
Make Some ROOM for the Zeros: Data Sparsity in Secure
Distributed Machine Learning

Phillipp Schoppmann

Humboldt-Universität zu Berlin

schoppmann@informatik.hu-berlin.de

Adrià Gascón

The Alan Turing Institute / University of Warwick

agascon@turing.ac.uk

Mariana Raykova

Google

mpr2111@columbia.edu

Benny Pinkas

Bar-Ilan University

benny@pinkas.net

ABSTRACT

Exploiting data sparsity is crucial for the scalability of many data

analysis tasks. However, while there is an increasing interest in ef-

ficient secure computation protocols for distributed machine learn-

ing, data sparsity has so far not been considered in a principled

way in that setting.

We propose sparse data structures together with their corre-

sponding secure computation protocols to address common data

analysis tasks while utilizing data sparsity. In particular, we de-

fine a Read-Only Oblivious Map primitive (ROOM) for accessing

elements in sparse structures, and present several instantiations

of this primitive with different trade-offs. Then, using ROOM as a

building block, we propose protocols for basic linear algebra op-

erations such as Gather, Scatter, and multiple variants of sparse

matrix multiplication. Our protocols are easily composable by using

secret sharing. We leverage this, at the highest level of abstraction,

to build secure protocols for non-parametric models (𝑘-nearest

neighbors and naive Bayes classification) and parametric models

(logistic regression) that enable secure analysis on high-dimensional

datasets. The experimental evaluation of our protocol implementa-

tions demonstrates a manyfold improvement in the efficiency over

state-of-the-art techniques across all applications.

Our system is designed and built mirroring the modular archi-

tecture in scientific computing and machine learning frameworks,

and inspired by the Sparse BLAS standard.

KEYWORDS

secure computation, machine learning, sparsity

ACM Reference Format:

Phillipp Schoppmann, Adrià Gascón, Mariana Raykova, and Benny Pinkas.

2019. Make Some ROOM for the Zeros: Data Sparsity in Secure Distributed

Machine Learning. In 2019 ACM SIGSAC Conference on Computer and Com-

munications Security (CCS ’19), November 11–15, 2019, London, United King-

dom. ACM, New York, NY, USA, 16 pages. https://doi.org/10.1145/3319535.

3339816

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than the

author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

CCS ’19, November 11–15, 2019, London, United Kingdom

© 2019 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ACM ISBN 978-1-4503-6747-9/19/11. . . $15.00

https://doi.org/10.1145/3319535.3339816

1 INTRODUCTION

Machine Learning (ML) techniques are today the de facto way to

process and analyze large datasets. The popularity of these tech-

niques is the result of a sequence of advances in several areas such

as statistical modeling, mathematics, computer science, software

engineering and hardware design, as well as successful standardiza-

tion efforts. A notable example is the development of floating point

arithmetic and software for numerical linear algebra, leading to stan-

dard interfaces such as BLAS (Basic Linear Algebra Subprograms):

a specification that prescribes the basic low-level routines for linear

algebra, including operations like inner product, matrix multipli-

cation and inversion, and matrix-vector product. This interface is

implemented by all common scientific computing frameworks such

as Mathematica, MATLAB, NumPy/SciPy, R, Julia, uBLAS, Eigen,

etc., enabling library users to develop applications in a way that

is agnostic to the precise implementation of the BLAS primitives

being used. The resulting programs are easily portable across archi-

tectures without suffering performance loss. The above libraries,

and their variants optimized for concrete architectures, constitute

the back-end of higher-level machine learning frameworks such as

TensorFlow and PyTorch.

In this work, we present a framework for privacy-preserving

machine learning that provides privacy preserving counterparts

for several basic linear algebra routines. The new tools that we con-

struct mirror the techniques of scientific computing which leverage

sparsity to achieve efficiency. Our framework enables computa-

tion on inputs that are shared among several different parties in

a manner that does not require the parties to reveal their private

inputs (only the output of the computation is revealed). In settings

where the input parties are regulated by strict privacy policies on

their data, such privacy guarantees are a crucial requirement to

enable collaborations that are beneficial for all participants. There

are many example scenarios that have these characteristics: hospi-

tals that want to jointly analyze their patients’ data, government

agencies that want to discover discrepancies across their databases,

companies that want to compute on their joint user data, and many

others.

The main novel aspect of our work is exploiting data sparsity for

scalability, by tailoring the basic operations in our framework for

that purpose. This functionality is analogous to the one provided

by the Sparse BLAS interface [13], a subset of computational rou-

tines in BLAS with a focus on unstructured sparse matrices. The

constructions that we develop for the basic building blocks in our

framework are cryptographic two-party computation protocols,

1

https://doi.org/10.1145/3319535.3339816
https://doi.org/10.1145/3319535.3339816
https://doi.org/10.1145/3319535.3339816

which provide formal privacy guarantees for the computation [15].

We optimize our protocols for the setting where the sparsity level

of the input data is not a sensitive feature of the input that needs to

be kept secret. This is the case in many datasets where a bound on a

sparsity metric is public information. For example, text data where

the maximum length of the documents in the training dataset is

public, or genomic data, as the number of mutations on a given

individual is known to be very small. Similarly to Sparse BLAS

implementations, sparsity allows us to achieve substantial speed-

ups in our secure protocols. These efficiency gains translate to the

efficiency of the higher-level applications that we develop in our

framework, as is described in Section 1.1.

Sparse linear algebra on clear data relies on appropriate data

structures such as coordinate-wise or Compressed Sparse Row

(CSR) representations for sparse matrices. For the MPC case, we

develop a similar abstract representation, which we call Read-Only

Oblivious Map (ROOM). A significant aspect of this modular ap-

proach is that our alternative back-end implementations of the

ROOM functionality immediately lead to different trade-offs, and

improvements, with regards to communication and computation.

This also allows MPC experts to develop new efficient low-level

secure computation instantiations for the ROOM primitive. These

can then be seamlessly used by non-experts to develop higher level

tools in a way that is agnostic to many of the details related to

secure computation. Such usage of our framework will be similar to

to how data scientists develop high-level statistical modeling tech-

niques while benefiting from the high performance of back-ends of

ML frameworks.

1.1 Contributions

We present a modular framework for secure computation on sparse

data, and build three secure two-party applications on top of it.

Our secure computation framework (depicted in Figure 1) emulates

the components architecture of scientific computing frameworks.

We define a basic functionality and then design and implement

several secure instantiations for it in MPC; we build common linear

algebra primitives on top of this functionality; and then we use

these primitives in a black-boxmanner to build higher level machine

learning applications. More concretely, we present the following

contributions:

(1) A Read-Only Oblivious Map (ROOM) data structure to rep-

resent sparse datasets and manipulate them in a secure and com-

posable way (Section 4).

(2) Three different ROOM protocol instantiations (Section 4.2)

with different trade-offs in terms of communication and computa-

tion. These include a basic solution with higher communication

and minimal secure computation (Basic-ROOM), a solution using

sort-merge networks that trades reduced communication for ad-

ditional secure computation (Circuit-ROOM), and a construction

that leverages fast polynomial interpolation and evaluation (Poly-

ROOM) to reduce the secure computation cost in trade-off for local

computation, while preserving the low communication.

(3) We leverage our ROOM primitive in several sparse matrix-

vector multiplication protocols (Section 5.2), which are optimized

for different sparsity settings. We also show how to implement

sparse gather and scatter operations using our ROOM primitive.

Application
layer

𝑘-Nearest
Neighbors

Logistic
Regression

Naive
Bayes

Linear Algebra API

LinAlg layer Gather Scatter MvMult

ROOM API

ROOM
instantiations

Basic-
ROOM

Circuit-
ROOM

Poly-
ROOM

Figure 1: Components of our system.

(4) We build three end-to-end ML applications using our frame-

work. The resulting protocols significantly improve the state of the

art, as discussed below.

Our three chosen applications are 𝑘-nearest neighbors (Sec-

tion 6.1), stochastic gradient descent for logistic regression training

(Section 6.2), and naive Bayes classification (Appendix B). We eval-

uate the performance of these applications on real-world datasets

(Section 8) and show significant improvements over the state of the

art:

• For 𝑘-NN, previous work [35] already exploits sparsity using

a hand-crafted sparse matrix multiplication protocol. We

show that using our protocols with the appropriate choice

of the ROOM primitive can reduce the online running time

by up to 5x.

• Our sparse stochastic gradient descent implementation im-

proves upon the total runtime of the dense protocol by Mo-

hassel and Zhang [29] by factors of 2x–94x, and improves

communication by up to 215x.

• Our protocol for naive Bayes classification scales to datasets

with tens of thousands of features, while the previous best

construction by Bost et al. handled less than a hundred [5].

2 OVERVIEW AND SETUP

How to exploit sparsity, and implications for privacy. Two proper-

ties of real-world data representations used for automated analysis

are (a) their high dimensionality and (b) their sparsity. For example,

the Netflix dataset [4] contains ∼480𝐾 users, ∼17𝐾 movies, but only

∼100 million out of ∼8.5 billion potential ratings, less than 2%. In

another common machine learning benchmark, the 20Newsgroups

dataset [34], the training data consists of just over 9000 feature vec-

tors with 10
5
dimensions, but less than 100 (0.1%) non-zero values

in each vector. Finally, in Genome-Wide Analysis Studies (GWAS),

where the goal is to investigate the relationship between genetic

mutations and specific diseases, the relevant mutations are lim-

ited to only about 5 million locations, while a full human genome

contains ∼3.2 billion base pairs [10].

2

To cope with memory limits, and speed up computations on

sparse data in general, several data structures have been devel-

oped that exploit sparsity in the data by only storing relevant (i.e.,

non-zero) values. For a vector v, a straightforward approach is to

store only pairs ((𝑖 , 𝑣𝑖))𝑣𝑖≠0. For sparse matrices, this generalizes

to Compressed Sparse Row representation, where all rows are suc-

cessively stored in the above fashion, and an additional row-index

array stores pointers to the beginning of each row. Linear algebra

libraries such as SciPy and Eigen provide implementations of these

sparse vectors and matrices [17, 21], and databases for genomic

data use similar sparse storage formats [11].

Note that sparse data representation does not only reduce the

storage overhead, but is also the basis for more efficient algorithms.

For example, a matrix-vector product, where the matrix is stored as

CSR, is independent of the number of columns in the original data

and only depends on the number of rows and the number of non-

zero values in the matrix. For the examples above, where columns

correspond to hundreds of thousands of features, this saves large

amounts of computation.

In this paper we show how to obtain the same benefits from

sparsity in the secure distributed ML setting, revealing only the

sparsity metric of the underlying data while hiding where in the

input the sparsity occurs. There are many scenarios where the

sparsity metric can be revealed safely without compromising pri-

vacy guarantees: that value might already be public (as with the

GWAS example above), or a reasonable upper bound can be set in

advance. The main challenge is hiding the locations of the non-zero

values in the data, which are revealed in the plaintext algorithms

for the above sparse data structures. Revealing those indices can

leak private information. For example, in the common bag-of-words

representation for text data, words in the input vocabulary corre-

spond to columns of a sparse matrix. Revealing the columns where

a particular row is non-zero would reveal the words contained in

the training document corresponding to that row.

In the remainder of this section, we concretely state our privacy

requirements and threat model, and introduce necessary notation

and preliminaries.

Threat model. We consider a two-party computation setting with

semi-honest parties, and the security of our protocols holds in the

common simulation-based paradigm for secure computation [15].

Our computations are over matrices and vectors over a finite

domain. In all cases we assume that the sparsity metric of the input

set is public. For different protocols this metric will be either the

total number of zeros, or the total number of zero rows or columns.

In settings where we apply our protocols to collections of rows of a

dataset, i.e. batches, the sparsity metric is revealed about the batch.

In the context of our applications, the real-world interpretation of

the sparsity metric is straightforward. For example, in our logistic

regression application, the sparsity metric corresponds to revealing

an upper bound on the number of different words in each batch of

128 documents.

The preprocessing model for MPC. Some secure computation pro-

tocols adopt the online-offline paradigm, which splits the compu-

tation work into an offline stage that can be executed before the

inputs are available, and an online stage that depends on the con-

crete input values. We do not optimize our constructions for the

online-offline setting but rather focus on minimizing the total cost

of the protocol.

