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Abstract

We present a pairing-based signature scheme for use in blockchains that achieves substantial
savings in bandwidth and storage requirements while providing strong security guarantees. Our
signature scheme supports aggregation on the same message, which allows us to compress
multiple signatures on the same block during consensus, and achieves forward security, which
prevents adaptive attacks on the blockchain. Our signature scheme can be applied to all
blockchains that rely on multi-party consensus protocols to agree on blocks of transactions (such
as proof-of-stake or permissioned blockchains).

1 Introduction

Blockchain technologies are quickly gaining popularity for payments, financial applications, and
other distributed applications. A blockchain is an append-only public ledger to which anyone can
write and read. At the core of the blockchains is a consensus mechanism that allows nodes to agree
on changes to the ledger, while ensuring that changes once confirmed cannot be altered; we refer to
the latter as the safety requirement. The key question in any blockchain design is: “How to choose
and agree on the next block?”

In the first generation of blockchain implementations, such as Bitcoin, Ethereum, Litecoin, the
nodes with the largest computational resources choose the next block. These implementations
suffer from large computational waste, high transaction costs, low throughput, high latency, and
centralization due to the formation of mining pools [25, 7, 13]. To overcome these problems, the
current generation of blockchain implementations such as Algorand, Cardano, Ethereum Casper and
Dfinity turn to proofs of stake (PoS), where nodes with larger stakes in the system —as measured for
instance by the amount of money in their account— are more likely to participate in choosing the
next block [24, 16, 11, 20, 14, 9, 18].

At a high level, PoS-based blockchains share the following structure: (a) a committee of selected
of users runs a consensus sub-protocol to agree on what block B to be added next, (b) each
committee member then signs that block B , and (c) each node then appends a block B to their view
of the ledger if it sees sufficiently many committee member signatures on the block B . We refer to
this collection of committee signatures on the block B as the block certificate. The way in which
the committees are selected and the consensus sub-protocol varies quite substantially amongst the
various designs.

This work. In this work, we focus on the common cryptographic core of all PoS-based blockchains,
namely the signature scheme used by the committee, and how we can simultaneously meet the
requirements for efficiency and security.

In terms of efficiency, a major cost of PoS protocols are bandwidth and space needed to
propagate committee signatures and to store the block certificate, as well as the computational
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resources needed for signature verification of these certificates. The former can be mitigated with
the use of the BLS signatures [6, 5]; these signatures are aggregatable, namely we can compress
N signatures on N possibly distinct messages under N public keys into a single short signature
simultaneously validating all N message-key pairs. Unfortunately, BLS signatures do not satisfy the
security requirement which we describe next.

In terms of security, we require that the signatures be forward-secure. That is, each signature
is associated with the current time period in addition to the signed message, and after each time
interval, a user’s secret key can be updated in such a way that it can only be used to sign messages
for future time periods, and but not previous ones. The use of forward-secure signatures prevent
adaptive attacks on a PoS-based blockchain, where an adversary waits till the agreement on a block
B is reached for a round r , then at some time in the future, it corrupts all the committee members
that signed the block to obtain their signing keys.1 Using the keys the adversary can produce a valid
certificate for a different block B ′ for the same round r . Note that this attack goes away if committee
members use a forward-secure signature and update their keys as soon as they sign a block B .

1.1 Our Results

We present a pairing-based signature scheme for use in PoS-based blockchains that achieves
substantial savings in bandwidth and storage requirements. To support a total of T time periods
and a committee of size N , the block certificate comprises just two group elements (in addition to
the identities of the committee members), whereas verifying each committee member’s signature as
well as the block certificate requires only two pairings plus one exponentiations. This essentially
matches the efficiency of BLS signatures, cf. Fig 1.1, while also preventing adaptive attacks. In
contrast, using existing forward-secure signature yields much larger block certificate of size O(N )
to O(N logT ) group elements [2, 21, 19, 23, 8]; this is the case even if we were to instantiate the tree-
based constructions with aggregatable BLS signatures.

