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Abstract. Forkciphers are a new kind of primitive proposed recently
by Andreeva et al. for efficient encryption and authentication of small
messages. They fork the middle state of a cipher and encrypt it twice
under two smaller independent permutations. Thus, forkciphers produce
two output blocks in one primitive call.
Andreeva et al. proposed ForkAES, a tweakable AES-based forkcipher
that splits the state after five out of ten rounds. While their authenticated
encrypted schemes were accompanied by proofs, the security discussion for
ForkAES was not provided, and founded on existing results on the AES and
KIASU-BC. Forkciphers provide a unique interface called reconstruction
queries that use one ciphertext block as input and compute the respective
other ciphertext block. Thus, they deserve a careful security analysis.
This work fosters the understanding of the security of ForkAES with three
contributions: (1) We observe that security in reconstruction queries
differs strongly from the existing results on the AES. This allows to
attack nine out of ten rounds with differential, impossible-differential and
yoyo attacks. (2) We observe that some forkcipher modes may lack the
interface of reconstruction queries, so that attackers must use encryption
queries. We show that nine rounds can still be attacked with rectangle
and impossible-differential attacks. (3) We present forgery attacks on the
AE modes proposed by Andreeva et al. with nine-round ForkAES.

Keywords: Symmetric-key cryptography · cryptanalysis · tweakable
block cipher · impossible differential · boomerang · yoyo · AE.

1 Introduction

The fast distribution of resource-constrained devices demands efficient encryption
and authentication of short messages. Forkciphers are a recent proposal by
Andreeva et al. [1] to address this purpose. Like classical (tweakable) block
ciphers, they encrypt a plaintext block under a secret key; In contrast, however,
forkciphers compute two ciphertext blocks from the same input. To boost the
performance, the state in the middle of the computation is forked, and both



ciphertext blocks are computed separately only from the middle. Therefore, the
construction can share some computations and has to encrypt only twice over
the bottom rounds. Thus, efficient AE schemes can obtain a ciphertext and tag
efficiently for messages whose size is at most a block. Owing to this construction,
forkciphers provide a new interface called reconstruction that takes one of the
ciphertext blocks as input and returns the other one.

As instance of particular interest, Andreeva et al. [1] proposed ForkAES, which
employs the original key schedule and round function of the AES-128. Moreover,
ForkAES is a tweakable block cipher that adopts the concept from KIASU-BC [15]:
in every round where the round key is XORed to the state, an additional 64-bit
public tweak T is XORed to the topmost two state rows. ForkAES encrypts the
plaintext P over the first five rounds exactly as in the KIASU-BC; though,
it forks the middle state X and produces from it a ciphertext C0 exactly as
KIASU-BC with the round keys K5 through K10 plus a second ciphertext C1

under six further round keys K11 through K16.

Existing Security Arguments. The adoption of the AES round function
and the tweak process from KIASU-BC allowed to profit from existing results,
e.g., for the resistance against differential and linear cryptanalysis. Andreeva et
al. also considered meet-in-the-middle attacks briefly; concerning further attacks,
they stated that: “the security of our forkcipher design can be reduced to the
security of the AES and KIASU ciphers for further type of attacks” [1, Sect 3.2].
However, the structure of ForkAES may allow new attack angles, and it appeared
to be a highly interesting task for the community to study ForkAES deeply.

Contribution. This work analyzes attack vectors on forkciphers and ForkAES
in depth. We generalize it to ForkAES-rt-rb0-rb1 , where rt, rb0 and rb1 denote the
number of rounds from P to X, from X to C0, and from X to C1, respectively;
e.g., ForkAES-5-5-5 means the original ForkAES. While we consider only the case
rb0 = rb1 , we indicate by ForkAES-∗-rb0 -rb1 if rt can be any non-negative integer.

First, we observe that the security of the reconstruction of forkciphers is
very different from the encryption and decryption of the conventional AES since
the first half of the computation uses the inverse of the round function whereas
the second half employs the ordinary round function. We exploit this property
by introducing reflection differential trails that allow to attack nine rounds
(ForkAES-5-4-4) with a low complexity. We also present impossible-differential
[4,7,8,9,12,17] and yoyo [3,20] attacks as well as forgery attacks for the AE mode
by exploiting the reflection feature.

Second, we consider the restricted case where the reconstruction interface is
unavailable. This is natural for some usages. For example, Andreeva et al. [1]
suggested to replace the standard CTR mode with forkciphers; two ciphertext
blocks of forkciphers can halve the number of primitive calls to generate the
same key-stream length. In such settings, reconstruction (and even decryption)
queries of forkciphers are not exploitable by adversaries. We show that even in
such environments, attacks can reach nine rounds by a rectangle [5,6,10,18,22]
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Table 1: Comparison of Attacks. CP and CR denote chosen plaintexts and chosen
reconstruction queries, respectively. Due to the limited space, two attacks are omitted
and are detailed in the full version of this work [2].

Time

Construction Attack Type Data Encs. MAs Mem. Section

Encryption Queries
ForkAES-∗-4-4 Rectangle 285 CP 288.5 292.4 286.4 Sect. 6
ForkAES-∗-4-4 Impossible Diff. 270.2 CP 275.4 2110.2 2100 Sect. 7

Reconstruction Queries
ForkAES-∗-4-4 Reflection Diff. 235 CR 228 235 233 Sect. 3
ForkAES-∗-4-4 Impossible Diff. 239.4 CR 247 247 235 Sect. 4
ForkAES-∗-3-3 Yoyo 214.5 CR 214.5 229 229 Sect. 5
ForkAES-∗-4-4 Imp.-diff. Yoyo 2122.83 CR 2122.83 – O(1) App. D

Forgery Attacks on AE modes
PAEF-ForkAES-∗-4-4 Reflection Diff. 292 CR 292 – O(1) App. C

and an impossible-differential attack. Those attacks also exploit the forking step,
which produces rectangle quartets from pairs of plaintexts.

Our attacks do not endanger the security of the full ForkAES; however, they
contradict some of the designer’s claims as they cover one round more than
attacks for KIASU-BC [13,21]. More importantly, the forking principle exposes
reflection properties in reconstruction queries.

Outline. Next, we briefly revisit the necessary details on the AES, KIASU-BC,
and ForkAES. Sections 3 – 5 detail our attacks based on reflection queries and
Sections 6 and 7 describe our attacks based on encryption queries. Due to space
limitations, those sections contain only a representative description of an attack
each; more results are deferred to the supporting material.

2 Preliminaries

General Notation. We assume, the reader is familiar with the concepts of
block ciphers and their analysis. Most of the time, we consider bit strings of fixed
length. We mostly use uppercase letters (e.g., X) for bit strings, lowercase letters
for indices (x), and calligraphic letters for sets (X ). For some positive integer n,
we interpret bit strings X ∈ {0, 1}n as vector elements of Fn2 , where addition is
the bit-wise XOR, denoted by ⊕. Moreover, the AES works on byte vectors or
byte matrices, i.e., 16-element vectors in F28 . So, we interpret byte matrices of r
rows and c columns as elements of Fr×c28 .

Forkciphers. Let B, K, and T be non-empty sets or spaces. A tweakable
forkcipher Ẽ is a tuple of three deterministic algorithms: An encryption algorithm
Ẽ : K × T × B → (B)2; a decryption algorithm D̃ : K × T × B × {0, 1} → B;
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and a tag-reconstruction algorithm R̃ : K × T × B × {0, 1} → B. The encryption

produces ẼTK(P ) = (C0 ‖C1). We define ẼTK(P )[0] = C0 and ẼTK(P )[1] = C1

Decryption and tag reconstruction take a bit b s. t. it holds D̃T,b
K (ẼTK(P )[b]) = P ,

for all K,T, P, b ∈ K × T × B × {0, 1}. The tag-reconstruction takes K, T , Cb,

and b as input, and produces Cb⊕1. The ideal tweakable forked permutation Π̃
encrypts messages P under two independent permutations π̃0, π̃1 : T × B → B,
and outputs (C0 ‖C1) as Cb ← π̃b(P ), for b ∈ {0, 1}.

