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Abstract

In ISO/IEC 20008-2, several anonymous digital signature schemes are specified. Among these,
the scheme denoted as Mechanism 6, is the only plain group signature scheme that does not aim
at providing additional functionalities. The Intel Enhanced Privacy Identification (EPID) scheme,
which has many applications in connection with Intel Software Guard Extensions (Intel SGX), is in
practice derived from Mechanism 6. In this paper, we firstly show that Mechanism 6 does not satisfy
anonymity in the standard security model, i.e., the Bellare-Shi-Zhang model [CT-RSA 2005]. We
then provide a detailed analysis of the security properties offered by Mechanism 6 and characterize
the conditions under which its anonymity is preserved. Consequently, it is seen that Mechanism 6 is
secure under the condition that the issuer, who generates user signing keys, does not join the attack.
We also derive a simple patch for Mechanism 6 from the analysis.

Keywords: Group signature, Cryptanalysis, ISO/IEC 20008-2, SGX

1 Introduction

1.1 Background

The ISO/IEC standards are some of the most important reference documents representing a consensus
among the experts in the field of information security. In practice, it is generally required to utilize the
technologies which are specified in standards to ensure interoperability.

In the case of cryptographic technologies, standardization plays an even more important role of
building trust. During the process of cryptographic standardizations, much work and time are required
in order to carefully examine the security of a proposed scheme even if it has already been published in a
flagship conference. Concretely, it typically takes about 2-3 years to standardize (and revise) a scheme.
Due to this strict evaluation process, standardized schemes are some of the most trusted schemes in
general.

The ISO/IEC 20008-2 standard [2], which is for privacy-enhanced user authentication technologies,
was published in 2013. In this document, seven anonymous digital signature schemes (Mechanism 1
to 7) are specified. Among them, the scheme denoted as Mechanism 6, is the only plain group signature
scheme [14] which does not aim at providing additional functionalities.

Due to its simplicity, Mechanism 6 is the most efficient group signature scheme in standards. There-
fore, if we need to introduce a (plain) group signature scheme in a practical system, it is considered rea-
sonable to employ Mechanism 6. In fact, the Intel Enhanced Privacy Identification (EPID) scheme [13]
is based on the Furukawa-Imai scheme [22, 23], from which Mechanism 6 originates.1 The EPID scheme
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1The EPID scheme is listed as Mechanism 3 in the ISO/IEC 20008-2 [2]. We can find the explicit description that the

EPID scheme is derived from the Furukawa-Imai scheme in the paper [13] and the conference material [7].
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is an anonymous signature scheme for identification, and there are its many applications (see “Intel
EPID Use Cases” in the web page [5] for details) represented by Intel Software Guard Extensions (Intel
SGX) [6].

In terms of Mechanism 6’s security, the ISO/IEC document says that the associated security proofs
are based on the original paper [23]. More precisely, it is considered that Mechanism 6 is secure in the
Bellare-Shi-Zhang (BSZ) model [11], which is one of the popular security models for group signatures.2

1.2 Our Contribution

In this paper, we firstly prove that Mechanism 6 is not secure in the BSZ model by showing a con-
crete attack against its anonymity, and then discuss possible countermeasures. Secondly, as the best
countermeasure, we provide a detailed analysis of the security properties offered by Mechanism 6 and
characterize the conditions under which its anonymity is preserved. Consequently, it is seen that Mecha-
nism 6 is secure under the condition that the issuer does not join the attack. For example, Mechanism 6
is secure if a unique organization simultaneously plays roles of both issuer and opener. Finally, we derive
a simple patch for Mechanism 6. In the following, we provide more details of our contributions.

Attack against Mechanism 6 in the BSZ model. We show an attack against the anonymity of
Mechanism 6 in the BSZ model. More precisely, we show that the issuer, who generates user signing keys
by the issuing key, can identify the signer of any signature although only the entity called the opener is
allowed to trace the signer in the BSZ model.

In a nutshell, the reason why Mechanism 6 can be attacked is that the underlying proof system does
not satisfy simulation soundness. If a proof system is not simulation sound, it might be possible to
create a valid proof without a witness after seeing some valid proofs. We note that the proof of original
paper [23] is not correct since it is misunderstood that the underlying proof system satisfies simulation
soundness but it only satisfies soundness.

In Mechanism 6, this possibility allows an adversary to re-randomize the challenge signature and
helps to break its anonymity. Specifically, in our attack, the challenge signature is re-randomized by
using the issuing key. Then, the adversary queries the manipulated signature to the opening oracle and
obtains the identity of the signer. Since the adversary is allowed to corrupt the issuer and to access the
opening oracle in the anonymity game of the BSZ model, our attack is valid in this model.

Countermeasures for Our Attack. We consider the following three countermeasures for our attack:
(1) to remove Mechanism 6 from the list and use alternative schemes in the standard, (2) to patch
Mechanism 6 and update the document, and (3) to analyze the security properties offered by Mechanism 6
and restrict its use in a way that ensures that its anonymity is preserved.

The countermeasure (1) seems easy but is not desirable. At a first glance, Mechanism 5 and 7
might be considered reasonable substitutes for Mechanism 6. However, this is not always the case since
Mechanism 5 and 7 have some drawbacks. More precisely, Mechanism 5 is significantly less efficient
than Mechanism 6 due to the fact that Mechanism 5 is based on an RSA-type algebraic structure.
Furthermore, Mechanism 7 provides only a weaker security notion of anonymity (the so-called “CPA-
anonymity”). Therefore, countermeasure (1) is not very appropriate.

The countermeasure (2) is ideal and should be taken if possible. However, it cannot be carried out
immediately since it takes much work and time to standardize a new scheme even though it is just
an updated to an existing one. For example, in the case of the ISO/IEC 9796-2 standard [1], one of
the standardized schemes was attacked by Coron et al. [15] in 1999, but the final revised version was
published in 2002. That is, it took three years to update the document. Thus, although it will most
certainly be useful to provide a patched scheme, it is not an immediate countermeasure for the attack.

The countermeasure (3) seems most realistic among the possible countermeasures. Although we see
that Mechanism 6 does not satisfy the expected security level by our attack, it is premature to rule out
Mechanism 6 as a useful scheme. Specifically, it might be true that Mechanism 6 is still secure to use in
practice since the BSZ model considers a relatively strong level of security. Therefore in this work, we
investigate this countermeasure as we consider that this is the most appropriate one.

Rigorous Security Evaluation of Mechanism 6. As mentioned above, the countermeasure (3) is

2The model in the papers [22, 23] is slightly different from the BSZ model. However, it is easy to see that they are
essentially same.
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most appropriate among the possible countermeasures. Therefore, we analyze the security properties
offered by Mechanism 6 in order to characterize the conditions under which its anonymity is preserved.

As a result of this analysis, we see that no one can extract the signer’s information from a signature
except for the opener and the issuer. More precisely, this fact indicates that Mechanism 6 is still secure
under the condition that the issuer does not join the attack. Such a condition is reasonable if a single
authority plays roles of both the opener and the issuer.

We stress that finding out the strict security of Mechanism 6 is quite non-trivial, and then it can
be considered a theoretically interesting problem. As we mentioned, the flaw of Mechanism 6 is that
the underlying proof system does not satisfy simulation soundness, and this property allows to break
the anonymity by re-randomizing the challenge signature. In our analysis, we firstly show that such an
attack is the only way to break the anonymity. However, it is not very clear how to defend against this
attack since it is difficult to find out what essentially allows an adversary to make such an attack. Then,
we determine to minutely divide (i.e., 31 cases) this attack and analyze each case one by one. Finally, we
give its complete analysis and find out the strict condition to securely use Mechanism 6. Our approach
looks simple once it has been described, but we think that it is not so easy to take this approach in
practice.

In addition, the formal proof of the Mechanism 6’s strict security is non-trivial and non-standard
although its intuition can be obtained from the above analysis. Generally, the anonymity of a group
signature scheme reduces to the confidentiality of the underlying public key encryption scheme and the
zero-knowledgeness of the underlying non-interactive zero-knowredge proof system, and does not reduce
to the unforgeability of the underlying signature scheme. However, in the case of Mechanism 6, we also
reduce to the unforgeability of the signature scheme since claiming that the issuing key that is essentially
a signing key of the signature scheme can be extracted from an adversary breaking the anonymity.
Therefore, the reduction algorithm is required to manage to generate users’ certificates without the
issuing key. For this reason, the proof of the Mechanism 6’s security is complicated.

A Patched Scheme. Owing to our analysis of the security of Mechanism 6, we derive a non-trivial
patch for the scheme. In fact, it is not so hard to come up with a patched scheme just secure in the BSZ
model, but a scheme with a small patch is non-trivial. Our patched scheme could be a candidate for the
new standardized scheme when ISO/IEC 20008-2 will be revised in the future.

In the patched scheme, only the signing and verification algorithms are changed, and the signature
size increases by only one element in the group G1 where G1 is a source group in the used asymmetric
bilinear group. More precisely, a signature in the patched scheme consists of two elements from G1, three
elements from G, and six elements from Zp (where G is the group in which the decisional Diffie-Hellman
assumption holds). This achieves the comparable efficiency to the existing schemes [17, 18] satisfying
the same security level. Also, we need to introduce the external Diffie-Hellman assumption in G1 to
prove the anonymity of the patched scheme, but the other security requirements can be showed under
the same assumptions as those of Mechanism 6.

1.3 Paper Organization

In Section 2, we review basic notations, and the definitions of computational assumptions and crypto-
graphic primitives which we use in this paper. Mechanism 6 is reviewed also in Section 2. In Section 3,
we describe an attack against the anonymity of Mechanism 6 in the BSZ model and discuss about its
countermeasures. In Section 4, we analyze the security properties offered by Mechanism 6. More pre-
cisely, we prove that Mechanism 6 satisfies anonymity if the adversary does not make the type of attacks
which we give in Section 4.1, and provide further analysis of the attack in Section 4.2. From the result in
this section, we can characterize the conditions under which the anonymity of Mechanism 6 is preserved.
Then in Section 4.3, we formalize these conditions and prove the strict security of Mechanism 6 under
these. In Section 4.4, we discuss the practical implications of our results. Furthermore, we give a patch
for Mechanism 6 in Section 5. Lastly, we conclude this paper in Section 6.

2 Preliminaries

Notations. x
$←− X denotes choosing an element from a finite set X uniformly at random. If A is a

probabilistic algorithm, y ← A(x; r) denotes the operation of running A on an input x and a randomness
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r, and letting y be the output. When it is not necessary to specify the randomness, we omit it and simply
write y ← A(x). If we describe the statement that the output of A(x) is y, then we denote A(x) = y. If
O is a function or an algorithm, AO denotes that A has oracle access to O. If A and B are statements,
A ⇔ B denotes that A and B are equivalent. If ai is an indexed element, {ai}i denotes an ordered set
arranged in the index order. λ denotes a security parameter. PPT stands for probabilistic polynomial
time. A function f(λ) is called negligible if for any c > 0, there exists an integer Λ such that f(λ) < 1

λc

for all λ > Λ.

2.1 Complexity Assumptions

Let G1 and G2 be multiplicative cyclic groups of order p where p is a λ-bit prime. Let G1 and G2 be
generators of G1 and G2, respectively. Let Ψ be an isomorphism from G2 to G1 with Ψ(G2) = G1. Let
e be a computable map e : G1 × G2 → GT with bilinearity: for all a, b ∈ Z, e(G1

a, G2
b) = e(G1, G2)

ab,
and non-degeneracy: e(G1, G2) ̸= 1. We say that groups (G1,G2) are a bilinear group pair if there exist
the map Ψ and the bilinear map e as above, and the group operations in G1 and G2, the map Ψ, and the
bilinear map e are efficiently computable. In this paper, we consider bilinear maps e : G1 × G2 → GT

where G1, G2, and GT are groups of prime order p.
We define the discrete logarithm (DL) assumption, the external Diffie-Hellman (XDH) assumption,

and the q-strong Diffie-Hellman (q-SDH) assumption.

Definition 2.1 (Discrete Logarithm Assumption). We say that the DL assumption holds in G1 if for
any PPT adversary A, the advantage AdvDL

A (λ) := Pr[H = G1
x|x← A(G1, G2,H)] is negligible, where

the probability is taken over the random choices of a generator G2 ∈ G2 with G1 = Ψ(G2), of an element
H ∈ G1, and a random coin of A.

Definition 2.2 (External Diffie-Hellman Assumption). We say that the XDH assumption holds in G1

if for any PPT adversary A, the advantage AdvXDH
A (λ) := |Pr[1← A(G1, G2, G1

a, G1
b, G1

ab)]−Pr[1←
A(G1, G2, G1

a, G1
b,W )]| is negligible, where the probability is taken over the random choices of a gener-

ator G2 ∈ G2 with G1 = Ψ(G2), of elements a, b ∈ Zp, and of an element W ∈ G1, and a random coin
of A.

Definition 2.3 (q-Strong Diffie-Hellman Assumption). We say that the q-SDH assumption holds in (G1,

G2) if for any PPT adversary A, the advantage Advq-SDH
A (λ) := Pr[e(C,G2

γ ·G2
x) = e(G1, G2)|(C, x)←

A(G1, G2, G2
γ , G2

γ2

, . . . , G2
γq

)] is negligible, where the probability is taken over the random choices of a
generator G2 ∈ G2 with G1 = Ψ(G2) and of a value γ ∈ Z∗

p, and a random coin of A.

For simplifying a security proof, we also introduce the simplified q-strong Diffie-Hellman (simplified
q-SDH) assumption.

Definition 2.4 (Simplified q-Strong Diffie-Hellman Assumption [?]). We say that the simplified q-SDH

assumption holds in (G1,G2) if for any PPT adversary A, the advantage Advsim-q-SDH
A (λ) := Pr[x ̸= xi∧

e(C,G2
γ ·G2

x) = e(G1, G2)|(C, x)← A(G1, G2, G2
γ , {G1

1
γ+xi , xi}qi=1)] is negligible, where the probability

is taken over the random choices of a generator G2 ∈ G2 with G1 = Ψ(G2), of a value γ ∈ Z∗
p, and of

values xi ∈ Zp, and a random coin of A.

The following theorem is known between the q-SDH assumption and the simplified (q − 1)-SDH
assumption. Therefore, we use the simplified (q − 1)-SDH assumption instead of the q-SDH assumption
in our security proof.

Theorem 2.1 ([?]). For any PPT adversary A and any integer q > 0, it holds that Adv
sim-(q − 1)-SDH
A (λ) ≤

Advq-SDH
A (λ). That is, if the q-SDH assumption holds, the simplified (q−1)-SDH assumption also holds.

In Mechanism 6, another multiplicative cyclic group G of order p in which the decisional Diffie-
Hellman (DDH) assumption holds is introduced. We define the DDH assumption in the following.

Definition 2.5 (Decisional Diffie-Hellman Assumption). We say that the DDH assumption holds in
G if for any PPT adversary A, the advantage AdvDDH

A (λ) := |Pr[1 ← A(G,Ga, Gb, Gab)] − Pr[1 ←
A(G,Ga, Gb,W )]| is negligible, where the probability is taken over the random choices of a generator
G ∈ G, of elements a, b ∈ Zp, and of an element W ∈ G, and a random coin of A.
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2.2 Group Signature

In this section, we review group signature. Here, we follow the Bellare-Shi-Zhang (BSZ) model [11].
A group signature scheme ΠGS consists of the following algorithms (GKg,UKg, Join/Iss,GSig,GVf,Open,
Judge).

GKg: The group key generation algorithm takes as input a security parameter 1λ (λ ∈ N), and returns
a group public key gpk, an issuing key ik, and an opening key ok.

UKg: The user key generation algorithm, which is run by a user i, takes as input 1λ and gpk, and returns
a public and secret key pair (upki, uski).

