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Abstract

A fundamental problem in the theory of secure multi-party computation (MPC) is to charac-
terize functions with more than 2 parties which admit MPC protocols with information-theoretic
security against passive corruption. This question has seen little progress since the work of Chor
and Ishai (1996), which demonstrated difficulties in resolving it. In this work, we make signifi-
cant progress towards resolving this question in the important case of aggregating functionalities,
in which m parties P1, . . . , Pm hold inputs x1, . . . , xm and an aggregating party P0 must learn
f(x1, . . . , xm).

We uncover a rich class of algebraic structures that are closely related to secure computabil-
ity, namely, “Commuting Permutations Systems” (CPS) and its variants. We present an exten-
sive set of results relating these algebraic structures among themselves and to MPC, including
new protocols, impossibility results and separations. Our results include a necessary algebraic
condition and slightly stronger sufficient algebraic condition for a function to admit information-
theoretically secure MPC protocols.

We also introduce and study new models of minimally interactive MPC (called UNIMPC and
UNIMPC?), which not only help in understanding our positive and negative results better, but
also open up new avenues for studying the cryptographic complexity landscape of multi-party
functionalities. Our positive results include novel protocols in these models, which may be of
independent practical interest.

Finally, we extend our results to a definition that requires UC security as well as semi-honest
security (which we term strong security). In this model we are able to carry out the characteri-
zation of all computable functions, except for a gap in the case of aggregating functionalities.

∗Supported by the Dept. of Science and Technology, India via the Ramanujan Fellowship and an Indo-Israel Joint
Research Project grant, 2018.
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1 Introduction

Secure Multi-Party Computation (MPC) is a central and unifying concept in modern cryptography.
The foundations, as well as the applications, of MPC have been built up over a period of almost four
decades of active research since the initial ideas emerged [SRA79, Blu81, Yao82]. Yet, some of the
basic questions in MPC remain open. Specifically, the following basic problem remains open to this
day for various standard notions of security (when there are no restrictions like honest majority):

Which multi-party functions admit information-theoretically secure MPC?

Indeed, one of the most basic forms of this problem remains wide open: for the case of secu-
rity against passive corruption, a characterization of securely realizable functions is known only for
2-party functions [Kus89]. Chor and Ishai pointed out the difficulty of this problem, by disproving
a natural conjecture for characterizing securely realizable k-party functionalities in terms of func-
tionalities involving fewer parties [CI96]. Since then, very little progress has been made on this
problem.

In this work, we make significant progress towards resolving this question in the important case
of aggregating functionalities: In an aggregating functionality, there are m parties P1, . . . , Pm with
inputs x1, . . . , xm and an aggregating party P0 must learn f(x1, . . . , xm). Aggregating functionalities
form a practically and theoretically important class. In particular, it has been the subject of an
influential line of study that started with the minimal model for secure computation of Feige, Kilian
and Naor [FKN94]. This model – also referred to as the Private Simultaneous Messages (PSM)
model [IK97] – served as a precursor of important concepts like randomized encodings [IK00] that
have proven useful in a variety of cryptographic applications. Recently, a strengthening of this
model, called Non-Interactive MPC (NIMPC) was introduced by Beimel et al. [BGI+14], which
is closer to standard MPC in terms of the security requirements.1 However, these models do not
address the question of secure realizability in the standard model, because due to weakened security
requirements, all aggregating functions are securely realizable in these models.

Towards characterizing secure realizability under (the standard model of) MPC, we uncover and
examine a rich class of algebraic structures of aggregating functionalities. We exploit these structures
to give new positive and negative results for MPC. Further, we also put forth new minimalistic, yet
natural models of secure computation that arise from these results. These new models and algebraic
structures, in tandem, open up new avenues for investigating the landscape of secure multiparty
computation involving many parties.
Commuting Permutations Systems. We identify an algebraic-combinatorial structure called
Commuting Permutations System (CPS) and interesting sub-classes thereof. CPS generalizes the
function of abelian group summation to a less structured class of functions. Indeed, as a function of
two inputs (denoted as m = 2), a CPS can be identified with a quasigroup operation, or equivalently
the function specified by a minor of a Latin square. (For m > 2 inputs, CPS imputes more structure
than m-dimensional Latin hypercubes.)

1Both PSM and NIMPC consider protocols of the following form: a coordinator sends a private message to each
of P1, . . . , Pm; each Pi uses this message and its input to compute a single message which it sends to P0; P0 computes
an output. PSM has a corruption model in which only P0 could be corrupted, whereas NIMPC allows any subset of
the parties (other than the coordinator) to be corrupted. But when such corruption takes place, NIMPC allows the
adversary to learn the residual function determined by the honest parties’ inputs – i.e., the output for each possible
setting of the inputs for the corrupt parties (unlike in MPC, where the output for only a given input of the corrupt
parties is learned).
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Figure 1: The m-PC landscape of ag-
gregating functions. The classes in blue
typeface are defined in terms of alge-
braic/combinatorial properties, and the
others in terms of secure computability.
Arrow A→ B indicates A ⊇ B.

We define CPS as the class of all aggregating functions
which embed into a CPS functionality (Definition 2). We
also identify two interesting sub-classes of CPS that (as
we shall see) are closely related to secure computability,
corresponding to Commuting Permutation Subgroup Sys-
tems (CPSS) and Complete CPS (CCPS).
Minimal Models of MPC. In a parallel thread, we de-
velop new minimalistic models of MPC, that help us study
feasibility of information-theoretic MPC. These models
(called UNIMPC? and UNIMPC) admit secure proto-
cols only for functions which have secure protocols in the
standard MPC model. We remark that ours is perhaps
the first significant minimalistic model with this prop-
erty, as previous minimalistic models – PSM [FKN94] and
NIMPC [BGI+14] – admit secure protocols for all func-
tions.

UNIMPC stands for Unassisted NIMPC and, as the
name suggests, removes the assistance from the trusted
party in NIMPC: Instead the parties should securely com-
pute the correlated randomness by themselves, in an of-
fline phase. Unlike PSM and NIMPC, which have an in-
corruptible party, UNIMPC retains the standard security
model of MPC, allowing corruption of any set of parties,
and requiring the adversary to learn nothing more than
the output of the function.

A UNIMPC protocol is an MPC protocol and can also be immediately interpreted as an
NIMPC protocol.2

Note that MPC and NIMPC are incomparable in the sense that an MPC protocol does not yield
an NIMPC protocol (because of the general communication pattern) and an NIMPC protocol does
not yield an MPC protocol (because of the use of a trusted party, and because the adversary is
allowed to learn potentially more than the output of the function). Thus UNIMPC could be seen
as a common denominator of these two secure computation models.

UNIMPC? corresponds to a minimalistic version of UNIMPC, with protocols which have a single
round of (simultaneous) communication among the parties before they get their inputs, followed by
a single message from each party to the aggregator after they receive their input. (UNIMPC allows
arbitrarily many rounds of communication prior to receiving inputs.)
Strongly Secure MPC. We also study feasibility under a stronger model of MPC, which requires
both UC security and passive security to hold simultaneously (information theoretically). Tradi-
tionally, UC security refers to the setting of active corruption, in which the security guarantees are
relative to an ideal model where too the corrupt parties are actively corrupt. While stronger in
general, this gives a weaker guarantee than security against passive corruption, when the corrupt

2Replacing the views from the pre-processing phase of a UNIMPC protocol with correlated randomness from a
trusted party turns it into an NIMPC protocol.
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parties are indeed only passively corrupt.3 From a practical point of view, strong security (possibly
weakened to hold only against PPT adversaries) is important, and arguably the “right” notion in
many cases. Here we initiate the study of characterizing multi-party functionalities that are strongly
securely realizable.
Relating Secure Computation to the Algebraic Classes. Our results show the rich con-
nections between the cryptographic complexity landscape of MPC and the combinatorial/algebraic
structures of the functions, as summarized in Figure 1. We briefly point out the several results that
go into making this map. All results relate to the information-theoretic setting with finite functions.

� MPC ⊆ CPS: This result hinges on characterizing the following cryptographic property alge-
braically: given any subset of the inputs and the output of the function, the residual function of
the remaining inputs can be determined. (Theorem 2.)

� CPSS ⊆ UNIMPC?: We establish this by developing a novel MPC protocol that generalizes
the simple abelian group summation protocol to a certain class of (non-abelian) group actions
(Theorem 3).

� CPSS ( CPS: We give a concrete family of functions that fall into the gap between these two
classes (Theorem 1). Combined with the above results, this separation leaves an intriguing gap
between the necessary and sufficient conditions for MPC. (But we show in Theorem 4, that this
gap disappears/reduces for a small number of input parties.)

� CCPS ⊆ UNIMPC?: The class CCPS (for Complete CPS) consists of the “Latin Hypercube”
functionalities that fall within CPS. We show that all such functions, in more than two dimen-
sions, are highly structured and in particular fall within CPSS (Lemma 6). For two dimensions,
i.e., Latin squares, this is not true; but in this case a UNIMPC? protocol can be directly given for
all Latin squares. Further, in this case, due to a classical result of Ryser [Rys51], CPS = CCPS
(see Section 1.3).

� UC security results: The characterization of UC securely realizable functions has been resolved
for 2 and 3-party functionalities [CKL06, PR08a], but remains open for more than 3 parties.
Prabhakaran and Rosulek [PR08a] showed that there are only two classes of secure function
evaluation functionalities – aggregating and disseminating – that can possibly have UC secure
protocols. They also gave a UC secure protocol for the “disseminated OR” functionality for 3
parties. We build on this further to show that:
• Disseminated OR functionality with any number of players is UC securely realizable. Further,
every disseminating functionality is UC securely realizable by a reduction to the disseminated
OR functionality (Section 8.2).
• Every aggregating functionality in CCPS has a UC secure protocol; this relies on a compiler
from a strongly secure protocol for F (which exists only if F is a CPS functionality) to one for
F restricted to a domain D (Section 8.1).
• In both these positive results, we obtain strong security (Theorem 7). Combined with the
negative results (Theorem 6), this shows that

CCPS ∪DISS ⊆ strongMPC ⊆ CPS ∪DISS

3E.g., a 2-party functionality in which Bob receives a∨b, where a, b ∈ {0, 1} are inputs to Alice and Bob respectively,
has no protocol secure against passive corruption; but a protocol in which Alice simply sends a to Bob is UC secure.
Also see FAND discussed in Section 8.1.
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where strongMPC denotes the class of all functionalities (not just aggregating functionalities)
that have strongly secure protocols, and DISS and CCPS are interpreted as all functionalities
“isomorphic” to functionalities that are disseminating or functionalities that embed into a CCPS
functionality. In Figure 1, this relationship is indicated restricted to aggregating functionalities
(in which, case the extension to isomorphism – which allows all parties to have inputs and outputs
– can be ignored).

� Additional Results and Implications:
• Recently, Halevi et al. introduced the notion of “Best Possible Information-Theoretic MPC”
(BIT-MPC) [HIKR18], by removing the trusted party and the non-interactive structure in the
NIMPC model, but retaining the provision that (in the ideal-world) the adversary is allowed to
learn the residual function of the honest parties’ inputs. While the set of functions for which
BIT-MPC is possible is a strict superset of MPC, the main open problem posed in [HIKR18]
is whether all functions have BIT-MPC protocols. We note that for all functions in CPS, BIT-
MPC protocols are automatically MPC protocols (because for them the residual function can be
deduced from the output and the corrupt parties’ own inputs). Thus if CPS \MPC 6= ∅, then
there exist functions which do not have a BIT-MPC protocol.
• Our necessity result – that MPC ⊆ CPS – can be extended in a couple of ways (Section 5.1):
Firstly, the necessity condition continues to hold even if the corruption model allowed the cor-
ruption of at most one party other than the aggregating party, if we require a UNIMPC protocol
(this model could be called 1-Robust UNIMPC).
Secondly, the necessity of being contained in CPS holds even for NIMPC (even 1-Robust NIMPC),
if we required an additional security property that the adversary learns only what the output and
its own inputs reveal (like in MPC), rather than the residual function of the honest parties (as
in NIMPC or BIT-MPC). On the other hand, for functions in CPS, the protocols in the original
NIMPC model remain secure in the new model too. Thus for this model, the set of realizable
functions is exactly CPS.
• While our focus is on aggregating functionalities, our positive results for passive-secure MPC
do yield new protocols for symmetric functionalities wherein all parties get the same output
– as considered in [CI96]. This is because a passive-secure MPC protocol for an aggregating
functionality can be readily converted into one for a symmetric functionality computing the
same function.
• Since one of our results (Theorem 4) depends on the existence of NIMPC protocols, we present
a simple NIMPC protocol for general functionalities in Appendix A. This protocol is a general-
ization of an NIMPC protocol in [HIJ+16] to arbitrary input domains, presented more directly
in terms of the function matrix. This NIMPC protocol is more efficient and much simpler than
the earlier ones in the literature [BGI+14, OY16].