Our construction combines prior forward-secure signatures based on hierachical identity-based
encryption (HIBE) [8, 12, 10, 4] with the simple observation that it suffices to support signature
aggregation on the same message, since we only need to aggregate and store committee signatures
on the same block B . We achieve security under a standard q-type assumption in the random oracle
model (or in the generic group model without random oracles).

Overview of our scheme. Starting with a bilinear group (G1,G2,GT ) with e : G1 ×G2 →GT of prime
order p and generators g1, g2 for G1,G2 respectively, a signature on M ∈ Zp \ {0,1,2} at time t under
public key e(g1, g2)α is of the form:

σ= (gα+F (t ,M)r
2 , g r

2 ) ∈G2
2

where the function F (t , M) also depends on some fixed public parameters (O(logT ) group elements)
and r is fresh randomness used for signing. Verification relies on the relation:

e(g1, gα+F (t ,M)r
2 ) ·e(g F (t ,M)

1 , g r
2 )−1 = e(g1, g2)α

where g F (t ,M)
1 is computed using the public parameters.

Given N signaturesσ1, . . . ,σN on the same message M at time t under N public keys gα1
1 , . . . , gαN

1 ,
we can produce an aggregate signature σ′ on M by computing the coordinate-wise product of
σ1, . . . ,σN . Concretely, if σi = (gαi+F (t ,M)ri

2 , g ri
2 ), then

σ′ = (gα1+···+αN+F (t ,M)r ′
2 , g r ′

2 )

1In a typical PoS protocol, a committee is a tiny fraction of the total number of users in the system so that an adaptive
adversary can corrupt an entire committee while controlling only a tiny fraction of the total stake. Also, the stakes of the
committee members may decrease significantly over time.
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scheme setup + keygen update sign verify |σ| |sk|
BLS O(1) exp – 1 exp 2 pair 1 O(1)
our scheme O(logT ) exp + 1 pair 3 exp 4 exp 2 pair + 1 exp 2 O((logT )2)

Figure 1: Comparing our scheme with BLS signatures. Here, “exp” and “pair” refer to number of
exponentations and pairings respectively. We omit additive overheads of O(logT ) multiplications.
The column update refers to amortized update times for t to t +1. The columns |σ| and |sk| denote
signature and secret key size in terms of group elements.

where r ′ = r1 +·· ·+ rN .

How to generate and update keys. To complete this overview, we describe a simplified version of
the secret keys and update mechanism, where the secret keys are of size O(T ) instead of O((logT )2).
The construction exploits the fact that the function F satisfies

F (t , M) = F (t ,0)+M ·F ′(0,1)

This means that in order to sign messages at time t , it suffices to know

s̃kt = {gα+F (t ,0)r
2 , g F ′(0,1)r

2 , g r
2 }

from which we can compute gα+F (t ,M)r
2 , g r

2 . For security, we will need to randomize r by computing

g F (t ,M)
2 from the public parameters.

The secret key skt for time t is given by:

s̃kt , s̃kt+1, · · · , s̃kT

generated using independent randomness. To update from the key skt to skt+1, we simply erase s̃kt .
To compress the secret keys down to O((logT )2) without increasing the signature size, we

combine the tree-based approach in [10] with the compact HIBE in [4]. Roughly speaking, each
skt now contains logT sub-keys, each of which contains O(logT ) group elements and looks like an
“expanded” version of s̃kt .

Generating public parameters. Our signature scheme requires logT pairs of group elements of the
form (g w

1 , g w
2 ) for which w is completely hidden from the adversary. We observe that there is an

extremely simple and non-interactive MPC protocol for generating these parameters that achieves
information-theoretical security as long as there is a single honest party. Each party contributes a
random pair (g wi

1 , g wi
2 ) (and then erases wi ), which anyone can check is well-formed via a pairing

e(g wi
1 , g2) = e(g1, g wi

2 ). The output is the coordinate-wise product of these pairs, which implicitly sets
w =∑

wi .