Join/Issue: The pair of (interactive) algorithms are run by a user i and the issuer, and takes as input gpk,
upki, and uski from the user i, and gpk, upki, and ik from the issuer, respectively. If it is successful, the
issuer stores the registration information of the user i in reg[i] and the user obtains the corresponding
signing key gski. We denote reg = {reg[i]}i.
GSig: The signing algorithm takes as input gpk, gski, and a message m, and returns a group signature Σ.

GVf: The verification algorithm takes as input gpk, Σ, and m, and returns either 1 (indicating that Σ is
a valid group signature on m), or 0.

Open: The opening algorithm takes as input gpk, ok, m, Σ, and reg, and returns either (i, τ) or ⊥ where i
is a user identity and τ is a proof that the user i computed Σ. The symbol ⊥ indicates that the opening
procedure fails.

Judge: The judge algorithm takes as input gpk, i, upki, m, Σ, and τ , and returns either 1 (indicating
that Σ is produced by the user i), or 0.

Bellare et al. [11] formalized correctness, anonymity, non-frameability, and traceability as security
requirements. Here, we give only the definition of anonymity since we are focusing on on the anonymity
of Mechanism 6.

Firstly, we give the definitions of some oracles. The SndToU oracle is an interactive oracle. Also, HU
and CU are the set of honest users and corrupted users, respectively.

CrptU(·, ·): The corrupt-user oracle takes as input a user identity i and upk. This oracle sets upki ← upk
and adds i to CU.

SndToU(·): The send-to-user oracle takes as input a user identity i. At first, the oracle produces a user
public and secret key pair (upki, uski) ← UKg(1λ, gpk) and adds i to HU. Then he interacts with the
adversary who corrupts the issuer by running Join(gpk, upki, uski). The user i needs to be neither in the
set HU nor the set CU. If so, the oracle outputs ⊥.
USK(·): The user secret keys oracle takes as input i, and returns the secret keys uski and gski if i ∈ HU.
If not, the oracle returns ⊥.
WReg(·, ·): The write-registration-table oracle takes as input i and a value r̂eg, and writes or modifies
the contents of reg by setting reg[i]← r̂eg.

Ch(·, ·, ·, ·): The challenge oracle takes as input a bit b, two identities i0, i1, and a message m∗, and
returns Σ∗ ← GSig(gpk, gskib ,m

∗) if both i0 ∈ HU and i1 ∈ HU. If not, the oracle returns ⊥. In this
paper, we call b a challenge bit, m∗ a challenge message, Σ∗ a challenge signature, and i0, i1 challenge
users.

Open(·, ·): The opening oracle takes as input m and Σ, and returns (i, τ) ← Open(gpk, ok,m,Σ, reg) if
(m,Σ) ̸= (m∗,Σ∗). If not, the oracle returns ⊥.

Then, we describe the definition of anonymity given in the BSZ model. Intuitively, it ensures that
the adversary who can corrupt all users and the issuer cannot extract the information of the signer from
a group signature. The formal definition is given as follows.
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GKg(1λ):

G2
$←− G2; G

$←− G; G1 ← Ψ(G2); H
$←− H

H,K
$←− G1; w

$←− Zp; u, v
$←− Z∗

p; Y ← G2
w; U ← Gu; V ← Gv

Return (gpk, ik, ok) = ((G1, G2, G,H,H,K, Y, U, V ), w, (u, v))
UKg(1λ, gpk):

xi, z
′
i

$←− Zp; Qi ← Gxi ; Hi ← HxiKz′
i

Return (upki, uski) = ((Qi,Hi), (xi, z
′
i))

Join/Issue(User i: gpk, upki, uski; Issuer: gpk, upki, ik):

User: ρxi , ρz′
i

$←− Zp; R1 ← Gρxi ; R2 ← HρxiK
ρz′

i

User: Send (R1, R2) to the issuer

Issuer: ci
$←− Zp

Issuer: Send ci to the user
User: σxi

← xi · ci + ρxi
; σz′

i
← z′i · ci + ρz′

i

User: Send (σxi
, σz′

i
) to the issuer

Issuer: R′
1 ← Gσxi/Qi

ci ; R′
2 ← HσxiK

σz′
i/Hi

ci

Issuer: Return ⊥ to the user if R′
1 ̸= R1 ∨R′

2 ̸= R2

Issuer: yi, z
′′
i

$←− Zp; Ai ←
(

G1

Hi·Kz′′
i

) 1
w+yi ; reg[i]← Qi

Issuer: Send (Ai, yi, z
′′
i ) to the user

User: zi ← z′i + z′′i
User: Set gski ← (Ai, yi, zi, xi, Qi) if e(Ai, Y ·G2

yi)e(Hxi , G2)e(K
zi , G2) = e(G1, G2)

)
GSig(gpk, gski,m):

r, q
$←− Zp; T1 ← Ai ·Kq; T2 ← Gxi+r; T3 ← Ur; T4 ← V r; ρxi

, ρyi
, ρδ, ρq, ρr

$←− Zp

R1 ← e(H,G2)
ρxi · e(K,G2)

ρδ · e(K,Y )−ρq · e(T1, G2)
ρyi ; R2 ← Gρxi

+ρr ; R3 ← Uρr ; R4 ← V ρr

c← H(gpk, {Ti}i∈[1,4], {Ri}i∈[1,4],m); δ ← zi − qyi
σxi
← xi · c+ ρxi

; σyi
← yi · c+ ρyi

; σδ ← δ · c+ ρδ; σq ← q · c+ ρq; σr ← r · c+ ρr
Return Σ = ({Ti}i∈[1,4], c, σxi

, σyi
, σδ, σq, σr)

GVf(gpk,m,Σ):

R′
1 ← e(H,G2)

σxi · e(K,G2)
σδ · e(K,Y )−σq · e(T1, G2)

σyi ·
( e(G1,G2)

e(T1,Y )

)−c

R′
2 ← Gσxi

+σr · T2
−c; R′

3 ← Uσr · T3
−c; R′

4 ← V σr · T4
−c

Return 1 if c = H(gpk, {Ti}i∈[1,4], {R′
i}i∈[1,4],m), else return 0

Open(gpk, ok, reg,m,Σ):
Return ⊥ if GVf(gpk,m,Σ) = 0

Q← T2 · (T3
1
u )−1

Return ⊥ if there is no user index i such that reg[i] = Q

ρu
$←− Zp; R← (Q · T2

−1)ρu ; d← H(gpk, Q, T2, T3, R); σu ← u · d+ ρu; τ ← (d, σu)
Return (i, τ)
Judge(gpk, reg,m,Σ, (i, τ)):
Return ⊥ if GVf(gpk,m,Σ) = 0

Q← reg[i]; R′ ← (Q · T2
−1)σu · T−d

3

Return 1 if d = H(gpk, Q, T2, T3, R
′), else return 0

Figure 1: Mechanism 6

Definition 2.6 (Anonymity [11]). Let A be an adversary for anonymity. We define the experiment
ExpanonΠGS,A(λ) as follows.

ExpanonΠGS,A(λ) : b← {0, 1}; (gpk, ik, ok)← GKg(1k); CU← ∅; HU← ∅

b̃← ACrptU(·,·),SndToU(·),USK(·),WReg(·,·),Ch(b,·,·,·),Open(·,·)(gpk, ik)

Return 1 if b̃ = b, otherwise return 0
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We say that ΠGS satisfies anonymity if the advantage

AdvanonΠGS,A :=
∣∣∣Pr[ExpanonΠGS,A(λ) = 1]− 1

2

∣∣∣
is negligible for any PPT adversary A.

2.3 Mechanism 6

In this section, we review Mechanism 6, which is identical to the Furukawa-Imai scheme [22, 23], in the
ISO/IEC 20008-2 standard [2]. The formal description is given in Figure 1. Although their model is
slightly different from the BSZ model [11], it is easily seen that they are essentially same. Therefore in
this paper, we introduce Mechanism 6 by using the algorithms given by Bellare et al. [11]. Originally,
the judging algorithm is not defined in Mechanism 6. However, we also describe its judging algorithm
since it can be defined implicitly.

Consider a bilinear group pair (G1,G2) with a computable isomorphism Ψ, and a group G in which
the DDH assumption holds.3 Here, we denote elements in G1,G2,GT , and G by upper case letters, and
elements in Zp by lower case letters. H : {0, 1}∗ → Zp is a family of hash functions treated as random
oracles in security proofs.

In Mechanism 6, a user i possesses a SDH pair (Ai, yi) and a discrete logarithm xi as a signing key
where Ai is the certificate of xi. When signing on a message m, the user encrypts the certificate Ai and
the value Qi = Gxi , and generates a signature of knowledge on m for the statement that the encrypted
certificate is valid, and the encryption procedure is honestly done. The signature is accepted when
the signature of knowledge is valid. When opening a signature, the opener extracts Qi by using the
decryption key and outputs the ID i with a proof which shows that the decryption is honestly done.

3 Attack against Mechanism 6 in the BSZ Model

In this section, we give an attack against the anonymity of Mechanism 6 and prove that it is not secure
in the BSZ model. In a nutshell, the reason why Mechanism 6 can be broken is that the underlying
proof system does not satisfy simulation soundness. If a proof system is not simulation sound, it might
be possible to create a valid proof without a witness after seeing some valid proofs.

In Mechanism 6, this possibility of creating a valid proof allows for the adversary to re-randomize the
challenge signature and helps to break the anonymity. Specifically, in our attack, the challenge signature
is re-randomized by using the issuing key. Then, the adversary queries the re-randomized signature to
the opening oracle and can obtain the identity of the signer. Since the adversary is allowed to corrupt
the issuer and to access the opening oracle in the anonymity game of the BSZ model, our attack is valid
in this model. In the following, we provide more details of our attack.

Firstly, we show that the underlying proof system does not satisfy simulation soundness. In the proof
system, for the group public key gpk and values {Ti}i∈[1,4], four equations are proved with witnesses x,
y, δ, q, and r. A valid proof σset = {σx, σy, σδ, σq, σr} satisfies the following equations:

R1 = e(H,G2)
σx · e(K,G2)

σδ · e(K,Y )−σq · e(T1, G2)
σy ·

(e(G1, G2)

e(T1, Y )

)−c

,

R2 = Gσx+σr · T2
−c, R3 = Uσr · T3

−c, R4 = V σr · T4
−c

where R1, R2, R3, and R4 are the commitments generated in the way of computing a signature, and c
is a challenge value computed as c← H(gpk, {Ti}i∈[1,4], {Ri}i∈[1,4],m) for a message m. When we focus
on the first equation, the second and third terms of the right side on the equation have a common base
e(K,G2) since Y = G2

w holds for the issuing key w. Thus, we can denote that e(K,G2)
σδ ·e(K,Y )−σq =

e(K,G2)
σδ−σq·w.

In fact, this property allows to break the simulation soundness by shuffling the discrete logarithms
σδ and −σq. Now, we set σ̃δ = σδ + w and σ̃q = σq + 1 where the values can be computed from the
issuing key and a given valid proof. Then, the proof σ̃set = {σx, σy, σ̃δ, σ̃q, σr} also satisfies the above

3The isomorphism Ψ is used in the security proof of the traceability. Since we focus on the anonymity, the isomorphism Ψ
appears only in the setup phase in this paper.
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equations. The first equation holds since it holds that e(K,G2)
σ̃δ ·e(K,Y )−σ̃q = e(K,G2)

σ̃δ−σ̃q·w = e(K,
G2)

σδ+w−(σq+1)·w = e(K,G2)
σδ−σq·w = e(K,G2)

σδ · e(K,Y )−σq , and the other equations hold trivially.
Therefore, the forgery σ̃set is valid as an attack against the simulation soundness of the underlying proof
system in the sense that it can be generated without a witness after seeing some valid proofs.

Secondly, we show that the above forgery against the simulation soundness derives an attack against
the anonymity of Mechanism 6. In the anonymity game of the BSZ model, the adversary is allowed
to corrupt the issuer. Thus, the adversary can compute a re-randomized signature Σ̃ for the challenge
signature Σ∗ as above. Also, since the adversary can access the opening oracle, and the re-randomized
signature is not the same as the challenge signature (that is, Σ̃ ̸= Σ∗ holds), the adversary can query the

signature Σ̃ to the opening oracle. Here, the signer’s information hidden in the re-randomized signature
is the same as that of the challenge signature since the difference between them is only the proof part.
Thus, the adversary obtains the signer’s ID of the challenge signature by this query. In this way, the
anonymity of Mechanism 6 can be broken.

Countermeasures for Our Attack. We can consider the following three countermeasures for our
attack: (1) to remove Mechanism 6 from the standards and use alternative schemes, (2) to patch Mech-
anism 6 and update the document, and (3) to analyze the security properties offered by Mechanism 6
and restrict its use in a way that ensures that its anonymity is preserved. In the following, we provide
more details of each countermeasure.

The countermeasure (1): This countermeasure seems easy but is not desirable. In fact, Mechanism 5
and 7 in the ISO/IEC 20008-2 standard are also group signature schemes in a broad sense. In addition
to the functionality of group signatures, Mechanism 5 (the original paper [25]) introduces a special
authority called a user-revocation manager, and Mechanism 7 has a functionality called controllable
linkability [24]. Therefore, at a first glance, Mechanism 5 and 7 might be considered reasonable substitutes
for Mechanism 6. However, it is not always the case since Mechanism 5 and 7 have some drawbacks.
Concretely, Mechanism 5 is significantly less efficient than Mechanism 6 due to the fact that Mechanism 5
is based on an RSA-type algebraic structure. Furthermore, Mechanism 7 provides only weaker security
notion of anonymity, CPA-anonymity. This indicates that in Mechanism 7, once the opening result of at
least one signature is revealed to the public, the anonymity of signatures is no more ensured. Therefore,
the countermeasure (1) is not very appropriate because of these drawbacks.

The countermeasure (2): This countermeasure is ideal and should be taken if possible. However, it cannot
be carried out immediately since it takes much work and time to standardize a new scheme even though
it is just an updated to an existing one. For example, in the case of the ISO/IEC 9796-2 standard [1]
that specifies digital signature schemes for smart cards, one of the standardized schemes (denoted as
Scheme 1) was attacked by Coron et al. [15] in 1999,4 but the final revised version was not published
before 2002. Specifically in this case, when it was seen that Scheme 1 is not secure, RSA-PSS [10] was
known to be an adequate scheme to replace Scheme 1. That is, it took three long years to finally update
the document even though there already existed such a candidate for an alternative scheme. (By the
way, due to this delay of the update, Scheme 1 had populated a lot of commercial products (e.g., e-
passports [3] and EMV cards [4]).) Therefore, the countermeasure (2) is not immediate countermeasure
for the attack.

The countermeasure (3): This countermeasure seems most realistic among the possible countermeasures.
Although we see that Mechanism 6 does not satisfy the expected security level by our attack, it is
premature to rule out Mechanism 6 as a useful scheme. Specifically, it might be that Mechanism 6 is still
secure to use in practice since the BSZ model considers a relatively strong level of security, e.g., dynamic
model, double authority, and CCA-anonymity. For example, since the BSZ model considers double
authority, all of entities except for the opener can corrupt in the anonymity game of this model. However,
this seems not necessarily a real threat. Therefore, the countermeasure (3) seems most reasonable among
the possible countermeasures.

From the above discussion, we investigate the countermeasure (3) as we consider that this is the most
appropriate one and analyze the security of Mechanism 6 in the next section.

4Coron, Naccache and Stern [15] discovered that Scheme 1 is existentially forgeable in theory. After that, Coron,
Naccache, Tibouchi, and Weinmann [16] showed a practical forgery for Scheme 1 in 2009.
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4 Rigorous Security Evaluation of Mechanism 6

In the previous section, we see that Mechanism 6 does not satisfy anonymity in the BSZ model, that
is, it does not satisfy the expected security level in the ISO/IEC document. Here, as the most appro-
priate countermeasure, we analyze the security properties offered by Mechanism 6 and characterize the
conditions under which its anonymity is preserved.

