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Abstract. Tan et al. proposed a rank metric code-based signature (TPL)
in the 2018 International Symposium on Information Theory and Its
Application [3]. Their proposal has compact key size (8.29KB, 1.97KB
and 2.90KB for public key, private key and signature respectively) com-
pared to other code-based signature submitted to the NIST call for Post-
Quantum Cryptography Standardization at 128-bit post-quantum secu-
rity level. This short paper aims to discuss the practical security of the
TPL signature. In particular, we describes how to recover the private key
in TPL with practical simulations. Our experimental results show that
we are able to recover the private key of TPL in less than 23 milliseconds
for all the proposed schemes at 82-bit, 98-bit and 129-bit post-quantum
security level.
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1 Introduction

Tan et al. proposed a rank metric code-based signature, namely the TPL signa-
ture scheme in the 2018 International Symposium on Information Theory and
Its Application [3]. Their proposal has compact key size (8.29KB, 1.97KB and
2.90KB for public key, private key and signature respectively) compared to other
code-based signature submitted to the NIST call for Post-Quantum Cryptogra-
phy Standardization at 128-bit post-quantum security level.

This short paper aims to discuss the security of the TPL signature. By extend-
ing the idea of our previous work in [2], we recover the private key (e1, . . . , el)
in TPL. Using multiple signature σj = (cj , tj,1, . . . , tj,l) collected for 1 ≤ j ≤ w,
we first recover a support basis for ei from t1,i, . . . , tw,i. Then, we recover a
support matrix for ei from the public key H and si. We show the result of the
simulations of our attack at the end of paper. The full version of our paper will
be made available later.

Notation. The following are some notations in this paper:

– Denote the rank weight of a vector x ∈ Fn
qm as rk(x).



– Denote HA,B : A→ B as a collision-resistant hash function.
– Denote En,r = {g ∈ Fn

qm | rk(g) = r}.
– Let X be a finite set, we write x

$← X to denote assignment to x of an
element randomly sampled from the uniform distribution on X.

2 TPL Signature Scheme

The TPL signature scheme is described as follows:

TPL.Setup: Let m,n, k, d, r1, r2, l, lH be positive integers such that m > n > k,
lH ≥ m ≥

⌈
lH
l

⌉
and r2 ≤ r1 ≤

⌊
d−1
4

⌋
. Let q = 2.

TPL.Gen: Let HA,B be a collision-resistant hash function where A =
(
Fn−k
qm

)l ×
{0, 1}∗ × F(n−k)×n

qm ×
(
Fn−k
qm

)l
and B = {0, 1}lH . Let H ∈ F(n−k)×n

qm be a parity
check matrix of a random linear code C with minimum distance at least d. For
1 ≤ i ≤ l, choose random ei

$← En,r1 where r1 ≤
⌊
d−1
4

⌋
. Compute si = eiH

T .
Output public key, pk = (H, s1, . . . , sl) and the private key, sk = (e1, . . . , el).

TPL.Sign: To sign a message m, choose random ui
$← En,r2 for 1 ≤ i ≤ l.

Compute c = (c0, c1, . . . , clH−1) = H(u1H
T , . . . ,ulH

T ,m, H, s1, . . . , sl) where
cj ∈ Fq for 0 ≤ j ≤ lH − 1. For 1 ≤ i ≤ l, define

ĉi :=
(
c(i−1)m mod lH , c(i−1)m+1 mod lH , . . . , c(i−1)m+m−1 mod lH

)
and consider ĉi as an element in Fqm . Then compute ti := ui + ĉiei. If the last
k coordinates of ti are all zero for all 1 ≤ i ≤ l, then repeat the whole signature
generation above. Otherwise output the signature as (c, t1, . . . , tl).

TPL.Vrfy: To verify a signature (c, t1, . . . , tl) with pk = (H, s1, . . . , sl), the ver-
ifier first checks whether the last k coordinates of ti are all zero for 1 ≤ i ≤ l. If

it is true, then reject the signature. Otherwise, check whether rk(ti)
?
≤ r1 + r2

for 1 ≤ i ≤ l. If one of them is false, then reject the signature. Otherwise, pro-
ceed to compute ĉi ∈ Fqm from c = (c0, . . . , clH−1) for 1 ≤ i ≤ l, and compute

vi = tiH
T − ĉisi. Check whether c

?
= H(v1, . . . ,vl,m, H, s1, . . . , sl). If it is

true, then accept the signature, otherwise, reject the signature.

In Tan et al.’s proposal, they consider H = [In−k | X] ∈ Fn−k
qm where XT ∈

Fk×(n−k)
qm is a Cauchy matrix satisfying [3, Theorem 3(b) & (d)]. The following

table is the parameters proposed in [3]:

Instance m n k r1 r2 l pks sks ss PQSec

TPL-I 570 50 10 10 6 1 3.56K 0.78K 1.02K 82

TPL-II 650 58 10 12 6 1 4.71K 1.06K 1.59K 98

TPL-III 850 78 10 17 8 1 8.29K 1.97K 2.90K 129

Table 1. Parameters of TPL. The public key size, private key size and signature size
(in bytes) is denoted by pks, sks and ss respectively.