1.2 Discussion

Related works. The use of HIBE schemes for forward secrecy originates in the context of encryption
[10] and has been used in signatures [8, 12], key exchange [17] and proxy re-encryption [15]. Our
signature scheme is quite similar to the forward-secure signatures of Boyen et al. [8] and achieves
the same asymptotic complexity; their construction is more complex to order to achieve security
against untrusted updates. Our construction can be viewed as an aggregatable forward-secure multi-
signature scheme [22].
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Non-interactive and incremental aggregation. As mentioned earlier, the signature scheme will be
used by commmittee members to sign a block B selected during a consensus sub-protocol. These
signatures will then be propagated through the network. Note that our scheme supports non-
interactive and incremental aggregation: the former means that signatures can be aggregated by any
party after broadcast without communicating with the original signers, and the latter means that
we can incorporate a new signature to an aggregate signature to obtain a new aggregate signature.
In practice, this means that relay nodes can perform intermediate aggregation on any number of
committee signatures and propagate the result, until the block certificate is formed.

Alternative approaches to adaptive security. There are two variants of the adaptive attack: (i) a
short-range variant, where an adversary tries to corrupt a committee member prior to completion
of the consensus sub-protocol, and (ii) a long-range variant as described earlier. Dfinity, Ouroboros
and Caspter cope with the short-range attacks by assuming a delay in attacks that is longer than the
running time of the consensus sub-protocol. For long-range attacks, Casper adopts a fork choice rule
to never revert a finalized block, and in addition, assumes that clients log on with sufficient regularity
to gain a complete update-to-date view of the chain. We note that forward-secure signatures
provide a clean solution against both attacks, without the need for fork choice rules or additional
assumptions about the adversary and the clients.

Application to permissioned blockchains. Consensus protocols, such as PBFT, are also at the core
of many permissioned blockchains (e.g. Hyperledger), where only approved parties may join the
network. Our signature scheme can similarly be applied to this setting to achieve forward secrecy,
reduce communication bandwidth, and produce compact block certificates.

Security against rogue key attacks. We prove security in a model where the adversary must provide
proofs of secret keys [3, 26], that is, knowledge of gα2 corresponding to e(g1, g2)α; this can be achieved
for instance by using a variant of Schnorr protocol combined with the Fiat-Shamir heuristic. In
practice, this is a perfectly reasonable assumption since committee members do need to register their
signature public keys in advance (for instance, as a transaction in which case the proofs of secret keys
are verified by committee members for the block where the transaction appears) before participating
in the consensus sub-protocol.

2 Same Message Aggregatable Forward-Secure Signatures

Syntax. A same message aggregatable forward-secure signature scheme consists of a tuple of
algorithms (Setup,Keygen,UpdateKey,Sign,Aggregate,Verify) satisfying the following requirements:

• Setup(1λ,T ) → pp. The set-up algorithm takes as input a security parameter λ and an upper
bound on the number of time-periods T (encoded as integer). It outputs public parameters pp.

• Keygen(pp) → (pk,sk0). The key-generation algorithm takes as input the parameter parameters
pp. It outputs a public key pk and secret key sk0 for time 0.

• UpdateKey(pp,skt , t ′) → skt ′ . The update algorithm takes as input a secret key for a time period
0 ≤ t ≤ T and a new time period t ′ > t and outputs a secret key skt ′ for the time period t ′.

• Sign(pp,skt , t , M) → σ. The signing algorithm takes as input a secret key for a time period t ∈ [T ]
and a message M . It outputs a signature σ.

• Aggregate(σ1, . . . ,σN ) → σ: The aggregation algorithm takes as input a collection of signatures
signing the same message M for the same time period t and outputs an aggregate signature σ.
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• Verify(pk1, . . . ,pkN , t , M ,σ) → 0/1. The verification algorithm takes as input a collection of public
keys, a time period t , a message M and a signature σ. It outputs 1 iff σ is a valid signature under
the collection of given public keys.

