by refinement [43]. However, as we show
below TPOD is subset-closed: if any set of traces satisfies
TPOD, then every subset of this set also satisfies TPOD.

Lemma 1: Trace property-dependent observational deter-
minism is a subset-closed hyperproperty.

Subset-closed hyperproperties are important because they
are preserved by refinement [40]. This means that one can
prove TPOD on an abstract system, and through iterative
refinement show that TPOD holds on a concrete system that
is a refinement of the abstract system. Therefore, TPOD can
potentially be scalably verified on complex systems.

Corollary 1: Trace property-dependent observational deter-
minism is preserved by refinement.

A minor extension to template shown in Equation 2 is to
consider an antecedent trace property U that must be satisfied

3We follow the convention that the implication operator is right-associative.



by all traces. The trace property U may be used to model
constraints on valid executions.

∀π1, π2, π3, π4.
π1 ∈ U ∧ π2 ∈ U ∧ π3 ∈ U ∧ π4 ∈ U =⇒
π1 ∈ T ∧ π2 ∈ T ∧ π3 6∈ T ∧ π4 6∈ T =⇒
opL(π1) = opL(π2) = opL(π3) = opL(π4) =⇒
opH(π1) = opH(π3) ∧ opH(π2) = opH(π4) =⇒
π1 ≈L π2 ∧ π0

3 ≈L π0
4 =⇒

π3 ≈L π4 (3)

This version of TPOD is shown in Equation 3. This exten-
sion is also subset-closed and preserved by refinement

IV. FORMAL MODELING OF SPECULATION

We now turn to the problem of formulating and reasoning
about secure speculation. This requires the construction of a
system model that captures speculative execution. Toward this
end, this section describes an assembly intermediate represen-
tation and introduces speculative operational semantics for it.

A. System Model

Reasoning about secure speculation must be done using
assembly language instructions, not in a high-level language
because compiler optimizations may introduce branches where
none exist in the source program, or may eliminate branches
in the source program by turning them into conditional
moves. That said, reasoning about a specific instruction set
architecture (ISA) is cumbersome and gives little additional
insight into the fundamental causes of transient execution
vulnerabilities. Therefore, we present an assembly interme-
diate representation (AIR) that ISAs can be lifted into. We
model speculation over the AIR by introducing a speculative
operational semantics for it.4

〈program〉 ::= 〈instr〉*
〈instr〉 ::= 〈reg〉 := 〈exp〉

| 〈reg〉 := mem[〈exp〉]
| mem := mem[〈exp〉 → 〈exp〉]
| if 〈exp〉 goto 〈const〉
| goto 〈const〉
| specfence

〈exp〉 ::= 〈const〉 | 〈reg〉 | ♦u〈exp〉 | 〈exp〉 ♦b〈exp〉

Figure 7: The Assembly Intermediate Representation (AIR).
♦u and ♦b are typical unary and binary operators respectively.

4The AIR itself is based on the binary analysis platform (BAP) intermediate
language (IL) [50]; speculative operational semantics for it are novel. “Lifters”
from x86 and ARM binaries to BAP can be found at [51].

1) Assembly Intermediate Representation (AIR): The AIR
shown in Figure 7. A program is a list of instructions.
Instructions are one of the following types:

• updates to registers,
• loads from memory,
• stores to memory,
• conditional and unconditional jumps,
• speculation fences.

The first five types of instructions are standard. We introduce
a speculation fence instruction which causes the processor to
not fetch any more instructions until all outstanding branches
are resolved. The load fence instructions in Figures 3b and 3d
are modelled as speculation fences because the relevant aspect
of these fences for this paper is that they stop speculation.

Note that jump targets must be constants in AIR. This is
intentional and precludes the verification of programs using
indirect jumps and returns in the current version of our veri-
fication tool. We do this to simplify the operational semantics
for speculative execution. Modeling speculative execution of
indirect jumps and returns requires modeling indirect branch
predictors, branch target buffers and the return address stack.
Introducing these structures into our operation semantics is
conceptually straightforward but runs into scalability limita-
tions during verification. We plan to extend the operational
semantics to include these instructions while addressing scal-
ability in future work.5

CONST
∆, n ` c ⇓ c

REG
∆[n, r ] = v

∆, n ` r ⇓ v

UNOP
∆, n ` e ⇓ v′ ♦uv′ = v

∆, n ` ♦ue ⇓ v

BINOP
∆, n ` e1 ⇓ v1 ∆, n ` e2 ⇓ v2 v1♦bv2 = v

∆, n ` e1♦be2 ⇓ v

Figure 8: Semantics of expression evaluation

“Flattening” indirect jumps and returns into a sequence of
direct jumps is similar in principle to control-flow integrity
(CFI) checks [52, 53]. Since secure programs will likely
be implementing CFI anyway, we assert compilers can be
modified in straightforward ways to produce code without
indirect jumps and returns (with some performance cost).

2) Operational Semantics for AIR: In Figures 8 and 9,
we introduce operational semantics for speculative in-order
processors. We model speculation in the branch predictor for
direct conditional branches. Other sources of misspeculation
such as value prediction and memory address disambiguation
are not considered in this model. Extending the semantics to
include these is conceptually straightforward. However, this
could result in models that are difficult to analyze using auto-

5It is important to note that our exclusion of indirect jumps does not mean
our verifier leaves programs vulnerable to Spectre variant 2. In programs
without indirect branches, all indirect branch mispredictions will be redirected
at decode, long before execution or memory access.



REGISTERUPDATE

∆, n ` e ⇓ v ∆′ = ∆[(n, r)→ v] ρ = pc[n] ι = Π[ρ] pc′ = pc[n→ ρ+ 1]
ρ′ = pc′[n] ι′ = Π[ρ′] ω′ = ω.〈ρ,⊥〉 ¬resolve(n, β, pc)

Π,∆, µ, pc, ω, β, n, r := e  Π,∆′, µ, pc′, ω′, β, n, ι′

LOAD

∆, n ` e ⇓ a µ[n, a] = v ∆′ = ∆[(n, r)→ v] ρ = pc[n] ι = Π[ρ] pc′ = pc[n→ ρ+ 1]
ρ′ = pc′[n] ι′ = Π[ρ′] ω′ = ω.〈ρ, a〉 ¬resolve(n, β, pc)

Π,∆, µ, pc, ω, β, n, r := mem[e]  Π,∆′, µ, pc′, ω′, β, n, ι′

STORE

∆, n ` e1 ⇓ a ∆, n ` e2 ⇓ v µ′ = µ[(n, a)→ v] ρ = pc[n] ι = Π[ρ] pc′ = pc[n→ ρ+ 1]
ρ′ = pc′[n] ι′ = Π[ρ′] ω′ = ω.〈ρ, a〉 ¬resolve(n, β, pc)

Π,∆, µ, pc, ω, β, n, mem := mem[e1 → e2]  Π,∆, µ′, pc′, ω′, β, n, ι′

T-PRED

∆, n ` e ⇓ true mispred(n, β, pc) = false ρ = pc[n] ι = Π[ρ] pc′ = pc[n→ c]
ρ′ = pc′[n] ι′ = Π[ρ′] ω′ = ω.〈ρ,⊥〉 β′ = update(n, ρ, ι, β) ¬resolve(n, β, pc)

Π,∆, µ, pc, ω, β, n, if e goto c  Π,∆, µ, pc′, ω′, β′, n, ι′

T-MISPRED

∆, n ` e ⇓ true mispred(n, β, pc) = true ρ = pc[n] ι = Π[ρ] n′ = n+ 1
∀m, r. ∆′[m, r] = ITE(m = n′,∆(n, r),∆(m, r)) ∀m, a. µ′[m, r] = ITE(m = n′, µ(n, r),∆(m, r))
pc′ = pc[n′ → ρ+ 1, n→ c] ρ′ = pc′[n′] ι′ = Π[ρ′] β′ = update(n, ρ, ι, β) ¬resolve(n, β, pc)

Π,∆, µ, pc, ω, β, n, if e goto c  Π,∆′, µ′, pc′, ω′, β′, n′, ι′

NT-PRED

∆, n ` e ⇓ false mispred(n, β, pc) = false ρ = pc[n] ι = Π[ρ] pc′ = pc[n→ ρ+ 1]
ρ′ = pc′[n] ι′ = Π[ρ′] ω′ = ω.〈ρ,⊥〉 β′ = update(n, ρ, ι, β) ¬resolve(n, β, pc)

Π,∆, µ, pc, ω, β, n, if e goto c  Π,∆, µ, pc′, ω′, β′, n, ι′

NT-MISPRED

∆, n ` e ⇓ false mispred(n, β, pc) = true ρ = pc[n] ι = Π[ρ] n′ = n+ 1
∀m, r. ∆′[m, r] = ITE(m = n′,∆(n, r),∆(m, r)) ∀m, a. µ′[m, r] = ITE(m = n′, µ(n, r),∆(m, r))
pc′ = pc[n′ → c, n→ ρ+ 1] ρ′ = pc′[n′] ι′ = Π[ρ′] β′ = update(n, ρ, ι, β) ¬resolve(n, β, pc)

Π,∆, µ, pc, ω, β, n, if e goto c  Π,∆′, µ′, pc′, ω′, β′, n′, ι′

GOTO

ρ = pc[n] ι = Π[ρ] pc′ = pc[n→ c] ρ′ = pc′[n]
ι′ = Π[ρ′] ω′ = ω.〈ρ,⊥〉 β′ = update(n, ρ, ι, β) ¬resolve(n, β, pc)

Π,∆, µ, pc, ω, β, n, goto c  Π,∆, µ, pc′, ω′, β′, n, ι′

SPECFENCE
n′ = 0 ρ′ = pc[n′] ι′ = Π[ρ′] ¬resolve(n, β, pc)

Π,∆, µ, pc, ω, β, n, ι  Π,∆, µ, pc, ω, β, n′, ι′

RESOLVE
n′ = n− 1 ρ′ = pc[n′] ι′ = Π[ρ′] β′ = update(n, ρ, ι, β) resolve(n, β, pc)

Π,∆, µ, pc, ω, β, n, ι  Π,∆, µ, pc, ω, β′, n′, ι′

HAVOC
n = 0 ρ 6∈ Tρ pc′[n] = ρ ι = Π[ρ] ∀a. a 6∈ Uwr

µ =⇒ µ′[0, a] = µ[0, a]

Π,∆, µ, pc, ω, β, n, havoc (∆, mem[Uwr
µ ], β)  Π,∆′, µ′, pc′, ω, β′, n, ι

Figure 9: Operational Semantics for Statements in AIR.

mated verification tools because the verification engine would
need to explore exponentially more instruction orderings.

