
Obfuscation from Polynomial Hardness:
Beyond Decomposable Obfuscation

Yuan Kang1 ?, Chengyu Lin1, Tal Malkin1 ??, and Mariana Raykova2? ? ?

1 Columbia University yuan.j.kang@gmail.com, {chengyu, tal}@cs.columbia.edu
2 Yale University mariana.raykova@yale.edu

Abstract. Every known construction of general indistinguishability ob-
fuscation (iO) is either based on a family of exponentially many assump-
tions, or is based on a single assumption – e.g. functional encryption (FE)
– using a reduction that incurs an exponential loss in security. This seems
to be an inherent limitation if we insist on providing indistinguishability
for any pair of functionally equivalent circuits.
Recently, Liu and Zhandry (TCC 2017) introduced the notion of decom-
posable iO (dO), which provides indistinguishability for a restricted class
of functionally equivalent circuit pairs, and, as the authors show, can be
constructed from polynomially secure FE.
In this paper we propose a new notion of obfuscation, termed radiO
(repeated-subcircuit and decomposable obfuscation), which allows us to
obfuscate a strictly larger class of circuit pairs using a polynomial re-
duction to FE. Our notion builds on the equivalence criterion of Liu and
Zhandry, combining it with a new incomparable criterion to obtain a
strictly larger class.

1 Introduction

Indistinguishability obfuscation (iO) provides a way to obfuscate a circuit in a
way that preserves its functionality, but such that the obfuscated versions iO(C0)
and iO(C1) for any two functionally equivalent circuits C0 and C1 are computa-
tionally indistinguishable. In the last several years, following the first candidate

? Work done while supported by Air Force Office of Scientific Research (AFOSR)
grant FA9550-12-1-0162. The views and conclusions contained herein are those of
the authors and should not be interpreted as necessarily representing the official
policies or endorsements, either expressed or implied, of AFOSR.

?? Lin and Malkin are supported by NSF grants CNS-1445424 and CCF1423306,
the Leona M. & Harry B. Helmsley Charitable Trust, the Defense Advanced Re-
search Project Agency (DARPA) and Army Research Office (ARO) under Contract
W911NF-15-C-0236.

? ? ? Supported by NSF grants CNS-1633282, 1562888, 1565208, and DARPA SafeWare
W911NF-15-C-0236,W911NF-16-1-0389.
Any opinions, findings and conclusions or recommendations expressed are those of
the authors and do not necessarily reflect the views of the the Defense Advanced
Research Projects Agency, Army Research Office, the National Science Foundation,
or the U.S. Government.

construction by Garg, Gentry, Halevi, Raykova, Sahai, and Waters [GGH+13],
iO has become a central cryptographic primitive, with many results demon-
strating its extreme power and wide applicability in cryptography and beyond
(cf. [SW14,BZ14,BPR15,BPW16] and many more).

Constructions of general iO from various security assumptions can be divided
into two categories: constructions that rely on families of assumptions of expo-
nential size, one per pair of functionally equivalent circuits [GGH+13,BGK+14,PST14],
and constructions that incur exponential security loss in their proof reduction
and thus require their underlying assumptions to provide sub-exponential hard-
ness [GLSW15,BV15,AJ15,Lin16,LV16,LT17,AS17].

The most prominent example of the latter type of constructions is construct-
ing iO from functional encryption (FE). The works of Bitansky and Vaikun-
thanatan [BV15] and Ananth and Jain [AJ15] provided the first reductions from
iO to FE. While following papers have improved the requirements of compact-
ness [AJS15,Lin16,LV16,AS17] and the public key properties for the starting
functional encryption [BNPW16,KNT17], all known constructions of general iO
still require subexponential security for the starting FE scheme.

Given this state of affairs, an obvious goal is to achieve a construction of iO
from underlying primitives – such as FE – with polynomial security loss. However,
as discussed in several previous works [GGSW13,GPSZ17,LZ17], this goal is
likely unattainable for general iO. The argument can be informally summarized
as follows (see [LZ17] for a more comprehensive exposition and discussion).

Sub-Exponential Barrier for General Obfuscation. A security reduction
proving indistinguishability obfuscation implicitly tests whether the two circuits
C0 and C1 are functionally equivalent: if they are, the reduction must go through,
but if they are not, an adversary with a hard-coded input where the circuits differ
can easily distinguish between the obfuscated circuits, and so the reduction will
fail. Thus, an efficient reduction would seemingly yield an efficient verification
of circuit equivalence, which in turn would imply that the polynomial hierarchy
collapses. We conclude that an exponential security loss seems unavoidable for
general iO. Note, however, that this barrier does not hold if the given reduction
only works for pairs of circuits in some class where equivalence is efficiently
verifiable (namely the language of circuit pairs is in NP).

With this barrier for general circuits in mind, and following the recent work
of Liu and Zhandry [LZ17] (discussed below), in this paper we focus on the
following goal:

Reduce iO to FE incurring only polynomial security loss, for as large a
class of circuits as possible.

This question is interesting not only as a goal on its own (namely, poly-secure
obfuscation for a restricted class), but also as a tool for other potential appli-
cations. Indeed, when considering various applications that use iO as a building
block, the security proof for the constructed primitive relies on the security proof
of the iO. If we instantiate iO using general constructions from FE, the result-
ing schemes inherit the subexponential hardness requirement for the underlying

2

FE. However, this exponential security loss may not be inherent in the applica-
tion, even if it is inherent for general iO. This has been demonstrated by several
works, which provide constructions of a primitive directly from FE, with poly-
nomial security loss. Such applications include universal samplers and trapdoor
permutations [GPSZ17], multi-key functional encryption [GS16], and proving
the hardness for the complexity class PPAD [GPS16]. Roughly speaking, these
works looked at the generic composition of FE-to-iO and iO-to-application, and
combined, improved, and optimized it for the specific application, in order to
achieve polynomial security loss.

In a recent work, Liu and Zhandry [LZ17] introduce a new notion of obfus-
cation called decomposable obfuscation (dO), which aims to abstract and unify
the proof techniques from these works, and address the same goal as we do here
(iO from FE with polynomial loss, for a restricted class of circuits). The security
definition of dO requires further restrictions in addition to functional equivalence
of the two circuits, enabling the authors to prove dO security from FE incurring
only polynomial security loss. The authors also show that the dO notion can re-
place the use of iO in the above applications, providing a direct polynomial time
reduction to the FE security (rather than the application specific tailoring in
previous works). However, there are other applications of iO where a polynomial
reduction to FE is not known, but where the general barrier we discussed does
not necessarily apply. Liu and Zhandry leave open the problem of obfuscating
larger classes of circuit pairs with only polynomially-hard primitives, which may
open the way to polynomial security proofs for new applications of iO.

1.1 Our Results

We present a new obfuscation construction from functional encryption that pro-
vides indistinguishability assuming only polynomial security for the underlying
FE, for a strictly larger class than the one handled by decomposable obfusca-
tion [LZ17].

We note that, similarly to [LZ17], if two circuits are functionally equiva-
lent but do not belong to our class, our construction is still a secure iO if the
underlying FE has subexponential security.

Below, we first provide a (very) rough description of the relevant aspects
of previous constructions of obfuscation from FE, and in particular the restric-
tion imposed by dO on two functionally equivalent circuits. We then outline
our restriction (which is weaker, thus allowing more circuit pairs), and discuss
its potential implications and open problems. A more detailed description is
given in our technical overview in Section 1.3, with a formal summary after the
introduction, leaving the detailed descriptions and proofs in the appendix.

For a circuit C on n-bit inputs, consider the depth-n binary tree, where a
node at location x1 . . . xi is thought of as corresponding to the partial circuit, or
“fragment”, resulting from hard-coding into C the values of the corresponding

The authors originally called this exploding obfuscation, and this is the term they
use in the eprint version of their paper.

3

prefix. That is, the root node corresponds to C, its left child corresponds to C
with the first variable set to 0, its right child corresponds to C with the first
variable set to 1, and so on, with each leaf corresponding to a constant circuit
(0 or 1) based on the evaluation of C on the n-bit input leading to that leaf.
A “cover” of the tree is a set of nodes such that each leaf belongs to a unique
subtree rooted at one of the cover nodes (for example, the root is a cover of size
1, and the set of leaves is a cover of size 2n). With this terminology, it is easy to
see that two circuits are equivalent if and only if their trees have identical leaves,
which in turn happens if and only if their trees have any identical common cover.

From FE to iO: Previous Work. In the original constructions of iO from
FE [BV15,AJ15], the obfuscation of a circuit included a FE ciphertext, together
with FE decryption keys for specific functions, allowing to evaluate the circuit in
roughly the following way. The ciphertext corresponds to the root of the tree (the
obfuscated circuit), and each evaluation of the FE decryption allows to obtain
ciphertexts for each of the two children of that node. The evaluator uses one of
them depending on the input, and continues to apply FE decryption along a path
in the tree, until finally obtaining the value at the leaf, which is the output. The
proof of security utilizes the fact the leaves are identical in C0 and C1, and so the
proof hybrids can go through the entire tree starting from C0 to the leaves, then
go back up from the leaves to the root using C1, showing indistinguishability of
obfuscation of both circuits. This proof has exponentially many hybrids.

Decomposable Obfuscation Limitation. The dO notion puts an additional
restriction that the pair of circuits has an identical common cover of of polyno-
mial size. If we only require indistinguishability for circuit pairs satisfying this
restriction, then the proof of security needs only develop the tree up to the com-
mon cover, at which point C0 and C1, partially evaluated up to that point, are
identical circuits. This results in polynomially many hybrids, and thus can be
achieved from FE with a polynomial reduction.

Our Work: Loosening the Limitation. Our result expands that of dO, by
taking advantage of structural similarities within different circuits on the tree, so
we can consider common covers of exponential size, subject to some conditions.

We start by defining a notion we call repeated-subcircuit exploding iO, de-
noted rescueiO, which is incomparable to that of dO. Specifically, we require
that the two circuits have a common cover such that each of the trees, from
root to the cover, satisfies: (1) there are only polynomially many different cir-
cuits assigned to all nodes on or above the cover (for an exponential cover, this
implies that many of the nodes are assigned identical circuits); and (2) there is
some “common structure” condition between the two trees. We will formalize
the common structure later, but intuitively it captures the fact that the patterns
of the identical circuits in each level of the tree, and the relations between parent
and child on the tree, are the same in both trees.

While the first condition strictly generalizes the dO condition of a polynomial
size common cover, the second condition adds an additional restriction that
makes the rescueiO class incomparable to dO.

4

To overcome the additional structural limitation we apply dO on top of
rescueiO. dO is independent of partial evaluations before the tree cover. So if
any such fragments violate the structural requirement of rescueiO, we can ignore
them. On the other hand, rescueiO lets us create a tree cover that includes a
potentially-exponential number of input prefixes. With this composition, we can
achieve obfuscation for a class strictly larger than the union of both individual
notions. This is our final radiO construction.

1.2 Potential Implications and Open Problems

We summarize the more detailed discussion in [LZ17], who posed interesting
open problems, and discuss how our results fit in this context.

As explained above, the subexponential barrier for obfuscation applies to any
class of equivalent circuit pairs for which verifying whether a pair of circuits is
in the class is hard, even given a witness (which the reduction may get). That is,
the barrier holds for any such class that is believed not to be in NP (for example,
the general class of all equivalent circuit pairs, which is not in NP unless the
polynomial hierarchy collapses). This suggests a way to bypass the barrier, by
considering a subclass of equivalent circuit pairs which is in NP.

The notion of dO, proposed by Liu and Zhandry, follows this path. In fact,
in their case, testing if two circuits are in the class is not only in NP, but even
in P, as the authors show. This avoids the barrier and can replace iO in several
applications (hence getting polynomial security for those applications). However,
the fact the class is in P hinders its applicability to other important applications
of iO, such as getting public key encryption from private key encryption, de-
niable encryption, and NIZK. For those applications, the known proofs rely on
indistinguishability of obfuscated pairs of circuits in a class that cannot possibly
be efficiently tested without a witness, and so dO could not be used in place of
general iO. On the other hand, all these applications can be tweaked so that the
pairs of circuits in the proof do in fact have a witness proving their equivalence.

One of the open problems proposed by Liu and Zhandry is thus to build iO
for a class of circuit pairs for which equivalence is efficiently verifiable (with a
witness) but not efficiently testable (without a witness), and which can be based
on polynomial hardness of a small number of assumptions (such as FE).

We show that our intermediate class of circuits, rescueiO, is efficiently testable,
thus suffering from the same limitation as dO (and not solving the open prob-
lem). However, for our main, combined class, radiO, while verifying with a wit-
ness is easy, we do not know how to test whether two circuits are in the class,
and conjecture that this may be hard. Further exploring this and the implica-
tions for other potential applications of iO with polynomial security, remains an
interiguing open problem.

1.3 Technical Overview

Decomposable Obfuscation. As mentioned before, the construction of dO
for n-bit inputs uses a binary tree of depth n as an underlying structure. Each

5

internal node is assigned a circuit that is the partial evaluation of C(x≤, ·), where
x≤ is an input prefix of length i bits equal to the index of the node in its level.
Thus the leaves of the tree contain the circuit evaluations on each possible input.

The obfuscated dO object consists of n pairs of FE decryption keys, each
pair corresponding to the two possible values of each input bit, and a starting
FE ciphertext pair corresponding to the original circuit, with no input, each one
decryptable by a different decryption key of the first pair. The dO evaluation
works by starting from the given ciphertext pair, and successively generating new
pairs of FE ciphertexts that correspond to partial evaluations of the obfuscated
function on each input prefix, using FE decryption, until revealing the output
at the leaf. In more detail, each FE ciphertext is an encryption of two data
fields: the partial circuit evaluation on a prefix of the input bits, and a string of
pseudorandom values. Depending on the value of the next bit of the input, the
evaluator chooses the decryption key indexed by the input bit, to decrypt the
corresponding ciphertext, which is encrypted with the matching FE encryption
key. The decryption algorithm applies the next bit to the partial circuit, and
uses a PRG to expand the pseudorandom values into the pseudorandom values
for plaintexts of the next FE ciphertext pairs, as well as the random coins for
their encryption algorithms.