Correctness. For any integer N , time period t ∈ [T ], and all (pk1,sk1,i ), . . . , (pkN ,skN ,t ) that are
produced via invocation of algorithms Keygen,UpdateKey, and all messages M , the following
condition must hold:

Pr[Verify(pk1, . . . ,pkN , i , M ,Aggregate(σ1, . . . ,σN )) = 1] > 1−negl(λ)

where Sign(pp,sk j ,i , M) →σ j and the randomness is over the coins of all of the described algorithms.
In addition, we require that for any T , with probability 1−negl(λ) overSetup(1λ,T ) → pp,Keygen(pp) →

(pk,sk0), we have that for any t < t ′ ≤ T :

(sk0,UpdateKey(pp,sk0, t ′)) ≈s (sk0,UpdateKey(pp,UpdateKey(pp,sk0, t ), t ′))

Security. We describe the security game between an adversary and a challenger in phases.

• Challenge time-period. The adversary outputs T along with a challenge time-period t∗ ∈ [T ].

• Key-generation. The challenger runsSetup(1λ,T ) → pp,Keygen(pp) → (pk,sk0),UpdateKey(sk0, t∗+
1) → skt∗+1 and sends pp,pk,skt∗+1 to the adversary.2

• Signature queries. The adversary issues adaptively chosen queries (t , M) for any t ≤ t∗ and
receives signatures σ← Sign(pp,skt , t , M),UpdateKey(sk0, t ) → skt from the challenger.

• Forgery. The adversary outputs

N , i ∈ [N ], (pk j ,sk j ,0) j 6=i , M∗,σ∗

The adversary wins the game if

• for all signature queries (t , M), we have t 6= t∗ or M∗ 6= M ; and

• Verify(pk1, . . . ,pkN , t∗, M∗,σ∗) = 1 where pki := pk.

The scheme is secure if no efficient adversary can win this game with non-negligible probability.

Remark 2.1 (Accounting for proofs of knowledge). We can modify the security definition to account
for proofs of knowledge as follows: (i) the adversary receives a proof of knowledge of sk0 in the key-
generation phase, and (ii) the adversary submits proofs of knowledge of sk j ,0, j 6= i instead of sk j ,0 in
the forgery phase. We note that the security definition in [26] does not account for (i).

3 Our Construction

We present our pairing-based same-message aggregatable forward-secure signature scheme in this
section.

2This allows the adversary to compute any skt and signatures on (t , M) for any t > t∗.
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3.1 Preliminaries

Following [10], we associate time periods with all nodes of the tree according to a pre-order traversal.
Prior tree-based forward-secure signatures associate time periods with the only leaf nodes. The CHK
approach allows us to reduce the amortized complexity of key updates from t to t +1 from O(logT )
exponentiations to O(1) exponentiations.

Bijection. We describe a bijection between {1,2}≤D−1 and [2D −1] for any integer D given by

t = (t1, t2, . . .) ∈ {1,2}≤D−1 7→ 1+
|t|∑

i=1
(1+2D−i (ti −1))

For instance, for D = 3, this maps ε,1,11,12,2,21,22 to 1,2,3,4,5,6,7. This induces a natural
precedence relation over {1,2}≤D−1 where t ¹ t′ iff either t is a prefix of t′ or exists t̄ s.t. t̄‖1 is a prefix
of t and t̄‖2 is a prefix of t′. We also write t,t+1 corresponding to t , t +1.

Encoding intervals. Next, we associate any t ∈ {1,2}≤D−1 with a set Γt ⊂ {1,2}≤D−1 given by

Γt := {
t
}∪{

t̄‖2 : t̄‖1 prefix of t
}

The sets Γt satisfy the following properties:

• t′ º t iff there exists u ∈ Γt s.t. u is a prefix of t′;

• For all t′ Â t, we have that for all u′ ∈ Γt′ , there exists u ∈ Γt such that u is a prefix of u′;

• For all t, we have either Γt+1 = Γt \ {t} or Γt+1 = (Γt \ {t})∪ {t‖1,t‖2}

The first property is used for verification and for reasoning about security; the second and third
properties are used for key updates.

Bilinear groups. A generator G takes as input a security parameter λ and outputs a description
G := (p,G1,G2,GT ,e), where p is a prime of Θ(λ) bits, G1, G2 and GT are cyclic groups of order p, and
e : G1 ×G2 → GT is a non-degenerate bilinear map. We require that the group operations in G1, G2

and GT as well the bilinear map e are computable in deterministic polynomial time with respect to
λ. Let g1 ∈ G1, g2 ∈ G2 be the respective generators. Our scheme relies on the q-SDH assumption,
which says that it is hard to compute gα

q+1

2 given g1, gα1 , gα
2

1 , . . . , gα
q

1 , g2, gα2 , gα
2

2 , . . . , gα
q

2 for a random
α←Zp .

