
TEX – A Securely Scalable Trustless Exchange
Rami Khalil

Imperial College London
Liquidity Network

Arthur Gervais
Imperial College London

Liquidity Network

Guillaume Felley
Liquidity Network

Abstract

Financial exchanges are typically built out of two trusted
components: a trade matching and a trade settlement system.
With the advent of decentralized ledgers, that perform trans-
actions without a trusted intermediary, so called decentralized
exchanges (DEX) emerged. Some DEXs propose to off-load
trade order matching to a centralized system outside the
blockchain to scale, but settle each trade trustlessly as an
expensive on-chain transaction. While DEX are non-custodial,
their order books remains trusted, a malicious exchange op-
erator or miner could front-run trades — i.e. alter trade order
execution for financial gain. The scalability limitations of the
settlement layer (e.g. Proof of Work (PoW) blockchains) more-
over hinders the practical growth of such DEX architectures.

We propose TEX, a front-running resilient, non-custodial
centralized exchange. Our matching system enforces the trade
order sequence provided by traders, i.e. is resilient against
trade sequence alteration by the exchange operator. As such the
matching system can operate in conjunction with a blockchain
based settlement layer (as proposed in the following), or make
custodian exchanges provably accountable for their matching
process. Our layer-two settlement system executes a trade
without holding the assets, and allows to reach similar scales
as traditional exchanges (trading volume in USD, number
of trades/second), despite a slow underlying ledger. TEX
might become a point of availability-failure, but we show
how the settlement system’s security properties would not
compromise the trader’s assets, even if the centralized operator
is compromised and/or colludes with all other traders. We
provide an evaluation on a PoW blockchain.

I. INTRODUCTION

Financial exchanges, such as the New York Stock Exchange,
are considered to be fundamentally important to the worldwide
economy and trade. Those exchanges are commonly built out
of two core components, (i) a trade matching system, which
brings together supply and demand for different assets, and
(ii) a trade settlement system which executes matching trades.

A trade matching system is typically designed as a cen-
tralized component (e.g. an order book) operated by a trusted
third party (TTP), which receives trader orders and upon a
match, forwards these to the trade settlement system. Similarly,
a settlement system is typically a centralized custodian, i.e.
traded assets are temporarily held by banks, brokers and
specialist custodians which are trusted to hold and exchange
the assets securely. To counterbalance this inherent trust which

is put forward to these financial exchanges, regulators conduct
periodic and costly audits to unveil potential misbehaviour [1].

Maleficence in market manipulation can for example take
the form of so-called front-running. Front-running is defined
as the process of exploiting insider information to conduct
privileged trades [2]. An exchange’s operator could for exam-
ple step in with its own order, before a large trader order, to
draw a financial gain and to ignore the legitimate sequence
in which orders were submitted to the exchange. Alarmingly,
front-running bears close to zero risk for an exchange operator.

Decentralized ledgers such as Bitcoin provide the ability
to transfer digital value without the involvement of a trusted
third party. With the advent of smart contracts, more com-
plicated transaction types quickly emerged. One particularly
interesting application is the atomic execution of two digital
asset transactions - this means that both transactions execute
or neither do. This functionality is the foundation upon which
a settlement layer for a non-custodial exchange (an exchange
does not hold the trader’s assets to settle a trade) can be built.

A multitude of decentralized exchanges (DEX) have re-
cently emerged [3–5]. The first DEXs implement both, the
order book and trade settlement system on a blockchain smart
contract [4], and are rightfully called decentralized. Given the
low transaction throughput of existing Proof-of-Work (PoW)
blockchains (~10 transactions per second) [6], the operation of
early DEXs is both expensive and slow from a user experience
(users are e.g. required to pay for non-fulfilled orders).

The second generation of DEXs, moves to a more cen-
tralized architecture, by operating a trusted trade matching
system, external to the blockchain, while the settlement system
remains on the parent-chain. As such, the settlement layer still
is limited by the blockchain’s transaction throughput, which
might explain why currently only a total of about 15’000
trades/day [5] are performed on DEXs. In comparison, a single
trader on the currently biggest centralized crypto exchange is
able to perform up to 100’000 orders per day [7].

Whether crypto- or custodian exchange, traders have no
choice but to trust the matching system to refrain from
front-running — potentially causing damages in millions of
USD. Moreover, blockchain-based order books leave traders
vulnerable to transaction fee bidding and miner front-running.
Critically, crypto-currency exchanges are to date unregulated
in many jurisdictions, leaving exchanges with little risk for
maleficence while malicious behaviour already is reported [8].

This work: TEX present a trustless exchange, which to
the best of our knowledge, is the first to prevent an exchange

1

operator and blockchain miner from front-running trades. Our
centralized non-custodial settlement layer is the first of its kind
that can scale to the order throughput of custodian centralized
exchanges (trades/sec), as well as to their trade volume (USD/-
day). The secret sauce of our exchange is the combination of
time-lock puzzles [9] and zero knowledge proofs [10] (ZKP) to
create novel front-running resilient moonwalk orders, coupled
with a 2nd-layer commit-chain settlement layer, which operates
through a centralized, but non-custodial intermediary. This
intermediary cannot misappropriate user’s funds. Trades can
be settled near-instantly while reducing the load of transactions
on a parent blockchain. Our main contributions are as follows:
Front Running Resilience: We introduce the novel concept

of a moonwalk order that mitigates front-running from
exchange operators, miners and adversarial traders, appli-
cable to both custodian (e.g. traditional stock exchanges)
and non-custodial (e.g. blockchain-based) exchanges.

Non-Custodial Scalability: We provide a non-custodial 2nd-
layer exchange settlement system that scales to trade
throughput (number of trades/sec) and trade volume
(USD value/day) of custodian exchanges.

Instant Trades: Trades on TEX settle instantly with a config-
urable amount of collateral from the exchange operator.

Relaxed Online Requirement: For improved usability,
traders on TEX are not required to be online at the same
time for their order to match, which to our knowledge is
not feasible with existing 2nd-layer constructions.

Security: We prove the security of TEX against an irrational
and strong adversarial model. Our use of ZKP enforces
the correct operation of the exchange, without the need
for traders to dispute the integrity of the settlement layer.

The paper is organized as follows. Section II covers back-
ground and related work, Section III presents an overview
of TEX. Section IV outlines the details of TEX’s matching
system, Section V presents the details of TEX’s settlement
layer. We analyze TEX’s security in Section VI, evaluate TEX
in Section VII and conclude the paper in Section VIII.

II. BACKGROUND AND RELATED WORK

In this section review the background and related work.

A. Financial Exchanges

Financial exchanges allow one party with asset X to find
a counter-party to purchase another asset Y . An exchange’s
architecture is built out of two main components (cf. Figure 1):
(i) a trade matching system and (ii) a trade settlement system.

The trade matching system supports the trade of different
asset-pairs. For each pair of assets (X ,Y), the matching system
entertains a process to match demand and supply. One such
embodiment is an order book [11], where traders publish their
intent to purchase an asset X at a specific amount of Y , also
referred to as an order. When a trader specifies a fixed price
for an order, the trader issues a so-called limit order [12].
When two orders match, the settlement layer executes them.

The settlement layer manages the traders assets securely
and to execute trades atomically (i.e. either exchange the

assets in both directions, or to not perform any exchange). For
custodian exchanges (cf. Figure 1), the trade settlement system
is performed by banks and brokers. Non-custodial settlement
systems can be built on e.g. blockchains (cf. Section II-E).

Fig. 1: Overview of custodian exchanges with centralized and
trusted order books, that can perform front-running on orders.

B. Centralized (Custodian) vs. Decentralized (Non-Custodial)

Custodian exchanges, e.g. the New York Stock Exchange
(NYSE), operate an order book as a trusted third party, while
the settlement layer remains the duty of specialist custodians
such as brokers or banks. With the advent of decentralized
ledgers [13], mutually mistrusting peers can transact and trade,
foregoing the need of a TTP — i.e. exchanges become non-
custodial, as in they no longer hold the trader’s funds.

The first generation of DEXs operate the trade matching
and settlement system on the blockchain (e.g. Oasis DEX [4]).
This design choice requires the trader to perform a potentially
expensive and slow blockchain transaction for every trade.
Note that even trades that are eventually cancelled, or not
satisfied would entail transaction costs. The majority of the
existing blockchains rely on Proof-of-Work [14, 15], and scale
poorly (only about 10 transactions per second [6]).