Machine state s is the tuple 〈Π,∆, µ, pc, ω, β, n, ι〉. Π is
the program memory: a map from program counter values to
instructions. ∆ and µ are the state of the registers and data
memory respectively while pc contains the program counter.
ω is the trace of program and data addresses accessed so far.
β is the branch predictor state, which we leave abstract in this
paper and ι is the instruction that will be executed next.

The main novelty in these semantics is modeling misspec-
ulation. n is an integer that represents speculation level: it

is incremented each time we misspeculate on a branch and
decremented when a branch is resolved. Speculation level 0
corresponds to architectural (non-speculative) execution. ∆, µ
and pc – registers, memory and program counter respectively
– are also indexed by the speculation level. ∆[n, r] refers to
the value of the register r at speculation level n. ∆[(n, r)→ v]
refers to a register state which is identical to ∆ except that
register r at speculation level n has been assigned value v. We
adopt similar notation for µ and pc.

Expression Semantics are shown in Figure 8. Expressions
are defined over the register state ∆. Notation ∆, n ` e ⇓ v



means that the expression e evaluates to value v given register
state ∆ at speculation level n. These are standard except for
the additional wrinkle of the speculation level.

Statement Semantics are shown in Figure 9. A transition
from the machine state s = 〈Π,∆, µ, pc, ω, β, n, ι〉 to the
machine state s′ = 〈Π′,∆′, µ′, pc′, ω′, β′, n′, ι′〉 is written as
〈Π,∆, µ, pc, ω, β, n, ι〉  〈Π′,∆′, µ′, pc′, ω′, β′, n′, ι′〉. We
now briefly describe the rules shown in Figure 9.

The REGISTERUPDATE rule models the execution of state-
ments of the form r := e, expression e is written to the
register r. This involves: (i) updating the value of register r
at speculation level n to have the value of the expression e:
∆′ = ∆[(n, r) → v], (ii) incrementing the pc at speculation
level n: pc′ = pc[n → ρ + 1] and (iii) appending 〈ρ,⊥〉
to the trace of memory addresses accessed by the program:
ω′ = ω.〈pc,⊥〉. The ⊥ in the second element of the tuple
indicates that no data memory access is performed by this
instruction. This rule is only executed when a branch is not
being resolved: ¬resolve(n, β, pc) and the next instruction to
be executed is ι′ = Π[ρ′] where ρ′ = pc[n].

The LOAD and STORE rules are similar. LOAD updates
the register state with value stored at memory location a
at speculation level n: v = µ[n, a] while STORE leaves
register state ∆ unchanged and updates memory address a
at speculation level n: µ′ = µ[(n, a) → v]. Both LOAD
and STORE append 〈ρ, a〉 to the trace of memory addresses
signifying accesses to program address ρ and data address a.
As with REGISTERUPDATE, these rules only apply when a
branch is not being resolved in this step: ¬resolve(n, β, pc).

The T-PRED rule applies when a conditional jump
if e goto c should be taken and is also predicted taken. In the
semantics, we model misspeculation through an uninterpreted
function mispred(n, β, pc) where β is the branch predictor
state (left abstract in our model), n is the speculation level
and pc is a map from speculation levels to program counter
values. This rule only applies when mispred evaluates false.
The rule sets the program counter at speculation level n to c:
pc′ = pc[n → c] and updates the branch predictor state β′

using the uninterpreted function update. Just like the other
rules discussed so far, this applies only when the predicate
resolve does not hold.

The T-MISPRED rule applies when a conditional jump
if e goto c should be taken but is predicted not taken
(mispred evaluates to true). This rule changes system state in
the following ways. First, the speculation level is incremented:
n′ = n+ 1. Second, the state of the registers at level n in ∆
is now copied over to level n′ in ∆′ while all other levels
are identical between ∆ and ∆′. The memory state µ is also
modified in a similar way. The program counter at level n gets
the correct target c, while the program counter at level n′ gets
the mispredicted fall-through target ρ+1. Execution continues
at speculation level n′.

NT-PRED, NT-MISPRED handle the case when the condi-
tional branch should not be taken. These are similar to T-
PRED and T-MISPRED. GOTO applies to direct jumps. Note
we do not consider misprediction of direct jumps as they have

constant targets and will be redirected at decode.
The rule SPECFENCE resolves all outstanding speculative

branches by setting the speculation level back to zero. Note
that pc, ∆ and µ at level zero already have the “correct” values,
so nothing further needs to be done.

The rule RESOLVE applies when a mispredicted branch is
resolved. Resolution occurs when the uninterpreted predicate
resolve(n, β, pc) holds. At the time of resolution, branch
predictor state β′ is updated using the uninterpreted function
update and the speculation level n′ is decremented. As in
SPECFENCE, nothing else need be done as the other state
variables have the correct values at the decremented level.

Rule HAVOC will be described in § V-D.

V. FORMULATING SECURE SPECULATION

This section formulates the secure speculation property.
First, we formalize an adversary model that captures arbi-
trary transient execution attacks. Next, we present the secure
speculation property. Violations of this property correspond to
transient execution vulnerabilities.

A. Adversary Model

Recall system state s is the tuple 〈Π,∆, µ, pc, ω, β, n, ι〉6
and evolves according to the transition relation  from
Figure 9. As discussed in § III, the system has an untrusted
low-security component and a trusted high-security component
that execute concurrently. Our verification objective is to
prove that confidential states of a specified trusted program
are indistinguishable to an arbitrary untrusted program. This
verification task requires the definition of: (i) the trusted
program to be verified and the family of untrusted adversary
programs, (ii) confidential states of the trusted program, (iii)
how the adversary tampers with system state, and (iv) what
parts of state are adversary observable.

1) The Trusted and Untrusted Programs: We assume that
the trusted program resides in the set of instruction memory
addresses denoted by Tρ. The trusted program itself is defined
by Π[ρ] for each ρ ∈ Tρ. Every address ρ 6∈ Tρ is part of
the untrusted component and Π[ρ] is unconstrained for these
addresses to model all possible adversarial programs.

We assume that untrusted code can invoke trusted code
only by jumping to a specific entrypoint address EP ∈ Tρ.
Tρ, EP and instructions Π[ρ] for all ρ ∈ Tρ are known
to the adversary. Note that the adversary may speculatively
attempt to invoke addresses other than the entrypoint, only
the non-speculative invocations are restricted. Without such
an assumption, the adversary may be able to jump past
defensively placed instructions.

In the example shown in Figure 3b, Tρ contains all instruc-
tion addresses that are part of the function foo. The entrypoint
EP is the address of the first instruction in foo. Note that if
the adversary can directly jump to line 6 (i.e., skip the fence on
line 5), the program is vulnerable – this is why the restriction
on invocation of only the entrypoint is required.

6Note: We will use the notation s.field to refer to elements of the tuple.



Such restrictions are implemented in all typical scenarios:
system calls, software fault isolation, etc. To consider another
example, if we are verifying secure speculation for system
calls in an operating system kernel, Tρ contains all kernel text
addresses and the entrypoint EP is the syscall trap address.

Given the above definitions, the low operation executed in
a state s = 〈Π,∆, µ, pc, ω, β, n, ι〉 is opL(s)

.
= Π[pc[0]] if

pc[0] 6∈ Tρ and ⊥ otherwise. This definition refers to the non-
speculative state – we are looking at pc[0], not higher specula-
tion levels. The instruction being speculatively executed may
be different, and may in fact be from the trusted component.
This is important because we use opL to constrain adversary
actions to be identical across traces, and these constraints can
only refer to non-speculative state.

Finally, the trusted program must start off in some well-
defined initial state. For instance, global variables may need to
be initialized to specific values. We use the predicate initT (s)
to refer to a valid initial state of the trusted program.

2) Confidential States: The secret states that need to be
protected from an adversary are the values stored in memory
addresses a that belong to the set ST . For Figure 3, ST
contains all addresses that are part of the arrays a1 and a2.