The AES-128 is a substitution-permutation network over 128-bit inputs, which
transforms the input through ten rounds consisting of SubBytes (SB), ShiftRows
(SR), MixColumns (MC), and a round-key addition with a round key Ki. At
the start, a whitening key K0 is XORed to the state; the final round omits the
MixColumns operation. We write Si for the state after Round i, and Si[j] for
the j-th byte, for 0 ≤ i ≤ 10 and 0 ≤ j ≤ 15. Further, we use Sr,SB, Sr,SR, and
Sr,MC for the states in the r-th round directly after the SubBytes, ShiftRows, and
MixColumns operations, respectively. The byte ordering is given by:

0 4 8 12
1 5 9 13
2 6 10 14
3 7 11 15

 .
We adopt a similar convention for the round keys Ki and their bytes Ki[j], for
0 ≤ i ≤ 16; for both, we also use often a matrix-wise indexing of the bytes from
0, 0 to 3, 3. More details can be found in [11,19].

KIASU-BC [15] is a tweakable block cipher that differs from the AES-128 only
in the fact that it XORs a public 64-bit tweak T to the topmost two rows of the
state whenever a round key is XORed. We denote the tweak by T and by T [j],
0 ≤ j ≤ 7, the bytes of T . The bytes are ordered as[

0 2 4 6
1 3 5 7

]
.

ForkAES is a forkcipher based on KIASU-BC. It forks the state after five
rounds and transforms it twice to two ciphertexts C0 and C1. We denote the
states of the first branch by Xi =def Si, for 5 ≤ i ≤ 10, where X5 = S5 and
X10 = C0. Moreover, we denote the states of the second branch by Y i, for
5 ≤ i ≤ 10, where Y 5 = S5 and Y 10 = C1. We will also write R for the sequence
MC ◦ SR ◦ SB. and KS for an iteration of the AES-128 key schedule. A schematic
illustration is given in Fig. 1, and more details can be found in [1]. We will
sometimes reorder the linear operations, e.g., swap MixColumns, ShiftRows, and
the key addition. We will write K̃r = MC−1(Kr) and K̂r = SR−1(MC−1(Kr) for
the transformed round keys.
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Fig. 1: ForkAES. R is the AES-128 round function; KS a round of its key schedule.

Subspaces of the AES. We adopt the notion of AES subspaces from Grassi
et al. [14]. Given a vector space W and a subspace V ⊆ W; if a is an element
of W, then, a coset V ⊕ a =def {v ⊕ a|∀v ∈ V} is a subset of V in W. We
consider vectors and vector spaces over F4×4

28 , and denote by {e0,0, . . . , e3,3} the

unit vectors of F4×4
28 , i.e., ei,j has a single 1 in the i-th row and j-th column. For a

vector space V and a function F : F4×4
28 → F4×4

28 , we let F (V) =def {F (v)|v ∈ V}.
For a subset I ⊆ {1, 2, . . . , n} and a subset of vector spaces {V1,V2, . . . ,Vn}, we
define VI =def

⊕
i∈I Vi. We adopt the definitions by Grassi et al. of four families

of subspaces for the AES, for i ∈ {0, 1, 2, 3}:

– the column spaces Ci as Ci = 〈e0,i, e1,i, e2,i, e3,i〉,
– the diagonal spaces Di as Di = SR−1(Ci),
– the inverse-diagonal spaces IDi as IDi = SR(Ci), and
– the mixed spaces Mi as Mi = MC(IDi).

The S-box S : F28 → F28 of the AES has a few well-analyzed properties; here,
we briefly recall one that will be relevant in our later attacks.

Property 1. Let α, β ∈ F28 \ {08}. For F ∈ {S,S−1}, it holds that |{x : F(x) ⊕
F(x ⊕ α) = β}| equals four in one, two in 126, and zero in 129 cases. So, for
any differential α→ β, there exists approximately one input x on average that
satisfies the differential.

3 Attack on ForkAES-∗-4-4 with Reflection Trails

Our attacks can work for arbitrary value of rt. Then the round-key indices
for two forking parts depend on the value of rt. To avoid making the analysis
unnecessarily complex, we explain our attacks by using the case with rt = 5.
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Observations for Reconstruction Queries. Recall that the first half and
the last half of the reconstruction is the inverse and the ordinary round function,
respectively. This motivates us to consider the reflection property introduced by
Kara [16] against the block cipher GOST. The final 16 rounds of GOST consist
of an eight-round Feistel network with the round keys in order K0, K1, . . . ,
K7, followed by eight rounds with K7, K6, . . . , K0 in this order. Since Feistel
networks are involutions, this enables the following so-called reflection property.

Proposition 1 (Reflection Property). When an input value V achieves a
symmetric state after eight rounds, i.e. left branch value is identical with right
branch value, the output of the final eight rounds will be V .

The reflection property is strong, but possesses limitations: there must not
exist round constants, the round keys must be ordered inverted in the first and
second chunks, and the target function must be an involution.

This paper considers a differential version of the reflection property. To be
more general, the same concept applies if we build trails that are invariant
w.r.t. XOR. Suppose, a round function F consists of an arbitrary bijective
function, an XOR with a round constant ci, and an XOR with a round key Ki.
Consider 2r rounds, where the first r rounds apply F and the final r rounds
apply F−1. The round keys Ki, i = 1, 2, . . . , 2r as well as the round constants ci,
i = 1, 2, . . . , 2r can differ individually. Then, we have the following property.

Proposition 2 (Reflection Differential Trails). If there exists a differential
for the r-round transformation F r that propagates a difference ∆I to ∆O
with probability p, there exists a differential for the 2r-round transformation
(F−1)r ◦ F r that propagates a difference ∆I to ∆I with probability at least p2.
This property holds for any choice of round keys and constants in the 2r rounds.

Reflection trails can be applied to reconstruction queries of forkciphers where
C1 (resp. C0) is computed from C0 (resp. C1). The first and last halves of a
reconstruction query are back- and forward computations of the same round
function, and different round keys and round constants do not impact the property.

Reflection trails are particularly useful for the AES, which achieves full

diffusion in only two rounds. There, a single active byte propagates to 1
F−1

−→
4
F−1

−→ 16 active bytes. In contrast, it propagates as 1
F−1

−→ 4
reflect−→ 4

F−→ 1 in the

reflection trail, where
F−→ and

F−1

−→ denote the propagation of the number of

active S-boxes with F and F−1, respectively, and
reflect−→ denotes the duplication

of the state by forkciphers. This idea allows us to build long differential trails.
It is notable that the designers of ForkAES did not expect the existence of

reflection trails. In fact, based on the property that the maximum probability of
differential characteristics for four-round AES is 2−150, the designers claim as
“Since our ForkAES design uses the AES round function, we can easily deduce
that our design will provide enough security in this setting after four rounds
against differential attacks in the single-key model.” [1, Sect. 3.2]

6



MC
SR
SB

MC SR

SR MC

SB

SR
SB

MC SB
SB
SR
MC

SB
SR
MC

SB
SR
MC

SB
SR
MC

𝐾 9 

𝐾8 𝐾7 𝐾5 

𝑇 𝑇 𝑇 

𝑇 𝑇 𝑇 

𝐾10 𝐾12 𝐾13 

𝐾 14 

𝐶0  

𝐶1  

𝐾6 

𝑇 

𝑇 

𝐾11 

𝟐−𝟖 𝟐−𝟐𝟒 

𝟐−𝟐𝟒 

𝐶0 

𝐶1 

𝑇 

𝑇 

𝟐−𝟖 𝟐𝟕 differences 

Fig. 2: Truncated differentials for ForkAES-∗-4-4.

The combination of the reflection trail and a KIASU-like tweak injection yields
further efficient differential trails. Tweak difference allows an attacker to create a
blank round, and the reflection trail increases the number of blank rounds to 2.

Indeed, the reflection trail with 4
F−1

−→ 1
F−1

−→ 0
F−1

−→ 4
reflect−→ 4

F−→ 0
F−→ 1

F−→ 4
bytes enables the attacker to build a very efficient trail.

The Differential Trail and Probability. The linear computations in the
last round do not affect the security. Hence, instead of ciphertext C0, C1 and the
last round key K9,K14, we consider equivalent ciphertext Ĉ0, Ĉ1 and equivalent
key K̂9, K̂14;

Ĉ0 ← SR−1 ◦MC−1(C0 ⊕ T ), K̂9 ← SR−1 ◦MC−1(K9),

Ĉ1 ← SR−1 ◦MC−1(C1 ⊕ T ), K̂14 ← SR−1 ◦MC−1(K14).