Related work: Custom MPC Protocols for Sparse Data. Exploiting

sparsity for efficiency has been explored before in some concrete

privacy preserving applications. The work of Nikolaenko et al. [31]

develops a protocol for privacy preserving collaborative filtering,

a typical application on the Netflix dataset described above. By

disclosing a bound on the number of movies rated by a user and

exploiting sorting networks, the proposed solution significantly

improves on the naive approach that considers all user-movie pairs.

GraphSC [30] is a framework for secure computation that sup-

ports graph parallelization models. The design crucially relies on

oblivious sorting, as it enables efficiently running computations

expressed as sparse graphs while hiding communication patterns

across processors. Another application of oblivious sorting to MPC

on sparse graphs is given by Laud [24], albeit in a different threat

model (three parties with honest majority).

Finally, as mentioned in Section 1.1, Schoppmann et al. [35]

propose a protocol for 𝑘-nearest neighbors classification that relies

on sparse matrix multiplication.

All of these works rely on oblivious sorting networks [20] and

task-specific optimizations. Our ROOM primitive (Section 4) ab-

stracts away from the concrete application by providing a generic

interface for secure sparse lookups. In the case of 𝑘-NN [35], we

show that this directly translates to a significant improvement in

the online running time.

3 TOOLS AND NOTATION

Vectors and Matrices. We denote matrices using capital letters

such as M, and vectors by letters u, v, r. Matrices and vectors are

indexed as M𝑖 ,𝑗 and u𝑖 , and by M[𝑖 ..𝑗] we mean the sub-matrix of

M containing rows in the interval [𝑖 .. 𝑗]. Our matrices and vectors

will take values in a finite domain, which we simply denote as Z2𝜎 ,
to emphasize that 𝜎 bits are needed to encode an element of the

domain.

Secret Sharing. We denote a shared value 𝑥 by [[𝑥]]. As all our
protocols involve two-party computations between parties P1 and
P2, [[𝑥]] can be seen as a pair ([[𝑥]]P1

, [[𝑥]]P2
) from which each

party has the corresponding entry. Our focus will be on arithmetic

secret sharing, where [[𝑥]]P1
and [[𝑥]]P2

are values in Z2𝜎 , and 𝑥 is

recovered as [[𝑥]]P1
+ [[𝑥]]P2

. Secret shares are extended to vectors

and matrices by sharing each of their entries, and we denote shared

matrices and vectors as [[M]] and [[u]].

Garbled Circuits. Sometimes in our protocols we state that the

parties engage in a secure computation. By this we mean that they

run a generic protocol for the specified functionality. In all such

cases we rely on a garbled circuit protocol [25, 38]. Some of our

protocols rely on secure evaluations of a pseudorandom function,

which we denote as F𝐾 (𝑥), for key 𝐾 and input 𝑥 .

4 BASIC PRIMITIVE: ROOM

We define Read-Only Oblivious Maps (ROOMs) as a 2-party func-

tionality between a server and a client. For fixed finite sets K and

V – which we call the domain of keys and values, respectively – the

server holds a list of key-value pairs d = ((𝑥1, 𝑣𝑥1), . . . , (𝑥𝑛 , 𝑣𝑥𝑛)),
3

Parties: Server, Client.

Inputs:

Server: key-value pairs d ∈ (K ×V)𝑛 , 𝛽 ∈ V𝑚 .

Client: Query q ∈ K𝑚 .

Outputs (shared): [[r]] such that r ∈ V𝑚 and ∀𝑗 ∈ [𝑚]:

r𝑗 =
{
𝑣q𝑗

if (q𝑗 , 𝑣q𝑗
) ∈ d

𝛽 𝑗 otherwise.

Figure 2: Functionality of Shared Output ROOM.

with unique keys 𝑥𝑖 ∈ K and values 𝑣𝑥𝑖 ∈ V , and the client holds

a query (𝑞1, . . . ,𝑞𝑚), with 𝑞 𝑗 ∈ K .
The output of a ROOM is an array (𝑟1, . . . , 𝑟𝑚), where for each𝑞 𝑗 ,

if 𝑞 𝑗 is a key in d then 𝑟 𝑗 is equal to the corresponding value, namely

𝑟 𝑗 = 𝑣𝑞 𝑗 . Otherwise 𝑟 𝑗 gets a default value 𝛽 𝑗 ∈ V chosen by the

server (and which might be different for each index 𝑗). This mirrors

common implementations of a map data structure: for example, in

Python d.get(k, val) returns the value associated with the key

k in dictionary d if k is found, and a default value val otherwise.
In Java, d.getOrDefault(k, val) does the same thing.

Figure 2 formalizes this functionality. Note that, as the output

is secret-shared among the two parties, the question of whether

the indexes in the client can be chosen adaptively by the client is

not relevant. In some cases, when we want a single party to obtain

the output, we write designated output ROOM. This variant can be

trivially implemented by having one party send their shares to the

other, or – as all our concrete implementations have a generic MPC

phase at the end – omitting the secret-sharing step.

4.1 Existing primitives

Before introducing our instantiations of ROOM, we overview what

differentiates our ROOM functionality from existing primitives.

ROOM is related to Private Set Intersection (PSI) (see [33] and

references therein). However, the ROOM functionality requires

selecting data items based on key comparison and thus not every

PSI protocol will directly imply ROOM. In addition, PSI protocols

leak the size of the intersection to the client, while it is crucial that

a ROOM protocol does not reveal how many indexes in the query

were found in the database. Still, extending recent developments on

labeled PSI [7] and PSI with shared output [9] to the ROOM setting

seems to be a promising approach for future improvements.

ROOM can also be constructed using Oblivious RAM [16]. How-

ever, ROOM does not need support for writes, and thus the resulting

solution will have much overhead that can be avoided.

Private Information Retrieval (PIR), in its symmetric variant [14],

is another primitive relevant to ROOM. The Keyword PIR variant [8]

considers the setting of a database that may not contain items at

all indices, which is required for ROOM. Finally, while batching

techniques that allow the execution of multiple queries have been

developed for PIR [1], they do not directly apply to the keyword

variant and also do not always have good concrete efficiency. Thus,

from a PIR perspective, our ROOM techniques could be interpreted

Let d ∈ (K ×V)𝑛 , 𝛽 ∈ V𝑚 , q ∈ K𝑚 , and K be a PRF key.

Inputs:

Server: d, 𝛽 , K.

Client: q.

Output (shared): [[r]] ∈ V𝑚

ROOM Protocol:

(1) For 𝑖 ∈ K , Server encrypts c𝑖 ← (𝑣𝑖 ⊕ FK (𝑖)), where

𝑣𝑖 =

{
𝑣𝑎𝑙 if (𝑖 , 𝑣𝑎𝑙) ∈ d
⊥ otherwise.

Server sends (c𝑖)𝑖∈K to Client.

(2) For each 𝑖 ∈ [𝑚], the parties run a secure two-party

computation where Client inputs 𝑐q𝑖 and q𝑖 and Server
inputs K and 𝛽𝑖 . The secure computation decrypts cq𝑖 as
𝑣 = cq𝑖 ⊕ FK (q𝑖), and reveals shares [[r]] to Client and
Server where

r𝑖 =
{
𝑣 , if 𝑣 ≠⊥,
𝛽𝑖 , otherwise

Figure 3: Basic-ROOM Protocol.

as improvements on batched symmetric keyword PIR with shared

output.

4.2 Instantiations of ROOM

This section presents three instantiations of the ROOM functional-

ity (Figure 2). As described in Section 4, they can be easily trans-

formed into the designated output variant. The first two construc-

tions are based on generic MPC techniques, while the third in-

stantiation also leverages techniques for oblivious selection using

polynomial interpolation.

A naive approach for constructing a ROOM protocol requires𝑚𝑛

comparisons since each of the client’s queries may be present in the

server’s database. Our ROOM instantiations reduce this many-to-

many comparison problem to one-to-one comparisons. The asymp-

totic behavior of our proposed instantiations of ROOM is presented

in Table 1. The online cost distinguishes between local computation

and generic MPC computation because the latter has a significantly

higher overhead in practice, and hence this distinction is essential

for the asymptotics to reflect concrete efficiency.

4.2.1 Basic-ROOM. Our Basic-ROOM protocol, presented in Fig-

ure 3, is a baseline construction that does not exploit sparsity in

the database d, and instead expands the whole domain of keys K .
Namely, the server computes and sends an encrypted answer for

each potential query inK . However, as shown in Table 1, the linear

dependency on |K | is limited to the local computation performed

by the parties during initialization, whereas the more costly online

MPC computation only depends on the length of the ROOM query.

Lemma 4.1. The protocol in Figure 3 is a secure instantiation for the

ROOM functionality with the following overhead: The initialization

includes 𝑂 (|K |) work for the server, and 𝑂 (|K |) communication to

4

Data Structure

Initialization Answer a query of length𝑚

MPC Runtime Local Runtime Comm. MPC Runtime Local Runtime

Basic-ROOM - 𝑂 (|K |) (server) 𝑂 (|K |) 𝑂 (𝑚) 𝑂 (𝑚) (server and client)

Circuit-ROOM - - - 𝑂 ((𝑛 +𝑚) log(𝑛 +𝑚)) 𝑂 (𝑛 log(𝑛)) (server) and 𝑂 (𝑚 log(𝑚)) (client)
Poly-ROOM - 𝑂 (𝑛 log2 (𝑛)) (server) 𝑂 (𝑛) 𝑂 (𝑚) 𝑂 ((𝑚 + 𝑛) log2 (𝑛)) (client)

Table 1: Cost of initializations and execution of our instantiations of ROOM, for a database d ∈ (K × V)𝑛 held by the server,

and a query q of length 𝑚. Initialization is defined as preprocessing independent from the query q. We assume the security

parameter is constant, and we also do not show factors log(K) and log(V). The order of the communication for the online

phase (answer length𝑚 query) is the same as the MPC Runtime for that phase in all cases.

send the encrypted database to the client. The online phase has an

𝑂 (𝑚) overhead for the MPC protocol.

Security Sketch. The security of the PRF implies that the client

does not learn anything about database items due to the initializa-

tion. The secure computation in the next step guarantees that both

parties learn only shares of the result.

4.2.2 Circuit-ROOM. Our second protocol for ROOM uses secure

computation and leverages the following observation. We can com-

pute the ROOM functionality by doing a join between the server’s

data and the query on their key attribute and then computing a

sharing of the vector of the corresponding data items from the

server’s input. A common algorithm for performing equality joins

in databases is the sort-merge join [40], where elements of each

relation are first sorted individually by the join attribute. Subse-

quently, the two sorted lists are merged (as in merge sort), yielding a

combined list where elements from both tables with equal keys are

adjacent. This combined list only needs to be scanned once in order

to retrieve all elements of the joined table. In the ROOM setting,

note that only the last two steps, merge and iteration, depend on

data from both parties, as sorting can be performed locally. This

makes this algorithm particularly useful for MPC, since merging of

𝑛 elements can be performed using a circuit of size 𝑂 (𝑛 log𝑛) [2],
and the circuit for comparing adjacent pairs is linear. A similar

approach has been taken in previous works [20, 35] for Private Set

Intersection and sparse matrix multiplication, respectively. We call

this ROOM instantiation Circuit-ROOM, and describe it in Figure 4.

Note that we can assume without loss of generality that d and

q are sorted. If they are not, we can extend the MPC protocol that

we construct to first compute the sorting with a small𝑂 (𝑚 log(𝑚))
additive overhead.

The secure computation first arranges the inputs into vectors

of triples wC
and wS

, which consequently are merged by the first

and then third component into a vector v. Entries with matching

keywords are adjacent in v, and the third component of such entries

indicates to which party they belong, i.e., indices greater than 0

indicate entries originally in the client’s input.