The second generation of DEXs [3], chose to externalize
the trade matching layer outside the blockchain (similar to
custodian exchanges). Such DEX are more scalable (because
orders can be submitted and canceled without blockchain
fees) and remain non-custodial. The underlying blockchain,
however, remains a throughput bottleneck, and might become
prohibitively expensive upon blockchain congestion.

TEX operates a front-running resilient trade matching exter-
nal to the blockchain, and operates the trade settlement layer
on a scalable commit-chain (cf. Section II-E). We provide an
overview of the different exchanges in Table I.

C. Trade Order Front-Running

Front-running is the process of exploiting insider informa-
tion to conduct market manipulation, which can result in a
significant monetary loss for traders [2]. Front-running occurs,
if e.g. a malicious operator steps in front of larger order with its
own order, to gain an economic advantage. In an exchange, an
adversary could front-run a trader’s order: (i) as the operator of
an order book (cf. Figure 1), or (ii) as a malicious blockchain
miner who (re-)orders transactions within a blockchain block.
Also (iii) adversarial traders can front-run orders by paying
higher transaction fees [18, 19].

2

Real-World Exchange Examples NYSE* Oasis DEX [4] IDEX [3] Moonwalk TEX Custodian TEX TEX

Order Book TTP Blockchain TTP Moonwalk Moonwalk TTP

Trade Settlement Custodian Blockchain Blockchain Commit-Chain Custodian Commit-Chain
(w/ or w/o zkSNARKS) (w/ or w/o zkSNARKS)

High Frequency Trading # # G#** G#**
High Value Trades (USD/day)
High Trade Throughput (trades/sec) # #
Funds Controlled by Traders # #
Blockchain Congestion Resilient NA NA
Front-Running Resilient # (by Exchange) # (by Miners) # (by Exchange) # (by Exchange)

TABLE I: High-level comparison of financial architectures. TTP is a trusted third party. indicates this property is present,
G# potentially present, or # missing. NA stands for not applicable. *New York Stock Exchange. **Improved with dedicated
hardware for crypto operations and/or efficient client side proof generation crypto systems [16, 17].

In custodian exchanges, financial regulators conduct peri-
odic audits to uncover misbehaviour [1]. In blockchain-based
systems, front-running within an order book operated by a TTP
is challenging to detect. If the trade matching operates on a
blockchain, then those transactions can be publicly observed
and analyzed for front-running [20–22].

LibSubmarine [23] proposes to counter front-running by
miners of blockchain auction transactions, but does not seem
applicable for trading on order-book based exchanges.

D. Cryptography for a Front-Running Resilient Order Book

We introduce the cryptography for moonwalk order.
1) Time-Lock Puzzle: The goal of a time-lock puzzle is to

“send information to the future”, i.e. to encrypt data, s.t. it
cannot be decrypted by an adversary until a certain amount
of time (bounded by computation) passes. One elegant time-
lock puzzle is to use repeated squaring in an RSA group [9].
Time-lock puzzles notably satisfy the following properties:
• Puzzles must be proven as solvable with a predetermined

amount of computation.
• The puzzle’s difficulty to decrypt should be intrinsically

sequential. Even an adversary with massive parallel re-
sources should not be capable to decrypt a time-lock
puzzle faster than a hardware-restrained adversary.

2) Zero Knowledge Proofs of Knowledge: ZKPoK [10]
allow a prover to prove to a verifier that a certain statement is
true, without revealing any other information. zkSNARK [24]
enhance ZKPs to be non-interactive and succinct (i.e. proof
lengths of a few thousand bits), and proofs can be verified
with few computational costs (e.g. with a smart contract).
zkSNARK, however, require a trusted setup phase.

3) Merkle Mountain Ranges: Appending data to a Merkle
Tree [25] can be done by adding new leaves on one side of
the tree, e.g. a Merkle Mountain Range [26]. Further extending
this to a new Merkle Tree, a signature on the Merkle root may
serve as a receipt of the addition of the new leaf.

E. Non-Custodial Trade Settlement Layer

A plethora of proposals aim to scale blockchains [27–35].
We focus on backward-compatible 2nd-layer solutions, that
alleviate the burden of the parent-chain. A rich body of work
covering different off-chain proposals emerged [34–40].

1) Payment Channels: Payment channels establish private
peer-to-peer channels between two parties, that are secured
by blockchain escrows. A channel is instantiated and closed
with a respective blockchain transaction. For parties that are
not directly connected via a channel, a payment can be routed
along a set of channels [33, 41, 42]. While channels might
be an interesting avenue to construct a 2nd-layer exchange,
they face several limitations: (i) the exchange operator requires
to perform at least one blockchain transaction for each new
trader account; (ii) collateral in channels is locked statically
with each trader; (iii) trader need to be simultaneously online
to ratify a trade, and (iv) the amount of collateral would need
to be equivalent to the exchange’s trade volume. We chose
to design TEX based on a commit-chain construction [40],
that allows to manage users collateral flexibly, requires less
collateral than the transaction volume, and doesn’t require a
parent-chain transaction to on-board users.

2) Commit-Chains: Commit-chains such as NOCUST [40],
are an alternative design to perform off-chain transactions.
A NOCUST operator, is a centralized entity that coordinates
payments between users that lock their funds in a pool of
collateral using a smart contract. This contract expects to
periodically receive a constant-sized checkpoint commitment
to the state of the commit-chain from the operator, containing
each user’s account in the collateral pool. The commitment to
this (potentially) large state is constructed s.t. it is efficient to
prove and verify in the smart contract that a user’s commit-
chain account is updated correctly by the operator, s.t. trans-
fers, withdrawals and deposits can be securely enacted.

The operator becomes only a single point of failure for
availability, but not custody of funds or integrity of operation.
The complete disappearance of an operator, or malicious
attempts by it to double spend or seize user funds in NOCUST
only leads to its halt, and does not affect the ability of users
to exit the smart contract with their latest confirmed balances.

NOCUST users are not required to be constantly online,
but expected to monitor the blockchain regularly to observe
checkpoints. User are only required to verify their respective
balance proof by requesting the partial Merkle tree of the
checkpoint from the operator and comparing it to the locally
stored state. In case of misbehaviour, a user can issue a chal-
lenge using the NOCUST smart contract to force the server to

3

answer this challenge with valid information. NOCUST also
supports a provably consistent mode of operation through the
use of zkSNARKS. Note that commit-chains do not rely on
an additional consensus mechanism as side-chains [43].

III. TEX OVERVIEW

In this section, we provide a high level overview of TEX.

A. Untrusted Centralized Intermediaries

TEX operates as a centralized, but untrusted exchange,
and represents a single point of availability failure, however,
does not have the capacity to front-run traders’ orders, or to
misappropriate users’ digital assets. If a TEX instance were to
act maliciously (i.e. front-running or double-trade attempts),
or remain unresponsive, the smart contract forces the TEX
instance to halt, and users can securely retrieve their funds
anytime. Users can easily migrate to another TEX instance.

B. System Model

Our system model assumes the following entities:
Ledger: A tamper-proof, smart contract enabled ledger acting

as message ordering and coarse time-stamping service.
Trader: Trader submit limit orders to the order book and have

at least one private/public key pair for their ledger account
which is also used to trade on TEX.

Order Book: Collects orders from traders, provides trade-
receipts and matches trades to be executed.

Trade Settlement System: Executes orders authorized by
traders on a commit-chain (which commits its state
periodically to the ledger), without holding the funds.

C. High-Level Operations of TEX

The high-level operations are visualized in Figure 2 (order
book) and Figure 3 (trade settlement system) respectively.

1) Order Book: The order book receives orders from
traders, matches and forwards them to the settlement layer:

1) Jackson creates a moonwalk order hiding the order details
(such as price, assets, trader address), and a ZKP to prove
that the encrypted order is semantically valid and that
Jackson owns sufficient assets to execute the order.

2) Jackson sends the moonwalk order to the order book,
which verifies through the ZKP that the time-lock puzzle
is semantically correct (verification times are small).

3) The order book creates a Merkle Mountain Range com-
mitment [26], appends the order and acknowledges the
trade with the signed commitment root (trade-receipt).

4) After receiving the receipt, Jackson either provides the
solution to the puzzle, or the exchange is required to
decrypt it (by investing a few seconds of computation).

5) Jackson repeats step 1-4 (with empty orders), and mea-
sures the time delay in which the order book responds
with a receipt. Repeated low latency responses increase
Jackson’s confidence that the order book does not decrypt
the moonwalk order, before providing the binding receipt.

6) The order book commits at regular time intervals the
order state on-chain, which can be verified by the traders
that have access to the trade-receipts.