Refer to Fig. 2 for the differential trail, where we append one round to the
above-mentioned trail in reconstruction queries. The attacker queries C1 and
obtains C0.

The number of active bytes injected by Ĉ1 must shrink to one during the
inverse of MixColumns and must be canceled by the tweak difference, which occurs
with probability 2−32. In Round 6, the four-byte difference in a diagonal position
must shrink to one-byte difference and be canceled by the tweak difference. This
also occurs with probability 2−32. So, the total probability of this trail is 2−64.

Attack Procedure. During the attack, the tweak difference is fixed.

1. Choose tweaks T and T ′ with the fixed difference. For each pair T, T ′, choose
232 distinct values for the first column of Ĉ1. Fix the other 12 bytes to
arbitrary values and compute the corresponding C1 offline and query them to
obtain the corresponding C0. Compute the corresponding Ĉ0 offline. Hence,
we obtain 232 choices of Ĉ0 with T and 232 choices of Ĉ0 with T ′.

2. From 264 pairs of Ĉ0 between different tweaks, pick the one with 12 inactive
bytes in the Columns 2, 3, and 4 of Ĉ0. We expect one right pair.
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3. For the right pair, obtain 27 key candidates of the first column of K̂9, which
has 1 active byte in the top byte after the inverse of MixColumns and moreover
the difference should be one of the 27 choices that can be output from the
tweak difference after the S-box. This step is colored by red in Fig. 2.

4. Iterate the steps above by shifting the active-byte positions to obtain 27

candidates for each column of K̂9. 228 candidates are then tested exhaustively.

Complexity Evaluation. The data complexity is 4 · (233 + 233) = 235 re-
construction queries. The memory complexity is 233 AES states to store 233

values of Ĉ0. The time complexity is 219 memory access to queried data and 228

encryptions for the last exhaustive search. Note that in Step (3), there are 27

choices of the input difference to the last SubBytes and the output difference
from this SubBytes are fixed to the ciphertext difference of the right pair. For
the AES S-box, a randomly chosen pair of input and output differences can be
propagated with probability about 2−1, and once they can be propagated, the
number of solutions is about 2. Therefore, 27 × (2−1)4 pairs can be propagated
for all the 4 bytes, and the number of total solutions is 27 × (2−1)4 · 24 = 27. So,

27 candidates of one column of K̂9 can be obtained with 27 computations.

Experimental Verification. In Appendix B, we show an attack on ForkAES-
∗-3-3 which removed the last rounds of the above attack. ForkAES-∗-3-3 can
be attacked with (Data, T ime,Memory) = (219, 228, 217). We implemented the
attack in Java to demonstrate its validity. Refer to Appendix B for the details.

4 Impossible-differential Attack with Reflection Trails

This section describes an impossible-differential distinguisher on ForkAES-∗-4-4
with reconstruction queries; we will extend it for key recovery.

Distinguisher. The impossible differential distinguisher is as follows.

1
F−1

−→ 0
F−1

−→ 4
reflect−→ 4

F−→ ?
F−→ ?

impossible←→ ?
F−→ ?

F−→ 12. (1)

The positions of active bytes are illustrated in Fig. 3. The fact that those trails
are satisfied with probability zero is explained as follows.

– Trail from Y 7: After the tweak injection along with K6, any number of bytes
can be active in the leftmost column. They are moved to different columns by
the following ShiftRows operation. After MixColumns, each column is either
fully active or fully inactive.

– Trail from Ĉ0: After the inverse of MixColumns and ShiftRows, at least one
inverse diagonal is inactive. Moreover, at least three bytes are active in the
state. The subsequent tweak injection (along with K7), never affects the
inactive inverse diagonal. It may cancel one active byte in the state, but does
not impact the analysis. In summary, we have the following two properties.
1. There is at least one inactive byte for each column.
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2. The number of active bytes is at least two.

The case that the trail from Y 7 has no active byte is impossible, because the
trail from Ĉ0 ensures at least three active bytes. The case that the trail from Y 7

has at least 1 fully active column is impossible because the trail from Ĉ0 ensures
at least one inactive byte for each column. Hence, any trail from Y 7 is impossible
to propagate to the difference of Ĉ0.

The inactive column position at Ĉ0 is the rightmost (4th) column in Fig. 3,
but it can also be located in the second or third column position. It cannot be
located in the leftmost (first) column because of the tweak difference.

Key Recovery. We append key recovery rounds for the trail in Fig. 3 as
depicted in Fig. 4. Suppose, we have a pair of outputs with only a single active
column at Ĉ1. Then, only five (equivalent-)key bytes must be guessed in those
two rounds.

Attack Procedure. During the attack, the tweak difference is fixed.

1. Choose two tweaks T, T ′ having the fixed difference. For each of T, T ′, choose
232 distinct values for the active 4-byte values of Ĉ1 and fix the other 12
bytes to arbitrary value, say 0. After making 233 reconstruction queries, we
obtain 232 choices of Ĉ0 associated with T and with T ′.

2. From 264 pairs of Ĉ0 with different tweaks, pick one with at least one inactive
column in Columns 2, 3, or 4 at Ĉ0. We expect 3 · 264−32 = 233.58 pairs.

3. For each picked pair, derive 27 wrong candidates of the top-left byte of K̂13

and the leftmost column of K̂14 by trying 27 possible differences in the middle
rounds. After evaluating 233.58 pairs, we obtain 240.58 wrong-key candidates.

4. Iterate the steps above 24.42 times by changing the fixed 12 bytes of Ĉ1. We
obtain 240.58+4.42 = 245 wrong candidates of the 5 key bytes. After obtaining
2N wrong keys, the remaining key space for those five bytes is estimated as

240 · (1− 2−40)2N

.

N = 45 is sufficient to reduce the remaining key space to 1 since

240 · (1− 2−40)245

= 240 · (1− 2−40)240·25

= 240 · e−25

= 2−6.17 < 1.

5. Iterate the above steps three times by shifting the active byte positions to
recover all bytes of K̂14.

Complexity Evaluation. To recover one column of K̂14, we make 24.42 · (232 +
232) = 237.42 reconstruction queries. The data complexity to recover all bytes of

K̂14 is 4 · 237.42 = 239.42.
To recover one column of K̂14, we spend 245 encryptions to discard 245 wrong-

key candidates. The time complexity to recovery all bytes of K̂14 is 4 · 245 = 247.
For the memory complexity, we use the 40-bit counter to record wrong-key

candidates, which is equivalent to 233 AES states. To recover 1 column of K̂14,
we also need to store 233 Ĉ0 and 234 pairs satisfying the differences. Hence, the
memory complexity is 233 + 233 + 234 = 235 AES states.
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5 Yoyo Key-recovery Attack on ForkAES-∗-3-3

The yoyo game was introduced by Biham et al. against Skipjack [3]. Rønjom
et al. [20] reported deterministic distinguishers for two generic Substitution-
Permutation (SP) rounds. We review existing work in Appendix A. Here, we
observe that, during reconstruction queries, two-round decryption and two-round
encryption can be computed independently for each column, which we call a
MegaSBox.

MegaSBox in ForkAES. Refer to Fig. 5 for the MegaSBox construction of
ForkAES. Consider any inverse diagonal in Y 6,SR. After SR−1 and SB−1, the
MegaSBox aligns to a column. After MC−1, the column remains independent
of the other columns. The inverses of SR and SB align the bytes back into a
diagonal. After the reflection, the same operations are applied to these four bytes;
after SR, those bytes align to an inverse diagonal in X6,SR. Clearly, the value in
this inverse diagonal depends only on the same inverse diagonal in Y 6,SR. This
can be considered as a MegaSBox with 32-bit input (inverse diagonals). The
transition from Y 6,SR to X6,SR can be depicted in terms of 4 parallel MegaSBoxes.
To be explicit, for x ∈ {0, 1}32, the computation of MegaSbox is defines as
MegaSBox(x) := SR ◦ SB ◦ ATK ◦MC ◦ SR ◦ SB ◦ ATK ◦ ATK−1 ◦ SB−1 ◦ SR−1 ◦
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Fig. 5: MegaSBox of ForkAES

MC−1 ◦ ATK−1 ◦ SB−1 ◦ SR−1(x), where ATK denotes the addition of a round
key and a tweak.