In Step 2) the protocol computes vectors b and c. Each entry of

these vectors stores information about the result of comparing two

adjacent entries of v. In particular, b stores the selected value (i.e.,

answer), depending on whether keys of such entries matched. The

vector c stores whether the 𝑖-th pair of compared adjacent entries

involves a key from q. In that case, c𝑖 > 0, as it corresponds to the

index of that key in q. Otherwise c𝑖 = 0. If c𝑖 > 0 then the computa-

tion must return an answer in b. The answer is the corresponding
value from d if a match was found, or the corresponding value from

𝛽 if no match was found.

Next, in Step 3) b and c are obliviously shuffled to avoid leakage

induced by relative positions of their entries. This is analog to the

shuffle step in Sort-Compare-Shuffle PSI [20].

Finally, in step 4), entries of b that correspond to comparisons

with keys from the client are output in shares between the parties,

along with the corresponding entries in c. This allows the parties
to map their output shares back to the order of the inputs. Note

that the shuffling in step 3) makes sure that the indexes at which

elements are revealed do not leak any information to either party.

Lemma 4.2. The protocol in Figure 4 is a secure instantiation for

the ROOM functionality with the following overhead. The client and

the server run a secure two-party computation protocol whose main

bottleneck is computing𝑂 ((𝑛+𝑚) log(𝑛+𝑚)) comparisons. Addition-

ally, local computations cost𝑂 (𝑛 log𝑛) for the server and𝑂 (𝑚 log𝑚)
for the client.

The security claim in the above lemma follows directly since

our protocol is entirely done in MPC and any additional informa-

tion revealed beyond the output shares is indistinguishable from

random.

4.2.3 Poly-ROOM. Finally, as our main instantiation for ROOM,

we present a protocol that has MPC runtime similar to Basic-ROOM

(independent of 𝑛 and linear on𝑚), but avoids the dependence on

the key domain in initialization.

The main insight for our new construction is that the server can

construct a polynomial which evaluates, for inputs which are keys

of items in the server’s database, to outputs which are encrypted

versions of the corresponding values in the server’s database. The

encryptions are done with a key that is only known to the server.

The resulting polynomial is of degree 𝑛 and is therefore a concise

representation of the data. At the same time, the polynomial looks

pseudorandom (since it is an interpolation over pseudorandom

points), and therefore hides the points which have non-zero values.

The server sends this polynomial to the client. The client then

evaluates the polynomial on its inputs and learns𝑚 outputs. For

each of the client’s keys present in the database, the client obtains

the encrypted version of the corresponding database value. The

two parties then run a secure computation that decrypts each value

that the client obtained, checks if it decrypts correctly (i.e., ends

with a fixed string of zeros), and reveals to the client either a value

5

Let d ∈ (K ×V)𝑛 , and 𝛽 ∈ V𝑚 , q ∈ K𝑚 . Assume d is sorted

by the first component in each entry, and q is sorted.

Inputs:

Server: d, 𝛽 .

Client: q.

Output (shared): [[r]] ∈ V𝑚

ROOM Protocol: Client and Server run the following

computation in a secure two-party computation:

(1) Construct wC = ((q𝑖 , 𝛽𝑖 , 𝑖))𝑖∈[𝑚] and
wS = ((d𝑖 ,1, d𝑖 ,2, 0))𝑖∈[𝑛] Merge wC

and wS
into a

vector v of length 𝑛 +𝑚, sorted lexicographically by the

first and then third component.

(2) Compute vectors b and c inV𝑚+𝑛 and {0, . . . ,𝑚}𝑚+𝑛
by comparing adjacent entries from v (where

v𝑖 = (𝑎,𝑏, 𝑐), v𝑖+1 = (𝑎′,𝑏 ′, 𝑐 ′)). In particular for

𝑖 ∈ [𝑚 + 𝑛 − 1]:

(b𝑖+1, c𝑖+1) =
{
(𝑏, 𝑐 ′) if 𝑎 = 𝑎′

(𝑏 ′, 𝑐 ′) otherwise.

In addition, for v1 = (𝑎,𝑏, 𝑐) we set (b1, c1) = (𝑏, 𝑐).
(3) Shuffle b and c according to a random permutation 𝜋

unknown to either party. I.e., set b̃ = 𝜋 (b) and c̃ = 𝜋 (c).
(4) Iterate over b̃ and c̃ in parallel. Whenever c̃𝑖 ≠ 0, reveal

c̃𝑖 and share b̃𝑖 between the parties, who both set

[[r]] c̃𝑖 = [[b̃]]𝑖 .

Figure 4: Circuit-ROOM Protocol.

in the database or a default value from 𝛽 depending on the result

of that check. Note that the check passes if the key in the client’s

query is in d.

Lemma 4.3. The protocol in Figure 5 is a secure instantiation for the

ROOM functionality. The initialization cost includes𝑂 (𝑛 log2 𝑛) work
for the server and communication of 𝑂 (𝑛) to send the polynomial to

the client. The online cost of the protocol has 𝑂 (𝑚) cost for the MPC

execution and then𝑂 ((𝑚 +𝑛) log2 𝑛) local computation for the client.

The overhead of the local computation is based on running ef-

ficient algorithms for polynomial interpolation and multi-point

evaluation, which interpolate a polynomial of degree 𝑛 in time

𝑂 (𝑛 log2 𝑛), and evaluate such a polynomial on 𝑛 points also in

time 𝑂 (𝑛 log2 𝑛) [28] (we used an implementation of these proto-

cols in our experiments).

Security Sketch. The security of the construction follows from the

fact that the polynomial that the client receives is pseudorandom

since the encryptions 𝑐𝑖 used in step 2) are pseudorandom. The rest

of the computation is implemented in an MPC protocol.

Let d ∈ (K ×V)𝑛 , 𝛽 ∈ V𝑚 , q ∈ K𝑚 . Let 𝑠 ∈ N be a

statistical security parameter and K be a PRF key.

Inputs:

Server: d, 𝛽 , K,

Client: q ∈ K𝑚 .

Output (shared): [[r]] ∈ V𝑚

ROOM Protocol:

(1) For each 𝑡 𝑗 = (𝑖 , 𝑣) ∈ d, Server computes

𝑐𝑖 = FK (𝑖) ⊕ (𝑣 | | 0𝑠).
(2) Server interpolates a polynomial P of degree 𝑛, such that

for each (𝑖 , 𝑣) ∈ d, P(𝑖) = 𝑐𝑖 .
(3) Server sends the coefficients of P to Client.

(4) For each 𝑖 ∈ [𝑚], the parties run a two-party

computation protocol where Server has input K and

Client has inputs q𝑖 ,P(q𝑖). Both parties receive shares

[[r]] as output, where

r𝑖 =
{
𝑣 if P(q𝑖) ⊕ FK (q𝑖) = (𝑣 | | 0𝑠)
𝛽𝑖 , otherwise.

Figure 5: Poly-ROOM Protocol.

5 ROOM FOR SECURE SPARSE LINEAR

ALGEBRA

In this section we present efficient two-party protocols for sev-

eral common sparse linear algebra operations, which leverage the

ROOM functionality in different ways. Similar to how sparse BLAS

operations are presented in [13], we first focus on lower-level prim-

itives (Gather and Scatter), and then use them to implement higher-

level functionality, namely matrix-vector multiplication. However,

we stress that our goal is not to provide implementations of each

function described in [13], but instead focus on the operations

necessary for the applications described in Section 6.

5.1 Gather and Scatter

Intuitively, the Gather and Scatter operations correspond, respec-

tively, to a sequence of indexed reads from a sparse array, and a

sequence of indexed writes into a sparse array. More concretely,

Gather takes a vector of indices q = (𝑖1, . . . , 𝑖𝑛) and a (usually

sparse) vector v, and returns the vector r = (v𝑖1 , . . . , v𝑖𝑛) that re-
sults from gathering the values from v at the indices in q. Scatter
on the other hand takes a vector of values v, a vector of indices
q = (𝑖1, . . . , 𝑖𝑛), and a vector u, and updates u at each position 𝑖 𝑗
with the new value v𝑗 .

We transfer the two operations to the two-party setting as fol-

lows. Given a sparse vector v held by Party P2, and a set of query

indices q held by Party P1, Gather(v, q) returns additive shares of
a dense vector v′, with v′

𝑖
= vq𝑖 . It is clear that this is equivalent to

a ROOM query with P2 and P1 as the server and client, and inputs

q, d =
{
(𝑖 , v𝑖) | v𝑖 ≠ 0

}
, and 𝛽 = 0.

6

Let v ∈ Z𝑙
2
𝜎 , and let 𝑛 ≥ 𝑙 be a public parameter.

Parties: P1, P2.

Inputs:

P1: Vector share [[v]]P1
, indices 𝑖1, . . . , 𝑖𝑙 .

P2: Vector share [[v]]P2
.

Outputs: Vector shares [[v′]], v′ ∈ Z𝑛
2
𝜎 , where

v′𝑖 =
{

v𝑗 , if ∃ 𝑗 : 𝑖 𝑗 = 𝑖 ,

0 otherwise.

Figure 6: ScatterInit with shared inputs.

For Scatter, we focus on a variant where u is zero. We call this

functionality ScatterInit. Given a dense vector v and a set of

indices q, both of size 𝑙 , and an integer 𝑛 ≥ 𝑙 , ScatterInit(v, q,𝑛)
returns a vector v′ of length 𝑛 such that v′q𝑖 = v𝑖 for all 𝑖 ∈ [𝑙],
and v′ 𝑗 = 0 if 𝑗 ∉ q. As in the case of gather, we are interested in

secure protocols for ScatterInit that output v′ additively shared.

Regarding the inputs, we focus on the case where the input vector

is also secret-shared between the parties, while q is held by one

party, and 𝑛 is a public parameter. The reason for this setting will

become apparent when we present our protocol for row-sparse

matrix multiplication in Section 5.2.2, as it uses ScatterInit as a

sub-protocol.

We formally define the functionality for ScatterInit in Figure 6.

A naive implementation using generic MPC would take prohib-

itive 𝑂 (𝑛𝑙𝜎) communication and computation. A protocol with

reduced communication can be obtained from Function Secret Shar-

ing (FSS) [6], but its local computation remains in 𝑂 (𝑛𝑙) which
turns out to be the bottleneck in practice. In the next paragraph,

we describe a version that is concretely efficient, trading asymp-

totic communication complexity against computation time. The

two alternatives above are described in Appendix A.

ScatterInit from ROOM and OT Extension. Our protocol is de-

scribed in Figure 7. The idea is that P2 generates its random out-

put share [[v′]]P2
and then P1 and P2 execute an MPC protocol

from which P1 obtains (a) all entries of [[v′]]P2
at indices not in

{𝑖1, . . . , 𝑖𝑙 }, and (b) its share of the output for the remaining indices,

which is obtained securely from P2’s share of the output and the

shared input vector v. For (a) we use a well-known (𝑛 − 𝑙)-out-of-𝑛
OT protocol that we describe in the next paragraph. For (b) we use

a ROOM query followed by a two-party computation where P2’s
output share is reconstructed in the MPC (step 4 in Figure 7) and

used to mask v to produce P1’s output share. Note that Basic-ROOM
is the natural instantiation to use in this setting.

The (𝑛− 𝑙)-out-of-𝑛 OT in step 2 is implemented using a folklore

protocol that requires 𝑛 invocations of 1-out-of-2 OTs and an 𝑙-out-

of-𝑛 Shamir secret sharing of a PRF key. It works by the sender

encrypting each of its 𝑛 inputs using a key Kot, and then letting the

receiver learn in each of the 𝑛 OTs either an encrypted input or a

share (in 𝑙-out-of-𝑛 secret sharing) of Kot. This forces the receiver

Let v ∈ Z𝑙
2
𝜎 , and let 𝑛 ≥ 𝑙 be a public parameter.

Parties: P1, P2.

Inputs:

P1: Vector share [[v]]P1
, indices 𝑖1, . . . , 𝑖𝑙 .

P2: Vector share [[v]]P2
, key K.

Outputs: [[v′]], for v′ ∈ Z𝑛
2
𝜎 , as defined in Figure 6.

Protocol:

(1) For each 𝑖 ∈ [𝑛], P2 generates a random value 𝑠𝑖 .