But this version of the obfuscation appears to depend on the circuit itself. To
show that the obfuscation of two equivalent circuits is indistinguishable, Liu and
Zhandry use hybrids that decompose circuits using the notion of a tree cover. A
tree cover is a subset of input prefixes so that all full inputs are the extensions of
exactly one element in the tree cover. The proof hybrids obfuscate intermediate
circuit representations, called circuit assignments, which are a set of fragments,
representing partial evaluations of the starting circuit, generated and indexed
by a tree cover. For any input prefix that is an extension of a member of the
tree cover, the generated partial circuit will still be hidden in an FE ciphertext
pair, which is again generated by FE decryption, like the aforementioned default
case, ie. plug in the input bit to generate the new fragment, and use the PRG
to expand the pseudorandom seed to generate a new pseudorandom seed, and
randomness for the FE encryption algorithm. The new feature is that if the
input prefix is a (possibly improper) prefix of a member of the tree cover, then
its FE ciphertext pair is precomputed, but hidden in an sk ciphertext, which is
also precomputed during obfuscation time, and the sk ciphertext is stored in a
random index in the function of the FE decryption key that would reveal the
FE ciphertext. To uncover this pair, the FE ciphertext corresponding to the
immediate prefix contains not a fragment and a random string, but the index
pointing to the position, and the sk decryption key. Since this prefix would also
be a prefix of an element in the tree cover, the index and key are also assigned
during obfuscation time. During evaluation time, when the FE decryption key
detects that the plaintext actually contains an index and an sk key, it will use the
index to find the sk ciphertext stored in the decryption function, and decrypt
it using the sk key. The indexes are wholly independent of the actual circuit,
which means that the obfuscation only depends on the circuit assignment. Thus,

6

if we have a common tree cover between two circuits, the obfuscation of their
respective circuit assignments is statistically equivalent. So we need to prove
that the original obfuscation of a circuit, i.e, without the index-key ciphertexts,
is indistinguishable from that of the final circuit assignment.

To do so, we move between hybrids of circuits of “adjacent” circuit assign-
ments. That means that the two circuit assignments are identical, except that
in one hybrid, one input prefix is on the tree cover, and in the other hybrid, it is
the parent of two nodes on the tree cover. Proving indistinguishability between
adjacent circuit assignments relies on sk security to hide the existence of the
stored FE ciphertext pairs, which do not exist in the default case; FE security
to hide if an FE ciphertext generated the next ciphertext pair, as in the default
case, or revealed it, if it was stored, since the output is the same in both cases,
an pair of FE ciphertexts that encrypt the next fragment and a random string;
and PRG security to hide if the pseudorandom parts were generated from the
previous ciphertext, as in the default case, or were freshly generated, and stored
in the corresponding FE decryption key. If the common tree cover is only poly-
nomial size, then we only have a polynomial number of hybrid steps from the
default obfuscation to the obfuscation of the circuit assignment, e.g., by follow-
ing a depth first search order until reaching the tree cover. In this special case,
we therefore have polynomial security loss.

Our Results. We present a new obfuscation construction from functional en-
cryption that provides indistinguishability assuming only subpolynomial security
for the underlying FE for a larger class of circuits than the one handled by de-
composabe obfuscation. In particular, we no longer need to require that any
two circuits that have indistinguishability obfuscation have a common cover of
polynomial size. Instead we require that the number of fragments at and be-
fore the common cover is polynomial, which still allows for a exponential size of
the cover, and in addition to that we need a common subcircuit, also called a
fragment, structure which we define precisely after the introduction. Our con-
struction proceeds in two steps.

Repeated subcircuit obfuscation (rescueiO). The goal for this obfuscation
construction is to relax the dO requirement for a polynomial size common tree
cover to a polynomial number of unique fragments on and before that cover. Our
construction follows closely the dO construction but we introduce new techniques
to obtain polynomial-hybrid security reductions between circuits that have this
property. In particular, instead of storing ciphertexts for every input prefix at
or before the tree cover, we only store a ciphertext for unique fragments.

But by reusing FE ciphertexts for the same fragments, the obfuscation, or
more specifically, its evaluation, could leak information about the obfuscated
circuit. For example if for one circuit, two input prefixes produce different frag-
ments, while for the second circuit, the two input prefixes produce the the same
fragment, then a distinguisher can try evaluating up to those two prefixes. If the
resulting FE ciphertexts are different, then the original circuit is the first one;
otherwise the original circuit is the second one.

7

To avoid such problems, we impose a new restriction on the pairs of circuits
that we can obfuscate. Unlike the requirements for dO, these new requirements
apply to the fragments before the tree cover. In short, we require a bijection
between fragments of the two circuits so that for any input prefix, we can apply
the bijection on the resulting fragment of the first circuit, and get the fragment
of the second circuit for the same prefix.

Hybrid rescueiO + dO solution. As we mentioned above, the evaluation of
the rescueiO obfuscation reveals the structure of common fragments in a tree
cover. This means that we can transition between obfuscations of two different
circuits only if they have the same common fragment structure among the nodes
above the common tree cover. This requirement could be potentially more re-
strictive than what is required by dO in the sense that there are circuits that
have a polynomial size common tree cover without having the common fragment
structure.

We remove this limitation in a construction that combines rescueiO and dO.
Our goal is to be able to use the dO proof techniques to replace the obfuscated
circuit, with its fragment representation, by a polynomial size cover, which re-
moves any information about the circuit structure above the dO tree cover.
Then, we can use the techniques of rescueiO to move to a more fine-grained
fragment representation that only requires a polynomial number of unique cir-
cuits but allows a potentially exponential number of input prefixes. We achieve
this by composing the two obfuscation techniques, first applying rescueiO and
then obfuscating the resulting circuit using dO. With this construction and the
above proof approach we only need to require the common fragment structure
across circuits for nodes between the dO and rescueiO covers. This is enabled by
the fact that the partially evaluated circuits residing in the dO tree cover are
partial evaluations of the rescueiO obfuscation, which do not contain FE cipher-
texts used in nodes above the dO tree cover. This means that we do not need to
worry about the fragment structure in that part of the tree in the hybrid while
switching to obfuscation of the second circuit. Note that we do not avoid a sec-
ond restriction, which is that the number of unique circuits before the tree cover
must be polynomial. Nevertheless, our result produces a strictly larger class of
obfuscatable circuit pairs than dO.

2 Common Definitions

The work of Liu and Zhandry [LZ17] defines the notion of decomposable obfus-
cation, dO. In this section, we describe its properties and limitations.

It is based on a locally decomposable obfuscator, ldO that takes as input a
circuit assignment, which does not necessarily include the circuit itself, but a
set of partially-evaluated versions of the circuit, also known as fragments. These
fragments are exactly enough to calculate the output of the circuit for all possible
inputs. In particular, the fragment with a matching input prefix is chosen, and
the remaining input bits are plugged in to calculate the final output.

8

To define ldO and dO, we first need to define circuit assignments, which
depend on tree covers, and fragments. We define a fragment as follows:

Definition 1 Let C be a circuit which takes as input {0, 1}n. For any string,
x≤ ∈ {0, 1}i

∗
, where i∗ ≤ n, we define a fragment of C to be a circuit C(x≤, ·),

where ∀i ≤ i∗, the wires for input bit i are hardcoded with the bit value x≤[i], and
any circuit gates that have a constant input wire are simplified. If the fragment
is evaluated on inputs x≥ ∈ {0, 1}n−i

∗
, then it outputs C(x≤||x≥).

We define a tree cover, which is a set of bit strings, so that every input string
is either in the tree cover, or has a unique prefix in it. For two strings, x≤, x, let
x≤ v x denote that x≤ is a (possibly improper) prefix of x. Then a tree cover is
defined as follows:

Definition 2 A tree cover, TC, is a subset of
⋃n
i∗=0{0, 1}i

∗
, so that ∀x ∈

{0, 1}n, there exists exactly one x≤ ∈ TC, so that x≤ v x.

A circuit and a tree cover allow us to derive a circuit assignment, as follows:

Definition 3 For a circuit, C, and a tree cover, TC, a circuit assignment is
Assignment(C,TC): Assignment(C,TC) = {(x≤, C(x≤, ·)) : x≤ ∈ TC}

Now we define ldO on a circuit assignment. Strictly speaking, its security is
not between two functionally equivalent circuits, but between two adjacent, or
locally decomposing equivalent, circuit assignments of the same circuit:

Definition 4 A locally decomposable iO algorithm, ldO is an obfuscation algo-
rithm that takes in a security parameter, a circuit assignment of C, a maximum
tree cover size, l, and a maximum fragment size, s, and outputs a new circuit.

For any x≤ ∈ TC, such that |x≤| < n, let TCx≤ = (TC \ {x≤})∪ {x≤||b : b ∈
{0, 1}}. Assignment(C,TCx≤) is a locally decomposing equivalent circuit assign-
ment of Assignment(C,TC), and vice-versa. Then if |TC| ≤ l, and |TCx≤ | ≤ l,
and ∀(C∗, x≤) ∈ Assignment(C,TC) ∪ Assignment(C,TCx≤), if |C∗| ≤ s, then
their local obfuscations are computationally equivalent:

ldO(1λ,Assignment(C,TC), l, s)
c
≈ ldO(1λ,Assignment(C,TCx≤), l, s)

In general, obfuscation schemes only take in circuits, not circuit assignments.
Thus we define the top-level obfuscator, dO, on the root circuit assignment,
{(C, ε)}.

Definition 5 For a ldO scheme, a decomposable obfuscator, or dO, is an ob-
fuscation scheme defined as dO(1λ, C, l, s) = ldO(1λ, {(C, ε)}, l, s).

In special cases, this definition of dO allows us to discuss indistinguishability
between two circuits, rather than circuit assignments of a single circuit. We can
transition between the obfuscation of two circuits by way of an identical circuit
assignment. If the circuit assignment has polynomial size, Liu et al. prove that
only subpolynomial security for ldO suffices for dO security [LZ17].

First we claim indistinguishability between the root and the common circuit
assignment.

9

Lemma 1 For any polynomial l ≥ 1, tree cover, TC ≤ l, and circuit size, s,
even if ldO is only subpolynomially secure, then:

dO(1λ, C, l, s) = ldO(1λ, {(C, ε)}, l, s)
c
≈ ldO(1λ,Assignment(C,TC), l, s)

So we can claim indistinguishability between two different circuits:

Lemma 2 For any polynomial, l > 1, and two circuits, C0, C1, if there ex-
ists a tree cover, TC ≤ l, and circuit size, s, so that Assignment(C,TC) =
Assignment(C ′,TC), then the dO obfuscations of the two circuits is computa-

tionally indistinguishable, ie. dO(1λ, C0, l, s)
c
≈ dO(1λ, C1, l, s).

3 dO Limitations

The limitation of dO is that two circuits are only equivalent if they have an
identical polynomia-size tree cover. We illustrate the cost of this limitation with
the following example, where the common tree cover is exponentially large, even
though there is only a very small number of unique circuits. Let n be even. The
circuits C0(x) =

⊕n
i=1 x[i] and C1(x) =

⊕n
i=1 x[i] are functionally equivalent.

But no fragments will be identical until all input bits have been plugged in. So
the common tree cover must have exponential size, as illustrated in Figure 1.

Fig. 1. Case where dO requires an exponentially-sized tree cover for two circuits.

But if we look at what the fragments are for each input prefix, we notice
that the fragments repeat, and in fact, at every level, C0 and C1 each have only
at most two different kinds of fragments. Moreover, for every fragment of C0,
every input prefix that generates it generates exactly one fragment of C1. We
can consolidate these fragment pairs, as shown in Figure 2, and our obfuscation
will take advantage of this property.

10

Fig. 2. Case where the number of fragments is polynomial.

4 Obfuscating a Circuit Assignment with Repeated
Fragments

The example in the previous section shows that using dO, and looking for identi-
cal fragments between the two obfuscated circuits could lead to an exponential-
size tree cover, even for relatively simple circuits. But it also points out a useful
circuit property: a small number of repeated fragments. We introduce a technique
that adapts the proof approach from dO to take advantage of this property. This
technique follows the ideas of ldO, but we introduce a different way to construct
the hybrid sequence in the proof of indistinguishability, which leverages the cir-
cuit structure with repeated fragments. We thus call our algorithm REpeated
SubCircUit Exploding iO, or rescueiO for short.

Our new proof techniques allow the obfuscation size to depend only on the
total number of unique fragments rather than all input prefixes in and before a
tree cover, which could be exponential. We also show how we can argue indis-
tinguishability across hybrids where we partially evaluate a fragment that may
correspond to many input prefixes simultaneously. The novelty of our approach
allows us to transition even to tree cover assignments with exponential number
of input prefixes, as long as the unique fragments at and before tree cover are
a polynomial number, while incurring only polynomial security loss. This ex-
pands the capabilities of the ldO techniques that are the main tool for arguing
indistinguishability for dO.

Below, we summarize the construction of rescueiO, and define the concepts
and requirements necessary for its security. Due to space constraints, we will
give a complete description of the construction and proof in Appendices C and
C.1.

rescueiO produces an obfuscation that is evaluated similarly to dO: the obfus-
cation contains a set of FE decryption keys and a starting pair of FE ciphertexts.
For each input bit, the evaluator chooses the ciphertext for the input bit value,
and decrypts it using the corresponding decryption key. And like in dO, the
default case only obfuscates the original circuit. But already in this default case,
we modified the function that the FE decryption key evaluates . Again, the plain-
text contains a partial circuit and a random seed, but the random seed does not

11

necessarily vary by input prefix, because we do not want visibly different cipher-
texts for the same fragment at different input prefixes. Instead, each input prefix
length has a single seed that is shared amongst all evaluations at that length.
To make it possible to have a per-level seed, and have the same pseuorandom
output for the same fragment at different input prefixes, we use a PRF instead of
a PRG: the PRF is evaluated on a constant to produce the key for the next level,
and on the next fragment and the input bit to produce the random coins for the
next FE encryptions. Inductively, by evaluating a PRF on a constant, each level
will have exactly one PRF key. As a result the random coins for FE encryption
will only depend on the fragment and the last input bit used to generate the
fragment. That means that for two partial evaluations of the obfuscation, if the
last bit is the same, and they result in the same underlying fragment of the
original circuit, then the resulting FE ciphertext is identical.

This property lets us obfuscate circuit assignments by storing FE ciphertexts
similar to dO. First, we need to define what ciphertexts we store, and what we
generate. Instead of an arbitrary tree cover, our analogue considers all prefixes
of a certain length:

Definition 6 ∀i∗ ∈ n, a level assignment, of circuit C for prefix length i∗ is a
set of unique fragments, LevelAssignment(C, i∗):

LevelAssignment(C, i∗) = {C(x≤, ·) : x≤ ∈ {0, 1}i
∗
}

Note, that for the purposes of our algorithm, we do not keep track of which in-
put prefixes give us which fragment, as the relation may be many-to-one. For the
rest of the paper, we consider the circuits, C, so that when LevelAssignment(C, i∗)
has polynomial size, it is known (which is true if all the previous level assign-
ments are polynomial-size and known).