As we mentioned, the flaw of Mechanism 6 is that the underlying proof system does not satisfy
simulation soundness, and this property allows to break the anonymity by re-randomizing the challenge
signature. In fact, it seems that such an attack is the only way to break the anonymity of Mechanism 6
since the scheme is well structured except for the proof part.

Therefore, we analyze the security of Mechanism 6 in the following way: Firstly, we prove that
Mechanism 6 satisfies anonymity under the restricted condition that the adversary does not make such
a type of attack (in Section 4.1). Secondly, we provide further analysis of the attack by classifying some
cases depending on the types of the adversary’s queries (in Section 4.2). From the result of this analysis,
we can characterize the conditions under which the anonymity of Mechanism 6 is preserved. Finally,
we formalize these conditions and formally prove the strict security of Mechanism 6 under these (in
Section 4.3).

4.1 Proof for the Anonymity of Mechanism 6 under the Restricted Condition

In this section, we formalize the attack to re-randomize the challenge signature by forging its proof part
and query it to the open oracle, and then show that Mechanism 6 is secure if the adversary does not
make this type of attack. More precisely, we formalize a query of a re-randomized signature generated
by forging the proof part (called “related query” in the following), and then prove that Mechanism 6
satisfies anonymity against the adversary who does not generate any such a type of queries.

Firstly, we define a related query. Intuitively, a related query is a query which is obtained by re-
randomizing the challenge signature through changing only the proof part. Let m∗ and Σ∗ = ({T ∗

i }i∈[1,4],
c∗, σ∗

x, σ
∗
y , σ

∗
δ , σ

∗
q , σ

∗
r ) be the challenge message and the challenge signature, respectively. Formally, a

related query is defined as follows.

Related Query: We say that a query (m̃, Σ̃ = ({T̃i}i∈[1,4], c̃, σ̃x, σ̃y, σ̃δ, σ̃q, σ̃r)) is a related query if (m̃,

Σ̃) is accepted by the GVf algorithm, and it holds that

({T̃i}i∈[1,4], {R̃i}i∈[1,4], m̃) = ({T ∗
i }i∈[1,4], {R∗

i }i∈[1,4],m
∗)

where {R̃i}i∈[1,4] and {R∗
i }i∈[1,4] are the intermediate values computed in the verification of pairs (m̃, Σ̃)

and (m∗,Σ∗), respectively. However, we do not regard the pair (m∗,Σ∗) itself as a related query since it
is not accepted by the opening oracle.

Then, we prove that Mechanism 6 satisfies anonymity if the adversary does not generate a related
query. We provide the games Game from 0 to 7, and prove that for 0 ≤ ℓ ≤ 6, the advantages of the
adversary in Game ℓ and Game ℓ + 1 are almost the same (which we denote Game ℓ ≈ Game ℓ + 1).
Game 0 is the original anonymity game and Game 7 is the game that the adversary wins with the
probability 1/2. In fact for ℓ ̸= 5, it holds that Game ℓ ≈ Game ℓ + 1 for the adversary without
restriction on querying. However, when proving Game 5 ≈ Game 6, we need the condition that the
adversary who does not generate a related query. Formally, we prove the following theorem.

Theorem 4.1. If the adversary does not generate a related query, Mechanism 6 satisfies anonymity
under the DDH assumption in the group G in the random oracle model.

Proof. Let A be an adversary that attacks the anonymity of Mechanism 6 (in the following, the scheme
is denoted as ΠFI). We consider the following sequence of games. Let Sℓ denote the event that A succeeds
in guessing the challenge bit b in Game ℓ.

[Game 0]: This is the experiment ExpanonΠFI,A(λ) itself. The challenger manages an inout/output pair of
the random oracle in the list L. More precisely, when the adversary queries x to the random oracle, the
challenger returns y if there is a pair (x, y) in L. On the other hand if there is no pair (x, ·) in L, the
challenger samples a value y uniform randomly and returns y to the adversary. Then, the challenger
adds (x, y) to the list L. In the following, we denote y = H(x) if there exists a pair (x, y) in the list.
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For the sake of convenience, we assume that the adversary queries (gpk, {Ti}i∈[1,4], {Ri}i∈[1,4],m) to
the random oracle before he queries (m,Σ = {Ti}i∈[1,4], c, σx, σy, σδ, σq, σr)) to the Open oracle where

R1 = e(H,G2)
σx ·e(K,G2)

σδ ·e(K,Y )−σq ·e(T1, G2)
σy ·
(

e(G1,G2)
e(T1,Y )

)−c

, R2 = Gσx+σr ·T2
−c, R3 = Uσr ·T3

−c,

and R4 = V σr · T4
−c. Since we can construct the adversary who generates the involved random oracle

query before querying to the Open oracle by using the adversary who does not generate the involved
random oracle query before querying to the Open oracle, the condition can be assumed without loss of
generality.

[Game 1]: We modify the way to generate the challenge signature in Game 1. More precisely, if
there is already the pair ((gpk, {T ∗

i }i∈[1,4], {R∗
i }i∈[1,4],m

∗), ·) in the list L when computing the value
H(gpk, {T ∗

i }i∈[1,4], {R∗
i }i∈[1,4],m

∗), the challenger sets Σ∗ = ⊥. If there is not such a value, the chal-
lenger generates the challenge signature as in Game 0.

[Game 2]: We further modify the way to generate the challenge signature. In this game, the challenge
signature is generated as follows:

Step 1. Choose values r∗, q∗ ∈ Zp uniformly random and compute T ∗
1 , T

∗
2 , T

∗
3 , T

∗
4 as in Game 1.

Step 2. Choose σ∗
x, σ

∗
y , σ

∗
δ , σ

∗
q , σ

∗
r ∈ Zp and c∗ ∈ Zp uniformly random, and compute R∗

1 = e(H,G2)
σ∗
x ·

e(K,G2)
σ∗
δ · e(K,Y )−σ∗

q · e(T ∗
1 , G2)

σ∗
y ·
(

e(G1,G2)
e(T∗

1 ,Y )

)−c∗

, R∗
2 = Gσ∗

x+σ∗
r ·T ∗

2
−c∗ , R∗

3 = Uσ∗
r ·T ∗

3
−c∗ , and

R∗
4 = V σ∗

r · T ∗
4
−c∗ .

Step 3. If a value ((gpk, {T ∗
i }i∈[1,4], {R∗

i }i∈[1,4],m
∗), ·) is not defined in the list L, the value ((gpk,

{T ∗
i }i∈[1,4], {R∗

i }i∈[1,4],m
∗), c∗) is added to L and the challenge signature Σ∗ is set to be ({T ∗

i }i∈[1,4],
c∗, σ∗

x, σ
∗
y , σ

∗
δ , σ

∗
q , σ

∗
r ). On the other hand, if such a value is already defined, the challenge signature

is set to be ⊥.

[Game 3]: In this game, we modify the way to generate a proof τ in replying queries for the Open oracle.
More precisely, if there is already the pair ((gpk, Q, T2, T3, R), ·) in the list L when computing the value
H(gpk, Q, T2, T3, R) in the generation of τ , the challenger replies ⊥ as the response of the query.

[Game 4]: We further modify the way to generate a proof τ in replying queries for the Open oracle. The
challenger replies for a query (m,Σ = ({Ti}i∈[1,4], c, σx, σy, σδ, σq, σr)) as follows. We note that steps
except for Step 3 are the same as Game 3.

Step 1. If GVf(gpk,m,Σ) = 0, return 0.

Step 2. Compute Q = T2 · (T3
1
u )−1 and find the index i such that reg[i] = Q in the list reg. If there is

no such i, return (0,⊥).

Step 3. Choose σu ∈ Zp and d ∈ Zp uniformly random, and set R = (Q · T2
−1)σu · T−d

3 .

Step 4. If the value ((gpk, Q, T2, T3, R), ·) is not defined in the list L, the value ((gpk, Q, T2, T3, R), d)
is added to L and reply (i, τ = (d, σu)) to the adversary. On the other hand, if such a value is
already defined, the opening proof τ is set to be ⊥.

[Game 5]: We modify the way to generate a factor T ∗
4 in the challenge signature. More precisely, in

Game 5, the challenger newly samples a random value r∗2 ∈ Z and computes T ∗
2 = Gxib

+r∗ , T ∗
4 = Gr∗2 by

comparing Game 4 in which he computes T ∗
2 = Gxib

+r∗ , T ∗
4 = V r∗ where r∗ ∈ Z is a uniform random

value.

[Game 6]: In this game, the key to open signatures is changed from u to v. More precisely, in Game 6,

the challenger sets Q = T2 · (T4
1
v )−1 by comparing Game 5 in which he sets Q = T2 · (T3

1
u )−1.

[Game 7]: We modify the way to generate a factor T ∗
3 in the challenge signature. More precisely, in

Game 7, the challenger newly samples a random value r∗1 ∈ Z and computes T ∗
2 = Gxib

+r∗ , T ∗
3 = Gr∗1 by

comparing Game 6 in which he computes T ∗
2 = Gxib

+r∗ , T ∗
3 = Ur∗ where r∗ ∈ Z is a uniform random

value.

For the advantage AdvanonΠFI,A(λ), AdvanonΠFI,A(λ) =
∣∣Pr[S0]−1/2∣∣ ≤∑6

ℓ=0

∣∣Pr[Sℓ]−Pr[Sℓ+1]
∣∣+∣∣Pr[S7]−1/2∣∣

holds. Moreover, the following lemmas hold.
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Lemma 4.1. Let qH be the number of A’s random oracle queries. Then, it holds that
∣∣Pr[S0]−Pr[S1]

∣∣ ≤
qH/p for any PPT A.

Proof. We define the event Bad
(1)
ℓ as follows.

Bad
(1)
ℓ : The event that there is already the pair ((gpk, {T ∗

i }i∈[1,4], {R∗
i }i∈[1,4],m

∗), ·) in the list L when
computing the value H(gpk, {T ∗

i }i∈[1,4], {R∗
i }i∈[1,4],m

∗) in Game ℓ.

Game 0 and Game 1 are identical unless the events Bad
(1)
0 and Bad

(1)
1 occur. That is, we get Pr[S0 ∧

¬Bad(1)0 ] = Pr[S1∧¬Bad(1)1 ]. Therefore, it holds that
∣∣Pr[S0]−Pr[S1]∣∣ = ∣∣Pr[S0∧Bad(1)0 ]+Pr[S0∧¬Bad(1)0 ]−

Pr[S1 ∧ Bad(1)1 ]− Pr[S1 ∧ ¬Bad(1)1 ]
∣∣ = ∣∣Pr[S0 ∧ Bad(1)0 ]− Pr[S1 ∧ Bad(1)1 ]

∣∣ ≤ Pr[Bad
(1)
1 ].

Here, we estimate the probability Pr[Bad
(1)
1 ]. When the event Bad

(1)
1 occurs, T̃1 = T ∗

1 holds for

some defined value ((·, T̃1, ·, ·, ·, ·, ·, ·, ·, ·), ·) in the list L. Since q∗ ∈ Zp is chosen uniform randomly in
Game 1, T ∗

1 = Aib · Kq∗ ∈ G1 is also uniformly random. Also, the number of values in the list L is
at least qH . Therefore, the probability that ((gpk, {T ∗

i }i∈[1,4], {R∗
i }i∈[1,4],m

∗), ·) is already stored in L

when generating the challenge signature is at most qH/p. That is, Pr[Bad
(1)
1 ] ≤ qH/p. Thus, we obtain∣∣Pr[S0]− Pr[S1]

∣∣ ≤ qH/p.

Lemma 4.2. It holds that Pr[S1] = Pr[S2] for any PPT A.

Proof. For Game 2, we introduce new values ρ∗x, ρ
∗
y, ρ

∗
δ , ρ

∗
q , ρ

∗
r ∈ Zp, and set ρ∗x = σ∗

x − xib · c∗, ρ∗y =
σ∗
y − yib · c∗, ρ∗δ = σ∗

δ − δ∗ · c∗, ρ∗q = σ∗
q − q∗ · c∗, and ρ∗r = σ∗

r − r∗ · c∗. Then, the following equations hold:

R∗
1 = e(H,G2)

σ∗
x · e(K,G2)

σ∗
δ · e(K,Y )−σ∗

q · e(T ∗
1 , G2)

σ∗
y ·
(e(G1, G2)

e(T ∗
1 , Y )

)−c∗

= e(H,G2)
ρ∗
x · e(K,G2)

ρ∗
δ · e(K,Y )−ρ∗

q · e(T1
∗, G2)

ρ∗
y ,

R∗
2 = Gσ∗

x+σ∗
r · (T ∗

2 )
−c∗ = Gρ∗

x+ρ∗
r , R∗

3 = Uσ∗
r · (T ∗

3 )
−c∗ = Uρ∗

r , R∗
4 = V σ∗

r · (T ∗
4 )

−c∗ = V ρ∗
r .

Moreover, it holds that σ∗
x = xib · c∗ + ρ∗x, σ

∗
y = yib · c∗ + ρ∗y, σ

∗
δ = δ∗ · c∗ + ρ∗δ , σ

∗
q = q∗ · c∗ + ρ∗q , and

σ∗
r = r∗ · c∗ + ρ∗r . Furthermore, ρ∗x, ρ

∗
y, ρ

∗
δ , ρ

∗
q , ρ

∗
r ∈ Zp are uniformly random since σ∗

x, σ
∗
y , σ

∗
δ , σ

∗
q , σ

∗
r ∈ Zp

are chosen uniform randomly. Therefore, Game 2 is identical to Game 1. That is, Pr[S1] = Pr[S2].

Lemma 4.3. Let qH and qopen be the number of A’s random oracle queries and opening queries, respec-
tively. Then, it holds that

∣∣Pr[S2]− Pr[S3]
∣∣ ≤ qH · qopen/p for any PPT A.

Proof. We define the event Bad
(2)
ℓ as follows.

Bad
(2)
ℓ : The event that there is already the pair ((gpk, Q, T2, T3, R), ·) in the list L when computing the
value H(gpk, Q, T2, T3, R) during the generation of an opening proof τ in Game ℓ.

Game 2 and Game 3 are identical unless the events Bad
(2)
2 and Bad

(2)
3 occur. Therefore, we get

∣∣Pr[S2]−
Pr[S3]

∣∣ ≤ Pr[Bad
(2)
3 ] same as in Lemma 4.1.

Here, we estimate the probability Pr[Bad
(2)
3 ]. When the event Bad

(2)
3 occurs, R̃ = R holds for the

some defined value ((·, ·, ·, ·, R̃), ·) in the list L. Since ρu ∈ Zp is chosen uniform randomly in Game 3,
R = (Q · T2

−1)ρu ∈ G is also uniformly random. Also, the number of values in the list L is at least
qH . Therefore, the probability that ((gpk, Q, T2, T3, R), ·) is already stored in L when generating an

opening proof is at most qH/p. By the union bound, Pr[Bad
(2)
3 ] ≤ qH · qopen/p holds. Thus, we obtain∣∣Pr[S2]− Pr[S3]

∣∣ ≤ qH · qopen/p.

Lemma 4.4. It holds that Pr[S3] = Pr[S4] for any PPT A.

Proof. For Game 4, we introduce new values ρu, and sets ρu = σu−u ·d. Then, R1 = (Q ·T2
−1)σu ·T−d

3 =
(Q · T2

−1)ρu and σu = u · d + ρu hold. Moreover, ρu ∈ Zp is uniformly random since σu ∈ Zp is chosen
uniform randomly. Therefore, Game 4 is identical to Game 3. That is, Pr[S3] = Pr[S4].

Lemma 4.5. There exists a PPT algorithm B1 such that
∣∣Pr[S4]−Pr[S5]∣∣ = AdvDDH

B1
(λ) for any PPT A.