All other addresses are public state. We will use PT to
denote the projection of the values stored at these public
addresses: PT (µ)

.
= λa. ITE(a 6∈ ST , µ[0, a],⊥).

The high instruction executed in a state is denoted instT (s)
and has the value s.Π[s.pc[0]] when pc[0] ∈ Tρ and ⊥
otherwise. The high operation executed in state s is defined
as a tuple of the high instruction and the public memory:
opH(s)

.
= 〈instT (s),PT (s.µ)〉. We include the values of

public memory in this tuple because the high-program may
be non-deterministic and we need to constrain the non-
determinism to be identical across certain traces.

3) General Adversary Tampering (G): The adversary G
tampers with system state by executing an unbounded number
of instructions to modify architectural and microarchitectural
state. Adversary tampering is constrained in only two ways.

1) (Conformant Store Addresses) For every non-
speculative state in which an untrusted store is executed,
the target address of the store must belong to the set of
adversary-writeable addresses: Uwr

µ . We denote a trace π
where every state satisfies this condition by the predicate
conformantStoreAddrs(π), defined as follows.

∀i. πi.n = 0 ∧ πi.pc[0] 6∈ Tρ =⇒
πi.ι = mem := mem[e1 → e2] ∧ πi.∆[0, e1] ⇓ a =⇒
a ∈ Uwr

µ

Constraining adversary stores is necessary in order to
prevent the adversary from changing the trusted pro-
gram’s architectural (non-speculative) state arbitrarily.

2) (Conformant Entrypoints) Non-speculative adversary
jumps to trusted code must target the entrypoint EP . A
trace π where every transition from untrusted to trusted

code satisfies this condition is denoted by the predicate
conformantEntrypoints(π). This is defined as follows:

∀i, j. i < j ∧ πi.n = πj .n = 0 =⇒
(∀k. i < k < j =⇒ πk.n 6= 0) =⇒
πi.pc[0] 6∈ Tρ ∧ πj .pc[0] ∈ Tρ =⇒
πj .pc[0] = EP

The above constraints says that if πi and πj are non-
speculative states, all states between πi and πj are
speculative, and πi is part of the untrusted component
while πj is part the trusted component, then πj must
necessarily be at the entrypoint. Note this does not pre-
clude speculative execution of “gadgets” in the trusted
code that do not begin at the entrypoint.

The condition conformant store addresses captures the fact
that the adversary cannot write to arbitrary memory locations.
Conformant entrypoints ensures that execution of the trusted
code starts at the entrypoint.

4) Conformant Traces: A trace π where: (i) π0 is a non-
speculative state and the trusted component has been initial-
ized: π0.n = 0 ∧ initT (π0), (ii) every state πi satisfies the
conformant stores condition and (iii) every pair of states πi and
πj , where i < j, satisfy the conformant entrypoints condition
is called a conformant trace, denoted by conformant(π).

conformant(π)
.
= π0.n = 0 ∧ initT (π0) ∧

conformantStoreAddrs(π) ∧
conformantEntrypoints(π) (4)

5) Adversary Observations: We model an adversary who
can observe all architectural state and most microarchitectural
state when executing; i.e. when n = 0 and pc[0] 6∈ Tρ.
Specifically, the adversary can observe the following:

1) non-speculative register values: ∆[0, r] for all r.
2) non-speculative values stored at all memory addresses

in the set Urd
µ : µ[0, a] for all a ∈ Urd

µ .
3) the trace of instruction and data memory accesses: ω.
4) the branch predictor state β.
The above implies that two states s =

〈Π,∆, µ, pc, ω, β, n, ι〉 and s′ = 〈Π,∆′, µ′, pc′, ω′, β′, n′, ι′〉
are low-equivalent, denoted s ≈L s′, iff (n = 0 ∧ pc[0] 6∈
Tρ) =⇒ (∀r. ∆[0, r] = ∆′[0, r]) ∧ (∀a. a ∈ Urd

µ =⇒
µ[0, a] = µ′[0, a]) ∧ ω = ω′ ∧ β = β′.

We do not allow the adversary to observe ∆[n, r] and µ[n, a]
for n > 0 because there is no way to “output” speculative
state except through a microarchitectural side-channel. These
side-channels are captured by the trace of memory accesses
ω which models leaks via caches, prefetches, DRAM and
well as other structures in the memory subsystem. The branch
predictor state β captures all leaks caused by the branch
predictor side-channel. Note that the adversary can observe
the non-speculative values stored in memory for the addresses
in the range Urd

µ , and non-speculative values of the registers
when adversary code is being executed.



B. Formalization of the Security Property

Using the above definitions, we are now ready to formalize
the secure speculation property, shown in Equation 5.

∀π1, π2, π3, π4.
conformant(π1) ∧ conformant(π2) =⇒
conformant(π3) ∧ conformant(π4) =⇒
∀i. ¬mispred(πi1.n, π

i
1.β, π

i
1.pc) =⇒

∀i. ¬mispred(πi2.n, π
i
2.β, π

i
2.pc) =⇒

∃i. mispred(πi3.n, π
i
3.β, π

i
3.pc) =⇒

∃i. mispred(πi4.n, π
i
4.β, π

i
4.pc) =⇒

opL(π1) = opL(π2) = opL(π3) = opL(π4) =⇒
opH(π1) = opH(π3) ∧ opH(π2) = opH(π4) =⇒
π1 ≈L π2 ∧ π0

3 ≈L π0
4 =⇒

π3 ≈L π4 (5)

This an instantiation of the TPOD property shown in Equa-
tion 3. The trace property T is satisfied when no misspecula-
tion occurs: π ∈ T ⇐⇒ ∀i. ¬mispred(πi.n, πi.β, πi.pc).7

The trace property U requires that all traces be conformant
as defined in Equation 4. This ensures we only search for
violations among traces representing valid executions of our
system/adversary model.

A violation of Equation 5 occurs when there exists a
sequence of adversary instructions such that traces π1 and π2
are low-equivalent, but π3 and π4 are not low-equivalent. In
other words, we have an information leak that only occurs on
a speculative processor; i.e. a transient execution vulnerability.

C. Illustrating Violation/Satisfaction of Secure Speculation

Let us consider the conditionally vulnerable Spectre variant
shown in Figure 3c. A quadruple of traces for this program
is shown in Figure 10a. Two calls to foo are made with
arguments i = 0 and i = 1. The two non-speculative
traces π1 and π2 do not execute the if statement and so
they have the same adversary observations (i.e., are low-
equivalent). However, traces π3 and π4 speculatively execute
the if statement and the adversary can observe differences
in the memory addresses corresponding to the second array
access: a2[v1 ∗ S] and a2[v2 ∗ S]. All traces have the same
adversary operations with one pair low-equivalent and non-
speculative while the other pair is not low-equivalent and
speculative. This is a violation of secure speculation.

Now consider the scenario when N > 0, say N = 1. This is
shown in Figure 10b. The key difference here is that the non-
speculative traces also make the second array access when
i = 0. The second memory access reads from the addresses
a2 + v1 ∗ S and a2 + v2 ∗ S in traces π1 and π2 respectively.
There are two scenarios possible. Either v1 = v2 or v1 6= v2.
Suppose v1 = v2, then traces π1 and π2 are low-equivalent,
but so are traces π3 and π4! Conversely, if v1 6= v2, then the

7Or equivalently in linear temporal logic: π |= �¬mispred.

π1 and π2 are not low-equivalent and the secure speculation
property holds vacuously.

D. Adversary Reduction Lemma

The general adversary’s tampering described in § V-A3
allows the adversary to execute an unbounded number of
arbitrary instructions. While this is fully general, it makes
automated reasoning unscalable. To address this problem, we
introduce a simpler “havocing adversary” H and prove that
this adversary is as powerful as the general adversary G.
H executes only one instruction that modifies non-

speculative state: havoc (∆, mem[Uwr
µ ], β). The semantics of

this instruction are shown in Figure 9; it sets the registers,
program counter, adversary writeable memory addresses and
branch predictor to unconstrained values (i.e. “havocs” them).

Lemma 2: Every sequence of si, . . . , sj with opL(sj) 6= ⊥
and sj .n = 0 for every i ≤ j ≤ k can be simulated by a single
havoc (∆, mem[Uwr

µ ], β) instruction.
The adversary reduction lemma lets us replace all sequences

of non-speculative instructions executed by the adversary with
havoc’s and helps scale verification. It is important to note
that we cannot replace instruction sequences which contain
speculative instructions because these may contain exploitable
transient execution gadgets.

E. Discussion and Limitations

An important implication of the secure speculation property
is that if a program satisfies Equation 5, then all observational
determinism properties where low-equivalence is defined over
ω, µ and β that hold for non-speculative execution of the
program also hold for speculative executions. For instance,
a tool like CacheAudit [54, 55] can be used to verify that
the cache accesses of a program are independent of some
secret. Note that even though a program’s non-speculative
execution may not leak information through cache (this is what
CacheAudit verifies) that does not mean that its speculation
execution will have the same properties. This is because
CacheAudit does not model speculative execution. However,
if we do prove Equation 5 for a program, then all properties
proven by tools like CacheAudit also apply to the program’s
speculative execution.

Our operational semantics are for in-order processors only.
Nevertheless, the secure speculation property can be used to
analyze out-of-order execution and other speculation (e.g.,
memory address disambiguation) in a conceptually straightfor-
ward way by extending the semantics to model these features.