3.2 Our Signature Scheme

We assume the bound T is of the form 2D −1. We use the above bijection so that the algorithms take
input t ∈ {1,2}≤D−1 instead of t ∈ [T ]. Our signature scheme relies on two auxiliary algorithms Subkey
and Delegate which we describe below.

• Setup(1λ,2D−1). Given (G1,G2,GT ) and generators g1, g2, sample w0, w1, . . . , wD ←Zp and output

pp := (
g w0

1 , . . . , g wD
1 , g w0

2 , . . . , g wD
2

) ∈GD+1
1 ×GD+1

2

• Keygen(pp) → (pk,sk0). Sample α←Zp . Output

pk := e(g1, g2)α ∈GT , sk0 := gα2 ∈G2
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• Subkey(pp,sk0 = gα2 ,x ∈ (Z∗
p )≤D ). Sample r ←Zp . Output

s̃kx := (
g r

2 , gα+ f (x)r
2 , g

w|x|+1r
2 , . . . , g wD r

2

) ∈GD+2−|x|
2

where f (x) := w0 +∑|x|
i=1 wi xi .

• Delegate(pp, s̃kx = (K0,K1,K|x|+1, . . . ,KD ),x′ ∈ (Z∗
p )≤D ). If x is a prefix of x′, output

s̃kx′ := (
K0,K1 ·

|x′|∏
i=|x|+1

K
x ′

i

i ,K|x′|+1, . . . ,KD
) ·Subkey(pp, g 0

2 ,x′) ∈GD+2−|x′|
2

where we use · to also denote cooordinate-wise multiplication.

• UpdateKey(pp,skt =
(
s̃ku : u ∈ Γt

)
,t′) → skt′ . For each u′ ∈ Γt′ , compute u ∈ Γt s.t. u is a prefix of u′

and sample s̃ku′ ←Delegate(pp, s̃ku,u′). Erase skt and output

skt′ := (
s̃ku′ : u′ ∈ Γt′

)
• Sign(pp,skt,t, M ∈Z∗

p \ {1,2}). Output the first two elements of Delegate(pp, s̃kt,t‖M). That is,

σ := (
g r

2 , gα+ f (t‖M)r
2

) ∈G2
2

• Aggregate(σ1, . . . ,σN ). Output
σ :=σ1 · · · ·σN ∈G2

2

• Verify(pk1, . . . ,pkN ,t, M ,σ= (σ′,σ′′)). Output

e(g f (t‖M)
1 ,σ′) ·pk1 · · ·pkN

?= e(g1,σ′′)

Correctness is straight-forward.

3.3 Security

The BBG security proof in [4] shows that under the q-SDH assumption, for any x∗ ∈ {1,2}≤D−1, it
is hard to compute Subkey(sk0,x∗) given pp,pk as well as an oracle for Subkey(sk0, ·) subject to the
constraint that we never query the oracle on a prefix of x∗. In fact, it is hard to even compute the first
two elements of Subkey(sk0,x∗) (i.e., any (σ′,σ′′) s.t. σ′ = sk0 · (σ′′) f (x∗)). This implies security of the
signature scheme as follows:

• Set T = 2D − 1 and x∗ = t∗‖M∗. (This requires knowing M∗ in advance. In the actual scheme,
we will hash the message using H , and in the random oracle model, we can first pick a value for
H(M∗) and program H(M∗) to this value later. Alternatively, we can rely on adaptive security of
the BBG HIBE in the generi group model [1].)

• pp,sk0 are the same in both schemes

• To simulate key generation phase, i.e., skt∗+1 = (
s̃ku′ : u′ ∈ Γt∗+1

)
, we just query Subkey(sk0,u′) :

u′ ∈ Γt∗+1. Here, we use the fact that u′ is not a prefix of t∗ (since t∗ � t∗+1) and also not a prefix
of t∗‖M∗.

