SECURITY EVALUATION FOR SNOW 2.0-LIKE STREAM
CIPHERS AGAINST CORRELATION ATTACKS
OVER EXTENSION FIELDS

A. N. Alekseychuk®, S. M. Koniushok™, M. V. Poremskyi™™

Institute of Special Communication and Information Security,
National Technical University of Ukraine «Igor Sikorsky Kyiv Polytechnic Institute»

“alex-dtn@ukr.net “3tooth@iszzikpiua undermyclouds@gmail.com

Abstract: We propose a general method for security evaluation of
SNOW 2.0-like ciphers against correlation attacks that are built similarly
to known attacks on SNOW 2.0. Unlike previously known methods, the
method we propose is targeted at security proof and allows obtaining
lower bounds for efficiency of attacks from the class under consideration
directly using parameters of stream cipher components similarly to
techniques for security proofs of block ciphers against linear cryptanalysis.

The method proposed is based upon automata-theoretic approach to
evaluation the imbalance of discrete functions. In particular, we obtain a
matrix representation and upper bounds for imbalance of an arbitrary
discrete function being realized by a sequence of finite automata. These
results generalize a number of previously known statements on matrix
(linear) representations for imbalance of functions having specified forms,
and may be applied to security proofs for other stream ciphers against
correlation attacks.

Application of this method to SNOW 2.0 and Strumok ciphers shows
that any of the considered correlation attacks on them over the field of the

order 256 has an average time complexity not less than 2144%° and 224940

respectively, and requires not less than 24%”" and, respectively, 224938
keystream symbols.
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Introduction

The stream cipher SNOW 2.0 [1] was proposed in 2002 as an alternative of a
previous (weaker) version SNOW. At the moment, this cipher is standardized [2] and
Is one of the fastest software oriented stream ciphers.

The most powerful of the known attacks on SNOW 2.0 are correlation attacks,
the essence of which is to compile and to solve systems of noised linear equations, in
particular, systems of equations over the fields of order larger than 2 [3 — 7]. Despite
certain progress in this direction, there are some unsolved problems related to
development of methods for security evaluation and security proof of SNOW 2.0-like
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stream ciphers against correlation attacks. At the moment, there are no methods that
would allow proving security of the mentioned ciphers against known correlation
attacks directly using parameters of their components. Besides, an attempt to extend
the known methods for security evaluation of SNOW 2.0 against correlation attacks
for some other stream ciphers (e.g. Strumok that was proposed as a candidate for a
national standard of stream encryption [8]) encountered difficulties related to the scale
of problems to be resolved to obtain the bounds. Unlike SNOW 2.0 that is built over

the field of the order 232, the Strumok cipher is built over the field of the order 2%
that results in impossibility of practical application of certain algorithms [4, 5, 7]

complexity of which increases from 232 + 23" to 2% bit operations.

In this paper, we present methods allowing practical evaluation and proving
security of SNOW 2.0-like stream ciphers against a wide class of correlation attacks.

In Section 1, we adduce the definition of SNOW 2.0-like stream ciphers and of a
number of related concepts. Note that Section 1 considers ciphers of a more general
form than those proposed in [9]. In particular, we define binary ciphers that differ
from previously defined (modular) ciphers [9] by replacement the addition modulo
powers of 2 with coordinate-wise XOR operation of binary vectors. Binary ciphers
may be regarded as simplified versions of the respective modular ciphers (that include
SNOW 2.0 and Strumok), however their research is of independent interest. In
particular, as shown in Section 3, there exist (quite practical) binary SNOW 2.0-like
ciphers that are proved to be secure against known correlation attacks.

In Section 2, based upon [7], we describe a class of attacks considered in the
following sections. Unlike [7], we use for description of these attacks (or rather, of the
systems of noised equations solving of which presents the essence of the mentioned
attacks) the trace function from a finite field into its sub-field. That enables obtaining
a description that is more useful for further analysis, in particular, to set an analytical
expression for the parameter that determines the efficiency of a correlation attack in
terms of Fourier coefficients of noise distribution in the right-hand sides of the
relevant system of equations.

The main result of Section 2 is Theorem 1 allowing to reduce the problem of
obtaining lower bounds for the time complexity of a correlation attack from the
specified class and also for the size of the keystream needed for its successful
implementation to construction upper bounds for the maximum modules of Fourier
coefficients of noise distribution in the right-hand sides of equations in a system not
depending on a specific attack.

We also study the relation between efficiency of attacks over fields of order 2"
where r' >1, and ordinary binary attacks that are built over the field of two elements.
We show that the transition from binary correlation attacks to attacks over fields of

order 2" may increase efficiency of the former not more than 2" times.
In Section 3, we obtain lower bounds of the time and data complexities needed
for successful implementation of correlation attacks on ordinary binary SNOW 2.0-
like stream ciphers. Expressions for obtained bounds depend on parameters that are
traditionally used for security evaluation of block ciphers against linear cryptanalysis:
2



the maximal elements of linear approximations tables of s-boxes and the branch
number of the linear transform used in the encryption algorithm. Application of these
bounds to binary versions of SNOW 2.0 and Strumok ciphers shows that any
correlation attack (from the specified class) on them over the field of the order 256

has average time complexity not less than 2462 and 22449 respectively, and

requires not less than 2277 and, respectively, 22493 keystream symbols.

Results extension of Section 3 for modular SNOW 2.0-like ciphers encountered
difficulties associated with application in such ciphers the addition of binary integers
modulo power of two. Methods developed to overcome these difficulties [4, 5, 7]
require calculation of probability distributions of noise in the right-hand sides of
systems of equations used in correlation attacks and appear to be inapplicable when

the order of the field over which the cipher is defined is 2% or more (e.g. for
Strumok). Besides, these methods are focused on the construction of specific attacks
and not on proof of security of SNOW 2.0-like ciphers, so their use for the purpose of
proof of security, even in the case of SNOW 2.0 cipher, leads to a large amount of
computations.

To overcome these drawbacks, we propose in Section 4 an automata-theoretic
approach to construction upper bounds for imbalance of discrete functions being
realized by sequences of finite automata. The source of this approach is the paper
[10], where a matrix representation is obtained for the preimages’ number of the
output sequence of a finite automaton; however, in the case discussed below we deal
not with the distribution of the number of preimages, but with Fourier coefficients of
this distribution.

The main results of Section 4 are Theorems 5, 6 and 7, the first of which
generalizes a series of separate results on matrix (or linear) representations of the
imbalance of maps that are implemented by automata of special forms [4, 11], and the
second and the third provide upper bounds of imbalance that can be used, in
particular, for proof the security of ordinary modular SNOW 2.0-like ciphers against
correlation attacks.

In Section 5, by means of Theorem 7 we obtain lower bounds for the time
complexity and the size of the keystream needed for successful implementation
correlation attacks on ordinary modular SNOW 2.0-like ciphers. Expressions for the
obtained bounds depend on certain parameters of s-boxes that may be considered as
modified elements of their linear approximations tables, and also on the branch
number of the linear transform used in the encryption algorithm. Application of the
obtained bounds to SNOW 2.0 and Strumok leads to the results that coincide with the
results obtained for their binary versions: any correlation attack on the mentioned
ciphers (from the specified class of attacks) over the field of the order 256 has an

average time complexity not less than 214620 gpg 224940 respectively and requires
not less than 214277 and, respectively, 024938 keystream symbols.



