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Abstract

We focus on securely computing the ranks of sealed integers distributed
among n parties. For example, we securely compute the largest or small-
est integer, the median, or in general the kth-ranked integer. Such com-
putations are a useful building block to securely implement a variety of
sealed-bid auctions. Our objective is efficiency, specifically low interactiv-
ity between parties to support blockchains or other scenarios where mul-
tiple rounds are time-consuming. Hence, we dismiss powerful, yet highly-
interactive MPC frameworks and propose BOREALIS, a special-purpose
protocol for secure computation of ranks among integers. BOREALIS
uses additively homomorphic encryption to implement core comparisons,
but computes under distinct keys, chosen by each party to optimize the
number of rounds. By carefully combining cryptographic primitives, such
as ECC Elgamal encryption, encrypted comparisons, ciphertext blinding,
secret sharing, and shuffling, BOREALIS sets up systems of multi-scalar
equations which we efficiently prove with Groth-Sahai ZK proofs. There-
with, BOREALIS implements a multi-party computation of pairwise com-
parisons and rank zero-knowledge proofs secure against malicious adver-
saries. BOREALIS completes in at most 4 rounds which is constant in
both bit length ` of integers and the number of parties n. This is not
only asymptotically optimal, but surpasses generic constant-round secure
multi-party computation protocols, even those based on shared-key fully
homomorphic encryption. Furthermore, our implementation shows that
BOREALIS is very practical. Its main bottleneck, ZK proof computa-
tions, is small in practice. Even for a large number of parties (n = 200)
and high-precision integers (` = 32), computation time of all proofs is less
than a single Bitcoin block interval.
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1 Introduction

Sealed-bid auctions [15, 19] are commonly used when the true valuation of items
is sought, i.e., to minimize strategic behavior of bidders. There are many types of
sealed-bid auctions currently used in practice: first-price auctions, second-price
(Vickrey) auctions, reverse auctions, uniform multi-unit auctions and many
more. They differ in the ranks of parties winning the bid and the rank of
the bid paid by auction winners.

Yet, all auctions share as a core building block the ability to compute ranks
of sealed bids. In this paper, we focus on securely computing ranks of sealed bids
in a distributed system. A secure and distributed computation of bid rankings
and therewith sealed-bid auctions allows replacing trust in an auctioneer by a
cryptographic protocol on top of, e.g., blockchains. For the implementation of
auctions, we envision the following high-level protocol.

First, all parties securely compare their bids without revealing them. Then
each party proves in zero-knowledge to the others whether its integer is kth

ranked, i.e., whether its rank among the set of n bids is k or not. For example,
in a first-price auction, the winner would prove that its integer is ranked 1 and
then disclose its integer. In a reverse auction, the winner proves that its integer
is ranked n and discloses its integer. In a second-price auction, the winning
party proves its integer being ranked 1, and the party with the second ranked
integer proves rank 2 and discloses its integer. In a uniform multi-unit auction,
parties with ranks 1, 2, and so forth subsequently prove their integers’ ranks
and disclose integers. Various other auction types can be constructed in this
manner. Realizing comparisons and proofs above as a building block secure
against fully-malicious adversaries is technically challenging. For example, one
challenge is that rank computation must guarantee output delivery (in case of
honest majority). That is, we must deal with, e.g., malicious parties aborting
the protocol and not proving their rank after learning partial results of the
auction.

Note that this building block of pairwise comparisons and rank computation
is of general, independent interest in a wider set of problems in distributed
databases [2, 16, 29, 41, 52].

We consider the problem of (integer) rankings on blockchains, because block-
chains are becoming a popular platform for auctions. Users are increasingly
migrating auctions to the blockchain [6, 49], since the immutable history of a
blockchain provides an automatic advantage in addition to their distributed na-
ture and therewith the lack of a trusted auctioneer. However, running an auction
on top of today’s blockchains such as Bitcoin or Ethereum also brings another
technical challenge. Blockchains typically have large block interval times up to
several minutes. Party interaction using the blockchain, e.g., to broadcast or
send a message on the blockchain, is therefore expensive in terms of latency.
Any protocol for securely comparing integers with high interactivity, i.e., a
large number of rounds, implies an equally large number of blockchain blocks
and would quickly become useless for many scenarios. So, the goal is a protocol
for securely comparing n integers with low latency.
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Designing secure computation protocols with low latency is technically chal-
lenging, as generic techniques for multi-party computation [5, 9, 27, 35] induce a
large number of communication rounds. In general, the number of rounds is lin-
ear in the (multiplicative) depth of the circuit computed by the parties. While
there exists recent research focusing on constant-round protocols [43, 44], based
on the technique in [8], these works still require a considerable number of rounds,
namely at least 9, and moreover expensive fully or somewhat-homomorphic en-
cryption (SHE).

This paper: We design BOREALIS (“Building blOck foR sEALed bId auc-
tionS”), a special-purpose protocol for securely computing ranks of n integers
distributed among up to n parties. We distinguish between information each
party participating in the protocol learns about bids and information disclosed
on the blockchain, also available to and verifiable by parties not participating in
the protocol, but only observing the blockchain, e.g., the seller in the auction.

More formally, we consider the following problem: given a sequence of n
integers (vi)i=1,...,n of ` bits each where each vi is held by a different party Pi,
our goal is to securely compare the integers and compute the rank of (vi)i=1,...,n,
such that Pi can later prove (in zero-knowledge) whether it holds the kth-ranked
integer from that sequence. Hence, each party can publicly prove whether it won
the auction or not without revealing any additional information. BOREALIS
supports parties with multiple input integers each by simulating additional par-
ties for each integer. BOREALIS is secure against malicious adversaries and
guarantees output delivery as long as the majority of integers comes from hon-
est parties. The actual value of the kth-ranked integer or auxiliary values, such
as the amount of items bid on in multi-unit auctions, can also be computed
simply by provably decrypting an integer held by Pi.

Given the large variety of building blocks for secure computation, a new
efficient solution requires careful design. We explain our objectives and justify
our design decisions in Section 1.1. The practical efficiency of our protocol is
due to optimized cryptographic engineering. We use a number of ingredients,
such as Groth and Sahai [36]’s framework to realize our zero-knowledge proofs
(Section 5). We also provide security definition (Section 3), security proof (Sec-
tion 6), and a practical evaluation (Section 7).

1.1 Design Choices

The main idea to realize above sealed-bid auctions is to devise a new comparison
mechanism which allows a party to securely compute and prove that its integer
is ranked kth among all integers. Thus, if the kth-ranked bid wins the auction
or multiple differently ranked bids win the auction as in the case of multi-unit
auctions, corresponding parties can use our new comparison mechanism as a
building block and prove winning bids. That is, we focus on computing pairwise
comparisons of n ≥ 2 integers held by different parties, but without revealing
significantly more than the rank of each integer. In particular, we do not want
to reveal the exact integer values. Our design objectives are:
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� Security against malicious adversaries, assuming honest majority of parties.

� Practical efficiency for a large number, e.g., dozens, of participating parties
and the minimum number of rounds. A low number of rounds implies low
latency and allows deploying our solution in scenarios where rounds are costly
such as with blockchains.

To hide integer values of parties while comparing, our first design deci-
sion is to choose additively homomorphic encryption. Multi-party computa-
tion (MPC), even constant round MPC [8, 43, 44], requires many rounds of
interaction and expensive SHE. For example, Lindell et al. [43] need 16 rounds
of interaction and O(n3) encryptions. Alternatively, Lindell et al. [44] need
9 rounds and O(n2) SHE encryptions, but additionally the SHE evaluation of a
circuit with multiplicative depth 4. See Fig. 1 in [44] for a comparison. In con-
trast, our approach with additively homomorphic encryption allows for efficient
comparisons non-interactively in one round which is optimal.

1.1.1 Key Distribution

When using homomorphic encryption, there are two options regarding keys used
and their distribution. Either, in option 1, all parties encrypt their integers and
compute under a joint public key with a threshold shared private key. Alterna-
tively, in option 2, each party chooses its own private, public key pair. With
option 1, computation and zero-knowledge (ZK) proofs to achieve malicious se-
curity are simple. However, one needs to securely generate a distributed key, a
threshold shared private key, which is expensive. Secure distributed key genera-
tion requires at least two additional rounds of interaction during the distribution
phase in case no party cheats. In case a party cheats, additional rounds are re-
quired, cf. Gennaro et al. [34].

With option 2 (which we choose), computing comparisons requires (re-)encryp-
ting one party’s integer with the key of the other party. This makes ZK proofs
complex, since we need to prove that a homomorphic comparison computa-
tion has been performed correctly, including (re-)encryption. That is, we must
prove correctness of the homomorphic computation without revealing the input,
in particular the ciphertext of one party’s integer under the other party’s public
key. Revealing this ciphertext to the other party would obviously imply that
the other party learns the corresponding integer. On the positive side, we do
not need distributed key generation for a shared private key. Instead, we use a
variation of verifiable secret sharing based on [50] during the first round of the
main comparison protocol. This saves us two rounds of interaction.

Furthermore, our key insight is that when using an Elgamal-based variation
of Damg̊ard et al.’s technique [24, 25] (called DGK henceforth) for homomorphi-
cally comparing integers, we can use efficient elliptic curve Elgamal encryption
in one single elliptic curve group for all parties. The main advantage when oper-
ating within one single group is that we can then construct for all parties Groth
and Sahai [36] proofs to elegantly prove correctness of re-encryptions, compar-
isons, and integer shuffling. This leads to protocol BOREALIS which is not
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only secure against malicious parties, but also practically efficient: it requires
one round for integer commitments, one round for comparison computations,
and one round for proving which party holds the kth-ranked integer.