11



Proof. Let B1 be an adversary that tries to solve the DDH problem. First, B1 receives the DDH tuple
G,V,R,W ∈ G. Let V = Gv, and R = Gr. The element W is Gvr or a random value in G. Next, B1
generates the instance of the anonymity game. Here for G and V , he uses the ones in the DDH tuple.
Other elements are generated by following the GKg algorithm. Let gpk = (G1, G2, G,H,H,K, Y, U, V ),
ik = w, and ok = (u, v), B1 sends (gpk, ik) to the adversary A. We note that B1 does not know the
discrete logarithm v of the value V . Although v is the part of the opening key ok, the key that is used
for opening in Game 4 and Game 5 is u = logG U . Therefore, B1 possesses all keys which are needed to
reply oracle queries, and can simulate the replies of all queries. Especially, B1 generates the challenge
signature as follows:

1. Choose q∗ ∈ Zp uniform randomly and compute (T ∗
1 , T

∗
2 , T

∗
3 , T

∗
4 ) = (Aib ·Kq∗ , Qib ·R,Ru,W ) where

R and W are the part of the DDH tuple.

2. Choose σ∗
x, σ

∗
y , σ

∗
δ , σ

∗
q , σ

∗
r ∈ Zp and c∗ ∈ Zp uniform randomly, and computes R∗

1 = e(H,G2)
σ∗
x ·

e(K,G2)
σ∗
δ · e(K,Y )−σ∗

q · e(T ∗
1 , G2)

σ∗
y ·
(

e(G1,G2)
e(T∗

1 ,Y )

)−c∗

, R∗
2 = Gσ∗

x+σ∗
r ·T ∗

2
−c∗ , R∗

3 = Uσ∗
r ·T ∗

3
−c∗ , and

R∗
4 = V σ∗

r · T ∗
4
−c∗ .

3. If the value ((gpk, {T ∗
i }i∈[1,4], {R∗

i }i∈[1,4],m
∗), ·) is not defined in the list L, the value ((gpk,

{T ∗
i }i∈[1,4], {R∗

i }i∈[1,4],m
∗), c∗) is added to L and the challenge signature Σ∗ is set to be ({T ∗

i }i∈[1,4],
c∗, σ∗

x, σ
∗
y , σ

∗
δ , σ

∗
q , σ

∗
r ). On the other hand, if such a value is already defined, the challenge signature

is set to be ⊥.

Finally, when A terminates with b̃ ∈ {0, 1}, B1 outputs 1 if b = b̃. Otherwise he outputs 0.
If the DDH tuple that B1 obtains is (G,V,R,W ) = (G,Gv, Gr, Gvr), it holds that (T ∗

1 , T
∗
2 , T

∗
3 ,

T ∗
4 ) = (Aib ·Kq∗ , Qib · Gr, Gur, Gvr) = (Aib ·Kq∗ , Gxib

+r, Ur, V r). Then, B1 perfectly simulates Game
4 for A. On the other hand, if the element W is a random value in G, it holds that (T ∗

1 , T
∗
2 , T

∗
3 ,

T ∗
4 ) = (Aib ·Kq∗ , Gxib

+r, Ur,W ). Then, B1 perfectly simulates Game 5 for A. Therefore, it holds that

AdvDDH
B1

(λ) = |Pr[1← B1(G,Gv, Gr, Gvr)]−Pr[1← B1(G,Gv, Gr,W )]| = |Pr[b = b̃ in Game 4]−Pr[b =
b̃ in Game 5]| =

∣∣Pr[S4]− Pr[S5]
∣∣.

Lemma 4.6. If the adversary does not generate a related query, it holds that
∣∣Pr[S5]−Pr[S6]

∣∣ ≤ 1/p for
any PPT A.

Proof. We define the event Bad
(3)
ℓ as follows.

Bad
(3)
ℓ : The event that the adversary A sends the opening query (m,Σ = ({Ti}i∈[1,4], c, σx, σy, σδ, σq,
σr)) such that GVf(gpk,m,Σ) = 1 and logU T3 ̸= logV T4 in Game ℓ.

Game 5 and Game 6 are identical unless the events Bad
(3)
5 and Bad

(3)
6 occur. Therefore, we get

∣∣Pr[S5]−
Pr[S6]

∣∣ ≤ Pr[Bad
(3)
6 ] same as in Lemma 4.1. Moreover, we define the event Bad

(3)
6 as follows.

Bad
(3)
6 : The event that in Game 6, the adversary A sends the random oracle query (gpk, {Ti}i∈[1,4],
{Ri}i∈[1,4],m) such that logU T3 ̸= logV T4 and ({Ti}i∈[1,4], {Ri}i∈[1,4],m) ̸= ({T ∗

i }i∈[1,4], {R∗
i }i∈[1,4],

m∗), and there exists σr such that(
logU R3

logV R4

)
=

(
1 − logU T3

1 − logV T4

)(
σr

c̃

)
(1)

where c̃ is the reply of the query (gpk, {Ti}i∈[1,4], {Ri}i∈[1,4],m).

When logU T3 ̸= logV T4 holds, it holds that∣∣∣∣(1 − logU T3

1 − logV T4

)∣∣∣∣ = ∣∣logU T3 − logV T4

∣∣ ̸= 0.

Therefore, the simultaneous equation (1) has the unique solution (σr, c̃). Since it holds that ({Ti}i∈[1,4],
{Ri}i∈[1,4],m) ̸= ({T ∗

i }i∈[1,4], {R∗
i }i∈[1,4],m

∗), c̃ is chosen uniform randomly for ({Ti}i∈[1,4], {Ri}i∈[1,4],
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m). Thus, the probability that there exists σr such that the equation (1) holds for c̃ is 1/p. That is,

Pr[Bad
(3)
6 ] = 1/p.

In the following, we prove
∣∣Pr[S5]− Pr[S6]

∣∣ ≤ 1/p by showing Bad
(3)
6 ⊆ Bad

(3)
6 . We consider that the

event Bad
(3)
6 happens, that is, the situation that A sends the opening query (m,Σ = ({Ti}i∈[1,4], c, σx,

σy, σδ, σq, σr)) such that GVf(gpk,m,Σ) = 1 and logU T3 ̸= logV T4. Since we assume that the adversary
A does not generate related queries, it holds that ({Ti}i∈[1,4], {Ri}i∈[1,4],m) ̸= ({T ∗

i }i∈[1,4], {R∗
i }i∈[1,4],

m∗). Also from the condition which is made in Game 0, the random oracle query X = (gpk, {Ti}i∈[1,4],
{Ri}i∈[1,4],m) is generated before (m,Σ) is queried to the Open oracle whereR1 = e(H,G2)

σx ·e(K,G2)
σδ ·

e(K,Y )−σq · e(T1, G2)
σy ·

(
e(G1,G2)
e(T1,Y )

)−c

, R2 = Gσx+σr · T2
−c, R3 = Uσr · T3

−c, and R4 = V σr · T4
−c. Let

c̃ be the reply of X. Since c = c̃ holds when GVf(gpk,m,Σ) = 1, it holds that R3 = Uσr · T3
−c̃ and

R4 = V σr · T4
−c̃. For the two equations, we consider the discrete logarithm by considering the base as

U and V , and then the simultaneous equation(
logU R3

logV R4

)
=

(
1 − logU T3

1 − logV T4

)(
σr

c̃

)
holds. Therefore, the query X satisfies two conditions of the event Bad

(3)
6 , and there exists σr which

satisfies the equation (1) for the reply c̃. Thus, Bad
(3)
6 ⊆ Bad

(3)
6 holds and we obtain

∣∣Pr[S5]− Pr[S6]
∣∣ ≤

Pr[Bad
(3)
6 ] ≤ Pr[Bad

(3)
6 ] = 1/p.

Lemma 4.7. There exists a PPT algorithm B2 such that
∣∣Pr[S6]−Pr[S7]∣∣ = AdvDDH

B2
(λ) for any PPT A.

Proof. Let B2 be an adversary that tries to solve the DDH problem. First, B2 receives the DDH tuple
G,U,R,W ∈ G. Let U = Gu and R = Gr. The element W is Gur or a random value in G. Next, B2
generates the instance of the anonymity game. Here for G and U , he uses the ones in the DDH tuple.
Other elements are generated by following the GKg algorithm. Let gpk = (G1, G2, G,H,H,K, Y, U, V ),
ik = w, and ok = (u, v), B2 sends (gpk, ik) to the adversary A. We note that B2 does not know the
discrete logarithm u of the value U . Although u is the part of the opening key ok, the key that is used
for opening in Game 6 and Game 7 is v = logG V . Therefore, B2 possesses all keys which are needed to
reply oracle queries, and can simulate the replies of all queries. Especially, B2 generates the challenge
signature as follows:

1. Choose q∗, r∗2 ∈ Zp uniform randomly and compute (T ∗
1 , T

∗
2 , T

∗
3 , T

∗
4 ) = (Aib ·Kq∗ , Qib · R,W,Gr∗2 )

where R and W are the part of the DDH tuple.

2. Choose σ∗
x, σ

∗
y , σ

∗
δ , σ

∗
q , σ

∗
r ∈ Zp and c∗ ∈ Zp uniform randomly, and computes R∗

1 = e(H,G2)
σ∗
x ·

e(K,G2)
σ∗
δ · e(K,Y )−σ∗

q · e(T ∗
1 , G2)

σ∗
y ·
(

e(G1,G2)
e(T∗

1 ,Y )

)−c∗

, R∗
2 = Gσ∗

x+σ∗
r ·T ∗

2
−c∗ , R∗

3 = Uσ∗
r ·T ∗

3
−c∗ , and

R∗
4 = V σ∗

r · T ∗
4
−c∗ .

3. If the value ((gpk, {T ∗
i }i∈[1,4], {R∗

i }i∈[1,4],m
∗), ·) is not defined in the list L, the value ((gpk,

{T ∗
i }i∈[1,4], {R∗

i }i∈[1,4],m
∗), c∗) is added to L and the challenge signature Σ∗ is set to be ({T ∗

i }i∈[1,4],
c∗, σ∗

x, σ
∗
y , σ

∗
δ , σ

∗
q , σ

∗
r ). On the other hand, if such a value is already defined, the challenge signature

is set to be ⊥.

Finally, when A terminates with b̃ ∈ {0, 1}, B2 outputs 1 if b = b̃. Otherwise he outputs 0.
If the DDH tuple that B2 obtains is (G,U,R,W ) = (G,Gu, Gr, Gur), it holds that (T ∗

1 , T
∗
2 , T

∗
3 ,

T ∗
4 ) = (Aib ·Kq∗ , Qib ·Gr, Gur, Gr∗2 ). Then, B2 perfectly simulates Game 6 for A. On the other hand, if

the element W is a random value in G, it holds that (T ∗
1 , T

∗
2 , T

∗
3 , T

∗
4 ) = (Aib ·Kq∗ , Qib ·Gr,W,Gr∗2 ). Then,

B2 perfectly simulates Game 7 for A. Therefore, it holds that AdvDDH
B2

(λ) = |Pr[1 ← B2(G,Gu, Gr,

Gur)]−Pr[1← B2(G,Gu, Gr,W )]| = |Pr[b = b̃ in Game 6]−Pr[b = b̃ in Game 7]| =
∣∣Pr[S6]−Pr[S7]

∣∣.
For random values q∗, r∗, r∗1 , r

∗
2 ∈ Zp, the challenge signature in Game 7 is denoted by Σ∗ =

({T ∗
i }i∈[1,4], c

∗, σ∗
x, σ

∗
y , σ

∗
δ , σ

∗
q , σ

∗
r ) = (Aib · Kq∗ , Qib · Gr∗ , Ur∗1 , V r∗2 , c∗, σ∗

x, σ
∗
y , σ

∗
δ , σ

∗
q , σ

∗
r ). Therefore, the
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choice of the challenge bit b and the distribution of the challenge signature Σ∗ are independent. Thus,
we can say that Pr[S7] = 1/2. From this fact and Lemma 4.1 to Lemma 4.7, we get

AdvanonΠFI,A(λ) ≤
6∑

ℓ=0

∣∣Pr[Sℓ]− Pr[Sℓ+1]
∣∣+ ∣∣Pr[S7]− 1/2

∣∣
≤ AdvDDH

B1
(λ) + AdvDDH

B2
(λ) +

qH(1 + qopen) + 1

p
.

Since qH and qopen are polynomial in λ and p is exponential in λ, we see that (qH(1 + qopen) + 1)/p
is negligible in λ. Therefore, if the adversary does not generate related queries, Mechanism 6 satisfies
anonymity under the DDH assumption in the random oracle model.

4.2 Analysis of Related Queries

From the result of the previous section, we see that the only way to break the anonymity of Mechanism 6
is generating a related query. Therefore in this section, we analyze all cases of a related query and find
out the cases in which the adversary might generate it.

Let m∗ and Σ∗ = ({T ∗
i }i∈[1,4], c

∗, σ∗
x, σ

∗
y , σ

∗
δ , σ

∗
q , σ

∗
r ) be the challenge message and the challenge signa-

ture, respectively. Let (m̃, Σ̃ = ({T̃i}i∈[1,4], c̃, σ̃x, σ̃y, σ̃δ, σ̃q, σ̃r)) be a related query. From the definition of

a related query it holds that ({T̃i}i∈[1,4], {R̃i}i∈[1,4], m̃) = ({T ∗
i }i∈[1,4], {R∗

i }i∈[1,4],m
∗). Moreover, since

(m̃, Σ̃) ̸= (m∗,Σ∗) holds, it is required that (σ̃x, σ̃y, σ̃δ, σ̃q, σ̃r) ̸= (σ∗
x, σ

∗
y , σ

∗
δ , σ

∗
q , σ

∗
r ). That is,

σ̃x ̸= σ∗
x ∨ σ̃y ̸= σ∗

y ∨ σ̃δ ̸= σ∗
δ ∨ σ̃q ̸= σ∗

q ∨ σ̃r ̸= σ∗
r

holds. Thus, we have 31 (= {the first part is changed or not} × {the second partis changed or not} ×
· · · × {the last part is changed or not} − {any parts are notchanged} = 25 − 1) cases of a related query.

Although there are many cases, we can narrow down to seven cases. From the equation R̃3 = R∗
3, it

holds that R̃3 = R∗
3 ⇔ U σ̃r · T3

−c̃ = Uσ∗
r · (T ∗

3 )
−c∗ ⇔ U σ̃r · (T ∗

3 )
−c∗ = Uσ∗

r · (T ∗
3 )

−c∗ ⇔ U σ̃r = Uσ∗
r ⇔

uσ̃r = uσ∗
r . Since u ∈ Z∗

p, we get σ̃r = σ∗
r . In a similar way, we get σ̃x = σ∗

x from the equation R̃2 = R∗
2.

That is, it ultimately holds that

σ̃y ̸= σ∗
y ∨ σ̃δ ̸= σ∗

δ ∨ σ̃q ̸= σ∗
q .

Thus, we can narrow down to seven (=23 − 1) cases of a related query described in Table 1. Here,
we classify these cases into the following types:

(a) σ̃y ̸= σ∗
y (σ̃δ and σ̃q are arbitrary), (b) σ̃y = σ∗

y ∧ σ̃δ ̸= σ∗
δ ∧ σ̃q = σ∗

q ,

(c) σ̃y = σ∗
y ∧ σ̃δ = σ∗

δ ∧ σ̃q ̸= σ∗
q , (⋆) σ̃y = σ∗

y ∧ σ̃δ ̸= σ∗
δ ∧ σ̃q ̸= σ∗

q .

Then, we analyze each type. Specifically, the query described in Section 3 as an attack for Mechanism 6
is in Type (⋆).

σ̃y
?
= σ∗

y σ̃δ
?
= σ∗

δ σ̃q
?
= σ∗

q Type

No Yes Yes (a)

No Yes No (a)

No No Yes (a)

No No No (a)

Yes No Yes (b)

Yes Yes No (c)

Yes No No (⋆)

Table 1: Possible Cases of Related Queries
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Now, we examine the related queries in Type (a), (b), and (c). In fact, the adversary can generate
these types of queries with only negligible probability. In the following, we explain the intuition of this
fact.