Key-recovery Attack. For applying the Yoyo game on ForkAES-∗-3-3, S1 ·L ·
S2 needs to be identified. Referring to Fig. 5, following MC and SB of X6,SR can
be regarded as L and S2 layers respectively. Four MegaSBoxes act as S1 layer.
Thus the operations from Y 6,SR to X7,SB constitute the S1 · L · S2 construction.
We choose a pair of texts (x1, x2) in Y 6,SR and compute X7,SB; bytes are swapped
among the texts in X7,SB and their corresponding values in Y 6,SR are calculated
as (x′1, x

′
2). Theorem 1 in Appendix A ensures that ν(x1 ⊕ x2) = ν(x′1 ⊕ x′2).7

Refer to Fig. 6 for the attack. It starts with activating one column at Ĉ1 for
a pair of texts and queries the reconstruction algorithm for a pair of Ĉ0. We

use the propagation 4
MC−1

−→ 1 in Y 6,SR, which activates a single MegaSBox with
probability 2−22. Due to the MegaSBox, only one SuperSbox (inverse diagonal)
is active in X6,SR. Out of 4 bytes of the inverse diagonal, at the cost of 2−6, we
get one inactive byte. Thus, Ĉ0 has one inactive column with probability 2−28.

Attack Procedure.

1. Choose a tweak; choose 214.5 distinct random values for the first column of
Ĉ1. Fix the other 12 bytes to arbitrary value. Obtain the corresponding Ĉ0

via reconstruction queries. After this step, we have about 228 pairs of Ĉ0.
2. For each of the 228 pairs of Ĉ0, check if one column is inactive or not for the

pair; we expect one right pair. Once a right pair is obtained, swap the bytes
at Ĉ0 for applying the yoyo trick and reconstruction algorithm is queried to
get a pair which is fully active in Ĉ1. We retrieve two such pairs (right pairs).

7 ν is a so-called zero-differential pattern that denotes the position of inactive words.
Refer to Appendix A for more precise definition.
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Fig. 6: Yoyo Key Recovery for ForkAES-∗-3-3.

3. For both right pairs, obtain K̂12 that have only 1 active byte in the first
column, e.g., by exhaustively guessing a single-byte difference before Mix-
Columns and propagate them through MixColumns. Each right pair suggests
210 key candidates. By analyzing 2 right pairs, the key will be uniquely fixed.

4. Step 3 is iterated for the remaining columns.

Complexity Evaluation and Experimental Verification. The attack
needs 214.5 reconstruction queries; its time complexity is 214.5 memory accesses,
and the memory complexity is 214.5 AES states for 214.5 values Ĉ0.

We verified the attack on ForkAES-∗-3-3 by implementing it in Java. The
attack started with initializing an oracle that randomly chooses a key, before the
steps in the attack procedure above were followed. In the key-recovery phase,
two right pairs were used to retrieve candidates for each column of K̂12. Using
the first right pair yielded 976, 1296, 1008, and 976 candidates for Column 0, 1,
2, and 3, respectively. The second right pair reduced the candidates to 1, 1, 2,
and 1, respectively. Hence, we obtained two key candidates.

6 Rectangle Attack with Encryption Queries

This section describes a rectangle attack on ForkAES-∗-4-4; for concreteness, we
exemplify it for five top rounds. Briefly spoken, boomerangs and rectangles are
types of differential cryptanalysis where a given cipher E is split into sub-ciphers
E = E2 ◦ Em ◦ E1 such that there exist a differential α → β with probability
p over E1, a middle trail β → γ with probability r, and a differential γ → δ
with probability q over E2. Note that, we approximate the middle part Em to be

12



Fig. 7: Overview (left) and bottom trail (right) of our rectangle attack. The key
recovery covers the parts below the dashed horizontal line and guesses the bytes with G.

empty for our attack. The differentials are often referred to as upper and lower
differentials or trails. The probability of a correct quartet is often approximated
by r(pq)2 since the trails must hold for both pairs.

We consider two tuples (P, T ) and (P ′, T ′) that are encrypted to (C0, C1)
and (C ′0, C

′
1), respectively. We denote by ∆Xr = Xr ⊕ X ′r their differences

between the states after Round r that lead to C0, and by ∆Y r = Y r ⊕ Y ′r the
differences in the states that lead to C1. For clarity, we define that the fork from
X to C0 employs the round keys K5 through K9, and the fork from Y to C1

uses K10 through K14. An overview is depicted on the left side of Fig. 7. There,
RTKi..j means the round sequence RTKj ◦ · · · ◦ RTKi . We construct 28 sets Si of 2s

plaintext-tweak tuples. The sets differ in T [0]; all plaintexts in a set share the
same tweak. So, we can combine 2s texts (tuples of C0, C1) of Set Si with 2s

texts of Set Sj , for i 6= j, or 2s ·
(

28

2

)
' 22s+15 pairs (quartets of C0, C1, C ′0, C ′1).

The Top Differential. In contrast to the pure AES or to KIASU-BC, the
forking step guarantees that the difference between the inputs to Rounds 6 and 10
is equal for each plaintext. So, the top differential reduces to the key addition,
that is, the XOR with K5 for the branch that encrypts from X to C0, and to the
XOR with K10 for the branch that encrypts from Y to C1. So, α = β = K5⊕K10

holds with probability one for each pair. The adversary collects pairs and waits

13



that the difference at the beginning of the bottom trail occurs, whose probability
can be approximated by 2−128. From approximately 22s+15 pairs, we expect
22s−113 to have a specific difference γ at the forking step.

For the Middle Phase and the Bottom Differential, we use two sim-
plifying assumptions: (1) all differences after five rounds are equally possible; (2)
all four-byte values of the keys K5[0, 5, 10, 15] and K10[0, 5, 10, 15] are equally
possible. The bottom trail is shown on the right side of Fig. 7. There are four
active S-boxes at the start of Round 6. We consider only text pairs with a
non-zero tweak difference ∆T [0]. To estimate the probability, we iterate over all
possible values of X6,SB[0, 5, 10, 15] = (x̄0, x̄1, x̄2, x̄3), all differences K5[0, 5, 10,
15]⊕K10[0, 5, 10, 15] = (β0, β1, β2, β3) and all non-zero 255 tweak differences
∆T [0] 6= 0; ∆T [0] maps uniquely through MC−1 to the differences in X6,SB[0, 5,

10, 15]⊕X ′6,SB[0, 5, 10, 15]; the same difference must hold between the terms

Y 6,SB[0, 5, 10, 15] ⊕ Y ′6,SB[0, 5, 10, 15]. We define MC−1((∆T [0], 0, 0, 0)) = (ζ0,
ζ1, ζ2, ζ3). Note that ζ0 defines ζ1, ζ2, and ζ3 uniquely. Moreover, (x̄0, x̄1, x̄2,
x̄3, ζ0, β0, β1, β2, β3) are mutually independent. This is the setting as in the
Boomerang-connectivity Table [10] whose entries contain the number of values xi
for a pair (ζi, βi) that satisfy the boomerang switch for a byte. So, the BCT values
already sum over all values xi. Over all choices of the values x̄i, all non-zero
differences ζi, and non-zero differences βi, we obtain a probability of

1

255 · (256)8

∑
ζ0 6=0

∑
β0

(Pr[ζ0]·Pr[β0]·BCT(β0, ζ0)) ·
∑
β1

(Pr[β1]·BCT(β1, ζ1)) ·

∑
β2

(Pr[β2]·BCT(β2, ζ2)) ·
∑
β3

(Pr[β3]·BCT(β3, ζ3)) =
(520)4

255 · 2568
' 2−35.905.

Here, we use the fact that each row and column of the BCT sums to 520 for the
AES S-box. So, the probability for the switch can be approximated by 2−36 ·2−128

for hitting our difference between two queries. The remainder in the bottom trail
holds with probability 1. Thus, we can expect about 22s−149 correct pairs.

Offline Preparations. We define a linear map F : F4×4
28 → F12

28 that returns
the value of the 12 inactive bytes in ∆X9,SR. So, we can identify pairs (Ci, C

′
i) with

our desired difference from collisions between F (MC−1(T ⊕Cb)) = F (MC−1(T ′⊕
C ′b)) with two evaluations of F per text instead of comparing all differences.