2) Trade Settlement System: The settlement system (cf.
Figure 3) interacts at regular eon time intervals with the
smart contract [40]. A checkpoint aggregates all trades that are
matched and commits those on the parent-chain. For simplic-
ity, we omit the bootstrapping of the exchange or registration
of new users, and refer the reader to NOCUST [40]. For
readability, we present the orders in Figure 3 as cleartext,
while each order is encrypted as outlined previously (cf.
Section III-C1). The following steps settle a trade:
• Michael (1) converts 1 X parent-coin into a commit-chain

asset, by depositing coins into the TEX smart contract.
• Michael (2) signs a state update for its X coin commit-

chain ledger to be debited conditionally on being credited
in its Y coin ledger. Michael also signs a state update for
its Y coin ledger to receive this conditional credit.

• The trade settlement system (3) ratifies Michael’s order.
• Jackson does symmetrically the same for its Y , X ac-

counts (4), the exchange (5) ratifies the opposing order.
• The exchange (6) matches Michael’s and Jackson’s order.
• TEX (7,8) ratifies the fulfillment of the orders.
• Every eon, TEX (9) submits a checkpoint to the smart

contract that applies the commit-chain balance updates.
• Jackson (10) and Michael both verify the validity of the

checkpoint. Given our commit-chain ZKP extension (cf.
Section V-D), the integrity of the checkpoint is directly
enforced without interaction by the traders.
a) Conversion between Parent- and Commit-Chain:

Analog to NOCUST [40], TEX allows the asset conversion
between their parent- and commit-chain representation, with
a deposit and withdraw operation towards the TEX smart
contract. We represent every coin with its individual entry in
the Merkleized Interval Tree (cf. Figure 4), comprised of a
local and a global ledger representation (cf. Section V).

b) Commit-Chain Exchange: Once two order match, the
settlement system enacts the financial asset exchange securely.
We inventively extend NOCUST [40] to enable the non-
custodial atomic exchange of digital assets, by providing the
following functionality. Note that each trade involves two
coins that are being exchanged and each coin is represented
independently in the commit-chain ledger.
Conditional Debit Authorization: Trader Michael agrees to

a new state update by cryptographically signing to debit
e.g. an amount of X coin conditionally on being credited
an amount of Y coin. The opposite trader Jackson does
symmetrically the same.

Conditional Credit Authorization: Trader Michael then
agrees to update its Y coin ledger with a conditional
credit, and Jackson does symmetrically the same.

Ratification: The server, having the four state updates (two
per trader), counter-signs these authorizations and sends
them back to Jackson and Michael respectively.
c) Temporal Order Validity: A trade order should ideally

be valid as long as it’s not satisfied (or canceled). Because
TEX, however, operates in well defined eon intervals, an order
needs to be authorized for each eon. To ensure that only the

4

Fig. 2: High level overview of the order book. Jackson (1) creates a time-lapse encrypted order, composed of an encrypted
order, a ZK proof and e.g. a timed commitment. Jackson (2) sends the order to the exchange, which (3) appends it to the
Merkle Mountain Range of all orders. Jackson (4) receives the receipt that the order was appended and (5) reveals the key to
decrypt the order. The exchange (6) returns a new order submission authorization. Jackson (7) repeats steps 2-6 several times
to test if the exchange attempts to inspect orders. The order book (8) submits regularly the order state on the parent-chain.

Fig. 3: High level flow of the trade settlement layer. Michael (1) deposits 1 X coin, Jackson deposits 1 Y coin into the TEX
smart contract. To enact a trade, Michael (2) signs a state update for his X coin ledger, that he is willing to debit 1 X coin for
1 Y coin (symmetrically for his Y coin ledger). The server (3) signs Michael’s order. Jackson (4) mirrors symmetrically the
same operation, the server (5) confirms her order. Orders are matched (6), the server signs the state updates (7,8). At regular
eon time intervals, states are settled (9) on-chain. Michael and Jackson (10) verify the correct ledger updates.

desired amount is traded, a trader is required to transfer the
trade amount to a new commit-chain account, and authorize
the trade over several TEX eons. Note that commit-chain
transfers are instant and free of parent-chain transaction fees.

TEX supports active and passive enactment [40]. Under
active enactment, an account is blocked once it authorizes an
order until that order is either cancelled or fulfilled, while
passive enactment enables concurrent orders.

d) Blockchain Settlement and Dispute: Settlement is
enacted within regular time intervals, eons, or rounds, whereby
the server submits a constant-sized checkpoint on the parent-
chain (cf. Figure 3). Traders with commit-chain assets should
audit the submitted checkpoint each eon by requesting the
partial Merkle Tree from the TEX server. If the checkpoint
does not match the trader’s assets, a subsequent dispute can
be initiated by the TEX smart contract. If the TEX server
is not capable to appropriately respond to the challenge,
the smart contract halts the exchange’s operation. Given our
ZKP commit-chain extension in Section V-D, the exchange
is immediately halted by the verifying smart contract upon

submission of an invalid state transition. Trader no longer need
to verify a checkpoint’s integrity.

D. Main Properties

TEX provides the following properties:
Ledger: PoW blockchain transaction throughputs restrain

blockchain based exchanges. TEX only requires the peri-
odic submission of a constant-sized checkpoint, irrespec-
tive of the number of trades executed.

Trader: A trader can convert parent-chain assets to commit-
chain assets. Commit-chain assets can be traded with
any other trader on the same TEX instance. When a
trader submits an order to the order book, the trader can
confidently guess whether the operator tried to front-run
the order. A trader is required to be online to initiate an
order, however, is not required to remain online for the
order to securely match and execute with another trader’s
order. Regarding asset security, a trader remains custodian
of its fund during trades and in the presence of another
malicious trader, and/or a TEX server colluding with all

5

Fig. 4: TEX’s commit-chain is based on a Merkleized interval
tree to account for coins and trader account balances.

but one honest trader. Concerning privacy, traders do not
learn with which counter-party their orders matched with
on TEX, but only know that their trade was executed.
Trade finality can be instant given collateral provided by
the exchange as described in the next section.

Exchange: TEX server’s duty is to match trades according
to public and verifiable rules. Trades settle first on the
commit-chain, then the server must submit checkpoints
to the parent-chain on-time, as the smart contract would
otherwise halt it. The TEX server cannot double trade
(without being detected by at least one honest trader, or
halted given our ZK extension), nor create more assets
than have been deposited on the parent-chain.

1) Collateral for Instant Trade Finality: Commit-chain
trades exchange one asset X for another Y , and are finally
settled once a checkpoint passed its challenge period on the
parent-chain. If a TEX instance is halted, the not-yet check-
pointed trades are reverted. Assuming no value fluctuation
between X and Y , no trader would entail a financial loss.

In the more realistic setting where traded assets X ,Y have
diverging price performances, the collateral requirements to
instantly accept a trade as settled, depends on the trade volume
and the change in volatility between the two assets. The
exchange operator configures this volatility percentage as one
of its operational parameters (cf. Section VII-A2). We prove
in Section VI-C how a user can securely reclaim funds from
a trade that was reverted due to a halted TEX instance.

2) Liveness Requirements: TEX requires traders to monitor
the underlying ledger at least once per eon to verify that
their funds remain consistent. Traders can choose to outsource
the blockchain monitoring, if they are willing to share their

trade information with a third party that can on their behalf
challenge their commit-chain state. Assuming a trusted zk-
SNARK setup (cf. Section V-D), the integrity of the settlement
layer checkpoint is enforced automatically. Traders would still
require to come online once per eon, or outsource their state
data retrieval and liveness verification to a third party.

E. Attacker Models

In this work we assume the following adversarial models.
1) Order Book Adversarial Model:

Adversarial Exchange Front-Running: The exchange oper-
ator attempts to front-run orders from traders. To do so
successfully, the operator needs to solve the time-lock
puzzle, before providing a trade-receipt to the trader. The
trader monitors the response-time of the operator and can
thus detect suspiciously long response times.

Adversarial Trader Withholds the Moonwalk Order Key:
A malicious trader withholds the order’s key after
reception of the trade-receipt. The exchange must then
invest (a few seconds of) computational resources to
solve the order. Multiple unreleased orders can be
decrypted in parallel, repeated trader misbehaviour can
entail a platform ban. This attack induces a temporary
order book blindness, other traders do not see the latest
order book, until the order is decrypted. This attacker
is not able to submit another order, as the operator
withholds the new order submission authorization.