Note that certain results of this paper, in particular, those in Sections 2 and 4, are
applicable not only to SNOW 2.0-like ciphers and can be used to solve other
problems of the correlation cryptanalysis of symmetric encryption schemes.

1 SNOW 2.0-like stream ciphers

For any natural r, let us denote by V, the set of binary vectors of the length r.
Let us stipulate on this set the structure of the field For (of the order 2") agreed with

the operation @ of the coordinate-wise Boolean addition of binary vectors. Let us
identify the elements of the set V, with r -bit integers assuming that the number

X, +2X, +---+2 " x, corresponds to the vector X = (X, Xy, ..., X,) €V, , and let us
denote by + the addition operation of these numbers modulo 2".

By definition, the initial data for construction of the keystream generator of a
SNOW 2.0-like stream cipher are the following objects (Figure 1):

— aprimitive polynomial g(z)=z"®c, ;2" ®... ¢, over the field F,

— apermutation :V, >V, ;

— anatural number peln-2;

— acommutative group operation * on the set V, .

The keystream generator is a finite autonomous automaton with the set of states
V," xV. 2, the next state function

N((X_1 X2y -0 X0)s U, V) = (X Xpogs -5 X)), X, *V, o(U)),
and the output function
F((Xn_1s Xn_20 -3 X0) Uy V) = X @ (Xp_g *U) DV,

where Xg, ..., Xp1, U,V EV,, X, =C_1X,_1 D...8DCyXy. S0, the keystream symbol v;
at the time i is determined by the initial state ((X,_1,Xp_2, .- Xg),Ug,Vp) Of the
generator by means of the recurrent relations

Vi =X © (Xjng *Uj) @V, (1)

Uis1 = Xipy * Vi, Viga =o(U;) (2)

valid forall 1=0,1, ....
Starting from Section 3, we consider only SNOW 2.0-like stream ciphers that

.
satisfy the condition * e{®, +}. A cipher is called binary, if * =® and modular, if
4



.
*= +, Where r > 2.
A SNOW 2.0-like cipher is called ordinary, if there exist integer numbers

p,t >2 such that r = pt, a basis B of the field F2r over the field th, permutations

Sj:F, > F,,1€0, p-1, and an invertible px p-matrix D over the field F ; such
2

2t ’
that if elements z and o(z) of the field F2r are identified with the vectors of their
coordinates in the basis B the following equality holds:

o(z) = (So(20).-+Spa(Zpa))D, 2=(2p,Zp1) € sz : 3)

Usually, the permutations s; : Fi—>F €0, p—1 are called s-boxes of the

2t ]
cipher under consideration.
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Figure 1. Scheme of the keystream generator for a SNOW 2.0-like stream cipher

Example 1. SNOW 2.0 [1] is an ordinary modular cipher with the parameters
t=8, p=4 (r=32). Here n=16, u=5, and the s-boxes s;, i€0, p—1 and the
matrix D are defined in the same way as in the round transform of Rijndael [12].

Example 2. The stream cipher Strumok [8] is an ordinary modular SNOW 2.0-
like cipher with the parameters t=8, p=8 (r=64). Here n=16, u=13, and
the s-boxes s;, 1€0, p—1 and the matrix D are defined in the same way as for
Kalyna block cipher [13, 14].




2 Correlation attacks on SNOW 2.0-like stream ciphers

2.1 Construction of systems of noised linear equations for correlation
attacks. Practically all known correlation attacks on SNOW 2.0 [3 — 7] are based on
the feature that the sum of keystream symbols in any successive times is a result of a
symbol distortion in a linear recurring sequence over the field For by which one can

directly recover the initial state of the LFSR in Figure 1. For an arbitrary SNOW 2.0-
like stream cipher we obtain from (1), (2):
Vi®Via =X DX @ Xitp D Xipnag D Xin @&, 1=0,1,..., 4)
where
&i = ((Xisn_1 *Uj) @ X Do(U;)) @

D ((Xin * Xy *Vi) @ (Xin ® Xy ®V4)), 1=0,1,.... ®)

Assuming that X, Xi1n_1, Xin, Ui, Vj in (5) are independent random variables
with uniform distribution on the set V, and presenting the symbols
Xis Xis1s Xiry» Xien-1, Xien OF the linear recurring sequence through the initial state of
the LFSR in Figure 1 we obtain the system (4) of noised linear equations over the
field For where distortions (i.e., the noisy symbols) are random variables (5).

Let us describe a method for construction of consequences for system (4) that are
used further in correlation attacks on SNOW 2.0-like stream ciphers.
Let’s write the first N equations of the system (4) in the form

b =Aad®&, ie0,N-1, (6)

where by =v; @yi,1, Ad=X ©Xjy @ Xy ® Xing @ Xipn, A is @ known row vector

of the length n over the field F.,, and a=(Xy,...,X,_1)" is the target solution of the
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system (4), i.e., the unknown column vector equal to the initial state of the LFSR in
Figure 1.

Let us fix an arbitrary (positive) divisor r’ of the number r and let us denote by

r r r'(r'-1) . .
T (2)=202° @ @7° the trace of the element ze F, in the field F.,

where r'r" =r,
Let us recall (see e.g. [15], Definition 2.30) that the bases B ={b,,...,b,»} and

B={b,,..b-} of the field F,r over the sub-field F, are called dual if
Tr;r'(bif)j):l when i=]j, Tr;}rr(biﬁj):o if otherwise. It follows from this



definition that the trace of the product of arbitrary elements from the field For

coincides with the dot product of vectors of their coordinates in (any) dual bases.
To construct a consequence of the system (6) let us fix an element c Fr \{0}

and a pair of dual bases B and B of the field F,r over the sub-field Fr Observe
that the equalities Tr;}ry (cbi):Trzzrrf(Ai(ca))@Trzzrrf (c&), i€0,N -1 follow from

equalities (6) and Trzzrﬁ (A (ca)) is the dot product over Fr of the vectors A and a’
that can be received by substitution of each coordinate of the vector A; (respectively,
of the vector ca) with its representation in the basis B (respectively, in the basis B).

Whence the vector a’ e F. ™" coincides with the target solution of the following

system of the noised linear equations:

Ax=Dbi = Aa'®mn;, 1€0,N -1, (7)

where by :Tr,jrr, (chy), m; :Trzzrr, (cg;) foreach ie0,N —1.

Thus, to recover the vector a from the system of equations (4) it is sufficient to
construct for the previously chosen r’ and c the system of equations (7) over the field

Fr and to recover its target solution a’ by one of the known methods. Knowing the

vector a’ and the basis B, it is easy to find the vector ca, and thus also the required
vector a.

Note that all known correlation attacks on SNOW 2.0 are based upon solving the
systems of noised equations having the mentioned form (however, without explicit
utilization of the trace function) or consequences of such systems that are linear
combinations of their separate equations. In particular, the papers [3, 4, 6] contain
consideration of Boolean systems of noised linear equations (r' =1) that are obtained
from (4) by certain linear transforms over the field F,, and the paper [7] contains

consideration of similar systems of equations over the field of the order 28 (r'=8).
Besides, [5] proposes to use direct the system (4) over the field F,a for construction

a distinguishing attack on SNOW 2.0.