(2) The parties run a (𝑛 − 𝑙)-out-of-𝑛 Oblivious Transfer

protocol, with P2 acting as the sender, for P1 to obtain

u = ((𝑖 , 𝑠𝑖) | 𝑖 ∉ {𝑖1, . . . , 𝑖𝑙 }).
(3) The parties run Room with P2 acting as Server and P1 as

Client, and inputs q = (𝑖1, . . . , 𝑖𝑙), d = ((𝑖 , 𝑠𝑖))𝑖∈𝑛 , and
𝛽 =⊥𝑛 . The parties obtain shares of the vector

ū = (𝑠𝑖 | 𝑖 ∈ {𝑖1, . . . , 𝑖𝑙 }).
(4) The parties engage in a two-party computation with

inputs [[v]]P1
, [[v]]P2

, [[ū]]P1
, and [[ū]]P2

, where v and ū
are reconstructed, and s̄ = v − ū is revealed to P1.

(5) P2 sets [[v′]]P2
= (𝑠𝑖)𝑖∈[𝑛] and P1 sets [[v′]]P1

= s with

s𝑖 =
{

s̄𝑗 , if 𝑖 = 𝑖 𝑗 ∈ {𝑖1, . . . , 𝑖𝑙 },
−𝑠𝑖 , where (𝑖 , 𝑠𝑖) ∈ u, otherwise.

Figure 7: Our ScatterInit protocol based on ROOM.

to learn at least 𝑙 shares of the key, and therefore at most 𝑛 − 𝑙
values.

Security Sketch. We argue that the view of each party after each

step in the protocol includes only random values in addition to its

inputs. This true after the first two steps since first P2 generates
random shares and then, using the security of the oblivious transfer,

P1 obtains a subset of them while P2 obtains nothing. The security
properties of the ROOM protocol guarantee that the shares that

each party obtains after the third step are also indistinguishable

from random from that party’s view. In the secure computation

in step four, P1 obtains values that depend on the random masks

ū. The fact that P1 does not know ū, together with the guarantees

of the secure computation, ensures the output is indistinguishable

from random for P1. The last step involves only local computation

for each party and thus does not change their views.

We will now use the protocols from the previous section to build

sparse matrix-vector multiplication protocols in the next section.

Concretely, we will use Gather for column sparsity (Section 5.2.1),

and ScatterInit for row sparsity (Section 5.2.2).

5.2 Sparse Matrix-Vector Multiplication

Throughout this subsection we consider party P1 holding a private

matrix M ∈ Z𝑛×𝑚
2
𝜎 , with exactly 𝑙 nonzero columns or rows, depend-

ing on the context. Party P2 holds a private vector v ∈ Z𝑚
2
𝜎 with

7

𝑘 nonzero entries. The value of 𝜎 is at least 64 in standard ML ap-

plications, and potentially more in settings that require additional

precision to represent real numbers using fixed point arithmetic, or

secret shares. The goal of all protocols is to compute the vector Mv
of length 𝑛, additively shared between P1 and P2. This allows us to
easily integrate these protocols as part of higher-level secure proto-

cols, such as the solutions to machine learning problems presented

in Section 6. While we assume that 𝑛,𝑚, 𝑙 ,𝑘 and 𝜎 are public, no

additional information is revealed to the parties.

The underlying theme of our protocols is different private re-

ductions of sparse matrix-vector multiplication to the dense case.

The goal of such reductions is to avoid multiplications by zero, and

hence have the cost of the dense multiplication be dependent only

on 𝑙 and 𝑘 , instead of the total size of the sparse dimension. There-

fore, the last step in our protocols will be to use a sub-protocol for

two-party dense matrix-vector multiplication. As discussed in Sec-

tion 2, efficient dedicated protocols for this functionality have been

recently presented. This includes solutions based on precomputed

triples by Mohassel and Zhang [29], as well as solutions based on

homomorphic encryption [22], and server-aided OT [26]. In our

protocols in this section we will refer to a generic dense matrix

multiplication protocol Dense-Mult, as well as to a generic ROOM

protocol Room. The concrete functionality of Dense-Mult takes as

input a matrix from one party and a vector from the other party and

computes their product as an additive share. In our implementation,

we use the protocols from [29].

5.2.1 Column-Sparse Matrix. We propose two protocols for the

case where M is sparse in the second dimension (i.e., there is a

small number of non-zero columns). These have different tradeoffs

depending on the relationship between the sparsity of M and v.
Note that matrix-vector multiplication, where the matrix is sparse

in its columns, can be viewed as a generalization of sparse vector

inner product, and thus the following protocols can also be used

for this functionality.

Our first protocol is shown in Figure 8. Let q = (𝑖1, . . . , 𝑖𝑙) be the
indexes of the non-zero columns in M. The goal of the sparse-to-

dense reduction here is to replace the computation of Mv by the

computation of M′v′, where M′ is the sub-matrix of M containing

only the non-zero columns 𝑖1, . . . , 𝑖𝑙 , and v′ is the restriction of v to

the indices in q. Party P1 can compute M′ locally. The two parties

then call the Gather protocol to obtain shares ([[v′]]P1
, [[v′]]P2

)
of v′. At this point the parties invoke the dense matrix multiplica-

tion protocol to compute M′[[v′]]P2
. Further, P1 locally computes

M′[[v′]]P1
and adds the result to its share of M′[[v′]]P2

. As a result,

both parties obtain shares of M′v′. The security of the complete pro-

tocol follows directly from the security of the protocols for ROOM

and dense multiplication.

There are two drawbacks of the above protocol: (a) the space

of values of the ROOM sub-protocol coincides with the domain of

the elements of P2’s input vector, Z2𝜎 . This is a problem in high-

precision settings where 𝜎 > 64, which are not uncommon in ML

applications where real numbers are encoded in fixed point. (b)

the length of the ROOM query 𝑞 is 𝑙 , which is the sparsity of the

server’s input matrix. In many settings, the vector 𝑣 has less non-

zero values than 𝑀 , so 𝑘 < 𝑙 . That is why we would like to have

our ROOM query to only be of the smaller size 𝑘 , which for two

Parties: P1, P2.

Inputs:

P1: Matrix M ∈ Z𝑛×𝑚
2
𝜎 , with 𝑙 nonzero columns.

P2: Vector v ∈ Z𝑚
2
𝜎 , with 𝑘 nonzero entries.

Outputs: [[Mv]] = ([[Mv]]P1
, [[Mv]]P2

)
Protocol:(1) P1 sets q = (𝑖1, . . . , 𝑖𝑙), the (sorted) list of

indexes of non-zero columns in M.

(2) P1 and P2 run Gather(v, q) to obtain shares

([[v′]]P1
, [[v′]]P2

) of v′, which is the restriction of v to

the indexes in q.

(3) P1 locally computes M′ sub-matrix of M containing only

the nonzero columns.

(4) P1 and P2 run Dense-Mult with inputs M′ and [[v′]]P2

and obtain shares ([[M′[[v′]]P2
]]P1

, [[M′[[v′]]P2
]]P2
) of

M′[[v′]]P2
.

(5) P2 sets the output [[Mv]]P2
to [[M′[[v′]]P2

]]P2
and P1

sets [[Mv]]P1
to [[M′[[v′]]P2

]]P1
+M′[[v′]]P1

.

Figure 8: Our first protocol for column-sparse matrix and

vector multiplication.

of our constructions directly translates into a speed-up in MPC

time (see Table 1). However, if we simply have P1 act as the server
and put the non-zero columns of M in the ROOM protocol as the

database, while v becomes the query, the values in the ROOM

protocol become huge, as it would hold vectors of length 𝑛, namely

the first dimension of M.

Our next protocol, shown in Figure 9, solves both issues (a) and

(b), by relying on a technique based on correlated permutations

introduced by Schoppmann et al. [35], which we exploit here by

means of the ROOM construction. First, our protocol ensures that

the server’s input to the ROOM functionality are elements inK×K ,

thus avoiding the dependence on 𝜎 . Second, it allows us to swap

the roles of P1 and P2 in the ROOM protocol, allowing us to choose

them depending on the relationship between 𝑘 and 𝑙 , as well as

other nonfunctional requirements induced by computation and

communication limitations of P1 and P2.
These two optimizations come at the cost of replacing the input

size to the dense multiplication sub-protocol from 2𝑙𝑛𝜎 to 2(𝑙+𝑘)𝑛𝜎 .
Hence, in practice the actual values of min(𝑙 ,𝑘), 𝑛, and 𝜎 determine

a trade-off between the protocols in Figure 8 and Figure 9.

The intuition behind the construction in Figure 9 is as follows.

Let M̂ and v̂ be the result of removing zero columns and entries of M
and v, as defined in Figure 9, and let M̄ and v̄ be M̂ and v̂ paddedwith

𝑘 zero columns and 𝑙 zeroes, respectively. Now consider a trusted

third party that provides party Pi with a random permutation 𝜋𝑖
such that, after permuting columns of M̄ and v̄ according to 𝜋1 and

𝜋2 they are “well aligned”, meaning 𝜋1 (M̄)𝜋2 (v̄) = Mv. Note that it
is crucial that 𝜋1 and 𝜋2 look random to P1 and P2 respectively. To
achieve that, the third party generates random 𝜋1 and 𝜋2 subject to

the constraint that ∀𝑖 ∈ [𝑙 +𝑘] : 𝜋1 (𝑖) = 𝜋2 (𝑖) ⇔ 𝑖 ∈ (𝐴∩𝐵), where
8

Parties: P1, P2.

Inputs:

P1: Matrix M ∈ Z𝑛×𝑚
2
𝜎 , with 𝑙 nonzero columns.

P2: Vector v ∈ Z𝑚
2
𝜎 , with 𝑘 nonzero entries.

Outputs: [[Mv]]
Protocol:

(1) P1 chooses a random permutation 𝜋1 of [𝑙 + 𝑘] and sets

d = ((𝑎1,𝜋1 (1)), . . . , (𝑎𝑘 ,𝜋1 (𝑙))), and
𝛽 = (𝜋1 (𝑙 + 1), . . . ,𝜋1 (𝑙 + 𝑘)), where the 𝑎𝑖 ’s are the
indices of the nonzero columns in M.

(2) P2 sets q = (𝑏1, . . . ,𝑏𝑘), where the 𝑏𝑖 ’s are the indices of
the nonzero values in v.

(3) P1 and P2 run a designated-output Room with inputs

d, 𝛽 , q. P2 obtains r = (𝑝𝑖)𝑖∈[𝑘] .

(4) Let M̂ ∈ Z𝑛×𝑙
2
𝜎 be M but with its zero columns removed.

P1 defines M̄ as the result of appending 𝑘 zero columns

to M̂, and computes M′ = 𝜋1 (M̄), where 𝜋1 permutes

the columns of M̄.

(5) Let v̂ ∈ Z𝑘
2
𝜎 be v but with its zero entries removed. P2

defines a permutation 𝜋2 : [𝑘 + 𝑙] ↦→ [𝑘 + 𝑙] such that

𝜋2 (𝑖) = 𝑝𝑖 for 1 ≤ 𝑖 ≤ 𝑘 . The values 𝜋2 (𝑖) for
𝑘 + 1 ≤ 𝑖 ≤ 𝑘 + 𝑙 are a random permutation of

{1, . . . ,𝑚} \ {𝑝1, . . . ,𝑝𝑘 } (the set of unused indexes in

[𝑚]). P2 computes v′ = 𝜋2 (v̄), where v̄ is v̂ padded with

zeros up to length 𝑘 + 𝑙 .
(6) P1 and P2 run Dense-Mult with inputs M′ and v′ to

obtain shares of Mv.

Figure 9: Column-sparse matrix and sparse vector multipli-

cation protocol.

𝐴 and 𝐵 are the sets of indexes of nonzero columns and values in

M and v.
The idea of [35] is to implement the above third party func-

tionality in MPC using garbled circuits. Our protocol in Figure 9

implements this functionality in an different way using the ROOM

primitive as follows. P1 acts as the ROOM’s server with inputs

d = ((𝑎1,𝜋1 (1)), . . . , (𝑎𝑘 ,𝜋1 (𝑙))) and 𝛽 = (𝜋1 (𝑘 + 1), . . . ,𝜋1 (𝑙 +𝑘)),
where 𝜋1 is a random permutation of [𝑘 + 𝑙] chosen by P1, and
P2’s query is simply q = (𝑏1, . . . ,𝑏𝑘) (see steps 1 and 2 in Figure 9).