We can perform another step for saving efforts later. We define X̃r,SR =def

SR(SB(Xr−1))⊕ K̃r, and Ỹ r,SR, X̃ ′
r,SR

, and Ỹ ′
r,SR

analogously. Let x = X̃9,SR[0,

7, 10, 13], x′ = X̃ ′
9,SR

[0, 7, 10, 13], k8 = K̃8[0], and k9 = K̃9[0, 7, 10, 13] be short
forms. We construct a hash map H : F28 × F28 × F4

28 × F4
28 →

(
F5

28

)∗
such that

for all inputs (T [0], T ′[0], x, x′), H returns exactly those keys (k8, k9) that map
x and x′ to a zero difference at ∆X7,MC. The trail contains 32 bit conditions
that have to be fulfilled; thus, H maps to approximately 28 suggestions of 40
key bits on average. H can be used also to obtain suggestions for K̃13[0] and

K̃14[0, 7, 10, 13] from inputs Y 9,SR[0, 7, 10, 13], Y ′9,SR[0, 7, 10, 13], T [0], and T ′[0].
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Attack Steps. The steps are as follows:

1. Initialize an empty list Q. Initialize two zeroed lists of byte counters for 40 key
bits each: K for (K̃8[0], K̃9[0, 7, 10, 13]), and L for (K̃13[0], K̃14[0, 7, 10, 13]).

2. Precompute H.
3. Choose an arbitrary base tweak T ∈ F2×4

28 . Construct 28 sets Si. For each set,
choose 2s plaintexts P such that all texts in a set use the same tweak value
T . Ask for their 2s+8 encryptions (T,C0, C1), invert the final tweak addition,
and the final MixColumns operation for each output tuple (C0, C1).

4. We define Qb = F (MC−1(T⊕Cb)), for b ∈ {0, 1}. For all ciphertexts, compute
Q0 and Q1 from C0 and C1 and store (T,C0, C1, Q0, Q1) into buckets of Q.

5. Focus on pairs of tuples (T,C0, C1, Q0, Q1) and (T ′, C ′0, C
′
1, Q

′
0, Q

′
1) if T [0] 6=

T ′[0], C0 = C ′0 and C1 = C ′1. We call such pairs of tuples with our desired
property correct pairs. Discard all tuples that do not form correct pairs.

6. For each correct pair, lookup in H suggestions for the 40 key bits K̃8[0]

and K̃9[0, 7, 10, 13] from T [0], T ′[0], X̃9,SR[0, 7, 10, 13], and X̃ ′
9,SR

[0, 7, 10,
13]. We expect 28 suggestions on average. For each suggested key candidate,
increment its corresponding counter in K.

7. Similarly, for each correct pair, lookup in H the suggestions for the 40 key
bits K̃13[0] and K̃14[0, 7, 10, 13]. We expect 28 suggestions on average. For
each suggestion, increment the corresponding counter in L.

8. Output the keys in K and L in descending order of their counters.
9. While the adversary has 80 key bits, the key schedule may render it more

performant to start from the 40 bits of either K̃8[0], K̃9[0, 7, 10, 13] or K̃13[0],

K̃14[0, 7, 10, 13] and search the 88 remaining key bits with the given data.

Complexity. From 28 sets of 2s texts each, we expect 22s−149 correct pairs;
s = 77 is expected to yield about 25 correct pairs on average, and needs 285

plaintext-tweak tuples. The time complexity consists of the following terms:

– H can be precomputed in Step (2) by decrypting one column over two rounds
280 times, which yields at most 2/13 · 1/4 · 280 ' 275.3 encryption equivalents.

– Step (3) needs 2s+8 encryptions of 13 AES rounds each.
– Step (4) employs 2 · 2s+8 evaluations of F and 2 · 2s+8 · (s + 8) memory

accesses (MAs). This step yields 22s+15 · 2−192 = 22s−177 wrong pairs plus
22s−149 correct pairs on average.

– Step (6) does not need H, but can test the keys on-the-fly, for 2 · 25 states of
240 keys, of 1/4 of the state through two out of 13 rounds. Each surviving pair
requires 2 ·28 MAs to H plus 2 ·28 MAs to K and L on average. We expect an
average sum of all counters of 28·22s−149 = 213 in each of both lists, distributed
normally over the keys. For s = 77, we expect (2−23 · 28) + 25 · 28 ' 213

counters over the 40 key bits on average.

We can expect that the correct keys have a significantly higher number of counts.
So, we obtain about 275.3 + 2 · 25 · 240 · 1

4 · 2
13 + 2s+8 + 2 · 2s+8 + 288 ' 288.5

Encryptions and 2·2s+8 ·(s+8)+2·22s−177 ·2·28+2·25 ·28 ' 292.4 MAs. The attack
needs 280 byte counters for the keys; Q needs 2s+8 · (2 · 16 + 8) < 2s+13.33 ' 290.4

bytes of memory, or 286.4 states, which dominates the memory complexity.
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7 Impossible-differential Attack with Encryption Queries

Impossible Differentials. This section outlines an impossible-differential
attack on ForkAES-∗-4-4. Again, we describe it for five top rounds. The high-level
idea is straight-forward: The adversary queries plaintexts under tweaks that differ
only in T [0] and waits for tuples (Ci,0, Ti) and (Cj,0, Tj). It inverts the final MC−1

operation and tweak addition, and uses the ciphertexts only if their difference
∆C̃0 (before MC) activates only the inverse diagonal ID0, as given in the left

side of Fig. 8. It deduces those key bytes K̃9[0, 7, 10, 13] and K̃8[0] that lead to a
zero difference in ∆X7,MC, i.e., that cancel after the tweak XOR at the end of
Round 7. Then, there is a zero difference through the inverse Round 7, which
leads to a single active byte in ∆X6,MC, and to a single active diagonal at the
start of Round 6. Again, see the left side of Fig. 8. The second trail decrypts
∆C1 backwards to ∆Y = ∆X. So, at least one of the following cases must hold:

(1) ∆Y 7 has at least one fully active column: ∆Y 7 ∈ Ci.
(2) Bytes ∆Y 7[1, 2, 3] are active.
(3) ∆C1 ∈M0, i.e., is in the mixed space, generated by ∆Y 9,SR ∈ ID0.

In Case (3), the ∆Y trail is similar to the ∆X trail. So, we have a distinguisher
similar to the rectangle distinguisher described in Section 6. However, this section
tries to exploit a different distinguisher with lower data complexity and does not
have to wait for such an event. In the Cases (1) and (2), the Columns 1 to 3 of
∆Y 7 are either completely active or completely inactive. Thus, the adversary can
guess eight bytes of K̃14 that are mapped to one of those columns and can filter
out all key guesses where one of those columns would become partially active.

Offline Preparations. Again, we can define a linear map F of rank 96
such that F (MC−1(∆C0 ⊕ ∆T )) = 0 so that we can identify pairs with our

desired difference from collisions in ∆X̃9,SR. We construct a hash map H0 :

F28×F28×F4
28×F4

28 → (F5
28)∗ that maps (T [0], T ′[0], X̃9,SR[0, 7, 10, 13], X̃ ′

9,SR
[0,

7, 10, 13]) to all five-byte keys that yield ∆X7,MC = 0.
We construct a second hash map H1 : F8

28 × F8
28 → (F8

28)∗. For all inputs

x = (Ỹ 9,SR[2, 3, 5, 6, 8, 9, 12, 15], Ỹ ′
9,SR

[2, 3, 5, 6, 8, 9, 12, 15]), H1(x) returns

exactly the keys K̃14[2, 3, 5, 6, 8, 9, 12, 15] that yield one of the impossible
differentials in ∆Y 8,SR. H1 does not need the tweak as input since the final tweak
addition, MixColumns, and ShiftRows can be inverted before the lookup in H1;
the tweak addition at the end of Round 8 does not affect the difference in ∆Y 8,SR.
Note that H1 can be built more efficiently from several smaller lookup tables
since the columns can be computed independently from each other.