2) Settlement System Adversarial Model:

Adversarial Trader: A malicious trader attempts to double
trade commit-chain funds, the TEX server intervenes and
does not ratify such trades. The trader attempts to provide
an invalid order (e.g. overdrawing its balance, incorrect
amounts, asset pair, etc.), the moonwalk order, however,
would attest to the validity of the order.

Adversarial Trader colluding with the Exchange Operator:
If all but one trader act maliciously and collude with
the server, the adversary can potentially (1) double-
trade or (2) create commit-chain assets indefinitely.
Double-trades are detected by the remaining honest
trader, which challenge the TEX’s honesty. Our ZKP
extension ceases the contract’s operation if the operator
attempts to commit to an invalid state transition. Creating
commit-chain assets is rejected by the smart contract
which enforces the full collateralization of assets.

Adversarial Blockchain Miner Front-Running: A miner
tries to front-run trades of TEX. Trades, however, are
performed on the commit-chain, where blockchain
miners have no influence on transaction execution.

F. Notations

We denote an instance of TEX as 6⊂. The exchange server
O6⊂ is supervised by the parent-chain smart contract V 6⊂. Out
of the set of P traders, a trader Pi performs a trade or swap Xi

with Pj . Table III (cf. Appendix) provides a notation overview.

6

IV. TEX MOONWALK ORDER DETAILS

In this section we present our moonwalk order model. The
order book does not gain any information about an incoming
order, and is expected to confirm incoming orders before
learning their details. Insiders attempting to front-run orders
are degraded from risk-free profiteers, to regular risk bearing
traders due to lack of their ability to decide if a front-running
operation is profitable before committing to enacting it in-time.

A. Delayed Key Disclosure

TEX requires that a trader Pi and the exchange operator O 6⊂
initialize a special purpose delayed key disclosure agreement
that allows the trader Pi to send a trade Xi to the exchange
O 6⊂ without revealing that it belongs to a particular trader Pi.
Note that this trading ledger is the one containing the not yet
satisfied trade order. This setup still allows the exchange O 6⊂
to trust that the trade Xi can be safely appended to its trading
ledger. Importantly, this step happens prior to decryption of
the trade. Moreover, we condition that the trade Xi passes the
non-revealing validations in Section IV-B.

We rely on Pi creating a hash chain typical of delayed
key disclosure setups. A random seed value K0, is processed
through a one-way hash function, referred to as H , l times,
and the final output of the hash chain Kl is initially revealed to
O 6⊂. Authenticating the jth message is done through revealing
H(Kj ||Pi) and encoding Kj within a timelock puzzle. For
Pi to create valid moonwalk order (cf. Section IV-B), Pi

requires O 6⊂’s signature on (K ′j−1||updateXi) for every asset
X in 6⊂ (note that updateXi represents the last state update of
the commit-chain account of Pi for asset X [40]). Therefore,
past every successful decryption of a Xi sent with a reference
of H(Kj ||Pi), O 6⊂ needs to send Sigo(K ′j ||updateXi) to Pi

for every asset X in 6⊂. This permits O 6⊂ to realize when
multiple orders use the same reference, and throttle any Pi

that attempts to cause an inconsistency in O6⊂’s view of B, or
repeatedly refuse to handover decryption keys that spare O 6⊂
from solving the time-lock puzzle after attesting to receipt of
the order. Running the verifications in Section IV-B allows O 6⊂
to verify that a Xi is received with respect to some pre-agreed
upon reference without knowing what that reference is or who
it is established with prior to decrypting Xi.

B. Moonwalk Order Generation

The moonwalk order’s ZKPs allow to prove to O6⊂ that
solving the reasonably constrained time-lock puzzle unlocks
a valid trade Xi, without revealing the order details or the
identity of its originator. This motivates the exchange O 6⊂
to sign a receipt for a Xi upon request without knowing its
exact contents, but knowing that it would eventually be able
to decrypt its contents through solving the time-lock puzzle,
and that its contents are a logically sound order with respect
to its view of B. Algorithm 1 first verifies that the puzzle
key leads to the decryption of the expected order, and then
verifies that the encrypted order is semantically correct. The
ZKP of this procedure can be proven with a Bullet Proof [17]
or STARK [44], likely improving its proof generation time. If a

system with a trusted setup is utilized, it is safe to completely
rely on O 6⊂ to perform this setup, as generating fraudulent
proofs of these two procedures will harm no one but O6⊂.

Algorithm 1: verifyMoonwalk
Verifier Input: n, CK , CM , H(Xi), ref
Prover Input : updateXi , updateYi , Kj , κh, Xi, σ, Pi
assert ref = H(Kj ||Pi)
κg ← κ

Πr
i=1qi

h mod n
assert CK = κ2

g mod n
assert SYM −DECRY PT (CM , κg) = Xi
Kj−1 ← H(Kj)
assert valid Sigo(Kj−1||updateXi) ∈ σ
assert valid Sigo(Kj−1||updateYi) ∈ σ
assert Xi is applicable to updateXi and updateYi
calculate new updateXi and updateYi using Xi
assert Sigi(update

X
i) and Sigi(update

Y
i) ∈ Xi

It still remains to prove the correctness of the generated
time-lock puzzle. For this purpose, we convert the interactive
proof presented in [45] into a non-interactive one using the
Fiat-Shamir heuristic [46]. Algorithm 11 (cf. Appendix) spec-
ifies the verifier for this stand-alone zero knowledge proof
(not to be embedded in a SNARK or otherwise). To secure
our non-interactive version using the recommendations in [45],
we require the simulation of s different repetitions to attain
a sufficient security level. The parameters and notations are
utilized as presented in [45].

We forgo the use of the BBS [47] generator as done in [45]
and instead utilize the square root κg of the tailing quadratic
residue CK as the symmetric encryption key of Xi. As g
generates a subgroup of order φ(n)/4, and finding κg from
CK is difficult without factorizing n, for sufficiently large n
an adversary cannot feasibly calculate κg ≡

√
CK mod n

[47], exhaust the search space for g or generate a valid ZKP
for Algorithm 1 using κg 6=

√
CK mod n.

C. Blind Receipts

As O6⊂ receives orders from traders in P, it builds up the
order book, whose constant-size commitment will be written
to the parent-chain ledger BG in the next eon. When a new Xi

comes in from a Pi, O 6⊂ is expected to provide a blind trade-
receipt confirming Xi’s placement in the order book prior
to the decryption of the time-lock puzzle and any potential
investigation of its contents. Note that the exchange O 6⊂ only
provides the trade-receipt after verification of the provided
ZKP from Section IV-B, whose successful verification only
reveals the correctness of an order, not the order details.

Receipts contain a Merkle Mountain Range commit-
ment [26] that attests to the state of the order book at the
time of receiving the order, and the hash of the Xi sent by
Pi. This allows O 6⊂ to commit to the sequence of incoming
orders, and provide a commitment (trade-receipt) to a Pi who
may then release the decryption key for Xi. The receipts can
later be used to initiate a front-running challenge against O6⊂
using V 6⊂ by simply providing the signed receipt. The answer
to such a challenge is made up of path up to the Merkle root

7

of the final commitment of O6⊂ to the order book, where any
left siblings on the math must not be different from the ones
used to generate the receipt, as shown in Algorithm 2. Because
we require the order book commitment Θ to only accepted by
V 6⊂ if it passes the recursively composed validation procedure
(cf. Section IV-E), then a valid answer to the front-running
challenge also implies a correct set of matches for that order.

Algorithm 2: closeFrontRunningChallenge
Input : XX,Yi (e), λ(XX,Yi (e) ∈ Θ(e)X,Y)
node ← H(XX,Yi (e));
mr commitment ← H(XX,Yi (e));
for sibling in λ(Xi ∈ Θ(e)X,Y) do

if sibling is a left child then
node ← H(sibling ‖ node);
mr commitment ← H(mr commitment ‖ sibling);

else
node ← H(node ‖ sibling);

end
end
assert that the calculated mountain range commitment matches

the one specified in the receipt used to open the challenge;
assert node = Θ(e)X,Y ;
close FXi ;

Regardless of the number of orders performed by a single
trader Pi, at most two challenges need to be issued by a Pi

against a non-cooperative O 6⊂ to ensure that none of its orders
were potentially front-run. This small upper bound of two is
enforced by Pi refraining from submitting a new nth Xi until
it receives a mountain-range membership proof of inclusion of
its n-2th order in the receipt of its n-1th order. This guarantees
the cohesiveness of the last two receipts s.t. a response to a
challenge using the n-1th receipt inductively implies that all
orders prior to it remained in the same position.