We present more details of our results and techniques in Section 1.3.

1.1 Open Problems

We leave several open problems, which relate to understanding MPC as a whole, and various aspects
of it individually. While, by definition, MPC ⊇ UNIMPC ⊇ UNIMPC?, it is open to show if these
inclusions are strict. Their exact relations with the combinatorial classes CPS, CPSS and CCPS
also remain open.
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CPS is an exact characterization of functions realizable in a model obtained by allowing UNIMPC
protocols to use a trusted party to generate the views in the offline phase (this model being the same
as the variant of NIMPC mentioned aboved, with the extra security property that the adversary
learns only what the output and its own inputs reveal). Therefore, separating UNIMPC from CPS
requires a better understanding of multiparty secure sampling [PP12], and to separate UNIMPC
and UNIMPC?, we need a better understand the power of interaction for secure sampling.

Interestingly, we leave open a combinatorial problem as well: Is CCPS ( CPSS for m > 2?
(For m = 2, we have a containment in the opposite direction, since CCPS = CPS ) CPSS.) This
corresponds to the question of whether every CPSS can be embedded into a CCPS.

In Appendix C, we give a few explicit functions in CPS for which we do not have an MPC,
UNIMPC or UNIMPC? protocol, and leave them as open challenges.

1.2 Related Work

There has been a large body of work aimed at characterizing functionalities with MPC protocols
in various models (see, e.g., a survey [MPR13]). For some important classes, exact characteriza-
tions are known: this includes passive and active (stand-alone) security for 2-party determinis-
tic functions [Kus89, KMR09, MPR09], multi-party functions with restricted adversary structures
[BGW88, CCD88, HM97], multi-party functions with binary alphabet [CK91], multi-party pro-
tocols which only have public communication [KMR09], and UC security for 2-party functions
[CKL06, PR08a].

The characterization question for the multi-party setting (with point-to-point channels and no
honest majority, for passive security) was explicitly considered in [CI96]. It was shown there that
there exist m-party functions which do not have any passive-secure protocol such that the m − 1-
party function obtained by merging any two parties results in a securely realizable functionality.
This problem in the context of UC security was studied in [PR08a], where the terms aggregating
functionality and disseminating functionality were coined.

The NIMPC model was introduced by Beimel et al. [BGI+14], inspired by the earlier work
of Feige et al. [FKN94]. This was generalized to other patterns of interaction in [HIJ+16]. A
computational version of UNIMPC (but with a public-key infrastructure) was recently explored in
[HIJ+17].

A recent independent and concurrent work by Halevi et al. [HIKR18] overlaps with some of
our results. Specifically, they also observe the fact that an MPC protocol must reveal the residual
function of the honest parties to an adversary corrupting the output party, which is the staring
point of our proof of Theorem 2 (they do not derive the combinatorial characterization of CPS).
The transformation from NIMPC to UNIMPC we use to prove Theorem 4 is a special case of the
NIMPC to MPC compiler of [HIKR18], which forms the main tool for their positive results. Finally,
as pointed out above, the main open problem left in [HIKR18] is whether there are functions with
no BIT-MPC protocol, and this relates to an open problem we leave, namely whether CPS = MPC:
A negative answer to our question answers that of [HIKR18] in the negative.

1.3 Technical Overview

We give a brief overview of CPS functions, and a couple of our protocols that exploit this structure.
An m + 1 aggregating functionality involves parties P1, · · · , Pm with inputs and an aggregator

P0 who learns the output. A classical example of an aggregating functionality that admits secure
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computation is the summation operation in an abelian group. As a starting point to understanding
all securely computable functions, one could try to generalize this function. Consider the 3-party
version of this problem, involving two input parties P1, P2 and an output party P0. W.l.o.g. we can
consider computing a function f : [n1] × [n2] → [n], given an as a matrix M with Mij = f(i, j).
Suppose there is a passive secure protocol Π for computing f . From the results on 2-party MPC
we know that an adversary which passively corrupts {P0, P1} must learn P2’s input fully (up to
equivalent inputs). Then, for this protocol to be secure, even given an ideal functionality, an
adversary who passively corrupts {P0, P1} should be able to learn P2’s input. A passive adversary
is not allowed to change the parties’ inputs. Hence, for any inputs x1 ∈ [n1], x2 ∈ [n2], it must be the
case that (x1, f(x1, x2)) uniquely determines x2. Symmetrically, (x2, f(x1, x2)) uniquely determines
x1. We refer to this as the Latin property ofM , named after Latin squares. (Latin squares are n×n
square matrices in which each row and each column is a permutation of [n]. Note that a square
matrix with the Latin property is the same as a Latin square.)

It is easy to see that any 3-party aggregating functionality f : [n] × [n] → [n] which is a Latin
square has a passive secure protocol: P1 and P2 privately agree on a random permutation σ over
[n], and then P1 sends P0 the row indexed by its input x1, but with positions permuted according
to σ: i.e., a vector (z1, · · · , zn) where zσ(j) = Mx1,j . P2 sends k = σ(x2) to P0, and P0 outputs
zk = Mx1,x2 . Note that the security of this protocol relies on not only the Latin property, but also
on the fact that each row has all n elements. However, since any rectangle with the Latin property
can be embedded into an (at most quadratically larger) Latin square [Rys51], any function f which
has the Latin property does indeed have a passive secure protocol.

This might suggest that for arbitrary number of parties, an analogous Latin hypercube property
would be a tight characterization of secure computability. Interestingly, this is not the case. Withm
input clients, the 2-party results imply that an adversary corrupting a subset of the m input parties
and the aggregator P0 can learn the residual function of the honest parties’ inputs. Since the passive
adversary cannot change the input of the corrupt parties even in the ideal world, this means that
any choice of the corrupt parties’ inputs should reveal the residual function of the honest parties.
We identify an algebraic formulation in terms of a “Commuting Permutation System” (CPS) that
captures this condition tightly.

A CPS over the output alphabet [n] has input sets Xi ⊆ Sn, for i = 1 to m, where Sn is the
group of all permutations of [n]. On input (π1, · · · , πm) ∈ X1 × · · · ×Xm, the output is defined as
π1 ◦ · · · ◦ πm(1). The “commuting” property is the requirement that this output is invariant to the
order in which the m permutations are applied to 1. Note that the commutativity needs to hold
only when applied to 1. Also, it holds only across the sets X1, · · · , Xm. That is if π, π′ ∈ Xi, it is
not necessary that π ◦ π′(1) equals π′ ◦ π(1). The function table of a CPS functionality is indeed a
Latin hypercube, but the converse does not hold.

Being a CPS functionality is necessary to have an MPC protocol (let alone a UNIMPC protocol).
Unfortunately, we do not know if this is also a sufficient condition. But given some additional
structure in a CPS, we are able to give a new protocol. The additional structure that we can exploit
is that each Xi is a subgroup of Sn, in which case we call the system a Commuting Permutation
Subgroups System or CPSS. Exploiting this property, we design a protocol for computing CPSS
functions, as discussed below.
UNIMPC Protocol for CPSS Functionalities. We present a novel protocol with perfect,
information-theoretic security against passive corruption for all CPSS functionalities (and, further,
is in fact, UC secure for a sub-class). Recall that the goal is to let P0 learn π1◦· · ·◦πm(1), where πi is
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a permutation that Pi receives as input. At first glance, our protocol may appear similar in structure
to a protocol for an abelian group sum: each party Pi shares its input πi as πi = σi,0 ◦σi,1 ◦· · ·◦σi,m,
where each of the shares itself belongs to Xi. It will be helpful to visualize these shares as forming
the ith row in a matrix of shares. The shares in each column (σ1,j , · · · , σm,j) for j ∈ [m] will be
correlated with each other in some manner, so that the output can be reconstructed by aggregating
only the shares (σ1,0, · · · , σm,0). (An analogy for the case of the abelian group would be to choose
the shares in each column to sum up to the identity element.) These shares will be sent to P0.

But there are a couple of major differences. Firstly, permutations do not commute in general,
and it is not clear how the shares can be meaningfully combined. Secondly, we must not reveal the
composition of the inputs – i.e., the permutation π1 ◦ · · · ◦ πm – to the aggregator; only the result
of applying this composition to 1 should be revealed. So, choosing the column shares to “add up
to” the identity permutation would be problematic, not to mention that there may not be any such
choice other than choosing all the shares to be the identity element.
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Figure 2: Elements in the ith row belong to a sub-
group Xi in a CPSS. The subgroup structure en-
ables secret-sharing as πi =

∏0
j=m σi,j . Then the

illustrated quantities are equal:
(∏

i∈[m] πi
)
(1) =(∏

i∈[m]

∏0
j=m σi,j

)
(1) =

(∏0
j=m

∏
i∈[m] σi,j

)
(1).

The last equality relies on the closure property in
the subgroup, as well as the commutativity guar-
antee (when applied to 1). In our protocol, for
each j > 0,

(∏
i∈[m] σi,j

)
(1) = 1, and hence this

also equals
(∏

i∈[m] σi,0
)
(1).

In our protocol, we choose the column shares
such that their composition has 1 as a fixed
point (there is at least one such choice, since the
each entry can be chosen as the identity permu-
tation). Then, using the CPSS property, it can
be shown that (

∏
i∈[m] σi,0)(1) = (

∏
i∈[m] πi)(1)

(see Figure 2). It turns out that we can use the
subgroup structure in CPSS to argue that if the
shares are chosen uniformly at random subject
to the above constraint, then (σ1,0, · · · , σm,0) re-
veals nothing more than π1 ◦ · · · ◦ πm(1).

Further, even if we consider all the shares
σi,j except for (i, j) ∈ S × S for some S ⊆ [m],
we show that they reveal nothing more than
the residual function

(∏
i∈S πi

)
(1). The need to

consider revealing this set of shares comes from
the fact that our protocol is not an NIMPC pro-
tocol (where a trusted dealer could compute σi,j
for all (i, j) ∈ [m]2 and send only (σi,1, · · · , σi,m)
to each party Pi); instead we require the parties
to compute all the shares themselves, which is achieved by each party Pj computing the jth column
of shares, and distributing it among all the parties Pi. Thus when we consider a set S of honest
parties, only the shares σi,j where (i, j) ∈ S2 remain hidden from the adversary.
UC-secure Protocols. It turns out that the above protocol for aggregating functions is UC secure
if the function is a Complete CPSS (CCPSS) function. For m ≥ 3, a Complete CPS is always a
Complete CPSS, and hence this gives a UC secure (in fact, strongly secure) protocol for all CCPS
functionalities. (The case of m = 2 is handled separately.)

However, for a function that is only embedded in a CCPS functionality, this protocol is not
necessarily UC secure (because nothing prevents an adversary from using an input from the full
domain of the CCPS functionality). We give a compiler that can take a UC secure protocol for a
CCPS functionality, and transform it into a UC secure protocol for the functionality restricted to a
smaller domain. The main idea of the compiler is to run several instances of the original protocol
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with the parties using random inputs from the restricted domain. That they used inputs from
the restricted domain is then verified using a cut-and-choose phase. Then, an aggregated AND
functionality is used to identify instances among the unopened executions to obtain the output.
Plugging in a simple UC secure protocol for aggregated AND, this compiler yields a UC secure
protocol. Interestingly, though aggregated AND itself has no strongly secure protocol (or passive-
secure protocol, for that matter) as it is not a CPS functionality, the resulting protocol above is a
strongly secure protocol.

We remark that this is a feasibility result that relies on the domains being finite (small) as the
compiler’s overhead is polynomial in the domain size.

We also present a reduction from any disseminating function to the disseminated-OR function-
ality. This is also a feasibility result that relies on the number of parties being finite (small) as
the protocol is exponential in the number of parties. To complete establishing the realizability of
all disseminating functions, we give a UC secure protocol for the disseminated-OR functionality
(extending a 3-party protocol for the same functionality in [PR08a]).

2 Preliminaries

We write [n] to denote the set {1, · · · , n}. Sn denotes the symmetric group over [n], namely,
the group of all permutations of [n]. In our proofs, we shall use the product notation

∏
to de-

note the composition operation of permutations. Note that composition of permutations is a non-
commutative operation in general, and hence the order of the indices is important (as in

∏t
i=1 ρi).

When the order is not important, we denote the indices by a set (as in
∏
i∈[t] ρi).

Below we define notions referred to through out the paper. Additional notions relevant to strong
security are deferred to Section 8.

We adapt the definition of an aggregating functionality from [PR08a].4

Definition 1 (Aggregating Functionality). An (m + 1) party Aggregating functionality accepts
inputs xi ∈ Xi from Pi for i = 1 to m, and sends f(x1, · · · , xm) to party P0, where f : X1 × · · · ×
Xm → Ω is a fixed function.