There exist four combinations of bytes ∆Y 8,SR[i, j] with (i, j) ∈ {(8, 15),
(9, 12), (10, 13), (11, 14)} and two options if Byte i or Byte j is active. Among
232 difference inputs to MC−1, 224 are mapped to an output difference with
a zero-difference byte at a fixed index. On the other hand, 232 − 224 inputs
yield a non-zero difference at a given byte index. Thus, given an input Ỹ 9,SR,
H1 returns 4 · 2 combinations of 224 · (232 − 24) ' 256 keys that yield the
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Fig. 8: Left: The trail ∆C0 → ∆X. Right: One variant of an impossible trail ∆C1 6←
∆Y . White bytes are inactive, light-blue bytes possibly active, and dark-blue bytes are
active. Parts below the dashed horizontal lines are considered in the on-line phase. The
columns of ∆Y 7,MC are either fully active or fully inactive.

impossible differential. This can be evaluated with 4 · 2 calls to two 32-bit tables
each, or 16 tables that map 32 state bits to 232 or 224 keys. So, H1 needs
8 · 232 · 232 · 4 bytes + 8 · 232 · 224 · 4 bytes ' 272 bytes of memory. The tables
can be computed with at most 16 · 232 · 232 quarter-rounds of the AES, which is
at most 16/13 · 264 ' 264.3 equivalents of ForkAES-5-4-4.

Attack Procedure. The steps in the attack are as follows:

1. Initialize two empty lists Q and K; the latter will hold all 13-byte keys K̃8[0],

K̃9[0, 7, 10, 13], and K̃14[2, 3, 5, 6, 8, 9, 12, 15].
2. Choose an arbitrary base tweak T ∈ F2×4

28 . Construct 28 sets Si from iterating
over T [0]. For each set, choose 2s plaintexts P . All texts in a set use the same
tweak T i with T i[0] = i. Ask for their 2s+8 encryptions (T,C0, C1).

3. For each ciphertext, invert the final tweak addition, the final MC operation,
and process all ciphertexts by F : Qb = F (MC−1(Cb ⊕ T )), for b ∈ {0, 1}.
Store (T,C0, C1, Q0, Q1) into buckets of Q.

4. Only consider pairs of tuples (T,C0, C1, Q0, Q1) and (T ′, C ′0, C
′
1, Q

′
0, Q

′
1) if

T 6= T ′ and Q0 = Q′0. Discard all other tuples. We call pairs of tuples with
our desired property correct pairs.

5. For each correct pair, derive from H0 the key candidates K̃8[0] and K̃9[0, 7,

10, 13] that yield a zero difference in ∆X7,MC. With Ỹ 9,SR and Ỹ ′
9,SR

, further
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derive from H1 all key candidates for K̃14[2, 3, 5, 6, 8, 9, 12, 15] that yield one
of the impossible differentials. Remove those candidates from K.

6. Output the 13-byte key candidates remaining in K.

Conditions and Complexities. The adversary queries 28 sets of 2s texts
each and guesses 13 key bytes in total: K̃9[0, 7, 10, 13], K̃8[0], and K̃14[2, 3, 5,
6, 8, 9, 12, 15], i.e., 104 key bits. The attack requires pairs with ∆C0 ∈ M0,
which occurs with probability of approximately p ' 2−96. We can assume that
(∆C0,∆C1) ∈ M0 ×M0 never occurs by accident; while it could theoretically
still occur and could be exploited, we consider a different distinguisher here.

The probability that a key K̃9[0, 7, 10, 13] reduces the four active bytes in
∆X9,SR to a single active byte in ∆X8,MC[0] is 2−24, and its difference is ∆T [0] in
∆X7 with probability 2−8. So, a key in the ∆X trail yields our desired differential
with a probability of about 2−32. There are four options which columns in ∆Y 7

become partially active, and two options for the order which of the two known
bytes in this column are active/inactive. The probability for one inactive byte is
(2−8 − 1) · (1− 2−8) ' 2−8; so, a key yields the impossible differential in ∆Y 7,MC

with probability approximately 2−32 · 2−8 · 4 · 2 ' 2−37.
In the framework by Boura et al. [9], this can be represented as 37 bit

conditions that have to be fulfilled to filter a key from a given correct pair. The

probability for a wrong key to survive is psurvive =
(
1− 2−37

)N
, where N is the

number of correct pairs. For 2104 keys, psurvive ≤ 2−104 would allow us to filter
all keys to only the correct key, plus at most a few more false positives. For
this purpose, we need N ≥ 243.2 pairs with 12 inactive bytes in ∆X̃9,SR, which
yields 243.2 · 212·8 = 2139.2 necessary pairs. From 2s structures, we can construct
about 22s+15 pairs, which gives s = 62.1 or CN = 2s+8 = 270.1 queries. The
computational complexity is composed of the following terms:

– Precompute H0 with 280 times twice a quarter round of the AES, which can
be approximated by 280 · 2/13 · 1/4 ' 275.3 encryption equivalents.

– Precompute H1 with at most 264.3 encryption equivalents.
– Encrypt 2s+8 plaintext-tweak tuples.
– Invert 2s+8 · 2 times the final tweak addition, MixColumns, and ShiftRows

operation, which can be overestimated by 270.1 · 2 · 1/13 ≈ 267.5 encryptions.
– Apply F to all states C0, which is at most 2s+8 ForkAES computations,

or 270.1 · 2 ' 270.1 encryptions. Moreover, we need 2 · 2s+8 · (s + 8) =
2 · 70.1 · 270.1 ' 277.3 MAs on average with an efficient data structure. We
obtain about 22s+15−96 ' 22s−81 = 243.2 remaining pairs.

– For each of the 243.2 pairs allows to filter keys. Since we have 37 bit conditions,
each pair allows to filter 2104−37 = 267 keys on average from H0 and H1 with
two MAs each and remove them from K.

– Our attack aims at recovering 104 bits of K̃9 and K̃14. So, the final term for
recovering 64 remaining key bits of K̃14 can be estimated by 264 encryptions.

The time complexity can be bounded by about 275.3 +264.3 +270.1 +267.5 +270.1 +
264 ' 275.4 encryptions and 2 · 270.1 + 277.3 + 243.2 · 2 + 243.2 · 267 ' 2110.2 MAs.
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The attack needs 280 · 28 · 40 bits for H0, at most 272 bytes for the components of
H1, 2s+8 = 270.2 · (2 · 16 + 8) < 2s+14 = 276.2 bytes for Q, and 2104 byte counters
or (2100 states) for K; the latter term dominates the memory complexity.
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Appendices

A Methods

This section briefly recalls the necessary details on (1) boomerang and rectangle
attacks, (2) impossible-differential attacks, and (3) yoyo attacks.

A.1 Boomerang and Rectangle Attacks

Boomerangs Attacks [22] are a form of advanced differential cryptanalysis
that allows to compose two short high-probability differentials in cases where
long differentials with sufficient probability are lacking. Given a cryptographic
transform E : Fn2 → Fn2 , it is decomposed into parts E = E2 ◦E1 such that there
exist a differential α → β with probability p over E1 and a differential γ → δ
with probability q over E2. Often, the differentials are referred to as upper and
lower differentials or trails. A boomerang distinguisher then chooses plaintext
pairs (P, P ′), with P ′ = P ⊕α, and asks for the corresponding ciphertexts (C,C ′)
through E. It derives D = C ⊕ δ and D′ = C ′ ⊕ δ to obtain the ciphertext pair
(D,D′), and asks for the corresponding plaintext tuples (Q,Q′). If Q⊕Q′ = α,
then (P, P ′, Q,Q′) forms a correct quartet. The probability of a correct quartet
is often approximated by (pq)2 since the trails must hold for both pairs. The
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Fig. 9: Schematic illustrations of a related-tweakey rectangle (left) and an impossible-
differential attack (right).

probability can be increased by considering all possible internal trails α → β′

and γ′ → δ as long as both pairs in the quartet have differences β′ and γ′ in the
middle and β 6= γ. Hence, the simplified probability of a correct quartet increases
to (p̂q̂)2 with

p̂ =

√∑
β′

Pr2 [α→ β′] and q̂ =

√∑
γ′

Pr2 [γ′ → δ].

Clearly, the attack demands that p̂q̂ � 2−n/2 for the differential to be probable.
Given N plaintext pairs, one expects about N · (p̂q̂)2 correct quartets in an
attack, but only N · 2−n correct quartets for an ideal primitive, which yields a
distinguishing event.

Rectangle Attacks. Rectangle attacks [5] are a chosen-plaintext form of the
boomerang concept. The core difference of rectangles is to encrypt many plaintext
(P, P ′) with difference α and simply hope that some of those will form a quartet
with the desired differences in the middle. Given N plaintext pairs, the number
of correct quartets is reduced to N2 · 2−n · (p̂q̂)2 by a birthday argument. The
left side of Fig. 9 illustrates a related-tweakey rectangle. Biham et al. presented
further technical improvements to the technique in [6]. The major disadvantages
of rectangle compared to boomerang attacks are the higher data complexity and
the large number of potential quartets that have to be handled.
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Verification. Boomerangs and rectangles represent oversimplified equation
systems, as was first stressed by Murphy [18]. Cid et al. [10] proposed the concept
of a Boomerang-connectivity Table for S-box-based ciphers as a tool that allows
to identify if boomerangs can really hold. We consider their approach later in
this work.