D. Behavior Analysis

Traders in TEX are not perfectly immune from front-
running by O 6⊂. A malicious server can always refuse to
provide a blind receipt, solve the time-lock puzzle, decrypt
the moon-walk order and then decide to front-run it. Even
in this worst case scenario, the limit price set by Pi is still
enforced by the settlement layer. In this section we propose a
method for Pi to score whether O 6⊂ is behaving adversarially
or not in a fault tolerant manner.

Pi can infer whether O 6⊂ attempted to front-run an order or
not by measuring the time taken by O 6⊂ to respond with a blind
receipt. A response time by O 6⊂ that is significantly lower than
the estimated time to solve the time-lock puzzle implies a high
likelihood that O 6⊂ is not malicious. In high throughput sce-
narios, the response time will increase, and consequently, the
time-lock puzzle difficulty should also increase to compensate.

F (p, d) = α ∗ p− β ∗ d (1)

Equation 1 is a simple scoring function for Pi to score O 6⊂’s
front-running behavior. The two parameters p and d denote
how many orders were issued a prompt blind receipt by O 6⊂,

and how many had suspiciously delayed response times. Pi

can populate Equation 1 with its own satisfactory α and β
values that denote its reward and penalty values for prompt
and delayed responses. The decision that a response time is
considered prompt or late can be taken based on an arbitrary
function, and Equation 1 can also be replaced with a more
complicated method. In this work, we simplify the response
promptness decision to be based on not exceeding a threshold
of 1

4 the estimated amount of time it would take a theoretical
10GHz CPU to solve the time-lock puzzle.

Through evaluating its scoring logic, Pi can then predict
if O 6⊂ is prematurely decrypting orders. Notably, Pi has the
advantage that it can send zero-valued orders to O 6⊂. This
allows Pi to gather data for its scoring function without putting
itself at any risk of being front-run.

E. Order Matching Constraints

To provide resilience against front-running, O 6⊂ must be
constrained on how to match orders with each other. The set
of matchings must remain coherent with the sequence in which
O6⊂ received (and committed to) the orders. Also, O 6⊂ must
commit to the matchings it has created with a ZKP that the
contents of this commitment conform to those constraints:

1) No order C that comes after an order B, may match with
an order A that precedes B, if B may still match with A.

2) If an order B matches with an order A, then A must
precede B (Matches are unidirectional from new orders
to previous ones).

3) If an order A may match with an order B, then this match
must be carried out.

F. Provably Consistent Orderbook Matching

We now show how to prove that an order book satisfies
the previously mentioned constraints. In the Appendix C-A,
we present Algorithms 7 and 8 that together comprise a
recursively composable ZK proof that the full contents of the
order matching book conform to the constraints specified in
Section IV-E. These procedures are constructed to provably
transition a commitment to an order book with no matches
to one where all orders are fully matched according to the
defined constraints through utilizing an annotated min-max
Merkle tree to verify the matching decisions taken at each
transition. The annotations on internal nodes in the tree are the
minimum selling price and maximum buying price of orders
in the sub-tree of this node. The leaves (orders) are annotated
with the remaining volume that can be matched. We prove
in Section VI-B that the order book state transitions can be
secured using our min-max tree method.

V. TEX SETTLEMENT DETAILS

This section outlines the details of TEX’s settlement layer.
To disqualify TEX from being a custodian of exchanged
funds, it would have to provide the following guarantee to
a participant Pi wishing to exchange coins of type X for a
different type Y at some exchange rate:

8

• Pi’s X-coin wallet may not be debited unless Pi’s cor-
responding Y -coin wallet is credited with at least the
amount Pi requested in return.

This guarantee must be provided regardless of the behavior
of an instance of TEX (6⊂) as long as Pi remains honest

A. Commit-Chain Ledger
In this section, we provide a commit-chain ledger B speci-

fication to support the parallel management of different coins
and secure swapping. For each supported coin X , a global
BX
G and local ledger BX

L is managed by 6⊂. Both ledgers are
combined to create a single parent ledger B encapsulating all
balances within 6⊂.

a) Local Information Amendment: For every Pi in every
eon e, the local ledger BX

L (e) stores TX
i (e − 1), the commit-

chain transactions involving the participant i. Transactions are
defined in TEX to mean either a transfer Ti,j from a Pi to a
Pj or a swap operation Xi by Pi.

b) Global Information Amendment: For every Pi in every
eon e, the global ledger BX

G (e) can store in addition SX
i (e),

a challenge against a coin X swap for Pi in 6⊂.
Section V-C outlines how B enables secure swaps in 6⊂.

B. Periodic Commitments
This section describes our commitment structure to support

the secure commitment to multiple coin types and maintain
the provable integrity of a TEX eon. Algorithm 3 creates a
commitment to attest to the states of accounts of different
coins within TEX. A is an exclusive balance allotment tree, a
Merkle tree commitment to the individual annotated Merkle
tree commitments, AX , constructed for each supported coin X .
The upper bound of the size of a proof of exclusive allotment
in TEX for a Pi and a given coin X , AXi , is O(log |P| +
log |M|), where M represents the coins supported by 6⊂.

Algorithm 3: combineAllocationCommitments
Input : B
Output: A
roots ← {};
for BX ∈ B do
A
X

(e) ← createAllocationCommitment(BX);
roots ← roots ∪ {Root(AX)};

end
A ← merkleTree(roots)
for BX ∈ B do

for Pi ∈ P do
/* augment proofs of exclusive allotment with

proofs of coin membership */

A
X
i ← A

X
i ∪ λ(A

X ∈ A)
end

end
return A

Accordingly, this requires the validation procedure of a AXi
to include the membership verification that the calculated root
of AX ∈ A, and that each coin X only has at most one AX .
This alternative reconstruction method is also to be employed
for the construction and validation of the reserve collateral
allocation commitment C.

C. Involved Participants

In the following we define the participants behaviour.
1) V 6⊂ Parent-chain Verifier: TEX allows elegantly to sup-

port all existing commit-chain operations of the previously
defined V 6⊂ [40], with the addition of a coin parameter. Storage
requirements of V 6⊂ are extended to store a copy of BX

G

for each managed coin. Our novel idea is to change V6⊂’s
commitment procedure, to accept a multiple coin commitment
A (cf. Section V-A) without executing any of the ascribed
validations in [40] on the root allotment. The validation of
the root allotment is then executed on every AXi verification
operation instead. Furthermore the AXi verification is amended
to validate that AX ∈ A.

In the following, we present the more interesting third idea
of a new swap challenge-response procedure. A Pi opens a
new SX

i (e) against O 6⊂, who closes the challenge by proving
that a swap that was requested by Pi, was correctly enacted.

Algorithm 4: openSwapChallenge
Input : AXi (e), updateXi (e − 1), XX,Yi (e − 1),

λ(XX,Yi (e− 1) ∈ TXi (e − 1))
Output: SX

i (e)
assert verifyProof(AXi (e));
assert AXi (e) applies updateXi (e − 1);
assert λ(XX,Yi (e− 1) ∈ TXi (e − 1)) is valid;
lowerLimitX ← AXi (e − 1) + RXi (e − 1) + DXi (e− 1) −
SXi (e − 1) − WX

i (e − 1)
undebitedX ← AXi (e) − lowerLimitX

assert undebitedX ≥ 0
SX
i (e).debitedX ← XX,Yi (e − 1).amountX − undebitedX

return SX
i (e)

In Algorithm 4, V 6⊂ assesses that a swap order was placed
by Pi, and calculates based on the latest committed state the
amount of coin X that was debited from Pi. Algorithm 5
defines how to calculate the amount of Y coins that is expected
to be credited in favor of Pi in exchange for the amount that
was proven to be debited in a SX

i (e), and close it if the price
that was enacted matches the one specified in XX,Y

i (e − 1).