Consistent with the literature on feasibility questions, we consider the functions to have constant-
sized domains (rather than infinite domains or domains expanding with the security parameter).
Also, in all our positive results, the security obtained is perfect and hence the protocols themselves
do not depend on the security parameter. Our negative results do allow protocols to have a negligible
statistical error in security.

Definition 2 (Embedding). An aggregating functionality f : X1× · · ·×Xm → [n] is said to embed
into a functionality g : X ′1 × · · · ×X ′m → [n′] if there exist functions φi : Xi → X ′i for i ∈ [m], and
an injective function φ0 : [n]→ [n′] such that for all (x1, · · · , xm) ∈ X1 × · · · ×Xm,

φ0(f(x1, · · · , xn)) = g(φ1(x1), · · · , φm(xm)). (1)

Below, A ∼= B denotes that the statistical difference between the two distributions A and B is
negligible as a function of a (statistical) security parameter.

4We allow only the aggregating party P0 to have an output. The original definition in [PR08a] allows all the
parties to have outputs, but requires that for each party other than P0, its output is a function only of its own input.
Such a function is “isomorphic” to an aggregated functionality as we define here.
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Definition 3 (Passive Secure MPC). An (m+1)-party protocol Π with parties P1, · · · , Pm, P0 is said
to be an information-theoretically secure MPC protocol for an (m+1)-party aggregating functionality
f against passive corruption, if for any subset T ⊆ [m]∪{0}, there exists a simulator S s.t. for any
input x ∈ X:

viewΠ(x)({Pi|i ∈ T}) ∼=

{
S(xT , f(x)) if 0 ∈ T
S(xT ,⊥) otherwise

where viewΠ(x)({Pi|i ∈ T}) represents the view of the parties {Pi|i ∈ T} in an execution of Π with
input x and ⊥ represents an empty input.

We shall use the following result for 2-party MPC, obtained from the general characterization
in [KMR09].

Lemma 1 (2-Party MPC with one-sided output [KMR09]). If a finite 2-party functionality which
takes inputs x ∈ X and y ∈ Y from Alice and Bob respectively and outputs f(x, y) to Bob for
some function f : X × Y → Z has a statistically secure protocol against passive adversaries, then
∀x, x′ ∈ X it holds that ∃y ∈ Y, f(x, y) = f(x′, y) ⇒ ∀y ∈ Y, f(x, y) = f(x′, y).

Residual Function. For a domain X = X1 × · · · × Xm, and a set T ⊆ [m], we write XT to
denote Xi1 × · · · ×Xit , where T = {i1, · · · , it} (in sorted order). For ease of description, we index
the coordinates of an element x ∈ XT by the elements of T . Then, given f : X → Y and x∗ ∈ XT ,
we define the residual function fx∗ : XT → Y as fx∗ : x 7→ f(z) where zi = x∗i if i ∈ T and xi if
i ∈ T .
NIMPC Protocol. Below we summarize the definition of an NIMPC protocol [BGI+14].

Definition 4 (NIMPC: Syntax and Correctness). Let X1, · · · , Xm, R1, · · · , Rm,M1, · · · ,Mm and
Ω be finite domains. Let X = X1× · · · ×Xm and let F be a family of functions f : X → Ω. A non-
interactive secure multiparty computation (NIMPC) protocol for F is a triplet Π = (Gen,Enc,Dec)
where

• Gen : F → R1 × · · · ×Rm is a randomized function.
• Enc is an m-tuple of deterministic functions (Enc1, · · · ,Encm), where Enci : Xi ×Ri →Mi,
• Dec: M1 × · · · ×Mm → Ω is a deterministic function satisfying the following correctness require-
ment: for any x = (x1, · · · , xm) ∈ X and f ∈ F ,

P r[r = (r1, · · · , rm)← Gen(f) : Dec(Enc(x, r)) = f(x)] = 1,

where Enc(x, r) = (Enc1(x1, r1), · · · ,Encm(xm, rm)).

The communication complexity of Π is the maximum of log |R1|, · · · , log |Rm|, log |M1|, · · · , log |Mm|.

Definition 5 (NIMPC Security). We say that an NIMPC protocol Π for f : X → Ω is T -robust
for T ⊆ [m], if there exists a randomized function Sim (a “simulator”) such that ∀x∗ ∈ XT , we
have Sim(fx∗) distributed dentically as (MT , RT ), where R and M are the joint randomness and
messages defined by R ← Gen(f) and Mi ← Enci(xi, Ri), where x ∈ X is such that xT = x∗. Π is
said to be secure if it is T -robust for all T ⊆ [m].

11



A Private Simultaneous Message (PSM) protocol [FKN94] is simply a ∅-robust NIMPC.
UC Security. Finally, we shall also use the definition of UC security [Can05]. Briefly, the definition
compares a “real world” execution of a protocol Π for a functionality F , with an “ideal world”
execution where F is implemented using a trusted party, instead of the protocol. For simplicity,
we shall consider static corruption. Then, every adversary A in the real world or S in the ideal
world is allowed to corrupt a fixed set of parties. Writing real(Z,A,Π) and ideal(Z,S,F) for
the distribution of the environment’s output in these two executions, Π is said to be a UC-secure
protocol for F if

∀A ∃S ∀Z, ideal(Z,S,F) ∼= real(Z,A,Π), and S corrupts same set as A.

3 New Models

In this section we define UNIMPC and UNIMPC?, which are models of secure computation, as
well as combinatorial objects CPS and CPSS. For simplicity, we define UNIMPC and UNIMPC?

for fixed functions rather than function families (though the definitions can be easily extended to
function families, where all the input players receive the function as an input).

Definition 6 (UNIMPC). We define an Unassisted Non-Interactive Secure Multi-party Com-
putation (UNIMPC) protocol Π for an (m + 1)-party aggregating functionality f : X → Ω as
Π = (R,Enc,Dec) where:

• R is an m-party randomized protocol (without inputs), generating correlated views (r1, · · · , rm) ∈
R1 × · · · ×Rm.
• Enc is an m-tuple of deterministic functions (Enc1, · · · ,Encm) where Enci : Xi ×Ri →Mi.
• Dec : M1 × · · · ×Mm → Ω is a deterministic function satisfying the following correctness re-
quirement: for any (x1, · · · , xm) ∈ X and any view (r1, · · · , rm) which R generates with positive
probability,

Dec((Enc1(x1, r1), · · · ,Encm(xm, rm)) = f(x1, · · · , xm).

It is identified with a two-phase MPC protocol where:

1. Offline Phase: The parties Pi : i ∈ [m] run R (without any input) so that each Pi obtains the
view ri.

2. Online Phase: Every Pi encodes its input xi as zi = Enci(xi, ri) and sends it to the aggregator
P0. P0 outputs Dec(z1, · · · , zm).

Security: A UNIMPC protocol Π for f : X → Ω is said to be T -secure (for T ⊆ [m]) if there exists
a simulator S s.t. for any x ∈ X:

viewΠ(x)({Pi|i ∈ T} ∪ {P0}) ∼= S(xT , f(x))

where viewΠ(x)(·) represents the view of a given set of parties in the two-phase protocol above, with
input x.

For any t ∈ [m], Π is said to be t-robust if it is T -secure ∀T ⊆ [m] s.t. |T | ≤ t. A UNIMPC
protocol Π is said to be secure if it is m-robust.
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We point out that a secure UNIMPC protocol as defined above is a passive secure MPC protocol
for f (as in Definition 3). Note that in defining T -security we considered only the case when the
set of corrupt parties includes the aggregator. But when the aggregator is honest, security is
automatically guaranteed by the structure of the UNIMPC protocol (the view of the adversary
being derived completely from the offline phase).

Definition 7 (UNIMPC?). We define an Unassisted Non-Interactive Secure Multi-party Com-
putation protocol with Non-Interactive Pre-Processing (UNIMPC? protocol) Π for a functionality
f : X → Ω as a UNIMPC protocol Π = (R,Enc,Dec) for f where R consists of a single round (i.e.,
each party simply sends messages to the others, and then receives all the messages sent to it).

We define classes MPC, UNIMPC, UNIMPC? as the class of aggregating functionalities that
have (information-theoretically) passive secure MPC, UNIMPC and UNIMPC? protocols, respec-
tively.

4 Commuting Permutations System

In this section, we define the new algebraic-combinatorial classes.

Definition 8 (CPS and CPSS). An (n,m)-Commuting Permutations System (CPS) is a collection
(X1, · · · , Xm) where for all i ∈ [m], Xi ⊆ Sn contains the identity permutation, and for any
collection (π1, · · · .πm) with πi ∈ Xi, and ρ ∈ Sm, π1 ◦ · · · ◦ πm(1) = πρ(1) ◦ · · · ◦ πρ(m)(1).5

It is called an (n,m)-Commuting Permutation Subgroups System (CPSS) if each Xi is a sub-
group of Sn.

Note that given a CPS (X1, · · · , Xm), for any (π1, · · · , πm) ∈ X1 × · · · × Xm, the expression
(
∏
i∈[m] πi)(1) is well-defined as the order of composition is not important.

Definition 9 (CCPS). An (n,m)-CPS (X1, · · · , Xm) is said to be complete in dimension i if
{π(1) | π ∈ Xi} = [n]. If it is complete in all m dimensions, it is called a Complete CPS (CCPS).

Definition 10. An (m + 1)-party aggregating functionality f : X1 × · · · × Xm → [n] is said to
be a CPS functionality (resp., CPSS and CCPS functionality) if (X1, · · · , Xm) is an (n,m)-CPS
(resp., (n,m)-CPSS and (n,m)-CCPS), and for all (π1, · · · , πm) ∈ X1×· · ·×Xm, f(π1, · · · , πm) =
(
∏
i∈[m] πi)(1).
CPS (resp., CPSS and CCPS) is defined as the class of all aggregating functionalities that embed

into a CPS functionality (resp., CPSS functionality and CCPS functionality).

A CPSS enjoys a certain (non-abelian) group structure. More specifically, the CPSS (G1, · · · , Gm)
can be identified with a group, with the set of elements G1×· · ·×Gm and group operation ∗ defined
as (σ1, . . . , σm) ∗ (σ′1, . . . , σ

′
m) = (σ1 ◦ σ′1, . . . , σm ◦ σ′m). This is captured in the following lemma.

Lemma 2. Suppose (G1, · · · , Gm) is a CPSS. Then, for any set of mt permutations {σi,j | i ∈
[m], j ∈ [t]} such that σi,j ∈ Gi, it holds that

( t∏
j=1

∏
i∈[m]

σi,j
)
(1) =

( ∏
i∈[m]

t∏
j=1

σi,j
)
(1).

5Choice of 1 is arbitrary. Requiring identity permutation to always be part of each Xi is w.l.o.g., as a CPS without
it will remain a CPS on adding it.
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Proof. Consider ρ ◦
∏m
i=1 ρi(1), where ρi ∈ Gi for each i, and ρ ∈ Gi0 for some i0 ∈ [m]. Note that

the order of composition is not important in
∏m
i=1 ρi(1), since (G1, · · · , Gm) is a CPS(S), and we

may write it as
∏
i∈[m] ρi(1). Also, define ρ′i as

ρ′i =

{
ρ ◦ ρi0 if i = i0

ρi otherwise.

Since Gi0 is a group, we have ρ′i ∈ Gi for all i ∈ [m] (including i0). Then,(
ρ ◦

∏
i∈[m]

ρi
)
(1) =

(
ρ ◦ ρi0 ◦

∏
i∈[m]\{i0}

ρi
)
(1) =

(
ρ′i0 ◦

∏
i∈[m]\{i0}

ρ′i
)
(1) =

( ∏
i∈[m]

ρ′i
)
(1)

where in the last step, we again used the CPS property. The claim follows by repeatedly using the
above equality.

The following lemma regarding embedding a CPS into a CPSS will be useful in our first result.

Lemma 3. If an (n,m)-CPS (X1, · · · , Xm) embeds into an (n′,m)-CPSS (G1, · · · , Gm), then it
embeds into an (n′,m)-CPSS (G′1, · · · , G′m) and there exist functions φi : Xi → G′i for i ∈ [m], such
that φi maps the identity permutation over [m] to itself, and for all (σ1, · · · , σm) ∈ X1 × · · · ×Xm,∏

i∈[m]

σi(1) =
∏
i∈[m]

φi(σi)(1). (2)

Proof. Note that Equation 2 is the same as Equation 1 from Definition 2, except for omitting φ0 and
specializing to the case that the functionalities f and g are CPS functionalities. Hence, compared
to Definition 2, the above statement makes two more requirements: Firstly, φi(π0) = π0 for each
i ∈ [m], where π0 denotes the identity permutation over [m]; secondly, φ0 is the identity function.
We show that an embedding which may not satisfy these conditions can be transformed to one
which does.