A.2 Impossible-differential Attacks

Impossible-differential attacks have been proposed by Knudsen [17] and Biham
et al. [4]. In this work, we follow the generic framework by Boura et al. [9]; the
interested reader is referred to the refinements by Blondeau [7].

The search of an impossible-differential attack usually consists of two steps:
first, one searches for a differential ∆X 6→ ∆Y with probability zero through
a sub-cipher; thereupon, one propagates the start difference ∆X backwards
through rin rounds to an input difference ∆in, and the end difference ∆Y forwards
through rout rounds to an output difference ∆out. The complexity can be reduced
by considering ∆in and ∆out as vector spaces that can contain multiple allowed
start and end differences.

The adversary queries plaintexts Pi and constructs pairs (Pi, Pj) s. t. their
difference lies in ∆in; it asks for their corresponding ciphertexts Ci, and considers
only ciphertext pairs (Ci, Cj) whose differences fall into the space spanned by
∆out. Next, it guesses key bits through the rin inner rounds and the rout outer
rounds. All key candidates that yield ∆X and ∆Y for any pair in the middle
must be wrong and can be discarded. Boura et al. denoted by cin the number
of bit conditions that have to be fulfilled for a pair with input difference in ∆in

to yield ∆X. Similarly, they denoted the number of bit conditions that must be
fulfilled to get from ∆out to ∆Y by cout. We denote the key sets by Kin and Kout.
The number of key bits involved is denoted by kin and kout respectively. The right
image of Fig. 9 comprises the notations of an impossible-differential attack.

The number of pairs needed to filter is chosen such that the probability of a
key to survive is low. Following [7,17], let TK be the random variable that counts
the number of pairs that allow discard key candidate K. Knudsen [17] assumed
that TK follows a binomial distribution with parameters (N, p = 2−(cin+cout)) that
a pair leads to the impossible differential for a given key, the probability that
this key candidate survives all pairs can be approximated by

psurvive = Pr [TK = 0] =

(
N

0

)
· p0 · (1− p)N =

(
1− 2−(cin+cout)

)N
.

This probability can be approximated by e−pN . The complexities are given by:

– Data: CN ·N . For obtaining the necessary number of pairs N , Boura et al. [9]
formulated the following complexity, based on the limited birthday problem:

CN = max

{
min

∆∈{∆in,∆out}

{√
N · 2n+1−|∆|

}
, N · 2n+1−|∆in|−|∆out|

}
. (2)
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– Memory: N pairs;
– Time:

CN · CE +

(
1 +

2|kin∪kout|

2cin+cout

)
·N · CE′ + 2k−α · CE . (3)

The number of plaintext pairs is chosen s. t. N , the expected number of the
ciphertext pairs with difference in ∆out fulfills that psurvive ≤ 2−α; so, the attack
reduces the key spaces by α bits on average. In the most conservative fashion, N
is chosen to be smaller than 2−|kin∪kout|, so that only the correct key is expected
to survive. The term CN simply refers to the complexity of finding N pairs
with ciphertext difference in ∆out. CE is the cost for evaluating the primitive,
k denotes the key size, and CE′ the costs of the partial encryption to detect
impossible differentials.

One can consider multiple impossible differentials to employ the same data
for multiple impossible trails. Boura et al. point out that this strategy affects
only the first term, CN , but not the further terms of the memory complexity.

Boura et al. aimed at providing generic formulae for the complexities of
impossible-differential attacks. At FSE 2016, Derbez pointed out cases where the
generic time-complexity calculation was not correct [12]; those counter-examples
considered optimized attacks wherein the key was recovered part by part. In their
follow-up work [8], Boura et al. addressed Derbez’ findings and emphasized that
also given their generic formulae, the exact complexity of each attack needs to
be carefully computed. Later in this work, we will refrain from employing those
optimizations. Therefore, the complexity calculations for our attacks should be
sub-optimal, but circumvent the pitfalls pointed out by Derbez.

A.3 Yoyo Game

The yoyo game was introduced by Biham et al. for the cryptanalysis of Skipjack
[3]. Recently, Rønjom et al. [20] reported a deterministic distinguisher for two
generic Substitution-Permutation (SP) rounds. This result has been applied
to eight-round ForkAES to perform key recovery attack. Before discussing the
distinguisher for two generic SP rounds, some notations and definitions need to
be reused originally defined in [20].

Let, F : Fnq → Fnq be a generic permutation where q = 2k. Then, F is given
by:

F (x) = S ◦ L ◦ S ◦ L ◦ S(x).

Here, S is considered as a concatenation of n SBoxes operating in parallel
on individual words from Fq and L denotes the linear layer over Fnq . A vector of
words α = (α0, α1, · · · , αn−1) ∈ Fnq forms the states. The Zero-difference Pattern
(ZDP) is defined by [20] as below:

Definition 1 (Zero-difference Pattern [20]). Let, α ∈ Fnq for q = 2k. The
Zero-difference Pattern for α is

ν(α) = (z0, z1, ..., zn−1),
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where ν(α) takes values in Fn2 and zi = 1 if αi = 0 or zi = 0 otherwise.

The weight of the zero-difference Pattern of α refers to the number of inactive
words in α and is denoted by wt(ν(α))

The Yoyo game depends on the swapping of words among the texts. The
following definition describes the swapping mechanism.

Definition 2 (Word Swapping [20]). Let, α, β ∈ Fnq be two states and v ∈ Fn2
be a vector, then ρv(α, β) is a new state in Fnq created from α, β by swapping

components among them. The ith component of ρv(α, β) is defined as

ρv(α, β)i =

{
αi, if vi = 1;

βi, if vi = 0.
(4)

A.4 Yoyo Distinguisher for two generic SP Rounds

Two generic SP rounds is denoted as G2 = L ·S ·L ·S where the final L layer can
be omitted as it has no effect in terms of security. Also, the two substitution layers
does not need to be same. After modification, G2 = S1 ·L · S2. The deterministic
distinguisher for two generic SP rounds is described by the following theorem.

Theorem 1 (The Yoyo Game [20]). Let, p0, p1 ∈ Fnq , c0 = G2(p0) and

c1 = G2(p1). For any vector v ∈ Fn2 , c
′0 = ρv(c0, c1) and c

′1 = ρv(c1, c0). Then

ν(G−1
2 (c

′0)⊕G−1
2 (c

′1)) = ν(p
′0 ⊕ p′1) = ν(p0 ⊕ p1).

B Attack on ForkAES-∗-3-3 with Reflection Trails

Refer to Fig. 10 for the differential propagation in reconstruction queries. We use
the following propagation of the number of active S-boxes for 2 rounds

4
F−1

−→ 1
F−1

−→ 0
reflect−→ 0

F−→ 1
F−→ 4,

and append 1 round to the end for the key recovery and the structure technique.
We only consider a fixed difference for the tweak, which can be fixed to any

value, say 0 x01. The only probabilistic propagation is reduction of the number of
active bytes during the inverse of MixColumns and cancellation of state difference
with tweak difference. Those occur with probability 2−32 in total. The attack
procedure is as follows.

1. Choose two tweaks T, T ′ having the fixed difference. For each of T, T ′, choose
216 distinct values for the first column of Ĉ1. Fix the other 12 bytes to arbitrary
value, say 0. Obtain the corresponding Ĉ0 via reconstruction queries.

2. From 232 pairs of Ĉ0, pick up the one that has 12 inactive bytes in the 2nd,
3rd, and 4th columns of Ĉ0. We expect only 1 right pair.

3. By using the right pair, obtain 27 key candidates of the first column of K̂8

as demonstrated for the attack against ForkAES-∗-4-4.
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Fig. 10: Truncated Differentials of 8-Round Attack.

4. Iterate the above steps by shifting the active-byte positions.

The attack requires 219 reconstruction queries, 219 memory access to operate
queries, and a memory to store 217 AES states.