• To simulate signature oracle for (t, M) where t 6= t∗ or M 6= M∗, we just query Subkey(sk0,t‖M),
since t‖M is not a prefix of t∗‖M∗. The latter follows from the fact that since M 6= 1,2, we have
t‖M is a prefix of t∗‖M∗ implies t‖M = t∗‖M∗.

• Given σ= (σ′,σ′′) that passes the verification check along with sk j ,0, j 6= i , we must have

σ′ = sk0 · (σ′′) f (x∗) ·∏ j 6=i sk j ,0

We can then compute the first two elements of Subkey(sk0,x∗) using (σ′ ·∏ j 6=i sk
−1
j ,0,σ′′).
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A Performance Estimates

We present some preliminary performance estimates as a proof of concept; these numbers could be
improved with some optimizations and pre-processing.

These estimates are for the Relic implementation of BLS12-381 curve on a MacBook Pro.

scheme setup keygen update sign verify N = 1000 N = 5000 |skt |
T = 220, sig in G2 28.4 4.58 3.02 4.21 5.01 9.00 25.0 38 kB
T = 220, sig in G1 28.4 3.98 1.05 1.47 5.72 9.71 25.7 19 kB
T = 230, sig in G2 42.0 4.58 3.02 4.30 5.02 9.02 25.0 84 kB
T = 230, sig in G1 42.0 3.98 1.05 1.51 5.76 9.76 25.8 42 kB

Figure 2: Time in ms. The column “update” refers to amortized key updates from t to t + 1. The
columns N = 1000, N = 5000 refer to aggregate verification.

B Signature Variants

B.1 Smaller public keys

We could also consider a variant of our signature scheme with smaller public keys, namely pk = gα1
instead of e(g1, g2)α. This requires the following additional modifications to the scheme:

• verification requires an additional pairing to compute e(g1, g2)α; in a proof-of-stake blockchain,
we could pre-compute this quantity for the public keys with the highest stakes.

• security of the scheme requires a stronger assumption, namely that it is hard to compute gα
q+1

2

given g1, gα1 , gα
2

1 , . . . , gα
q

1 , gα
q+1

1 , g2, gα2 , gα
2

2 , . . . , gα
q

2 for a random α←Zp .

B.2 Proofs of posession

In the variant where we set pk= gα1 , we can replace the proofs of knowledge of secret keys with a BLS
signature on the corresponding public key / identity, with the appropriate domain separation in the
underlying hash function as in [26] and α as the BLS secret key. The idea is as follows:

• when the adversary registers pk j corresponding to (pk j ,sk j ,0) = (g
α j

1 , g
α j

2 ), it provides a BLS

signature σ j = H(pk j )α j ∈ G2. The reduction picks β j ← Zp and programs H(pk j ) = g
β j

2 , upon

which it could extract g
α j

2 using σ
1/β j

j .

• the security of the scheme also requires a stronger assumption, namely that it is hard to compute
gα

q+1

2 given g1, gα1 , gα
2

1 , . . . , gα
q

1 , gα
q+1

1 , g2, gα2 , gα
2

2 , . . . , gα
q

2 .gα
q+2

2 for a random α←Zp .

• in the security reduction in [4], the reduction basically programs sk0 = gα
D+1

2 (with D = q). To

simulate a BLS signature σ = H(pk)α
D+1

, the reduction picks β← Zp and programs H(pk) = gαβ2 ,

upon which it can simulate σ given gα
D+2

2 .

B.3 Modified signatures

We could modify the signing algorithm to support M ∈Z∗
p as follows:

9



• Sign(pp,skt,t, M ∈Z∗
p ). Output the first two elements of Delegate(pp,skt,t‖0D−1−|t|‖M). That is,

σ := (
g r

2 , gα+ f (t‖0D−1−|t|‖M)r
2

) ∈G2
2

• Verify(pk1, . . . ,pkN ,t, M ,σ= (σ′,σ′′)). Output

e(g f (t‖0D−1−|t|‖M)
1 ,σ′) ·pk1 · · ·pkN

?= e(g1,σ′′)

10
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