Algorithm 5: closeSwapChallenge
Input : SX

i (e), AYi (e), updateYi (e − 1), XX,Yi (e − 1),
λ(XX,Yi (e− 1) ∈ TYi (e − 1))

assert verifyProof(AYi (e));
assert AYi (e) applies updateYi (e − 1);
assert λ(XX,Yi (e− 1) ∈ TYi (e − 1)) is valid;
lowerLimitY ← AYi (e − 1) + RYi (e − 1) + DYi (e− 1) −
SYi (e − 1) − WY

i (e − 1)
creditedY ← AYi (e) −lowerLimitY
assert creditedY / SX

i (e).debitedX ≈ XX,Yi (e − 1).price
close SX

i (e)

Algo. 4 and 5 can be combined into one non-interactive
punishment method that relies on Pi providing both AXi (e) and
A
Y
i (e) to show that the assertions in Algo. 5 are unsatisfied.
2) O 6⊂ Commit-chain Operator: TEX allows O6⊂ to moder-

ate transactions in different coin ledgers through maintaining

9

a separate commit-chain ledger BX
L for each coin X that

it chooses to support. O6⊂ builds its periodic commitment
as described in Section V-A. Lastly, we specify how O 6⊂
can support the enactment of swap requests from a Pi and
prove their correct enactment in V 6⊂ by closing any opened
SX

i . In Algorithm 10 (cf. Appendix) we present the swap
ratification procedure, that given the appropriate state update
authorizations from a Pi, O 6⊂ ratifies the requested swaps by
revealing its own signature on the updates after validating the
consistency of the state updates.

One interesting detail is that O 6⊂ expects two state update
authorization messages for the swap, the first of which allows
O 6⊂ to debit Pi’s X coins, and the second of which does not
explicitly force O 6⊂ to grant Pi any Y coins. Regardless of
this odd setting, TEX constrains O6⊂ to behave honestly and
credit Pi Y coins in exchange for any X coins it debits, at
the rate set by Pi, due to the way the swap challenge SX

i can
be closed in Algorithms 4 and 5 for V 6⊂.

3) P Users: Through TEX, a Pi is able to instantiate, use
and maintain different accounts for each coin. Consequently,
the AXi (e) verification procedure is then employed to asses the
received data from O 6⊂. Lastly, the corresponding methods of
challenging a swap enactment by opening a new SX

i in V 6⊂
and requesting a swap from O6⊂ are added.

D. Provably Consistent Settlement Checkpoints

In this section we present verification procedures for a
non-interactive ZKP environment that supports combining
proofs using recursive composition to allow V 6⊂ to verify the
complete consistency of the trades in a checkpoint A(e).

Algorithm 6: verifyTradeEnactment
Verifier Input : A(e), ΘX,Y

Prover Input : XX,Yi , AXi (e), AYi (e), updateXi , updateYi ,
λ(XX,Yi (e− 1) ∈ updateXi .T),
λ(XX,Yi (e− 1) ∈ updateYi .T),
λ(XX,Yi ∈ ΘX,Y)

verify λ(XX,Yi (e− 1) ∈ updateYi .T);
verify λ(XX,Yi (e− 1) ∈ updateXi .T);
verify updateYi is applied in AYi (e);
verify updateXi is applied in AXi (e);
verify AYi (e) leads to A(e);
verify AXi (e) leads to A(e);
if XX,Yi is not finalized then

verify credited and debited amounts in AXi (e) and AYi (e)
match the price in XX,Yi ;

end
verify λ(XX,Yi ∈ ΘX,Y);
return hash(XX,Yi), XX,Yi .debited amount

Algorithm 6 ensures that a single trade XX,Y
i enactment

is correctly enforced in A(e). To verify that a larger set
of trades is consistently enacted, we apply the methods of
recursively combining proofs [40]. The bottom-level of the
transfer delivery combiner is augmented to accept either a
delivery proof or a trade enactment proof. In the ZKP system
model, O 6⊂ can require only one signature from Pi to enact a

trade XX,Y
i , and multiple ongoing trades can be performed in

parallel by a single Pi. This is achieved through Pi authorizing
the debit of the full amount in updateXi and in return expecting
two passively delivered transfers. The first transfer would
credit back the remaining unmatched X-coin amount in an
order, and the second transfer would credit the matched Y -
coin amount. The respective ZKP validation procedures then
ensure the correct execution of these transfers by O 6⊂ without
the involvement of Pi. This procedure would be very similar
to Algorithms 6 and we leave it as an exercise to the reader.

E. Provably Consistent Matching Settlement

When utilizing both moonwalk orders and provably con-
sistent settlement, the changes enacted in the settlement layer
need to be linked to the order matches in the order book, s.t. all
the amounts credited and debited during settlement correspond
to the amounts matched in the order book. In this section we
describe a set of recursively composable procedures to prove
this correspondence.

The combiner of Algorithm 6 is first required to aggregate
the debited amounts from each child, s.t. its root combiner
provably calculates the total debited volume of the placed
orders from one Pi, and then the account integrity verification
procedure [40] is also expected to carry out the aggregation
of this value over a token AX sub-tree. We introduce in
Algorithm 9 (cf. Appendix) a procedure for verifying that
the matched amounts in an an order book commitment Θ
correspond to the settled amounts in a AX . This procedure
can then be combined recursively to validate a full A.

VI. SECURITY ANALYSIS

We analyze the security guarantees of TEX assuming that
the underlying layer BC serves as a recourse for settling
disputes on the integrity of 6⊂. We assume costs associated with
BC settlement (e.g. transaction fees) as external expenses to
the balance of a Pi in TEX. Given the commit-chain properties,
these expenses are small (cf. Section V-B). TEX is designed
to prevent any honest member of P from losing any assets
despite a strong set of the following adversarial capabilities.

A. Threat Model

Further formalizing the attacker model from Section III-E,
we assume two classes of users in TEX: (1) O6⊂ operators and
(2) P participants. We assume the existence of an irrational
adversary willing to sustain financial losses to cause honest
parties to lose some or all of their funds in 6⊂. This adversary
may seize control of O6⊂, some or all but one of P, or
a combination thereof, to attack an honest Pi not under
its control. The adversary has full control of the identities
associated with the compromised parties and may authorize
any messages on their behalf or front-run any user input, but
cannot violate the integrity of the honest users’ identities. We
consider the adversary to control all network communication
between traders, and between the trader and the operator
(Dolev-Yao [48]), but may not compromise an honest Pi’s
communication with BC, respectively V 6⊂. We assume that

10

the adversary is incapable of causing the underlying ledger
layer BC to malfunction or misbehave. We define malicious
behavior as that which aims to cause an honest Pi to lose
control of some or all of its funds in 6⊂ or cause an honest
O 6⊂ to be forcibly shut down by V 6⊂. We assume that a
Pi provides moonwalk orders to O 6⊂ through an anonymous
communication channel that does not leak identities.

B. Order Book Guarantees

1) Order Secrecy: The security proof of the timed commit-
ments used to hide the contents of Xi is presented in [45]. In
this section we prove that a moonwalk order does not reveal
its issuer Pi without possession of Kj . Assuming,

1) O 6⊂ knows Kj−1 and is given a new moonwalk order
with: n, CK , CM , H(Xi), H(Kj‖ Pi), π1 and π2.

2) H is a deterministic collision resistant hash function.
If the adversary is able to compute Kj from Kj−1, or Xi

from H(Xi), or calculate any x s.t. H(x‖ Pj) = H(Kj‖ Pi)
then the second assumption is violated. A O 6⊂ capable of
extracting the prover witness inputs used to generate π1 or
π2 can moreover learn the order details. �

Note that the anonymity of Pi does not only rely on the
cryptographic secrecy of the order. Unidentifiable communica-
tion channels need to be used, such as random IP addresses and
side-channel free browsing/OS environments. Moreover, Pi

would have to randomize the number of dummy orders it plans
to submit prior to submitting its real order, and randomize
the time intervals between submissions to avoid generating
a predictable pattern. The size of the honest participants
submitting orders to O6⊂ also determines the likelihood that
O 6⊂ is able to randomly guess the owner of a Xi.

2) Immutable Orderbook History: In this section we prove
that a malicious O 6⊂ may not successfully alter the history of
the order book after providing a signed receipt to a Pi who
posts a XX,Y

i and not be halted within the next eon. Assume
that O 6⊂ causes a mutation in the order book that invalidates
a receipt given to some Pi by altering some order data that
precedes Pi’s Xi. This will prevent O 6⊂ from being able to
close Pi’s FX

i because this mutation will lead to the root order
book commitment Θ containing a different view of the orders
that precede Xi, and therefore, different values of the roots
of the merkle mountain range comprising the set of orders
prior to Xi. As the running hash of all left siblings in λ(Xi

∈ Θ(e)X,Y) will not match the one signed in the receipt, O 6⊂
will not be able to close the challenge. �

3) Consistent Order Matching: Algorithms 7 and 8 incre-
mentally transition a commitment to the order book through
adding a match to the order book or through appending a new
order to the end. We present a proof by contradiction that no
transition Θk

m → Θk
m+1 or Θk

m → Θk+1
m violates any of the

constraints in Section IV-E.
Let Θk

m → Θk
m+1 be a correct transition accepted by

Algorithm 7 that violates the first constraint when matching a
XX,Y

i , s.t. there exists some XY,X
k ordered before XY,X

j that
can match XX,Y

i . Let tu be the least common ancestor of

XY,X
k and XY,X

j in Θk
m with tp and tq as its direct children

s.t. tp is an ancestor of XY,X
k , and tq of XY,X

j , then tp is
part of λ(XX,Y

j ∈ Θk
m), and tq is calculated as its sibling

when validating this path. This will lead to the failure of the
assertion in Algorithm 7 of tq being the first child that can
match XX,Y

i , which violates our assumption that this is a valid
state transition. Algorithm 8 requires that the intermediate
transitions Θk

m → Θk
m+x are accepted by the Algorithm 7

root combiner before accepting the transition Θk
m → Θk+1

m .
Violating the second constraint is trivially not possible due

to the matching directionality of Algorithm 7, where the input
match is automatically counted as being from the last order
to a previous one, and Algorithm 7 may only append the last
order to the commitment.