Specific programs may need additional constraints on the
traces to avoid spurious counterexamples, especially if the set
of secrets ST is over-specified. For example, in Figure 3(b),
a tuple of traces where the i < N never occurs would cause
a violation of Equation 5 if ST also contained the addresses
that point to a1 and a2.

VI. VERIFICATION APPROACH

We have implemented an automated verifier to answer the
following question: Given a program (e.g., C code) as input,
does it satisfy the secure speculation property in Equation 5?



. . .

. . .

π1

π2

4

4

4

4

4

4

a2 + v1S

8

8

. . .

. . .

4

4

4

4

4

4

8

8

. . .

. . .

. . .

. . .

4π3

π4 4

5

a1

5

a1

6

a2 + v1S

6

a2 + v2S

8

8

. . .

. . .

4

4

5

a1

5

a1

6

a2 + v1S

6

a2 + v2S

8

8

. . .

. . .

foo(0) foo(1)

(a) Violation of secure speculation when N=0 in Figure 3c.

. . .

. . .

π1

π2

4

4

5

5

a1

a1

6

6

a2 + v1S

a2 + v2S

8

8

. . .

. . .

4

4

4

4

4

4

8

8

. . .

. . .

. . .

. . .

π3

π4

4

4

5

a1

5

a1

6

a2 + v1S

6

a2 + v2S

8

8

. . .

. . .

4

4

5

a1

5

a1

6

a2 + v1S

6

a2 + v2S

8

8

. . .

. . .

foo(0) foo(1)

(b) Secure speculation satisfied when N=1 in Figure 3c.

Figure 10: Illustrating the secure speculation property for the code in Figure 3c. The numbers within each state refer to program
counter values (shown as line numbers from the figure). A label above each state indicates the data memory address accessed
by that instruction (if any). States shown in dotted circles are specuative states. Note the non-speculative traces “stutter” when
the other traces are speculating. The values v1 and v2 refer to the contents of memory address a1 in their respective traces.
Note that traces π1 and π2 do not speculate while traces π3 and π4 do.

Our approach is fairly standard, based on the method of self-
composition (see, e.g., [56]). For lack of space, we present only
the essential aspects. Given the input program, we translate it
into a transition system based on the adversary model and
operational semantics presented in the previous section. The
secure speculation property is a 4-safety property, meaning that
we can turn it into a safety property to be checked on a 4-way
self-composition of the transition system. We use term-level
model checking [57] based on satisfiability modulo theories
(SMT) solving to check whether the safety property holds for
this 4-way self-composition. The model checker uses either
bounded model checking (to find violations of the property)
or k-induction (to prove the property).

The main new aspect of our verifier is the implementation of
the transformation of the program into a transition system. We
rely on two tools: the Binary Analysis Platform (BAP) [50] to
translate x86 binaries into an intermediate format called BIL,
and UCLID5 [47], an SMT-based model checking tool sup-
porting both bounded model checking (BMC) and k-induction.
BIL is an assembly-like intermediate language similar to AIR
(described in Sec. IV). Overall, our workflow for each input
program is as follows:

1) Compile C source code containing the victim function
into an x86 binary file.

2) Translate the x86 binary file using BAP into the BIL
intermediate language.

3) Translate the BIL into UCLID5 models and check the
secure speculation property via self-composition. For
each program, we first obtain a counterexample via
BMC demonstrating the vulnerability; then, we insert
an lfence at an appropriate point and prove the secure
speculation property via k-induction.

We note that this workflow may be abstracted to a more
general TPOD property.

The translation from BIL to UCLID5 implements the oper-
ational semantics given earlier, with the following key steps:

1) Datatypes in the BIL program such as addresses, memo-
ries, and words are converted to uninterpreted types for
more scalable analysis and to obtain a more portable
model that is not specific to 32-bit/64-bit architectures.

2) Each basic block of the BIL program is considered
an atomic step of the transition system in the UCLID5
model after which the safety property is checked on the
4-way self-composition. This suffices as the deviations
in behavior between the 4 traces happen at branch points.

3) At any speculative transition step, the program can
resolve a misspeculation as per the RESOLVE rule.

4) All state variables are initialized to symbolic constants
with the exception of the memory, where it is initialized
to have the same value at every address except the
program-specific secret address that stores the secret.

Given the model, the implication chain of the secure specu-
lation property is translated into a number of assumptions and
invariants. The invariants which we wish to check are whether
the speculative program traces diverge in control flow, branch
prediction or memory access observations, but only in the
cases that they do not for the non-speculative traces. Proofs by
induction require a few additional auxiliary invariants, whereas
bounded model checking does not.

For a particular proof of the secure speculation property
on one of the examples from Section VII in UCLID5, we
first instantiate four programs as instances. In UCLID5, this
is a composition of four transition systems within the main
proof script. Next, we define a speculation flag that determines
if a program is allowed to speculate or not and instantiate
the program pairs t1, t2 and t3, t4 with their speculation
flags turned off and on respectively. For initialization, we set
the program counters, registers, and rollback states of the



programs to be the same. We also set the memories of the
program pairs t1,t3 and t2, t4 to be the same except for a
confidential memory address represented by a symbolic con-
stant, which corresponds to the conformant conditions. Note
that only allowing one (symbolic) memory address to differ is
sufficient because any counterexample with a larger difference
can be extended to one in the single address case. Addition-
ally, we make the assumption that the program counter and
observational states, such as prior memory read addresses and
the branch predictor state, are initially equal across the non-
speculating programs t1 and t2. During a transition step of
the main proof, we step both of the non-speculative traces
t1 and t2 only if t3 and t4 are not currently speculating
and they ”stutter” otherwise. This is to prevent any spurious
counter-examples from divergent observational states caused
by mismatching steps in the non-speculating and speculating
programs. At each of these program transitions, a basic block
of the program is executed. This abstraction is sound in the
sense that the traces considered are a strict subset of the
permissable traces of an out of order processor and if out of
order execution is the cause of the observational determinism
violation, then it should not be captured in our property. The
secure speculation property is then encoded as equality across
the program counter and observational states in the speculating
programs t3 and t4. This property was proven inductively
and through bounded model checking in all of our examples.
For inductive invariant checking, various auxiliary invariants
were required to constrain the attacker input, rollback states,
entry points, memories, and speculating states of the programs.

As a remark on the formulation of the 4-safety property,
traces t1 and t2 are used to constrain which addresses are
public and private. This allows us to generalize over the
various examples for variant 1 of the spectre attack instead
of encoding this specifically for each program example. More
concretely, in the N > 0 case of Figure 3c, this constrains the
value at the confidential memory address to be the same.

VII. CASE STUDIES

We used our verifier for a proof-of-concept demonstration
to detect whether or not a snippet of C code is vulnerable to
the Spectre class of attacks. As benchmarks, we rely on Paul
Kocher’s list of 15 victim functions vulnerable to the Spectre
attack [30] in addition to the examples we presented earlier.

In particular, we show here results on Examples 1, 5, 7,
8, 10, 11, and 15 from Paul Kocher’s list, along with the
example from Figure 3 (c), and an example with nested if
statements. We chose these based on what we believe are
illustrative of a wide range of victim functions that are not
easily detectable using the current static analysis tools such
as Qspectre [58], which was only able to detect the first two
examples in Kocher’s list. We begin with a brief explanation
of some of the examples and then discuss the results from
applying bounded model checking and induction with our
secure speculation property on our UCLID5 models. Fig. 11
lists all benchmarks we discuss here.

Example 5 (Figure 11b): This example is similar to the
first variant but implemented within a for loop. The untrusted
argument x may be larger than the array size, which causes the
vulnerability, but if x is within bounds of the array, note that
condition i > 0 is also potentially vulnerable to the attack.8

Example 7 (Figure 11c): This example is interesting because
it depends on the value of a static variable updated from a
previous call of the function. Every call to the function should
not make the second array access unless x == last x.

Example 8 (Figure 11d): The ternary operator is interesting
because the program counter is allowed to jump to two
different basic blocks for the computation of the second array
memory access as opposed to one block as in Example 1.

Example 10 (Figure 11e): This is the first example where a
second load dependent on a secret is not required for a leak.
Knowing whether or not array2[0] was accessed is enough
to leak the secret at array1[x].

Example 11 (Figure 11f): This example uses a call to
memcpy to leak the secret, but because of the single byte
access, it gets optimized to a single load and store.

Example 15 (Figure 11g): This example is interesting be-
cause it passes a pointer instead of an integer as the attacker
controlled input. We assume the value stored in the pointer is
constant across traces to ignore cases where the attacker forces
a secret dependent branch during non-speculative execution.

ex1 ex5 ex7 ex8 ex10 ex11 ex15 Fig. 3c NI

BMC 6.6 9.0 10.2 5.7 9.6 6.4 5.8 6.6 12.9
Ind 5.0 5.0 5.7 4.6 5.8 5.9 4.8 4.8 5.4

Table I: Runtime (sec.) of each example using 5 steps for
bounded model checking to find vulnerabilities and 1 step
induction to prove correctness after inserting a memory fence.
These experiments were run on a machine with an 2.20GHz
Intel(R) Core(TM) i7-2670QM CPU with 5737MiB of RAM.