2.2 An algorithm for solving the obtained systems of noised linear equations.
At the moment, there are a lot of fast (sub-exponential) algorithms for solving
systems of noised linear equations over the field of two elements (see e.g. [7, 16 —
18]). Some of them allow natural generalizations for systems over finite fields or even
over arbitrary finite rings [19].

Subsequently, we will assume that when carrying out a correlation attack on a
SNOW 2.0-like cipher the algorithm proposed in [7] will be used to solve the system
of equations (7).



The mentioned algorithm depends on parameters k >2 (that is a power of two)
and 1I"e1,1, where | =nr", and consists of two stages.

At the first stage, Wagner’s k -tree algorithm [20] is used to exclude the last
| —1" unknowns from the system (7). As a result, we obtain a new noised system of
equations with |" unknowns over the field Fr each equation of which is the sum of

certain k equations of the input system. At the second stage, the obtained system is
solved by the maximum likelihood method with application of the fast Hadamard (or
Walsh) transform. Thus, the mentioned algorithm allows to recover the first |
unknowns of the system of equations (7). Applying it |_I / I’_| times to various sets of
unknowns that do not intersect, we can find the required vector a’.

Observe that the distribution of distortions m; in the right-hand sides of equations

in (7) has the following form:

Pini=2} = 2P = 2Ry, ®)

1 _
xanr. Tr2r, (ex)=2

where the random variable &; is defined by (5), i € 0,N —1. Besides, the distortion in

the right-hand side of each equation in the system that is obtained as a result of the
first stage of the algorithm, is the sum of k independent random variables distributed
by (8). So, the distribution of distortions in the right-hand sides of equations in the
system obtained after the first stage, has the following form:

Pe,r k (2)=P{m @ ®n =12}, z€ Fzr’ . (9)

Note also that these distortions are dependent random variables; however, in [7]
the heuristic assumption about their independence is used (implicitly). Based on this
assumption one can show [19, 21] that to recover the target solution of the system (7)
with the error probability not more than &e(0,1/2) at the second stage of the

algorithm it is necessary to have not less than
Mg (K, 1) = A, () (L=8)I'T" = h(8)) In2

equations, where h(8) =-dlog, 6 —(1—3)log,(1-9),

Acr()=2" 32" pe i (2)-1)°. (10)

ZEFZr'

The following heuristic formula is used in [7] to evaluate the number of
equations necessary for successful solving the system of equations at the second stage
of the algorithm:
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mg (K, 17 =2A¢ - (K) M1 In 2. (11)

According to [7], the average time complexity of the algorithm (provided an
independent et random choice of the rows A/, i € 0,N —1) is equal to

1 -
Ter (K1) = (Mg (K, 1))0k2 0 +r/(mg (k1) +r12™) 4270 (1)

and the size of the keystream needed for the successful implementation of the
algorithm is equal to

r-1) 1 1
N=N.(kI1)=k2 ¢ (2'f"In2)%A (k) 9, (13)

where 6 =1+logk and m, . (k,l") has the form (11). It is clear that to improve the

efficiency of the algorithm the parameters k and I’ should by chosen from the
condition of the minimum value (12).

2.3 Expression of the parameter that characterizes efficiency of correlation
attacks on SNOW 2.0-like stream ciphers. Below, the term “correlation attack”
means one of the attacks described in Sections 2.1, 2.2. Let us recall that each such
attack is determined by a divisor r’ of the number r and by a non-zero element ¢ of
the field Fr and consists in construction of the system (7) and its further solving

with the algorithm from [7] that depends on the parameters k > 2 (that is a power of
two) and I' €11, where | =nr”, r'r" =r. The average time complexity of the attack

is determined by the formula (12) and the data complexity of the attack — by the
formula (13).
Both formulas contain the expression of the parameter A ..(k) that on the basis

of (9), (10) has the following form:

Agr(K)=2"" 3" (2"P{n, ®--®ny =2}-1)%, (14)

Zerrv

where n; :Trz,zrr, (c&;), and the random variables &; are defined by (5), i elk. Thus,

to evaluate the efficiency of correlation attacks on SNOW 2.0-like stream ciphers or
for the proof of security of these ciphers against the mentioned attacks it is necessary
to be able to calculate (or to evaluate) values of the parameter (14) directly by the
cipher components.

Let us obtain an expression of this parameter in terms of Fourier coefficients for
the probability distributions of random variables (5).



Let us recall that the Fourier transform of an arbitrary distribution
(p(2):ze Fzm) on the field Fom is defined by the formula

b= Y p@EDTE @ uek,,

Zerm

where Tr2" (x) = x®x2 @---@x2 i the absolute trace of x e F,m . It follows from
the Parseval’s identity (see e.g. [22]) that

27" Y @"p@)-D% = YIpW)I. (15)

2 ueF m 0}

Further, according to the Convolution Theorem [22] the Fourier transform for the
distribution of the sum of independent random variables is equal to the product of the
Fourier transforms of the summands’ distributions. Whence, on the basis of (14), (15)
with m=r", p(z) =P{n;®---®n, =2}, 2 ¢ Fr we obtain the equality

Ao (K= D loc(u)*, (16)
ueF, {0}
where
or
oc(u)= D P =1 I ueF, (17)
zeF .
2I’

is the Fourier transform of the probability distribution of the random variable
i =TrZ (c&;).
Let us prove that

¢ (u) =f(uc), ue k., (18)
where
Mo)= 2P =x3-DTF ), acF, 19)
xeF_,

Is the Fourier transform of the probability distribution of random variables (5).
Indeed, using (17), the conditionu € F_,-, and transitivity of the trace function

(see e.g. [15], Theorem 2.26) we obtain that

2r’ 1
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oc(u)= > P{TrZ (cE) = 2H-1)T% @ _ DI xR @)

zeF . zeF . xeF .:
2f 2f 2f

2I’
Trzr, (cx)=z

_ ZP{&i _ X}(—l)Trzz (uTr:r' (cx)) _ Zp{gi = }1)

xeF xeF
2r 2r

r' r
Trz2 (Tr22r, (ucx))

= SPE = x3-)™ ) _ 4(uc).

XeFZr

Thus, the equality (18) is true, and whence on the basis of (16) we obtain the
following theorem.
Theorem 1. The parameter (14) satisfies the equality

A ()= > |#(uc) [, (20)

ueF {0}

where the value 7t(uc) is defined by (19) with o = uc.

The obtained theorem allows us to evaluate the efficiency of correlation attacks
on SNOW 2.0-like stream ciphers directly by the Fourier coefficients of the
probability distribution of random variables (5) and forms the basis for the results set
forth in the following Sections.

2.4 Efficiency comparison of correlation attacks over fields of various
orders. Theorem 1 allows to get an answer to the question of how much more
efficient (in terms of the average time complexity and data complexity) may be

correlation attacks over fields of the order 2", where r'>2, in comparison with
traditional binary attacks on SNOW 2.0-like stream ciphers.
The following Theorem holds.

Theorem 2. Let r'r"=r, where r',r"eN, ce Fr \{0}, k =2°, where seN,

| =nr” and I’ €1,1. Let us denote by o.* a non-zero element of the field F, such that

|#(a”)[= max [f(o)], (21)
acF"\{0}

where 7t(a) is determined by (19). Then, for the parameters (12) and (13) the
following inequalities hold:

11



Tc,r’ k1) = (2r' _1)_1Ta*,1(k, r'’y, (22)
N (k10> (2" —1)‘1Na*,1(k, r'l’) (23)

Thus, any correlation attack over the field For (from the class of attacks being

considered) is not more than 2" times more efficient (both with respect to the time
and the data complexity) in comparison with the best correlation attack over the field
F,.