To enforce the first condition, we transform φi to φ̂i defined as follows. Suppose each φi(π0) = σi.
Then, we define φ̂i(π) = σ−1

i ◦φi(π) (so that φ̂i(π0) = π0), and φ̂0 = (σ1 ◦ · · · ◦σm)−1 ◦φ0. We claim
that this is a valid embedding from (X1, · · · , Xm) to (G1, · · · , Gm). To see this, firstly note that φ̂i
indeed maps elements of Xi into elements of Gi, because Gi is a group. Secondly, from Lemma 2,
it follows that in a CPSS with {σi, βi} ⊆ Gi,

(
∏
i∈[m]

(σ−1
i ◦ βi))(1) = (

∏
i∈[m]

σ−1
i ) ◦ (

∏
i∈[m]

βi)(1).

Then we verify that if (φ0, φ1, · · · , φm) satisfies Equation 1, so does (φ̂0, φ̂1, · · · , φ̂m): For any
(π1, · · · , πm) ∈ X1 × · · · ×Xm,∏

i∈[m]

φ̂i(πi)(1) = (
∏
i∈[m]

σ−1
i ) ◦ (

∏
i∈[m]

φi(πi))(1) = (
∏
i∈[m]

σ−1
i ) ◦ φ0 ◦ (

∏
i∈[m]

πi)(1) = φ̂0(
∏
i∈[m]

πi(1)).

Now suppose we have an embedding φ0, φ1, · · · , φm where φi(π0) = π0. We shall transform
it into an embedding (φ̂0, φ̂1, · · · , φ̂m), into a related CPSS where φ̂0 is the identity function. To
define the new CPSS, consider the homomorphism (in fact, automorphism) θ : Sn′ → Sn′ given by

14



θ(α) = φ−1
0 ◦ α ◦ φ0. The new CPSS we define is (G′1, · · · , G′m), where G′i = {θ(α)|α ∈ Gi}. Note

that since θ is a homomorphism, like Gi, G′i is also a subgroup of Sn′ . Further, for βi ∈ G′i where
βi = θ(αi), we have

∏m
i=1 βi(1) = φ−1

0 ◦ (
∏
i∈[m] αi) ◦ φ0(1), showing that it is a CPS. We define

the new embedding by setting φ̂i(π) = θ(φi(π)), and φ̂0 to be the identity function π0. To see that
this is an embedding, we note that

∏
i∈[m] φ̂i(πi)(1) = φ−1

0 ◦
∏
i∈[m] φi(πi) ◦φ0(1). But we note that

φ0(1) = 1: this is implied by Equation 1, by considering x1 = · · · = xm = π0, and noting that we
already have φi(π0) = π0. Hence, the new embedding satisfies Equation 1 if the original one does:

φ̂−1
0 ◦

∏
i∈[m]

φ̂i(πi)(1) =
∏
i∈[m]

φ̂i(πi)(1) = φ−1
0 ◦

∏
i∈[m]

φi(πi) ◦ φ0(1) = φ−1
0 ◦

∏
i∈[m]

φi(πi)(1).

Our first result is a separation:

Theorem 1. CPSS ( CPS.

Proof. We prove this by giving an explicit (n,m)-CPS (X1, · · · , Xm) for every value of m ≥ 2 (and
n = 2m−1 + 1), and showing that the corresponding CPS functionality does not embed into any
(n′,m)-CPSS functionality. (Also, in Appendix C, we give an instance of an (n, 2)-CPS that cannot
be embedded into a CPSS.)

As output alphabet we shall use G ∪ {⊥}, where G is an abelian group with the following
structure (0 denotes the identity of the group, and summation refers to the group operation):

• ∃v1, · · · , vm ∈ G such that
∑m

i=1 vi = 0, but for every non-empty T ( [m],
∑

i∈T vi 6= 0.
• For all v ∈ G, v + v = 0.

Concretely, we may use G = {0, 1}m−1 (with coordinate-wise XOR being the group operation) and
define v1, · · · , vm as follows: For i = 1 to m− 1, vi has a single 1 at position i, and vm = 1m−1.

We identify 0 ∈ G with 1 in the output alphabet. Then, the CPS (X1, · · · , Xm) has Xi =
{π0, πi}, where π0 is the identity permutation over G ∪ {⊥} and πi is defined as follows:

πi(x) =


0 if x = ⊥
⊥ if x = vi

x+ vi otherwise.

It can be easily verified that this is a CPS: for any T ( [m],
∏
i∈T πi(0) =

∑
i∈T vi, and∏

i∈[m] πi(0) = ⊥, with the order of application of the permutations being immaterial. Below, we
shall argue that this CPS does not embed into any (n′,m)-CPSS.

Suppose, for some n′, there is an (n′,m)-CPSS, (G1, · · · , Gm), and functions φi : Xi → Gi, as
specified in Lemma 3. Let φi(πi) = ρi. Then, for any T ⊆ [m], applying Equation 2 to σi = πi for
i ∈ T and σi = π0 for i 6∈ T , we can write∏

i∈T
πi(0) =

∏
i∈T

ρi(0). (3)
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Now, to derive a contradiction, we note that since (G1, · · · , Gm) is a CPSS, ρ2
1 ∈ G1. Then, we

require that ρ2
1 ◦ ρ2(0) = ρ2 ◦ ρ2

1(0). But,

ρ2
1 ◦ ρ2(0) = ρ1(ρ1 ◦ ρ2(0))

(a)
= ρ1(π1 ◦ π2(0))

(b)
= ρ1(v1 + v2)

(c)
= ρ1(v3 + · · ·+ vm)

(b)
= ρ1(

m∏
i=3

πi(0))
(a)
= ρ1(

m∏
i=3

ρi(0))
(a)
= π1(

m∏
i=3

πi(0))
(b)
= v1 + v3 + · · · vm

(c)
= v2

ρ2 ◦ ρ2
1(0)

(a)
= ρ2 ◦ ρ1(π1(0))

(b)
= ρ2 ◦ ρ1(v1)

(c)
= ρ2 ◦ ρ1(v2 + · · ·+ vm)

(b)
= ρ2 ◦ ρ1 ◦

m∏
i=2

πi(0)
(a)
= ρ2 ◦ ρ1 ◦

m∏
i=2

ρi(0)
(a)
= ρ2 ◦ π1 ◦

m∏
i=2

πi(0)
(b)
= ρ2(⊥).

where equalities (a) follow from Equation 3, (b) from the definition of πi, and (c) from the fact that∑m
i=1 vi = 0. Hence we require ρ2(⊥) = v2. On the other hand, we also have ρ2(0) = π2(0) = v2,

yielding a contradiction, as ρi are permutations.

5 Only CPS Functionalities have (UNI)MPC Protocols

We show that if an aggregating functionality has a statistically secure MPC protocol against semi-
honest adversaries (without honest majority or setups), then it must be a CPS functionality. Since
UNIMPC protocols are MPC protocols, this applies to UNIMPC as well.

Theorem 2. If an aggregating functionality has an information-theoretically secure MPC protocol
against semi-honest adversaries, then it embeds into a CPS functionality.

Proof. Suppose an (m+ 1)-party aggregating functionality f : X1 × · · · ×Xm → [n] is semi-honest
securely realizable. Denote the aggregating party as P0 and for each i ∈ [m], the party with input
domain Xi as Pi.

Firstly, w.l.o.g., we may assume that no party has two equivalent inputs, by considering an
embedding if necessary. Further, we may let Xi = [ni] for each i, and f(1, · · · , 1) = 1, by relabeling
the inputs and the outputs.

Now, for each i ∈ [m], consider the 2-party SFE functionality obtained by grouping parties
{Pj |j ∈ [m] \ {i}} as a single party Alice, and the parties {Pi, P0} as a single party Bob. This
functionality has the form in Lemma 1, namely, only Bob has any output. Then applying the
lemma, we get the following (where the notation x[i : `] denotes the vector obtained from x by
setting xi to `): ∀x,x′ ∈ X1 × · · · ×Xm,

f(x) = f(x′) and xi = x′i ⇒ ∀` ∈ Xi, f(x[i : `]) = f(x′[i : `]). (4)

We use this to prove the following claim.

Claim 1. For each i ∈ [m] and ` ∈ Xi, there exists a permutation π
(i)
` such that, for all x ∈

X1 × · · · ×Xm with xi = 1,
π

(i)
` (f(x)) = f(x[i : `]). (5)

Proof. Fix i ∈ [m], ` ∈ Xi. Now, consider defining a (partial) function π(i)
` using Equation 5. This

is well-defined thanks to Equation 4: Even though there could be multiple x with xi = 1 and the
same value for f(x), Equation 4 ensures that they all lead to the same value for f(x[i : `]).
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Further, with this definition, if π(i)
` (a) = π

(i)
` (b), this means that there exist x,x′ with xi = x′i =

1, f(x) = a, f(x′) = b and f(x[i : `]) = f(x′[i : `]). But by considering z = x[i : `], z′ = x′[i : `],
we have zi = z′i and f(z) = f(z′). Hence, by Equation 4, we have f(z[i : 1]) = f(z′[i : 1]. But
since x = z[i : 1] and x′ = z′[i : 1], this means that a = f(x) = f(x′) = b. Hence, π(i)

` is a
one-to-one function, from {a|∃x, xi = 1, f(x) = a} ⊆ [n] to [n]. We can arbitrarily extend this to
be a permutation over [n] to meet the condition in the claim.

Finally, for any x such that xi1 = · · · = xit = 1, and distinct i1, · · · , it, by iteratively applying
Equation 5, π(it)

`t
◦ · · · ◦ π(i1)

`1
(f(x)) = f(x[i1 : `1] · · · [it : `t]). Taking (ik, `k) = (ρ(k), zρ(k)) for any

permutation ρ ∈ Sm and any z ∈ X1 × · · · × Xm, we have x[i1 : `1] · · · [im : `m] = z, for any x.
Then, with x = (1, · · · , 1) we get that

f(z) = π(ρ(1))
zρ(1)

◦ · · · ◦ π(ρ(m))
zρ(m)

(1),

where we substituted f(x) = 1. This concludes the proof that f embeds into the CPS functionality
with input domains X̂i = {π(i)

` |` ∈ [ni]}.

5.1 Extensions to 1-Robust UNIMPC and NIMPC

Since every secure UNIMPC protocol is a secure MPC protocol, Theorem 2 applies to UNIMPC
as well. But it extends to UNIMPC in a stronger manner than it holds for MPC. Note that if we
restrict the number of corrupt parties to be at most m/2, then every m+1 party functionality has a
passive secure MPC protocol, even if the functionality is a non-CPS aggregating functionality. But
we show that as long as the adversary can corrupt just two parties (the aggregator and one of the
input parties), the only aggregating functionalities that have secure UNIMPC protocols are CPS
functionalities.

To see this, we consider how Equation 4 was derived in the proof of Theorem 2 (the rest of
the argument did not rely on the protocol). We used the given (m + 1)-party protocol to derive
a secure 2-party protocol to which Lemma 1 was applied. In arguing that this 2-party protocol is
secure we considered two corruption patterns in the original protocol: the adversary could corrupt
{P0, Pi} (Bob) or {Pj | j ∈ [m]\{i}} (Alice). Now, if we allow only corruption of up to two parties,
we cannot in general argue that the resulting two party protocol is secure when Alice is corrupted.
However, if the starting protocol was a UNIMPC protocol, then in the resulting 2-phase protocol,
there is an offline phase when Alice and Bob interact without using their inputs, and after that
Alice sends a single message to Bob in the second phase. Any such protocol is secure against the
corruption of Alice, as Alice’s view can be perfectly simulated without Bob’s input. Thus, when the
starting protocol is a UNIMPC protocol that is T -secure for every T of the form {0, i} (i ∈ [m]),
then Lemma 1 applies to the 2-party protocol constructed, and the rest of the proof goes through
unchanged. Thus, an aggregating functionality f has a 1-robust UNIMPC protocol only if it is a
CPS functionality.

The above argument extends in a way to 1-robust NIMPC as well. Of course, every function has
a secure NIMPC protocol [BGI+14], and we cannot require all such functions to be CPS. But we note
that NIMPC turned out to be possible for all functions not only because a trusted party is allowed
(to generate correlated randomness), but also because NIMPC allows the adversary (corrupting the
aggregator and some set of parties) to learn the residual function of the honest parties’ inputs. So,
one may ask for which functionalities does the adversary learn nothing more than the output of the
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function on any input (just as in the security requirement for MPC), even as we allow a trusted
party to generate correlated randomness. Here, we note that the above argument in fact extends to
the NIMPC setting with the trusted party: We simply include the trusted party as part of Alice in
the above 2-party protocol. Since the security of the 2-party protocol relied only on security against
Bob (and the 2-phase nature of the protocol), including the trusted party as part of Alice does not
affect our proof. Thus we conclude that only CPS functionalities have 1-robust NIMPC where the
simulator takes only the input of the corrupt parties and the output of the function (rather than
the residual function of the honest parties’ inputs).