Let A be the adversary who attacks the anonymity of Mechanism 6. We note that for any related
query, it holds that

e(K,G2)
σ̃δ · e(K,Y )−σ̃q · e(T ∗

1 , G2)
σ̃y = e(K,G2)

σ∗
δ · e(K,Y )−σ∗

q · e(T ∗
1 , G2)

σ∗
y (2)

since the equation R̃1 = R∗
1 holds. From this equation, we can get the following observations on the

related queries in Type (a), (b), and (c).

Type (a): We consider the situation that A generates a related query (m∗,Σ = ({T ∗
i }i∈[1,4], c

∗, σ∗
x, σ̃y,

σ̃δ, σ̃q, σ
∗
r )) in Type (a). That is, σ̃y ̸= σ∗

y holds (here, we say nothing whether σ̃δ ̸= σ∗
δ and σ̃q ̸= σ∗

q ).

Let T ∗
1 = G1

t, K = G1
k, and H = G1

h. From Equation (2), it holds that

e(K,G2)
σ̃δ · e(K,Y )−σ̃q · e(T ∗

1 , G2)
σ̃y = e(K,G2)

σ∗
δ · e(K,Y )−σ∗

q · e(T ∗
1 , G2)

σ∗
y

⇔ e(G1
k, G2)

σ̃δ · e(G1
k, G2

w)−σ̃q · e(G1
t, G2)

σ̃y = e(G1
k, G2)

σ∗
δ · e(G1

k, G2
w)−σ∗

q · e(G1
t, G2)

σ∗
y

⇔ e(G1, G2)
kσ̃δ−kwσ̃q+tσ̃y = e(G1, G2)

kσ∗
δ−kwσ∗

q+tσ∗
y

⇔ kσ̃δ − kwσ̃q + tσ̃y = kσ∗
δ − kwσ∗

q + tσ∗
y

⇔ t = k
w∆σq −∆σδ

∆σy

(
∵ σ̃y ̸= σ∗

y

)
where ∆σδ = σ̃δ − σ∗

δ , ∆σq = σ̃q − σ∗
q , and ∆σy = σ̃y − σ∗

y . Moreover, since T ∗
1 = Aib · Kq∗ =(

G1

H
xib ·Kzib

) 1
w+yib ·Kq∗ =

(
G1

G1
hxib ·G1

kzib

) 1
w+yib ·G1

kq∗ holds, it holds that

t = logG1
T ∗
1 =

1

w + yib

(
1− hxib − kzib

)
+ kq∗.

From these two equations, we get

k
w∆σq −∆σδ

∆σy
=

1

w + yib

(
1− hxib − kzib

)
+ kq∗. (3)

From a viewpoint of the challenger who executes the anonymity game with A, the challenger knows
the values w and (yib , xib , zib) since he generates the issuing key and all signing keys of honest users by
himself. Also, q∗ is chosen by the challenger. Moreover, the challenger can compute ∆σδ = σ̃δ − σ∗

δ ,
∆σq = σ̃q − σ∗

q , and ∆σy = σ̃y − σ∗
y from the values σ̃δ, σ̃q, and σ̃y which are the part of the related

query, and the values σ∗
δ , σ

∗
q , and σ∗

y which are the part of the challenge signature. The challenger does
not know the discrete logarithm of K in usual since the value K is randomly chosen from G1 in the GKg
algorithm. However, if the challenger chooses k ∈ Zp uniform randomly and sets K = G1

k, he can know
the discrete logarithm k. Now, the challenger knows all values in Equation (3) except for h. This means
that the challenger can compute the discrete logarithm h of H ∈ G1 from the values he knows. Thus,
when A generates a related query in Type (a), the challenger can solve the DL problem in G1. That
is, if the DL assumption holds in G1, the probability that A generates a related query in Type (a) is
negligible.

Type (b): Let K = G1
k. When the conditions σ̃y = σ∗

y and σ̃q = σ∗
q are put in Equation (2), we

get e(K,G2)
σ̃δ = e(K,G2)

σ∗
δ ⇔ e(G1, G2)

kσ̃δ = e(G1, G2)
kσ∗

δ ⇔ kσ̃δ = kσ∗
δ . If k ̸= 0, σ̃δ = σ∗

δ holds.
However, since this contradicts σ̃δ ̸= σ∗

δ that is the condition of Type (b), a related query in Type (b)
does not exist if k ̸= 0. On the other hand, the probability that k = 0 holds is 1/p since K ∈ G1 is
chosen uniform randomly. Therefore, the probability that A generates a related query in Type (b) is at
most 1/p which is negligible.

Type (c): Let K = G1
k. When the conditions σ̃y = σ∗

y and σ̃δ = σ∗
δ are put in Equation (2), we get

e(K,Y )−σ̃q = e(K,Y )−σ∗
q ⇔ e(G1, G2)

−kwσ̃q = e(G1, G2)
−kwσ∗

q ⇔ kwσ̃q = kwσ∗
q . If k ̸= 0 and w ̸= 0,

σ̃q = σ∗
q holds. However, since this contradicts σ̃q ̸= σ∗

q that is the condition of Type (c), a related query
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in Type (c) does not exist if k ̸= 0 and w ̸= 0. On the other hand, the probability that k = 0 or w = 0
satisfies Pr[k = 0 ∨ w = 0] ≤ Pr[k = 0] + Pr[w = 0] = 2/p since K ∈ G1 and w ∈ Zp are chosen uniform
randomly. Therefore, the probability that A generates a related query in Type (c) is at most 2/p which
is negligible.
Therefore, we see that the probability that A generates the related queries in Type (a), (b), and (c) is
negligible if the DL assumption holds in G1.

On the other hand, we cannot rule out the possibility that the adversary generates a related query
in Type (⋆) since our attack is in this type. Now, we further analyze this type of query. This type of
query satisfies σ̃y = σ∗

y . When this equation is put in Equation (2), we get

e(K,G2)
σ̃δ · e(K,Y )−σ̃q = e(K,G2)

σ∗
δ · e(K,Y )−σ∗

q

⇔ e(G1, G2)
kσ̃δ · e(G1, G2)

−kwσ̃q = e(G1, G2)
kσ∗

δ · e(G1, G2)
−kwσ∗

q

⇔ k(σ̃δ − wσ̃q) = k(σ∗
δ − wσ∗

q ).

Since the probability that k = 0 holds is 1/p, it holds that k ̸= 0 with high probability. If k ̸= 0, we get
σ̃δ−wσ̃q = σ∗

δ −wσ∗
q ⇔ w = (σ̃δ − σ∗

δ )/(σ̃q − σ∗
q ). That is, the issuing key w can be computed from the

values σ∗
δ and σ∗

q in the challenge signature Σ∗ and the values σ̃δ and σ̃q in the related query. Therefore,
this indicates that the adversary who can generate a related query in Type (⋆) knows the issuing key.

From the above observations, we see that only a related query in Type (⋆) might be generated by the
adversary. Furthermore, the adversary generating this type of query knows the issuing key. Therefore,
the minimum condition of breaking the anonymity of Mechanism 6 seems to be that the adversary knows
the issuing key. Thus, we can expect that if the adversary does not possess the issuing key, Mechanism
6 satisfies anonymity.

4.3 Security of Mechanism 6

In this section, we formally prove the expectation given in the previous section. Concretely, we introduce
a new security definition of anonymity called “weak anonymity”, where the adversary is not allowed to
corrupt the issuer. Then, we prove that Mechanism 6 satisfies this security notion.

Now, we define a new security notion called weak anonymity. We firstly define some oracles for the
adversary who cannot corrupt the issuer. The definitions of these oracles are followed by Bellare et
al. [11]. The SndToI oracle is an interactive oracle. Also, HU and CU are the set of honest users and
corrupted users, respectively.

AddU(·): The add-user oracle takes as input a user identity i, and runs UKg and Join/Issue protocol to
add an honest user i to the group. The oracle returns upki and adds i to HU.

SndToI(·, ·): The send-to-issuer oracle takes as input a user identity i and a initial message Mint, and
interacts with the adversary who corrupts the user i by running Issue(gpk, upki, ik). The user i needs to
be in the set CU. If i ̸∈ CU, the oracle outputs ⊥.
RReg(·): The read-registration-table oracle takes as input i, and returns reg[i].

Then, we give the definition of weak anonymity by using the above oracles. Intuitively, weak
anonymity ensures that the adversary who corrupts all users but not the issuer cannot extract the
signer’s information from a signature. Formally, it is defined as follows.

Definition 4.1 (Weak Anonymity). Let A be an adversary for weak anonymity. We define the experi-
ment Expw-anon

ΠGS,A (λ) as follows.

Expw-anon
ΠGS,A (λ) : b← {0, 1}; (gpk, ik, ok)← GKg(1k); CU← ∅; HU← ∅

b̃← AAddU(·),CrptU(·,·),SndToI(·,·),USK(·),RReg(·),Ch(b,·,·,·),Open(·,·)(gpk)

Return 1 if b̃ = b, otherwise return 0

We say that ΠGS satisfies weak anonymity if the advantage

Advw-anon
ΠGS,A :=

∣∣∣Pr[Expw-anon
ΠGS,A (λ) = 1]− 1

2

∣∣∣
is negligible for any PPT adversary A.
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Mechanism 6 satisfies weak anonymity as shown in Theorem 4.2. This theorem implies that Mech-
anism 6 is still secure under the condition that the issuer does not join the attack. Such a condition is
reasonable if a single authority plays roles of both the opener and the issuer.

We note that most of the proof is the same as that of the anonymity under the restricted condition
(given in Section 4.1) since anonymity in Definition 2.6 implies weak anonymity. However, since it is
not assumed that the adversary does not generate a related query in the proof of the weak anonymity,
we cannot straightforwardly prove the part corresponding with Game 5 ≈ Game 6 in the proof of the
anonymity.

In the proof of the weak anonymity, we rule out the possibility that the adversary generates a related
query by the computational assumptions. As we observe in Section 4.2, the adversary cannot generate
related queries in Type (a), (b), and (c) under the DL assumption. Also in the proof, we prove that the
adversary who does not possess the issuing key cannot generate related queries in Type (⋆) under the
q-SDH assumption. This part is the most difficult in this proof since the reduction algorithm needs to
deal with generating user signing keys without the issuing key. To overcome this problem, we apply the
rewinding technique as in the forking lemma [26] in our security proof.

Theorem 4.2. Mechanism 6 satisfies weak anonymity under the DL assumption in the group G1, the
DDH assumption in the group G, and the q-SDH assumption in the groups (G1,G2) in the random oracle
model.

Proof. Let A be an adversary that attacks the weak anonymity of Mechanism 6. We consider the
following sequence of games. Let b be the challenge bit, m∗ be the challenge message, i0, i1 be the
challenge users, and Σ∗ = (T ∗

1 , T
∗
2 , T

∗
3 , T

∗
4 , c

∗, σ∗
x, σ

∗
y , σ

∗
δ , σ

∗
q , σ

∗
r ) be the challenge signature. Let Sℓ denote

the event that A succeeds in guessing the challenge bit b in Game ℓ. Also, we specify the random tape
of A in the proof when we use the rewinding technique.

[Game 0]: This is the experiment Expw-anon
ΠFI,A (λ) itself. As in Game 0 of Theorem 4.1, The challenger

manages an inout/output pair of the random oracle in the list L, and we assume that the adversary
generates the involved random oracle query before he queries to the Open oracle.

[Game 1 - Game 5]: The modification of each game is the same as that of the game in Theorem 4.1.

[Game 6]: We change the way to generate H,K ∈ G1 in the group public key gpk. More precisely, in
Game 6, the challenger samples h, k ∈ Zp uniform randomly and sets H ← G1

h,K ← G1
k by comparing

Game 5 in which H,K are chosen uniform randomly in G1.

[Game 7]: In Game 7, if the adversary generates the opening query (m∗, (T ∗
1 , T

∗
2 , T

∗
3 , T

∗
4 , c

∗, σ∗
x, σy, σδ,

σq, σ
∗
r )) such that σy ̸= σ∗

y , the challenger returns ⊥ where σy and σq are arbitrary.

[Game 8]: In Game 8, if the adversary generates the opening query (m∗, (T ∗
1 , T

∗
2 , T

∗
3 , T

∗
4 , c

∗, σ∗
x, σ

∗
y , σδ,

σ∗
q , σ

∗
r )) such that σδ ̸= σ∗

δ , the challenger returns ⊥.
[Game 9]: In Game 9, if the adversary generates the opening query (m∗, (T ∗

1 , T
∗
2 , T

∗
3 , T

∗
4 , c

∗, σ∗
x, σ

∗
y , σ

∗
δ ,

σq, σ
∗
r )) such that σq ̸= σ∗

q , the challenger returns ⊥.
[Game 10]: We modify the way to reply queries for the SndToI oracle. More precisely, the challenger
replies the ℓ-th query (i, (R1, R2)) for the SndToI oracle as follows. Let N be a constant number.

Step 1 (Practice Phase). Execute other N anonymity games with the adversaries Aj who are the
same as the original A in parallel where 1 ≤ j ≤ N . Specifically, for 1 ≤ j ≤ N , perform the following
operations.

1. Sample ĉi
(j) r←− Zp.

2. Execute Aj(gpk; ρ) where ρ is the random tape of the original A. Then, the challenger makes
exactly the same replies as those for the original A until the ℓ-th query (i, (R1, R2)) is generated.
We note that the query is also the same as that of the original A since the challenger makes the
same replies those for the original A until the ℓ-th query is generated.

3. Send ĉi
(j) to Aj as the first reply of the ℓ-th query (i, (R1, R2)), and obtain (σ̂

(j)
xi , σ̂

(j)
z′
i
).

Step 2 (First Reply in the Original Game with A). If i /∈ CU, return ⊥. If i ∈ CU, sample ci
r←− Zp

and return ci as the first reply of the send-to-issuer query (i, (R1, R2)). Then, obtain (σxi
, σz′

i
) from A.
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Step 3 (Second Reply in the Original Game with A). If (σxi , σz′
i
) is invalid, return ⊥ as the

second reply. If (σxi , σz′
i
) is valid, find the index j∗ ∈ [1, N ] in the replies from Aj in Step 1 such that

(σ̂
(j∗)
xi , σ̂

(j∗)
z′
i

) is valid and ci ̸= ĉi
(j∗). If there is no such index j∗, return ⊥. On the other hand if there

exists such index j∗, compute the second reply as follows.

1. Compute ∆σxi
← σ̂

(j∗)
xi − σxi

, ∆σz′
i
← σ̂

(j∗)
z′
i
− σz′

i
, and ∆ci ← ĉ

(j∗)
i − ci, and set x̃i ← ∆σxi

/∆ci

and z̃′i ← ∆σz′
i
/∆ci.

2. Sample yi, z
′′
i ∈ Zp uniform randomly and compute Ci ← G1

1
w+yi .

3. Compute Ai ← Ci
1−hx̃i−k(z̃′

i+z′′
i ). Then, set certi ← (Ai, yi, z

′′
i ) and reply certi as the second reply.

Register reg[i]← Qi.

[Game 11]: We modify the way to compute the element Ai in the simulation of the AddU oracle. In

Game 11, Ai is computed as follows. The challenger chooses a random value yi and sets Ci ← G1

1
w+yi

where w is the issuing key. Then, he also samples a random value z′′i and sets Ai ← Ci
1−hxi−k(z′

i+z′′
i )

where uski = (xi, z
′
i), h = logG1

H, and k = logG1
K.

[Game 12]: In Game 12, if the adversary generates the opening query (m∗, (T ∗
1 , T

∗
2 , T

∗
3 , T

∗
4 , c

∗, σ∗
x, σ

∗
y , σδ,

σq, σ
∗
r )) such that σy = σ∗

y , σδ ̸= σ∗
δ , and σq ̸= σ∗

q , the challenger returns ⊥.
[Game 13, Game 14]: The modification of each game is the same as that of Game 6 and Game 7 in
Theorem 4.1, respectively.