Proof. On the basis of Theorem 1 and formula (21) the following relation holds:

Acr(K)= D |RUe) P <@ -] &) =" -DA_. (K).
ueF . \{0} ’

Using (11), (12) we obtain that

1 r(-n
To (K1) = (2A¢ () 2T IN2)0k2 0+

+12Ag ()P In24 7172y 4 27 >

1 1ore-n
> (2" -1) 9(2Aa*,1(k)‘1l’r'ln2)9k2 o 4+

+1'2" D) (2A 4 1 ()T IN2 471727y 4 28D

Further, putting 1" =r'l' and using equalities r'l =r'nr"=nr, r'>1 we obtain the
following relations:

1 nr—l"

Tor(k1)2@" -7 2A . ()" IN2)0k2 0 +

+(2" )24 1 ()" IN24+172") 4+ 2" = 27 )T L (K1),

o*,1

So, the inequality (22) is. The inequality (23) may be proved similarly.
Theorem is proved.
Example 3. In [7] a correlation attack over the field F,s on SNOW 2.0 IS

suggested that has the average time complexity 2'°*!>, requires approximately 2'%*>°

12



keystream symbols, and is significantly faster than the previously known binary

attack which time complexity is 221238 [6].
Along with that, on the basis of Theorem 2 there exists a binary correlation
attack on SNOW 2.0 that has the average time complexity not more than

28016415 _ 517215 and requires not more than 28.2193°9 =219 yavstream
symbols, and the parameters of this attack (the vector o™ and the numbers k and 1)
can be determined directly by the parameters of the input attack over the field Fle

(see formulas (21), (22)).

The provided example shows that the gain in terms of time complexity of the
attack from [7] compared to the attack described in [6] is achieved not so much by
application of the field of larger order (F28 instead of F,) but to a larger extent as a

result of a successful choice of the system of noised linear equations for the attack,
and also of application of a more efficient algorithm for solving this system.
In general, according to Theorem 2, transition from binary correlation attacks to

attacks over fields of the order 2" can increase the efficiency of the former not more
than 2" times.

3 Security evaluation for binary SNOW 2.0-like ciphers against correlation
attacks

Let us consider a binary SNOW 2.0-like cipher that is obtained by replacement
the operation * in the scheme in Figure 1 by the operation @. In this case, the random
variable (5) has the form &; =u; ®o(u;) , where u; is a random vector with the

uniform distribution on the set V,, i1=0,1,....

Let’s receive a condition that guarantees the security of this cipher against
correlation attacks (we point out that the term “correlation attack” means solely one of
the attacks described in Sections 2.1, 2.2).

By definition from [23] the permutation o:V, —V, is called an orthomorphism

if the map u—>u®ao(u), ueV, isalso a permutation. A well-known example of an
orthomorphism is the map implemented by a 2-round Feistel network:

o(ug,Uy) = (U @ (uy), Uy @ e(uy @ e(Uy))), Up, Uy €V,

where r =2m, and ¢ is a permutation on the set V, (see e.g. [23]).

Directly from the adduced definition we obtain the following result.

Theorem 3. Let in the scheme in Figure 1 *=@, and o is an orthomorphism.
Then the distortions (5) in the right-hand side of the system of equation (4) are
uniformly distributed on the set V, ; so the respective SNOW 2.0-like cipher is secure

against (described above) correlation attacks.

13



Now we get an analytical expression and an upper bound of the parameter (14)
for an arbitrary ordinary binary cipher (see definition in Section 1).
Let us assume that r = pt, where p,t e N, p,t >2, and there exist a basis B of

the field F2r over the sub-field th, permutations s; :F, —>F,, je0, p-1, and an
invertible px p -matrix D over the field th such that (with identification the

elements z and o(z) of the field F2r with the sets of their coordinates in the basis B)
the equality (3) is satisfied.

Let us denote by B the basis dual to the basisB. Similarly to the above, we will
identify an arbitrary element z F2r with the vector (zy, ...,z,_;) of its coordinates

in the basisB, and denote this vector with the same symbol z =(z,,...,z,;). The
symbol Z = (Z,, ..., Zp_l) will denote the vector of coordinates of the element z F2r

in the basis B. In what follows we will omit the transposition symbol in formulas like

Dz" supposing (as usual) that the vector z is a column if it is written on the right of a
matrix D .

Forany z =(zg,....2p4) € Fy P let us denote

supp(z) ={j €0, p—1:z; = 0}, wt(z) =|supp(z)|.

Let us recall (see e.g. [24]) that the branch number of the matrix D' is defined
by the formula

B(D") = min{wt(z) +wt(zD"):z e F, " \{0}, (24)

and the elements of the linear approximations table of the s-box s; by the formulas
[25]

2

- T (uja ®s; (u;)b; o
Isj (ajabj): 2'[ ZF(_]-) p) (Ujaj SJ(UJ) J) 1aj1bj €F2t1 JEO, p—l (25)
UjE Zt

t
Note that in (25) the expression Tr22 (ujaj @s;(u;)bj) can be replaced by the
Boolean dot product u;ja; ®@s;(u;)b;, if we identify the elements u;, s; (u;) with the

i 2]
vectors of their coordinates in some basis of the field F_, and the elements aj,bj

2t y
with the vectors of their coordinates in the respective dual basis.
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Let us prove a theorem that gives an expression and an upper bound of parameter
(14) for an ordinary binary SNOW 2.0-like cipher in terms of parameters (24), (25).
Theorem 4. We have
{B(DW y
2

Ac,r’ (k) < (2r' _1)(| max) J (26)

where |, = max{lSj (@j,bj):aj,b; e e \{0}, j €0, p-1}.
Besides, if r’ is a divisor of t, then

A Af k A Al k
Ac,r’ (k) = leo (UCO’UCO) "'Isp_1 (ucp—lvucp—l) d (27)
ueF \{0}
where €=(C,...,Cp4) is the vector of coordinates of the element c e F2r in the
basis B, (Cp,...,¢}_1) =€D.
Proof. Let us show that parameter (19) satisfies the following equality:

| o) | =1, (69, 6p) -+l (Gp1,8ps), (28)

where &' = (65, ..., 6 1) = (69,.... 6 p1)D" .