In dO, the decryption functions store ciphertexts up to the tree cover; in
rescueiO, the decryption functions store ciphertexts for inputs whose lengths are
up to and including i∗ bits. The stored data of the two obfuscation schemes
are nearly identical. They are both FE ciphertext pairs encrypted by an sk key.
The main difference is how many ciphertexts are stored. In dO, there is a fresh
ciphertext for every input prefix. On the other hand, rescueiO contains only two
ciphertexts for each unique fragment, one for each input bit. This is mirrored
by the default evaluation of the obfuscation of the original circuit, in which
only two ciphertexts could ever be generated for a fragment. In fact, for input
prefixes whose lengths are strictly less than i∗, the plaintexts used to generate
the FE ciphertext pairs are identical between the two schemes: they contain
a pointer to the successor ciphertext, and the sk decryption key to uncover
the FE ciphertext. For input prefixes of length i∗, the syntax plaintexts of the
two schemes are similar: they contain a fragment and random coins. But for
rescueiO, the random coins are identical for the whole level, which ensures that
for the following levels, the random coins continue to be identical, like in the
aforementioned default evaluation mode.

However, by generating or storing ciphertexts for unique fragments, the struc-
ture of the pointers is now dependent on how the original circuit generates those

12

fragments. That means that the obfuscation is dependent not only on the frag-
ments in the level assignment, but also on the fragments before it. Therefore, it
is not enough that two circuits have an identical level assignment. They require
a similar structure for the prior fragments, too. The requirement for two cir-
cuits to be indistinguishable under rescueiO is therefore defined as consistency,
as follows:

Definition 7 (Consistent Circuits) Two circuits, C0, C1, are consistent for
i∗, if there exists a bijection τ and a polynomial values l, s, so that

1. ∀x, where |x| ≤ i∗: τ(C0(x, ·)) = C1(x, ·)
2. ∀x ∈ {0, 1}i∗ : C0(x, ·) = C1(x, ·),
3. |

⋃i∗

i=0 LevelAssignment(C0, i)| ≤ l and |
⋃i∗

i=0 LevelAssignment(C1, i)| ≤ l
4. ∀C∗ ∈

⋃i∗

i=0 LevelAssignment(C0, i) ∪
⋃i∗

i=0 LevelAssignment(C1, i), |C∗| ≤ s.

The mapping requirement is the main property that would make rescueiO in-
applicable to certain cases that dO can obfuscate. Therefore, so far, even though
rescueiO can obfuscate some circuit pairs that dO cannot, the two schemes are
incomparable. Also note that even though the mapping property is defined over
a potentially-exponential number of input prefixes, it can be efficiently checked,
given the τ . In fact, we can show in Section 6 that if the two circuits are consis-
tent, we can efficiently check it with an iterative algorithm.

5 radiO: Combining dO and rescueiO

We can provide indistinguishability obfuscation for the class of consistent circuits
that satisfy Definition 7. However, this requirement is restrictive, and could
exclude circuits that could be obfuscated in polynomial security loss with dO.

For a trivial example, assume some common subcircuit, C∗ that takes n− 3
bits as input, and the two functionally equivalent circuits:

C0(x) = x[1]⊕ x[2]⊕ x[3]⊕ C∗(x[4], . . . , x[n])

C1(x) = Select(x[1],Select(x[2], x[3], x[3]),Select(x[2], x[3], x[3]))⊕ C∗(x[4], . . . , x[n])

Note that the selection functions in C1 form a more complicated circuit that
also performs XOR.

Because the only difference between the two circuits is in the first, constant
number of bits, they can be obfuscated by dO. On the other hand, it cannot be
obfuscated using rescueiO, because in C0, the first two bits produce 2 fragments,
while in C1, the first two bits already produce 4, making a mapping impossible.

We show how we can overcome the restrictiveness of Definition 7 to obtain
an obfuscation construction that relies on a subpolynomial security assumption
for FE and can obfuscate an extended class of circuits that is a proper superset
of the class handled by dO. Our idea is to relax the bijection requirement from
Definition 7 by applying ldO on the output of rescueiO, to hide inconsistencies
before the tree cover, TC, used to form the ldO circuit assignment.

13

In this way, we only require that the input prefixes of length at least i∗

produce identical fragments, not for the whole tree cover TC. Furthermore there
is no structural restriction on the input prefixes before TC. The tree cover TC
and length restriction i∗ will split the space of fragments into three regions,
which we will formalize in 5.1. In short, they are: all the fragments that are
only generated by input prefixes that are proper prefixes of those in TC, all the
fragments that have a prefix in each original tree cover (equivalently, they have
a prefix in the combined tree cover), and all of the remaining fragments. We
can remove any remaining dependencies on fragments in the first group. For two
circuits, the second group will be identical if we require that all the fragments
formed by the new tree cover are identical. The third group is the only one for
which the mapping applies.

Due to the security of rescueiO, we can increase i∗, until the fragments at
level i∗ are identical for the two circuits. Then, due to the security of ldO, we
can decompose the circuit assignment to TC, until it meets the new require-
ments. Then we are in a state, where the obfuscations of the two circuits are
indistinguishable, based on arguments we will make for each of the three regions.
Actually, the region of fragments beyond i∗ do not need to be hidden, as they
are identical.

5.1 Properties of Fragment Partitions

More precisely, we define the following three regions, which may only overlap at
their boundaries:

1. Before TC:

PreTCC,TC = {C∗ : @x ∈ {0, 1}∗, x≤ ∈ TC so that C∗ = C(x, ·) ∧ x≤ v x}

2. After TC and i∗: Define the set of input prefixes:

AfterInput(TC, i∗) = {x : |x| ≥ i∗ ∧ ∃x≤ ∈ TC so that x≤ v x}

We further define the boundary of AfterInput(TC, i∗):

MinAfterInput(TC, i∗) = {x ∈ TC : |x| ≥ i∗} ∪
{x ∈ {0, 1}i

∗
: ∃x≤ ∈ TC so that |x≤| ≤ |x| ∧ x≤ v x}

We can see that any input prefix that has a prefix in MinAfterInput(TC, i∗)
has a prefix in TC, and has at least i∗ bits. The only difference between the
two subsets is which tree cover element comes first. Conversely, for every
input prefix x ∈ AfterInput(TC, i∗), either the prefix, x≤ ∈ TC has at least
i∗ bits, in which case that prefix would be in the first subset, or it is the
prefix of strings with i∗ bits. In the second case, since |x| ≥ i∗, x must have
a prefix of length i∗, which also has x≤ as a prefix.
This region also generates circuits, but we do not define them, as no algo-
rithm will use them explicitly.

14

3. Between TC and i∗: Define the set of input prefixes:

InterInput(TC, i∗) = {x : |x| ≤ i∗ ∧ ∃x≤ ∈ TC so that x≤ v x}

Then the set of circuits is InterCirc(C,TC, i∗) = {C(x≤, ·) : x≤ ∈ InterInput(TC, i∗)}.

The input prefixes corresponding to the first and third regions are shown in
Figure 3.

Fig. 3. The boundaries of the input prefix regions

The composed obfuscation requires that two circuits, C0, C1, be combined-
cover consistent, which is defined as follows:

Definition 8 Two circuits, C0, C1, are combined-cover consistent for tree cover
TC and length i∗, if there exist a polynomial size l and a bijection τ : InterCirc(C0,TC, i

∗)→
InterCirc(C1,TC, i

∗), so that:

1. ∀x ∈ TC ∪ InterInput(TC, i∗) : τ(C0(x, ·)) = C1(x, ·),
2. ∀x ∈ MinAfterInput(TC, i∗) : C0(x, ·) = C1(x, ·),

3. |
⋃i∗

i=0 LevelAssignment(C0, i)| ≤ l and |
⋃i∗

i=0 LevelAssignment(C1, i)| ≤ l

In Appendix E, we give a complete proof of the security of the composition. In
short, by applying dO, the final obfuscation only depends on the partial circuits
at the dO tree cover, which hides any violations of the consistency property
before it, thus reducing the number of input prefixes for which the consistency
property must hold. This relaxation indeed allows for the obfuscation of circuit
pairs that cannot be obfuscated by dO and rescueiO alone, with an example
shown in Appendix F.

6 Testing Consistency

Recall the Definition 7 of consistent circuits in rescueiO. In this case, testing
consistency means that, given two circuits, we have to find an i∗ and a bijection
τ such that,

– Two circuits are identical after partial evaluating with the same input prefix
of length i∗;

15

– Informally speaking, τ is a bijection between two sets of unique partial eval-
uated circuits and matches them with the same input prefix.

We present an efficient iterative algorithm to solve this problem.

Theorem 1 There exists a deterministic algorithm that decides in polynomial
time whether these two give circuits C0 and C1 are consistent for some polyno-
mials l and s.

Proof. Initially, we have LevelAssignment(Cb, 0) = {Cb} for b ∈ {0, 1}, and τ
maps C0 to C1.

We iteratively generate LevelAssignment(Cb, i) for i = 1, 2, . . . , n and check
the existence of a good mapping τ :

– First generate LevelAssignment(Cb, i) using C∗ ∈ LevelAssignment(Cb, i−1)}.
Return not consistent if |LevelAssignment(C0, i)| 6= |LevelAssignment(C1, i)|
or the number of circuits exceeds the limit l or any of those circuits exceeds
the size limit s.

– Then we scan LevelAssignment(C0, i) to construct the bijection τ in the fol-
lowing way:
For each C∗0 ∈ LevelAssignment(C0, i − 1), assign τ(C∗0 (b, 0)) = τ(C∗0)(b, 0).
Return not consistent if there’s any conflict or τ is not bijective.

– Return consistent when C∗0 = τ(C∗0) for every C∗0 ∈ LevelAssignment(C0, i).
Moreover, this i is our desired i∗.

The above algorithm takes time O(nl2s).
Then it’s sufficient to show that the constructed bijection τ satisfies that

τ(C0(x, ·)) = C1(x, ·) for every |x| ≤ i. We can show it by induction on i.
Clearly it holds when i = 0, and the construction above ensures that for every
C∗0 ∈ LevelAssignment(C0, i− 1), τ(C∗0 (b, 0)) = τ(C∗0)(b, 0). Which concludes the
result.

In the composition of dO and rescueiO, we also defined the combined-cover
consistency in Definition 8. But unfortunately we didn’t come up with a polyno-
mial time algorithm to check whether two circuits are combined-cover consistent.
Like testing consistency in dO, the above algorithm takes advantages of the ex-
istence of a minimum tree cover that satisfies certain properties. But in our
definition of combined-cover consistency, even if we know the length i∗, there
could be multiple (even exponentially many) minimal tree covers that satisfy
those properties. And it’s not easy to certify that all those minimal tree covers
exceed the size limit and hence two given circuits are not consistent.

We tried a modified version of the algorithm for testing consisntency in dO:
it keeps decomposing the tree covers (originally it contains only the root) until
all pairs of corresponding partial evaluated circuits are consistent in the rescueiO
definition, ie. we found a good bijection τ and all pairs of corresponding par-
tial evaluated circuits after certain level i∗ are identical. But merging those τ ’s
doesn’t immediately give us our desired bijection τ in the definition of combined-
cover consistence. We are curious about whether we can tweak this algorithm
and make it work.

16

References

[AJ15] Prabhanjan Ananth and Abhishek Jain. Indistinguishability obfuscation
from compact functional encryption. In Advances in Cryptology - CRYPTO
2015 - 35th Annual Cryptology Conference, Santa Barbara, CA, USA, Au-
gust 16-20, 2015, Proceedings, Part I, pages 308–326, 2015.

[AJS15] Prabhanjan Ananth, Abhishek Jain, and Amit Sahai. Indistinguishability
obfuscation from functional encryption for simple functions. Cryptology
ePrint Archive, Report 2015/730, 2015. http://eprint.iacr.org/2015/

730.

[AS17] Prabhanjan Ananth and Amit Sahai. Projective arithmetic functional
encryption and indistinguishability obfuscation from degree-5 multilinear
maps. In Advances in Cryptology - EUROCRYPT 2017 - 36th Annual In-
ternational Conference on the Theory and Applications of Cryptographic
Techniques, Paris, France, April 30 - May 4, 2017, Proceedings, Part I,
pages 152–181, 2017.

[BGI+01] Boaz Barak, Oded Goldreich, Russell Impagliazzo, Steven Rudich, Amit
Sahai, Salil Vadhan, and Ke Yang. On the (im) possibility of obfuscating
programs. 2001.

[BGK+14] Boaz Barak, Sanjam Garg, Yael Tauman Kalai, Omer Paneth, and Amit
Sahai. Protecting obfuscation against algebraic attacks. In Advances in
Cryptology - EUROCRYPT 2014 - 33rd Annual International Conference
on the Theory and Applications of Cryptographic Techniques, Copenhagen,
Denmark, May 11-15, 2014. Proceedings, pages 221–238, 2014.

[BNPW16] Nir Bitansky, Ryo Nishimaki, Alain Passelègue, and Daniel Wichs. From
cryptomania to obfustopia through secret-key functional encryption. In
Theory of Cryptography - 14th International Conference, TCC 2016-B, Bei-
jing, China, October 31 - November 3, 2016, Proceedings, Part II, pages
391–418, 2016.

[BPR15] Nir Bitansky, Omer Paneth, and Alon Rosen. On the cryptographic hard-
ness of finding a nash equilibrium. In Foundations of Computer Science
(FOCS), 2015 IEEE 56th Annual Symposium on, pages 1480–1498. IEEE,
2015.

[BPW16] Nir Bitansky, Omer Paneth, and Daniel Wichs. Perfect Structure on the
Edge of Chaos, pages 474–502. Springer Berlin Heidelberg, Berlin, Heidel-
berg, 2016.

[BV15] Nir Bitansky and Vinod Vaikuntanathan. Indistinguishability obfuscation
from functional encryption. In IEEE 56th Annual Symposium on Founda-
tions of Computer Science, FOCS 2015, Berkeley, CA, USA, 17-20 October,
2015, pages 171–190, 2015.

[BZ14] Dan Boneh and Mark Zhandry. Multiparty Key Exchange, Efficient Traitor
Tracing, and More from Indistinguishability Obfuscation, pages 480–499.
Springer Berlin Heidelberg, Berlin, Heidelberg, 2014.

[GGH+13] Sanjam Garg, Craig Gentry, Shai Halevi, Mariana Raykova, Amit Sahai,
and Brent Waters. Candidate indistinguishability obfuscation and func-
tional encryption for all circuits. In FOCS, 2013.

[GGM84] Oded Goldreich, Shafi Goldwasser, and Silvio Micali. How to construct
randolli functions. In Foundations of Computer Science, 1984. 25th Annual
Symposium on, pages 464–479. IEEE, 1984.

17

[GGSW13] Sanjam Garg, Craig Gentry, Amit Sahai, and Brent Waters. Witness en-
cryption and its applications. In Symposium on Theory of Computing Con-
ference, STOC’13, Palo Alto, CA, USA, June 1-4, 2013, pages 467–476,
2013.