For the advantage Advw-anon
ΠFI,A (λ), Advw-anon

ΠFI,A (λ) =
∣∣Pr[S0]−1/2∣∣ ≤∑13

ℓ=0

∣∣Pr[Sℓ]−Pr[Sℓ+1]
∣∣+∣∣Pr[S14]−

1/2
∣∣ holds. Moreover, the following lemmas hold.

Lemma 4.8. Let qH be the number of A’s random oracle queries. Then, it holds that
∣∣Pr[S0]−Pr[S1]

∣∣ ≤
qH/p for any PPT A.

Lemma 4.9. It holds that Pr[S1] = Pr[S2] for any PPT A.

Lemma 4.10. Let qH and qopen be the number of A’s random oracle queries and opening queries,
respectively. Then, it holds that

∣∣Pr[S2]− Pr[S3]
∣∣ ≤ qH · qopen/p for any PPT A.

Lemma 4.11. It holds that Pr[S3] = Pr[S4] for any PPT A.

Lemma 4.12. There exists a PPT algorithm B1 such that
∣∣Pr[S4]− Pr[S5]

∣∣ = AdvDDH
B1

(λ)

Lemma 4.8 to 4.12 can be proved as in the case of the anonymity (given in Section 4.1) since the
modification of each game is the same as that of the game in Theorem 4.1. Therefore, we omit these
proofs.

Lemma 4.13. It holds that Pr[S5] = Pr[S6] for any PPT A.

Proof. The difference between Game 5 and Game 6 is the way to generate the values H,K ∈ G1. More
precisely, H,K are chosen from G1 uniform randomly in Game 5. On the other hand in Game 6, the
challenger chooses h, k ∈ Zp uniform randomly and sets H ← G1

h,K ← G1
k. However, since the

distribution of H,K is uniform in G1 in each game, Game 5 and Game 6 are identical. Therefore, it
holds that Pr[S5] = Pr[S6].

Lemma 4.14. There exists a PPT algorithm B2 such that
∣∣Pr[S6]−Pr[S7]

∣∣ ≤ AdvDL
B2

(λ) for any PPT A.

Proof. We define the event Bad
(a)
ℓ as follows.

Bad
(a)
ℓ : The event that the adversary A generates the related query in Type (a) to the Open oracle in
Game ℓ.
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Game 6 and Game 7 are identical unless the events Bad
(a)
6 and Bad

(a)
7 occur. Therefore, we get

∣∣Pr[S6]−
Pr[S7]

∣∣ ≤ Pr[Bad
(a)
7 ] same as in Lemma 4.1.

In the following, we construct the algorithm B2 who tries to solve the DL problem in G1 by using A
and estimate the probability Pr[Bad

(a)
7 ]. First, B2 receives the DL tuple G1,H ∈ G1 and G2 ∈ G2. Now,

B2’s goal is to compute the value logG1
H. Next, B2 generates the instance of the weak anonymity game.

Here for G1 ∈ G1, G2 ∈ G2 and H ∈ G1, he uses the ones in the instance of the DL problem. Also, B2
samples k ∈ Zp uniform randomly and sets K = G1

k ∈ G1. Other elements are generated by following
the GKg algorithm. Let gpk = (G1, G2, G,H,H,K, Y, U, V ), ik = w, and ok = (u, v), B2 sends gpk to
the adversary A. Since possessing all keys which are needed to reply oracle queries, B2 can simulate the
replies of all queries. Especially, B2 generates the challenge signature as follows:

1. Choose q∗, r∗, r∗2 ∈ Zp uniform randomly and compute (T ∗
1 , T

∗
2 , T

∗
3 , T

∗
4 ) = (Aib ·Kq∗ , Qib ·Gr∗ , Ur∗ ,

Gr∗2 ).

2. Choose σ∗
x, σ

∗
y , σ

∗
δ , σ

∗
q , σ

∗
r ∈ Zp and c∗ ∈ Zp uniform randomly, and computes values R∗

1 = e(H,

G2)
σ∗
x ·e(K,G2)

σ∗
δ ·e(K,Y )−σ∗

q ·e(T ∗
1 , G2)

σ∗
y ·
(

e(G1,G2)
e(T∗

1 ,Y )

)−c∗

, R∗
2 = Gσ∗

x+σ∗
r ·T ∗

2
−c∗ , R∗

3 = Uσ∗
r ·T ∗

3
−c∗ ,

and R∗
4 = V σ∗

r · T ∗
4
−c∗ .

3. If the value ((gpk, T ∗
1 , T

∗
2 , T

∗
3 , T

∗
4 , R

∗
1, R

∗
2, R

∗
3, R

∗
4,m

∗), ·) is not defined in the list L, the value ((gpk,
T ∗
1 , T

∗
2 , T

∗
3 , T

∗
4 , R

∗
1, R

∗
2, R

∗
3, R

∗
4,m

∗), c∗) is added to L and the challenge signature Σ∗ is set to be
(T ∗

1 , T
∗
2 , T

∗
3 , T

∗
4 , c

∗, σ∗
x, σ

∗
y , σ

∗
δ , σ

∗
q , σ

∗
r ). On the other hand, if such a value is already defined, the

challenge signature is set to be ⊥.

Finally, A terminates with b̃ ∈ {0, 1}.
When A generated the related query in Type (a) to the Open oracle, there is the Open query (m∗,Σ =

(T ∗
1 , T

∗
2 , T

∗
3 , T

∗
4 , c

∗, σ∗
x, σy, σδ, σq, σ

∗
r )) such that σy ̸= σ∗

y and GVf(gpk,m∗,Σ) = 1. For this query, B2
computes

h =
1

xib

(
1− kzib + (w + yib)(kq

∗ + k
∆σδ − w∆σq

∆σy
)
)

where ∆σδ = σδ − σ∗
δ , ∆σq = σq − σ∗

q , and ∆σy = σy − σ∗
y . Then, he outputs h as the solution of the

DL problem. Since ib is an honest user, that is, ib ∈ HU holds by the condition of the challenge query,
B2 knows the ib’s signing key gskib = (Aib , yib , zib , xib , Qib) and can compute the above h.

Now, we show the value h is the discrete logarithm of H in the following. Let T ∗
1 = G1

t. Since a
related query satisfies Equation (2), it holds that

e(K,G2)
σδ · e(K,Y )−σq · e(T ∗

1 , G2)
σy = e(K,G2)

σ∗
δ · e(K,Y )−σ∗

q · e(T ∗
1 , G2)

σ∗
y

⇔ e(G1
k, G2)

σδ · e(G1
k, G2

w)−σq · e(G1
t, G2)

σy = e(G1
k, G2)

σ∗
δ · e(G1

k, G2
w)−σ∗

q · e(G1
t, G2)

σ∗
y

⇔ e(G1, G2)
kσδ−kwσq+tσy = e(G1, G2)

kσ∗
δ−kwσ∗

q+tσ∗
y

⇔ kσδ − kwσq + tσy = kσ∗
δ − kwσ∗

q + tσ∗
y

⇔ t = k
w∆σq −∆σδ

∆σy
.

Therefore, we get

G1
h = G1

1
xib

(
1−kzib+(w+yib

)(kq∗+k
∆σδ−w∆σq

∆σy
)
)

= G1

1
xib

(
1−kzib+(w+yib

)(kq∗−t)
)

=
(
G1 ·K−zib · (Kq∗ · (T ∗

1 )
−1)(w+yib

)
) 1

xib

=
( G1 ·Kq∗ (w+yib

)

Kzib · (Aib ·Kq∗)(w+yib
)

) 1
xib (∵ T ∗

1 = Aib ·Kq∗)

=

(
G1

Kzib ·
(
( G1

H
xib ·Kzib

)
1

w+yib

)(w+yib
)

) 1
xib

(
∵ Aib =

( G1

Hxib ·Kzib

) 1
w+yib

)
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= H.

Thus, h is the discrete logarithm of H. That is, if the event Bad
(a)
7 occurs, B2 can solve the DL problem,

and Pr[Bad
(a)
7 ] ≤ AdvDL

B2
(λ) holds. Finally, we get

∣∣Pr[S6]− Pr[S7]
∣∣ ≤ Pr[Bad

(a)
7 ] ≤ AdvDL

B2
(λ).

Lemma 4.15. It holds that
∣∣Pr[S7]− Pr[S8]

∣∣ ≤ 1/p for any PPT A.

Proof. We define the event Bad
(b)
ℓ as follows.

Bad
(b)
ℓ : The event that the adversary A generates the related query in Type (b) to the Open oracle in
Game ℓ.

Game 7 and Game 8 are identical unless the events Bad
(b)
7 and Bad

(b)
8 occur. Therefore, we get

∣∣Pr[S7]−
Pr[S8]

∣∣ ≤ Pr[Bad
(b)
8 ] same as in Lemma 4.1.

We estimate the probability Pr[Bad
(b)
8 ] in the following. Let K = G1

k. When the conditions σy = σ∗
y

and σq = σ∗
q are put in Equation (2), we get e(K,G2)

σδ = e(K,G2)
σ∗
δ ⇔ e(G1, G2)

kσδ = e(G1, G2)
kσ∗

δ ⇔
kσδ = kσ∗

δ . Therefore, a related query in Type (b) satisfies the equation kσδ = kσ∗
δ , and then σδ = σ∗

δ

holds if k ̸= 0. However, this contradicts the condition of Type (b) (i.e., σδ ̸= σ∗
δ ). Thus, a related query

in Type (b) does not exist if k ̸= 0. On the other hand, the probability that k = 0 holds is 1/p since
K ∈ G1 is chosen uniform randomly. Thus, the probability that A generates a related query in Type (b)

is at most 1/p, and Pr[Bad
(b)
8 ] ≤ 1/p holds. That is, we get

∣∣Pr[S7]− Pr[S8]
∣∣ ≤ 1/p.

Lemma 4.16. It holds that
∣∣Pr[S8]− Pr[S9]

∣∣ ≤ 2/p for any PPT A.

Proof. We define the event Bad
(c)
ℓ as follows.

Bad
(c)
ℓ : The event that the adversary A generates a related query in Type (c) to the Open oracle in
Game ℓ.

Game 8 and Game 9 are identical unless the events Bad
(c)
8 and Bad

(c)
9 occur. Therefore, we get

∣∣Pr[S8]−
Pr[S9]

∣∣ ≤ Pr[Bad
(c)
9 ] same as in Lemma 4.1.

We estimate the probability Pr[Bad
(c)
9 ] in the following. Let K = G1

k. When the conditions σy = σ∗
y

and σδ = σ∗
δ are put in Equation (2), we get e(K,Y )−σq = e(K,Y )−σ∗

q ⇔ e(G1, G2)
−kwσq = e(G1,

G2)
−kwσ∗

q ⇔ kwσq = kwσ∗
q . Therefore, a related query in Type (c) satisfies the equation kwσq = kwσ∗

q ,
and then σq = σ∗

q holds if k ̸= 0 and w ̸= 0. However, this contradicts the condition of Type (c) (i.e.,
σq ̸= σ∗

q ). Thus, a related query in Type (c) does not exist if k ̸= 0 and w ̸= 0. On the other hand, the
probability that k = 0 or w = 0 hold is at most Pr[k = 0 ∨ w = 0] ≤ Pr[k = 0] + Pr[w = 0] = 2/p since
K ∈ G1 and w ∈ Zp are chosen uniform randomly. Therefore, the probability that A generates a related

query in Type (c) is at most 2/p, and Pr[Bad
(c)
9 ] ≤ 2/p holds. That is, we get

∣∣Pr[S8]−Pr[S9]
∣∣ ≤ 2/p.

Lemma 4.17. Let qiss be the number of A’s send-to-issuer queries. Then, it holds that
∣∣Pr[S9]−Pr[S10]∣∣ ≤∑qiss

ℓ=1 min{(1− probℓ)
N , probℓ} for any PPT A.

Proof. We consider the following intermediate games Game 0, . . . ,Game qiss to estimate
∣∣Pr[S9]−Pr[S10]∣∣.

[Game 0]: This game is identical to Game 9.

[Game 1]: We modify the way to reply the first send-to-issuer query. More precisely, the challenger replies
the first send-to-issuer query by rewinding A as denoted in Game 10. After the first, the challenger replies
send-to-issuer queries by following the Issue algorithm as in Game 9.
...

[Game ℓ]: In this game, the challenger replies the first to ℓ-th send-to-issuer queries by rewinding A.
On the other hand for the (ℓ + 1)-th to qiss-th send-to-issuer queries, he replies by following the Issue
algorithm.
...
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[Game qiss]: In this game, the challenger replies all send-to-issuer queries by rewinding A. Thus, this
game is identical to Game 10.

Let Sℓ denote the event that A succeeds in guessing the challenge bit in Game ℓ. Then, the following
inequality holds:

∣∣Pr[S9]− Pr[S10]
∣∣ = ∣∣Pr[S0]− Pr[Sqiss ]

∣∣ ≤ qiss∑
ℓ=1

∣∣Pr[Sℓ−1]− Pr[Sℓ]
∣∣. (4)

Now, we prove that
∣∣Pr[Sℓ−1]− Pr[Sℓ]

∣∣ ≤ min{(1− probℓ)
N , probℓ} holds for 1 ≤ ℓ ≤ qiss where N is

the number of the parallel anonymity games with Aj . The difference between Game ℓ− 1 and Game ℓ is
the way to reply the ℓ-th SndToI query. In both games, the first reply of the ℓ-th SndToI query is chosen
uniform randomly. Moreover, when A’s output (σxi

, σz′
i
) for the first reply is invalid, the second reply of

the ℓ-th SndToI query will be ⊥ in both games. Therefore, only when A’s output (σxi
, σz′

i
) for the first

reply is valid, the challengers in Game ℓ−1 and Game ℓ behave differently. In the following, we consider
the case that (σxi , σz′

i
) is valid.

In Game ℓ, when (σxi , σz′
i
) is valid, the second reply is decided whether there exists the valid output

(σ̂
(j∗)
xi , σ̂

(j∗)
z′
i

) which satisfies ĉ
(j∗)
i ̸= ci in the N executions of A. More precisely, if there exists such an

output, a certificate certi = (Ai, yi, z
′′
i ) will be returned. On the other hand, if there is no such an output,

the second reply will be ⊥. Now, we show that in the former case, the second reply certi in Game ℓ is the
same as that in Game ℓ− 1. First of all, yi and z′′i are chosen uniform randomly in both games. Thus,
the distribution of yi and z′′i in Game ℓ is the same as that in Game ℓ− 1. Next, we prove the value Ai

in Game ℓ is the same as that in Game ℓ− 1. Since (σxi
, σz′

i
) and (σ̂

(j∗)
xi , σ̂

(j∗)
z′
i

) are valid, it holds that

R2 = HσxiK
σz′

i/Hi
ci ∧ R2 = H σ̂(j∗)

xi K
σ̂
(j∗)

z′
i /Hi

ĉ
(j∗)
i .

Therefore, we get

Hi = H
∆σxi
∆ci ·K

∆σ
z′
i

∆ci
(5)

where ∆σxi = σ̂
(j∗)
xi − σxi , ∆σz′

i
= σ̂

(j∗)
z′
i
− σz′

i
, and ∆ci = ĉ

(j∗)
i − ci. We note that ∆ci ̸= 0 holds since

ĉ
(j∗)
i ̸= ci. From this equation, the value Ai in Game ℓ satisfies that

Ai = Ci
1−hx̃i−k(z̃′

i+z′′
i )

=
(
G1

1
w+yi

)1−h
∆σxi
∆ci

−k
(∆σ

z′
i

∆ci
+z′′

i

)
=

(
G1

1−h
∆σxi
∆ci

−k
(∆σ

z′
i

∆ci
+z′′

i

)) 1
w+yi

=

(
G1

Gi
h

∆σxi
∆ci ·Gi

k
(∆σ

z′
i

∆ci
+z′′

i

)
) 1

w+yi

=

(
G1

H
∆σxi
∆ci ·K

∆σ
z′
i

∆ci ·Kz′′
i

) 1
w+yi

=
( G1

Hi ·Kz′′
i

) 1
w+yi

. (∵ Equation(5))

This is the same as the value Ai in Game ℓ − 1. Therefore, in the condition that there exists the

valid output (σ̂
(j∗)
xi , σ̂

(j∗)
z′
i

) such that ĉ
(j∗)
i ̸= ci, the second reply for the ℓ-th SndToI query in Game ℓ is

identical to that in Game ℓ− 1.
Now, we define the events Bad and B̂ad as follows.