Indeed, due to transitivity of the trace function and duality of the bases B and B
forany x, a e Fp the following equalities are true:

ot t pt t
T2 (xa) =Te2 (Try (xo))=Tr) (x-6),

where x- is the dot product of the vectors (Xo,...,Xp4) and (&,...,0.p_1) Over the
field F, . So, from (19) and the equalities &; =u; @ o), 1=0,1,..., we obtain that

(o) = Zp{ii = X}(_]_)Trz2t (x6) _

XEFtp
2

=2 z Z(—l)TrZZt (X&) _ o Z(—l)Trgt ooy

xeF P ueF,P: uaFZtIo
u@c(u)=x

Using formula (3) we get:
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(o) =277 Z(—l)Tr22t (16 ® (50 (o) - Sp-1(Up-1))D)d) _

(UO ..... u p_l)EFZt P

_ P Z(_l)”zzt (U6 ® (59 (Up).--Sp-1(Up MDY _

(UO ..... u p—l)Eth p

_ P Z(_l)wg‘ (6 (59 (Up).--Sp1(Up 1)) _

(UO ..... u p—l)Eth p

lp—_[l ‘ Z Te2 (Uid ®s: (U )as)
— 2 (_1) 2 TR
i=0

UJ‘EFZt

Taking the square of this expression we obtain (28).
Let us prove the inequality (26).
Let o be a non-zero element of the field For such that | (o) |= max |#=(B)]. It
BeF {0}
follows from Theorem 1 that A, . (k) S(Zr,—1)|fc(oc) |2" and from (25), (28) we

conclude that |7(c) |=0 if there exists at least one jeO0, p—1 such that &; =0,
aj#0ora;=0, a=0. Thus, under condition | 7t(a)|= 0 the following equality

holds: supp(&) =supp(&DT). Hence, on the basis of (28) and (24) we have

(&)
2

Acr(K)< 2" =Dlmax) ~, 202(G)=B(DT),
So, the inequality (26) is proved.

Now, assume that r' is a divisor of t. Substituting the expression in the right-
hand side of (28) into (20) on the basis of the relation Fr = F we obtain the

equality (27). This completeness the proof of Theorem.

The obtained theorem, along with relations (11) — (13), provides security
evaluation of ordinary binary SNOW 2.0-like stream ciphers against correlation
attacks by parameters (24) and (25) of their components. (Note that these parameters
are traditionally used for security evaluation of block ciphers against linear
cryptanalysis). Utilization, instead of the parameter A ..(k), of its upper bound (26)

in (11) — (13) enables to obtain lower bounds of the average time complexity and the

16



size of the keystream needed for any of the (above-mentioned) correlation attacks

over the field of the order 2" (see Algorithm 1 in Figure 2).
It also follows from Theorem 4 that to construct correlation attacks over the field
F,. on ordinary binary SNOW 2.0-like ciphers it is possible to use only such

elements c e F \{0} that satisfy the condition

supp(€) =supp(¢D"). (29)

In a practically important case B(D') = p+1 (when D is a MDS matrix; see e.g.

T
[26]) according to Theorem 4 in [27] for each | > {B(S )w there exist exactly

p\2e  o1-1 t(21—(p+1+j))
(zt_l)( j oA I
| 2 J

j=0

of the mentioned elements ¢ such that wt(€) =1.

Example 4. Let us consider a binary version of SNOW 2.0 that differs from the
32
original [1] by using of the operation @ instead of + in the scheme in Figure 1.

The parameters of this cipher have the following values: t=8, p=4, n=16.
The permutation o has the form (3), where the s-boxes s; ey je0, p-1

and the matrix D are defined in the same way as in the round transform of Rijndael
(see Example 1). In particular, it is known that I..., =27°, B(D") = p+1=5 [12].

Using Algorithm 1, we obtain lower bounds of the parameters that determine the
efficiency of correlation attacks over the field F ; = F,s5 on the binary version of

2t =
SNOW 2.0 (Table 1).

Table 1: Results obtained by Algorithm 1 for the binary version of SNOW 2.0 (r' =t)

k | * logT, (k,I*) log N, (k,1*)
2 22 187.84 186.97
4 17 151.24 151.19
8 12 146.20 142.77
16 1 292.45 161.50

The obtained results mean that any of the (considered above) correlation attacks
over the field of the order 256 on the binary version of the cipher has an average time

complexity not less than

2146.20

and requires not less than plaz.1t keystream symbols.
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(Note that the best of the known correlation attacks on SNOW 2.0 requires around
216359 Leystream symbols and has an average time complexity 2141 [7]). Further
increase of the value of k in Algorithm 1 leads to an increase of values of the
parameters T, (k,1*), N, (k,1*).

Algorithm 1
Input:
— integer numbers n, p,t;

— s-boxes S :th - th, j€0, p-1,

— an invertible px p-matrix D over the field th.

—anumber k >2 that is a power of two;
—adivisor r' of the number r = pt.

Processing:
B(D') |,
2
1. Calculate A, (K) = (2" =) (Iyay ) using formulas (24), (25).
2. Put r"=pt(r), I=nr", 6=1+logk.
3. Foreach I'=1,2,...,1 -1 calculate

m, (k) = 2(A, (k) *1'r'In2,

1 rd-n
Trr(k,l’) — (mr,(k))e k2 © + r'(mr, (k)+ rI|12r| )+2I‘ (I +1).

4. Choose I1*e€1,1-1 such that T, (k,I*) =min{T, (k,I'):1"e1 | -1}.
Output:
— the number |* of r'-bit words (of the initial state of LFSR) that are

recovered by the attack;
— the average time complexity of the attack T, (k,1*);

— the data complexity
r'(1-1%) 1 1

N (k%) =k2 © (21*r'In2)8 (A, (k) ©,

needed for successful implementation of the attack.

Figure 2. The algorithm for security evaluation of ordinary binary SNOW 2.0-like
ciphers against correlation attacks over the field of the order 2"
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Example 5. According to [8], the cipher Strumok uses the following parameters:
t=8, p=8, n=16. The permutation ¢ has the form (3), where the s-boxes and the

matrix D are defined in the same way as in Kalyna (see Example 2). In particular, it is
known that |, =9-27%, B(D") = p+1=9 [14].

Using Algorithm 1 we obtain values of the parameters that determine the
efficiency of correlation attacks over the field F ; = F,;s on the binary version of

2t
Strumok (Table 2).
Table 2: Results obtained by Algorithm 1 for the binary version of Strumok (r' =t)
K | * logT, (k,1%) log N, (k,1*)
2 44 363.91 361.62
4 34 285.42 285.06
8 29 249.40 249.38
16 1 384.88 283.58

Further increase of the value of k in Algorithm 1 results in increase of values of
the parameters T, (k,1*), N, (k,I*) in Table 2. So, any of (the considered above)

correlation attacks over the field of the order 256 on the binary version of Strumok has

an average time complexity not less than 22*%° and requires not less than 22498
keystream symbols.

In general, the obtained results show that the binary versions of SNOW 2.0 and
Strumok are practical secure against the considered correlation attacks under the
condition that the keystream length for any fixed pair of key and initialization vector

is limited by (e.g.) 2%.

4 Upper bounds for imbalance of discrete functions realized by sequences of
finite automata

Let U, X be finite sets, h, :UxX ->U, f;:UxX —>V,, 1=0,1, ... For any
neN, set the functions H, :Ux X" U and F, :Ux X" =V,", putting

H, Uy, Xgss Xpq) =Up,

Fn(uO,Xo,...,Xn_l):yo,yl,...,yn_l, (30)

where the elements u;,U,,..., Yq,Ys,... are calculated using recurrence relations
Uiy =M (Ui, %), i = fi(u, %), 1=0,1 ...

If hy=h, f,=1f for each 1=0,1,..., then F,(ug,Xg,...,X,1) IS the output
sequence generated in accordance to the initial state u, and the input sequence
Xgs--» Xy OF the automaton (X,U,V,,h, f) (with the input alphabet X , the set of
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states U and the output alphabet V,) and H, (uy,Xg,..., X,—1) IS the state of this
automaton at time n.