[GLSW15] Craig Gentry, Allison Bishop Lewko, Amit Sahai, and Brent Waters. Indis-
tinguishability obfuscation from the multilinear subgroup elimination as-
sumption. In IEEE 56th Annual Symposium on Foundations of Computer
Science, FOCS 2015, Berkeley, CA, USA, 17-20 October, 2015, pages 151–
170, 2015.

[GPS16] Sanjam Garg, Omkant Pandey, and Akshayaram Srinivasan. Revisiting the
cryptographic hardness of finding a nash equilibrium. In Advances in Cryp-
tology - CRYPTO 2016 - 36th Annual International Cryptology Conference,
Santa Barbara, CA, USA, August 14-18, 2016, Proceedings, Part II, pages
579–604, 2016.

[GPSZ17] Sanjam Garg, Omkant Pandey, Akshayaram Srinivasan, and Mark Zhandry.
Breaking the sub-exponential barrier in obfustopia. In Advances in Cryp-
tology - EUROCRYPT 2017 - 36th Annual International Conference on the
Theory and Applications of Cryptographic Techniques, Paris, France, April
30 - May 4, 2017, Proceedings, Part III, pages 156–181, 2017.

[GS16] Sanjam Garg and Akshayaram Srinivasan. Single-key to multi-key func-
tional encryption with polynomial loss. In Theory of Cryptography - 14th In-
ternational Conference, TCC 2016-B, Beijing, China, October 31 - Novem-
ber 3, 2016, Proceedings, Part II, pages 419–442, 2016.

[KNT17] Fuyuki Kitagawa, Ryo Nishimaki, and Keisuke Tanaka. Indistinguishability
obfuscation for all circuits from secret-key functional encryption. Cryptol-
ogy ePrint Archive, Report 2017/361, 2017. http://eprint.iacr.org/

2017/361.
[Lin16] Huijia Lin. Indistinguishability obfuscation from constant-degree graded

encoding schemes. In Advances in Cryptology - EUROCRYPT 2016 - 35th
Annual International Conference on the Theory and Applications of Cryp-
tographic Techniques, Vienna, Austria, May 8-12, 2016, Proceedings, Part
I, pages 28–57, 2016.

[LT17] Huijia Lin and Stefano Tessaro. Indistinguishability obfuscation from trilin-
ear maps and block-wise local prgs. In Advances in Cryptology - CRYPTO
2017 - 37th Annual International Cryptology Conference, Santa Barbara,
CA, USA, August 20-24, 2017, Proceedings, Part I, pages 630–660, 2017.

[LV16] Huijia Lin and Vinod Vaikuntanathan. Indistinguishability obfuscation
from ddh-like assumptions on constant-degree graded encodings. In IEEE
57th Annual Symposium on Foundations of Computer Science, FOCS 2016,
9-11 October 2016, Hyatt Regency, New Brunswick, New Jersey, USA,
pages 11–20, 2016.

[LZ17] Qipeng Liu and Mark Zhandry. Decomposable obfuscation: A framework for
building applications of obfuscation from polynomial hardness. In Theory of
Cryptography - 15th International Conference, TCC 2017, Baltimore, MD,
USA, November 12-15, 2017, Proceedings, Part I, pages 138–169, 2017. See
also http://eprint.iacr.org/2017/209.

[PST14] Rafael Pass, Karn Seth, and Sidharth Telang. Indistinguishability obfusca-
tion from semantically-secure multilinear encodings. In Advances in Cryp-
tology - CRYPTO 2014 - 34th Annual Cryptology Conference, pages 500–
517, 2014.

18

[SW14] Amit Sahai and Brent Waters. How to use indistinguishability obfuscation:
Deniable encryption, and more. In STOC, 2014.

A Definitions

Notation. For two non-negative integers, u, v, let [u, v] denote a sorted list of
all integers greater than or equal to u, and less than or equal to v. If u > v, then
the list is empty. We represent the special case where u = 1 by [v].

For a bit string, x, and some index, i ∈ [|x|], let x[i] denote the bit of x in
position i.

We denote two statistically equivalent distributions, D0 and D1, by:

D0
s≡ D1

If they are indistinguishable, we denote their relationship by:

D0
c
≈ D1

A.1 General Obfuscation

We will be discussing multiple obfuscation schemes, but all of them take at least
a circuit as input, and output a circuit, or the parameters to calculate a circuit.
The scheme must be efficient, and the output must be functionally equivalent
to the input circuit. The following is a generalization of common properties of
obfuscators, as described in [BGI+01] and [LZ17]:

Definition 9 An obfuscation algorithm, O, takes as input a security parameter,
1λ, any circuit, C, and auxiliary input, z, and outputs a circuit, C̃. The algorithm
O should satisfy the following properties:

1. Efficient: O is a PPT algorithm over λ, C, and z.

2. Correct: Pr[∀x, C̃(x) = C(x)|C̃ ← O(1λ, C, z)] = 1

Indistinguishability obfuscation, or iO, is a general-purpose obfuscation al-
gorithm that makes any two equal-sized, functionally equivalent circuits indis-
tinguishable:

Definition 10 An obfuscation algorithm, iO, is an indistinguishability obfusca-
tor if for any two circuits, C0, and C1, where ∀x, C0(x) = C1(x), and |C0| =
|C1|:

iO(1λ, C0)
c
≈ iO(1λ, C1)

19

A.2 Functional Encryption

iO, dO, and our schemess all have constructions based on functional encryption,
or FE. We define its algorithms, and its security game, in the way that it is used
for construction dO [LZ17]:

Definition 11 An FE scheme consists of the following parts:

1. FE.Gen(1λ)(1λ): Outputs a master secret key, and a master public key (msk,mpk).
2. FE.Enc(mpk,m, r): A deterministic algorithm that takes in a master pub-

lic key, a plaintext, and randomness coins, and outputs a ciphertext, c.
FE.Enc(mpk,m) is the randomized version, where r is chosen uniformly at
random.

3. FE.KeyGen(msk, f): Takes in a master secret key and a function, and outputs
a function key, fsk.

4. FE.Dec(fsk, c): Takes in a function key and a ciphertext, and outputs a string.

An FE scheme must be correct, which means that the decryption algorithm
evaluates function key’s function on the underlying plaintext, which means that
for all security parameters, λ, plaintexts, m, and functions, f :

Pr[FE.Dec(fsk, c) = |(msk,mpk)← FE.Gen(1λ)(1λ), c← FE.Enc(mpk,m), fsk← FE.KeyGen(msk, f)]

= 1

An FE scheme is single-key selectively secure, which depends on the following
game, Gameλ,A,b, for b ∈ {0, 1}, for adversary, A:

1. A submits two messages, m0, m1, where |m0| = |m1|.
2. The challenger calculates (msk,mpk)← FE.Gen(1λ)(1λ), and returns mpk to
A.

3. A submits a function, f , such that where f(m0) = f(m1).
4. A outputs b′, which is the output of the game.

FE is single-key selectively secure if for any PPT, A:

|Pr[Gameλ,A,0 = 1]− Pr[Gameλ,A,1 = 1]| = negl.

An FE scheme is compact if the running time of FE.Enc(mpk,m) is bounded
by poly(λ, |m|). In particular, it is independent of the size of any functions, f ,
from which function keys, fsk, are derived.

B Summary of dO Construction

We summarize the dO construction of Liu and Zhandry [LZ17]. The input
of the ldO algorithm includes a circuit assignment, and its output consists
of a pair of FE ciphertexts, (c0, c1), and n + 1 pairs of FE decryption keys,

{fsk(b)
i }i∈[1,n+1],b∈{0,1}, each corresponding to an input bit index and input bit

20

value. In order to generate the function keys, the obfuscation algorithm gener-

ates FE master public and private keys, {(msk
(b)
i ,mpk

(b)
i)}i∈n,b∈{0,1}. For each

i ∈ [i + 1], b ∈ {0, 1} the obfuscation scheme will generate fsk
(b)
i from msk

(b)
i ,

to evaluate a function, f
(b)
i , which we will describe later in this section. The FE

decryption keys will contain several hardcoded SKE ciphertexts that will contain
FE encryptions of either fragments of the obfuscated circuit or indexes to other
ciphertexts.

We describe the construction in increasing level of detail, starting from the
default case of dO, which only gives ldO the circuit assignment {(C, ε)}, and
add more features to support general tree covers. In particular, we will fill in

what plaintext each FE ciphertext contains, and the function that each fsk
(b)
i

evaluates.
In the default case, for b ∈ {0, 1}, the algorithm generates a randomness key,

Kb, and outputs the following initial FE ciphertext:

cb = FE.Enc(mpk
(b)
1 , (C,Kb,⊥,⊥))

Each FE decryption key fsk
(b)
i is generated for a function f

(b)
i , which works

as follows. It takes input of the form (Ci,K,⊥,⊥) where Ci is the fragment of
C partially evaluated on the input prefix x[1] . . . x[i− 1]. It evaluates Ci+1 =
Ci(b, ·), and applies a PRG on K to obtain two new seeds K0, K1, as well as
random coins, r0 and r1. For i < n it outputs a pair of ciphertexts

FE.Enc(mpk
(0)
i+1, (C

i+1,K0,⊥,⊥), r0)

FE.Enc(mpk
(1)
i+1, (C

i+1,K1,⊥,⊥), r1)

Functions f
(b)
n+1 output Cn directly.

To evaluate the above obfuscation on n-bit input x[1] . . . x[n], the evaluator

applies a sequence of FE decryptions (ci,0, ci,1) = FE.Dec(fsk
(x[i])
i , ci−1,x[i]) for

1 ≤ i ≤ n where c0,x[1] = cx[1]. The output of each such decryption is an
encryption of a partial evaluation C(x[1] . . . x[i], ·) for i < n and the output of
the final decryption is the value C(x[1] . . . x[n]) in the clear. Note that the use of
the PRG in each decryption function to generate random values effectively creates
a PRF [GGM84] that the evaluation algorithm applies on all input prefixes after
the tree cover to generate coins for FE encryption. However, because each input
prefix needs exactly one set of pseudorandom coins, this construction is sufficient,
and explicitly using a PRF, say for each input prefix, is not necessary.

The above construction so far handles only obfuscating a single circuit de-
scription, however, ldO should work on any polynomial-size circuit assignment,
and it can only depend on that circuit assignment. This means that it no longer
suffices to encrypt C in the initial ciphertexts but we should rather include the
fragment circuits corresponding to the tree cover assignment. It additionally
poses challenges how to select which of the fragment circuit should be used for
the evaluation on each input and also how to hide circuit assignment information,
which is needed for the ldO security. To do that, the obfuscation algorithm cre-

ates an indexed set of SKE ciphertexts, {Z(b)
i,j }i∈[n],j∈[l],b∈{0,1}, which we describe

21

below. These SKE ciphertexts will be hardcoded into the decryption functions.
These ciphertexts will contain, under a layer of FE encryption, either the frag-
ments’ circuits or index values necessary to reach the correct fragment for each
input.

We can express a circuit assignment as (C∗, x≤||b), where we define the prefix
length, i = |x≤||b|. For such an element, the algorithm randomly generates K0

and K1, and sets

(c
(b)
i+1,0, c

(b)
i+1,1) =

(FE.Enc(mpk
(0)
i+1, (C

∗,K0,⊥,⊥)),FE.Enc(mpk
(1)
i+1, (C

∗,K1,⊥,⊥)))

ldO will permute the above FE ciphertext pairs by assigning them unique indices,
jb, and then encrypt them with SKE as follows:

Z
(b)
i,jb

= SKE.Enc(sk
(b)
i,jb
, (c

(b)
i+1,0, c

(b)
i+1,1))

These Z
(b)
i,jb

values are hardcoded in each of the FE decryption keys in the ob-
fuscation. In the above description of the obfuscation evaluation algorithm we
were doing a sequence of FE decryptions which were incrementally evaluating
C. When we have only fragment circuits, we can start using them only after we
have progressed to corresponding input prefix. Thus the ldO construction gen-
erates more ciphertexts which will be hardcoded in the decryption keys and will
help navigate to the correct Z values for the evaluation. At a high level these
values will correspond to nodes above the fragment tree cover and will contain
indexes to each of their children. During evaluation they will be used to follow a
path determined by the input prefix to reach the correct cover fragment circuit
for evaluation. More formally these ciphertexts will be of the form:

(c
(p)
i,0 , c

(p)
i,1) =

(FE.Enc(mpk
(0)
i , (⊥,⊥, j0, sk(0)

i,j0
)),FE.Enc(mpk

(1)
i , (⊥,⊥, j1, sk(1)

i,j1
))),

where p will be a bit value corresponding to the last bit of the input prefix leading
to the node corresponding to the ciphertexts. These FE ciphertexts are also
encrypted with SKE and are shuffled together with the encryptions containing
the circuit fragments before being hardcoded in the FE decryption keys.

The functionality of f
(b)
i for b ∈ {0, 1} is extended to handle the two ad-

ditional possible input messages encrypted in the Z
(b)
i,jb

values. The messages
of the form (C,K,⊥,⊥) are used for partial evaluation as above. On input

messages with indexes of the form (⊥,⊥, jb, sk(b)
i,jb

) the function f
(b)
i outputs

SKE.Dec(sk
(b)
i,jb
, Z

(b)
i,jb

).
Thus the dO construction hardcodes in its FE decryption keys a number of

ciphertexts proportional to the number of fragments in its circuit assignments. In
the case when there are repeating circuits among the fragments corresponding to
the assignments of the tree cover, the dO still needs to use separate ciphertexts
for each of them. That ensures that only ciphertexts corresponding to nodes on

22

the tree cover depend on the actual obfuscated circuit, while all nodes above the
tree cover of the assignment contain only generic index information independent
of the actual obfuscated circuit.

C Obfuscating a Circuit Assignment with Repeated
Fragments

Construction 1 (Repeated Subcircuit dO) Let FE = {FE.Gen, FE.Enc, FE.KeyGen,
FE.Dec} be a functional encryption scheme and PRF = (PRF.Gen, PRF.Eval)
be a pseudorandom function. We construct a rescueiO scheme that has an ob-
fuscation algorithm shown in Algorithm 1 and evaluation algorithm shown in
Algorithm 6. We define our rescueiO obfuscation for circuits C with the fol-
lowing restriction: there exist a polynomial-size l and a level i∗ ≤ n such that

|
⋃i∗

i=0 LevelAssignment(C, i)| ≤ l.

Algorithm 1 generation of hardcoded parameters of obfuscated circuit

procedure rescueiO(1λ, C, i∗, l, s) . C: the circuit to obfuscate, i∗: the level whose

fragments to hardcode. l: the maximum number of fragments we will hardcode. s: the maximum

size of each fragment. This implicitly limits the size of the messages and ciphertexts.

for i ∈ [n+ 1], b ∈ {0, 1} do
(msk

(b)
i ,mpk

(b)
i)← FE.Gen(1λ)

end for
for i ∈ [n], b ∈ {0, 1} do

for j ∈ [i∗] do . Generate SKE ciphertexts that might hold fragments’ FE ciphertexts.