The outputs for the two parties from the ROOM protocol are secret

shares of the array r = (𝑝𝑖)𝑖∈[𝑘] . Party P1 provides P2 with their

share of the 𝑝𝑖 ’s so that P2 can reconstruct 𝜋2. Note that this com-

putation is independent of both 𝑛 and 𝜎 , in contrast to the protocol

in Figure 8. Moreover, it provides flexibility to exchange the roles

of the server and client in the ROOM protocol achieving the second

goal defined above.

The security of this construction follows from the security of

the ROOM protocol and the dense multiplication. The output of

the ROOM allows party P2 to obtain the evaluation of a random

permutation 𝜋1 on its non-zero entries. The rest of the protocol

Server Client

𝐷 = 𝑑 =

?

𝑘-Nearest Neighbors

(1) Compute sim(𝑝 ,𝑑) for
all 𝑝 ∈ 𝐷 .

(2) Compute 𝑐𝑑 by
majority vote among
the 𝑘 nearest 𝑝 ∈ 𝐷 .

𝑐𝑑

Figure 10: Setting for our secure 𝑘-NN application. We focus

on a single server, although the general protocol allows 𝐷 to

be distributed among several servers [35].

involves local computations until the final secure computation for

the dense multiplication.

5.2.2 Row-Sparse Matrix. We now consider the case where M is

sparse in its first dimension. In our solution to this variant P1 defines
M′ as the matrix resulting from removing all zero rows from M.

Then the parties run a protocol to compute shares of the vector

r = M′v of length 𝑙 . For this, we can either use the protocol from

Figure 8, if v is sparse, or we can rely on dense multiplication. In

any case, r now contains all non-zero values of the desired result,

but its dimensions do not match Mv. However, note that Mv can be

recovered from r by inserting 𝑛 − 𝑙 zeros between the values of r at
positions corresponding to zero rows in the original matrix M. This

can directly be achieved by running ScatterInit(r, i,𝑛), where i
contains the indexes of non-zero rows in M.

In our higher-level applications, which we describe next, we

will use the matrix-vector multiplications described here in vari-

ous ways. In particular, we use the column-sparse protocol from

Figure 9 for 𝑘-NN classification, and the column-sparse and row-

sparse protocols from Figure 8 and the previous section for logistic

regression.

6 APPLICATIONS

We consider three applications to exemplify the features of our

framework. These include non-parametric data analysis tasks (naive

Bayes and 𝑘-nearest neighbors) as well as parametric data analysis

tasks (logistic regression trained by stochastic gradient descent

(SGD)). Besides showing the flexibility of our framework, our moti-

vation to select this concrete set of applications is to enable compar-

isons with previous works: secure naive Bayes classification was

studied by Bost et al. [5], Schoppmann et al. [35] recently proposed

a custom protocol for 𝑘-nearest neighbors that exploits sparsity,

and the SecureML work by Mohassel and Zhang [29] is the state of

the art in secure two-party logistic regression learning with SGD.

Due to space considerations, and since it mostly consists of

ROOM queries, we present our Naive Bayes classification in Appen-

dix B. The remainder of this section focuses on 𝑘-NN and two-party

SGD, both of which make use of the advanced matrix multiplication

protocols we presented in Section 5.2.

9

P1 P2

𝐷1 = 𝐷2 =
Logistic Regression

Compute 𝜃 by iterat-
ing over 𝐷1 and 𝐷2 in
batches. See Figure 12.[[𝜃]]P1

[[𝜃]]P2

Figure 11: Setting for two-party logistic regression. Each

party holds a set of labeled documents, and the output is a

model that is secret-shared between the two parties.

6.1 Similarity Computation and 𝑘-Nearest

Neighbors

In secure 𝑘-NN [35], we have a database 𝐷 of labeled documents

distributed among one or multiple servers, where each 𝑑 ∈ 𝐷 is

represented as a feature vector using TF-IDF encoding. A client

wants to classify a document 𝑑 against 𝐷 . The 𝑘-NN classification

algorithm, which is parameterized by a constant 𝑘 , achieves that

goal by (a) computing sim(𝑑 ,𝑝), for each 𝑝 ∈ 𝐷 , and (b) assigning a
class 𝑐𝑑 to 𝑑 as the result of a majority vote among the classes of the

𝑘 most similar documents according to the similarities computed

in step (a). See Figure 10 for a schematic depiction of this setting.

In [35], the authors observe that for the commonly used cosine

similarity metric, secure 𝑘-NN reduces to one two-party sparse

matrix-vector multiplication between the client and each of the

data holders, followed by a generic MPC phase for the majority

vote. Their construction for similarity computation is equivalent

to the protocol in Figure 9 instantiated with Circuit-ROOM, which

we use as a baseline in our experimental evaluation (Section 8.1).

Note that this approach already exploits sparsity in the data.

However, our modular framework also allows us to use differ-

ent ROOM primitives to achieve better efficiency in the online

phase, while matching the speedups of [35] in the offline phase (cf.

Section 2). In Section 8.1, we show that our Poly-ROOM indeed

improves the online phase by up to 5x.

6.2 Logistic Regression Training

A drawback of non-parametric approaches like 𝑘-NN is that each

query depends on the entire training database. To circumvent

this, parametric approaches such as logistic regression first train a

smallermodel 𝜃 , which is then used to answer classification queries

faster.

Here, we assume a two-party setting where parties P1 and P2
hold a horizontally partitioned database, i.e., each party holds a

sparse dataset, where P𝑖 holds Xi ∈ R𝑛𝑖×𝑑 , yi ∈ R𝑛𝑖 , with Xi
being

the set of 𝑛𝑖 records with 𝑑 features and y𝑖 being the vector of

corresponding binary target labels. This corresponds to a training

dataset of size 𝑛 × 𝑑 ,𝑛 = 𝑛1 + 𝑛2 distributed among P1 and P2,
and the goal is to build a shared model 𝜃 that is able to accurately

predict a target value for an unlabeled record, while keeping the

local training datasets private (cf. Figure 11).

A widely used algorithm for building this kind of model is mini-

batched stochastic gradient descent (SGD). Here, the empirical loss of

the model 𝜃 is minimized by iteratively refining it with an update

Parties: P1, P2.

Inputs:

P1: 𝐷1 = (X1
, y1), X1 ∈ R𝑛×𝑑 , y1 ∈ {0, 1}𝑛 ,

P2: 𝐷2 = (X2
, y2), X2 ∈ R𝑛×𝑑 , y2 ∈ {0, 1}𝑛 .

Output: Shared model [[𝜃]].
Protocol:

1: 𝜃0 = (0)𝑖∈[𝑑]
2: for 𝑇 epochs do

3: for 𝑖 ∈ ⌊𝑛
𝑏
⌋ do

4: for 𝑗 ∈ [2] do
5: Bj ← Xj

[𝑖 ..𝑖+𝑏]
6: [[uj]] ← MvMult(Bj

, [[𝜃]])
7: [[vj]] ← Sigmoid([[uj]])
8: [[wj]] ← [[vj]] − yj

[𝑖 ..𝑖+𝑏]
9: [[gj]] ← MvMult(Bj⊤

, [[wj]])
10: end for

11: [[g]] ← 1

2𝑏
([[g1]] + [[g2]])

12: [[𝜃]] ← [[𝜃]] − 𝜂 [[g]]
13: end for

14: end for

Figure 12: Secure two-party gradient descent on sparse dis-

tributed training data.

rule of the form 𝜃𝑖+1 = 𝜃𝑖 − 𝜂g, for a step size 𝜂 and a gradient

quantity g. The training dataset is partitioned in so-called mini-

batches, each of which is used to compute a model update: In a

forward pass, the prediction loss of the current batch is computed,

and the gradient g of that loss is obtained as the result of a backward

pass.

Figure 12 shows a secure protocol for two-party SGD training.

It relies on a secure matrix multiplication protocol MvMult, and

an approximation of the logistic function Sigmoid(x) = 1/(1 +
𝑒x) introduced by Mohassel and Zhang [29], implemented with a

garbled circuit. The security of the protocol follows from the fact

that 𝜃 is always kept secret shared, and secure implementations of

the two sub-protocols above.

We now discuss how the calls to MvMult in lines 6 and 9 of the

protocol are instantiated with our protocols from Section 5.2. First

note that, as the Xj
’s are sparse, so will be their mini-batches Bj

contributed by P1 or P2 in line 5. In fact, as common mini-batch

sizes are as small as 64 or at most 128, the mini-batches will be

sparse in their columns. We show that this is the case in the context

of concrete real-world datasets in Section 8. Hence, the call to

MvMult in line 6 involves a column-sparse matrix and a dense

vector, and thus we choose our protocol from Figure 8 instantiated

with Basic-ROOM. The choice of Basic-ROOM is justified by the fact

that the keys of [[𝜃]]P2
span the whole key domainK = [𝑑], as it is

a secret share, and hence Basic-ROOM does not incur unneccesary

overhead in this case. On the other hand, the computation of gj
in

line 9 is a multiplication between a row sparse matrix and a dense

vector, for which we use our protocol from Section 5.2.2.

10

In Section 8.2, we compare the runtimes of our sparse implemen-

tation to those reported in [29]. With the exception of the smallest

dataset, we improve computation time by a factor of 2x–11x (LAN)

and 12x–94x (WAN), and communication by 26x–215x (LAN) and

4x–10x (WAN).

7 IMPLEMENTATION OF OUR FRAMEWORK

For our implementation, we follow the general architecture pre-

sented in Figure 1. For each layer of abstraction, we define generic

interfaces that are then matched by our concrete implementations.

This allows, for example, to use the same matrix multiplication

function for different ROOM instantiations, which in turn simpli-

fies development and makes sure our framework can be extended

seamlessly.

Most of our library is written as generic C++ templates that

abstract away from concrete integer, vector and matrix types. This

allows us to use Eigen’s expression templates [18], and thus avoid

unnecessary local matrix operations. For generic two-party com-

putation based on garbled circuits, we use Obliv-C [39]. As a PRF,

we use the AES-128 implementation in Obliv-C by Doerner [12].

The fast polynomial interpolation and evaluation that we need for

Poly-ROOM and ScatterInit is done using Yanai’s FastPolynomial

library [37]. The code for our framework is publicly available for

download.
1

8 EXPERIMENTAL EVALUATION

Given the large number of parameters and tradeoffs that our frame-

work exhibits, a complete layer-by-layer evaluation of all compo-

nents from Figure 1 with all ranges of useful parameters is both

infeasible and not very useful. Instead, we chose to run experi-

ments on only two abstraction layers: ROOM micro-benchmarks,

which allow to compare our constructions with each other and with

future improvements, and entire applications, which allow us to

compare against previous work on application-specific protocols.

We present our micro-benchmarks in Appendix C.2, and focus on

our applications for the remainder of this section.

We implement each of the applications presented in Section 6 in

our framework. All of our applications are implemented end-to-end,

meaning they take the sparse feature vectors as inputs and return

the desired class or shared regression model as output. For Naive

Bayes, we refer to Appendix B.1.1.

We analyze three real-world datasets that represent common

classification tasks: sentiment analysis [27], topic identification [34],

and language detection [36]. Table 2 summarizes the properties of

each of the datasets, including the average number of features of

single documents. We also report, for reference, the classification

accuracies that can be achieved using the different methods out-

lined in Section 6: logistic regression, naive Bayes, and 𝑘-nearest

neighbors. These were obtained in the clear using out-of-the-box

Scikit-Learn [32] model fitting, without any sophisticated hyper-

parameter tuning.