By definition, a function F: X" —V," is realized by a sequence of automata

(X,U,V,h,f;) , 1=0,n-1 if there exists an element u, eU such that
F(Xgyees Xpg) = Fr (Ug, Xgs Xpg) TOreach (Xg,..., Xp_q) € X".
Let o = (ag, 04, ...) be a sequence of binary vectors, o; €V,, 1=0,1,.... For any

neN, let us denote o™ = (0, 0y, ...,a,4) and set the function F,a(" that takes
each point (ug,Xg,--,X,—1) to the Boolean dot product of the vectors

F.(Ug, X, Xy 4) @nd o™ . The imbalance of this function at a fixed value of
Ug €U is determined as follows:

D)=, ><1|n > (-pFntoora®) (3D)

(Xo, vy Xn,l)eXn

Let us obtain a matrix representation and upper bounds of the parameter (31). For
any u,u’ eU, let us denote

I(gn) (U, U’) _ | Xl |n Z (_1) Fr (U, Xg,- -, Xn—l)oc(n) | (32)

(X0s o Xpog)eX ™
Hp(u, Xg,.-Xp_1)=U’

Let’s enumerate (in arbitrary order) the elements of the set U , putting
U ={up, Uy, ... ,Uy_1}, where M =|U |, and take M x M -matrices A(i'_) with elements

1

AWM u,u’) =
E Y

Z(_l) fi (u,x)o; uu'eU, (33)

xeX:h;(u, X)=u’

where f;(u,X)a; denotes the Boolean dot product of the mentioned binary vectors of
the length t, 1=0,1, ....
Theorem 5. For any n e N, the following equality holds:

167w = (A AL -+ AZ D)), e U (34)

in other words, the parameter (32) coincides with the (u,u’)-th element of the product

of matrices (33) over all ie0,n—1. Besides, the parameter (31) satisfies the
following equality:
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_le A©A® ... A0
11 (o) =|e AD AL - AT 1), (35)
where e=(10,...,0), 1=(1,1, ...,1)T.

Proof. Formula (34) can be proved by means of induction by n. For n=1, it
follows directly from the above definitions. For n>2 it is sufficient to check the
correctness of such equality:

1 ,u) = P18 ) AN ), uureu. (36)

u"eu

Indeed, on the basis of (32), (33), and the definitions of the functions H,, F,, the
following equalities hold:

Zlén—l) (U, U”) Ag:;i) (U rr’ ur) _

u"elU
= 1 Z z(_1)Fn,l(u,xo,...,xn,z)a(”’l) Z(_l) frog (U Xn_1)an_g =
n
| X2 (Xgs oo Xp_p)eX 7L Xp_1€X:
H_1 (U, Xg e Xpy_2)=U" hn_1(U", Xp_1)=U’
1 Fro1(U,Xg,.. X (1)
— Z(_l) n-1(U,Xg .-+ Xn—2) 0 %
n
| X | (Xo, ey Xn_z)eXn_l
v Z(_l) fna(Hn_g (U, Xg o Xn—2) Xn-1)0tn-1 _
Xp_1€X:
hn_1(Hn-1(U, Xg,---Xn—2), Xp_1)=U’
— 1 Z(_l) Foo1 (U0 Xn_2) " D@ f 4 (Hy 1 (U, X Xn_2) Xn_1)0tn 1 _
| X"

-1 .
(Xo,...,Xn_z)EXn ,Xn,_leX.
Hp (U, X, Xp_1)=U

(n)
- ZEprere D .

(X0 -er Xp_g)eX ™
Hp (U, Xg,-Xp_1)=U’

So, the equality (36) is proved. Finally, the correctness of (35) follows from (34) and
Zlén) (Up, u)

u'eU
Thus, Theorem is completely proved.

the equality 1" (u,) =
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Note that Theorem 5 generalizes a number of separate results on matrix (or
linear) representations for the parameters of the form (31) for functions realized by
finite automata of special form [4, 11]. This theorem allows us to obtain upper bounds
of the parameter (31) that can be used, in particular, for security proofs of ordinary
modular SNOW 2.0-like ciphers against correlation attacks.

Let us introduce some additional notation. For any vector X = (X,...,X,) With

real coordinates let us denote
I XNy =% [+-+ X, [, | X[, =max{] x; ieln}.

Let us set in a usual way the sup-norm of a real nxn-matrix A, putting
| All, =sup{|| A |l.:ll Xll,=1}, where supremum is taken over all real vectors

X = (Xg,.. X, )T Such that || x||,, =1. It is not difficult to check that

I Alloe = max{ll Ay flo, | Az le, -l An fled (37)

where A, Ay, ..., A, are rows of the matrix A. Besides, for any real nxn-matrices A
and B, the following inequality holds:

I AB [l <Il Alls I Blloo (38)

Theorem 6. The parameter (31) satisfies the following inequality

0 o) <|AD| [AD] - [AND] AT (39)
where
M| — 1 OB | O e
AVl =maxq— > > (D ,ie0,n-2,
't ueu | |u’eU xeX:h;(u, X)=u’
_ 1
AN 1)1‘ — max{ ——— _1) faa(uxX)on g | L
%1 o yeU |X| )%(( )
Besides, the following inequality holds:
YR
max 1M (ug)} < max_ max {A(')l . 40
(a0t 1)#(0, ... 0){0‘ (Uo)} ic0,n—1 ;0 o HooJ (40)

Proof. The inequality (39) follows directly from (35), (37), and (38).
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Let us prove the inequality (40). Let’s denote by i the largest integer from 0 to
n—-1 such that a;#0. As o;4=..=0,4=0, then on the basis of (33)

AU A 1 =1 whence from (35) we have 187 (ug) = ‘e A A A 1. Thus,

Ajy1 Op_1

P <|ag], -

ALl <],

Aj1

Theorem is proved.
As an example of application of Theorems 5 and 6, let us consider arbitrary
tuples of permutations s=(sq,..,Sp4) and vectors a=(og,.., 0, ),

B=@Bo, Bp1), Where s;:Vy -V, , a;,Bi €V;, i€0,p-1, and obtain an upper
bound of the parameter

t
IOMB (s) = 2-2tp Z (_1)((XEL y) © x)a © s(y)B ’ (41)

x,yeV, P

Where X= (X01 ey Xp__']_)1 y = (y01 iy yp—l)! S(y) = (SO(yO)1 ey Sp—l(yp—l))’ XI ' yl evt !
- pt
ic0,p—1, and x+ Yy denotes the sum modulo 2P of binary integers correspond to

vectors X,y (hereinafter, any vector x=(Xg, .., xp_l)evtID Is identified with the
integer whose least significant bit coincides with the leftmost coordinate of the vector
Xo)-

Forany a,beV,, i €0, p—1, let us define a 2x2-matrix A{} with the elements

t t
(I}) (U,UI) _ 2—2'[ Z(_l)(xi+yi+u)a @x;a® si(yj)b , u’u! E{O, 1}, (42)

Xi,Yj€Vt:
msb(x; +yj+u)=u’

where msb(X; +y; +u) is the most significant (i.e., the t-th) bit of the sum of integers

t t
corresponds to the mentioned binary vectors of the length t, and x; +y; +u is the sum

of these numbers modulo 2'.
Theorem 7. The parameter (41) satisfies the following equality:

_ 1
IOL,B (s) =|(L, 0) Aét?)),ﬁo A(Stll),ﬁl . APD ( )" (43)

a pfllB p-1 {1

Besides, the following inequality holds:
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o, () <N g, (So) Ngy g, (S1) Ny o-1.Bpa (Sp-1) (44)
where

nai Bi (Si) =

Ac(xii)’f’i Hoo -

—max{] AL (0,0)]+[AD, O] 1AY, @O+ A, @)}, i€0,p-1. (45)

aj, aj,

Proof. On the basis of Theorems 5 and 6, it is sufficient to check that the

pt
function F(x,y)=((x+Yy)®x,s(y)), x,y €V,” (from the set V,? xV," into itself) is
realized by a sequence of finite automata (X,U,V,,h, f;), where X =V, ,
U ={0, 1}, and the functions h;, f; are defined as follows:

hi (U, (X, yi))=msb(u+x +v;), ueU, (x,Yy;) e X,
t ot _
fi (U, (X, ¥i)) = (U+ X% +Y;) @ X, i (y;)), ueU, (X,y;)) e X,i€0, p-1.
pt
Indeed, let us denote z =(z,,...,2,4) = (X+Yy) ®x and set

t ot
Up =0, Uj,g = (Ui, (X, ¥)), Zi = (U +X+Y;) DX, 1 €0, p-1.

Using induction by i, it is not difficult to check that z; =z for each i €0, p—1.
Whence, the function F coincides with (30) for the mentioned functions h;, f;, fixed
value ug =0,and n=p.

Thus, theorem is proved.

5 Application of the automata-theoretic approach to security evaluation of
ordinary modular SNOW 2.0-like ciphers against correlation attacks

Let us consider an ordinary modular SNOW 2.0-like cipher that is obtained by

replacement of the operation * in the scheme in Figure 1 with the operation i of
addition of binary integers modulo 2", and the permutation o is defined by (3). From
(12), (13), the security of this cipher against correlation attacks over the field of the
order 2", where r' divides r, depends on the parameter (14).

The following theorem sets an upper bound of this parameter.

Theorem 8. For any ordinary modular SNOW 2.0-like cipher, the parameter
(14) satisfies the following inequality:
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2| BN
Ac,r’ (k) < (2r’ _1)(nmax) { w J (46)
where

Nmax = Max{ng, g () : (o, B;) € Vy xVi \{(0, 0)},i €0, p-1},

Ny, g, (51) is defined by (45), i €0, p—1, and B(D") is defined by (24).
Proof. It follows from Theorem 1 that

r' A 2k
Acr (K)<(2 —1)[ ma§{0}|n(a)|] , (47)

aek

where 7t(a) is the Fourier transform of the distribution of (5):

ia)= TPLE =D @0 acF, \(0)

XeF2r

According to (5), the random variable &; is the sum of two independent random
variables:

i
E1i = (Xipna +Uj) @ X, ng @ o(uy)

and
r r
iz,i = (Xi+n + X Vi)eD (Xi+n ® Xitn @Vi) ’

where Xi,,,, Xisn_1, Xisn, Uj, V; are independent random variables with the uniform

distribution on the set V, . So, on the basis of the Convolution Theorem the Fourier
transform of the distribution &; are products of Fourier transforms of the distributions
& and &,;, i.e., (o) =7ty ()7, (), where

fa(0)= Y PLEy =)™ D i) = YLy, = 1) )

ZeFZr Ze|:2r

Whence, we have
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| ft(o) | <| 7ty (o) | = Zp{gzli = z}(_l)sz2r (az)| _ o-2r Z(_l)TrzZr(((xh)@x@a(y»a) _

ZEFZr vaEFZI’

Further, using the formula (3) and the pair of the dual bases B, B of the field
F2r over the sub-field th in the same way as in the proof of Theorem 4 we obtain

that
T2 (x+y) @ x @ a(y))w) = T (x+y) ®X)- 4 D(y)-f), (48)

where the elements (xjry)@x and s(y) = (So(Yo)s-+»Spa(Yp-1)) Of the field F2r are
identified with the vectors of their coordinates in the basis B, &= (&, ..., ;) is
the vector of coordinates of o in the basis B, f=aD", and the symbol = denotes
the dot product of the vectors over the field th. Finally, the expression in the right-
hand side of the equality (48) coincides with the Boolean dot product
((xiy)@x)&@s(y)ﬁ, if we identify the coordinates of the vectors (xjry)@x and
s(y) over the field th with the vectors of their coordinates in a certain basis of this

field over the sub-field F, and the coordinates of the vectors & and  with the

vectors of their coordinates in the respective dual basis.
Thus, the following inequality is true:

pt R
| #(a) | < 2—2tp Z(_l)((X+ y)®x)ads(y)p , (49)

p
x,yeFZt

~ r A
where  a=(Gg,...,0p )€ thp, B=aD", and ((x+y)®x)é& and s(y)p denotes

the Boolean dot products of the mentioned binary vectors.
It follows from the obtained inequality and from Theorem 7 that

~ |
(o) [0, 5 (50) Mg 5 (505 (Sp1) < (M)’

&p—l’Bp—l

where | =|{i €0, p—1:(&;,B;) = (0, 0)}.
Further, wusing the equality B:dDT and formula (24) we obtain
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that B(D") <wt(a)+wt(B) <l+I1=21 . So, for any aeF, \{0} the following

B(D')

2
inequality holds: | (o) | < (Npax ) , whence, using (47) we obtain (46).

Theorem is proved.

This theorem, along with the equalities (11) — (13), provides security evaluation
of ordinary modular SNOW 2.0-like stream ciphers against correlation attacks
directly by the parameters of their components (see formulas (24), (42), and (45)).
Utilization instead of the parameter A (k) of its upper bound (46) in (11) — (13)

enables to obtain lower bounds of the average time complexity and the size of the
keystream needed for any of (the above-mentioned) correlation attacks over the field

of the order 2" (see Algorithm 2 in Figure 3).
Note that for calculation of the parameter n,, at Step 1 of Algorithm 2 it is

possible to use Algorithm 3 (see Figure 4), correctness of which follows directly from
(42), (45). Application of the fast Hadamard transform (see e.g. [28], p. 217) at Step 2
of Algorithm 3 allows to reduce the time complexity of calculation of the value n,,,
to O(pt2%) operations instead of O(p2*) operations used in trivial algorithm based
upon (42).

Example 6. We get lower bounds of parameters that determine the efficiency of
correlation attacks over the field F,; = F,ss on SNOW 2.0.

Let us recall (see Example 1) that the parameters of this cipher have the
following values: t=8, p=4, n=16. The permutation ¢ has the form (3), where

the permutations s; : th - th, 10, p—1, and the matrix D are defined in the

same way as for the round transform of Rijndaep; in particular, B(D") = p+1=5.
Using Algorithm 4, we obtain that ., =272. S0, (N )2 =27° =1, Where
the value of I, is given in Example 4. Whence, the results obtained by means of

Algorithm 1 for the binary version of the cipher (see Table 1) coincide with the
respective results obtained by means of Algorithm 2 for the original SNOW 2.0.