Bad: The event that there is no valid output (σ̂
(j∗)
xi , σ̂

(j∗)
z′
i

) which satisfies ĉ
(j∗)
i ̸= ci in the N executions

of A in Game ℓ.
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B̂ad: The event that A’s output (σxi , σz′
i
) for the first reply is valid in Game ℓ.

In the above discussion, when (σxi
, σz′

i
) is invalid, the replies of the ℓ-th SndToI query in Game ℓ− 1

and Game ℓ are identical. Also, when (σxi , σz′
i
) is valid and there exists the valid output (σ̂

(j∗)
xi , σ̂

(j∗)
z′
i

)

which satisfies ĉ
(j∗)
i ̸= ci in the N executions of Aj , the replies of the ℓ-th SndToI query in both games

are identical. That is, Game ℓ is identical to Game ℓ − 1 unless the events Bad and B̂ad occur, and
Pr[Sℓ−1] = Pr[Sℓ ∧ (¬Bad ∨ ¬B̂ad)] holds. Therefore, we get

∣∣Pr[Sℓ−1] − Pr[Sℓ]
∣∣ = ∣∣Pr[Sℓ−1] − (Pr[Sℓ ∧

(¬Bad∨¬B̂ad)]+Pr[Sℓ∧(Bad∧B̂ad)])
∣∣ ≤ Pr[Sℓ∧(Bad∧B̂ad)] ≤ Pr[Bad∧B̂ad]. Since Pr[Bad∧B̂ad] ≤ Pr[Bad]

and Pr[Bad ∧ B̂ad] ≤ Pr[B̂ad] hold, we get Pr[Bad ∧ B̂ad] ≤ min{Pr[Bad],Pr[B̂ad]}. Since Pr[Bad] =
(1 − probℓ)

N and Pr[B̂ad] = probℓ hold by the definition of the events, it holds that Pr[Bad ∧ B̂ad] ≤
min{(1− probℓ)

N , probℓ}. Therefore, we get
∣∣Pr[Sℓ−1]− Pr[Sℓ]

∣∣ ≤ min{(1− probℓ)
N , probℓ}.

From the above discussion and Equation (4),
∣∣Pr[S9]−Pr[S10]∣∣ ≤∑qiss

ℓ=1

∣∣Pr[Sℓ−1]−Pr[Sℓ]
∣∣ =∑qiss

ℓ=1 min{(1−
probℓ)

N , probℓ} holds.

Lemma 4.18. It holds that Pr[S10] = Pr[S11] for any PPT A.

Proof. The difference between Game 10 and Game 11 is the way to compute the element Ai in the
simulation of the AddU oracle. However, the value Ai generated in Game 11 is identical to that in Game

10 since it holds that Ai = Ci
1−hxi−k(z′

i+z′′
i ) = (G1

1
w+yi )1−hxi−k(z′

i+z′′
i ) = (G1

1−hxi−k(z′
i+z′′

i ))
1

w+yi =

(G1 ·H−xi ·K−z′
i ·K−z′′

i )
1

w+yi = (G1 ·Hi
−1 ·K−z′′

i )
1

w+yi . That is, Pr[S10] = Pr[S11].

Lemma 4.19. Let qadd and qiss be the number of A’s add-user queries and send-to-issuer queries, respec-

tively. Then, there exists a PPT algorithm B3 such that
∣∣Pr[S11]− Pr[S12]

∣∣ ≤ Adv
(qadd + qiss + 1)-SDH
B3

(λ) +
1/p for any PPT A.

Proof. We define the event Bad
(⋆)
ℓ as follows.

Bad
(⋆)
ℓ : The event that the adversary A sends the related query in Type (⋆) to the Open oracle in Game ℓ.

Game 11 and Game 12 are identical unless the events Bad
(⋆)
11 and Bad

(⋆)
12 occur. Therefore, we get∣∣Pr[S11]− Pr[S12]

∣∣ ≤ Pr[Bad
(⋆)
12 ] same as in Lemma 4.1.

In the following, we construct the algorithm B3 who tries to solve the simplified (qadd + qiss)-SDH

problem in (G1,G2) by using A and estimate the probability Pr[Bad
(⋆)
12 ]. First, B3 receives a tuple (G1,

G2, Y, {Ci, yi}qadd+qiss
i=1 ) as the input of the simplified (qadd+qiss)-SDH problem. Let Y = G2

w, it holds that

Ci = G1

1
w+yi . Next, B3 generates the instance of the weak anonymity game. Here for G1 ∈ G1, G2 ∈ G2

and Y ∈ G2, he uses the ones in the tuple of the simplified (qadd + qiss)-SDH problem. Also, B3 samples
h, k ∈ Zp uniform randomly and sets H = G1

h,K = G1
k. Other elements are generated by following

the GKg algorithm. Let gpk = (G1, G2, G,H,H,K, Y, U, V ), ik = w, and ok = (u, v), B3 sends gpk to the
adversary A. We note that B3 does not know the discrete logarithm w of the value Y . The CrptU oracle
and the RReg oracle are easily simulated since they just set the user public key and retrieve the register,
respectively. B3 simulates other oracles (AddU, USK, and SndToI) as follows.

[The AddU oracle] For an input i, the algorithm B3 runs the UKg algorithm and obtains (upki, uski) =

((Qi,Hi), (xi, z
′
i)). Also, B3 samples a random value z′′i and sets Ai ← Ci

1−hxi−k(z′
i+z′′

i ). Then, he sets
gski ← (Ai, yi, zi, xi, Qi). Finally, the user public key upki is returned to the adversary, and i is added
to HU.

[The USK oracle] For an input i, B3 returns ⊥ if i /∈ HU. If i ∈ HU, he returns the secret keys uski and
gski. Since i is queried to the AddU oracle if i ∈ HU, B3 knows the secret keys of the user i.

[The SndToI oracle] For a query (i, (R1, R2)), B3 replies as follows:

Step 1 (Practice Phase). Execute other N games with the same adversary A in parallel with the
game of the original A. For 1 ≤ j ≤ N , perform the following operations.

1. Sample ĉi
(j) r←− Zp.

2. Execute A(gpk; ρ) where the challenger makes the same replies for the original A until the ℓ-th
SndToI query is generated.
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3. Send ĉi
(j) to A as the first reply of the ℓ-th SndToI query (i, (R1, R2)), and obtain (σ̂

(j)
xi , σ̂

(j)
z′
i
).

We note that the query (i, (R1, R2)) is the same as that in the game of the original A since the
challenger makes the same replies until the ℓ-th SndToI query is generated.

Step 2 (First Reply in the Original Game with A). If i /∈ CU, return ⊥. If i ∈ CU, sample ci
r←− Zp

and return ci as the first reply of the ℓ-th SndToI query (i, (R1, R2)). Then, obtain (σxi , σz′
i
) from A.

Step 3 (Second Reply in the Original Game with A). If (σxi , σz′
i
) is invalid, return ⊥ as the

second reply. If (σxi , σz′
i
) is valid, find the index j∗ ∈ [1, N ] for the replies from A in Step 1 such that

(σ̂
(j∗)
xi , σ̂

(j∗)
z′
i

) is valid and ci ̸= ĉi
(j∗). If there is no such index j∗, return ⊥ as the second reply. On the

other hand if there is such index j∗, compute the second reply as follows.

1. Compute ∆σxi ← σ̂
(j∗)
xi − σxi , ∆σz′

i
← σ̂

(j∗)
z′
i
− σz′

i
, and ∆ci ← ĉ

(j∗)
i − ci, and set x̃i ← ∆σxi/∆ci

and z̃′i ← ∆σz′
i
/∆ci.

2. Sample z′′i ∈ Zp uniform randomly.

3. Compute Ai ← Ci
1−hx̃i−k(z̃′

i+z′′
i ), and set certi ← (Ai, yi, z

′′
i ) where (Ci, yi) is the part of the input

of the simplified (qadd + qiss)-SDH problem. Then, reply certi as the second reply, and register
reg[i]← Qi.

Finally, A terminates with b̃ ∈ {0, 1}.
When A generated a related query in Type (⋆) to the Open oracle, there is the Open query (m∗,Σ =

(T ∗
1 , T

∗
2 , T

∗
3 , T

∗
4 , c

∗, σ∗
x, σy, σδ, σq, σ

∗
r )) such that σy = σ∗

y , σδ ̸= σ∗
δ , σq ̸= σ∗

q , and GVf(gpk,m∗,Σ) = 1.
For this query, B3 computes w̃ = (σδ − σ∗

δ )/(σq − σ∗
q ). Moreover, he chooses a value y /∈ {y1, . . . .yq} and

computes C = G2
1

w̃+y . Then, B3 finally outputs (C, y).
In the following, we show (C, y) is the solution of the simplified (qadd + qiss)-SDH problem, that is,

e(C, Y ·G2
y) = e(G1, G2) holds. Since a related query satisfies Equation (2), it holds that

e(K,G2)
σδ · e(K,Y )−σq · e(T ∗

1 , G2)
σy = e(K,G2)

σ∗
δ · e(K,Y )−σ∗

q · e(T ∗
1 , G2)

σ∗
y

⇔ e(G1
k, G2)

σδ · e(G1
k, G2

w)−σq = e(G1
k, G2)

σ∗
δ · e(G1

k, G2
w)−σ∗

q

⇔ e(G1, G2)
kσδ−kwσq+tσy = e(G1, G2)

kσ∗
δ−kwσ∗

q+tσ∗
y

⇔ k(σδ − wσq) = k(σ∗
δ − wσ∗

q ) (∵ σy = σ∗
y).

From this, if k ̸= 0, we get σδ − wσq = σ∗
δ − wσ∗

q ⇔ w = (σδ − σ∗
δ )/(σq − σ∗

q ). Therefore, C = G1
1

w̃+y =

G1
1

w+y , and then (C, y) is the solution of the simplified (qadd + qiss)-SDH problem. On the other hand,
the probability that k = 0 holds is 1/p since k ∈ Zp is chosen uniform randomly. Let BAD be the event
that k = 0 holds in Game 12. Then, it holds that

Pr[Bad
(⋆)
12 ] = Pr[Bad

(⋆)
12 ∧ ¬BAD] + Pr[Bad

(⋆)
12 ∧ BAD]

≤ Pr[Bad
(⋆)
12 ∧ ¬BAD] + Pr[BAD]

≤ Adv
sim-(qadd + qiss)-SDH
B3

(λ) + 1/p.

In addition to this, by Theorem 2.1, it holds that Adv
sim-(qadd + qiss)-SDH
B3

(λ) ≤ Adv
(qadd + qiss + 1)-SDH
B3

(λ),

and then we get
∣∣Pr[S11]− Pr[S12]

∣∣ ≤ Pr[Bad
(⋆)
12 ] ≤ Adv

(qadd + qiss + 1)-SDH
B3

(λ) + 1/p.

Also, the following lemmas hold. Since we can show these lemmas as in the case of Theorem 4.1, we
omit the proofs of the lemmas.

Lemma 4.20. It holds that
∣∣Pr[S12]− Pr[S13]

∣∣ ≤ 1/p for any PPT A.

Lemma 4.21. There exists a PPT algorithm B4 such that
∣∣Pr[S13] − Pr[S14]

∣∣ ≤ AdvDDH
B5

(λ) for any
PPT A.
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For random values q∗, r∗, r∗1 , r
∗
2 ∈ Zp, the challenge signature in Game 14 is denoted by Σ∗ = (T ∗

1 , T
∗
2 ,

T ∗
3 , T

∗
4 , c

∗, σ∗
x, σ

∗
y , σ

∗
δ , σ

∗
q , σ

∗
r ) = (Aib ·Kq∗ , Qib ·Gr∗ , Ur∗1 , V r∗2 , c∗, σ∗

x, σ
∗
y , σ

∗
δ , σ

∗
q , σ

∗
r ). Therefore, the choice

of the challenge bit b and the distribution of the challenge signature Σ∗ are independent. Thus, we can
say that Pr[S14] = 1/2. From this fact and Lemma 4.8 to Lemma 4.21, we get

Advw-anon
ΠFI,A (λ) =

∣∣Pr[S0]− 1/2
∣∣

≤
13∑
ℓ=0

∣∣Pr[Sℓ]− Pr[Sℓ+1]
∣∣+ ∣∣Pr[S14]− 1/2

∣∣
≤ AdvDDH

B1
(λ) + AdvDDH

B4
(λ) + AdvDL

B2
(λ) + Adv

(qadd + qiss + 1)-SDH
B3

(λ)

+
qH(1 + qopen) + 5

p
+

qiss∑
ℓ=1

min{(1− probℓ)
N , probℓ}.

Now, we prove that the last term is negligible when setting N to an appropriate value. Let N = λcnst+1

for an arbitrary constant cnst. If probℓ ≥ 1/λcnst, we get (1 − probℓ)
N ≤ (1 − 1/λcnst)λ

cnst+1

= (1 −
1/λcnst)λ

cnst·λ < 1/eλ. Therefore for the sufficiently large λ, it holds that min{(1 − probℓ)
N , probℓ} ≤

(1−probℓ)
N < 1/λcnst. Thus, when probℓ ≥ 1/λcnst holds, min{(1−probℓ)

N , probℓ} is negligible in λ. On
the other hand if probℓ < 1/λcnst, it holds that min{(1 − probℓ)

N , probℓ} ≤ probℓ < 1/λcnst. Therefore,
also when probℓ < 1/λcnst holds, min{(1 − probℓ)

N , probℓ} is negligible. Since qiss is polynomial in λ,∑qiss
ℓ=1 min{(1− probℓ)

N , probℓ} is negligible in λ.
Also, since qH and qopen are polynomial in λ and p is exponential in λ, we get (qH(1 + qopen) + 5)/p =

negl(λ). Therefore, Mechanism 6 satisfies weak anonymity under the DDH assumption, the DL assump-
tion, and the q-SDH assumption in the random oracle model.

4.4 Practical Implications

Now, we discuss the practical implications of our result. Specifically, we highlight the implications for
the EPID scheme [13, 5], which is based on Mechanism 6 and is standardized as Mechanism 3 in the
ISO/IEC 20008-2 [2]. In fact, the EPID scheme has a lot in common with Mechanism 6, especially, their
joining protocols are almost identical.5

Firstly, our security analysis helps to understand the security of the EPID scheme. As we showed in
Section 3, there exists an attack against the anonymity of Mechanism 6 in the BSZ model. Therefore, it
is not sure that the EPID scheme is secure since its security relies on that of Mechanism 6. Specifically,
there are concerns that the weakness of Mechanism 6 might be exploited to frame the EPID scheme.
However, fortunately our attack does not threaten the EPID scheme for operational reasons. Concretely,
since the CPA security is considered in the security model of the EPID scheme [13] (i.e., an adversary
is not allowed to access the opening oracle in this model), our attack does not work. In addition, due to
our security analysis of Mechanism 6, it seems that the EPID scheme is secure in the proposed security
model [13]. More precisely, our result (specifically, Theorem 4.1) implies that Mechanism 6 is secure in
the CPA setting since an adversary cannot generate a related query in this setting. Therefore, the EPID
scheme also seems to be secure in the CPA setting.