6 UNIMPC Protocols

In this section we present our positive results for UNIMPC? and UNIMPC (Theorem 3 and Theo-
rem 4).

Theorem 3. Any function embeddable in a CPSS function has a UNIMPC? protocol with perfect
security.

To prove Theorem 3 it is enough to present a perfectly secure protocol for a CPSS function:
the protocol retains security against passive corruption when the input domains are restricted to
subsets.

UNIMPC? Protocol for CPSS Function.

For i ∈ [m], party Pi has input πi ∈ Gi, where (G1, · · · , Gm) is an (n,m)-CPSS. Party P0 will
output π1 ◦ · · · ◦ πm(1).

1. Randomness Computation: For each j ∈ [m], Pj samples (σ1j , · · · , σmj) uniformly at random
from G1 × · · · ×Gm, conditioned on

σ1j ◦ σ2j ◦ · · · ◦ σmj(1) = 1. (6)

For each i, j ∈ [m], Pj sends σij to Pi.
2. Input Encoding: Pi computes σi0 := πi ◦ (σi1 ◦ · · · ◦ σim)−1, and sends it to P0. Note that

(σi0, · · · , σim) is an additive secret-sharing of πi in the group Gi.
3. Output Decoding: P0 outputs σ1,0 ◦ σ2,0 ◦ · · · ◦ σm,0(1).

By construction, the protocol has the structure of a UNIMPC? protocol. Indeed, it is particularly
simple for a UNIMPC? protocol in that the randomness computation protocol in offline phase is a
single round protocol. Below we argue that this protocol is indeed a perfectly secure protocol for
computing

(∏
i∈[m] πi

)
(1) against passive corruption of any subset of parties.

Perfect Correctness: The output of P0 is
∏m
i=0 σi,0(1). By Equation 6 (applied to j = 1) we

may write 1 =
∏m
i=1 σi1(1). We further expand 1 in this expression again by applying Equation 6

successively for j = 2, · · · ,m to obtain 1 =
∏m
j=1

∏m
i=1 σij(1). Hence, the output of P0 may be

written as
∏m
j=0

∏m
i=1 σi,j(1). By Lemma 2, this equals

∏
i∈[m]

∏m
j=0 σij(1). By the definition of σi,0

this in turn equals
∏
i∈[m] πi(1), as desired.

Perfect Semi-Honest Security: A protocol with the UNIMPC structure is always perfectly semi-
honest secure as long as the aggregator is honest, or if all the input parties are corrupt. Hence we
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focus on the case when the aggregator P0 is corrupt and there is at least one honest party. Suppose
the adversary corrupts P0 and {Pi | i ∈ S} for some set S ( [m]. Below, we write S := [m] \ S to
denote the set of indices of the honest parties. Recall that an execution of the protocol (including
the inputs) is fully determined by the m × (m + 1) matrix σ, with (i, j)th entry σij ∈ Gi, for
(i, j) ∈ [m]× ([m]∪ {0}). The input determined by σ is defined by input(σ) = (π1, · · · , πm), where
πi =

∏m
j=0 σij . We say that σ is valid if for every j ∈ [m],

∏
i∈[m] σij(1) = 1.

When the functionality is invoked with inputs π = (π1, · · · , πm), in the ideal world, the adversary
learns only the corrupt parties’ inputs π|S and the residual function of the honest parties’ inputs
πS(1), where πS :=

(∏
i∈S πi

)
. But in the real world its view consists also 〈σ〉S := {σij | i ∈ S ∨ j ∈

S ∪ {0}}. We need to show that for any two input vectors π,π′ with identical ideal views for the
adversary – i.e., π|S = π′|S , and πS(1) = π′

S
(1) – the distribution of 〈σ〉S is also identical. For this

we shall show a bijective map φπ′S between valid matrices σ consistent with π and those consistent
with π′, which preserves 〈σ〉S . Since σ is distributed uniformly over all valid matrices consistent
with the input in the protocol, this will establish that the distribution of 〈σ〉S is identical for π and
π′. More precisely, the following claim completes the proof.

Claim 2. For any S ( [m], and any π,π′ ∈ G1×· · ·×Gm such that π|S = π′|S and πS(1) = π′S(1),
there is is a bijection φπ′S from {σ | input(σ) = π ∧ σ valid} to {σ | input(σ) = π′ ∧ σ valid}, such
that 〈σ〉S = 〈φπ′S (σ)〉S.

Proof. Let S,π,π′ be as in the lemma. We shall first define φπ′S for all m × (m + 1) matrices σ,
with σij ∈ Gi, and then prove the claimed properties when restricted to the domain in the claim.
Fix h ∈ S as (say) the smallest index in S. Given σ, φπ′S maps it to σ′ as follows.

σ′ij =

{
σij if j 6= h

α−1
i ◦ π′i ◦ β

−1
i if j = h

where αi :=
∏h−1
j=0 σij and βi :=

∏m
j=h+1 σij . Note that like σ, σ′ also satisfies the condition that

σ′ij ∈ Gi for all j = 0 ∪ [m], because αi, βi, π′i ∈ Gi.
By construction,

∏m
j=0 σ

′
ij = π′i, and hence the image of φπ′S is contained in {σ′ | input(σ′) = π′}.

Also, when the domain is {σ | input(σ) = π}, the mapping is invertible since φπS (φπ
′

S (σ)) = σ, when
input(σ) = π. Hence, by symmetry, this is a bijection from {σ | input(σ) = π} to {σ | input(σ) =
π′}. Further, for i ∈ S, πi = π′i and hence σ′ih = σih, so that 〈σ′〉S = 〈σ〉S .

It remains to prove that the map is a bijection when the domain and range are restricted to
valid matrices. So, suppose σ is a valid matrix. Then we have

(
∏
i∈[m]

σij)(1) = 1 ∀j ∈ [m] (7)

(
∏
i∈[m]

βi)(1) = (

m∏
j=h+1

∏
i∈[m]

σij)(1) = 1. (8)

where the first equality in (8) is obtained by applying Lemma 2, and the second by applying the
validity condition (7) successively for j = m, · · · , h+ 1.

To verify that σ′ = φπ
′

S (σ) is valid, we only need to verify that (
∏
i∈[m] σ

′
ih)(1) = 1 (as the

other columns of σ′ are the same as in σ). This we show as follows (where for brevity, we write
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α :=
∏
i∈[m] αi and β :=

∏
i∈[m] βi):∏

i∈[m]

π′i(1) =
∏
i∈[m]

πi(1)

⇒ (
∏
i∈[m]

αi ◦ σ′ih ◦ βi)(1) = (
∏
i∈[m]

αi ◦ σih ◦ βi)(1)

⇒ α ◦ (
∏
i∈[m]

σ′ih) ◦ β(1) = α ◦ (
∏
i∈[m]

σih) ◦ β(1) by Lemma 2

⇒ (
∏
i∈[m]

σ′ih) ◦ β(1) = (
∏
i∈[m]

σih) ◦ β(1) α a permutation

⇒ (
∏
i∈[m]

σ′ih)(1) = (
∏
i∈[m]

σih)(1) = 1 by (8) and (7).

Theorem 4. Any CPS functionality with 4 or fewer parties has a UNIMPC protocol with perfect
security. Further, any CPS functionality with 3 or fewer parties has a UNIMPC? protocol with
perfect security.

Proof of Theorem 4. We consider different cases depending on the number of parties. For the first
two cases we present UNIMPC? protocols and for the last case a UNIMPC protocol (with an
interactive preprocessing phase).

Two parties: Let P0 be the aggregator and P1 be the other party. In this case P1 can simply
compute the output and send it to P0.

Three parties: W.l.o.g., we assume that the given function has no two equivalent inputs for
any party. In particular, for π, π′ ∈ X2 we have π(1) 6= π′(1).

In this case we can use any PSM protocol [FKN94], except that all the randomness is sampled
by P1 and sent to P2.6 Clearly, this is a UNIMPC? protocol by construction (and hence is secure
when P0 is honest). When P1 and P2 are both honest, the security follows from the original PSM
protocol. When P0 colludes with one of the parties, say, P1, then note that the adversary in the
ideal world learns the output π1 ◦ π2(1) as well as π1, where πi is the input of party Pi. Since π1 is
a permutation, this determines π2(1), and since we had removed redundant inputs, π2 itself. Hence
in this case a perfect simulation is obtained by a simulator who first finds out P2’s input and then
carries out the entire protocol execution.

Four parties: In this case we will rely on an NIMPC protocol (Gen,Enc,Dec) for the given
CPS functionality (see Appendix A), and any 3-party perfectly secure protocol for general functions
that is secure against passive corruption of 1 party (e.g., the passive-secure protocol in [BGW88]).
We remark that this transformation has also appeared in a recent, independent work [HIKR18].

1. Offline phase: Parties P1, P2, P3 run the general MPC protocol to sample the random variables
(r1, · · · , rm) according to Gen. Note that this phase does not need their inputs.

2. Online phase: This is identical to the online phase in the NIMPC protocol. Each Pi sends
zi := Enc(xi, ri) to P0 and P0 outputs Dec(z1, · · · , zm).
6As a concrete example, to compute an (n, 2)-CPS, P1 can pick a random permutation σ ∈ Sn and send it to P2.

Then P1 sends the permutation π1 ◦ σ−1 and P2 sends the value σ ◦ π2(1) to P0 who evaluates the former on the
latter to obtain the output.
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To see that this is secure, we consider the following cases. If only one of P1, P2, P3 is corrupt,
then the randomness generation remains secure, and hence the view of the corrupt party (say Pi)
in that phase can be computed from ri. The rest of the view can be simulated by invoking the
NIMPC simulation.

If two of P1, P2, P3 are corrupt, then the adversary is allowed to learn the residual function
of the remaining party, which is its input (after having removed redundancies). Hence, a perfect
simulation is possible in this case as well.

7 Latin Hypercubes

CPS functions are closely related to Latin Squares, and more generally, Latin Hypercubes. An n-ary
Latin Square is an n×n matrix with entries from [n] such that each row and column has all elements
of [n] appearing in it. The m-dimensional version is similarly a tensor indexed by m-dimensional
vectors, so that every “row” (obtained by going through all values for one coordinate of the index,
keeping the others fixed) is a permutation of [n].

Formally, we may define Latin squares and hypercubes in terms of “codes.” Here, one represents
a Latin square M using the set LM = {(i, j,Mij) | i, j ∈ [n]}. Restricted to any two coordinates,
the n2 entries in L form the set [n]× [n]; or equivalently, there are no tuples in this set which differ
in exactly one coordinate. The m-dimensional version can be defined as follows (where ∆H stands
for Hamming distance):

Definition 11. L ⊆ [n]m+1 is said to be an m-dimensional, n-ary Latin hypercube if |L| = nm

and for any x, x′ ∈ L, ∆H(x, x′) 6= 1.
An (m + 1)-party aggregating functionality f : [n]m → [n] is said to be a Latin hypercube

functionality if {(x1, · · · , xm, f(x1, · · · , xm)) | (x1, · · · , xm) ∈ [n]m} is an n-ary Latin hypercube.

In the case of m = 2, an n-ary Latin square functionality f always is (or, technically, embeds
into) an (n, 2)-CPS (X1, X2).7 However, this is not true in higher dimensions (see Appendix C
for an explicit example of a function that is a Latin hypercube, but not a CPS). So not all Latin
hypercube functions can have MPC protocols. We obtain an exact characterization of all Latin
hypercube functionalities that have UNIMPC? (or MPC) protocols.

Theorem 5. A Latin hypercube functionality has a UNIMPC? protocol if and only if it is a CPS
functionality.

Recall that by Theorem 2 only CPS functionalities can have even MPC protocols. Hence the
above theorem also characterizes the Latin hypercube functionalities that have an MPC protocol.

To prove the “if” direction of the above theorem, we shall relate Latin hypercubes which are
CPS functionalities, to Complete CPS functionalities, and then further discover an additional “full
commutativity” structure in such functions. This additional structure is used to show that such
functions are CPSS functionalities, letting us use the UNIMPC? protocol from Theorem 3.

7We let X1 = {πi | πi(f(1, j)) = f(i, j) ∀j ∈ [n]}, and X2 = {ρj | ρj(f(i, 1)) = f(i, j) ∀i ∈ [n]}. These
functions are well-defined permutations because of f being a Latin square functionality, and it is a CPS because,
πi ◦ ρj(f(1, 1)) = ρj ◦ πi(f(1, 1)) = f(i, j). With a bijective embedding that relabels the outputs of f so that
f(1, 1) = 1, this meets the definition of a CPS.
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7.1 Latin Property and Completeness

A Latin Hypercube can alternately be defined as a function satisfying two properties – Latin Property
and Completeness. The Latin property for a function f : X1 × · · · × Xm → [n] requires that
there should not exist two inputs (x1, · · · , xm) and (x′1, · · · , x′m) which have a Hamming distance
of 1 and f(x1, · · · , xm) = f(x′1, · · · , x′m). We point out that the Latin property is a necessary
(but not sufficient) condition for a function to be a CPS (after removing redundant inputs): If
f(π1, · · · , πm) = f(π′1, · · · , π′m) and for all j 6= i, we have πj = π′j , then we have πi(1) = π′i(1),
which in turn means that πi and π′i are equivalent inputs. Also recall that CPS captures the
condition that any set of parties learning the output (along with their own inputs) should be able
to learn the residual function of the remaining parties (Theorem 2); Latin property is equivalent
to the (weaker) condition that if a collusion containing all but one input player learns the output,
then they can learn the remaining player’s input.