We implemented the 8-round attack by Java. We first fixed the 128-bit key
value to a certain value and ran the procedure above. According to the theory,
we should be able to obtain 27 key candidates for each column of K̂8. In our
experiment, the number of key candidates for column 0, 1, 2, and 3 are 304,
144, 96 and 208, respectively. Hence, the complexity for the key recovery is
304 × 144 × 96 × 206 ≈ 229.7. We successfully recovered the correct key by
exhaustively trying those 229.7 key candidates.

C Forgery Attacks on AE Schemes with ForkAES-∗-4-4

PAEF. The forkcipher designers proposed several dedicated nonce-based authen-
tication modes, among them, PAEF that provides 128-bit security is depicted in
Fig. 11. To attack nonce-based AE modes, the difficulty lies in the single use of
each nonce, which can prevent many advanced differential based attacks. Indeed,
our attacks based on encryption queries assume the repeated use of nonces in
those modes. In contrast, our attack here is a (first-order) differential attack that
can directly be used to mount forgery attacks.

Description. Let N,A, tw,C, T denote a nonce, an associated data, a tweak,
a ciphertext and a tag, respectively. Overall, the attacker first observes a valid
tuple of (N,A, tw,C, T ). Then she generates (N,A, tw′, C ′, T ′) that passes the
verification procedure. In forkcipher-based modes, one of the two output blocks is
the ciphertext block and the other output block is used to update the tag. Hence,
the reflection trails for reconstruction queries are suitable for this scenario.

In this attack, we specify exact difference value between tweak cancellation
and the last output in both branches as shown in Fig. 12. Because each branch
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Fig. 11: Nonce-respecting forgery for the PAEF authenticated-encryption mode.
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Fig. 12: Differential Tail of 9-Round Forgery in AE Modes.

involves 5 active S-boxes, the probability of the propagation is 2−30 in each
branch. For the reflection part, we truncate the differences, thus the probability
is 2−32. Note that the difference of ∆Ĉ0 and ∆Ĉ1 must be linearly converted to
∆C0 and ∆C1 offline. In the end, we know that by modifying the last ciphertext
block C∗ to C ′ = C∗⊕∆C0, the tag will be T ′ = T ⊕∆C1 with probability 2−92.

As a result, the attacker can generate valid (N,A, tw′, C ′, T ′) after 292 distinct
queries of (N,A, tw,C, T ) with good probability or after 1 query with probability
2−92, which is faster than the claimed 128-bit security.

Remarks. Note that the S-box inverse, key addition, and S-box in the reflection
part can be viewed as an application of a key-dependent S-box under a fixed key.
Because both of the input and output differences of each key-dependent S-box is
fixed, the probability of this propagation can be 0 for some choices of ∆T . To
avoid this situation, the attacker should make 292/255 queries for each of 255
possible ∆T . Although the probability of being good ∆T is 2−4, the probability
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Fig. 13: Construction of S1 · L1 · S2 · L2 · S3 for ForkAES-∗-4-4

of cancellation for a good ∆T is 2−28. Therefore, this does not impact to the
complexity evaluation.

The designers of forking ciphers also proposed SAEF and fGCM. The same
attack can also be applied to SAEF and fGCM because the process of the last
message block is identical.

D Impossible-differential Yoyo Distinguisher for
ForkAES-∗-4-4

The computation of the reconstruction queries in ForkAES-∗-4-4 can be considered
as S1 · L1 · S2 · L2 · S3 (3 generic SP-rounds), where S1 and S2 correspond to
SuperSbox and MegaSBox respectively. Fig. 13 reveals this construction. Unlike
2 generic SP-rounds, there is no generic distinguisher for 3 generic SP-rounds.
Instead, properties specific to AES can be exploited.

The AES states consists of four 32-bit words and the minimum number
of active words over L1 · S1 or L2 · S3 layer is 5 for AES. Equivalently, the
number of maximum inactive words over L1 · S1 or L2 · S3 layer is 3 or less for
AES. Namely, if wt(ν(L1 · S1(p1)⊕ L1 · S1(p2))) = t, then it is impossible that
wt(ν(p1 ⊕ p2)) ≥ (4− t). Also, wt(ν(L1 · S1(p1)⊕ L1 · S1(p2))) = wt(ν(S2 · L1 ·
S1(p1)⊕S2 ·L1 ·S1(p2))) = t. If p1 and p2 encrypt to c1 and c2 respectively, then
it is also impossible to have wt(ν(c1 ⊕ c2)) ≥ (4− t).

For any random pair of texts,

Pr
[
wt(ν(L1 · S1(p1)⊕ L1 · S1(p2))) = t

]
=
(

4
t

)
× (232−1)(4−t)

232×4 ≈
(

4
t

)
× 232×−t.

For any random pair of texts also we have

Pr
[
wt(ν(p1 ⊕ p2)) = (4− t)

]
= Pr

[
wt(ν(c1 ⊕ c2)) = (4− t)

]
=(

4
4−t
)
× (232−1)(t)

232×4 ≈
(

4
4−t
)
× 232×(t−4).
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Fig. 14: For ForkAES-X-4-4, at least one pair out of 261.4 pairs is expected for which
wt(ν(α1

0 ⊕ α2
0)) = 2. By Yoyo Game wt(ν(α1

1 ⊕ α2
1)) = 2 which implies that wt(ν(p1k ⊕

p2k)) � 2 and wt(ν(c1k ⊕ c2k)) � 2, for 0 ≤ k ≤ 261.4

This event is impossible for ForkAES-∗-4-4 if wt(ν(L1 · S1(p1)⊕ L1 · S1(p2))) = t.

So, the attack proceeds as taking a random pair of plaintexts at Ĉ1 and obtain the
corresponding Ĉ0 by querying the reconstruction algorithm and check whether
(4 − t) words are inactive or not. If (4 − t) words are inactive, then the pair
is dropped as it is a wrong pair; otherwise, words are swapped between them
and again the reconstruction algorithm is queried for obtaining Ĉ1 and same
procedure follows. For each pair, zero difference in Ĉ1 and Ĉ0 needs to be checked

1

2×( 4
4−t)×(232)(t−4)

times each to match the random case. For a right pair, zero

difference in Ĉ0 and Ĉ1 should never be (4 − t). The data complexity of the
attack is

1

(4
t)×232×−t

× 1

( 4
4−t)×232×(t−4)

which is minimum at t = 2 with value 2122.83.

Attack Procedure.

1. Take any two texts p1
0, p

2
0 at Ĉ1 s.t. wt(ν(p1

0 ⊕ p2
0)) ≤ 1 and compute their

corresponding C1 offline and query them to obtain the corresponding C0.
Compute the corresponding Ĉ0 offline. Let, the new texts are c10, c

2
0.

2. Check whether wt(ν(c10 ⊕ c20)) ≥ 2. If the weight is greater than equal to 2,
then discard the pair and start from step 1. Otherwise, swap words between
c10 and c20 to obtain c11, c

2
1. Use these new pairs to query the reconstruction

algorithm to obtain p1
1, p

2
1 and discard the pair if wt(ν(p1

1 ⊕ p2
1)) ≥ 2.

In general, by applying the yoyo game p1
k, p

2
k, c

1
k, c

2
k is obtained by using
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p1
k−1, p

2
k−1, c

1
k−1, c

2
k−1. The initial pair p1

0, p
2
0 is dropped if wt(ν(p1

k⊕ p2
k)) ≥ 2

or wt(ν(c1k⊕c2k)) ≥ 2 for 0 ≤ k ≤ 261.4 and a new pair of texts p1
0, p

2
0 is chosen

and the process is repeated. For ForkAES-∗-4-4, at least one pair (right pair)
is expected s.t., wt(ν(p1

k ⊕ p2
k)) � 2 or wt(ν(c1k ⊕ c2k)) � 2 for 0 ≤ k ≤ 261.4.

If such a pair is found, we distinguish ForkAES-∗-4-4.
In ForkAES-∗-4-4, at Ĉ0 and Ĉ1 each word corresponds to each column. So,
in this case swapping of words refers to the exchange of columns between
two texts.

3. If step 1 is repeated 261.4 times and the right pair is not found then it is not
ForkAES-∗-4-4.

Complexity Evaluation. The attack has a data complexity of 2122.83 recon-
struction queries, requires the time for their encryption by the oracle plus 2122.83

XOR operations and word swapping between texts. The attack requires negligible
storage requirements.
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