Example NI (Figure 11h) In this example, nested if state-
ments cause the attack to occur without a second address load
dependent on a secret. If the programs speculatively choose
not to execute the second if statement, but only one program
eventually executes the second if as a result of a resolution,
then a leak can occur.

Table I lists the run-time (in seconds) required for each
verification task with the memory fences implemented. As can
be seen, the verifier is able to prove the correctness of these
programs within a few seconds. Although these programs are
small, this exercise gives us confidence that the method could
be useful on larger programs. We assert that with the use of a
stronger software model checking engine and the development
of TPOD-specific abstractions, it will be possible to prove
secure speculation for larger programs.

VIII. RELATED WORK

The most closely related past work to ours is Check-
Mate [59] which uses happens-before graphs to analyze

8Kocher’s code has the condition x >= 0 which causes an infinite loop.



1 void victim_function_v01(unsigned x) {
2 if (x < array1_size) {
3 __mm_lfence();
4 temp &= array2[array1[x] * 512];
5 }
6 }

(a) Example 1: Original Spectre BCB (bounds check bypass)
example.

1 void victim_function_v05(unsigned x) {
2 size_t i;
3 if (x < array1_size) {
4 for (i = x - 1; i > 0; i--)
5 _mm_lfence();
6 temp &= array2[array1[i] * 512];
7 }
8 }

(b) Example 5: BCB with a for loop.
1 void victim_function_v07(unsigned x) {
2 static unsigned last_x = 0;
3 if (x == last_x) {
4 _mm_lfence();
5 temp &= array2[array1[x] * 512];
6 }
7 if (x < array1_size)
8 last_x = x;
9 }

(c) Example 7: BCB with unsafe static variable check.

1 void victim_function_v08(unsigned x) {
2 result = (x < array1_size);
3 _mm_lfence();
4 temp &= array2[array1[result ? (x + 1) : 0] *

512];
5 }

(d) Example 8: BCB with the ternary conditional operator.

1 void victim_function_v10(unsigned x, unsigned k) {
2 if (x < array1_size) {
3 __mm_lfence();
4 if (array1[x] == k)
5 temp &= array2[0];
6 }
7 }

(e) Example 10: BCB using an additional attacker controlled
input.

1 void victim_function_v11(unsigned x) {
2 if (x < array1_size) {
3 _mm_lfence();
4 temp = memcmp(&temp, array2 + (array1[x]

* 512), 1);
5 }
6 }

(f) Example 11: BCB using the memory comparison function.

1 void victim_function_v15(unsigned *x) {
2 if (*x < array1_size) {
3 _mm_lfence();
4 temp &= array2[array1[*x] * 512];
5 }
6 }

(g) Example 15: BCB using attacker controlled pointer.

1 void victim_function_nested_ifs(unsigned x) {
2 unsigned val1, val2;
3 if (x < array1_size) {
4 val1 = array1[x];
5 if (val1 & 1) {
6 _mm_lfence();
7 val2 = array2[0];
8 }
9 }

10 }

(h) Example NI: BCB with nested if statements.

Figure 11: Examples that were verified for secure speculation with mm lfence() implemented. In all code snippets
assume that that arguments x and k are untrusted (low-security) inputs to the trusted (high-security) victim functions.

transient execution vulnerabilities. The insight in CheckMate
is that happens-before graphs encode information about the
orders in which instructions can be executed. By searching
for patterns in the graph where branches are followed by
dependent loads, an architectural model can be analyzed for
susceptibility to Spectre/Meltdown. A key difference between
CheckMate and our approach is that we are not matching
patterns of vulnerable instructions. Our verification is se-
mantic, not pattern-based. In particular, the example showing
conditional vulnerability in Figure 3(c) cannot be precisely
captured by CheckMate.

Another closely related effort is by McIlroy et al. [60]
who introduce a formal model of speculative execution in
modern processors and analyze it for transient execution vul-
nerabilities. Similar to our work, they too introduce speculative
operational semantics and their model includes indirect jumps
and a timer. An important difference between their semantics
and ours is that their semantics are based on a microarchitec-
tural model of execution. In contrast, our semantics capture
an abstract notion of speculation that: (i) does not prescribe
any specific microarchitectural implementation and (ii) is more

amenable to verification due to its abstract nature. Further, they
do not present a automated verification approach for finding
transient execution vulnerabilities.

In concurrent work to ours, Guarnieri et al. [61] introduce
SPECTECTOR which is also a principled verification method-
ology for the detection of Spectre-like vulnerabilities. They
introduce the notion of speculative non-interference which is
defined as follows: for every pair of initial configurations of
the program, if these configurations are low-equivalent and
their non-speculative traces have the same observations, then
their speculative traces must also have the same observations.
This is similar to our secure speculation property. Note that
we also introduce TPOD which is a generalization of secure
speculation/speculative non-interference and could be used to
reason about the interaction between arbitrary microarchitec-
tural side-channels: e.g. prefetching and value prediction.

One difference between our work and SPECTECTOR is
that the latter only considers terminating programs while our
methodology is applicable to non-terminating programs. This
is because SPECTECTOR analyzes only finite-length traces.
This also implies that in the case of non-terminating programs,



SPECTECTOR can only find violations, not prove the absence
of vulnerabilities. In contrast, our verification methodology
can indeed prove the absence of vulnerabilities. A important
insight in the SPECTECTOR work is that is that non-speculative
traces are sub-sequences of the speculative traces for in-order
processors. The allows SPECTECTOR to convert the 4-safety
secure speculation property into into a 2-safety property. While
this is an important and useful optimization that improves
scalability, it does not appear to be applicable to out-of-order
speculative semantics. While our current implementation and
semantics do not model out-of-order execution, they are built
to be extensible to this scenario.

The Spectre vulnerability was discovered by Kocher et
al. [2, 3] while Meltdown was discovered by Lipp et al. [1].
Their public disclosure has triggered an avalanche of new
transient execution vulnerabilities, notable among which are
Foreshadow [4] which attacked enclave platforms and vir-
tual machine monitors, SpectreRSB [7] and Ret2Spec [6].
A thorough study of transient execution vulnerabilities was
done by Canella et al. [5]. These vulnerabilities build on the
rich literature of microarchitectural side-channel attacks [14–
20, 62–65]. Verification of mitigations to these “traditional”
side-channel attacks is well-studied [54, 55, 66–74].

TPOD in general and secure speculation in particular are
examples of hyperproperties [40]. A large body of work
has studied hyperproperties that encode secure information
flow. Influential exemplars of this line of work include non-
interference [41], separability [75] and observational deter-
minism [42–44]. Our verification method is based on self-
composition which has been well-studied; see, for example,
Barthe et al. [45, 56]. While we take a straightforward
approach to using self-composition, more sophisticated ap-
proaches are also possible in some cases (e.g., [76]).

IX. CONCLUSION

This paper presented a formal approach for secure specu-
lative execution on modern processors, a key part of which
is a formal specification of secure speculation that abstracts
away from the particulars of specific vulnerabilities. Our
secure speculation formulation is an instance of trace property-
dependent observational determinism, a new class of infor-
mation flow security properties introduced by this work. We
introduced an adversary model and an automated approach to
verifying secure speculation and demonstrated the approach on
several programs that have been used to illustrate the Spectre
class of vulnerabilities. To the best of our knowledge, ours
is the first effort to formalize and automatically prove secure
speculation. In future work, we plan to evaluate our approach
on larger programs and more complex platforms including out-
of-order processors.

Acknowledgments

This work was supported in part by the ADEPT Center,
SRC tasks 2867.001 and 2854.001, the iCyPhy Center, NSF
grants CNS-1739816 and CNS-1646208, the Science and En-
gineering Research Board and a gift from Microsoft Research.

REFERENCES
[1] M. Lipp, M. Schwarz, D. Gruss, T. Prescher, W. Haas, S. Mangard,

P. Kocher, D. Genkin, Y. Yarom, and M. Hamburg, “Meltdown,” ArXiv
e-prints, Jan. 2018.

[2] P. Kocher, D. Genkin, D. Gruss, W. Haas, M. Hamburg, M. Lipp,
S. Mangard, T. Prescher, M. Schwarz, and Y. Yarom, “Spectre attacks:
Exploiting speculative execution,” ArXiv e-prints, Jan. 2018.

[3] P. Kocher, J. Horn, A. Fogh, D. Genkin, D. Gruss, W. Haas, M. Ham-
burg, M. Lipp, S. Mangard, T. Prescher, M. Schwarz, and Y. Yarom,
“Spectre attacks: Exploiting speculative execution,” Proceedings of the
IEEE Symposium on Security and Privacy, pp. 19–37, 2019.

[4] J. V. Bulck, M. Minkin, O. Weisse, D. Genkin, B. Kasikci, F. Piessens,
M. Silberstein, T. F. Wenisch, Y. Yarom, and R. Strackx, “Foreshadow:
Extracting the keys to the intel SGX kingdom with transient out-of-order
execution,” in 27th USENIX Security Symposium (USENIX Security 18).
Baltimore, MD: USENIX Association, 2018, p. 991–1008.