The second property of completeness was originally defined for CPS functionalities in Defini-
tion 9, but we now extend it to functions with the Latin property: Note that if f : X1×· · ·×Xm → [n]
has the Latin property, then |Xi| ≤ n for all i; we say that f is complete if |Xi| = n for all i ∈ [m].

Then, a Latin Hypercube function is simply a function which has both the Latin property and
the completeness property. Since a CPS always has the Latin property, a Complete CPS is the same
as a Latin hybercube that is a CPS.

7.2 Fully Commuting Permutations System

Our goal from above is to show that a Complete CPS functionality has the subgroup structure of
a CPSS functionality. In this section we do this by showing a larger class of functionalities which
embed into CPSS functionalities.

Definition 12. An (n,m)-Fully Commuting Permutations System (FCPS) is a collection (X1, · · · , Xm)
where for all i ∈ [m], Xi ⊆ Sn is non-empty, and for any two distinct i, j ∈ [m] and π ∈ Xi and
π′ ∈ Xj, π ◦ π′ = π′ ◦ π.

It is called an (n,m)-Fully Commuting Permutation Subgroups System (FCPSS) if each Xi is
a subgroup of Sn.

Lemma 4. For every (n,m)-FCPS (X1, · · · , Xm) there is an (n,m)-FCPSS (G1, · · · , Gm) such
that for i ∈ [m], Xi ⊆ Gi.

Proof. We define Gi to be the subgroup of Sn generated by Xi. Note that each Gi is finite (since
Sn is finite) and is obtained from Xi by iteratively adding to it π−1 for some π ∈ Xi, or π1 ◦ π2 for
π1, π2 ∈ Xi. So it is enough to prove that one step in this iterative process preserves the commuting
property. If π ∈ Xi, then for any j 6= i and π′ ∈ Xj , we have

π ◦ π′ = π′ ◦ π ⇒ π−1 ◦ (π ◦ π′) ◦ π−1 = π−1 ◦ (π′ ◦ π) ◦ π−1 ⇒ π′ ◦ π−1 = π−1 ◦ π′.

Also, for π1, π2 ∈ Xi and π′ ∈ Xj , for i 6= j, we have

(π1 ◦ π2) ◦ π′ = π1 ◦ (π′ ◦ π2) = π′ ◦ (π1 ◦ π2).

Thus adding π−1 and π1 ◦ π2 to Xi retains the commuting property.

The following lemma relates completeness with full-commutativity.
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Lemma 5. If a CPS is complete in at least 3 dimensions, then it is an FCPS.

Proof. Suppose (X1, · · · , Xm) is an (n,m)-CPS which is complete in three dimension. Consider
any two distinct i, j ∈ [m], and π ∈ Xi, π′ ∈ Xj . We need to show that π ◦ π′ = π′ ◦ π. Let
k ∈ [m] \ {i, j} be a dimension in which the CPS is complete. Then, by the CPS property, for each
ρ ∈ Xk, π ◦ π′ ◦ ρ(1) = π′ ◦ π ◦ ρ(1). Since {ρ(1) | ρ ∈ Xk} = [n] we have that for every a ∈ [n],
π ◦ π′(a) = π′ ◦ π(a), or in other words, π ◦ π′ = π′ ◦ π, as required.

Interestingly, in the above lemma the number of dimensions 3 is tight, as demonstrated by Latin
squares (which are complete in 2 dimensions). In Appendix C we give an example of a Latin square
(i.e., an (n, 2)-CCPS functionality) that is not an FCPS (or even in CPSS).

The above results on FCPS lead us to our result that Latin hypercubes which are CPS (i.e.,
CCPS) are also CPSS.

Lemma 6. For m > 2, an (n,m)-CCPS is an (n,m)-CPSS.

Proof. By Lemma 5, for m > 2, an (n,m)-CCPS is an FCPS, and hence embeddable in an FCPSS
(by Lemma 4). However, since the given function is already complete in all dimensions, being
embeddable in an FCPSS translates to being an FCPSS itself. Thus the given CCPS is also an
FCPSS, and in particular, a CPSS.

Finally, we can prove Theorem 5.

Proof of Theorem 5. The “only if” direction follows from Theorem 2. We need to argue that ev-
ery Latin hypercube functionality that is a CPS functionality has a UNIMPC? protocol. If the
functionality has up to 3 parties, it follows from Theorem 4 that it has a UNIMPC? protocol. For
functionalities with 4 or more parties, we note that the functionality corresponds to a Latin hyper-
cube of 3 or more dimensions, i.e., an (n,m)-CCPS for m ≥ 3. Then by Lemma 6 it is a CPSS
functionality and hence by Theorem 3, the functionality has a UNIMPC? protocol.

8 Towards a Characterization of Strong Security

While security against active corruption is often stronger than security against passive corruption,
this is not always the case. This is because, in the ideal world model for active corruption, the adver-
sary (i.e., simulator) is allowed to send any inputs of its choice to the functionality, the adversary in
the passive corruption setting is required to send the same input as the corrupt parties received. To
reconcile this discrepancy, one could weaken the notion of passive security by allowing the simulator
to change the input sent to the functionality. However, the resulting security guarantee is quite
pessimistic, as it assumes that even passively corrupt parties will alter their inputs, and may not be
appropriate in scenarios where the passively corrupt parties will not do so (see Footnote 3). Instead,
we propose using a stronger definition – which we simply call strong security – which requires the
simulator to not alter the inputs if the parties are corrupted passively, but allows it to use arbitrary
inputs if they are corrupted actively. Formally, we use the following information-theoretic security
definition:

Definition 13 (Strong security). A protocol Π is said to be a strongly secure protocol for a function-
ality F if it is both passive secure and UC secure (with selective abort) for F against computationally
unbounded adversaries.

23



Note that strong security admits composition as both semi-honest security and UC security are
composable. From a practical point of view, strong security (possibly weakened to hold only against
PPT adversaries) is important, and arguably the “right” notion in many cases. Here we initiate the
study of characterizing multi-party functionalities that are strongly securely realizable. Clearly, the
impossibility results for both UC security and passive security apply to strong security.

To state our results for all multi-party functions, we need to go beyond aggregating functionali-
ties. Firstly, we shall need the notion of disseminating functionalities: An (m+1)-party disseminat-
ing functionality f = (f1, · · · , fm) has a single party P0 with an input x, so that every other party
Pi receives the output fi(x). The class of disseminating functions is denoted by DISS. Secondly,
we need to consider functions which are “essentially” aggregating or disseminating, but not strictly
so because of the presence of additional information in each party’s local output which is derived
solely from its own inputs. The idea that a function can be essentially the same as another function
is captured using the notion of isomorphism among functionalities, as defined in [MPR13]. We
reproduce this below, adapted to strong security. Here, a protocol πGF for F , using G as a setup, is
said to be local if each party (deterministically) maps its input to an input for the functionality G,
then calls G once with that input and, based on their private input and the output obtained from
G, locally computes the final output (deterministically), without any other communication.

Definition 14 (Isomorphism [MPR13]). We say F and G are isomorphic to each other if there
exist two local protocols πGF and πFG that strongly securely realize F and G respectively.

Now we are ready to state and prove our main results regarding strongly secure MPC.

Theorem 6. If a functionality has a strongly secure protocol, then it is isomorphic to a functionality
in DISS ∪ CPS.

Proof. It follows from [PR08a] that all strongly securely realizable functionalities are isomorphic
to a disseminating functionality (i.e., a functionality in DISS), or an aggregating functionality (as
defined in here).Further, if a functionality F that has a strongly secure protocol is isomorphic to an
aggregating functionality F ′, then from the definition of isomorphism, F ′ too has a strongly secure
(and in particular, a passive secure) protocol. Then, by Theorem 2, F ′ ∈ CPS.

We contrast this with our positive result below, which refers to CCPS (Definition 9), instead
of CPS. We point out that our protocols below are efficient in the sense of having polynomial
complexity in the statistical security parameter, but can be polynomial (rather than logarithmic)
in the domain sizes or exponential in the number of parties.

Theorem 7. If a functionality is isomorphic to one in DISS∪CCPS, then it has a strongly secure
protocol.

Proof. We show in Section 8.2 that every disseminating functionality has a UC secure protocol.
A UC secure protocol for a disseminating functionality is always passive secure as well: only the
disseminator has any input, and if the disseminator is passively corrupt, the correctness guarantee
under UC security (when no party is corrupt) ensures that the simulator can send the disseminator’s
actual input to the functionality.

In Lemma 7, we prove that the UNIMPC? protocol in Section 6 is UC secure for every Complete
CPSS functionality. By Lemma 6, this covers all Complete CPS functionalities of more than 2
dimensions. For 2-dimensional Complete CPS functionalities (which are precisely Latin Squares),
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we give a UC secure protocol in Appendix B. In Section 8.1, we show a compiler that extends these
results to functionalities embedded in a CCPS functionality.

Finally, we note that for aggregating CPS functionalities too, UC security implies strong security:
If the aggregator is honest, the correctness guarantee under UC security allows the simulator to send
the corrupt parties’ actual input to the functionality; if the aggregator is corrupt, a simulator which
sends the correct inputs of the passively corrupt players obtains the honest parties’ residual function,
and can internally execute the UC simulator (which may send arbitrary inputs to the functionality
and expect the output).

To complete the proof above, we need to prove the following lemma.

Lemma 7. The UNIMPC? protocol in Section 6 is UC secure for any complete CPSS functionality.

Proof. If the aggregator is corrupt its behavior can be mimicked in the ideal world. So, we describe
the case where the aggregator is honest.

Since we have already shown that the protocol is secure against a semi-honest adversary, we
will simply show that any execution of an actively malicious adversary corresponds to an execution
of an equivalent semi-honest adversary such that the view of the honest parties in both the cases
remains the same.

More formally we define a hybrid world H where the adversary is semi-honest corrupt. In the
real world R the adversary is actively corrupt. Let T be the set of corrupt parties. We can show
that ∀AR, ∃AH : viewxT

({Pi|i ∈ T}) is the same for both the worlds.
In the randomness computation phase, the malicious adversary may choose a U ⊂ T and

σ1j , . . . , σmj ,∀j ∈ U , such that σ1j ◦ · · · ◦ σmj(1) = λj where λj 6= 1. We describe an equiva-
lent semi-honest adversary which chooses

σ′ij =

{
σij if i 6= j

πi ∈ Gi : πi(λi) = 1 where λi = σ1i ◦ · · · ◦ σi−1,i ◦ σi+1,i ◦ · · · ◦ σmi(1) otherwise

By the completeness property we know that ∃π′i ∈ Gi : π′i(1) = λi. We simply define πi = π′−1
i .

In both H and R, viewxT
({Pi|i ∈ T}) = σi,j , i, j ∈ T which is the same in both the cases. We can

see that the set σ′ij∀j acts as a stabilizer of 1.
In the input generation phase the adversary can send some τi ∈ Gi to the aggregator instead of

σi0. For a semi honest adversary this corresponds to π′i = τi ◦ σ−1
i0 ◦ πi which is valid due to the

closure property.

8.1 Restricting Input Domains While Retaining UC Security

In this section we give a compiler to transform a UC secure protocol for a CPS functionality F to
a UC secure protocol for the same functionality, but with restricted input domains for each party.
To illustrate the need for this compiler, suppose m input parties wish to total their votes (0 or 1)
and provide it to an aggregator, securely. We do have a UC secure protocol for addition modulo
m+ 1, and this functionality can correctly compute the total of m bits. However, this is not a UC
secure protocol for our functionality, as the corrupt parties can provide inputs other than 0 or 1.
Nevertheless, we show that the original protocol can be transformed into one which restricts the
domain as desired.
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Definition 15 (Domain Restriction). Given a functionality F with input domain X = X1×· · ·×Xm,
we define a domain restriction of F to D = D1 × · · · × Dm ⊆ X as a functionality FD which is
defined only on inputs in D, where it behaves identically as F .