They will be hardcoded into the appropriate FE decryption functions

sk
(b)
i,j ← SKE.KeyGen(1λ)

Z
(b)
i,j ← SKE.Enc(sk

(b)
i,j , (⊥,⊥)) . But for now, only hold dummy information.

end for
Z

(b)
i ← {Z

(b)
i,j }j∈[l]

end for
for b ∈ {0, 1} do

Uniformly, at random, choose an injective function, πC,b :⋃i∗

i=0 LevelAssignment(C, i)→ [l] . Randomly map FE ciphertexts to SKE ciphertexts

end for

23

(c0, c1)← rscCGen(C, i∗, πC,0, πC,1) . Use Algorithm 2 to generate initial FE

ciphertexts, and populate SKE ciphertexts.

for i ∈ [n+ 1], b ∈ {0, 1} do
fsk

(b)
i ← FE.KeyGen(msk

(b)
i , f

(b)
i) . Generate FE decryption keys that will perform

Algorithms 3 and 5 during evaluation.

end for
return ((c0, c1), {fsk(b)i }i∈[1,n+1],b∈{0,1})

end procedure

Algorithm 2 generate (c0, c1)

procedure rscCGen(C, i∗, πC,0, πC,1) . C: the

circuit to obfuscate. i∗: the farthest level for which we want to hardcode ciphertexts. Subcircuits

generated by inputs of length i∗ will be included in the ciphertexts, while fragments with shorter

inputs will only have their corresponding ciphertexts contain an index and SKE key to find and

decrypt the SKE ciphertext in the next level. (πC,0, πC,1) : determine which SKE ciphertext will

hold an FE ciphertext

Ki∗ ← PRF.Gen()
for i from i∗ to 0, p ∈ {0, 1}, C∗ ∈ LevelAssignment(C, i) do . Generate

FE ciphertexts for each fragment, and put it in a random SKE ciphertext. The plaintext data will

give us the index and SKE key to decrypt the SKE ciphertext in the next level to get the next

FE ciphertext, or the partial circuit itself, and a random seed, to generate an FE pseudorandom

ciphertext in the same format, for the next fragments. . p represents the last input bit used to

reach the current fragment.

j
(p)
C∗ ← πC,p(C

∗)
for b ∈ {0, 1} do

if i < i∗ then
j
(b)

C∗(b,·) ← πC,b(C
∗(b, ·))

m
(p)
C∗,b ← (⊥,⊥, j(b)C∗(b,·), sk

(b)

i+1,j
(b)
C∗(b,·)

)

else
m

(p)
C∗,b ← (C∗,Ki,⊥,⊥)

end if
c
(p)
C∗,b ← FE.Enc(mpk

(b)
i+1,m

(p)
C∗,b)

end for
if i > 0 then

Z
(p)

i,j
(p)
C∗
← SKE.Enc(sk

(p)

i,j
(p)
C∗
, (c

(p)
C∗,0, c

(p)
C∗,1))

end if
end for
return (c

(0)
C,0, c

(0)
C,1) . Return the initial FE ciphertexts at the top level, which correspond

to the original circuit, and the empty input. Since there is no previous input bit, the superscript

of 0 is arbitrary.

end procedure

24

Algorithm 3 intermediate evaluation, for i ∈ [n], using input bits

procedure f
(b∗)
i (C,K, j, sk) . Either (C,K) are valid, which means that

this function will generate new FE ciphertexts corresponding C(b∗, ·, ·), and using K to generate

pseudorandom coins for encryption, and the next level’s seeds, or (j, sk) are valid, in which case

this algorithm will retrieve the FE ciphertexts from the SKE ciphertexts. .
Hardcoded: b∗: the next input bit to plug in; Z

(b∗)
i+1 : the hardcoded SKE ciphertexts for the next

level. If needed, they will be decrypted to the next level’s FE ciphertexts; (mpk
(0)
i+1,mpk

(1)
i+1): the

decryption keys for generating FE ciphertexts

if j 6=⊥ then

return SKE.Dec(sk, Z
(b∗)
i+1,j)

else
C∗ ← C(b∗, ·)
return f

(b∗)
i,1 (C∗,K) . Using Algorithm 4

end if
end procedure

Algorithm 4 intermediate evaluation in the second case

procedure f
(b∗)
i,1 (C∗,K) . C∗: The generic circuit. K: The PRF key for generating

pseudorandom coins, to simulate the generation of the FE ciphertext, as if it were at level i∗. .
Hardcoded: b∗, mpk

(0)
i+1,mpk

(1)
i+1

K+ ← PRF.Gen(PRF.EvalK(0)) . Generate the randomness

seed pseudorandomly. Using the PRF key generation algorithm handles cases where the PRF key

is not a uniformly random string. As long as the old PRF key, K, is the same, all of the PRF keys

generated at this level are the same. This allows us to generate consistent pseudorandom coins

for the next level.

for b ∈ {0, 1} do
ri,b ← PRF.EvalK((C∗, b∗, b)) . Generate pseudorandom coins for encryption. Using

PRF, instead of a PRG (which is done in ldO), means that the pseudorandom coins are consistent

for any ciphertext pairs generated using the same C∗ and b∗, no matter what the previous bits

were.

cb ← FE.Enc(mpk
(b)
i+1, (C

∗,K+,⊥,⊥); ri,b)
end for
return (c0, c1)

end procedure

Algorithm 5 final evaluation, using input bits

procedure f
(b∗)
n+1(C,K, j, sk) . Only C is necessary, and contains the output already. The

rest are there for interface consistency.

return C(ε)
end procedure

Since in the next section we will need to pass an obfuscated circuit, or its
partial evaluations, into the ldO algorithm, instead of having rescueiO output the

25

Algorithm 6 full evaluation of an obfuscation

procedure rescueiO.Eval(x, ((c0, c1), {fsk(b)i }i∈[1,n+1],b∈{0,1})) . x: the input, for

which we want to calculate C(x). ((c0, c1), {fsk(b)i }i∈[1,n+1],b∈{0,1}): the parameters that rescueiO
output.

for b ∈ {0, 1} do
c0,b ← cb

end for
for i ∈ [n] do

(ci,0, ci,1)← FE.Dec(fsk
(xi)
i , ci−1,xi)

end for
return FE.Dec(fsk

(0)
n+1, cn,0) . Using the index 0 is arbitrary, and we can also use 1.

end procedure

hardcoded parameters, ((c0, c1), {fsk(b)
i }i∈[1,n+1],b∈{0,1}), for the obfuscation, we

can explicitly define rescueiO to output a circuit, C̃
((c0,c1),{fsk(b)i }i∈[1,n+1],b∈{0,1})

.

We also define Algorithm 8, an alternative definition of the evaluation Algorithm
6 where the selection of the FE ciphertext and decryption key are explicitly
expressed as per-bit boolean statements using the construct in Algorithm 7.

Algorithm 7 bit selection circuit

procedure Select(b, x0, x1) . b: selector bit. x0, x1: values to select

return (b ∧ x0) ∨ (b ∧ x1) . Outputs xb

end procedure

C.1 Properties of rescueiO

We will show that increasing the level, i∗, is not noticeable, as long as the total
number of fragments stays below a polynomial, l:

Lemma 3 Assuming a single-key compact FE with selective polynomial security,
we have

rescueiO(1λ, C, i∗, l, s)
c
≈ rescueiO(1λ, C, i∗ + 1, l, s)

for every circuit C of size at most s for which there exists a polynomial l such that

∀i∗ < n we have |
⋃i∗+1
i=0 LevelAssignment(C, i)| ≤ l, and ∀C∗ ∈

⋃i∗+1
i=0 LevelAssignment(C, i)

|C∗| ≤ s.

We need to prove both efficiency and security.
Efficiency Efficiency follows from the compactness of the FE scheme. In par-
ticular, the encryption algorithm is independent of the size of the function for
which there exists a decryption circuit. The runtime that of FE encryption is
only a polynomial function of the size of the fragment, the security parameter,
which determines the size of the random seed and the SKE key, and a logarithm

26

Algorithm 8 components of the obfuscation of C

procedure C̃
((c0,c1),{fsk

(b)
i }i∈[1,n+1],b∈{0,1})

(x) . x is the full input to C

for b ∈ {0, 1} do
c0,b ← cb . Initialize ciphertexts

end for
for i ∈ [1, n] do

for w ∈ [|ci−1,0|] do . Select each bit

of the ciphertext and FE decryption key for the decryption in each iteration. The choice of using

the length of ci−1,0 is arbitrary, since |ci−1,0| = |ci−1,1|
c̃i[w]← Select(x[i], ci−1,0[w], ci−1,1[w])
˜fski[w]← Select(x[i], fsk

(0)
i [w], fsk

(1)
i [w])

end for
(ci,0, ci,1)← FE.Dec(˜fski, c̃i)

end for
return FE.Dec(fsk

(0)
n+1, cn,0) . Output the final calculation

end procedure

of l. Since the FE encryption algorithm’s runtime is a polynomial of the message
size and the security parameter, then the runtime is a polynomial of the afore-
mentioned factors. Likewise the runtime of SKE encryption is only a polynomial
of the security parameter and the message, which is an FE ciphertext, so its
runtime is also polynomial.

Security In the formal security proof in Appendix D.1, we change rscCGen

in 4 main hybrids, by adding to Z
(b)
i∗+1 for b ∈ {0, 1}, the decryption of the

FE ciphertexts from level i∗, which we can do by SKE security, have the FE
plaintexts at level i∗ point to the newly-added data, which we can do by FE
security. The data we put in level i∗ + 1 are actually FE ciphertexts, but with
pseudorandom coins. So in the last hybrid, we replace the pseudorandom coins
with fresh randomness, which we can do by PRF security.

For all subsequent security proofs, we will use hybrids over an arbitrary or-
dering of fragments γ, starting from 1, and subject to the following constraint,
which requires that fragments formed by plugging in shorter inputs come be-
fore fragments formed by plugging in longer inputs. For any fragment, C∗, let
PreLen(C∗) be the number of input bits that are plugged into C to get C∗. Then
the ordering has the following constraint:

∀C∗0 , C∗1 : PreLen(C∗0) < PreLen(C∗1)⇒ γ(C∗0) < γ(C∗1)

While Lemma 3 is the most general one that we can prove about rescueiO,
it is actually enough for some pairs of consistent circuits:

Theorem 2 Assuming a single-key, compact FE with polynomial selectively se-
curity, for any two circuits, C0, C1 are consistent according to Definition 7 for
some level i∗, and for some polynomials l, and s, then

rescueiO(1λ, C0, 0, l, s)
c
≈ rescueiO(1λ, C1, 0, l, s).

27

We will prove this theorem in Appendix D.2, and show that the previous
example, which could not be obfuscated by polynomially secure dO, can be
obfuscated by rescueiO.

D Proofs of rescueiO security

D.1 Proof of Lemma 3

Proof. 1. H1: Use the original rscCGen(C, i∗, πC,0, πC,1).
2. H2: Put the FE decryptions of the ciphertexts from level i∗ into level i∗+1. In

other words, we have up to l subhybrids, between which we change another

entry in Z
(b)
i∗+1 for b ∈ {0, 1}. For j ∈ [0, l], and β ∈ {0, 1}, define H2,j,β , so

that it uses rscCGen2(C, i∗, πC,0, πC,1, j, β), which is defined in Algorithm 9.
So H2,0,1 is identical to H1, and we finish at H2,l,1. We show that ∀j ∈ [l],
H2,j,β is indistinguishable from H2,j−1,1 if β = 0, and from H2,j,0 if β = 1. If
@C† ∈ LevelAssignment(C, i∗ + 1), so that γ(C†) = j, then the two consecu-
tive subhybrids are identical. Otherwise, we prove indistinguishability using
SKE security. Since the total number of subhybrids is polynomially bounded,
the number of non-identical subhybrids is polynomially bounded, so proving
indistinguishability for non-identical subhybrids suffices.
For contradiction, assume that there exists an adversary, A, can distinguish
betweenH2,j,β and the previous hybrid. Then we can construct an adversary,
A′, which breaks SKE security as follows:

(a) Submit challenge plaintexts, m0 =⊥, and m1 = f
(p)
i∗+1,1(C†,Ki∗).

(b) Receive the challenge ciphertext, c†.

(c) RunA, with the following variation of rscCGen, denoted by rscCGen†2,j,β(C, i∗, πC,0, ππ,,1 , j, β),
as shown in Algorithm 10.

(d) Return whatever A returns.

The only place where the symmetric key, sk, could have appeared, is in

Z
(b)
i∗ , but those don’t contain any symmetric keys, yet. So we can rely on

SKE security. If c† is an encryption of m1, then rscCGen†2 followed H2,j,β ;
otherwise, it followed the previous hybrid.

3. H3: For all of the FE plaintexts in level i∗, replace them with indexes to the
next level. In other words, we have up to l subhybrids, between which we

change another entry in m
(p)
C∗,b for C∗ ∈ LevelAssignment(C, i∗), b ∈ {0, 1},

and p ∈ {0, 1}. For η ∈ [3, 4× l + 3,], which enumerates the fragments, and
two bits, define H3,η, so that it uses rscCGen3(C, i∗, πC,0, πC,1, η), which is
defined as shown in Algorithm 11. So H3,3 is identical to H2,l,1, and we
finish at H3,4×l+3. We show that ∀η > 1, H3,η is indistinguishable from
H3,η−1. If @C† ∈ LevelAssignment(C, i∗ + 1), so that η ∈ [γ(C†), γ(C†) + 3],
then the two consecutive sub-hybrids are identical. Otherwise, it is sufficient
that we prove indistinguishability using FE security. Again, the number of
non-identical subhybrids is polynomially bounded, since the total number of
subhybrids is polynomially bounded.

28

For contradiction, assume that there exists an adversary, A, can distinguish
between H3,η and H3,η−1. Then we can construct an adversary, A′, which
breaks FE security as follows:

(a) Let β ← η mod 2, and j
(β)

C†(β,·) ← πC,β(C†(β, ·))

(b) Submit m0 = (C†,Ki∗ ,⊥,⊥) and m1 = (⊥,⊥, j(β)

C†(β,·), sk
(β)

i∗+1,j
(β)

C†(β,·)

).

(c) Receive the master public key, mpk.

(d) Request and receive the FE decryption key, fsk, for function f
(β)
i∗+1.

(e) Receive the challenge ciphertext, c†.