1.1.2 Circuit Evaluation

To compare input integers of all n participants, we implement a circuit. This
circuit consists of a sequence of pairwise comparisons. A single comparison
of a pair of two arbitrary length integers can be efficiently implemented using
unbounded fan-in gates in a circuit of multiplicative depth 2. The second level
gate can be implemented using shuffling of ciphertexts with bit plaintexts, since
it is a logical “or” with at most one true integer. The DGK technique realizes
such a comparison circuit based on additively homomorphic encryption by scalar
multiplication with one party’s plaintext integer.

To compute the index of the kth-ranked integer using a sequence of pairwise
comparisons, one could perform n comparisons using a selection algorithm, but
this circuit has multiplicative depth n. One could also sort the n integers [3]
using a (partial) sorting network. However, resulting circuits would still have
Ω(log n) multiplicative depth and hence would either require more rounds of
interaction or a homomorphic encryption scheme that efficiently supports log n
consecutive multiplications and even more complex ZK proofs.

The choice we make is a compromise. We perform O(n2) comparisons, n−1
per party, but we perform them in parallel, in only one round, and including
ZK proofs. This has the downside that each party Pi learns whether their vi is
smaller than another party’s vj . Yet, this allows us to support a very wide vari-
ety of sealed-bid auctions while performing heavy computations (comparisons)
only once, since parties learn the ranks of their integers and can subsequently
reveal them when necessary on the blockchain. Hence, we can divide the auction
protocol into secure comparisons and proofs of ranks in zero-knowledge. As a
consequence, we achieve our main design objectives: we provide security against
malicious adversaries, and we obtain asymptotically optimal O(1) latency which
is low in practice (total of 3 rounds, 4 rounds if a party aborts).

1.2 Blockchain

For the purpose of this paper, a blockchain realizes a secure public ledger.
Parties append transactions to the ledger, verifiable by everybody after one
blockchain block interval latency. Transactions are signed with the originator’s
private key for authenticity and stored immutably. Based on the concept of
transactions, blockchains allow storing custom bit strings in the ledger, e.g.,
Bitcoin’s OP RETURN opcode or a trivial mailbox smart contract in Ethereum.
Therewith, a blockchain provides a reliable, authenticated broadcast channel
for arbitrary data. Also, knowledge of a party’s public key enables personal
messages by encrypting with the public key and broadcasting the ciphertext.

Caveats: Note that, in practice, limits apply to the length of data stored per
transaction. For example, OP RETURN accepts bit strings up to 40 Byte length
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per transaction. So, longer messages must be split in multiple transactions.
For simplicity, we assume that parties store (long) messages in a public bul-
letin board and use the blockchain only to store the messages’ hash. We also
stress that proof-of-work-based consensus in blockchains is not fork-free. The
current block might become invalid in the future, after another χ blocks, if
the blockchain agrees on another fork. However assuming honest majority, the
probability that the current block becomes invalid after χ blocks is negligible in
χ [33, 53]. In practice, parties often wait χ additional blocks until they accept
the current block (χ = 6 with Bitcoin).

1.3 Related Work

Secure computation of the kth-ranked integer was introduced by Aggarwal et al.
[1] as an important primitive for operations in distributed databases. It was used
prominently in, e.g., data mining applications [41], data anonymization [2], so-
cial network analysis [16], decision tree learning [29], and top-k queries [52].
The protocol by Aggarwal et al. [1] was also one of the first sub-linear com-
putation complexity MPC protocols. It requires only O(log k) comparisons to
compute the kth-ranked element in the two-party setting and O(`) comparisons
in the multi-party setting. However, it also requires O(log k) or O(`) rounds, re-
spectively. High round complexity has motivated the research presented in this
paper, since there is a need to enable this important functionality in scenarios
where rounds have high latency such as with blockchains.

A primitive used by any protocol for secure computation of (the index of) the
kth-ranked integer is secure integer comparison. Secure integer comparison can
be either implemented using generic secure computation, but many special pro-
tocols improving the efficiency have been developed. Protocols for secure com-
putation using homomorphic encryption have been developed by Garay et al.
[32], for information-theoretic secure computation by Damg̊ard et al. [26], and
improved by Nishide and Ohta [48] and Catrina and De Hoogh [21]. Kolesnikov
et al. [37] developed an improved circuit which can be used to optimize per-
formance in various secure computation protocols. Fischlin [31] developed a
protocol specifically for (somewhat-)homomorphic encryption. This protocol
has been further refined by Damg̊ard et al. [25] which is the comparison proto-
col BOREALIS is based on.

Secure sealed-bid auctions are deployed in the real-world [15]. For a survey
on secure auctions, see [19]. Naor et al. [47] developed a secure auction pro-
tocol based on two servers. Cachin [20] developed a secure auction protocol
using an oblivious third party which is also the setup in Damg̊ard et al. [25]’s
protocol. Brandt [18] developed an interactive protocol requiring only a con-
stant number of rounds, but requires unary bid encoding and has later been
shown to additionally require expensive zero-knowledge proofs [28]. Improved
protocols for Vickrey (second price) auctions have been developed by Lipmaa
et al. [45] and Suzuki and Yokoo [51]. BOREALIS can be used to implement
secure auctions on the blockchain in a constant number of (three) rounds, using
binary bid encoding and highly practical ZK proofs. The advantage of an un-
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forgeable history using a blockchain for auctions has been demonstrated before
by researchers [14], real-world auctions [49], and start-ups [6].

Some work has investigated the relation between MPC and blockchains.
Kosba et al. [38] developed secure and private smart contracts in Hawk, a system
which requires a manager overseeing all parties’ input. Generic secure compu-
tation has been implemented on the blockchain by Andrychowicz et al. [4] and
Zyskind et al. [54]. Both approaches require a number of rounds depending on
the circuit depth, but achieve a notion of fairness. Fairness can also be achieved
in off-chain multi-party protocols using incentives, e.g., by crypto-currencies, or
trusted hardware on the blockchain [11, 12, 23, 39, 40]. In contrast, BOREALIS
assumes honest majority, but optimizes efficiency. It requires only a constant
number (three) of rounds, we have implemented it in software, and no party
needs to reveal its input.

2 Preliminaries

Let {P1, . . . , Pn} be a set of parties. Each party Pi has an ` bit integer vi as
input.

Groth and Sahai Proof Systems: To prove that vi is the kth-ranked integer
among all inputs, this paper sets up systems of equations and proves their
correctness in zero-knowledge using Groth and Sahai’s framework [36]. While
Groth and Sahai define ZK proofs in multiple different settings, we focus on the
case of proving validity of systems of equations over bilinear symmetric external
Diffie-Hellman (SXDH) groups (p,G1,G2,Gt, e,P1,P2). Here, G1,G2, and Gt
are groups of prime order p, and P1 and P2 generate G1 and G2, respectively.
Let λ be the security parameter and |p| ∈ poly(λ). Function e : G1 ×G2 → Gt
is a bilinear map.

We choose prime order SXDH bilinear groups, as the decisional Diffie-Hellman
(DDH) assumption holds in both G1 and G2. Therefore, we will be able to use
additively homomorphic Elgamal encryption over elements in G1. Moreover,
there are efficient implementations of Type-3 elliptic curves available which re-
alize SXDH groups [46]. For more details about parameters of our implementa-
tion, we refer to Section 7.

With Groth and Sahai’s framework [36] defined over SXDH groups, we prove
validity of systems of equations in ZK. Using Groth and Sahai’s notation, we
set ring R = Zp and modules A1 = G1, A2 = Zp, AT = G1. This allows proving
equations of multi-scalar multiplications over G1 of type

~y · ~γ1 + ~γ2 · ~x+ ~x · Γ · ~y = t, (1)

where t ∈ G1, γ1 ∈ Gn1 , γ2 ∈ Zmp , and Γ ∈ Zm×np are publicly known (called con-
stants). The secret witnesses (called variables) in such proofs are ~x ∈ Gm1 and
~y ∈ Znp . Roughly speaking, we can prove equations combining secret elements
from G1 with public elements from Zp, public elements from G1 with secret ele-
ments from Zp, and secret elements from both G1 and Zp. We denote both types
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of commitments, commitments to integers x ∈ Zp and commitments to points
x ∈ G1, simply by Com(x). We also simplify generation of a (random) common
reference string in the SXDH setting by hashing the latest λ block hashes of the
blockchain and use that as input to a PRG. For details on commitments and
CRS requirements in the SXDH setting, see § 9 in [36].

Additively Homomorphic Elgamal: As the DDH assumption holds in el-
liptic curve point group G1, we can use additively homomorphic Elgamal en-

cryption. For private key sk
$← Zp, let pk = sk · P1 be the public key. To

encrypt plaintext m ∈ Zp, randomly choose r
$← Zp and compute ciphertext

c = Epk(m) = (r · P1, r · pk + m · P1). In this paper, we will write c[0] for the
left-hand part r ·P1 of ciphertext c and c[1] for c’s right-hand part r ·pk+m ·P1.
To decrypt c, first compute m · P1 = c[1] − sk · c[0] and then solve the elliptic
curve discrete logarithm problem (ECDLP) to get m. Due to the computa-
tional hardness of ECDLP, m can be recovered only for small values of m.
Yet, as we will see, in this paper it will be sufficient to check whether m = 0,
which is easy. We have m = 0, iff c[1] − sk · c[0] = O, the point at infinity.
Note the additively homomorphic property of this encryption: for ciphertexts
c1 = (r1 · P1, r1 · pk + m1 · P1) and c2 = (r2 · P1, r2 · pk + m2 · P1), decrypting
ciphertext (c1[0] + c2[0], c1[1] + c2[1]) results in (m1 + m2) · P1 and therewith
m1 +m2.

Long-Term Key Pairs: For each party Pi, let sklt
i ∈ Zp be Pi’s long term

private key and pklt
i = sklt

i · P1 be Pi’s long term public key. Assume all parties
know other parties’ long-term public keys.