For the Movie Reviews and 20Newsgroups datasets, features

correspond to words, using a TF-IDF representation. We assume a

public vocabulary of 150000 words for the first two datasets (Movie

reviews and 20newsgroups). This number has been used in previous

1
https://github.com/schoppmp/room-framework

Movies Newsgroups Languages, ngrams=1 Languages, ngrams=2
Dataset

1s

2s
5s

10s

30s
1m
2m
5m

10m

30m
1h
2h
5h

10h
1d
2d

R
un

ni
ng

Ti
m

e

k-NN (LAN)

Dense
Basic-ROOM
Circuit-ROOM
Poly-ROOM

O�line time
Online time

Figure 13: Running times of the matrix-vector multiplica-

tion needed for a single 𝑘-NN classification.

work [35] and corresponds to the size of a large dictionary of English

words. For the language classification task,𝑛-grams of𝑛 consecutive

characters are used instead. We assume the set of characters is

public.

All our experiments are performed on Azure DS14 v2 instances

with 110 GB of memory each, using a single core. We note that

the memory bottleneck in our experiments is the "dense" case that

we use as a baseline, not our ROOM-based implementations. For

LAN experiments, we use instances in the same region, while for

WAN experiments, we place one in the US and one in Europe. The

measured roundtrip time was 0.7ms in the LAN setting, and 85ms

in the WAN setting. The average data transfer rates were 2.73Gbit/s

and 245Mbit/s, respectively. As in previous work [29, 35], 64-bit

integers are used for K andV . Garbled circuits are run with 80-bit

security, due to Obliv-C. For Poly-ROOM, we use 𝑠 = 40 bits of

statistical security.

8.1 𝑘-Nearest Neighbors

For 𝑘-NN, the efficiency bottleneck is the computation of scores of

the query document with respect to each training sample, which

reduces to a secure matrix-vector multiplication where the matrix

is sparse in its columns and the vector is sparse. Thus, we can

implement this protocol using Figure 9, instantiated with any of

our ROOMs.

As observed in Section 6.1, Schoppmann et al. [35] solve this

problem using an approach similar to Circuit-ROOM, which is

why we use it as the baseline here. In most of our experiments

(Figure 13), their approach turns out to be faster in than a simple

dense multiplication.

Our new constructions using Basic-ROOM and Poly-ROOM

achieve a similar improvement over the dense case (up to 82x)

when it comes to total time, and at the same time a 2–5x improved

online time compared to [35]. Note that the online time includes

top-𝑘 selection (implemented using generic MPC) and multiplica-

tion of the reduced matrices, both of which are the same for [35]

and us. If we focus on the reduction time alone, our new approaches

are up to 40x faster.

11

https://github.com/schoppmp/room-framework

Dataset Documents Classes

Nonzero Features Accuracy

Single (avg.) Total Log. Regression Naive Bayes 𝑘-NN

Movies [27] 34341 2 136 95626 0.88 0.85 (*) 0.74

Newsgroups [34] 9051 20 98 101631 0.73 0.76 0.57

Languages [36], ngrams=1 783 11 43 1033 0.96 0.87 0.96

Languages [36], ngrams=2 783 11 231 9915 0.99 0.99 0.99

Table 2: Real-world datasets used in the experiments. These comprise a variety of classification tasks such as sentiment anal-

ysis of movie reviews (Movies), topic identification (Newsgroups), and language identification (Languages). For the latter, we

also investigate the effect of analyzing larger n-grams instead of single characters.

(*) 𝑘-NN was trained on a subsample of 10𝐾 examples due to memory limitations.

Dataset

Offline Time Total Time Offline Communication Total Communication

SecureML Ours SecureML Ours SecureML Ours SecureML Ours

Movies 6h17m45.06s 14m19.29s 6h29m28.37s 2h43m46.09s 4.8 TiB 186.25GiB 4.8 TiB 187.42GiB

Newsgroups 1h39m33.66s 3m34.55s 1h42m38.14s 42m37.68s 1.26 TiB 46.5GiB 1.26 TiB 47.63GiB

Languages, ngrams=1 3.56s 1.76s 5.9s 29.89s 789.88MiB 390.75MiB 790.9MiB 500.61MiB

Languages, ngrams=2 1h1m16.34s 13.07s 1h3m7.12s 6m17.51s 796.82GiB 2.83GiB 797.85GiB 3.69GiB

Table 3: Comparison of our approach with SecureML [29] in the LAN setting. Offline times are extrapolated from the results

reported in [29]. In all experiments, we use a batch size of 128. The total time represents a full training epoch, including

forward pass, sigmoid activation function, and backward pass.

128 256 512 1024
Batch Size

10s

30s

1m

2m

5m

10m

30m

1h

R
un

ni
ng

ti
m

e

Logistic Regression (LAN)

Dense
10.0% Nonzeros
5.0% Nonzeros
2.0% Nonzeros
1.0% Nonzeros

Figure 14: Total running time of a Stochastic Gradient De-

scent (SGD) training epoch for logistic regression. We use

synthetic datasets with 1024 documents per server, a vocab-

ulary size of 150k, and varying sparsity per batch.

8.2 Logistic Regression Training

For each of our datasets, we also evaluate the time needed to build a

logistic model using our protocol from Figure 12. We compare two

approaches. One uses the state-of-the-art dense matrix multiplica-

tion protocol to instantiate MvMult (cf. lines 6 and 9 in Figure 12),

which is the extension of Beaver triples [3] to matrices proposed

in [29]. The second approach uses our sparse matrix multiplication

protocols from Figure 8 and Section 5.2.2 for forward- and back-

ward pass, respectively. We measure the online running time of a

full run using both approaches, as well as the total amount of data

transfered. We also estimate offline times using the measurements

provided by Mohassel and Zhang [29, Table II], and we present it

together with the total time that includes both phases in Table 3.

While the dense solution [29] achieves fast online computation,

this comes at a significant offline computation and communication

cost, requiring hours, even days in the WAN setting (Appendix C.1),

and sometimes terabytes of communication. Our solution on the

other hand saves a factor of 2x–11x in total runtime and a factor

26x–215x in communication in all reasonably large datasets (in

“Languages, ngrams=1”, SecureML is faster in total time, but both

executions take just a few seconds).

Finally, we investigate how our solution scales with different

dataset sparsities and the batch size used for training. For that, we

run experiments on synthetic datasets. We use 1024 documents

for each of the two servers, and vary the batch size between 128

and 1024. For each batch, we set the number of nonzero values

between 1% and 10%. For comparison, the sparsity of a batch of 128

documents from the Movies or Newsgroups datasets is about 3%.

The results are shown in Figure 14. It can be seen that our sparse

implementation benefits a lot from increasing the batch size. How-

ever, increasing the batch size will also increase the number of

nonzeros per batch in real datasets, albeit sub-linearly. Thus, the

batch size can be optimized to account for the sparsity of the dataset

being used for training. Research on training ML models in the

clear suggests larger batch sizes can be used without losing accu-

racy [19], and we conjecture that this allows us to achieve even

better speedups than those reported in Table 3, at the same level

of accuracy. However, in order to stay functionally equivalent to

previous work [29], we omit such optimizations at this point.

12

9 CONCLUSION

Privacy preserving techniques for machine learning algorithms

have a wide range of applications, which most often need to han-

dle large inputs, and thus scalability is crucial in any solution of

practical significance. Exploiting sparsity is heavily leveraged by ex-

isting computation frameworks to achieve scalability, and in many

settings some sparsity metric of the data is already public. This

can be leveraged in the setting of privacy-preserving data analysis,

not only at the application level, but also in terms of lower-level

operations.

A practical and principled approach to this problem calls for a

modular design, where in analogy to the components architecture

in scientific computing frameworks, algorithms for linear algebra

are built on top of a small set of low-level operations. In this pa-

per we proposed a framework that takes a first step towards this

vision: we started by defining sparse data structures with efficient

access functionality, which we used to implement fast secure mul-

tiplication protocols for sparse matrices, a core building block in

numerous ML applications.

By implementing three different applications within our frame-

work, we demonstrated the efficiency gain of exploiting sparsity in

the context of secure computation for non-parametric (𝑘-nearest

neighbors and Naive-Bayes classification) and parametric (logis-

tic regression) models, achieving manyfold improvement over the

state of the art techniques. The existing functionalities in our frame-

work represent main building blocks for many machine learning

algorithms beyond our three applications. At the same time, our

modular framework can be easily extended, opening the ROOM to

future improvements.

ACKNOWLEDGMENTS

Phillipp Schoppmann was supported by the German Research

Foundation (DFG) through Research Training Group GRK 1651

(SOAMED). Adrià Gascón was supported by The Alan Turing Insti-

tute under the EPSRC grant EP/N510129/1, and funding from the

UK Government’s Defence & Security Programme in support of

the Alan Turing Institute. Mariana Raykova’s work on this paper

was done while at Yale University supported in part by NSF grants

CNS-1633282, 1562888, 1565208, and DARPA SafeWare W911NF-16-

1-0389. Benny Pinkas was supported by the BIU Center for Research

in Applied Cryptography and Cyber Security in conjunction with

the Israel National Cyber Directorate in the Prime Minister’s Office.

REFERENCES

[1] Sebastian Angel, Hao Chen, Kim Laine, and Srinath T. V. Setty. 2018. PIR with

Compressed Queries and Amortized Query Processing. In IEEE Symposium on

Security and Privacy. IEEE, 962–979.

[2] Kenneth E. Batcher. 1968. Sorting Networks and Their Applications. In AFIPS

Spring Joint Computing Conference (AFIPS Conference Proceedings), Vol. 32. Thom-

son Book Company, Washington D.C., 307–314.

[3] Donald Beaver. 1991. Efficient Multiparty Protocols Using Circuit Randomization.

In CRYPTO (Lecture Notes in Computer Science), Vol. 576. Springer, 420–432.

[4] James Bennett, Stan Lanning, et al. 2007. The netflix prize. In Proceedings of KDD

cup and workshop, Vol. 2007. New York, NY, USA, 35.

[5] Raphael Bost, Raluca Ada Popa, Stephen Tu, and Shafi Goldwasser. 2015. Machine

Learning Classification over Encrypted Data. In NDSS. The Internet Society.

[6] Elette Boyle, Niv Gilboa, and Yuval Ishai. 2015. Function Secret Sharing. In

EUROCRYPT (2) (Lecture Notes in Computer Science), Vol. 9057. Springer, 337–367.

[7] Hao Chen, Zhicong Huang, Kim Laine, and Peter Rindal. 2018. Labeled PSI from

Fully Homomorphic Encryption with Malicious Security. In ACM Conference on

Computer and Communications Security. ACM, 1223–1237.

[8] Benny Chor, Niv Gilboa, and Moni Naor. 1998. Private Information Retrieval by

Keywords. IACR Cryptology ePrint Archive 1998 (1998), 3.

[9] Michele Ciampi and Claudio Orlandi. 2018. Combining Private Set-Intersection

with Secure Two-Party Computation. In SCN (Lecture Notes in Computer Science),

Vol. 11035. Springer, 464–482.

[10] 1000 Genomes Project Consortium et al. 2015. A global reference for human

genetic variation. Nature 526, 7571 (2015), 68.

[11] Kushal Datta, Karthik Gururaj, Mishali Naik, Paolo Narvaez, and Ming Rutar.

2017. GenomicsDB: Storing Genome Data as Sparse Columnar Arrays. White Pa-

per. https://www.intel.com/content/dam/www/public/us/en/documents/white-

papers/genomics-storing-genome-data-paper.pdf

[12] Jack Doerner. [n. d.]. The Absentminded Crypto Kit. https://bitbucket.org/

jackdoerner/absentminded-crypto-kit/

[13] Iain S. Duff, Michael A. Heroux, and Roldan Pozo. 2002. An Overview of the

Sparse Basic Linear Algebra Subprograms: The New Standard from the BLAS

Technical Forum. ACM Trans. Math. Softw. 28, 2 (June 2002), 239–267.

[14] Yael Gertner, Yuval Ishai, Eyal Kushilevitz, and Tal Malkin. 2000. Protecting

Data Privacy in Private Information Retrieval Schemes. J. Comput. Syst. Sci. 60, 3

(2000), 592–629.

[15] Oded Goldreich. 2009. Foundations of Cryptography: Volume 2, Basic Applications

(1st ed.). Cambridge University Press, New York, NY, USA.

[16] Oded Goldreich and Rafail Ostrovsky. 1996. Software Protection and Simulation

on Oblivious RAMs. J. ACM 43, 3 (1996), 431–473. https://doi.org/10.1145/233551.