(f) Run A with a modified rescueiO algorithm, Algorithm 12. The mas-
ter secret key, msk, does not appear anywhere in the obfuscation; only
the master public key, mpk, and decryption key, fsk, which A′ receives
appear. If c† is an encryption of m0, then the hybrid is identical to
H3,η−1, while if c† is an encryption of m1, then the hybrid is identical to
H3,η. Moreover, in the former case, since the third and fourth arguments

are not specified, f
(β)
i∗+1(C†,Ki∗ ,⊥,⊥) = f

(β)
i∗+1,1(C†,Ki∗). On the other

hand, in the latter case:

f
(β)
i∗+1(⊥,⊥, j(β)

C†(β,·), sk
(β)

i∗+1,j
(β)

C†(β,·)

) = (c
(β)

C†,0
, c

(β)

C†,1
)

Due to hybrid H2, this is also equal to f
(β)
i∗+1,1(C†,Ki∗). Therefore, if A

can distinguish between H3,η−1 and H3,η, then A′ breaks FE security.

4. H4: Generate Ki∗+1 with fresh randomness, and replace every call to f
(β)
i∗+1,1,

with FE encryption using fresh randomness. In other words, use the version
of rscCGen in Algorithm 14.

This is identical to rscCGen(C, i∗ + 1, πC,0, πC,1), except that the computa-
tions for level i∗+ 1 are done outside of the old loops, and the generation of
Ki∗ is replaced with Ki∗+1, where the former is not used in the algorithm.

To show that this hybrid is indistinguishable from H3,4×l+3, we use the
security of PRF. Assume for contradiction that there exists an adversary, A,
that can distinguish between the two hybrids. Then there exists an adversary
A′, which can distinguish between a random function, and a pseudorandom
one:

(a) Receive oracle access to function F .

(b) Obfuscate the circuit with Algorithms 15 and 16. If F is a PRF, with key
K, we can assign it to Ki∗ , to yield hybrid H3,4×l+3. Otherwise, inside

f
(p)
i∗+1,4,1 generatesK ′ identically toKi∗+1, and ∀C∗ ∈ LevelAssignment(C, i∗+

1), p ∈ {0, 1}, ri∗+1,0 and ri∗+1,1 are generated using unique tuple pairs,
((C∗, i∗ + 1, 0), (C∗, i∗ + 1, 1)), so the randomness for the FE encryption

is generated uniformly at random for each call to f
(p)
i∗+1,4,1 That means

that if F () is a random function, A is playing H4.

29

Algorithm 9 rscCGen, but for hybrid H2

procedure rscCGen2(C, i∗, πC,0, πC,1, j, β) j: determines which fragments at level
i∗+1 might now have hardcoded ciphertexts. β: determines which ciphertex pair for
the fragment corresponding to the hybrid boundary, j, will contain valid values.

Ki∗ ← PRF.Gen()

for i from i∗+ 1 to 0, p ∈ {0, 1}, C∗ ∈ LevelAssignment(C, i) do

j
(p)
C∗ ← πC,p(C

∗)
if i ≤ i∗ then . Perform normal computation of the existing ciphertexts.

for b ∈ {0, 1} do
if i < i∗ then

j
(b)

C∗(b,·) ← πC,b(C
∗(b, ·))

m
(p)
C∗,b ← (⊥,⊥, j(b)C∗(b,·), sk

(b)

i+1,j
(b)
C∗(b,·)

)

else
m

(p)
C∗,b ← (C∗,Ki,⊥,⊥)

end if
c
(p)
C∗,b ← FE.Enc(mpk

(b)
i+1,m

(p)
C∗,b)

end for
else if γ(C∗) < j ∨ (γ(C∗) = j ∧ p ≤ β) then . The hybrid will

gradually add valid ciphertexts for level i∗ + 1. However, because there are no ske keys for this

level, they will never be used, and the changes will not be apparent, yet. But later, the fact that

they contain the FE decryption of the FE ciphertexts of the previous level, the insertion of these

ciphertexts will make the changes to level i∗, indistinguishable.

(c
(p)
C∗,0, c

(p)
C∗,1)← f

(p)
i,1 (C∗,Ki∗)

else . The rest are still dummy values.

(c
(p)
C∗,0, c

(p)
C∗,1)← (⊥,⊥)

end if
if i > 0 then

Z
(p)

i,j
(p)
C∗
← SKE.Enc(sk

(p)

i,j
(p)
C∗
, (c

(p)
C∗,0, c

(p)
C∗,1))

end if
end for
return (c

(0)
C,0, c

(0)
C,1)

end procedure

30

Algorithm 10 rscCGen with challenge ciphertext for H2,j,β

procedure rscCGen†2(C, i∗, πC,0, πC,1, j, β) . j and β, determine where to put the

challenge ciphertext.

Ki∗ ← PRF.Gen()
for i from i∗ + 1 to 0, p ∈ {0, 1}, C∗ ∈ LevelAssignment(C, i) do

j
(p)
C∗ ← πC,p(C

∗)
if i ≤ i∗ then

for b ∈ {0, 1} do
if i < i∗ then

j
(b)

C∗(b,·) ← πC,b(C
∗(b, ·))

m
(p)
C∗,b ← (⊥,⊥, j(b)C∗(b,·), sk

(b)

i+1,j
(b)
C∗(b,·)

)

else
m

(p)
C∗,b ← (C∗,Ki,⊥,⊥)

end if
c
(p)
C∗,b ← FE.Enc(mpk

(b)
i+1,m

(p)
C∗,b)

end for
else if γ(C∗) < j ∨ (γ(C∗) = j ∧ p ≤ β) then

(c
(p)
C∗,0, c

(p)
C∗,1)← f

(p)
i,1 (C∗,Ki∗)

else
(c

(p)
C∗,0, c

(p)
C∗,1)← (⊥,⊥)

end if
if i > 0 then

if i = i∗ + 1 ∧ γ(C∗) = j ∧ p = β then

Z
(p)

i,j
(p)
C∗
← c†

else
Z

(p)

i,j
(p)
C∗
← SKE.Enc(sk

(p)

i,j
(p)
C∗
, (c

(p)
C∗,0, c

(p)
C∗,1))

end if
end if

end for
return (c

(0)
C,0, c

(0)
C,1)

end procedure

31

Algorithm 11 rscCGen, but for hybrid H3

procedure rscCGen3(C, i∗, πC,0, πC,1, η) . η: determines which FE plaintexts in level i∗

will contain indexes, rather than fragments.

Ki∗ ← PRF.Gen()
for i from i∗ + 1 to 0, p ∈ {0, 1}, C∗ ∈ LevelAssignment(C, i) do

j
(p)
C∗ ← πC,p(C

∗)
if i ≤ i∗ then

for b ∈ {0, 1} do
if i < i∗ ∨4× γ(C∗) + 2× p+ b ≤ η then

j
(b)

C∗(b,·) ← πC,b(C
∗(b, ·))

m
(p)
C∗,b ← (⊥,⊥, j(b)C∗(b,·), sk

(b)

i+1,j
(b)
C∗(b,·)

)

else
m

(p)
C∗,b ← (C∗,Ki,⊥,⊥)

end if
c
(p)
C∗,b ← FE.Enc(mpk

(b)
i+1,m

(p)
C∗,b)

end for
else

(c
(p)
C∗,0, c

(p)
C∗,1)← f

(p)
i,1 (C∗,Ki∗)

end if
if i > 0 then

Z
(p)

i,j
(p)
C∗
← SKE.Enc(sk

(p)

i,j
(p)
C∗
, (c

(p)
C∗,0, c

(p)
C∗,1))

end if
end for
return (c

(0)
C,0, c

(0)
C,1)

end procedure

32

Algorithm 12 main obfuscation algorithm for games to distinguish between
subhybrids in hybrid H3

procedure rescueiO†3(1λ, C, i∗, l, s, η) . η: the index of the game to distinguish

subhybrids, which determines where the keys available to the adversary are put.

for i ∈ [n+ 1], b ∈ {0, 1} do
if i = i∗ ∧ b = β then

mpk
(b)
i ← mpk

else
(msk

(b)
i ,mpk

(b)
i)← FE.Gen(1λ)

end if
end for
for i ∈ [n], b ∈ {0, 1} do

for j ∈ [i∗] do . Generate SKE ciphertexts that might hold fragments’ FE ciphertexts.

They will be hardcoded into the appropriate FE decryption functions

sk
(b)
i,j ← SKE.KeyGen(1λ)

Z
(b)
i,j ← SKE.Enc(sk

(b)
i,j , (⊥,⊥)) . But for now, only hold dummy information.

end for
Z

(b)
i ← {Z

(b)
i,j }j∈[l]

end for
for b ∈ {0, 1} do

Uniformly, at random, choose an injective function, πC,b :⋃i∗

i=0 LevelAssignment(C, i)→ [l] . The fragments’ FE ciphertexts will be placed in random

SKE ciphertexts

end for
(c0, c1)← rscCGen(C, i∗, πC,0, πC,1) . Use Algorithm 13 to generate initial FE

ciphertexts, and populate SKE ciphertexts.

for i ∈ [n+ 1], b ∈ {0, 1} do
if i = i∗ ∧ b = β then

fsk
(b)
i ← fsk

else
fsk

(b)
i ← FE.KeyGen(msk

(b)
i , f

(b)
i) . Generate FE decryption keys that will

perform Algorithms 3 and 5 during evaluation.

end if
end for
return ((c0, c1), {fsk(b)i }i∈[1,n+1],b∈{0,1})

end procedure

33

Algorithm 13 rscCGen, but for the challenge in hybrid H3

procedure rscCGen†3(C, i∗, πC,0, πC,1, η) . η: determines where to place the challenge

ciphertext

Ki∗ ← PRF.Gen()
for i from i∗ + 1 to 0, p ∈ {0, 1}, C∗ ∈ LevelAssignment(C, i) do

j
(p)
C∗ ← πC,p(C

∗)
if i ≤ i∗ then

for b ∈ {0, 1} do
if i < i∗∨4× γ(C∗) + 2× p+ b ≤ η then

j
(b)

C∗(b,·) ← πC,b(C
∗(b, ·))

m
(p)
C∗,b ← (⊥,⊥, j(b)C∗(b,·), sk

(b)

i+1,j
(b)
C∗(b,·)

)

else
m

(p)
C∗,b ← (C∗,Ki,⊥,⊥)

end if
if 4× γ(C∗) + 2× p+ b = η then

c
(p)
C∗,b ← c†

else
c
(p)
C∗,b ← FE.Enc(mpk

(b)
i+1,m

(p)
C∗,b)

end if
end for

else
(c

(p)
C∗,0, c

(p)
C∗,1)← f

(p)
i,1 (C∗,Ki∗)

end if
if i > 0 then

Z
(p)

i,j
(p)
C∗
← SKE.Enc(sk

(p)

i,j
(p)
C∗
, (c

(p)
C∗,0, c

(p)
C∗,1))

end if
end for
return (c

(0)
C,0, c

(0)
C,1)

end procedure

34

Algorithm 14 rscCGen, but for the challenge in hybrid H4

procedure rscCGen4(C, i∗, πC,0, πC,1)

Ki∗+1 ← PRF.Gen() . Ki∗+1 is generated like a fresh PRF key, ie. with implicit fresh

randomness, rather than pseudorandomly from Ki∗ , which is no longer used.

for i from i∗ + 1 to 0, p ∈ {0, 1}, C∗ ∈ LevelAssignment(C, i) do

j
(p)
C∗ ← πC,p(C

∗)
if i ≤ i∗ then

for b ∈ {0, 1} do
j
(b)

C∗(b,·) ← πC,b(C
∗(b, ·))

m
(p)
C∗,b ← (⊥,⊥, j(b)C∗(b,·), sk

(b)

i+1,j
(b)
C∗(b,·)

)

c
(p)
C∗,b ← FE.Enc(mpk

(b)
i+1,m

(p)
C∗,b)

end for
else

for b ∈ {0, 1} do . Generate the FE ciphertexts similarly to f
(p)
i,1 (C∗, Ki∗), but

with fresh randomness.

m
(p)
C∗,b ← (C∗,Ki,⊥,⊥)

c
(p)
C∗,b ← FE.Enc(mpk

(b)
i+1,m

(p)
C∗,b)

end for
end if
if i > 0 then

Z
(p)

i,j
(p)
C∗
← SKE.Enc(sk

(p)

i,j
(p)
C∗
, (c

(p)
C∗,0, c

(p)
C∗,1))

end if
end for
return (c

(0)
C,0, c

(0)
C,1)

end procedure

35

Algorithm 15 rscCGen, but for challenge for hybrid H4

procedure rscCGen†4(C, i∗, πC,0, πC,1)

Ki∗+1 ← PRF.Gen(F (0)) . The random coins used to generate the PRF key might be

pseudorandom or explicitly random, depending on F

for i from i∗ + 1 to 0, p ∈ {0, 1}, C∗ ∈ LevelAssignment(C, i) do

j
(p)
C∗ ← πC,p(C

∗)
if i ≤ i∗ then

for b ∈ {0, 1} do
j
(b)

C∗(b,·) ← πC,b(C
∗(b, ·))

m
(p)
C∗,b ← (⊥,⊥, j(b)C∗(b,·), sk

(b)

i+1,j
(b)
C∗(b,·)

)

c
(p)
C∗,b ← FE.Enc(mpk

(b)
i+1,m

(p)
C∗,b)

end for
else

(c
(p)
C∗,0, c

(p)
C∗,1)← f

(p)
i,4,1(C∗, F) . Using the modified Algorithm 16, which will

use pseudorandomness or fresh randomness depending on F

end if
if i > 0 then

Z
(p)

i,j
(p)
C∗
← SKE.Enc(sk

(p)

i,j
(p)
C∗
, (c

(p)
C∗,0, c

(p)
C∗,1))

end if
end for
return (c

(0)
C,0, c

(0)
C,1)

end procedure

Algorithm 16 f
(b∗)
i,1 , but using unknown function for generating random coins.

procedure f4
(b∗)
i,1 (C∗, F) F : either a pseudorandom, or a random function. .

Hardcoded: b∗, mpk
(0)
i+1,mpk

(1)
i+1

K+ ← PRF.Gen(F (0)) . Generate the next level’s PRF key pseudorandomly or randomly.

Note that it identical to how Ki∗+1 is generated in Algorithm 15

for b ∈ {0, 1} do
ri,b ← F ((C∗, b∗, b)) . Perform FE encryption using either pseudorandom or random

coins. Even if F () is random, we get the same random coins for the same (C∗, b∗)

cb ← FE.Enc(mpk
(b)
i+1, (C

∗,K+,⊥,⊥); ri,b)
end for
return (c0, c1)

end procedure

36

D.2 Proof of Theorem 2

The proof of Theorem 2 follows from Lemma 3 and Lemma 4, which we prove
next. We can switch between rescueiO(1λ, C0, 0, l, s) and rescueiO(1λ, C0, i

∗, l, s),
and between rescueiO(1λ, C0, i

∗, l, s) and rescueiO(1λ, C0, 0, l, s), due to Lemma 3.
So we only need to prove that we can switch between rescueiO(1λ, C0, i

∗, l, s),
and rescueiO(1λ, C0, i

∗, l, s), which we do using consisntency.