3 Security Definition

We define security following the standard ideal vs. real world paradigm. First,
we specify an ideal functionality Fkth-Ideal of our protocol to compute the index
of the kth-ranked integer, see Algorithm 1. This functionality encompasses both
steps in an auction protocol: the comparison of integers and the proof of rank k.
For any specific auction type, these two steps should be appropriately adapted.

In this ideal functionality, a trusted third party TTP receives all input in-
tegers vi from all parties Pi. If a malicious party Pi submits an invalid input
vi = ⊥, then vi is excluded from the computation. The TTP then computes
results γî,ĵ of comparisons between integers from parties Pî with valid integers

vî 6= ⊥. The kth-ranked integer is vι with index ι. Parties Pî who submitted
a valid integer vî 6= ⊥ receive from the TTP the result of each comparison
between their integer vî and all other integers vĵ . Finally, the TTP sends to

everybody via broadcast on the blockchain index ι of the kth-ranked integer vι
and the result of the comparisons between each bid vĵ 6= ⊥ and vι.

Note that if and only if a (malicious) party Pi submits a valid integer vi,
then vi is included in the computation of TTP. Assuming the blockchain is a
broadcast channel, we also guarantee delivery of TTP’s output.
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1 for i = 1 to n do

2 Pi → TTP : vi ∈ {⊥, 0, . . . 2` − 1}
3 end

// Let Î = {i|vi 6= ⊥}, n̂ = |Î|.
// ∀î, ĵ ∈ Î , ĵ 6= î : Let γî,ĵ = 1, if vî > vĵ and γî,ĵ = 0 otherwise.

// Let ι be the index of kth-ranked integer vι ∈ Î.
4 foreach î ∈ Î do

5 TTP → Pî : {γî,ĵ |ĵ ∈ Î ∧ ĵ 6= î}
6 end

// Via broadcast (on blockchain)

7 TTP → ? : (ι, {γι,ĵ |ĵ ∈ Î}});
Algorithm 1: Ideal Functionality Fkth-Ideal

We stress that functionality Fkth-Ideal reveals more than achievable by generic
MPC. Each party Pî learns whether another party Pĵ ’s input vĵ is less or greater

than vî and less or greater than kth integer vι. However, neither the actual
values of vĵ or vι nor results of other parties’ comparisons are disclosed. While
Fkth-Ideal’s security is weaker than general MPC, the key advantage of Fkth-Ideal

is that it is generic among many auction types and enables us to still implement
an efficient protocol with an optimal number of rounds, i.e., low latency on the
blockchain. In addition, we expect the additional leakage compared to MPC to
be acceptable in many real-world scenarios.

We consider a static, active adversary A that controls up to τ < n
2 parties.

All attacks admissible in the real implementation of the protocol correspond to
an attack in the ideal world implementation using a trusted third party. The
following Theorem 1 summarizes our main contribution.

Theorem 1. If adversary A is static, active, and controls up to τ < n
2 parties

Pi, then protocol BOREALIS securely implements functionality Fkth-Ideal.

4 BOREALIS Description

Before presenting technical details, we start by giving a high-level overview over
BOREALIS’ intuition and its main concepts in Section 4.1. To ease understand-
ing, we then present core comparisons by an example walk-through with just
two parties and two bit input integers in Section 4.2. We finally give full and
formal details of BOREALIS with pseudo-code in Section 4.3.

To furthermore ease exposition, our protocol presentation below assumes
existence of multiple new ZK proofs. In Section 5, we present formal details
on how we generate these proofs. Our last simplification is that, for now, we
pretend that integers are pairwise different. Later, in Section 4.4 we will explain
how to enforce distinct input integers with little overhead.
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4.1 High-Level Overview

BOREALIS’ main idea for sealed-bid auctions is to employ a new comparison
mechanism as a building block. Comparisons allow party Pi with the kth-ranked
integer to prove this fact to other parties in ZK. As specified by the auction,
parties use the comparison mechanism and prove that their integers have certain
ranks. In the following, we focus only on the core comparison mechanism, where
eventually Pi proves rank k. The extension how multiple parties prove their
ranks will become obvious later.

So, assume that n parties have agreed to jointly compute the index of the kth

ranked integer of their input integers on a blockchain. Each party Pi has input
integer vi ∈ N, |vi| = `. We denote vi’s bit representation by vi = vi,` . . . vi,1,
i.e., vi,1 is the least significant bit of vi.

In BOREALIS’ first round, each party Pi encrypts each bit vi,j with addi-
tively homomorphic Elgamal encryption and their own public key pki. Party Pi
publishes ciphertexts on the blockchain.

In the second round, each party Pi homomorphically evaluates a DGK com-
parison circuit with ciphertexts from other parties Pj using their own vi as
input. Results of these homomorphic evaluations are ` ciphertexts for each of
the n−1 other parties. Party Pi publishes these ` ciphertext on the blockchain.

In the third and final round, each party Pi decrypts all ` ciphertexts of each
of the n− 1 other parties. For the ` decrypted evaluations of another party Pj ,
Pi determines whether vi < vj as follows. If exactly one of the ` evaluations
decrypts to 0, then vi < vj , otherwise vi ≥ vj . The one party Pι with the kth

integer vι has n− k − 1 comparisons vι < vj and k comparisons vι ≥ vj . Party
Pι announces ι on the blockchain (and reveals vι if required by the auction).

Technical Challenges: While the above protocol overview seems straightfor-
ward, it is obviously insecure. To protect against malicious adversaries, one has
to, e.g., prove correctness of DGK evaluations on the blockchain. The proof
of correctness, however, must be in ZK not to leak details about an input vi.
Along the same lines, second round comparisons require blinding and shuffling
of input. Blinding and shuffling requires (non-trivial) correctness proofs which
must be in ZK, too. Finally, we have to cope with malicious parties aborting
the protocol. Our main contribution is thus to solve these technical challenges
and enable maliciously-secure computation of the index of the kth integer in
O(1) rounds of interaction.

We now present a simplified (two party, two bit) version of BOREALIS’ core
technique, maliciously secure integer comparison.

4.2 Two Party, Two Bit Walk-Through

Assume two parties P1 = Alice and P2 = Bob. Let Alice’s input integer be
va = va,2va,1 and Bob’s be vb = vb,2vb,1. Alice and Bob want to compute a
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generic comparison, i.e., whether va < vb. In the clear they would compute

c1 = va,1 − vb,1 + 1 + va,2 + vb,2 − 2 · va,2 · vb,2
c2 = va,2 − vb,2 + 1.

(2)

We know va < vb, iff either c1 or c2 equals zero. Note that both c1 and c2
cannot be 0 at the same time, see DGK [24].

To protect against fully-malicious adversaries, our idea is to evaluate DGK
in the encrypted domain and prove evaluation correctness in ZK. We set up
a system of equations of multi-scalar multiplications and prove them in Groth
and Sahai’s framework.

A small technicality arises from the fact that computation of c1 in Equa-
tions (2) is not mod 2, but in the integers. To avoid “wrap-around”, we require
input bit length ` to be less than group order p. With |p| ∈ poly(λ) being a
security parameter, this always holds.

4.2.1 First Round

Below, we refer to multiple new ZK proofs. Technical details about computing
these proofs are in Section 5. Let Alice’s public key be pkA = skA · P1 with
private key skA ∈ Zp. Bob’s public key is pkB = skB · P1 with private key
skB ∈ Zp.

Alice computes Groth and Sahai commitments for va,1, va,2, skA and ran-
domly chosen rA, r

′
A, RA, R

′
A ∈ Zp, βA ∈ {0, 1}. The exact meaning of each

variable will become clear below. She publishes commitments on the blockchain
together with encryptions

EpkA(va,1)[0] =rA · P1

EpkA(va,1)[1] =rA · pkA + va,1 · P1

EpkA(va,2)[0] =r′A · P1

EpkA(va,2)[1] =r′A · pkA + va,2 · P1

(3)

She also computes a ZK proof that EpkA(va,1) and EpkA(va,2) are encryp-
tions of va,1 and va,2, i.e., she proves Equations (3). In addition, she prepares a
ZK proof that va,1, va,2, and βA are bits. Alice publishes ZK proofs on the block-
chain.

Similarly, Bob commits to vb,1, vb,2, skB , rB , r
′
B , RB , R

′
B ∈ Zp, βB ∈ {0, 1}

and computes

EpkB (vb,1)[0] =rB · P1

EpkB (vb,1)[1] =rB · pkB + vb,1 · P1

EpkB (vb,2)[0] =r′B · P1

EpkB (vb,2)[1] =r′B · pkB + vb,2 · P1

and publishes everything together with corresponding ZK proofs on the block-
chain. This concludes the first round.
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As one can see, Bob performs the exact same computation as Alice using
his input. Thus, in the following more involving computation of the comparison
circuit, we just describe Alice’s computation and remark that Bob performs the
same, but uses his input.

4.2.2 Second Round

Alice sees Bob’s ciphertexts EpkB (vb,1), EpkB (vb,2) on the blockchain. She now
computes c1, c2 in the encrypted domain, i.e., an encrypted DGK evaluation of
Bob’s ciphertexts EpkB (vb,1), EpkB (vb,2) with Alice’s input va,1, va,2:

c1[0] =− EpkB (vb,1)[0] + EpkB (vb,2)[0]

− 2 · va,2 · EpkB (vb,2)[0]

c1[1] =va,1 · P1 − EpkB (vb,1)[1] + P1 + va,2 · P1

+ EpkB (vb,2)[1]− 2 · va,2 · EpkB (vb,2)[1]

c2[0] =− EpkB (vb,2)[0]

c2[1] =va,2 · P1 − EpkB (vb,2)[1] + P1

(4)

Alice could send c1, c2 to Bob by publishing them on the blockchain, and Bob
could then decrypt them. If one of them decrypts to 0, Bob would know va < vb.
However with this approach, Bob would derive more information about va than
just whether va < vb. Bob would learn which of the two ciphertexts decrypts
to zero, so would know which bit in va differs from its corresponding one in
vb. Moreover, Bob would learn the exact integer of Alice’s DGK evaluation for
each input bit. As evaluation takes place in the integers, see Equations (2), Bob
would learn the exact number of bits differing between va and vb.