233553

[17] Gaël Guennebaud, Benoît Jacob, et al. [n. d.]. Eigen: Sparse matrix manipulations.

https://eigen.tuxfamily.org/dox/group__TutorialSparse.html

[18] Gaël Guennebaud, Benoît Jacob, et al. 2010. Eigen v3. http://eigen.tuxfamily.org

[19] Elad Hoffer, Itay Hubara, and Daniel Soudry. 2017. Train longer, generalize better:

closing the generalization gap in large batch training of neural networks. In NIPS.

1729–1739.

[20] Yan Huang, David Evans, and Jonathan Katz. 2012. Private Set Intersection: Are

Garbled Circuits Better than Custom Protocols?. In NDSS. The Internet Society.

[21] Eric Jones, Travis Oliphant, Pearu Peterson, et al. [n. d.]. Sparse matrices

(scipy.sparse) – SciPy v1.1.0 Reference Guide. https://docs.scipy.org/doc/scipy/

reference/sparse.html

[22] Chiraag Juvekar, Vinod Vaikuntanathan, and Anantha Chandrakasan. 2018.

GAZELLE: A Low Latency Framework for Secure Neural Network Inference. In

USENIX Security Symposium. USENIX Association, 1651–1669.

[23] Vladimir Kolesnikov and Thomas Schneider. 2008. Improved Garbled Circuit: Free

XOR Gates and Applications. In ICALP (2) (Lecture Notes in Computer Science),

Vol. 5126. Springer, 486–498.

[24] Peeter Laud. 2015. Parallel Oblivious Array Access for Secure Multiparty Compu-

tation and Privacy-Preserving Minimum Spanning Trees. PoPETs 2015, 2 (2015),

188–205.

[25] Yehuda Lindell and Benny Pinkas. 2009. A Proof of Security of Yao’s Protocol for

Two-Party Computation. J. Cryptology 22, 2 (2009), 161–188.

[26] Jian Liu, Mika Juuti, Yao Lu, and N. Asokan. 2017. Oblivious Neural Network

Predictions via MiniONN Transformations. In ACM Conference on Computer and

Communications Security. ACM, 619–631.

[27] Andrew L. Maas, Raymond E. Daly, Peter T. Pham, Dan Huang, Andrew Y. Ng,

and Christopher Potts. 2011. Learning Word Vectors for Sentiment Analysis. In

ACL. The Association for Computer Linguistics, 142–150.

[28] R. Moenck and Allan Borodin. 1972. Fast Modular Transforms via Division. In

SWAT (FOCS). IEEE Computer Society, 90–96.

[29] Payman Mohassel and Yupeng Zhang. 2017. SecureML: A System for Scalable

Privacy-PreservingMachine Learning. In IEEE Symposium on Security and Privacy.

IEEE Computer Society, 19–38.

[30] Kartik Nayak, Xiao Shaun Wang, Stratis Ioannidis, Udi Weinsberg, Nina Taft,

and Elaine Shi. 2015. GraphSC: Parallel Secure Computation Made Easy. In IEEE

Symposium on Security and Privacy. IEEE Computer Society, 377–394.

[31] Valeria Nikolaenko, Stratis Ioannidis, Udi Weinsberg, Marc Joye, Nina Taft, and

Dan Boneh. 2013. Privacy-preserving matrix factorization. In ACM Conference

on Computer and Communications Security. ACM, 801–812.

[32] Fabian Pedregosa, Gaël Varoquaux, Alexandre Gramfort, Vincent Michel,

Bertrand Thirion, Olivier Grisel, Mathieu Blondel, Peter Prettenhofer, Ron

Weiss, Vincent Dubourg, Jake VanderPlas, Alexandre Passos, David Cournapeau,

Matthieu Brucher, Matthieu Perrot, and Edouard Duchesnay. 2011. Scikit-learn:

Machine Learning in Python. J. Mach. Learn. Res. 12 (2011), 2825–2830.

[33] Benny Pinkas, Thomas Schneider, and Michael Zohner. 2018. Scalable Private

Set Intersection Based on OT Extension. ACM Trans. Priv. Secur. 21, 2 (2018),

7:1–7:35. https://doi.org/10.1145/3154794

[34] Jason Rennie and Ken Lang. 2008. The 20 Newsgroups data set. http://qwone.

com/~jason/20Newsgroups/

[35] Phillipp Schoppmann, Lennart Vogelsang, Adrià Gascón, and Borja Balle. 2018.

Secure and Scalable Document Similarity on Distributed Databases: Differential

Privacy to the Rescue. IACR Cryptology ePrint Archive 2018 (2018), 289.

[36] The Scikit-learn authors. [n. d.]. Scikit-learn language identification

dataset. https://github.com/scikit-learn/scikit-learn/tree/master/doc/tutorial/

13

https://www.intel.com/content/dam/www/public/us/en/documents/white-papers/genomics-storing-genome-data-paper.pdf
https://www.intel.com/content/dam/www/public/us/en/documents/white-papers/genomics-storing-genome-data-paper.pdf
https://bitbucket.org/jackdoerner/absentminded-crypto-kit/
https://bitbucket.org/jackdoerner/absentminded-crypto-kit/
https://doi.org/10.1145/233551.233553
https://doi.org/10.1145/233551.233553
https://eigen.tuxfamily.org/dox/group__TutorialSparse.html
http://eigen.tuxfamily.org
https://docs.scipy.org/doc/scipy/reference/sparse.html
https://docs.scipy.org/doc/scipy/reference/sparse.html
https://doi.org/10.1145/3154794
http://qwone.com/~jason/20Newsgroups/
http://qwone.com/~jason/20Newsgroups/
https://github.com/scikit-learn/scikit-learn/tree/master/doc/tutorial/text_analytics/data/languages
https://github.com/scikit-learn/scikit-learn/tree/master/doc/tutorial/text_analytics/data/languages

text_analytics/data/languages

[37] Avishay Yanai. [n. d.]. FastPolynomial. https://github.com/AvishayYanay/

FastPolynomial

[38] Andrew Chi-Chih Yao. 1986. How to Generate and Exchange Secrets (Extended

Abstract). In FOCS. IEEE Computer Society, 162–167.

[39] Samee Zahur and David Evans. 2015. Obliv-C: A Language for Extensible Data-

Oblivious Computation. IACR Cryptology ePrint Archive 2015 (2015), 1153.

[40] Jingren Zhou. 2009. Sort-Merge Join. In Encyclopedia of Database Systems.

Springer US, 2673–2674.

A BASELINE PROTOCOLS FOR SCATTERINIT

A.1 Naive solutions

One direct way to implement the the functionality of Figure 6 is

using generic MPC such as garbled circuits. The approach requires

a circuit of size 𝑂 (𝑛𝑙𝜎) that for each 𝑖 ∈ [𝑛] selects the 𝑖th output

among the all possible values (0, r1, . . . , r𝑛−𝑙). Hence a solution

based on generic MPC constructions would require𝑂 (𝑛𝑙𝜎) commu-

nication and computation. Alternatively, one can rely on additive

homomorphic encryption to enable P1 to distribute the encrypted

values of r into the right positions of encrypted r′ and then execute

a protocol with P2 to obtain shares of r′ in the clear. This approach

requires𝑂 (𝑛) computation and𝑂 ((𝑛+𝑙)𝐿) communication where 𝐿

is the length of a ciphertext of additively homomorphic encryption,

which adds considerable expansion to the length of the encrypted

value.

A.2 FSS-based ScatterInit

Function Secret Sharing (FSS). Our construction below uses as a

building block function secret sharing (FSS) [6].While this primitive

provides functionality for general functions, we use its instantiation

for point functions, which also implies private information retrieval

(PIR). A point function 𝑓𝛼 ,𝛽 (𝑥) with domain [𝑛] is defined as 𝑓 (𝛼) =
𝛽 and 𝑓 (𝑖) = 0 for all 𝑖 ≠ 𝛼 . A function secret sharing scheme

has two algorithms FSS.KeyGen and FSS.Eval. The key generation

produces two keys (KFSS
C ,KFSS

S) ← FSS.KeyGen(𝛼 , 𝛽) that when
evaluated, satisfy FSS.Eval(KFSS

C , 𝑖) = FSS.Eval(KFSS
S , 𝑖) if 𝑖 ≠ 𝛼 and

FSS.Eval(KFSS
C ,𝛼) ⊕ FSS.Eval(KFSS

S ,𝛼) = 𝛽 , otherwise.
First, we present a solution for the ScatterInit functionality

of Figure 6 in the case 𝑙 = 1, and then discuss how to extend it to

any value of 𝑙 . The two parties will generate in a secure computa-

tion a pair of FSS keys (𝑘1,𝑘2) with the following properties. Let

[[v𝑖]]1 = F𝑘1 (𝑖) and [[v𝑖]]2 = F𝑘2 (𝑖) for 𝑖 ∈ [𝑛], then we have that

∀𝑗 ≠ 𝑖1 : [[v𝑗]]1 = [[v𝑗]]2, and [[v𝑖1]]1 ⊕ [[v𝑖1]]2 = r1. This compu-

tation can be done several times in parallel to obtain a protocol for

the case 𝑙 > 1, where each party XORs locally its output vectors

from all 𝑙 executions. This protocol has𝑂 (𝑙 log(𝑛)) communication,

𝑂 (𝑙 log(𝑛)) computation in MPC, and 𝑂 (𝑙𝑛) local computation for

each party. One drawback of this approach is that the result would

be xor-shared, and for our applications we require additive shares

for efficiency, as we will perform arithmetic operations. A naive

conversion from xor to additive shares in a circuit would require

𝑂 (𝑛) additions, bumping up the computation and communication

to be linear in 𝑛, which is prohibitive for the values of 𝑛 to be found

in some realistic data analysis (see Section 8). This overhead can

be avoided as follows: starting with the case 𝑙 = 1. Similarly to

above the parties generate FSS keys (𝑘1,𝑘2) with the difference

that [[v𝑖1]]1 ⊕ [[v𝑖1]]2 = x instead of r1, where x is a random value

not known to either party, while ∀𝑗 ≠ 𝑖1 : [[v𝑗]]1 = [[v𝑗]]2. Sub-
sequently, the parties run a garbled circuit protocol with inputs

[[r1]]1, 𝑐1 =
⊕

𝑗 ∈[𝑛] ([[v𝑗]]1), and [[v𝑖1]]1 from P1, and [[r1]]2 and
𝑐2 =

⊕
𝑗 ∈[𝑛] ([[v𝑗]]2) from P2. This secure computation (a) com-

putes [[v𝑖1]]2 as 𝑐1 ⊕ 𝑐2 ⊕ [[r1]]2, (b) reconstructs r1, and (c) reveals
𝑠 = r1 − [[v𝑖1]]2 to P1. Finally, to obtain an additive share of the

intended sparse vector r′, P1 sets [[r′ 𝑗]]1 = −[[v𝑗]]1, for all 𝑗 ≠ 𝑖1,
and [[r′𝑖1]]1 = 𝑠 , while P2 sets [[r′ 𝑗]]2 = [[v𝑗]]2, for all 𝑗 ∈ [𝑛].

Running this protocol several times gives a protocol for the

general case (𝑙 > 1) from Figure 6 with𝑂 (𝑙 log(𝑛)) communication,

𝑂 (𝑙 log(𝑛)) computation in MPC, and 𝑂 (𝑙𝑛) local computation for

each party. The garbled circuit sub-protocol is extremely efficient,

as it requires 𝑙 additions and 2𝑙 XORs, where the latter can be

performed locally with the Free-XOR optimization [23].

B NAIVE BAYES APPLICATION

This section describes our third application that we built using the

functionality from our framework, which was omitted from the

main paper body due to space constraints.