[5] C. Canella, J. V. Bulck, M. Schwarz, M. Lipp, B. von Berg, P. Ortner,
F. Piessens, D. Evtyushkin, and D. Gruss, “A Systematic Evaluation of
Transient Execution Attacks and Defenses,” CoRR, vol. abs/1811.05441,
2018. [Online]. Available: http://arxiv.org/abs/1811.05441

[6] G. Maisuradze and C. Rossow, “Ret2Spec: Speculative Execution Using
Return Stack Buffers,” in Proc. of the 2018 ACM SIGSAC Conference
on Computer and Communications Security, ser. CCS ’18, 2018.

[7] E. M. Koruyeh, K. N. Khasawneh, C. Song, and N. Abu-Ghazaleh,
“Spectre Returns! Speculation Attacks using the Return Stack Buffer,”
in 12th USENIX Workshop on Offensive Technologies (WOOT 18).
Baltimore, MD: USENIX Association, 2018.

[8] J. Horn, “Read privileged memory with a side-channel,” 2018.
[Online]. Available: https://googleprojectzero.blogspot.com/2018/01/
reading-privileged-memory-with-side.html

[9] Intel, “Bounds Check Bypass / CVE-2017-5753 / INTEL-
SA-00088,” 2018. [Online]. Available: https://software.intel.com/
security-software-guidance/software-guidance/bounds-check-bypass

[10] ——, “Branch Target Injection / CVE-2017-5715 / INTEL-
SA-00088,” 2018. [Online]. Available: https://software.intel.com/
security-software-guidance/software-guidance/branch-target-injection

[11] ——, “Rogue System Register Read / CVE-
2018-3640 / INTEL-SA-00115,” 2018. [Online].
Available: https://software.intel.com/security-software-guidance/
software-guidance/rogue-system-register-read

[12] ——, “Speculative Store Bypass / CVE-2018-3639 / INTEL-
SA-00115,” 2018. [Online]. Available: https://software.intel.com/
security-software-guidance/software-guidance/speculative-store-bypass

[13] ——, “L1 Terminal Fault / CVE-2018-3615 , CVE-
2018-3620,CVE-2018-3646 / INTEL-SA-00161,” 2018. [On-
line]. Available: https://software.intel.com/security-software-guidance/
software-guidance/l1-terminal-fault

[14] C. Percival, “Cache missing for fun and profit,” 2005.
[15] O. Acıiçmez, Ç. K. Koç, and J.-P. Seifert, “Predicting secret keys via

branch prediction,” in Cryptographers Track at the RSA Conference.
Springer, 2007, pp. 225–242.

[16] Y. Oren, V. P. Kemerlis, S. Sethumadhavan, and A. D. Keromytis,
“The Spy in the Sandbox - Practical Cache Attacks in Javascript,”
CoRR, vol. abs/1502.07373, 2015. [Online]. Available: http://arxiv.org/
abs/1502.07373

[17] F. Liu, Y. Yarom, Q. Ge, G. Heiser, and R. B. Lee, “Last-Level Cache
Side-Channel Attacks Are Practical,” in Proceedings of the 2015 IEEE
Symposium on Security and Privacy. IEEE Computer Society, 2015,
pp. 605–622. [Online]. Available: http://dx.doi.org/10.1109/SP.2015.43

[18] G. Irazoqui, T. Eisenbarth, and B. Sunar, “S$A: A Shared Cache
Attack That Works across Cores and Defies VM Sandboxing – and
Its Application to AES,” in IEEE Symposium on Security and Privacy,
May 2015, pp. 591–604.

[19] M. Schwarz, S. Weiser, D. Gruss, C. Maurice, and S. Mangard,
“Malware Guard Extension: Using SGX to Conceal Cache Attacks,”
CoRR, vol. abs/1702.08719, 2017. [Online]. Available: http://arxiv.org/
abs/1702.08719

[20] S. Lee, M. Shih, P. Gera, T. Kim, H. Kim, and M. Peinado,
“Inferring Fine-grained Control Flow Inside SGX Enclaves with Branch
Shadowing,” CoRR, vol. abs/1611.06952, 2016. [Online]. Available:
http://arxiv.org/abs/1611.06952

[21] O. Oleksenko, B. Trach, T. Reiher, M. Silberstein, and C. Fetzer, “You
shall not bypass: Employing data dependencies to prevent bounds check
bypass,” arXiv preprint arXiv:1805.08506, 2018.

http://arxiv.org/abs/1811.05441
https://googleprojectzero.blogspot.com/2018/01/reading-privileged-memory-with-side.html
https://googleprojectzero.blogspot.com/2018/01/reading-privileged-memory-with-side.html
https://software.intel.com/security-software-guidance/software-guidance/bounds-check-bypass
https://software.intel.com/security-software-guidance/software-guidance/bounds-check-bypass
https://software.intel.com/security-software-guidance/software-guidance/branch-target-injection
https://software.intel.com/security-software-guidance/software-guidance/branch-target-injection
https://software.intel.com/security-software-guidance/software-guidance/rogue-system-register-read
https://software.intel.com/security-software-guidance/software-guidance/rogue-system-register-read
https://software.intel.com/security-software-guidance/software-guidance/speculative-store-bypass
https://software.intel.com/security-software-guidance/software-guidance/speculative-store-bypass
https://software.intel.com/security-software-guidance/software-guidance/l1-terminal-fault
https://software.intel.com/security-software-guidance/software-guidance/l1-terminal-fault
http://arxiv.org/abs/1502.07373
http://arxiv.org/abs/1502.07373
http://dx.doi.org/10.1109/SP.2015.43
http://arxiv.org/abs/1702.08719
http://arxiv.org/abs/1702.08719
http://arxiv.org/abs/1611.06952


[22] Intel, “Deep Dive: Analyzing Potential Bounds
Check Bypass Vulnerabilities,” 2018. [Online]. Avail-
able: https://software.intel.com/security-software-guidance/insights/
deep-dive-analyzing-potential-bounds-check-bypass-vulnerabilities

[23] Microsoft, “Spectre mitigations in MSVC,” 2018. [Online]. Available:
https://devblogs.microsoft.com/cppblog/spectre-mitigations-in-msvc/

[24] P. Turner, “Retpoline: a software construct for preventing branch-target-
injection,” 2018. [Online]. Available: https://support.google.com/faqs/
answer/7625886

[25] Intel, “Deep Dive: Managed Runtime Speculative Execution
Side Channel Mitigations,” 2018. [Online]. Available:
https://software.intel.com/security-software-guidance/insights/
deep-dive-managed-runtime-speculative-execution-side-channel-mitigations

[26] ——, “Deep Dive: Mitigation Overview for Side
Channel Exploits in Linux,” 2018. [Online]. Avail-
able: https://software.intel.com/security-software-guidance/insights/
deep-dive-mitigation-overview-side-channel-exploits-linux

[27] B. Stuart, “Current state of mitigations for spectre within operating
systems,” in Proceedings of the 4th Wiesbaden Workshop on Advanced
Microkernel Operating Systems, 2018.

[28] Microsoft, “ADV180012 — Microsoft Guidance for Speculative Store
Bypass,” 2018. [Online]. Available: https://portal.msrc.microsoft.com/
en-US/security-guidance/advisory/ADV180012

[29] J. Cable, “Update on Spectre and Meltdown
security updates for Windows devices,” 2018. [Online].
Available: https://blogs.windows.com/windowsexperience/2018/03/01/
update-on-spectre-and-meltdown-security-updates-for-windows-devices/

[30] P. Kocher, “Spectre Mitigations in Microsoft’s C/C++ Compiler,”
Feb 2018. [Online]. Available: https://www.paulkocher.com/doc/
MicrosoftCompilerSpectreMitigation.html

[31] J. E. Smith and G. S. Sohi, “The Microarchitecture of Superscalar
Processors,” Proc. IEEE, vol. 83, no. 12, pp. 1609–1624, Dec 1995.

[32] J. P. Shen and M. Lipasti, Fundamentals of Superscalar Processor
Design. McGraw-Hill, 2003.

[33] T.-Y. Yeh and Y. N. Patt, “Two-level adaptive training branch prediction,”
in Proc. of the 24th Annual International Symposium on Microarchitec-
ture, ser. MICRO 24, 1991, pp. 51–61.

[34] S. McFarling, “Combining branch predictors,” Technical Report TN-36,
Digital Western Research Laboratory, Tech. Rep., 1993.

[35] D. M. Gallagher, W. Y. Chen, S. A. Mahlke, J. C. Gyllenhaal, and
W. Hwu, “Dynamic Memory Disambiguation Using the Memory Con-
flict Buffer,” in Proc. of the Sixth International Conference on Architec-
tural Support for Programming Languages and Operating Systems, ser.
ASPLOS VI, 1994, pp. 183–193.

[36] M. H. Lipasti, C. B. Wilkerson, and J. P. Shen, “Value locality and
load value prediction,” in Proc. of the Seventh International Conference
on Architectural Support for Programming Languages and Operating
Systems, 1996.

[37] V. Kiriansky, I. Lebedev, S. Amarasinghe, S. Devadas, and J. Emer,
“Dawg: A defense against cache timing attacks in speculative execution
processors,” Cryptology ePrint Archive, Report 2018/418, 2018, https:
//eprint.iacr.org/2018/418.