Secondly, our result is a first step to use the EPID scheme in a more demanding situation. Even if
the EPID scheme is secure in the CPA setting, there remains a possibility of potential attacks such as
Bleichenbacher’s attack [12]. Such attacks have been efficiently implemented (e.g., [9, 31]), especially the
attacks proposed by Swami [31] is a type of CCA attacks for Intel SGX, which employs the EPID scheme.
Since Intel SGX is widely used in many kinds of cryptographic systems [29, 30, 21, 8, 20, 28], it might
be possible that the vulnerability of Mechanism 6 is exploited for some deployed system. Therefore, to
achieve a higher security level, it is required that the EPID scheme is secure in the CCA setting. Due to
our analysis of the rigorous security, we see that Mechanism 6 is CCA secure under the condition that
the issuer does not join the attack. (Also, we provide a patched scheme satisfying CCA security in the
next section.) Thus, it seems that the EPID scheme could also achieve CCA security if it is used under
limited conditions (or it is constructed from the patched scheme instead of Mechanism 6). Although we

5Roughly, the values h1, h2, A, x, y, and f in the EPID scheme [13] correspond to the values H, K, A, yi, zi, and xi

in Mechanism 6 (showed in Figure 1), respectively.

24



need a more detailed discussion, we hope that we have provided approaches to use the EPID scheme in
the CCA setting.

5 Patched Scheme

In this section, we give a patch of Mechanism 6. As we explained before, the flaw of Mechanism 6 is that
the underlying proof system does not satisfy simulation soundness. More precisely, for commitments
{Ri}i∈[1,4] and a challenge value c, the elements σx and σr are uniquely determined but the other
elements σy, σδ, and σq are redundant. By this redundancy, the adversary can re-randomize the challenge
signature, and then Mechanism 6 can be broken.

To achieve that Mechanism 6 satisfies anonymity in the BSZ model, we need to remove this redun-
dancy. A simple way to do this is to make the underlying proof system have unique responses [19, 32]
(defined as “strict soundness” in the later paper). That is, for commitments {Ri}i and a challenge value
c, there exists only one valid proof. By doing so, the adversary cannot re-randomize a signature since
there is no candidate of such a signature. However, when we employ the proof system with unique re-
sponses, the resulting group signature scheme becomes inefficient. This is because many equations need
to be proved/verified in such a proof system, and then the signature size and the signing/verifying costs
in the group signature scheme also increase.

In the proposed patched scheme, we reduce the redundancy to prevent re-randomizing the signature.
Concretely, we add an equation to prove about the witness q and also fix the element σq. That is, the
parts σy and σδ are still redundant also in the patched scheme. However, from the analysis of related
queries in Section 4.2, we see that it is hard to generate related queries in such a situation. When the
element σq is fixed, possible cases of related queries are “ σ̃y ̸= σ∗

y ∧ σ̃δ ̸= σ∗
δ ” or “ σ̃y ̸= σ∗

y ∧ σ̃δ = σ∗
δ ” or

“ σ̃y = σ∗
y ∧ σ̃δ ̸= σ∗

δ ”. In Table 1, the former two cases are in Type (a), and the later case is in Type
(b). As we proved, the probability that the adversary generates the related queries in Type (a) and (b)
is negligible. Therefore, the adversary cannot re-randomize a signature when the element σq is fixed.

The description of the patched scheme is given in Figure 2. The changed parts from Mechanism 6 are
underlined. In the patched scheme, only the signing and the verification algorithms are changed whereas
the other algorithms (GKg, UKg, Join/Issue, Open, and Judge) are the same as those of Mechanism 6.
Concretely, to fix the value σq, the element T0 = G1

q is added as a part of a signature, and a signer also
proves this equation when generating a signature.

One concern is that the signer’s information may leak by adding a new element to a signature. In
Mechanism 6, the randomness q ∈ Zp is used to mask the certificate Ai such that T1 = Ai ·Kq. Thus,
the tuple (T0, T1) is an ElGamal encryption of a certificate Ai. Since Type II pairing is considered, the
XDH assumption holds. Thus, the ElGamal scheme is secure in G1, and then the additional element T0

does not leak the signer’s information.

GSig(gpk, gski,m):

r, q
$←− Zp; T0 ← G1

q; T1 ← Ai ·Kq; T2 ← Gxi+r; T3 ← Ur; T4 ← V r; ρxi , ρyi , ρδ, ρq, ρr
$←− Zp

R1 ← e(H,G2)
ρxi · e(K,G2)

ρδ · e(K,Y )−ρq · e(T1, G2)
ρyi

R2 ← Gρxi
+ρr ; R3 ← Uρr ; R4 ← V ρr ; R5 ← G1

ρq

c← H(gpk, {Ti}i∈[0,4], {Ri}i∈[1,5],m); δ ← zi − qyi
σxi ← xi · c+ ρxi ; σyi ← yi · c+ ρyi ; σδ ← δ · c+ ρδ; σq ← q · c+ ρq; σr ← r · c+ ρr

Return Σ = ({Ti}i∈[0,4], c, σxi , σyi , σδ, σq, σr)
GVf(gpk,m,Σ):

R′
1 ← e(H,G2)

σx · e(K,G2)
σδ · e(K,Y )−σq · e(T1, G2)

σy ·
( e(G1,G2)

e(T1,Y )

)−c

R′
2 ← Gσx+σr · T2

−c; R′
3 ← Uσr · T3

−c; R′
4 ← V σr · T4

−c; R′
5 ← G1

σq · T0
−c

Return 1 if c = H(gpk, {Ti}i∈[0,4], {R′
i}i∈[1,5],m), else return 0

Figure 2: The GSig and the GVf Algorithm of the Patched Scheme

Security of the Patched Scheme. By the above modification, the patched scheme satisfies anonymity
in the BSZ model. A signature in the patched scheme consists of two ElGamal encryptions (specifically,
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one is a double encryption) and a zero-knowledge proof. Intuitively, information about the signer is
hidden from the adversary by the security of the encryption schemes and the zero-knowledge property
of the underlying proof system. Therefore as in Theorem 4.1, we can easily see that the patched scheme
satisfies anonymity if the adversary does not generate a related query.

In the patched scheme, we have four cases of a related query described in Table 2 since the element σq

is fixed. For each type of related queries, we see that it is eliminated from the analysis in Section 4.2. The
probability that an adversary generates a related query in Type (a) is negligible if the DL assumption
holds, and the probabilities to generate a related query in Type (b) and (c) are at most 1/p and 2/p,
respectively. Thus, we can say that the patched scheme satisfies anonymity.

σ̃y
?
= σ∗

y σ̃δ
?
= σ∗

δ Type

No Yes (a)
No No (a)
Yes No (b)
Yes Yes (c)

Table 2: Type of Related Queries for the Patched Scheme

Formally, the following theorem holds.

Theorem 5.1. The patched scheme satisfies anonymity in the random oracle model under the DL as-
sumption in the group G1, the XDH assumption in the group G1, and the DDH assumption in the
group G.

Proof. At first, we define a related query for the patched scheme as in the case of Mechanism 6. A
query (m̃, Σ̃ = ({T̃i}i∈[0,4], c̃, σ̃x, σ̃y, σ̃δ, σ̃q, σ̃r)) is a related query if (m̃, Σ̃) is accepted by the verification
algorithm, and it holds that

({T̃i}i∈[0,4], {R̃i}i∈[1,5], m̃) = ({T ∗
i }i∈[0,4], {R∗

i }i∈[1,5],m
∗)

where (m∗,Σ∗ = ({T ∗
i }i∈[1,4], c

∗, σ∗
x, σ

∗
y , σ

∗
δ , σ

∗
q , σ

∗
r )) is a pair of the challenge message and signature, and

(R̃1, R̃2, R̃3, R̃4, R̃5) and (R∗
1, R

∗
2, R

∗
3, R

∗
4, R

∗
5) are the intermediate values computed in the verification of

pairs (m̃, Σ̃) and (m∗,Σ∗), respectively.

Now, we prove the statement by considering a sequence of games. Let A be an adversary that
attacks the anonymity of the patched scheme Π, and Sℓ denote the event that A succeeds in guessing
the challenge bit b in Game ℓ.

[Game 0]: This is the experiment ExpanonΠ,A (λ) itself. The challenger manages an input/output pair of the
random oracle in the list L as in the proof of Theorem 4.1.

[Game 1]: We modify the way of generating the challenge signature in Game 1. If the pair ((gpk,
{T ∗

i }i∈[0,4], {R∗
i }i∈[1,5],m

∗), ·) is already in the list L when computing the value H(gpk, {T ∗
i }i∈[0,4],

{R∗
i }i∈[1,5],m

∗), the challenger sets Σ∗ = ⊥.
Since T ∗

1 is uniformly random value in G1, the probability that there is already the same pair in
L is at most qH/p where qH is the number of A’s random oracle queries. Therefore, we have that∣∣Pr[S0]− Pr[S1]

∣∣ ≤ qH/p. That is,
∣∣Pr[S0]− Pr[S1]

∣∣ is negligible.
[Game 2]: We further modify the way of generating the challenge signature. Here, the challenge signature
is generated as follows: Firstly, the challenger chooses values r∗, q∗ ∈ Zp uniformly random and compute
{T ∗

i }i∈[0,4]. Secondly, the challenger chooses σ∗
x, σ

∗
y , σ

∗
δ , σ

∗
q , σ

∗
r ∈ Zp and c∗ ∈ Zp uniformly random, and

computes {R∗
i }i∈[1,5]. Finally, the challenger defines a value H(gpk, {T ∗

i }i∈[0,4], {R∗
i }i∈[1,5],m

∗). If the
pair ((gpk, {T ∗

i }i∈[0,4], {R∗
i }i∈[1,5],m

∗), ·) is already in the list L, the challenger sets Σ∗ = ⊥.
Since the modification between Game 1 and Game 2 is only conceptual, Pr[S1] = Pr[S2] holds.

[Game 3]: In Game 3, we modify the way of generating a proof τ in replying queries for the Open oracle.
If the pair ((gpk, Q, T2, T3, R), ·) is already in the list L when computing the value H(gpk, Q, T2, T3, R),
the challenger returns ⊥ as the response of the query.
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Here, we can do the same discussion as Game 1. Thus, we can say that
∣∣Pr[S2]−Pr[S3]

∣∣ is negligible.
[Game 4]: We further modify the way of generating a proof τ in replying queries for the Open oracle.
When the challenger replies for a query (m,Σ = ({Ti}i∈[1,4], c, σx, σy, σδ, σq, σr)), the challenger computes

R = (Q · T2
−1)σu · T−d

3 by choosing σu ∈ Zp and d ∈ Zp uniformly random.
Also, the modification between Game 3 and Game 4 is only conceptual, and therefore Pr[S3] = Pr[S4]

holds.

[Game 5]: We modify the way of generating the challenge signature. In this game, the challenger

computes T0 = G1
q∗ , T1 = Ai ·K q̂∗ instead of T0 = G1

q∗ , T1 = Ai ·Kq∗ where q̂∗ is a random value
in Zp.

Since the tuples (G1, G2, G1
q∗ ,K,Kq∗) and (G1, G2, G1

q∗ ,K,K q̂∗) are indistinguishable by the XDH
assumption, this modification does not affect the adversary’s behavior. Therefore, it holds that

∣∣Pr[S4]−
Pr[S5]

∣∣ is negligible.
[Game 6]: This game is defined as Game 5 except that the challenger computes T ∗

2 = Gxib
+r∗ , T ∗

4 = Gr∗2

where r∗2 is a random value in Z. In the previous games, they were computed as T ∗
2 = Gxib

+r∗ , T ∗
4 = V r∗ .

Since the tuples (G,Gr∗ , V, V r∗) and (G,Gr∗ , V,Gr∗2 ) are indistinguishable by the DDH assumption,
this modification does not affect the adversary’s behavior. Thus, it holds that

∣∣Pr[S5] − Pr[S6]
∣∣ is

negligible.

[Game 7]: Here, we modify the way of replying to opening queries. If a query is a related query, return
⊥ as a opening proof.

For related queries in Table 2, the probability that an adversary generates each type of them is
negligible. Type (a) is negligible by the DL assumption, and that Type (b) and (c) are negligible by
using information-theoretic arguments. Therefore, we see that

∣∣Pr[S6]− Pr[S7]
∣∣ is negligible.

[Game 8]: From this game, the challenger use key v to open signatures instead of key u. In Game

8, the challenger sets Q = T2 · (T4
1
v )−1 by comparing the previous games in which the challenger sets

Q = T2 · (T3
1
u )−1.

Since the underlying non-interactive proof system has soundness, it is negligible that logU T3 ̸=
logV T4 holds. Therefore, we see that

∣∣Pr[S7]− Pr[S8]
∣∣ is negligible.

[Game 9]: In this game, the challenger computes T ∗
2 = Gxib

+r∗ , T ∗
3 = Gr∗1 where r∗1 is a random value

in Z. In the previous games, they were computed as T ∗
2 = Gxib

+r∗ , T ∗
3 = Ur∗ .

As in Game 6, this modification does not affect the adversary’s behavior by the DDH assumption.
Thus, it holds that

∣∣Pr[S8]− Pr[S9]
∣∣ is negligible.

The choice of the challenge bit b and the distribution of the challenge signature Σ∗ are independent.
Also, the oracles, especially the Open oracle, behave independently of b. Thus, we can say that Pr[S9] =

1/2. Since it holds that AdvanonΠ,A (λ) ≤
∑8

ℓ=0

∣∣Pr[Sℓ]−Pr[Sℓ+1]
∣∣+ ∣∣Pr[S9]−1/2

∣∣, AdvanonΠ,A (λ) is negligible.
Therefore, the patched scheme Π satisfies anonymity.

Moreover, the patched scheme satisfies the other security requirements, that is, traceability and non-
frameability [11]. This is because our modification does not affect these security proofs. The underlying
proof system is still extractable. Also, an adversary can simulate the Join/Issue protocol as the issuer
without the issuing key in the traceability game, and simulate the signing oracle without the honest
user’s signing key in the non-frameability game. Therefore, we can prove the traceability and non-
frameability of the patched scheme in the same way as those of the original scheme. Note that in the
sense of traceability and non-frameability, the original scheme is secure as it is. Formally, the following
theorems hold.

Theorem 5.2. The patched scheme satisfies traceability in the random oracle model under the q-SDH
assumption in the groups (G1,G2) and the DL assumption in the group G1.

Theorem 5.3. The patched scheme satisfies non-frameability in the random oracle model under the DL
assumption in the group G1.
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Efficiency. In the patched scheme, the signature size increases by only one element in G1 from Mecha-
nism 6. More precisely, a signature in the patched scheme consists of two elements fromG1, three elements
from G, and six elements from Zp. This achieves the comparable efficiency to the existing schemes [17, 18]
satisfying the same security level. Specifically, a signature in the Delerablée-Pointcheval scheme [17] con-
sists of four elements in G1 and five elements in Zp, and in the Derler-Slamanig scheme [18], a signature
requires four elements in G1, two elements in G2, and three elements in Zp.

6 Conclusion

Firstly, we have shown an attack against the anonymity of Mechanism 6 in the BSZ model. Specifically,
we have proved that the issuer can identify the signer of any signature although only the opener is allowed
to trace the signer in the BSZ model.

Secondly, we have analyzed the security properties offered by Mechanism 6 and characterized the
conditions under which its anonymity is preserved. Concretely, we have seen that no one can extract
the signer’s information from a signature except for the opener and the issuer. This fact indicates that
Mechanism 6 is still secure under the condition that the issuer does not join the attack. Such a condition
is reasonable if a single authority plays roles of both the opener and the issuer.

Finally, we have derived a simple patch for Mechanism 6 from our analysis of its security. In the
patched scheme, only the signing and verification algorithms are changed, and its signature size increases
by only one element in G1 where G1 is a source group in the used asymmetric bilinear group. Also, we
need to introduce the XDH assumption in G1 to prove the anonymity of the patched scheme, but the
other security requirements can be showed under the same assumptions as those of Mechanism 6.
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