To remedy both issues, Alice blinds and shuffles ciphertexts c1, c2 before
sending to Bob. The purpose of blinding is that encryptions of 0 still decrypt
to 0, but encryptions of anything non 0 do not decrypt. Shuffling ciphertexts
will hide the position of a potential 0.

Blinding: Alice blinds c1, c2 to c′1, c
′
2 by multiplying each part of an Elgamal

ciphertext with (previously committed) RA, R
′
A ∈ Zp:

c′1[0] = RA · c1[0] c′1[1] = RA · c1[1]
c′2[0] = R′A · c2[0] c′2[1] = R′A · c2[1]

(5)

If a ciphertext ci encrypts m = 0, then ci = (RA · r · P1, RA · r · pkB) for
some r, and Bob can decrypt immediately. For m 6= 0, ci = (RA · r · P1,
RA ·r ·skB ·P1 +RA ·m ·P1), and Bob cannot decrypt due to the size of RA and
the ECDLP. Note that our blinding resembles the blinding by Damg̊ard et al.
[24]. Their specific encryption and blinding operate in an RSA group Zn=p·q,
but our variation above targets additively homomorphic Elgamal encryption
over elliptic curves to prove Groth and Sahai equations.
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Shuffling: Using the βA, Alice shuffles c′1, c
′
2 to C1, C2:

C1[0] = βA · c′1[0] + (1− βA) · c′2[0]

C1[1] = βA · c′1[1] + (1− βA) · c′2[1]

C2[0] = (1− βA) · c′1[0] + βA · c′2[0]

C2[1] = (1− βA) · c′1[1] + βA · c′2[1]

(6)

So if βA = 0, Alice flips ciphertexts.
She now computes Groth and Sahai commitments for c1[0], c1[1], c2[0], c2[1],

c′1[0], c′1[1], c′2[0], c′2[1] and publishes these commitments together with C1[0],
C1[1], C2[0], C2[1] on the blockchain. Alice also computes ZK correctness proofs
for Equations (4), Equations (5), and Equations (6) and publishes proofs on the
blockchain. This concludes Alice’s second round in BOREALIS.

Bob computes the same steps using his input and publishes commitments,
ciphertexts, and proofs on the blockchain accordingly.

4.2.3 Third Round

In the third and last round, Bob observes Alice’s data from above on the block-
chain. We now describe how Bob proves whether va < vb based on this data.
Again, Alice will do the same, using Bob’s blockchain data and her own input.

First, Bob verifies whether Alice’s commitments, Groth and Sahai ZK proofs,
and ciphertexts C1, C2 match. If so, Bob decrypts ciphertexts C1, C2. Each
ciphertext is either an encryption of 0, i.e., Ci = (r · P1, r · skB · P1) or an
encryption of some m 6= 0, i.e., Ci = (r · P1, r · skB · P1 +m · P1).

Bob now publishes his decrypted integers and proves correct decryption as
follows. Bob computes

Cfinal,1 = skB · C1[0] Cfinal,2 = skB · C2[0] (7)

and publishes Cfinal,1, Cfinal,2, and a ZK proof of Equations (7) on the blockchain.
Knowledge of Cfinal,i allows everybody (including Alice) to verify whether mi

is 0, just by computing mi = Ci[1] − Cfinal,i. If exactly one of mi is 0, then
everybody knows that va < vb. So, the proof of correct decryption is simply a
proof of correctness of Equations (7): correctly multiplying the left-hand side
of the Elgamal ciphertext with Bob’s private key. This allows Alice to then
decrypt Ci by herself.

There is, however, yet another caveat. As Alice could undo her permutation
of the second round (and her blinding), she would learn the position of the 0 and
therewith the exact bit differing between her and Bob’s integers. To remedy,
Bob also blinds C1, C2, shuffles them, and proves correctness as in the second
round before computing the Cfinal. This concludes the third round.

Discussion: Note that in this special case of two parties there cannot be a hon-
est majority, so Fkth-Ideal security against malicious adversaries is not achievable.
Consider, e.g., the case of Alice aborting already after the first round: it will be
impossible for Bob to output the result of the comparison. Still, we present the
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case of two parties here, as it helps understanding the main comparison for the
case of n > 2 parties.

Along the same lines, it is actually unnecessary in the case of only two parties
to run the third round and publish the outcome of evaluations. Both Alice and
Bob already know after the second round whether va < vb. Still, we include the
description of the third round here, as it is crucial for security in the case of
n > 2 parties where a minority of τ < n

2 can be fully malicious. The idea later
in Section 4.3 will be that the party Pι with the kth-ranked input integer vι will
prove that it has the kth-ranked integer, and all other parties will prove that
they do not have the kth-ranked integer. We will cope with malicious parties
aborting the protocol or cheating in their ZK proofs by revealing their input
integers.

4.3 Full Details

We now present BOREALIS’ full details for an arbitrary number of parties
n > 2 and arbitrary integer bit length ` ≥ 1. We institute two major changes
to the simplified two-party, two-bit protocol. For n > 2 parties, we can achieve
malicious security, if the majority of parties is honest. First, we verifiably secret
share each party’s private key during the first round, using the blockchain as a
broadcast channel. Second, we append another round on demand. If a malicious
party Pi is aborting the protocol at any time or caught cheating in their ZK
proofs, (honest) parties agree to run another round. In this round, parties will
re-assemble shares of Pi’s secret key and reveal Pi’s input integer. Thereby, we
determine the party with the kth-ranked integer, even if this integer comes from
a malicious Pi.

4.3.1 First Round

Algorithm 2 presents details for BOREALIS’ first round. The first step in this
first round is, for each party, to generate and secret share a fresh session key.
While there exists a large body of work on efficient (publicly) verifiable secret
sharing (VSS), we use a new variation of Schoenmakers [50]’s solution due to
its simplicity and efficiency. We briefly summarize our variation in Appendix A
and only state its main property here.

Let VSS(t, n,G1, pk
lt
1 , . . . , pk

lt
n) be a verifiable secret sharing scheme. Param-

eter n denotes the total number of parties, t the number of parties required to
reconstruct a secret, G1 a group where the DDH holds, and pklt

1 , . . . , pk
lt
n the

parties long-term public keys. Note that public keys are of type pklt
i = sklt

i · P1

where P1 generates G1 and sklt
i ∈ Zp is the private key. As one can see, VSS

accepts exactly BOREALIS’ long-term public keys as input. The output of VSS
is a random private key sk ∈ Zp, internal commitments C, encryptions Yj of
shares under the other parties Pjs’ public keys, and a ZK proof ProofVSS proving
consistency of the shares (Appendix A).

So, each party Pi invokes VSS, gets private session key ski, and computes
public session key pki = ski · P1 ∈ G1. Pi also generates random strings rj
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// Let Pi’s long term public key be pklt
i . Let η = ` · log `− `

2
.

1 foreach party Pi, 1 ≤ i ≤ n do

2 (ski, C0, . . . , Cτ−1,Y1, . . . ,Yn,ProofVSS,i) ← VSS(τ − 1, n,G1, pk
lt
1 , . . . , pk

lt
n);

3 pki = ski · P1;

4 {ri,1, . . . , ri,`} $← Z`p;
5 {(Ri,1,1, . . . , Ri,1,`), . . . , (Ri,n−1,1, . . . , Ri,n−1,`)} $← Z(n−1)·`

p ;

6 {(βi,1,1, . . . , βi,1,η), . . . , (βi,n−1,`, . . . , βi,n−1,`)} $← {0, 1}(n−1)·η;
7 publish pki,Com(ski),ProofKeyECDLP,i, C0, . . . , Cτ−1,

Y1, . . . ,Yn,ProofVSS,i,Com(vi,1), . . . ,Com(vi,`),ProofBit,i,1, . . . ,ProofBit,i,`,
Com(ri,1), . . . ,Com(ri,`), ci,1 = Epki(vi,1), . . . , ci,` = Epki(vi,`),ProofEnc,i,1,
. . . ,ProofEnc,i,`,Com(Ri,1,1), . . . ,Com(Ri,1,`), . . . ,Com(Ri,n−1,`),
(Com(βi,1,1), . . . ,Com(βi,1,η)), (Com(βi,n−1,1), . . . ,Com(βi,n−1,η)),
(ProofBit,i,1,1, . . . ,ProofBit,i,1,η), . . . , (ProofBit,i,n−1,1, . . . ,ProofBit,i,n−1,η) on
blockchain;

8 end
Algorithm 2: BOREALIS’ first round

for use in encryption, random strings Rj for blinding, and random bits βj for
shuffling, lines 2 to 6 in Algorithm 2. Pi publishes this information together
with corresponding ZK proofs of correctness on the blockchain, see Line 7. In
detail, Pi publishes:
� public key pki, a commitment to private key ski, ZK correctness proof ProofKeyECDLP,
� VSS commitments C, ski’s encrypted shares Y, and the VSS ZK proof of

correctness,
� Groth and Sahai commitments to each bit vi,j and ZK proofs ProofBit which

prove that each vi,j is a bit; random strings ri,j used for encryptions of bits
and additively homomorphic Elgamal encryptions Epki(vi,j) = (ri,j · P1, ri,j ·
pki + vi,j · P1) of each bit; ZK proofs of correctness ProofEnc for each bit,

� commitments to (n− 1) · ` random R used later during blinding,
� commitments to (n− 1) · (` · log `− `

2 ) bits β used later during shuffling, and

corresponding (n− 1) · (` · log `− `
2 ) ZK proofs ProofBit that the βs are bits.