Lastly, let Θk
m → Θk+1

m+x be a correct transition accepted
by Algorithm 8 that violates the third constraint, where XX,Y

i

retains a positive remaining volume. Therefore, there exists
some XY,X

j ∈ Θk
m+x that can match with XX,Y

i , and one of
the last two assertions in Algorithm 8 will fail, violating the
assumption that this is a correct state transition. �

4) Front-Running Resilience: In this section we informally
argue that our scheme demotes O 6⊂ from being able to
profit from risk-free front-running operations to a risk bearing
participant, and that it provides an indicator to a potentially
ill-affected Pi that O6⊂ attempted to front-run its order.

The core premise behind the front-running resilience of a
moon-walk order is that O 6⊂ cannot immediately infer the
contents of a Xi or link it to Pi. This means that if O6⊂
wants to insert risk-free front-running trades into the order
book, it needs to decrypt the contents of incoming orders
before committing to their receipt. If O 6⊂ does not attempt to
prematurely learn the contents of incoming orders then any
front-running it performs is a risk-bearing decision, as the
strict matching algorithm may not mutate the order book in
its favor later on.

During normal operation, where the participants P mix in
zero-value orders with their regular orders, an adversarial O6⊂
wishing to decrypt and front-run a real order would have to
predict in advance which incoming order has value. By making
a wrong prediction, it would dissuade the affected participant
from submitting its orders in the future. As the number of users
grows, making a successful prediction becomes proportionally
harder. The expected reward from front-running a single order
also becomes uncertain if the operator chooses to continue
appending other orders while it decrypts the targeted orders.

The more orders O 6⊂ decides to target for front-running in
parallel, the more traders it loses reputation with, and the more
computation it has to invest to reveal the orders’ contents,
which may not be profitable. More formally, the probability
of a randomly selected moon-walk order not being a zero-
valued order is equal to 1

k when each Pi submits on average
k − 1 zero-valued orders around real ones.

C. Commit-Chain Settlement Guarantees

We prove now prove commit-chain security guarantees.

11

1) Account Integrity: For TEX, the proofs presented in
NOCUST [40] for the exclusivity of balance allotment, the
guarantee of balance custody, and secure off-chain registration
remain applicable to TEX as they are for each coin X. In this
section, we present the more significant proofs for guarantees
that are affected by the different composition of TEX.

2) Double-Spend Futility: In TEX, no validation at all is
performed on the submitted checkpoint A, since it is a com-
mitment to multiple independent coin allotment commitments
A
X for each managed coin X. Therefore, the assumption in

NOCUST that V 6⊂ would reject the checkpoint submission due
to a miscalculated allotmentroot no longer holds. Instead, we
leverage the fact that the verification procedure in V 6⊂ is now
performing this validation step for every proof, and thus an
incorrect allotmentXroot value for any AX ∈ A would lead to
the rejection of AXi for any Pi, rendering AX unverifiable and
thus unusable for challenge responses, which is sufficient to
ensure a halt under misbehavior. �

3) Operational Integrity: We now demonstrate how O 6⊂
proves its operational integrity while accounting for swap
enactments. An honest O 6⊂ maintains functionality under a
subset of malicious users in P, and a dishonest O6⊂ leads to
6⊂ being stopped. We demonstrate a proof by case analysis,
where we model the provability of a O6⊂’s integrity as a finite
state machine whereby transfers and swaps are performed by
O 6⊂ during e and committed during e+1 in A(e + 1). A server
is defined as maintaining provable integrity during eon e so
long as it is able to close any challenge using V 6⊂.
• s0 → s8: Given no interactions between O 6⊂ and Pi

during e, an honest O 6⊂ may submit a A to V 6⊂ that does
not apply any update to Pi’s balance.

• s0 → s1 → s8: Given only updatei(e) signed by Pi, but
no updatej(e) signed by Pj , an honest O6⊂ may discard
Ti,j . No Xd

i (e+1) may be opened as Pi and Pj would not
possess an updatei(e) signed by O 6⊂ containing Ti,j(e).

• s0 → s1 → s2 → s8: Given an updatei(e) signed by Pi

and an updatej(e) signed by Pj , an honest O 6⊂ may
discard, or ratify and include Ti,j(e).

• s0 → s1 → s2 → s3 → s8: Given an updatei(e) signed
by Pi and an updatej(e) signed by Pj , an honest O 6⊂ must
synchronize Ti,j(e)’s delivery in A(e + 1) revealing a
countersigned update to Pi and/or Pj .

• s0 → s4 → s8: Given updateXi and updateYi from Pi, an
honest O 6⊂ may discard, or ratify and include XX,Y

i (e).
• s0 → s4 → s5 → s8: Given the required updateXi and

updateYi from Pi, an honest O 6⊂ must include XX,Y
i (e)

in A(e + 1) after revealing its ratification to Pi.
• s8 → s8: While in a state of provable integrity, O6⊂ is able

to cancel any malicious WX
i initiated by Pi as it retains

the necessary inputs to prove the overdraw to V 6⊂.
While in a state of provable integrity, O6⊂ can justifiably

cancel any malicious withdrawal by a Pi using V 6⊂, and can
close any open challenge, as long as it correctly constructs
A because it retains knowledge of all the required inputs
to satisfy V 6⊂’s challenge closure procedures. However, a
dishonest server trying to debit a Pi without authorization, or

without crediting Pj in case of a Ti,j (or crediting sufficient
Y tokens in case of a XX,Y

i), may not find itself in a state of
provable integrity in e+ 1.
• s0 → s7: Given no interactions between O 6⊂ and Pi

during e, the hub cannot construct a valid A(e + 1)
containing an updatei(e) signed by Pi. As O6⊂ cannot
forge Pi’s signature, it cannot close a Xb

i (e+ 1).
• s0 → s1 → s7: Given only an updatei(e) signed by Pi,

the hub cannot construct a valid A(e + 1) containing an
updatej(e) signed by Pj . A Xd

i (e + 1) on Ti,j(e) by a
custodian Pi is not closeable by O 6⊂.

• s0 → s1 → s2 → s3 → s7: Once the hub delivers a
countersigned updatei(e) and/or updatej(e) to either Pi or
Pj respectively, it may not back out of enforcing Ti,j(e),
as O 6⊂ not able to close a Xb

i (e + 1), and/or Xb
j(e + 1),

if it commits an outdated state in A(e + 1).
• s0 → s4 → s6: Given updateXi and updateYi from Pi,

a dishonest O 6⊂ cannot construct a correct instant of
A(e + 1) without including updateYi and correctly apply-
ing the balance changes. A SX

i (e+ 1) by a custodian Pi

is not closeable by O6⊂.
• s0 → s4 → s5 → s6: Once the hub reveals its ratification

of updateXi to Pi, it cannot back out of including XX,Y
i in

A(e + 1), as O 6⊂ is not able to close a BX
i (e+1), and/or

a SX
i (e+ 1) if it did not include updateYi in A(e + 1).�

4) Volatility Protection: If a 6⊂ fails, a Pi can reclaim the
potential change in coin value that could have occurred during
the past two eons, up to a certain predefined percentage —
which we refer to as volatility protection. This calculation
utilizes the fact that halting 6⊂ also implies reversing the debit
of the swapped coins, not just the credit, when the swaps are
performed within the same chain. We proceed to prove how
a Pi enacting swaps in a 6⊂ instance is guaranteed to be able
to finalize receipt of the gained value from its trades up to
a known total amount, regardless of the adversary’s behavior
while controlling O 6⊂ and/or all other members of P.