Lemma 4 If two circuits, C0, C1 are consistent according to Definition 7 for
some level i∗, and for some polynomials l, and s, then

rescueiO(1λ, C0, i
∗, l, s)

s≡ rescueiO(1λ, C1, i
∗, l, s).

The proof of this lemma is similar to a special case of the proof of Lemma 7,
which we will show in Appendix E. The difference is that in this lemma, there
is no explicit dO tree cover, so we perform the proof as if TC = {ε}.

Using the intermediate lemma, we can use it, along with Lemma 3, to prove
Theorem 2.

Proof. We use the following hybrids:

1. H1: Calculate rescueiO(1λ, C0, 0, l, s)
2. H2: Calculate rescueiO(1λ, C0, i

∗, l, s), where we increase the tree cover level
from 0 to i∗. This is indistinguishable from H1 due to Lemma 3.

3. H3: Calculate rescueiO(1λ, C0, i
∗, l, s), where we switch the circuit from C0

to C1. This is indistinguishable from H2 due to Lemma 4.
4. H4: Calculate rescueiO(1λ, C0, 0, l, s) where we decrease the tree cover level

from i∗ to 0. This is indistinguishable from H3 due to Lemma 3.

Example. We show rescueiO is sufficient to obfuscate the circuits in the example
in Section 3, which dO could not handle. The two example circuits were C0(x) =⊕n

i=1 x[i] and C1(x) =
⊕n

i=1 x[i], for even n, are consistent for i∗ = n. We show
that the circuits are consistent by defining τ in Algorithm 17.

Algorithm 17 Transformation between example circuits.

procedure τ(C∗) . C∗ is a fragment of C0

For some i0 ∈ [n], p ∈ {0, 1}, decompose C∗ into p⊕ (
⊕n

i=i0+1 x[i])
if i∗ is even then

return p⊕ (
⊕n

i=i0+1 x[i])
else

return p⊕ (
⊕n

i=i0+1 x[i])
end if

end procedure

To prove that τ satisfies consistency, we need to prove both properties. The
second property, where fragments at level i∗ are identical is trivially true, due to
the fact that the two circuits are functionally equivalent, and i∗ = n, at which
point they have been evaluated. To prove the first property, we have two cases:

37

1. i0 is even: i0 + 1 is odd, so when we first plug in x[i0 + 1], and then apply
τ , the new fragment is

τ(C∗(x[i0 + 1], ·)) = τ(p⊕ x[i0 + 1]⊕ (

n⊕
i=i0+2

x[i]))

= p⊕ x[i0 + 1]⊕ (

n⊕
i=i0+2

x[i])

In the reverse order, the next fragment is the same:

τ(C∗)(x[i0 + 1], ·) = τ(p⊕ (

n⊕
i=i0+1

x[i]))(x[i0 + 1], ·)

= p⊕ (

n⊕
i=i0+1

x[i])(x[i0 + 1], ·)

= p⊕ x[i0 + 1]⊕ (

n⊕
i=i0+2

x[i])

= p⊕ x[i0 + 1]⊕ (

n⊕
i=i0+2

x[i])

2. i0 is odd: i0 + 1 is even, so when we first plug in x[i0 + 1], and then apply
τ , the new fragment is

τ(C∗(x[i0 + 1], ·)) = τ(p⊕ x[i0 + 1]⊕ (

n⊕
i=i0+2

x[i]))

= p⊕ x[i0 + 1]⊕ (

n⊕
i=i0+2

x[i])

In the reverse order, the next fragment is the same:

τ(C∗)(x[i0 + 1], ·) = τ(p⊕ (

n⊕
i=i0+1

x[i]))(x[i0 + 1], ·)

= p⊕ (

n⊕
i=i0+1

x[i])(x[i0 + 1], ·)

= p⊕ x[i0 + 1]⊕ (

n⊕
i=i0+2

x[i])

= p⊕ x[i0 + 1]⊕ (

n⊕
i=i0+2

x[i])

38

E Security of radiO

We will show that combined-cover consistency is enough for the obfuscation of
the two circuits to be indistinguishable. More precisely, for the ldO algorithm,
let lldO be the tree cover size limit, and sldO be the circuit size limit, while for
rescueiO, let l be the tree cover size limit, and s be the circuit size limit. In other
words:

Theorem 3 Assuming a single-key compact FE scheme with polynomial selec-
tive security, for any two circuits, C0, C1, if there exist a polynomial size l, a
tree cover TC and length i∗, where TC has at most lldO ancestors, including TC
itself, for which C0 and C1 are combined-cover consistent, then:

dO(1λ, rescueiO(1λ, C0, 0, l, s), lldO, sldO)
c
≈ dO(1λ, rescueiO(1λ, C1, 0, l, s), lldO, sldO).

We will prove this theorem according to each fragment region. The second
region will not show any difference between the two circuits. The third condition
of combined-cover consistency suffices to show that ∀x ∈ AfterInput(TC, i∗),
C0(x, ·) and C1(x, ·) are identical. That is because they were both derived from
identical C0(x≤, ·) and C1(x≤, ·), where x≤ ∈ MinAfterInput(TC, i∗).

Then the only way that a circuit, C, could have an effect on ldO (1λ,
Assignment(rescueiO(1λ, C, i∗, l, s),TC), lldO, sldO) is through Assignment(rescueiO(1λ,

C, i∗, l, s),TC). At most, the obfuscated circuit depends on (m
(p)
C∗,0,m

(p)
C∗,1) ∀C∗ ∈

TC and p ∈ {0, 1}, and the FE decryption keys, since if we plugged in an input
prefix from TC, we would have ended up with their respective ciphertexts, and

Z
(p)
i,j ∀i ∈ [n], j ∈ [l], p ∈ {0, 1}, which we can collect from the FE decryption

keys. For the former, we need to transform all of the FE ciphertexts that point
to the corresponding data structure of their succeeding fragments, ie. the frag-
ments in the third region, while for the latter, we need to remove the effect of
any fragments that occur only before the tree cover for the ldO algorithm, ie. the
fragments in the first region.

We now formally prove Theorem 3 with lemmas regarding each of these two
remaining regions.

Fragments Before the ldO Tree Cover In particular, for a circuit, C, for the
first region, define the following set of fragments:

We will want to remove any effect of these circuits on the final output.
We do this using the following relationship between Assignment(C,TC) and
Assignment(C̃

((c0,c1),{fsk(b)i }i∈[1,n+1],b∈{0,1})
,TC) are related: only the FE cipher-

texts for the fragments in Assignment(C,TC) will appear unencrypted by SKE,
in Assignment(C̃

((c0,c1),{fsk(b)i }i∈[1,n+1],b∈{0,1})
,TC). More precisely:

Lemma 5 Let ∀i∗ ∈ [n], ∀i0 ∈ [n], x≤ ∈ {0, 1}i0

C̃
((c0,c1),{fsk(b)i }i∈[1,n+1],b∈{0,1})

(i0, ·) = rescueiO(1λ, C, i∗, l, s).

39

For i0 ≤ i∗, let (c
(x≤[i0])

C(x≤,·),0, c
(x≤[i0])

C(x≤,·),1) be the values of the same name that

rescueiO produces. For i0 > i∗, let Ki0 = PRF.Gen(PRF.EvalKi0−10()), and let

(c
(x≤[i0])

C(x≤,·),0, c
(x≤[i0])

C(x≤,·),1) be f
(x≤[i0])
i,1 (C(x≤, ·),Ki0−1).

Then Algorithm 18 presents the circuit of C̃
((c0,c1),{fsk(b)i }i∈[1,n+1],b∈{0,1})

(i0, ·)
as a function of

((c
(x≤[i0])

C(x≤,·),0, c
(x≤[i0])

C(x≤,·),1), {fsk(b)
i }i∈[i0,n+1],b∈{0,1}).

Algorithm 18 partial evaluation of C̃
((c0,c1),{fsk(b)i }i∈[1,n+1],b∈{0,1})

procedure C̃
((c

(x≤[i0])

C(x≤,·),0
,c

(x≤[i0])

C(x≤,·),1
),{fsk(b)i }i∈[i0,n+1],b∈{0,1})

(x) . This time, x is only a

suffix of length n− i0, after x≤

for b ∈ {0, 1} do
ci0,b ← c

(x≤[i0])

C(x≤,·),b
. Initialize ciphertexts starting from i0

end for
for i ∈ [i0 + 1, n] do

for w ∈ [|ci−1,0|] do
c̃i[w]← Select(x[i], ci−1,0[w], ci−1,1[w])
˜fski[w]← Select(x[i], fsk

(0)
i [w], fsk

(1)
i [w])

end for
(ci,0, ci,1)← FE.Dec(˜fski, c̃i)

end for
return FE.Dec(fsk

(0)
n+1, cn,0) . Output the final calculation

end procedure

Algorithm 19 partial evaluation, C̃
((c0,c1),{fsk(b)i }i∈[1,n+1],b∈{0,1})

(x≤[1], ·)

procedure C̃
((c

(x≤[1])

C(x≤,·),0
,c

(x≤[1])

C(x≤,·),1
),{fsk(b)i }i∈[1,n+1],b∈{0,1})

(x)

for b ∈ {0, 1} do
ci,b ← c

(x≤[1])

C(x≤[1],·),b
end for
for i ∈ [2, n] do

for w ∈ [|ci−1,0|] do
c̃i[w]← Select(x[i], ci−1,0[w], ci−1,1[w])
˜fski[w]← Select(x[i], fsk

(0)
i [w], fsk

(1)
i [w])

end for
(ci,0, ci,1)← FE.Dec(˜fski, c̃i)

end for
return FE.Dec(fsk

(0)
n+1, cn,0) . Output the final calculation

end procedure

40

Algorithm 20 partial evaluation, C̃
((c0,c1),{fsk(b)i }i∈[1,n+1],b∈{0,1})

(x≤[i0 + 1], ·)

procedure C̃
((c

(x≤[i0+1])

C(x≤,·),0
,c

(x≤[i0+1])

C(x≤,·),1
),{fsk(b)i }i∈[i0+1,n+1],b∈{0,1})

(x)

for b ∈ {0, 1} do
ci0+1,b ← c

(b∗)
C(x≤||b∗,·),b

end for
for i ∈ [i0 + 2, n] do

for w ∈ [|ci−1,0|] do
c̃i[w]← Select(x[i], ci−1,0[w], ci−1,1[w])
˜fski[w]← Select(x[i], fsk

(0)
i [w], fsk

(1)
i [w])

end for
(ci,0, ci,1)← FE.Dec(˜fski, c̃i)

end for
return FE.Dec(fsk

(0)
n+1, cn,0) . Output the final calculation

end procedure

Proof. We prove this inductively:

– Base Case i0 = 1 ≤ i∗: For i = 1, since we know x≤[1], we can simplify c̃1

to c0,x≤[1], which is equal to c
(x≤[1])
C,0 , and ˜fsk1 to fsk

(x≤[1])
1 . Assuming that

1 ≤ i∗, then we know that 0 < i∗, so we can simplify the first FE decryption

by revealing the proper entry in Z
(x≤[1])

1,j
(x≤[1])

C(x≤[1],·)

:

(c0,0, c0,1) = FE.Dec(fsk
(x≤[1])
1 , c

(x≤[1])
C,0)

= f
(x≤[1])
1 (⊥,⊥, j(x≤[1])

C(x≤[1],·), sk
(x≤[1])

j
(x≤[1])

C(x≤[1],·)

)

= SKE.Dec(sk
(x≤[1])

j
(x≤[1])

C(x≤[1],·)

, Z
(x≤[1])

1,j
(x≤[1])

C(x≤[1],·)

)

= (c
(x≤[1])

C(x≤[1],·),0, c
(x≤[1])

C(x≤[1],·),1)

So the obfuscated circuit simplifies to Algorithm 19.

– Inductive Assumption i0: ∀x≤ ∈ {0, 1}i0 , the lemma holds.

– Inductive Step i0 + 1: ∀b∗ ∈ {0, 1}, we want to prove the lemma for x≤||b∗.
Again, we can simplify the first remaining step in the largest loop, ie. i =
i0 + 1, and say that c̃i0+1 = ci0,b∗ , which, by the inductive assumption, is

equal to c
(x≤[i0])

C(x≤,·),b∗ , and ˜fski0+1 = fsk
(b∗)
i0

.

41

If i0 < i∗, then we use the first case in the decryption key function:

(ci+1,0, ci+1,1) = FE.Dec(fsk
(b∗)
i+1 , c

(x≤[i0])

C(x≤,·),b∗)

= f
(b∗)
i0+1(⊥,⊥, j(b∗)

C(x≤||b∗,·), sk
(b∗)

j
(b∗)
C(x≤||b∗,·)

)

= SKE.Dec(sk
(b∗)

j
(b∗)
C(x≤||b∗,·)

, Z
(b∗)

i0+1,j
(b∗)
C(x≤||b∗,·)

)

= (c
(b∗)
C(x≤||b∗,·),0, c

(b∗)
C(x≤||b∗,·),1)

On the other hand, if i0 ≥ i∗, then, by the inductive case, we know that

(c
(x≤[i0])

C(x≤,·),0, c
(x≤[i0])

C(x≤,·),1)b∗ are encryptions of (C(x≤, ·),Ki0, ⊥,⊥). So we use

the second case:

(ci+1,0, ci+1,1) = FE.Dec(fsk
(b∗)
i+1 , c

(x≤[i0])

C(x≤,·),b∗)

= f
(b∗)
i0+1(C(x≤, ·),Ki0 ⊥,⊥)

= f
(b∗)
i0+1,1(C(x≤, ·),Ki0)

= (c
(b∗)
C(x≤||b∗,·),0, c

(b∗)
C(x≤||b∗,·),1)

By the definition of f
(b∗)
i0+1,1, (c

(b∗)
C(x≤||b∗,·),0, c

(b∗)
C(x≤||b∗,·),1) are encryptions of

(C(x≤||b∗, ·),Ki0+1,⊥,⊥), where Ki0+1 = PRF.Gen(PRF.EvalKi0 ()).
So in both cases, the circuit simplifies to Algorithm 20.