Thus, according to Table 1 any of (the considered above) correlation attacks over
the field of the order 256 on SNOW 2.0 has the average time complexity not less

than 21452 and requires not less than 2% keystream symbols.
Example 7. Let us consider the cipher Strumok (Example 2), where the following
parameters are used: t =8, p=8, n=16. The permutation ¢ has the form (3), where

the s-boxes and the matrix D are defined in the same way as for Kalyna block cipher.
In particular, in Strumok four various permutations are used: my, my, ®,, ng (each of

them is used twice); and B(D")=p+1=9.
Table 3 gives values of the parameter n..., (w;), i €0, 3, and also of the vectors
a, b at which the maximum in the expression of this parameter is reached (see Step 4
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of Algorithm 3). In accordance to Table 3, (N, )° =(3-27)? =1, Where the
value of 1., was given in Example 5. So, the results obtained by means of Algorithm

1 for the binary version of Strumok (see Table 2) coincide with the respective results
obtained by means of Algorithm 2 for the original encryption algorithm.

Algorithm 2
Input:
— integer numbers n, p, t;
— s-boxes S :th - th, je0, p-1,;
— an invertible px p-matrix D over the field th.
— anumber k >2 that is a power of two;
— adivisor r’ of the number r = pt.
Processing:
2k LDT)
2
1. Calculate A, (k) =(2" —1)(Nyax ) , using (24), (42), and (45).
2. Setr"=r-(r)%, I =nr", 0=1+logk.
3. Foreach I'=1, 2, ..., 1 -1 calculate

m, (k) = 2(A, (k) *1'r'In2,

Lo
Trr(k,l’) — (mr,(k))e k2 © + r'(mr, (k)+ rI|12r| )+2I‘ (I +1).

4. Choose I*e1,1 -1 such that T, (k,I1*) =min{T, (k,1):1"e1, 1 -1}.

Output:

— the number |* of r'-bit words (of the initial state of LFSR) that are
recovered by the attack;

— the average time complexity of the attack T, (k,1*);

— the data complexity
r'(1-1%) 1 1

N (k%) =k2 © (21*r'In2)8 (A, (k) ©,

needed for successful implementation of the attack.

Figure 3. The algorithm for security evaluation of ordinary modular SNOW 2.0-like
ciphers against correlation attacks over the field of the order 2"
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Algorithm 3

Input: s-boxes s; :V, >V, 10, p—1.

Processing:

For each i € 0, p—1 make the following calculations.
1. For each u {0, 1}:

— calculate the values

D (%, y) =1{(2,2,) €V, XV, :
t t
msb(u+z +2z,)=u", (U+2+2,) Dz =X, S(2,)
forall u"€{0,1}, x, y eV;;
— calculate the values

(l,%) (u’u!) — 2—2t Z DL(]i'ZJ'(X, y)(_l)xa @ yb
(X, y) eV xV;

forall u"e{0,1}, a, b eV, using fast Hadamard transform.
2. For of each pair (a, b) eV, xV, \{(0, 0)} calculate

Nap(si) = max{] A} (0, 0) [+ AL (0,1 |, | AL (1, 0) | +| AN @ D [}

3. Calculate

Nmax (Si) = max{n,  (5) : (a,0) Vy xVy \{(0, 0)}}.

Output:

= m{nmw (Si )}

n
Mo, p-1

= Y}

Figure 4. Fast algorithm for calculation of the parameter n,,.,

Table 3: Results obtained by Algorithm 4 for the s-boxes of Strumok

Permutations w Nmax (70) a b
used in Kalyna
T 3.274 1 =(0000 0001) | 212 =(1101 0100)
o 11.27° 1 =(0000 0001) | 244 = (1111 0100)
T, 5.27° 1 = (0000 0001) 20 = (0001 0100)
T3 5.27° 1 =(0000 0001) | 190 = (1011 1110)
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Thus, any of (the considered above) correlation attacks over the field of the order
256 on Strumok has the average time complexity not less than 22449 and requires not

less than 224938 keystream symbols.
In general, the obtained results show that the ciphers SNOW 2.0 and Strumok are
practical secure against the considered correlation attacks on the condition that the

keystream length for any fixed pair of key and initialization vector is limited by (e.g.)
2%,

Summary

1. The paper proposes methods for security evaluation for SNOW 2.0-like stream
ciphers against correlation attacks constructed similarly to the known attacks on
SNOW 2.0 [3 — 7]. Each such attack is defined by a divisor r’ of degree r of the
field, over which the LFSR in Figure 3.1 is set, and by a non-zero element c of this
field, and consists in construction of the system of equations (7) and its further
solving by the algorithm from [7] that depends on the parameters k > 2 (that is a
powers of two), and 1" 1,1, where | =nr”, r'r" =r. The average time complexity of
an attack is determined by formula (12), and the size of the keystream needed for
successful implementation of the attack is determined by formula (13).

2. Theorem 1 reduces the problem of obtaining lower bounds for the time
complexity of any correlation attack from the specified class and also for the size of
the keystream needed for successful implementation of the attack to construction of
upper bounds for the maximum modules of Fourier coefficients of the noise
distribution in the right-hand sides of equations in the system (4) not depending on a
specific attack. Thus, the efficiency of correlation attacks on a SNOW 2.0-like stream
cipher can be evaluated directly from Fourier coefficients of the distribution of
random variable (5).

3. Any correlation attack over the field Fr (from the class of attacks being

considered) is not more than 2" times efficient (both with respect to time and the data
complexity) compared to the best correlation attack over the field F,. So, a transition

from binary correlation attacks to attacks over fields of order 2" may increase

efficiency of the former not more than 2" times.
4. Theorem 4 provides security evaluation of ordinary binary SNOW 2.0-like

stream ciphers against correlation attacks over the field of the order 2" directly by the
parameters (24) and (25) of their components. Utilization instead of the parameter
A¢ (k) of its upper bound (27) in formulas (11) — (13) enables to obtain lower

bounds of the average time complexity and the size of the keystream needed for
successful implementation of any of (the above-mentioned) correlation attacks.

5. Application of Theorem 4 to binary versions of SNOW 2.0 and Strumok shows
that any correlation attack on them (from the specified class) over the field of the
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2146 .20 2 249.40

order 256 has the average time complexity not less than and

respectively and requires not less than 21477 and, respectively, 2243 keystream
symbols that shows practical security of the mentioned binary ciphers against known
correlation attacks on condition that the keystream length for any fixed pair of key

and initialization vector is limited by (e.g.) 2%.

6. Theorem 5 provides a matrix representation and upper bounds of imbalance
for an arbitrary discrete function realized by a sequence of finite automata, and
generalize a number of previously known statements on matrix (linear)
representations for the imbalance of maps that are realized by finite automata of the
special form [4, 11]. Theorems 6 and 7 give upper bounds of imbalance that may be
used, in particular, for the proof of security of ordinary modular SNOW 2.0-like
ciphers against correlation attacks.

7. Theorem 8 sets lower bounds of the time complexity and the size of the
keystream needed for successful implementation correlation attacks on ordinary
modular SNOW 2.0-like ciphers. Application of the obtained bounds to SNOW 2.0
and Strumok gives results that coincide with the results obtained for their binary
versions: any correlation attack on the mentioned ciphers (from the specified class of
attacks) over the field of the order 256 has the average time complexity not less than

214620 and 224940 respectively, and requires not less than 21477 and, respectively,

224938 Keystream symbols. That shows the practical security of SNOW 2.0 and
Strumok against known correlation attacks on condition that the keystream length for

any pair of key and initialization vector is limited by (e.g.) 2%°.
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