Note that all Pi perform their computations and publish their output in
parallel at the same time. Therefore, the first round requires one block latency.

4.3.2 Second Round

Both the second and third round start by parties verifying ZK proofs. To keep
exposition clean, we defer details about handling invalid ZK proofs as well as
parties aborting protocol execution to Section 4.4. In the following, assume that
proofs are successfully verified.

After verifying ZK proofs, the main part of the second round starts (Al-
gorithm 3). Each party Pi homomorphically computes a DGK comparison for
each other party. Specifically, Pi computes for each other party’s integer vj and
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1 foreach party Pi, 1 ≤ i ≤ n do
2 foreach j 6= i do
3 for u = 2 to ` do

// Compute XORs

4 wu = Epkj (vj,u)[0]− 2 · vi,u · Epkj (vj,u)[0];

5 Wu = vi,u · P1 + Epkj (vj,u)[1]− 2 · vi,u · Epkj (vj,u)[1];

6 end
7 for u = 1 to ` do

// Ciphertexts ci,j,u = (ci,j,u[0], ci,j,u[1])

8 ci,j,u[0] = −Epkj (vj,u)[0] +
∑`
δ=u+1 wδ;

9 ci,j,u[1] = vi,u · P1 − Epkj (vj,u)[1] + P1 +
∑`
δ=u+1Wδ);

10 publish Com(ci,j,u[0]),Com(ci,j,u[1]),ProofDGK,i,j,u on blockchain;
// Blinded ciphertexts c′i,j,u

11 c′i,j,u = (Ri,j,u · ci,j,u[0], Ri,j,u · ci,j,u[1]);
12 publish Com(c′i,j,u[0]),Com(c′i,j,u[1]),ProofBlind,i,j,u on blockchain;

13 end
// Shuffled ciphertexts Ci,j,u
// Let η = ` · log `− `

2

14 (Ci,j,1, . . . , Ci,j,`,ProofShuffle,i,j,1, . . . ,ProofShuffle,i,j,η) =
Benes(βi,j,1, . . . , βi,j,η, c

′
i,j,1, . . . , c

′
i,j,`);

15 publish all ` ciphertexts Ci,j,u and all η proofs ProofShuffle,i,j,u on
blockchain;

16 end

17 end
Algorithm 3: BOREALIS’ second round

bit indices u expression

cu = vi,u − vj,u + 1 +
∑̀
δ=u+1

vi,δ ⊕ vj,δ.

For any two bits vi,u and vj,u at index u, cu becomes 0 iff all bits “left” of
index u are equal (sum of XORs is 0) and vi,u = 0 and vj,u = 1. So, vj > vi.
Observe that there can be either one or no index u with cu = 0.

We substitute vi,u ⊕ vj,u by vi,u + vj,u − 2 · vi,u · vj,u and evaluate cu in the
encrypted domain. Variable wu is an XOR used for the left-hand side of the
evaluated ciphertext ci,j,u[0], and Wu is the XOR used in the right-hand side
ci,j,u[1].

As discussed in the case of two parties, Pi needs to hide the exact results
of the DGK expressions in order to hide its integer from Pj . Hence, Pi blinds
and shuffles the cu ciphertexts. The purpose of blinding is to hide non 0 integer
values, and shuffling hides the position of a 0.

Pi blinds a homomorphic DGK evaluation c to c′ by multiplying with pre-
viously committed random R, so encryptions of 0 decrypt, but anything non 0
does not due to the ECDLP. To prove correctness of homomorphic evaluations
and blinding, Pi publishes commitments to the ci,j,i with corresponding ZK
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proofs ProofDGK of correctness and commitments to the c′i,j,u with correctness
proofs ProofBlind on the blockchain.

The last step for Pi in the second round is to shuffle blinded ciphertexts c′,
see Line 14. To shuffle, BOREALIS employs a Beneš [10] permutation network
using a call to function Benes. This function takes as input the η = ` · log `− `

2
random, previously committed bits β and ` blinded ciphertexts c′. Internally,
Benes sets up a ` input, ` output Beneš permutation and uses the β to implement
internal crossbar switches. The output of Benes is a random (up to the β)
permutation C1, . . . , C` of blinded ciphertexts c′ together with η ZK proofs of
correctness ProofShuffle of correct crossbar switches. See Section 5.4 for more
details on this proof. Finally, Pi publishes all ` blinded, shuffled ciphertexts C
and all η proofs ProofShuffle on the blockchain. Again, all parties compute and
publish on the blockchain in parallel.

4.3.3 Third Round

In the third round, party Pi decrypts its ciphertexts C. Recall that for each
other party Pj , Pi can decrypt ` ciphertexts Cj,i,1, . . . , Cj,i,`. If exactly one
decrypts to O, then Pi knows vj < vi; if none decrypts to O, then vj ≥ vi. Note
that it is impossible that more than one ciphertexts coming from one party
Pj decrypt to O [24]. To simplify notation, we briefly introduce the following
definition.

Definition 1 (O- and��@@O-ciphertext sequences). A ciphertext sequence (Cj,i,1, . . . , Cj,i,`)
is called O−ciphertext sequence iff exactly one Cj,i,u decrypts to O. Otherwise,
this sequence is called��@@O-ciphertext sequence.

Decrypting all Cj,i,u, party Pi computes its integer vi’s rank κi as follows. If
there are κi−1 sequences which are O-ciphertext sequences and n−κi sequences
which are ��@@O-ciphertext sequences, then vi is ranked κth

i integer. This is the
starting point of Algorithm 4, where each party Pi will now prove that their
integer vi is either the kth integer (κi = k) or larger than the kth integer (κi > k)
or less than the kth integer (κi < k).

To enable proofs in ZK, Pi first shuffles all n − 1 ciphertexts Cj,i,u using
Beneš permutation networks, see Line 2. Note that Pi shuffles n−1 items, each
being a sequence of ` shuffled ciphertexts. This is done by using a function
called Benes∗. Besides a ZK proof ProofShuffle∗ of correct shuffle, Benes∗ outputs
a blinded, permuted sequence C ′j,i,u of input plaintexts Cj,j,u.

Without loss of generality, assume that the first κi − 1 sequences of cipher-
texts C ′ are O-ciphertext sequences, and the remaining n−κi are��@@O-ciphertext
sequences. Party Pi now proves its integer vi to be ranked κth

i integer by de-
crypting C ′ and proving correct decryption with ProofDecrypt. Specifically,
Line 4: if κi = k, then Pi will prove in ZK that from the n − 1 ciphertext
sequences Cj,i,u=1,...,`, encrypted for its public key, there are k − 1 sequences
which are O-ciphertext sequences, and n− k are��@@O-ciphertext sequences.
Line 11: if κi < k, then Pi will prove in ZK that there are n− k+ 1 sequences
which are��@@O-ciphertext sequences.
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// η = (n− 1) · logn− 1− n−1
2

1 foreach party Pi, 1 ≤ i ≤ n do
2 {(C′1,i,1, . . . , C′1,i,`), . . . , (C′n−1,i,1, . . . , C

′
n−1,i,`),ProofShuffle∗} ←

Benes∗({(Cj,i,1, . . . , Cj,i,`)}∀j 6=i, {(Rj,i,1, . . . , Rj,i,`)}∀j 6=i);
3 publish (C′1,i,1,...,C

′
1,i,`),...,(C

′
n−1,i,1,...,C

′
n−1,i,`), ProofShuffle∗ on blockchain;

// Let vi be ranked as κthi integer, let

(C′1,i,1,...,C
′
1,i,`),...,(C

′
κi−1,i,1,...,C

′
κi−1,i,`) be the O-ciphertext

sequences and (C′κi,i,,1,...,C
′
κi,i,`

),...,(C′n−1,i,1,C
′
n−1,i,`) be the

�ZO-ciphertext sequences

4 if κi = k then
5 for j = 1 to n− 1 do
6 for u = 1 to ` do
7 Cfinal,j,i,u = ski · C′j,i,u[0];
8 publish Cfinal,j,i,u,ProofDecrypt,j,i,u on blockchain;

9 end

10 end

11 else if κi < k then
12 for j = κi to κi + n− k do
13 for u = 1 to ` do
14 Cfinal,j,i,u = ski · C′j,i,u[0];
15 publish Cfinal,j,i,u,ProofDecrypt,j,i,u on blockchain;

16 end

17 end

18 else if κi > k then
19 for j = 1 to k do
20 for u = 1 to ` do
21 Cfinal,j,i,u = ski · C′j,i,u[0];
22 publish Cfinal,j,i,u,ProofDecrypt,j,i,u on blockchain;

23 end

24 end

25 end

26 end
Algorithm 4: BOREALIS’ third round

Line 18: if κi > k, then Pi will prove in ZK that there are k sequences which
are O-ciphertext sequences.

Proving decryption is simply multiplying the left-hand side of an Elgamal
ciphertext with the secret key. This allows anyone to derive the plaintext.
As shown in Algorithm 4, Pi publishes proofs and shuffled ciphertexts on the
blockchain. Again, all parties compute and publish on the blockchain in parallel
within the same round.
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4.4 Additional Techniques

4.4.1 Revealing Malicious Input and Optional Fourth Round

Malicious parties can produce invalid ZK proofs or simply abort protocol exe-
cution at any time. We now present how BOREALIS handles such malicious
behavior and distinguish between two cases.

First case: A malicious party Pi aborts protocol execution during the first round,
before publishing valid ZK proofs ProofVSS,i, ProofBit,{1,...,`}, and ProofEnc,{1,...,`}
on the blockchain, or party Pi has published in the first round invalid ZK proofs
ProofVSS,i, ProofBit,{1,...,`}, ProofEnc,{1,...,`}. BOREALIS treats this case as if Pi
would have submitted an invalid input integer vi = ⊥. Subsequently, in the
second and third round, all parties will ignore Pi’s input to the blockchain. The
index of the kth-ranked integer will be computed among all integers, excluding
integer vi.