[38] M. Larabel, “Benchmarking The Work-In-Progress Spec-
tre/STIBP Code On The Way For Linux 4.20,” 2018.
[Online]. Available: https://www.phoronix.com/scan.php?page=article&
item=linux-420wip-stibp&num=1

[39] L. Tung, “Linus Torvalds: After big Linux
performance hit, Spectre v2 patch needs curbs,”
2018. [Online]. Available: https://www.zdnet.com/article/
linus-torvalds-after-big-linux-performance-hit-spectre-v2-patch-needs-curbs/

[40] M. R. Clarkson and F. B. Schneider, “Hyperproperties,” Journal of
Computer Security, vol. 18, no. 6, pp. 1157–1210, Sep. 2010.

[41] J. A. Goguen and J. Meseguer, “Security Policies and Security Models,”
in IEEE Symposium on Security and Privacy, 1982, pp. 11–20.

[42] J. Mclean, “Proving Noninterference and Functional Correctness Using
Traces,” Journal of Computer Security, vol. 1, pp. 37–58, 1992.

[43] A. W. Roscoe, “CSP and Determinism in Security Modelling,” in
Proceedings of the 1995 IEEE Symposium on Security and Privacy,
Oakland, California, USA, May 8-10, 1995, 1995, pp. 114–127.

[44] S. Zdancewic and A. C. Myers, “Observational Determinism for Con-
current Program Security,” in Proc. of the 16th IEEE Computer Security
Foundations Workshop. IEEE, 2003, pp. 29–43.

[45] G. Barthe, P. R. D’Argenio, and T. Rezk, “Secure Information Flow
by Self-Composition,” in 17th IEEE Computer Security Foundations
Workshop, (CSFW-17), 2004, pp. 100–114.

[46] T. Terauchi and A. Aiken, “Secure Information Flow as a Safety
Problem,” in Static Analysis Symposium (SAS ’05), ser. LNCS 3672,
2005, pp. 352–367.

[47] S. A. Seshia and P. Subramanyan, “UCLID5: Integrating modeling,
verification, synthesis and learning,” in Proceedings of the 16th ACM-
IEEE International Conference on Formal Methods and Models for
System Design (MEMOCODE), October 2018.

[48] UCLID5 Verification and Synthesis System, “Available at http://github.
com/uclid-org/uclid/.”

[49] B. Yee, D. Sehr, G. Dardyk, J. B. Chen, R. Muth, T. Ormandy,
S. Okasaka, N. Narula, and N. Fullagar, “Native Client: a sandbox
for portable, untrusted x86 native code,” Communications of the
ACM, vol. 53, no. 1, pp. 91–99, 2010. [Online]. Available:
http://doi.acm.org/10.1145/1629175.1629203

[50] D. Brumley, I. Jager, T. Avgerinos, and E. J. Schwartz, “BAP: A Binary
Analysis Platform,” in Proceedings of the 23rd International Conference
on Computer Aided Verification, ser. CAV’11, 2011, pp. 463–469.

[51] Binary Analysis Platform (BAP) Repository, “Available at https://github.
com/BinaryAnalysisPlatform/bap,” 2019.

[52] M. Abadi, M. Budiu, U. Erlingsson, and J. Ligatti, “Control-flow
Integrity,” in Proceedings of the 12th ACM Conference on Computer
and Communications Security, ser. CCS ’05, 2005, pp. 340–353.

[53] C. Tice, T. Roeder, P. Collingbourne, S. Checkoway, U. Erlingsson,
L. Lozano, and G. Pike, “Enforcing Forward-edge Control-flow Integrity
in GCC & LLVM,” in Proceedings of the 23rd USENIX Conference on
Security Symposium, ser. SEC’14, 2014, pp. 941–955.

[54] G. Doychev, D. Feld, B. Kopf, L. Mauborgne, and J. Reineke,
“CacheAudit: A Tool for the Static Analysis of Cache Side Channels,”
in Presented as part of the 22nd USENIX Security Symposium (USENIX
Security 13). Washington, D.C.: USENIX, 2013, pp. 431–446.

[55] G. Doychev, B. Köpf, L. Mauborgne, and J. Reineke, “CacheAudit: A
tool for the static analysis of cache side channels,” ACM Transactions
on Information and System Security (TISSEC), vol. 18, no. 1, p. 4, 2015.

[56] G. Barthe, P. R. D’Argenio, and T. Rezk, “Secure information flow
by self-composition,” Mathematical Structures in Computer Science,
vol. 21, no. 6, pp. 1207–1252, 2011.

[57] R. E. Bryant, S. K. Lahiri, and S. A. Seshia, “Modeling and Verifying
Systems using a Logic of Counter Arithmetic with Lambda Expressions
and Uninterpreted Functions,” in Computer-Aided Verification (CAV’02),
ser. LNCS 2404, July 2002, pp. 78–92.

[58] Microsoft, “/qspectre,” Oct 2018. [Online]. Available: https://docs.
microsoft.com/en-us/cpp/build/reference/qspectre?view=vs-2017

[59] C. Trippel, D. Lustig, and M. Martonosi, “Checkmate: Automated
synthesis of hardware exploits and security litmus tests,” in 51st An-
nual IEEE/ACM International Symposium on Microarchitecture, MICRO
2018, 2018, pp. 947–960.

[60] R. Mcilroy, J. Sevcik, T. Tebbi, B. L. Titzer, and T. Verwaest, “Spectre
is here to stay: An analysis of side-channels and speculative execution,”
arXiv preprint arXiv:1902.05178, 2019.

[61] M. Guarnieri, B. Köpf, J. F. Morales, J. Reineke, and A. Sánchez,
“SPECTECTOR: principled detection of speculative information
flows,” CoRR, vol. abs/1812.08639, 2018. [Online]. Available: http:
//arxiv.org/abs/1812.08639

[62] D. Gruss, C. Maurice, A. Fogh, M. Lipp, and S. Mangard, “Prefetch
Side-Channel Attacks: Bypassing SMAP and Kernel ASLR,” in Proc. of
the 2016 ACM SIGSAC Conference on Computer and Communications
Security, ser. CCS ’16, 2016, pp. 368–379.

[63] Y. Shin, H. C. Kim, D. Kwon, J. H. Jeong, and J. Hur, “Unveiling
Hardware-based Data Prefetcher, a Hidden Source of Information Leak-
age,” in Proc. of the 2018 ACM SIGSAC Conference on Computer and
Communications Security, ser. CCS ’18, 2018, pp. 131–145.

[64] B. Gras, K. Razavi, H. Bos, and C. Giuffrida, “Translation Leak-aside
Buffer: Defeating Cache Side-channel Protections with TLB Attacks,”
in 27th USENIX Security Symposium (USENIX Security 18), 2018, pp.
955–972.

[65] P. Pessl, D. Gruss, C. Maurice, M. Schwarz, and S. Mangard, “DRAMA:
Exploiting DRAM addressing for cross-cpu attacks,” in 25th USENIX
Security Symposium (USENIX Security 16), 2016, pp. 565–581.

[66] J. Protzenko, J.-K. Zinzindohoué, A. Rastogi, T. Ramananandro,
P. Wang, S. Zanella-Béguelin, A. Delignat-Lavaud, C. Hriţcu, K. Bhar-
gavan, C. Fournet et al., “Verified low-level programming embedded in
f,” Proceedings of the ACM on Programming Languages, vol. 1, no.
ICFP, p. 17, 2017.

[67] B. Bond, C. Hawblitzel, M. Kapritsos, K. R. M. Leino, J. R. Lorch,

https://software.intel.com/security-software-guidance/insights/deep-dive-analyzing-potential-bounds-check-bypass-vulnerabilities
https://software.intel.com/security-software-guidance/insights/deep-dive-analyzing-potential-bounds-check-bypass-vulnerabilities
https://devblogs.microsoft.com/cppblog/spectre-mitigations-in-msvc/
https://support.google.com/faqs/answer/7625886
https://support.google.com/faqs/answer/7625886
https://software.intel.com/security-software-guidance/insights/deep-dive-managed-runtime-speculative-execution-side-channel-mitigations
https://software.intel.com/security-software-guidance/insights/deep-dive-managed-runtime-speculative-execution-side-channel-mitigations
https://software.intel.com/security-software-guidance/insights/deep-dive-mitigation-overview-side-channel-exploits-linux
https://software.intel.com/security-software-guidance/insights/deep-dive-mitigation-overview-side-channel-exploits-linux
https://portal.msrc.microsoft.com/en-US/security-guidance/advisory/ADV180012
https://portal.msrc.microsoft.com/en-US/security-guidance/advisory/ADV180012
https://blogs.windows.com/windowsexperience/2018/03/01/update-on-spectre-and-meltdown-security-updates-for-windows-devices/
https://blogs.windows.com/windowsexperience/2018/03/01/update-on-spectre-and-meltdown-security-updates-for-windows-devices/
https://www.paulkocher.com/doc/MicrosoftCompilerSpectreMitigation.html
https://www.paulkocher.com/doc/MicrosoftCompilerSpectreMitigation.html
https://eprint.iacr.org/2018/418
https://eprint.iacr.org/2018/418
https://www.phoronix.com/scan.php?page=article&item=linux-420wip-stibp&num=1
https://www.phoronix.com/scan.php?page=article&item=linux-420wip-stibp&num=1
https://www.zdnet.com/article/linus-torvalds-after-big-linux-performance-hit-spectre-v2-patch-needs-curbs/
https://www.zdnet.com/article/linus-torvalds-after-big-linux-performance-hit-spectre-v2-patch-needs-curbs/
http://github.com/uclid-org/uclid/
http://github.com/uclid-org/uclid/
http://doi.acm.org/10.1145/1629175.1629203
https://github.com/BinaryAnalysisPlatform/bap
https://github.com/BinaryAnalysisPlatform/bap
https://docs.microsoft.com/en-us/cpp/build/reference/qspectre?view=vs-2017
https://docs.microsoft.com/en-us/cpp/build/reference/qspectre?view=vs-2017
http://arxiv.org/abs/1812.08639
http://arxiv.org/abs/1812.08639


B. Parno, A. Rane, S. Setty, and L. Thompson, “Vale: Verifying high-
performance cryptographic assembly code,” in 26th USENIX Security
Symposium (USENIX Security 17), 2017, pp. 917–934.