3 Key Recovery Attack on TPL

Recall that for a vector e = (e1, . . . , en) ∈ Fn
qm with rk(e) = r1, there exists

a vector ê = (e1, . . . , er1) ∈ Fr1
qm with rk(ê) = r1 and a r1 × n matrix E over

Fq with rk(E) = r1 such that e = êE. Note that ê and E are non unique. We
call ê and E satisfying e = êE as a support basis and a support matrix for e
respectively. We denote the support space of e, Supp(e) = 〈e1, . . . , en〉 as the
subspace of Fqm generated by the coordinates of e.

We extend the idea of [1, Algorithm 1] and the attack method in [2] to
solve for a support basis of ei for 1 ≤ i ≤ l. Given a = bC ∈ Fn−k

qm with
〈cij〉1≤i≤n,1≤j≤n−k (of dimension d) known, the [1, Algorithm 1] is to solve for
b ∈ Fn

qm with rk(b) ≤ r. In our case, we are given a vector ti = ui + ĉiei and an
element ĉi ∈ Fqm , we are supposed to solve for ei.

There are two parts in our attack on TPL. In the first part of attack in [2],
only one signature is needed to recover a support basis for the secret key. Here,
we require multiple signature σj = (cj , tj,1, . . . , tj,l) to recover a support basis
for the vector ei from tj,i for 1 ≤ j ≤ w in the first part. The second part is
to recover a support matrix for ei from the public key component H and si.
Once we have recovered a support basis and a support matrix for ei, we can
then recover the private key component ei.

Step 1: Recover a Support Basis for ei.

Let σ1 = (c1, t1,1, . . . , t1,l) be a signature generated in TPL.Sign. Let ei =
(ei,1, . . . , ei,n). Notice that

t1,i = u1,i + ĉ1,iei

⇒ t̂1,i = (t̂1,i,1, . . . , t̂1,i,n) := (ĉ1,i)
−1t1,i = (ĉ1,i)

−1u1,i + ei

⇒ 〈ei,1, . . . , ei,n〉 ⊂ 〈t̂1,i,1, . . . , t̂1,i,n〉.

Similarly, for another signature σ2 = (c2, t2,1, . . . , t2,l), we have 〈ei,1, . . . , ei,n〉 ⊂
〈t̂2,i,1, . . . , t̂2,i,n〉. By collecting w signatures σ1, . . . , σw, we have

〈ei,1, . . . , ei,n〉 =

w⋂
j=1

〈t̂j,i,1, . . . , t̂j,i,n〉.

Since rk(ei) = r1, we can deduce a support basis {ê1, . . . , êr1} for the vector
space 〈ei,1, . . . , ei,n〉.

Step 2: Recover a Support Matrix for ei.

With a support basis computed, we consider the si from the public key and form
the linear system si = (ê1, . . . , êr1)EiH

T . This linear system has n−k equations
over Fqm , with r1×n unknown variables over Fq. Now consider the linear system
under Fq, we have the number of equations is m(n−k) and number of unknown
variables is r1n. Since m(n − k) > r1n, we can solve for a support matrix Ei,
thus giving us ei = (ê1, . . . , êr1)Ei in polynomial time.



Simulations of Our Attack on TPL. We consider all the parameters of TPL
given in [3] and perform simulations of our key recovery attack. The experimental
results of our key recovery attack are presented in Table 2. The experiments
were performed using Magma V2.20-5 running on a 3.4 GHz Intel(R) CoreTM

i7 processor with 16GB of memory.
We experimented with all the three sets of proposed parameters: TPL-I, TPL-

II and TPL-III. For each parameter, we measured the time taken (denoted as
“KRA Time”) and the number of signatures collected to recover the private key
with our algorithm. Table 2 presents the average timing of 100 experiments for
each parameter.

Instances Signatures Collected, w Claimed Security KRA Time

TPL-I 2 82 8 milliseconds
TPL-II 2 98 15 milliseconds
TPL-III 2 129 23 milliseconds

Table 2. Simulations results of our key recovery attack on TPL

Our key recovery attack is able to recover the private key of all the TPL schemes
on an average time of less than 23 milliseconds.

4 Concluding Remark

We have discuss the practical security of the TPL signature scheme. In par-
ticular, we have proposed a key recovery attack to recover the private key
sk = (e1, . . . , el) for the TPL signature scheme. Our attack is efficient in a
way that it does not only attack the parameters, but also attack the structure of
the system. More specifically, we can always determine a support basis for the
private key ei, due to the properties that r1 ≤

⌊
d−1
4

⌋
and r1n < m(n − k). In

conclusion, TPL is an insecure signature scheme.
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