B.1 Secure Naive Bayes Classification

A naive Bayes classifier is a non-parametric supervised classifi-

cation algorithm that assigns to an item 𝑑 (for example a doc-

ument) the class 𝑐 in a set of potential classes 𝐶 (for example

{spam, no-spam}) that maximizes the expression score(𝑐) = 𝑃 (𝑐) ·
Π𝑡 ∈𝑑𝑃 (𝑡 |𝑐), where 𝑡 ∈ 𝑑 denotes the database features present in

the feature representation of 𝑑 . A common approach to keep under-

flows under control is to use logs of probabilities. This transforms

the above expression into score(𝑐) = log(𝑃 (𝑐)) +∑𝑡 ∈𝑑 log(𝑃 (𝑡 |𝑐)).
In Naive Bayes, 𝑃 (𝑐) is estimated as 𝑃 (𝑐) = 𝑁𝑐/𝑁 , namely the

number of items 𝑁𝑐 of class 𝑐 in the dataset, divided by the dataset

size 𝑁 . 𝑃 (𝑡 |𝑐) is estimated as 𝑃 (𝑡 |𝑐) = 𝑇𝑐 ,𝑡/𝑁𝑐 , namely the number

of occurrences (or score)𝑇𝑐 ,𝑡 of feature 𝑡 in items of class 𝑐 , normal-

ized by the total number of examples of class 𝑐 in the training dataset.

Additionally, Laplace smoothing is often used to correct for terms

not in the dataset, redefining 𝑃 (𝑡 |𝑐) to be 𝑃 (𝑡 |𝑐) = (𝑇𝑐 ,𝑡+1)/(𝑁𝑐+𝑁)
A secure two-party naive Bayes classification functionality is

defined as follows: a server holds the dataset 𝐷 that consists of 𝑛

items with 𝑘 features. Each item in the dataset is labeled with its

class from the set𝐶 of potential classes. Hence, the server holds the

values 𝑃 (𝑡 |𝑐), 𝑃 (𝑐) defined above. A client wants to obtain a label

for an item 𝑑 . This needs to be done in a privacy preserving manner

where only the client learns the output label and the server learns

nothing.

The work of Bost et al. [5] presented a solution to the above

problem using Paillier encryption and an argmax protocol based

on additive homomorphic encryption. Our ROOM functionality

provides a direct solution for this two-party problem, in which

the server reveals an upper bound of its number of features. This

solution works as follows: for each class 𝑙 ∈ 𝐶 , the server and the

client invoke the ROOM functionality with input values log(𝑃 (𝑡 |𝑙))
for all keys 𝑡 , as well as default values 1/(𝑁𝑐 +𝑁) for the server, and
query (𝑡)𝑡 ∈𝑑 for the client. This gives the parties additive shares of

the vector (log(𝑃 (𝑡 |𝑙))𝑡 ∈𝑑 . Then, the parties can compute locally

shares of the vector (score(𝑙))𝑙 ∈𝐶 , which contains the scores of

𝑑 with respect to all classes. Finally, the class with highest score,

14

https://github.com/scikit-learn/scikit-learn/tree/master/doc/tutorial/text_analytics/data/languages
https://github.com/AvishayYanay/FastPolynomial
https://github.com/AvishayYanay/FastPolynomial

Dataset

Offline Time Total Time Offline Communication Total Communication

SecureML Ours SecureML Ours SecureML Ours SecureML Ours

Movies 4d16h34m55.36s 4h18m52.67s 4d18h35m26.99s 9h29m23.53s 19.19GiB 761.73MiB 19.33GiB 1.92GiB

Newsgroups 1d5h40m20.66s 1h5m15.15s 1d6h9m32.82s 2h26m21.82s 5.01GiB 190.38MiB 5.13GiB 1.31GiB

Languages, ngrams=1 1m7.18s 35.65s 1m39.36s 3m18.35s 3.4MiB 1.9MiB 4.42MiB 111.76MiB

Languages, ngrams=2 18h15m18.24s 4m1.77s 18h34m34.36s 13m36.84s 3.05GiB 11.71MiB 4.08GiB 893.73MiB

Table 4: Comparison of our approach with SecureML [29] in the WAN setting. See also Table 3.

Movies Newsgroups Languages, ngrams=1 Languages, ngrams=2
Dataset

1s

2s

5s

10s

30s

1m

2m

5m

10m

30m

1h

R
un

ni
ng

Ti
m

e

Naive Bayes (LAN)

Basic-ROOM
Circuit-ROOM
Poly-ROOM

Figure 15: Running times for computing the conditional

probabilities for a single Naive Bayes classification for each

of the datasets in Table 2 and each of our ROOM construc-

tions. Note that for Basic-ROOM, the vocabulary needs to be

public. For private vocabularies, Poly-ROOM is the fastest in

all cases. Error bars indicate 95% confidence intervals.

which will be revealed only to the client, can be computed using

any generic MPC protocol involving only |𝐶 | comparisons.

B.1.1 Experiments on Naive Bayes. We implemented our protocol

described above, which consists of (i) a ROOM query for each of

the |𝐶 | potential classes composed with (ii) a protocol for securely

computing the argmax of |𝐶 | values. We do not include the latter

here, since it only depends on the number of classes, which is

usually significantly smaller than the dataset sizes (cf. Table 2).

The runtimes, for each of the datasets, are shown in Figure 15 and

Figure 16 (left). In both the LAN and WAN settings, Poly-ROOM

generally outperforms Circuit-ROOM. This is consistent with the

results from the previous section, since the queries are extremely

sparse (i.e.,𝑚 is small). Note that neither the Circuit- nor the Poly-

ROOM require a public vocabulary. If the vocabulary is public, then

Basic-ROOM can be used as well. The plots in Figure 15 show the

runtime for a public vocabulary of size 150000. In the LAN setting

this gives a huge advantage: for the Movie Reviews dataset with

>95k features, our protocol takes less than 2s. In contrast, the total

classification time for a dataset with only 70 features took over 3

seconds in [5].

C ADDITIONAL EXPERIMENTAL RESULTS

C.1 Experiments in the WAN Setting

Figure 16 and Table 4 show the results of the experiments from

Section 8 in the WAN.

C.2 ROOMMicro-Benchmarks

Table 1 presents the runtimes for Circuit-ROOM and Poly-ROOM

and how they depend on the database size 𝑛 and the query size

𝑚. We first measure the runtimes of each algorithm for a range

of parameters 𝑛 ∈ {500, 5000, 50000} and𝑚 ∈ {0.1𝑛, 0.2𝑛, . . . ,𝑛}.
The results can be seen in Figure 17. Each plot corresponds to

one choice of 𝑛, while values of 𝑚 are given on the x-axes. The

runtime of both ROOM variants increases as𝑚 grows, but Circuit-

ROOM is outperformed by Poly-ROOM as 𝑛 increases, as long as

𝑚 < 𝑛. The reason is that the complexity of Circuit-ROOM depends

significantly on 𝑛, as its runtime is dominated by oblivious merging

and shuffling, which scales with the sum𝑚 + 𝑛. The time of Poly-

ROOM in mainly determined by𝑚 while Circuit-ROOM remains

more stable across the choices of𝑚.

To investigate the cutoff point between the two instantiations,

as well as their performance relative to each other, we benchmark

them on a grid of exponentially increasing parameter choices. We

then fit functions of the runtime to the collected data, which gives

us a model to estimate the performance even for parameter choices

not directly measured.

Figure 18 shows the results in the LAN and WAN settings, re-

spectively. For each set of choices for 𝑚 and 𝑛, the color in the

plot indicates the relative performance of our two algorithms. In-

tuitively, in regions where one of those two colors is prevalent,

the corresponding algorithm is the optimal choice for that setting.

Regions in between (turquoise) correspond to parameters where

both of our algorithms perform equally well.

In the LAN setting, Poly-ROOM clearly wins in all cases where

𝑚 < 𝑛, while Circuit-ROOM is only viable for large queries on

small databases. In the WAN, this effect is slightly reduced, but still

visible.

15

Movies Newsgroups Languages, ngrams=1 Languages, ngrams=2
Dataset

1s

2s

5s

10s

30s

1m

2m

5m

10m

30m

1h

R
un

ni
ng

Ti
m

e

Naive Bayes (WAN)

Basic-ROOM
Circuit-ROOM
Poly-ROOM

Movies Newsgroups Languages, ngrams=1 Languages, ngrams=2
Dataset

1s

2s
5s

10s

30s
1m
2m
5m

10m

30m
1h
2h
5h

10h
1d
2d

R
un

ni
ng

Ti
m

e

k-NN (WAN)

Dense
Basic-ROOM
Circuit-ROOM
Poly-ROOM

O�line time
Online time

128 256 512 1024
Batch Size

30s

1m

2m

5m

10m

30m

1h

2h

5h

R
un

ni
ng

ti
m

e

Logistic Regression (WAN)

Dense
10.0% Nonzeros
5.0% Nonzeros
2.0% Nonzeros
1.0% Nonzeros

Figure 16: (Left) Running time of a Naive Bayes query in the WAN. See also Figure 15. (Middle) Running time of a 𝑘-NN query

in the WAN. See also Figure 13. (Right) Total running time of an SGD training epoch for logistic regression with varying

document sparsity. Note that unlike in the LAN, we can use SecureML’s homomorphic encryption-based offline phase [29]

here that also benefits from larger batches. See also Figure 14.

50 100 150 200 250 300 350 400 450 500
�ery size m

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

Ti
m

e
(s

)

Database size n = 500 (LAN)

Circuit-ROOM
Poly-ROOM

Local time
MPC time

500 1000 1500 2000 2500 3000 3500 4000 4500 5000
�ery size m

0

2

4

6

8

10

12

Ti
m

e
(s

)

Database size n = 5000 (LAN)

Circuit-ROOM
Poly-ROOM

Local time
MPC time

5k 10k 15k 20k 25k 30k 35k 40k 45k 50k
�ery size m

0

20

40

60

80

100

120

Ti
m

e
(s

)

Database size n = 50000 (LAN)

Circuit-ROOM
Poly-ROOM

Local time
MPC time

Figure 17: Measured running times of each of our ROOM constructions in the LAN setting, for several choices of query size

and database size. We distinguish between local time (for time spent doing local computation) and MPC time, for running

time of MPC sub-protocols. Error bars indicate 95% confidence intervals.

0 10000 20000 30000 40000 50000
Database size

0

10000

20000

30000

40000

50000

�
er

y
si

ze

Algorithm with the lowest running time (LAN)

Circuit-ROOM
Poly-ROOM

0 10000 20000 30000 40000 50000
Database size

0

10000

20000

30000

40000

50000

�
er

y
si

ze

Algorithm with the lowest running time (WAN)

Circuit-ROOM
Poly-ROOM

Figure 18: Estimated performance of our two instantiations of sparse ROOM in the LAN (left) and WAN (right) settings. Run-

ning times were measured for length 𝑚 queries to a ROOM of size 𝑛, with 𝑚 ∈
{
2
𝑖 | 𝑖 ∈ {0, . . . , 13}

}
and 𝑚 ∈

{
2
𝑖 | 𝑖 ∈

{0, . . . , 18}
}
. Then, for each of our algorithms, a model of the running time was computed using nonlinear least-squares from

scipy.optimize.curve_fit, where the function to be fitted was chosen according to the asymptotics in Table 1. Each pixel was

computed by averaging over the colors corresponding to each algorithm, weighted by the inverse of their respective running

times. Thus, the dominant color of a region corresponds to the algorithm that performs the best in that setting.

16

	Abstract
	1 Introduction
	1.1 Contributions

	2 Overview and Setup
	3 Tools and Notation
	4 Basic primitive: ROOM
	4.1 Existing primitives
	4.2 Instantiations of ROOM

	5 ROOM for Secure Sparse Linear Algebra
	5.1 Gather and Scatter
	5.2 Sparse Matrix-Vector Multiplication

	6 Applications
	6.1 Similarity Computation and k-Nearest Neighbors
	6.2 Logistic Regression Training

	7 Implementation of our Framework
	8 Experimental Evaluation
	8.1 k-Nearest Neighbors
	8.2 Logistic Regression Training

	9 Conclusion
	Acknowledgments
	References
	A Baseline Protocols for ScatterInit
	A.1 Naive solutions
	A.2 FSS-based ScatterInit

	B Naive Bayes Application
	B.1 Secure Naive Bayes Classification

	C Additional Experimental Results
	C.1 Experiments in the WAN Setting
	C.2 ROOM Micro-Benchmarks