We give a compiler that transforms a UC secure protocol for a CPS functionality F to a UC
secure protocol for FD for any D = D1 × · · · ×Dm. Our compiler can be presented as a protocol
RDomF ,FAND

D – a protocol in a hybrid model with access to the ideal functionalities F and (m-input)
aggregating functionality FAND. We note that while FAND is not a CPS functionality (and hence
cannot have a passive secure protocol), it does have a UC secure protocol. Specifically, one can
reduce FAND to summation over an exponentially large abelian group, where each party Pi maps
its input xi to a group element gi as follows: if xi = 0, let gi be random, and if xi = 1, let gi = 0.
The aggregator receives

∑
i gi and outputs 1 if the sum is 0, and 0 otherwise.

Protocol RDomF ,FAND
D

The high-level idea of this protocol is to first invoke F on random inputs from the domain D, and
use a cut-and-choose phase to verify that indeed most of the invocations used inputs in the domain
D. Then, using access to FAND, the executions involving the correct input from all the parties are
isolated, and the aggregator P0 outputs what it received from F in those executions (if there is a
consistent output). The formal description follows.

Let F represent the functionality to be realized and k be the security parameter. Let E be the
input domain of F and D be the desired domain. Let Pi, i ∈ [m] ∪ {0} be the set of parties with
inputs {xi}i∈[m]. Let P0 be the aggregator with output space [n].

1. Random Execution: Invoke k sessions of the functionality F with domain E . Each honest
party Pi, i ∈ [m] chooses input uniformly at random from domain D. Let uij be the input used
by party Pi in the jth execution and let vj be its output.

2. Opening: P0 chooses S ⊆ [k], where every element has a probability of 0.5 of being picked up
(thus E(|S|) = k/2), and announces it. Every party Pi, i ∈ [m] sends uij , ∀j ∈ S to P0. Then, P0

checks the consistency of all the inputs and outputs it received: i.e., if ∀j ∈ S, F({uij}i∈[m]) = vj .
It also confirms that each input is chosen from the domain D. Otherwise P0 aborts.

3. Tallying with actual inputs: Invoke k − |S| sessions of the FAND functionality, indexed by
S̄ = [m] \ S. Each honest party Pi sets its input to session j of FAND aij as

aij =

{
1 if vij = xi

0 otherwise

and let the output for jth FAND be bj . Also let T = {j : bj = 1}.
4. Computing the result: If |T | ≥ t/2 where t = k/(2 ·

∏
i∈[m] |Xi|) is the expected size of T ,

and if ∃v∀j ∈ T , vj = v, then P0 outputs v. Otherwise P0 Aborts.

Theorem 8. If F is an m-input CPS functionality, and D = D1 × · · · × Dm is a subset of its
domain, then RDomF ,FAND

D is a UC secure protocol for FD.

Proof. We need to give simulators for various subsets of corruption. We start by considering the case
when all the parties are honest. In this case, we need only show that the protocol produces correct
outputs on all inputs, except with negligible probability. Note that if all the parties are honest, P0
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can abort only if |T | < t/2 in Step 4, where t is the expected number of instances that fall into the
set T . Since each instance falls into T independently, we can bound this probability using Chernoff
bound, to be exponentially small in t (which is in turn, linear in the security parameter). This is
summarized below.

Lemma 8. If all parties Pi are honest, then the probability of abort when the input is picked by the
parties accordingly from their respective domains is a negligible function of the security parameter.

If the aggregator is corrupt a simulator can send any input to the functionaliy on behalf of the
corrupt parties, and obtain the residual function of the honest parties. Then it picks an arbitrary
valid input combination for the honest parties which has that residual function, and runs the honest
parties’ protocol with that input. It can be seen that this is a perfect simulation.

The interesting case is when the aggregator is honest. We describe a simulator for this setting.
The simulator first carries out the random execution phase and the opening phase faithfully, on
behalf of the honest players. If these phases do not result in an abort, it proceeds as follows,
depending on the number of random execution instances c in which the input combination xH sent
by the corrupt parties to F do not have an equivalent input in the restricted domain D. (Below,
t = Ω(k) is as specified in the protocol.)
Case 1 : c ≥ t/2. This case will occur with negligible probability. Note that if one of the instances
in which there is no equivalent valid input exists is chosen for opening, then the aggregator will
abort, no matter how the corrupt parties explain their inputs (because, the function being a CPS,
any consistent explanation by the corrupt parties should have the same residual function as their
original input, and no such explanation exists in the restricted domain). The probability that none
of the c invalid instances were chosen is 1

2c , which is negligible in this case.
Case 2 : c < t/2. In this case the simulator carries out a simulation of the tallying phase using an
arbitrary input in the restricted domain for the input players. If this simulated execution aborts,
the simulator instructs FD to abort. Otherwise, |T | ≥ t/2 and there must exist a value v such that
for all j ∈ T in the simulated execution, vj = v. Since c < t/2, at least one of these instances
corresponds to when the corrupt parties inputs has an equivalent input x∗

H
∈ D; in fact, then, the

function being a CPS, in all such instances, the corrupt parties’ inputs are equivalent to each other.
The simulator sends x∗

H
to FD, completing the simulation.

8.2 Disseminating Functionalities

We rely on the disseminated-OR functionality DOR to show that all disseminated functionalities are
UC secure. The functionality DOR takes (x1, · · · , xm) from the disseminator P0 and outputs (b, xi)
to Pi where b = x1 ∨ · · · ∨ xm. We start by giving a UC secure protocol for DOR.
Protocol for DOR. In [PR08a] a UC secure protocol for 3-party DOR was given. We present a
variant that works for all values of m.

1. P0 broadcasts (UC-securely [GL02]) b :=
∨
i>0 xi to all Pi.

2. If b = 0, for each i > 0, Pi outputs (0, 0) and halts. Else, they continue.
3. P0 sends xi to each Pi.
4. For i ∈ [m], ` ∈ [k], P0 samples ri` from a large group (e.g., k-bit strings) s.t. ∀`,

∑
i ri` = 0.

5. For each i, if xi = 0, P0 sends ri` for all ` to Pi (and otherwise sends nothing to Pi).
6. Cut-and-choose:
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(a) P1 picks a random subset S ⊂ [k] of size k/2 and sends it to P0.
(b) For all ` ∈ S, P0 broadcasts ri` for all i, and all parties verify that

∑
i ri` = 0. P1 verifies

that the set S used is what it picked.
(c) Any Pi with xi = 0 aborts if it sees that for some `, ri` broadcast by P0 is not equal to ri`

it received.

7. For each ` 6∈ S, P1, · · · , Pm do the following:

(a) For each i, if xi = 0, Pi sets si` = ri`, and otherwise samples si` randomly.
(b) They use the standard semi-honest secure protocol to compute

∑
i si`.

(c) Each Pi aborts if it gets the sum as 0.

8. If no abort has been observed, each Pi outputs (1, xi), where xi is as received from P0 in the
beginning. Otherwise it aborts.

We sketch the proof of UC security of this protocol. Firstly, note that if b = 0 in the first step,
irrespective of whether P0 is honest or not, the simulation is easy. So we focus on the case that
b = 1 in the first step.

If P0 and one or more of Pi, i ∈ [m], collude, the simulator can make the honest parties Pj
output any value of the form (1, xj), by simply sending a vector (x1, · · · , xm) to the functionality,
with xi = 1 for at least one corrupt party Pi. The remaining cases are as follows:

Only P0 is corrupt: The simulator extracts P0’s inputs from all the messages xi it sends to the
honest parties Pi in Step 3. If the bit broadcast b = 1 and if

∨
i xi = 1, the simulator can simply

forward these xi to the functionality. (By perfectly simulating the execution of the honest parties,
the simulator can further decide which parties to selectively abort; the ones which do not abort will
indeed output xi as sent to them in Step 3.)

If b = 1 and
∨
i xi = 0, then the simulator simulates an abort by all the honest parties. To see

that this is a good simulation, we consider two cases: There are several (say > k/2) “bad” ` ∈ [k]
such that

∑
i ri` 6= 0, or not. In the first case, at least one bad ` will be chosen by P1 for the

cut-and-choose step, causing all honest parties to abort with all but negligible probability; in the
second case, there will be at least one good ` left out of the cut-and-choose step, and then, the
result of the semi-honest secure protocol in Step 7 (where all Pi use sij = rij , since they all have
xi = 0) will be 0, again causing all parties to abort.

P0 is honest: Note that if all Pi are corrupt, or if all Pi are honest, simulation is trivial. So
suppose a subset of Pi are corrupt. Steps up to 6 can be perfectly simulated knowing only xi for the
corrupt Pi. In Step 7, the use of a semi-honest secure protocol for summation of sj` allows that the
adversary to learn all sj` used by the honest parties. (It can also arbitrarily influence the output
of this summation protocol, but this can be perfectly simulated by the simulator once it knows all
sj`, by using selective aborts in the ideal world.)

We claim that all sj` can be perfectly simulated by picking them to be random elements. To
see that this is secure, there are two cases to consider: All corrupt Pi have xi = 0 (and hence some
honest party Pj∗ has xj∗ = 1), or some corrupt Pi∗ has xi∗ = 1. In the first case, this is because the
honest party Pj∗ sets sj∗` to be random. In the second case, the corrupt party Pi∗ did not receive
ri∗`, rendering all rj∗` to be uniformly random. and hence all sj∗` also to be uniformly random.
Protocol for any disseminating functionality. A disseminating functionality F with m out-
put parties is specified by a function F : X → Y1 × · · · × Ym, for some finite domains X and
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Yi. We consider a boolean function InvF[m] : Y1 × · · · × Ym → {0, 1} (for “invalid”) as follows:
InvF[m](y1, · · · , yn) = 1 iff @x ∈ X s.t. F (x) = (y1, . . . , yn).

More generally, for any S ⊆ [m], define InvFS : YS → {0, 1} as follows (denoting by YS the
input combinations of parties indexed by S): for yS ∈ YS , InvFS (y) = 1 iff @x ∈ X, yS ∈ YS s.t.
F (x) = (yS , yS) (with the output tuple understood as being sorted appropriately by the indices).
Protocol DissDOR

F (for disseminating functionality F computing F ):

1. On input x, P0 sends yi to each Pi, where F (x) = (y1, · · · , ym).
2. For each subset S ⊆ [m]

• For each ỹS ∈ YS such that InvFS (ỹS) = 1:
(a) Invoke DOR, with P0’s input being (a1, · · · , am), where ai = 0 iff ỹi = yi and 1 otherwise.
(b) Each Pi receives (b, ai). If b = 0, or if ai = 1 but ỹi = yi, then abort.

3. If no abort has been observed, each Pi outputs yi, and else aborts.

We point out that it is important to have the protocol consider all subsets S ⊆ [m] (which makes
it take time exponential in m), and not just the whole set [m], as otherwise P0 can collude with
a corrupt Pi∗ (who never aborts), and ensure that b = 1 always, by setting ai∗ = 1. Then P0 can
make the honest parties accept any combination of outputs, valid or not.

Below we prove that the above protocol UC securely realizes F .
Lemma 9. Any disseminated functionality F is UC securely realized by DissDOR

F .

Proof. If P0 is honest, then the following simulation is easily seen to be a perfect simulation: the
simulator obtains the output for the corrupt parties yH , finds an arbitrary input x such that F (x)H =
yH , and faithfully executes the protocol with the corrupt players, itself playing the role of P0 with
input x as well as of the other honest parties PH . It observes which honest parties abort, and let
the functionality deliver the output to the others.

The more interesting case is when P0 is corrupt, and possibly colluding with a set PH of output
parties. In this case, the simulator obtains yH from the corrupt P0. We consider two cases:

• If there exists an x such that F (x)H = yH : Then, the simulator sends one such x to F , executes
the honest parties’ protocol faithfullym and observes which ones abort; it lets the functionality
deliver the output to the others.
• If no such x exists: Then, the simulator makes all the honest parties abort.

In the first case, the simulation is perfect, since, in the real execution, if any honest party Pi does
not abort, it will output the value yi received in the first round. In the second case, we claim that
all the honest parties would abort in the protocol. This is because, InvFH(yH) = 1, and hence, when
S = H in the loop for each subset S ⊆ [m], and ỹS = yH , the honest parties will abort (either
because all ai = 0 and hence b = 0, or because some ai = 1). Thus in this case too, the simulation
is perfect.
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A A General NIMPC Protocol

We give a simple construction of a perfectly secure NIMPC protocol for any function in the infor-
mation theoretic setting, which is a generalization (and arguably, a more direct presentation) of a
protocol in [HIJ+16].

W.l.o.g., let f : X → Zn be the functionality to be realized, where X = Zn1 × · · · × Znm . (We
use Zni as input spaces to conveniently define a set of cyclic permutations over them, and Zn as the
output space to conveniently describe secret-sharing over it.)