Second case: A malicious party publishes valid proofs ProofVSS,i, ProofBit,{1,...,`},
and ProofEnc,{1,...,`} in the first round. This case is more subtle, because BORE-

ALIS will now compute the index of the kth-ranked integer including Pi’s input
vj . The general idea is that, if a malicious Pi aborts or produces an invalid
proof in one round, then the other parties will recover Pi’s previously shared
private key ski in the following round ([50], see Appendix A). Therewith, the
other parties can decrypt vi and compute the index of the kth-ranked integer.
More specifically:

Pi produces invalid proofs or aborts in the first round: The other parties recover
ski and vi in the second round and then re-run Algorithm 3 with Pi’s input in
the clear in the third round. Each party Pj publishes a DGK evaluation of their
encrypted input with vi, blinds evaluations, and shuffles encrypted bits. Party
Pj publishes a decryption of DGK in case they need another witness to show
that vj is the kth integer or greater or less than the kth integer.

Pi publishes invalid proofs or aborts during the second round: The other parties
reconstruct ski and learn vi in the third round. Honest parties agree to run a
fourth round where they compute DGK encrypted evaluations with vi and open
as described above. BOREALIS then concludes after a total of four rounds.

Pi publishes invalid proofs or aborts during the third round: Then, Pi has al-
ready published correct DGK evaluations in the second round. The other parties
recover ski in the fourth round and decrypt Pi’s DGK evaluations. Each party
Pj knows for each other party Pj′ whether vj′ < vi. Using this information,
together with Pj′ ’s output from the third round, Pj can decide by itself whether
vj′ is the kth integer or greater or less.

We stress that BOREALIS computes index ι of the kth integer vι, even if
vι is a malicious party’s input and multiple malicious parties abort or publish
invalid proofs. As all malicious parties’ integers are revealed, these integers can
be ordered, and they are compared to the other (honest) parties’ input. So, the
index of the kth integer is always found.
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4.4.2 Enforcing unique input integers

So far, we have assumed that for any pair of integers vi and vj , we have vi 6= vj .
As a consequence, either vi < vj or vj < vi, and our specific approach to
prove the kth element in Round 3 is correct. However for any pair of integers
vi = vj , both Pi and Pj will get a��@@O-ciphertext sequence when comparing with
each other. The additional ��@@O-ciphertext sequence violates correctness of our
approach of computing and proving the rank by counting the number of O-
and ��@@O-ciphertext sequences. Party Pi will estimate vi’s rank κi off by one,
denying computation of the kth-ranked integer. To mitigate, we enforce that
any two integers become different as follows. Any two public keys pki and pkj
are different with probability 1 − negl(λ). If we interpret public keys as bit
strings, we can order them lexicographically and thus each party Pi’s public
key pki is assigned a unique number IDi from {1, . . . , n}. The idea is now to
extend each party’s integer representation vi = vi,` . . . vi,1 by dlog ne bits to
vi = vi,` . . . vi,1IDi,dlogne . . . IDi,1, where the dlog ne least significant bits are
the bit representation of IDi. This guarantees different input integers with
overwhelming probability.

Note that it is not required to add complex ZK proofs to the first round,
where parties prove that the least significant bits of their integer are indeed the
ID. As we encrypt bitwise and IDs are publicly known, each party Pi agrees
to encrypt the ID bits of their integer and compute corresponding Groth and
Sahai commitments using fixed, publicly known random coins. This allows for
automatic verification by all parties.

4.4.3 Optionally revealing integers

In addition to computing index ι of the kth-ranked integer, parties can also
compute integers, e.g. vι’s actual value. Party Pι will publish vι (or any other
plaintext of a committed ciphertext) together with proofs ProofDecrypt of cor-
rectly decrypting the ciphertext (cι,1,...,`) at the end of Round 3, Algorithm 4.

5 Zero-Knowledge Tools

In the following, we present details about the various ZK proofs used within
the paper. The framework by Groth and Sahai [36] allows proving multi-scalar
equations (see Equation 1) in ZK. So, for each proof we want to provide, we
reformulate all properties to prove as a set of such multi-scalar equations. We
then prove each set of equations using the approach in [36]. If not stated dif-
ferently, the output of our proofs below is simply the output of corresponding
Groth and Sahai proofs of our equations.

5.1 Proving a Bit (ProofBit)

Party P proves that a previously committed integer v ∈ Zp is either 0 ∈ Zp or
1 ∈ Zp by showing that v·(1−v) = 0, i.e., v = v2. Using additively homomorphic
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Elgamal encryption c = Epk(v), P will show plaintext equivalence of ciphertexts
c and c′ = v · c in ZK. However, P cannot simply multiply c with secret v and
publish result c′, as this would leak whether or not v = 0. Therefore, the idea
is to randomize c′ at the same time as multiplying it by v. P chooses random

r
$← Zp and computes c′[0] = v ·c[0]+r ·P1, c

′[1] = v ·c[1]+r ·pkP for public key
pkP . The remaining plaintext equivalence proof is rather standard and proves
an ECDLP, namely P proves that skP · (c′[0]− c[0]) = c′[1]− c[1] for private key
skP .

So, applying the Groth and Sahai framework, P proves the following three
multi-scalar equations over G1.

1. Correctness of c′[0]

secret: y1 = v, y2 = r
public: γ1,1 = c[0], γ1,2 = P1, t = c′[0]

2. Correctness of c′[1]

secret: y1 = v, y2 = r
public: γ1,1 = c[1], γ1,2 = pkP , t = c′[1]

3. c, c′ plaintext equivalence

secret: y = skP
public: γ1 = c′[0]− c[1], t = c′[1]− c[1]

ProofBit comprises the Groth and Sahai proofs for these three equations
together with c′ and commitment Com(r).

5.2 Proving Encryption (ProofECDLP,ProofEnc)

Party P proves that previously committed input integer v (for example: a bit)
and its public key matches ciphertext c. The following equations and all re-
maining ones in this section are Groth and Sahai’s multi-scalar equations over
G1.

First, P proves that their private key skP matches their public key pkP .
This is just a ZK proof of knowledge of exponent for ECDLP.

secret: y = skP public: γ1 = P1, t = pkP
P now proves correctness of encryption.

1. Correctness of EpkP (v)[0]

secret: y = r
public: γ1 = P1, t = EpkP (v)[0]

2. Correctness of EpkP (v)[1]

secret: y1 = r, y2 = v
public: γ1,1 = pkP , γ1,2 = P1, t = EpkP (v)[1]
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5.3 Proving DGK (ProofDGK)

Pi proves that secret ciphertexts c1, . . . , c` are encrypting DGK with their secret
input vi,1, . . . , vi,` and Pj ’s public ciphertexts EpkPj

(vj,1), . . . , EpkPj
(vj,`). To

prove DGK in the clear, remember that Pi would have to show for u ∈ {1, . . . , `}
that vi,u − vj,u + 1 +

∑`
δ=u+1 vi,δ ⊕ vj,δ = vi,u − vj,u + 1 +

∑`
δ=u+1(vi,δ + vj,δ −

2 · vi,δ · vj,δ). In our Elgamal-encrypted domain, we therefore have:

cu[0] =− EpkPj
(vj,u)[0] +

∑̀
δ=u+1

(EpkPj
(vj,δ)[0]

− 2 · vi,δ · EpkPj
(vj,δ)[0])

cu[1] =vi,u · P1 − EpkPj
(vj,u)[1] + P1 +

∑̀
δ=u+1

(vi,δ · P1

+ EpkPj
(vj,δ)[1]− 2 · vi,δ · EpkPj

(vj,δ)[1]).

We rearrange both equations and get

cu[0] +
∑̀
δ=u+1

2 · vi,δ ·EpkPj
(vj,δ)[0] = −EpkPj

(vj,u)[0] +
∑̀
δ=u+1

EpkPj
(vj,δ)[0]

cu[1]− vi,u · P1 −
∑̀
δ=u+1

vi,δ · P1 +
∑̀
δ=u+1

2 · vi,δ · EpkPj
(vj,δ)[1]

= −EpkPj
(vj,u)[1] + P1 +

∑̀
δ=u+1

EpkPj
(vj,δ)[1].

Note that the right-hand sides contain only public information, while the left-
hand sides contain secret information. We therefore derive Groth and Sahai’s
representation as follows:

1. Correctness of cu[0]
secret: x = cu[0], yu+1 = vi,u+1, . . . , y` = vi,`
public: γ1,u+1 = 2 · EpkPj

(vj,u+1)[0], . . . , γ1,` = 2 · EpkPj
(vj,`)[0], γ2 =

1,Γ = 0, t = −EpkPj
(vj,u)[0] +

∑`
δ=u+1EpkPj

(vj,δ)[0]

So, the multi-scalar equations are of type
∑`
l=u+1 γ1,l · yl + γ2 · x = t.

2. Correctness of cu[1]
secret: x = cu[1], yu = vi,u, y

′
u+1 = vi,u+1, . . . , y

′
` = vi,`, y

′′
u+1 = vi,u+1, . . . , y

′′
` =

vi,`
public: γ1,u = −P1, γ

′
1,u+1 = −P1, . . . , γ

′
1,` = −P1, γ

′′
1,u+1 = 2·EpkPj

(vj,u+1)[1], γ′′1,` =

2·EpkPj
(vj,`)[1], γ2 = 1,Γ = 0, t = −EpkPj

(vj,u)[1]+P1+
∑`
δ=u+1EpkPj

(vj,δ)[1]

Here, multi-scalar equations are of type γ1,u · yu+
∑`
l=u+1 γ

′
1,l · y′l +

∑`
l=u+1 γ

′′
l ·

y′′ + γ2 · x = t.
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5.4 Proving Permutation Networks (ProofBlind, ProofShuffle,
ProofShuffle∗)

A crossbar switch is a simple operator with two inputs i1, i2 and two outputs
o1, o2. The switch either assigns output o1 to i1 and o2 to i2, or the other
way around o1 = i2 and o2 = i1. Basically, the switch flips the input or not.
Crossbar switches are building blocks for permuting larger input sequences.