[68] J. B. Almeida, M. Barbosa, J. S. Pinto, and B. Vieira, “Formal verifica-
tion of side-channel countermeasures using self-composition,” Science
of Computer Programming, vol. 78, no. 7, pp. 796–812, 2013.

[69] G. Barthe, B. Grégoire, and V. Laporte, “Secure compilation of side-
channel countermeasures: the case of cryptographic constant-time,” in
2018 IEEE 31st Computer Security Foundations Symposium (CSF).
IEEE, 2018, pp. 328–343.

[70] J. B. Almeida, M. Barbosa, G. Barthe, and F. Dupressoir, “Verifiable
side-channel security of cryptographic implementations: constant-time
mee-cbc,” in International Conference on Fast Software Encryption.
Springer, 2016, pp. 163–184.

[71] G. Barthe, G. Betarte, J. Campo, C. Luna, and D. Pichardie, “System-
level non-interference for constant-time cryptography,” in Proceedings of
the 2014 ACM SIGSAC Conference on Computer and Communications

Security. ACM, 2014, pp. 1267–1279.
[72] J. B. Almeida, M. Barbosa, G. Barthe, F. Dupressoir, and M. Emmi,

“Verifying constant-time implementations,” in 25th USENIX Security
Symposium (USENIX Security 16), 2016, pp. 53–70.

[73] H. Eldib, C. Wang, and P. Schaumont, “Formal verification of software
countermeasures against side-channel attacks,” ACM Transactions on
Software Engineering and Methodology, vol. 24, no. 2, p. 11, 2014.

[74] ——, “SMT-based verification of software countermeasures against side-
channel attacks,” in International Conference on Tools and Algorithms
for the Construction and Analysis of Systems, 2014, pp. 62–77.

[75] J. M. Rushby, “Proof of separability: A verification technique for a class
of a security kernels,” in Proceedings of the International Symposium
on Programming, 5th Colloquium, Torino, Italy, 1982, pp. 352–367.

[76] M. Sousa and I. Dillig, “Cartesian Hoare Logic for verifying k-safety
properties,” in Proc. of the 37th ACM SIGPLAN Conference on Pro-
gramming Language Design and Implementation, ser. PLDI ’16, 2016,
pp. 57–69.



APPENDIX

1 // block 1
2 000001ba: sub victim_function_v01()
3 00000172:
4 ... // function prologue
5 00000178: RAX := mem[0x601050, el]:u64
6 0000017a: CF := mem[RBP + 0xFFFFFFFFFFFFFFF8, el]:

u64 < RAX
7 00000180: when ˜CF goto %000001b4
8 00000181: goto %00000182

(a) Example 1: Block 1 BIL

1 procedure do_block1()
2 modifies (...);
3 {
4 ... // function prologue
5 call (RAX) = load_mem(array1_size_addr);
6 CF = common.lessthan(RDI, RAX);
7 call branch(!CF, block3, block2);
8 }

(b) Example 1: Block 1 UCLID5 procedure.

1 // block 2
2 00000182:
3 00000183: RAX := mem[0x601040, el]:u64
4 00000184: RDX := mem[0x601038, el]:u64
5 00000185: RCX := mem[RBP + 0xFFFFFFFFFFFFFFF8, el]:

u64
6 00000187: RCX := RCX << 3
7 0000018f: v274 := RCX
8 00000190: RDX := RDX + v274
9 00000197: RDX := mem[RDX, el]:u64

10 00000199: RDX := RDX << 0xC
11 000001a1: v284 := RDX
12 000001a2: RAX := RAX + v284
13 000001a9: RDX := mem[RAX, el]:u64
14 000001aa: RAX := mem[0x601058, el]:u64
15 000001ab: RAX := RAX & RDX
16 000001b2: mem := mem with [0x601058, el]:u64 <- RAX
17 000001b3: goto %000001b4

(c) Example 1: Block 2 BIL

1 procedure do_block2()
2 modifies (...);
3 {
4 var v274, v284 : word_t;
5 assume (common.read(mem, temp_addr) == common.read

(common.mem_init, temp_addr));
6 if (lfence && spec_level != common.spec_idx0) {
7 call do_resolve();
8 } else {
9 call (RAX) = load_mem(array2_addr);

10 call (RDX) = load_mem(array1_addr);
11 RCX = RDI;
12 RCX = common.left_shift(common.val0x3, RCX);
13 v274 = RCX;
14 RDX = common.add(RDX, v274);
15 call (RDX) = load_mem(RDX);
16 RDX = common.left_shift(common.val0xC, RDX);
17 v284 = RDX;
18 RAX = common.add(RAX, v284);
19 call (RDX) = load_mem(RAX);
20 call (RAX) = load_mem(temp_addr);
21 RAX = common.land(RAX, RDX);
22 call store_mem(temp_addr, RAX);
23 pc = block3;
24 br_pred_state = common.update_br_pred(

br_pred_state, true);
25 }
26 }

(d) Example 1: Block 2 UCLID5 procedure.

1 // block 3
2 000001b4:
3 ... // function epilogue
4 000001b9: return v295

(e) Example 1: Block 3 BIL

1 procedure do_block3()
2 modifies (...);
3 {
4 RAX = common.val0x0;
5 RDX = common.val0x0;
6 ... // function epilogue
7 pc = halt;
8 br_pred_state = common.update_br_pred(

br_pred_state, true);
9 }

(f) Example 1: Block 3 UCLID5 procedure.

Figure 12: Translation from BIL to UCLID5 of the victim function in example 1 from Paul Kocher’s list. The left side shows
the BIL representation of the x86 binary and the right side shows the corresponding translation from a BIL block to a UCLID5
procedure.



Table II: Glossary of Symbols

.

Symbol Description

λx. expr Function with argument x; computes expr.
s.fld Field fld in the tuple s.

π, π1, π2, etc. Traces or trace variables.
πi The ith element of trace π.
 Transition relation.
≈L Low-equivalence relation (overloaded over both states and traces).
6≈L Negation of the the low-equivalence relation ≈L.
opL(s) Operation executed by the untrusted low-security component in state s. Defined to be ⊥

if the low-security component is not being executed.
opH(s) Operation executed by the trusted high-security component in state s. Defined to be ⊥

if the high-security component is not being executed.
opL(π) Trace of operations executed by the low-security component.
opH(π) Trace of operations executed by the high-security component.

〈Π,∆, µ, pc, ω, β, n, ι〉 Machine state.
Π Program memory: a map from instruction addresses to instructions.
n Speculation level. n = 0 refers to non-speculative (architectural) execution, higher levels

indicate (possibly nested) misspeculation.
∆ Register state. A map from the tuple (n, i) to register values, where n is the speculation

level n and i the register index.
µ Memory state. A map from the tuple (n, a) to memory values, where n is the speculation

level and a the memory address.
pc Program counter state. A map from the speculation level to the program counter value

at that level.
ω Trace of instruction and data memory addresses accessed by the program.
β Branch predictor state. Left abstract in this paper.
ι The current instruction.

Tρ The set of instruction memory addresses that contain the trusted program.
EP The entrypoint to the trusted program (instruction address of starting instruction).
ST The set of confidential memory addresses.
PT Values stored in public memory addresses. These are the non-speculative valuations of

all addresses not in ST .
Urd
µ Set the addresses the adversary can (non-speculatively) read from.
Uwr
µ Set of addresses the adversary can (non-speculatively) write to.

initT (s) Satisfied when s is a valid initial state of the trusted program.


	Introduction
	Contributions

	Overview
	Introduction to Transient Execution Attacks
	Spectre Variants and Associated Verification Challenges
	Spectre Variant 1
	Fixes to Spectre Variant 1
	Conditional Vulnerability
	Verification Challenges


	Specification using Trace Property-Dependent Observational Determinism
	Preliminaries
	Low-Equivalence of States
	Modeling Computation

	Observational Determinism
	Limitations of Observation Determinism for Secure Speculation

	Trace Property-Dependent Observational Determinism
	Definition of TPOD
	Refinement and TPOD


	Formal Modeling of Speculation
	System Model
	Assembly Intermediate Representation (AIR)
	Operational Semantics for AIR


	Formulating Secure Speculation
	Adversary Model 
	The Trusted and Untrusted Programs
	Confidential States
	General Adversary Tampering (G)
	Conformant Traces
	Adversary Observations

	Formalization of the Security Property
	Illustrating Violation/Satisfaction of Secure Speculation
	Adversary Reduction Lemma
	Discussion and Limitations

	Verification Approach
	Case Studies
	Related Work
	Conclusion
	Appendix