1. Randomness Generation: Gen(f)→ (ρ1, · · · , ρm) as follows. Let f̃ , f̃1, · · · , f̃m : X → Zn be
s.t., ∀x = (x1, · · · , xm) ∈ X:

f̃(x1 + π1, · · · , xm + πm) = f(x1, · · · , xm)

f̃(x) = f̃1(x) + · · ·+ f̃m(x)

where (π1, · · · , πm) ← X is drawn uniformly at random, and f̃i : X → Zn are also uniformly
random (subject to the above condition). Here + symbols denote group operations over the
respective groups. For i ∈ [m], let ρi = (πi, f̃i), where f̃i is represented as a function table, in
Z(n1,··· ,nm)
n . Gen(f) outputs (ρ1, · · · , ρm).

2. Encoding: If ρi = (πi, f̃i), then Enci(xi, ρi) = (x̃i, gi) where x̃i = xi + πi, and gi : Zn1 × · · · ×
Zn−1 × Zn+1 × · · · × Znm → Zn is such that

gi(y1, · · · , yi−1, yi+1, · · · , ym) = f̃i(y1, · · · , yi−1, x̃i, yi+1, · · · , ym).

3. Computing the result: Dec({(x̃i, gi)}mi=1) outputs
∑m

i=1 gi(x̃1, · · · , x̃i−1, x̃i+1, · · · , x̃m).

A.1 Analysis of the NIMPC Potocol

Below, let Pi represent the ith input party (running the algorithm Enci) and let P0 be the aggregator
(running the algorithm Dec).
Communication complexity: Let l = dlog ne be the size of each output element and let d =
min
i∈[m]

ni. Each party Pi sends its share of the functionality table (gi) projected onto its input to

P0. Each such gi has at most |X|/d cells each of size l. There are m such parties. Thus the
communication complexity of our protocol is at most |X|·m·ld bits.

This improves over the communication complexity of the general protocols presented in [BGI+14,
OY16]. We remark that a version of our protocol for the case of ni = 2 for all i ∈ [m] appears in
[HIJ+16], but the improvement is more marked for larger input domains. Specifically, the protocol
presented in [OY16] has a communication complexity of |X| ·m · l · log2(d+ 1). Thus we obtain a d ·
log2(d+1) reduction in communication complexity. When ni = N for all i ∈ [m], the communication
complexity of our protocol is Nm−1 ·m · l bits which is a factor of N log2N improvement over that
of [OY16] and an N3 over [BGI+14]. For a small number of parties (say, m = 5) and a moderately
small input space (say, N = 16) our protocol is concretely quite efficient (for a boolean function,
we need 320 KiB communication, compared to 80 MiB for [OY16] and 1.25 GiB for [BGI+14]).
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Correctness: P0 needs to output f(x1, · · · , xm). Let πi, f̃ , and f̃i be as generated by Gen(f).
Also let x̃i = xi + πi (as defined by Pi). Then

f(x1, · · · , xm) = f̃(x̃1, · · · , x̃m)

=
m∑
i=1

f̃i(x̃1, · · · , x̃m)

=

m∑
i=1

gi(x̃1, · · · , x̃i−1, x̃i+1, · · · , x̃m)

which is actually output by the aggregator. This shows that the protocol is perfectly correct.
Security: First consider the case when all input parties are honest, i.e., T = ∅. In this case the
adversarial aggregator’s view is M(x, r) := {(x̃i, gi) | i ∈ [m]}, where r denotes the random choices
made by the protocol. Given two values z, z′ ∈ X such that f(z) = f(z′), we define a bijection
Φ(z,z′) from the set of the random choices r of Gen(f) to itself, such thatM(z, r) toM(z′,Φ(z,z′)(r)).

Note that the randomness r can be identified with π = (π1, · · · , πm) and f̃1, · · · , f̃m, subject to
f(x− π) =

∑
i f̃i(x) for each x = (x1, · · · , xm)). Given such an r, we define Φ(z,z′)(r) to consist of

π′ = (π′1, · · · , π′m) and (f̃ ′1, · · · , f̃ ′m) as follows.

π′i = πi + zi − z′i for i ∈ [m]

f̃ ′i(x) =

{
f(x− π′)−

∑
j 6=i f̃j(x) if xi 6= z̃i and ∀` < i, x` = z̃`

f̃i(x) otherwise,
for x ∈ X, i ∈ [m].

where z̃ := z + π = z′ + π′.
Firstly, note that f̃ ′i defined as above satisfy the condition that f(x − π′) =

∑
j f̃
′
j(x) for all

x: For x 6= z̃, there is exactly one coordinate i such that xi 6= z̃i and x` = z̃`, so that f̃ ′i(x) =
f(x − π′) −

∑
j 6=i f̃j(x) = f(x − π′) −

∑
j 6=i f̃

′
j(x). For x = z̃ we have

∑
j f̃
′
j(z̃) =

∑
j f̃j(z̃) =

f(z̃ − π) = f(z) = f(z′) = f(z̃ − π′). So, Φ(z,z′) maps valid choices of (π, f̃1, · · · , f̃m) when the
input is z, to valid choices (π′, f̃ ′1, · · · , f̃ ′m) when the input is z′.

Next, we argue thatM(z, r) = M(z,Φ(z,z′)(r)). Firstly, note that for all i, z̃i := zi+πi = z′i+π
′
i.

Also, for each i, gi consists of f̃i evaluated on all inputs x with xi = z̃i. But at all such points,
f̃ ′i(x) = f̃i(x). So g′i that is part of M(z,Φ(z,z′)(r)) equals to gi.

Finally, we observe that Φ(z,z′) is indeed a permutation over random choices. Indeed, Φ(z′,z) is
the inverse of Φ(z,z′). To see this, note that the definition of π′ and f̃ ′i are such that

π′ − π = z − z′

f̃ ′i(x)− f̃i(x) =

{
f(x+ z′ − z̃)− f(x+ z − z̃) if xi 6= z̃i and ∀` < i, x` = z̃`

0 otherwise.

That is, Φ(z,z′)(r)− r = α(z, z′) for some function α such that α(z, z′) + α(z′, z) = 0. which shows
that Φ(z,z′)(Φ(z,z′)(r)) = r.

The above proof of security extends to a version of the protocol where t instances of the original
protocol are used to evaluate t different functions (with the same input domains) f (1), · · · , f (t), on
the same input x, where the same π is used for all executions (but f̃ (k)

i are sampled independently for
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each k). This is because, Φ(z,z′) maps π in all instances to the same π′ in all instances (independent
of the function and the other randomness).

For the general case, suppose the adversary corrupts P0 and Pi for i ∈ T such that T ⊆ [m]
is not empty. Note that the protocol could be seen as parallel executions of the above protocol
involving only input parties in T , for functions f̂y obtained by restricting f for each input y ∈ XT

of the corrupt parties, using the same values πi across all executions. Note that in all the parallel
executions, parties in T use the same input. Hence, by the above observation, this protocol securely
evaluates f̂y for all y ∈ XT , or equivalently, the residual function of the input of the parties in T .
This shows that the protocol is secure as an NIMPC protocol.

B A UC Secure Protocol for Latin Square Functions

Lemma 10. Every (n, 2)-CCPS functionality has a UC secure protocol.

This result follows from a result in [PR08b], which shows that a 3-party functionality is UC
securely realizable iff every 2-party functionality obtained by partitioning the 3 parties into 2 parts
yields a “splittable” function. With an (n, 2)-CPSS this property can be verified. Nevertheless,
for the sake of completeness, we present an alternate simpler proof of this lemma, leveraging the
compiler from Theorem 8.

Proof. Let f = (X1, X2) be an (n, 2)-CCPS functionality (i.e., a Latin Square functionality), with
f(π1, π2) = π1(π2(1)). We define a new (non-CPS) function f∗ : Sn ×X2 → [n], again defined as
f∗(π1, π2) = π1(π2(1)). We also consider the following (insecure) protocol Π for computing f∗ (π1

and π2 denoting the inputs of the two parties P1 and P2):

• P1 sends a random permutation σ ← Sn to P2, and sends the permutation π1 ◦ σ−1 to P0.
• P2 sends σ(π2(1)) to P0.
• P0 receives a permutation ρ ∈ Sn from P1 and a value x ∈ [n] from P2. It outputs ρ(x).

This protocol is insecure for f∗ when the set {P0, P2} is (passively or actively) corrupt: in the
protocol, together they learn π1 exactly, where as in the ideal world, they can only learn π1(a) for
some a ∈ [n], and since P1’s input domain is all of Sn, this does not let them learn π1 exactly.
However, Π is a UC secure protocol for f∗, for all other corruption patterns (i.e., when at most one
of P0 and P2 is corrupt):

• When all parties are honest, the protocol produces the correct output because ρ(x) = π1 ◦ σ−1 ◦
σ ◦ π2(1) = π1(π2(1))), and hence simulation is trivial.
• When P1 alone is corrupt, the simulator can extract a valid input for P1 (in Sn) from the messages

it sends to (simulated) P0 and P2, as ρ ◦ σ.
• When P2 alone is corrupt, any message in [n] that it sends to (simulated) P0 uniquely maps to a

valid input, given the permutation σ it received from (simulated) P1.
• When P0 alone is corrupt its view – which consists of a random pair (ρ ∈ Sn, x ∈ [n]) such that
ρ(x) is the output – can be perfectly simulated from the output.
• When P1, P2 are corrupt, any (ρ, x) they send to P0 corresponds to a valid input combination (in

fact, n combinations) of P1, P2 that results in the output ρ(x).
• When P0, P1 are corrupt, in the ideal world they can learn P2’s input π2 from (π1, π1(π2(1))

because π2(1) uniquely determines π2 ∈ X2.
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• Simulation is trivial when all 3 are corrupt.

Now, the compiler in Theorem 8 in fact retains its guarantees for any adversary structure (i.e.,
set of parties who can be corrupted). For D = X1×X2, f = f∗D and f is a CPS. Thus the protocol
ΠD obtained by applying the compiler of Theorem 8 to Π is in fact UC secure for f for any adversary
structure in which at most one of P0 and P2 is corrupt.

Next we claim that ΠD is in fact a UC secure protocol for f even when {P0, P2} are both corrupt.
This is because, in this case, they can learn π1 even in the ideal world for f (since f is a CPS), and
a perfect simulation is possible.

C Examples

Here we collect a few concrete examples used earlier in the paper and make additional comments
on them.

• Example of a Latin Hypercube that is not a CPS. Consider the 3-dimensional, 4-ary Latin
hypercube functionality given by f(x1, x2, x3) = (−1)x2+x3(x1 − x3) + x2 where all operations
are modulo 4 (here, instead of 0 we shall write 4, so that the output alphabet is [4], to be
consistent with our convention). It can be verified that f is a Latin hypercube function, and,
f(1, 1, 1) 6= f(2, 2, 1) but f(1, 1, 4) = f(2, 2, 4). This contradicts a requirement for f to be a
CPS functionality, namely that there should be a function (permutation) π such that for all x, y,
f(x, y, 4) = π(f(x, y, 1)).
• Example of a Latin Square CPS that is not a CPSS: Every Latin square is a CCPS

functionality. We show one such function which is not a CPSS, showing that m > 2 is required
in Lemma 5.
Consider the following Latin square:

ρ1 ρ2 ρ3 ρ4 ρ5

π1 1 2 3 4 5
π2 2 3 1 5 4
π3 3 5 4 1 2
π4 4 1 5 2 3
π5 5 4 2 3 1

Here ρ1 and π1 correspond to the identity permutations. We can see that ρ2, ρ3, ρ4 do not have
their inverses in the set {ρ1, ρ2, ρ3, ρ4, ρ5} (nor do π2, π3, π4 in the set {π1, π2, π3, π4, π5}).
Further, this function cannot be embedded into a larger CPSS either. To see this, first we note
that (ignoring relabeling) if ρ2(α) = ρ−1

3 (α) for some α, then ρ2 = ρ−1
3 : being a CPSS would

require that ρ−1
3 is one of the permutations in the input set, and then being a CPS with two input

permutations ρ2 and ρ−1
3 which coincide on some α would require that ρ2 = ρ−1

3 . However, we
have ρ2(1) = 2 = ρ−1

3 (1), but ρ2(2) = 3 6= ρ−1
3 (2) = 5.

• Concrete Challenges. The following functionality f is the same as the function in the proof
of Theorem 1 for the case of m = 3, written out explicitly (using output alphabet [5] and input
alphabet {0, 1} for each party). There it was shown that f 6∈ CPSS, and hence none of our
UNIMPC? protocols can be used to compute this function securely. On the other hand, from
Theorem 4, we know that f ∈ UNIMPC. As such, we present f as a candidate function for
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separating UNIMPC from UNIMPC?, or alternately, as a challenge for devising new UNIMPC?

protocols.

x1 x2 x3 f(x1, x2, x3) f(x1, x2, x3)

0 0 0 1 5
1 0 0 2 2
0 1 0 3 3
0 0 1 4 4

Similarly, considering the case m = 4 in the construction from the proof of Theorem 1, we get
an explicit challenge for a UNIMPC protocol. Due to a result in [HIKR18] for 4-input functions,
this has an MPC protocol; a challenge for MPC can be constructed by using m = 5.
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