Now that we have narrowed down the data that is present in each fragment
in the circuit assignment, we can further examine what parts are present when
we combine the data from all the fragments, and what we can eliminate. The
ldO algorithm will only depend on Assignment(C̃

((c0,c1),{fsk(b)i }i∈[1,n+1],b∈{0,1})
,TC),

so the output of ldO will only depend at most on {(c(p)C(x,·),0, c
(p)
C(x,·),1) : p ∈

{0, 1}, x ∈ TC}, and {fsk(b)
i }i∈[minx∈TC |x|,n+1],b∈{0,1}. While the proof meant that

we are able to remove all of the FE ciphertext pairs that are not SKE encrypted,
corresponding to any C∗ ∈ PreTCC,TC, we have not necessarily removed them
from the SKE ciphertexts, even though the circuit will never decrypt them.
But we can effectively remove them due to SKE security, which we will do in
hybrids, even if we pessimistically assume that the adversary has access to all of

{fsk(b)
i }i∈[1,n+1],b∈{0,1}.
For all j ∈ [0, l,], β ∈ {0, 1}, define the following hybrids, rescueiOerase, where

we run rscCGen, but with some fragments’ data removed, as shown in Algorithm
21.

Then rscCGenerase(C, i
∗, πC,0, πC,1,TC, 0, 1) is identical to rscCGen(C, i∗, πC,0, πC,1),

while no fragment, C∗ ∈ PreTCC,TC affects rscCGenerase(C, i
∗, πC,0, πC,1,TC, l, 1).

Lemma 6 When calculating Assignment(rescueiO(1λ, C, i∗, l, s),TC) for all j ∈
[l], β ∈ {0, 1}, replacing rscCGen(C, i∗, πC,0, πC,1) with rscCGenerase(C, i

∗, πC,0, πC,1,TC, j, β)
is indistinguishable from replacing it with rscCGenerase(C, i

∗, πC,0, πC,1,TC, j −
1, 1) if β = 0, or rscCGenerase(C, i

∗, πC,0, πC,1,TC, j, 0) if β = 1.

42

Algorithm 21 rscCGen, with some fragments in PreTCC,TC erased

procedure rscCGenerase(C, i
∗, πC,0, πC,1,TC, j, β) .

TC: the ldO tree cover, which determines if a fragment’s ciphertexts should eventually be erased.

j and β: determine if an eligible fragment’s ciphertexts are erased in this hybrid.

Ki∗ ← PRF.Gen()
for i from i∗ to 0, p ∈ {0, 1}, C∗ ∈ LevelAssignment(C, i) do

j
(p)
C∗ ← πC,p(C

∗)
for b ∈ {0, 1} do

if i < i∗ then
j
(b)

C∗(b,·) ← πC,b(C
∗(b, ·))

m
(p)
C∗,b ← (⊥,⊥, j(b)C∗(b,·), sk

(b)

i+1,j
(b)
C∗(b,·)

)

else
m

(p)
C∗,b ← (C∗,Ki,⊥,⊥)

end if
c
(p)
C∗,b ← FE.Enc(mpk

(b)
i+1,m

(p)
C∗,b)

end for
if i > 0 then

if (γ(C∗) < j ∨ (γ(C∗) = j ∧ p ≤ β)) ∧ C∗ ∈ PreTCC,TC then

Z
(p)

i,j
(p)
C∗
← SKE.Enc(sk

(p)

i,j
(p)
C∗
, (⊥,⊥))

else
Z

(p)

i,j
(p)
C∗
← SKE.Enc(sk

(p)

i,j
(p)
C∗
, (c

(p)
C∗,0, c

(p)
C∗,1))

end if
end if

end for
return (c

(0)
C,0, c

(0)
C,1)

end procedure

43

Algorithm 22 rscCGen for challenge to guess if a circuit’s information was
erased or not

procedure rscCGen†erase(C, i
∗, πC,0, πC,1,TC, j, β) j and β determine where to place

the challenge SKE ciphertext.
Ki∗ ← PRF.Gen()
for i from i∗ to 0, p ∈ {0, 1}, C∗ ∈ LevelAssignment(C, i) do

j
(p)
C∗ ← πC,p(C

∗)
for b ∈ {0, 1} do

if i < i∗ then
j
(b)

C∗(b,·) ← πC,b(C
∗(b, ·))

m
(p)
C∗,b ← (⊥,⊥, j(b)C∗(b,·), sk

(b)

i+1,j
(b)
C∗(b,·)

)

else
m

(p)
C∗,b ← (C∗,Ki,⊥,⊥)

end if
c
(p)
C∗,b ← FE.Enc(mpk

(b)
i+1,m

(p)
C∗,b)

end for
if i > 0 then

if (γ(C∗) < j ∨ (γ(C∗) = j ∧ p ≤ β)) ∧ C∗ ∈ PreTCC,TC then

if γ(C∗) = j ∧ p = β then

Z
(p)

i,j
(p)
C∗
← c†

else
Z

(p)

i,j
(p)
C∗
← SKE.Enc(sk

(p)

i,j
(p)
C∗
, (⊥,⊥))

end if
else

Z
(p)

i,j
(p)
C∗
← SKE.Enc(sk

(p)

i,j
(p)
C∗
, (c

(p)
C∗,0, c

(p)
C∗,1))

end if
end if

end for
return (c

(0)
C,0, c

(0)
C,1)

end procedure

44

Proof. If @C† ∈ PreTCC,TC, so that γ(C†) = j, then the current hybrid is actually
identical to the previous one.

Otherwise, we prove indistinguishability using sk security, since (c
(β)

C†,0
, c

(β)

C†,1
)

can only be found in the SKE ciphertext, Z
(β)

i∗,j
(β)

i∗,C†
; any other appearance would

have already been used or discarded by the time any partial evaluation of the
obfuscated circuit with an input in TC was reached. But first, we must prove that

sk
(p)

i∗,j
(β)

i∗,C†
does not appear anywhere else. ∀C∗, b ∈ {0, 1}, if C∗({0, 1}, ·) = C†,

we have two cases:

1. C∗ ∈ PreTCC,TC: We know that PreLen(C∗) < PreLen(C†), so γ(C∗) <
γ(C†), and all appearances of C∗ have already been erased.

2. C∗ 6∈ PreTCC,TC: Then ∃x ∈ {0, 1}∗, x≤ ∈ TC, so that C(x, ·) = C∗ and
x≤ v x. But that means that C(x≤||b, ·) = C† and x≤ v x||b, so C† 6∈
PreTCC,TC, which contradicts our assumption.

Now we can show that if there is an adversary, A, that can distinguish be-
tween the two hybrids, then we can construct an adversary, A′, that can break
SKE security:

1. Set and submit m0 = (c
(β)

C†,0
, c

(β)

C†,1
), and m1 = (⊥,⊥).

2. Get challenge ciphertext, c†,
3. Run A with the a modified rscCGen, as shown in Algorithm 22.
4. Return whatever A returns. If c† was an encryption of m0, then we have the

previous hybrid, otherwise, we have the current one. So if A can distinguish
between the two hybrids, A′ can break SKE security.

This proof shows that we can remove the first region of fragments, and we
can proceed to the third region. Let us denote the version of the main algorithm,
rescueiO, in the last hybrid, by rescueiOerase. In other words, instead of running
rscCGen(C0, i

∗, πC,0, πC,1), rescueiOerase runs rscCGenerase(C0, i
∗, πC,0, πC,1,TC, l, 1).

Fragments Between the Tree Covers Now that rescueiOerase no longer con-
tains any of the fragments above TC, ie. the second region, we only need to
handle the third region by proving the following lemma:

Lemma 7

Assignment(rescueiOerase(1
λ, C0, i

∗, l, s),TC)
s≡ Assignment(rescueiOerase(1

λ, C1, i
∗, l, s),TC)

Proof. We use τ to generate a new mapping for C0, to match that of C1, while
still keeping the same probability distribution.

We already have that ∀x ∈ InterInput(TC, i∗), τ(C0(x, ·)) = C1(x, ·), from
i0 = minx∈InterInput(TC,i∗) |x| to if = maxx∈InterInput(TC,i∗) |x|, so that we can use τ
to change the mapping, πC0,0 and πC1,1.

∀x ∈ InterInput(TC, i∗), p ∈ {0, 1}, (m
(p)
C0(x,·),0,m

(p)
C0(x,·),1) and (m

(b)
C1(x,·),0,m

(b)
C1(x,·),1),

differ by the index, j
(p)
C(x,·) and j

(p)
C1(x,·), where they are stored. But we can simply

replace πC,p with π′C,p, which is generated as follows:

45

1. Initialize the set of chosen indexes, Y = ∅
2. Generate πC′,p
3. For all C∗ ∈ InterCirc(C,TC, i∗), Let π′p,C(C∗) = πp,C′(τ(C∗)), and insert
π′p,C(C∗) into Y .

4. For every other fragment, C∗, randomly choose an element, j ← [l] \ Y , set
π′p,C(C∗) = j, and put j into Y .

The last step is identical to the generation of πC,p, if we first generated the
outputs for all C∗ ∈ InterCirc(C,TC, i∗). And since τ is a bijection, and πC′,p
chooses outputs uniformly at random from the remaining choices, so does the
third step of generating π′C,p, just like generating πC,p.

Putting it All Together Now we combine the previous lemmas to prove The-
orem 3:

Proof. We use the following hybrids:

1. H1: Calculate dO(1λ, rescueiO(1λ, C0, 0, l, s), lldO, sldO)
2. H2: Calculate dO(1λ, rescueiO(1λ, C0, i

∗, l, s), lldO, sldO), where we moved the
rescueiO tree cover from length 0 to i∗. This is indistinguishable from H1

due to Lemma 3.
3. H3: Calculate ldO(1λ,Assignment(rescueiO(1λ, C0, i

∗, l, s),TC), lldO, sldO), where
we moved the ldO tree cover from {ε} to TC. This is indistinguishable from
H2 due to Lemma 1.

4. H4: Calculate ldO(1λ,Assignment(rescueiOerase(1
λ, C0, i

∗, l, s,TC),TC), lldO, sldO),
where we erased the effects of all fragments in PreTCC0,TC. This is indistin-
guishable from H3 due to Lemma 6.

5. H5: ldO(1λ,Assignment(rescueiOerase(1
λ, C1, i

∗, l, s,TC),TC), lldO, sldO), where
we switched from C0 to C1. This is indistinguishable from H4 due to Lemma
7.

6. H6: From now on, the hybrids apply to C1, and the arguments are symmetric
to the previous hybrids.
Calculate ldO(1λ,Assignment(rescueiO(1λ, C1, i

∗, l, s),TC), lldO, sldO), where
we added back the effects of all fragments in PreTCC1,TC. This is indistin-
guishable from H5 due to Lemma 6.

7. H7: Calculate dO(1λ, rescueiO(1λ, C1, i
∗, l, s), lldO, sldO), where we moved the

ldO tree cover from TC to {ε}. This is indistinguishable from H6 due to
Lemma 1.

8. H8: Calculate dO(1λ, rescueiO(1λ, C1, 0, l, s), lldO, sldO), where we moved the
rescueiO tree cover from length i∗ to 0. This is indistinguishable from H7

due to Lemma 3.

F Example Combined-Cover Consistent Circuits

Theorem 3, allows us to obfuscate not only the circuits that dO can obfuscate,
but rescueiO cannot, but also circuits beyond the dO obfuscation class. Next we

46

give a example of such circuits. For some odd n ≥ 5, define the following circuit:

C0(x) = x[1]⊕ x[2]⊕ x[3]⊕
n⊕

i=x+3

x[i]

C1(x) = Select(x[1],Select(x[2], x[3], x[3]),Select(x[2], x[3], x[3]))⊕
n⊕

i=x+3

x[i]

These circuits contain parts, that, as we have shown, make them unobfus-
catable by both dO and rescueiO, if we only used them alone.

But they are combined-cover consistent for TC = {0, 1}3, and i∗ = n. Since
i∗ is odd, both

⊕
i=x+1 x[i] and

⊕
i=x+1 x[i] are XORing an even number of bits,

so they are equivalent. Since the first part is also equivalent, the entirety of both
circuits are equivalent. Again, since we set i∗ = n, the last property of combined-
cover consistency follows. We now define τ in Algorithm 23. Since the first three
bits have already been used by the time we reach TC, the remaining fragments
all contain only

⊕
i=x+1 x[i] or

⊕
i=x+1 x[i], so the algorithm can decompose the

fragment as an XOR of several variable bits, and a constant.

Algorithm 23 Transformation between example circuits.

procedure τ(C∗) . C∗ is a fragment of C0

For some i0 ∈ [3, n], p ∈ {0, 1}, decompose C∗ into p⊕ (
⊕n

i=i0+1 x[i])
if i∗ is odd then

return p⊕ (
⊕n

i=i0+1 x[i])
else

return p⊕ (
⊕n

i=i0+1 x[i])
end if

end procedure

Now we need to prove the first property, for x ∈ {0, 1}3. i0 = 3, so it is odd,
which means that ∀x ∈ TC (note that the first three XORs have already been
evaluated):

τ(C0(x, ·)) = τ((x[1]⊕ x[2]⊕ x[3])⊕
⊕
i=x+1

x[i])

= (x[1]⊕ x[2]⊕ x[3])⊕
⊕
i=x+1

x[i] = C1(x, ·)

Now we prove the second property, similarly to how we proved the first
property in plain consistency, with two cases:

47

1. i0 is odd: i0 + 1 is even, so when we first plug in x[i0 + 1], and then apply
τ , the new fragment is

τ(C∗(x[i0 + 1], ·)) = τ(p⊕ x[i0 + 1]⊕ (

n⊕
i=i0+2

x[i]))

= p⊕ x[i0 + 1]⊕ (

n⊕
i=i0+2

x[i])

In the reverse order, the next fragment is the same:

τ(C∗)(x[i0 + 1], ·) = τ(p⊕ (

n⊕
i=i0+1

x[i]))(x[i0 + 1], ·)

= p⊕ (

n⊕
i=i0+1

x[i])(x[i0 + 1], ·)

= p⊕ x[i0 + 1]⊕ (

n⊕
i=i0+2

x[i])

= p⊕ x[i0 + 1]⊕ (

n⊕
i=i0+2

x[i])

2. i0 is even: i0 + 1 is odd, so when we first plug in x[i0 + 1], and then apply
τ , the new fragment is

τ(C∗(x[i0 + 1], ·)) = τ(p⊕ x[i0 + 1]⊕ (

n⊕
i=i0+2

x[i]))

= p⊕ x[i0 + 1]⊕ (

n⊕
i=i0+2

x[i])

In the reverse order, the next fragment is the same:

τ(C∗)(x[i0 + 1], ·) = τ(p⊕ (

n⊕
i=i0+1

x[i]))(x[i0 + 1], ·)

= p⊕ (

n⊕
i=i0+1

x[i])(x[i0 + 1], ·)

= p⊕ x[i0 + 1]⊕ (

n⊕
i=i0+2

x[i])

= p⊕ x[i0 + 1]⊕ (

n⊕
i=i0+2

x[i])

48