To randomly permute an input of n elements, we construct a Beneš [10]
permutation network PNn out of crossbar switches. The idea to permute n
elements is to recursively use 2 permutation networks PNn

2
, each for n

2 elements.
More specifically, the n elements of the input are grouped by two and input to n

2
crossbar switches. One output of each switch is routed to the first permutation
network PNn

2
, and the other output is routed to the second PNn

2
permutation

network. The output of the two PNn
2

permutation networks is then connected
to a final sequence of n

2 crossbar switches. That is, the outputs of the first
PNn

2
permutation network are routed to the first inputs of the n

2 switches, and
the outputs of the second PNn

2
permutation network are routed to the second

inputs of switches. The recursion ends with PN2 permutation networks which
are again crossbar switches.

To permute an input sequence of n elements, a Beneš permutation network
requires n · log n− n

2 crossbar switches.

5.4.1 Zero-Knowledge Proof Setup

Party Pi wants to prove in ZK correctness of an n element shuffle. Specifically in
this paper, Pi has as an input a sequence of n additively homomorphic Elgamal
ciphertexts c1, . . . , cn and outputs a re-encrypted shuffle Cπ(1), . . . , Cπ(n). Note
that in contrast to the typical scenario where both sequences of ciphertexts cj
and Cj are public, we are targeting the situation where inputs c are private,
i.e., Pi has only published commitments Com(cj) to them, and just the C are
public.

Pi proves in two steps: first, Pi computes blinded versions c′j , publishes
commitments Com(c′j) to them, and proves in ZK that the c′j behind these
commitments are blinded versions of the cj .

The second step is then to randomly shuffle the c′j and prove correctness of
the shuffle by using a permutation network. The idea here is that for any n, the
recursive layout of a permutation network is fixed. So, for a party Pi to prove
correctness of an n element shuffle in ZK, it is sufficient to prove correctness of
all n · log n− n

2 internal crossbar switches.

5.4.2 Proving Blinding (ProofBlind)

First, we will use the previously introduced blinding of ciphertexts instead of re-
encryption. Otherwise, decryption will leak details about the DGK evaluation.

Let c′ be a blinded additively homomorphic Elgamal ciphertext of c com-
puted as above. Commitments Com(c),Com(c′) for ciphertexts and a commit-
ment Com(R) for a random string R have been published. Pi proves in ZK
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that ciphertext c′ is a blinded version of ciphertext c1. The Groth and Sahai
representation is:

1. Correctness of c′[0]
secret: x1 = c′[0], x2 = c[0], y = R,
public: γ1 = O, γ2,1 = 1, γ2,2 = 0,Γ =

(
0 −1
0 0

)
, t = O

2. Correctness of c′[1]
secret: x1 = c′[1], x2 = c[1], y = R,
public: γ1 = O, γ2,1 = 1, γ2,2 = 0,Γ =

(
0 −1
0 0

)
, t = O

Note that Γ is non-zero, so our multi-scalar equations combine secret ele-
ments from G1 and Zp. Party Pi also has to prove that R 6= 0, but this is

straightforward: for some point R̂ 6= O, Pi reveals R · R̂, which has to be 6= O,
and proves correctness of this product with a ProofECDLP.

5.4.3 Proving a Crossbar Switch (ProofShuffle)

Pi constructs a single ZK crossbar switch with inputs i1, i2 and outputs o1, o2. In
our case, the inputs are two additively homomorphic Elgamal ciphertexts c′1, c

′
2

which the switch will randomly permute and then output as C1, C2. Using the
Groth and Sahai framework, Pi will prove in ZK that the two output ciphertexts
C1, C2 are a permutation of input c′1, c

′
2. As output C1, C2 of one crossbar

switch serves as input for two other crossbar switches in a permutation network,
neither c′1, c

′
2 (output of blinding above) nor C1, C2 are public. Instead, Pi only

publishes commitments to them. Only the last sequence of crossbar switches
reveals output ciphertexts which another party Pj can finally decrypt.

We realize a crossbar switch by flipping input depending on secret random
bit β ∈ {0, 1}. To be able to use β, Pi first publishes commitment Com(β) and
proves that β ∈ {0, 1}, see Section 5.1. Specifically, Pi proves that C1, C2 is a
permutation of secret c′1, c

′
2:

C1[0] = β · c′1[0] + (1− β) · c′2[0]

C1[1] = β · c′1[1] + (1− β) · c′2[1]

C2[0] = (1− β) · c′1[0] + β · c′2[0]

C2[1] = (1− β) · c′1[1] + β · c′2[1]

Observe for this shuffle trick C1 = β · c′1 + (1− β) · c′2 = β · c′1 + c′2 − β · c′2.
Therewith, we can now derive the Groth and Sahai representation:

1. Correctness of C1[0]
secret: x1 = c′1[0], x2 = c′2[0], x3 = C1[0], y1 = β
public: γ1 = O, γ2,1 = 0, γ2,2 = 1, γ2,3 = −1,Γ = ( 1 −1 0 ), t = O

2. Correctness of C1[1]
secret: x1 = c′1[1], x2 = c′2[1], x3 = C1[1], y1 = β
public: γ1 = O, γ2,1 = 0, γ2,2 = 1, γ2,3 = −1,Γ = ( 1 −1 0 ), t = O
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3. Correctness of C2[0]
secret: x1 = c′1[0], x2 = c′2[0], x3 = C2[0], y1 = β,
public: γ1 = O, γ2,1 = 1, γ2,2 = 0, γ2,3 = −1,Γ = (−1 1 0 ), t = O

4. Correctness of C2[1]
secret: x1 = c′1[1], x2 = c′2[1], x3 = C2[1], y1 = β,
public: γ1 = O, γ2,1 = 1, γ2,2 = 0, γ2,3 = −1,Γ = (−1 1 0 ), t = O

Equations above are for proving a single crossbar switch. Proof ProofShuffle

for n ciphertexts is simply the concatenation of proofs of the n·log n− n
2 crossbar

switches in the permutation network. The last sequence of crossbar switches in
the permutation network outputs shuffled ciphertexts: in the equations above,
there will be no secret x3 = C, but instead public t will be C.

Function Benes we use in Section 4.3 to shuffle ciphertexts of vi’s bits outputs
both shuffled ciphertexts Cj and the proof of shuffle for the whole permutation
(n · log n− n

2 proofs of crossbar switches).

5.4.4 Proving a Shuffle of Ciphertext Sequences (ProofShuffle∗)

With function Benes, we generate and prove a shuffle of ` ciphertexts which are
encryptions of bits vi,j . We extend the idea behind this proof to also prove the
shuffle of n − 1 DGK evaluations in Round 3 (Algorithm 4). With this shuffle
(called Shuffle∗), Pi shuffles sequence C = {(Cj,i,1, . . . , Cj,i,`)}∀j 6=i. Sequence C
comprises n − 1 elements which are sub-sequences, each of ` ciphertexts. The
shuffle shuffles both indices j and positions of encrypted bits for each Cj,i,u. So,
Shuffle∗ outputs C′ = {(Cπ(j),i,π′j(1), . . ., Cπ(j),i,π′j(`))}∀j 6=i for randomly chosen

permutations π and π′j .
To shuffle C using a Beneš permutation network, our idea is, first, to treat

a sequence of ` ciphertexts (Cj,i,1, . . . , Cj,i,`) as a single input to a crossbar
switch. Again, each crossbar switch will flip its two inputs, two sequences of
` ciphertexts each, depending on a single random bit β as above. If β = 0,
the switch swaps the two sequences. Before the actual shuffle, we need to blind
each ciphertext Cj,i,u by multiplying both sides of the ciphertext with a random

Rj,i,u
$← Zp.

Function Benes∗ takes as an input sequence C and outputs blinded, shuf-
fled sequence C′ together with a ZK proof of correctness ProofShuffle∗ . We
construct ProofShuffle∗ as a simple concatenation of proofs ProofBlind and then
(n− 1) · log (n− 1)− n−1

2 ProofShuffle for the individual crossbar switches of the
permutation network. Therewith, we realize and prove correctness of the first
permutation π and blinding of all ciphertexts. We then also shuffle and prove
positions of encrypted bits within sequences (Cπ(j),i,1, . . . , Cπ(j),i,`) using n− 1
different Beneš permutation networks of ` inputs, each. Thus, we generate and
prove correctness of permutations π′j . The output of function Benes∗ includes
the n− 1 proofs of an ` input Beneš permutation network for that, too.

To enable verification of ProofShuffle∗ , note that we need to publish commit-
ments to all β and all random Rj,i,u on the blockchain. We also prove on the
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blockchain that the β are bits using ProofBit and prove correct blinding using
ProofBlind. To help readability, we have omitted repeating details of these proofs
in Algorithm 4.

5.4.5 Arbitrary n

While the above standard Beneš permutation networks require the input set size
to be a power of 2, there exist extensions for arbitrary sizes. They are efficient
and require only up to bn · log n− n

2 c crossbar switches [22]. So, we can shuffle
without putting constraints on bit length ` or the number of parties n.

5.5 Proving Decryption ProofDecrypt

Pi proves that a ciphertext Cfinal = C[0] · ski for the left-hand side of another
ciphertext C and its secret key ski. Again, this is just a Groth and Sahai proof
of knowledge of exponent for ECDLP.

1. Cfinal secret: y = ski public: γ1 = C[0], t = Cfinal

6 Security Analysis

We prove Theorem 1 using a simulation-based proof in the hybrid model [42]. In
the hybrid model, simulator S generates messages of honest parties interacting
with malicious parties and the trusted third party TTP , but we treat ZK proofs
([36, 50]) as oracle functionalities. Simulator S does not use inputs of honest
parties (except for forwarding to the TTP which does not leak any information),
so the protocol does not reveal any information except the result, i.e., the output
of the TTP . Messages generated by S must be indistinguishable from messages
in the real execution of BOREALIS.

Proof of Theorem 1. Let P be the set of all Parties and P be the parties con-
trolled by adversary A. We prove

IDEALF
kth-Ideal

,S(v1, . . . , vn) ≡ REALΠBOREALIS,A(v1, . . . , vn).

I) In the first round of the protocol, malicious parties Pi commit to their
input, including their public key pki, an encryption of Epki(vi,j) and ZK proofs
of proper integer encryption (ProofBit and ProofEnc) and correct VSS shares Y
ProofVSS. If verification of either of the ZK proofs ProofBit,ProofEnc,ProofVSS

fails, we treat the value vi = ⊥, since it is non-recoverable by honest parties and
exclude Pi from further participation in the protocol. If the verification succeeds,
S extracts vi from the oracle functionality of the ZK proof ProofEnc and sends
it to the TTP . Since S forwards the honest parties’ input to TTP , it receives
the output OUTPUT of Fkth-Ideal from the TTP . If the verification of any
further ZK proof, in this or a subsequent step, fails, we invoke an input recovery
protocol for vi using VSS shares Y. S can simulate messages from honest parties,
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since they are either semantically-secure ciphertexts under honest parties’ keys,
computationally-hiding commitments or ZK proofs.

II) In the second round, malicious parties Pi need to prove correctness of
their messages in ZK. As before, we invoke an input recovery protocol on failure.
S simulates messages from the honest parties as follows. The ciphertexts

under the malicious parties’ keys are simulated with random plaintexts which
match comparison results from OUTPUT ; they are the comparison results be-
tween vi and vj from the honest parties encrypted under the malicious parties’
public keys pki. The remainder are ZK proofs or computationally-hiding com-
mitments.

III) In the third round, malicious parties Pi need to again prove the correct-
ness of their messages in ZK. S simulates messages from the honest parties, since
revealed plaintext information, ι, and the comparison of vj from the honest par-
ties to vι can be derived from OUTPUT . S then simulates the corresponding
ZK proofs and computationally-hiding commitments.

7 Evaluation

In each round of BOREALIS, each party’s computation time is dominated by
preparing and publishing Groth and Sahai ZK proofs. To indicate BOREALIS’
practicality in real-world scenarios, we have therefore implemented and bench-
marked the ZK proofs of this paper. The source code is available for download
at [17]. In the following, our goal is estimating for up to which number of sup-
pliers n and bit length ` BOREALIS is practical. That is, for which values
of n, ` each party’s total computation time is below Bitcoin’s or Ethereum’s
block intervals.

All proofs are implemented on top of Bazin [7]’s general framework for Groth
and Sahai proofs. For its underlying cryptographic primitives, this framework
employs the MIRACL library [46]. Our benchmarks were run with Fp254BNb,
i.e., a standard 128 bit security Barreto-Naehrig Type-3 elliptic curve, Ate pair-
ing, and SHA256 as hash function. Being a Type-3 curve, the SXDH assump-
tion holds. Benchmarks were performed on a Linux laptop with 2.20 GHz Intel
i7-6560U CPU. Table 1, which we have moved to Appendix A due to space con-
straints, summarizes benchmark results. For each ZK proof, we measure proof
computation time, averaged over 100 runs, and total proof size. Note that our
CPU features 4 cores, so we can independently compute 4 ZK proofs at the
same time. Also note that total time and size of a Groth and Sahai system
of equations is linear in the number of equations and variables (cf. Figure 3
in [36]). So, total time and size for each party in each round is a simple linear
combination of the individual proofs from Table 1.

First round: Pi computes one ProofECDLP for their private key, ` ProofBit for its
own input integer vi, (n− 1) · (` · log `− `

2 ) ProofBit for the β, and ` ProofEnc to
prove correct encryption. Our variation of Schoenmakers’s ProofVSS corresponds
to one ProofECDLP.
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Second round: Pi computes ` · (n − 1) ProofDGK. Yet, computation time of
ProofDGK itself increases linearly in `. Table 1 shows computation time for a
2 bit proof, so we have to multiply this computation time by l

2 to estimate time

for arbitrary `. So, Pi is busy computing `2

2 · (n− 1) times ProofDGK of Table 1.

In addition, Pi computes (n− 1) · (` · log `− `
2 ) ProofShuffle.

Third round: Here, Pi computes a single ProofShuffle∗ . This comprises ` · (n −
1) · (log (n− 1) − n−1

2 ) ProofShuffle to shuffle all length ` ciphertext sequences,
(n−1) · log (n− 1)− n−1

2 ProofBit for the individual crossbar switches, (n−1) · `
ProofBlind to blind all ciphertexts, and then (n − 1) · (` · log ` − `

2 ) ProofShuffle

plus (n− 1) · (` · log `− `
2 ) ProofBit for the n− 1 permutation networks. Finally,

Pi computes up to ` ProofDecrypt.
Due to ProofDGK and ProofShuffle∗ , computation times in the second and third

rounds are significantly higher than in the first round. As ProofDGK computa-
tion time is quadratic in `, either the second or the third round take longest.
Therefore, Figure 1 depicts the maximum time of these two rounds for various
combinations of the number of parties n and typical bit lengths `. Both axes are
scaled logarithmically. The figure also shows block interval times for Ethereum
(≈ 15 s [30]) and Bitcoin (≈ 10 min [13]).

In scenarios with low resolution integers (` = 8), our prototypical, non-
optimized implementation of BOREALIS is very practical, supporting several
hundreds of parties (n ≈ 800) with Bitcoin, and n ≈ 30 parties with Ethereum.
Even in the other extreme with fine-grained, high precision integers (` = 32),
BOREALIS remains practical and copes with ≈ 200 parties for Bitcoin. Only
in the worst-case situation with ` = 32 bit and Ethereum’s low block interval
times, our implementation is practical for only a small number of parties, e.g.,
n up to 8.

8 Conclusion

In this paper, we have built BOREALIS, a generic, efficient building block for
sealed bid auctions on blockchains. We perform secure comparisons of integer
bids and enable ZK proofs of the kth-rank of an integer among n parties. BORE-
ALIS completes in a constant number of only 3 (in case of malicious behavior 4)
rounds. Moreover, its computational requirements suit several dozens of parties
and large integers. Such a low number of rounds permits running more complex
auctions on blockchains. We achieve these properties by carefully engineering
several cryptographic primitives, like ECC Elgamal, homomorphic comparisons,
and Groth and Sahai proofs.
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A Verifiable Secret Sharing

We briefly summarize our variation of Schoenmakers [50]’s scheme for verifiable
secret sharing. Let Pi be the dealer, the party which wants to verifiably share
a fresh, randomly generated private key ski ∈ Zp. The core modification to
Schoenmakers’s scheme is that each party Pj receives an Elgamal encrypted
version of their share in addition to commitments as follows.

Distribution: Let P1 be the generator of our group G1 in which the DDH

holds. P1 randomly selects ski
$← Zp as (session) private key and computes

public key pki = ski · P1. Moreover, Pi computes a degree n
2 − 1 polynomial

f(x) =
∑n

2−1
j=0 αj · xj with α0 = ski and all other coefficients αj random from

Zp.
Then, Pi publishes on the blockchain: pki, commitments to all of f ’s coef-

ficients Cu = αu · P1, 0 ≤ u ≤ n
2 − 1, and a ZK proof ProofECDLP that ski is

indeed the DLOG of pki. For each party Pj , Pi also selects another rj
$← Zp

and publishes Elgamal encryption Yj = Epklt
j
(f(j)) = (rj · P1, rj · pklt

j ⊕ f(j)) on

the blockchain.
To verify its share, each party Pj decrypts Yj and gets f(j). Now, each

Pj computes
∑n

2−1
u=0 j

u · Cu and checks whether this equals f(j) · P1. If the
check fails, Pj publishes f(j) and sklt

j · Yj [0] on the blockchain together with
a ProofECDLP to prove correct multiplication and therewith decryption. If this
proof is correct, Pj ignores Pi for the rest of the protocol. If Pj ’s proof of correct
decryption is wrong, all parties exclude Pj (and they could try recovering skj).
If Pi’s initial ProofECDLP is wrong, Pi is excluded, too.

Reconstruction: In case a party Pi’s key has to be recovered, all other parties
Pj publish their share f(j) together with sklt

j · Yj [0] and ProofECDLP to prove
correct decryption. Honest parties use correct f(j)s to interpolate f and finally
compute Pi’s secret key ski = f(0). As we assume a honest majority of at least
n
2 honest parties, they will be able to interpolate degree n

2 − 1 polynomial f .
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Table 1: Resources per party

Proof Type
Time Size Number of invocations
(ms) (Byte) per party

ProofBit 5.90 489 O(n · (l · log l + logn))
ProofECDLP 1.78 163 O(1)
ProofEnc 3.92 326 O(`)

ProofDGK per bit 8.24 914 O(n · `2)
ProofBlind per bit 11.0 786 O(n · `)
ProofShuffle per

29.4 1308 O(n · ` · (log `+ logn))
two ciphertexts

ProofDecrypt 1.78 196 O(`)

Following our notation in Algorithm 2, VSS outputs ski, encryptions Yj , and
ProofVSS which is a ProofECDLP.

Our modification to [50] allows to share an element of Zp instead of G1. At
the same time, our scheme loses the property of public verifiability. That is, one
party cannot automatically verify whether the dealer’s output to another party
is valid or not. However in our specific scenario, this is acceptable.
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Figure 1: Maximum round computation time
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