Rec(e) = V alue(Ci(e) +Ti(e− 1) +Ti(e)) +
∑

X∈Ti(e)∪Ti(e−1)

V alue(X)

(2)

Rec(e + 1) = V alue(Ci(e+1)+Ti(e))+
∑

X∈Ti(e)

V alue(X) (3)

∑
X∈Ti(e)∪Ti(e−1)

∆V alue(X) ≤ Rec(e) (4)

∑
X∈Ti(e)

∆V alue(X) ≤ Rec(e + 1) (5)

V alue is defined as the amount of a coin multiplied by its
price in terms of an arbitrary unit chosen by Pi. The change in
valuation, denoted as ∆V alue, is assumed to be continuously
calculated by Pi using ongoing market prices as comparison
points to the originally set prices.

12

a) Proof: The proof that a Pi observing the constraints
in Equation 4 and 5 has protection against the volatility of its
coin portfolio held within O 6⊂ is demonstrated as follows.
• If the 6⊂ instance fails during eon e, then Pi can recover

an amount equal to the R.H.S of Equation 4.
• If the 6⊂ instance fails during eon e + 1 , then Pi can

recover an amount equal to the R.H.S of Equation 5.
• Otherwise, Tj,i(e) has been in included in A(e + 1), and

its amount can be withdrawn in e + 2 .
In the first two cases, Pi recovers the originally held value

prior to swapping1 plus the value gained through holding
the swap position in the form of the value of the collateral
exclusively allocated by O 6⊂ to Pi. Ti(e − 1) and Ti(e) are
accounted for by V 6⊂, while Ci(e) and Ci(e+1) are committed
to by O6⊂ and learned by Pi before eon e commences, or
assumed to be zero. The exclusivity of the amounts Ci(e) and
Ci(e+ 1) are guaranteed through validation of Ci(e− 2) and
Ci(e−1) respectively. Moreover, the recoverable amount from
a Ci(e− 2) is always available in eon e. This is because O6⊂
cannot withdraw staked collateral s.t. the total staked amount
C(e) in C(e − 2) is unavailable for recovery.�

VII. EVALUATION

In the following section, we evaluate the TEX settlement.

A. TEX Commit-Chain Evaluation

Deploying the TEX settlement smart contract (3024 LOC
Solidity) on Ethereum2 costs 17.8M gas (13.38 USD3). TEX
follows a 36 hour eon interval. O6⊂, implemented in Python
(1448 LOC), operates on a dual-core CPU with 4GB RAM and
SSD HDD. We deployed a parity node as blockchain source.
Users can interact and challenge O 6⊂ through a JavaScript
library (12096 LOC). Table II outlines the parent-chain costs.

Operation Paid by Gas USD Complexity

Checkpoint (every eon) Exchange 96’073 0.072 O(1)
Deposit Trader 64’720 0.048 O(1)
Withdraw Trader 169’238 0.126 O(logn)
Initiate State Challenge Trader 281’686 0.211 O(logn)
Answer State Challenge Exchange 80’769 0.061 O(logn)
Initiate Swap Challenge Trader 318’195 0.239 O(logn+ log v)
Answer Swap Challenge Exchange 76’143 0.057 O(logn+ log v)

TABLE II: Costs for a TEX operator and it’s traders. n
represent the number of users and v the number of swaps.

1) Storage Costs and Performance:
Parent-Chain Storage As long as a trader does not perform

any withdraw, deposit or challenge with the TEX smart
contract, the only parent-chain footprint is the constant-
sized checkpoint hash that compresses all of the user’s
balances — allowing TEX to scale.

User Storage Users store at least their transfers of the last
two eons (312 bytes per transfer) and query each eon

1When spent from Ai or Ci
2cf. address 0x6B9f10931E88349A572F2f0883E49528902B4b5D
3Assuming a gas price of 5 Gwei and Ether price of 150 USD.

0 10 20 30 40
Volatility Protection Collateral (USD)

0

20

40

60

80

100

24
h

T
ra

d
in

g
V

ol
u

m
e

(U
S

D
)

1h eon, 0.42% volatility

6h eon, 2.50% volatility

12h eon, 5.00% volatility

24h eon, 10.00% volatility

36h eon, 15.00% volatility

Fig. 5: Volatility protection collateral by TEX for instant trade
finality, assuming a max. price volatility of 10% within 24
hours between two coins X ,Y .

their individual Merkle proof from O 6⊂ (1984 bytes at
1B users and four coins in the coin tree).

Operator Storage The operator stores all trades of the last
two rounds, all account states and their Merkle proofs.

Trade Throughput Our non-optimized implementation
achieves about 10 trades per second between two
accounts on a single CPU core, without network latency.
This performance scales out with the number of accounts.

2) Instant Exchange Collateral Costs: The collateral re-
quirements of TEX for instant trade finality equals to the
trade volume of the last two eons, times the price difference
of the traded assets within the last two eons. Assuming an
eon interval of 12 hours, a daily trade volume of 300M
USD between a pair of cryptocurrencies, and a currency
fluctuation of 10% between this pair, the collateral amounts
to 300× 0.1 = 30M USD (cf. Figure 5).

VIII. CONCLUSION

Alarmingly, malicious crypto-currency exchange operators,
miners and adversarial traders can currently perform highly re-
warding market manipulations, without significant risks of be-
ing caught due to missing legal frameworks to protect traders.
Moreover, the honest behaviour of custodian exchanges cur-
rently is only enforced through manual regulatory audits,
instead of being held accountable through cryptographic and
non-repudiable supervision.

TEX allows the operation of either a custodian exchange
which raises the bar for operational accountability, or a non-
custodial, blockchain-based exchange that can scale to trade
loads similar to custodian exchanges. Maleficence by the TEX
operator, i.e. front-running of orders, can be transparently
uncovered via secure cryptographic means.

We hope our work spurs further efforts on provable trans-
parency and accountability of financial exchanges which re-
main at the core of our worldwide economy.

IX. ACKNOWLEDGEMENTS

This work is partially funded by the Imperial College
London President’s PhD Scholarship.

13

REFERENCES

[1] Foreign exchange manipulation: Finma issues six indus-
try bans, 2019. https://www.finma.ch/en/news/2015/12/
20151217-mm-devisenhandel/.

[2] Nasdaq glossary, 2019. https://www.nasdaq.com/
investing/glossary/f/front-running.

[3] Idex - decentralized ethereum asset exchange, 2019.
https://idex.market/.

[4] Oasis dex - wiki, 2019. https://github.com/OasisDEX/
oasis/wiki.

[5] Top dex pie chart, 2018. https://etherscan.io/stat/
dextracker.

[6] Arthur Gervais, Ghassan O Karame, Karl Wüst, Vasileios
Glykantzis, Hubert Ritzdorf, and Srdjan Capkun. On the
security and performance of proof of work blockchains.
In Proceedings of the 2016 ACM SIGSAC Conference
on Computer and Communications Security, pages 3–16.
ACM, 2016.

[7] Binance api documentation, 2019. https:
//github.com/binance-exchange/binance-official-api-
docs/blob/master/rest-api.md.

[8] Blockchain transparency report, 2019. https://www.
blockchaintransparency.org.

[9] Ronald L Rivest, Adi Shamir, and David A Wagner.
Time-lock puzzles and timed-release crypto. 1996.

[10] Uriel Feige, Amos Fiat, and Adi Shamir. Zero-knowledge
proofs of identity. Journal of cryptology, 1(2):77–94,
1988.

[11] Investopedia - order book, 2019. https://www.
investopedia.com/terms/o/order-book.asp.

[12] Sec glossary, 2019. https://www.sec.gov/fast-answers/
answerslimithtm.html.

[13] Satoshi Nakamoto. Bitcoin: A peer-to-peer electronic
cash system, 2008.

[14] Cynthia Dwork and Moni Naor. Pricing via Processing
or Combatting Junk Mail, pages 139–147. Springer
Berlin Heidelberg, Berlin, Heidelberg, 1993.

[15] Adam Back. Hashcash - a denial of service counter-
measure. Technical report, 2002.

[16] What are zk-snarks?, 2019. https://z.cash/technology/
zksnarks.

[17] Benedikt Bünz, Jonathan Bootle, Dan Boneh, Andrew
Poelstra, Pieter Wuille, and Greg Maxwell. Bulletproofs:
Short proofs for confidential transactions and more. In
2018 IEEE Symposium on Security and Privacy (SP),
pages 315–334. IEEE, 2018.

[18] Parity transaction fee order preference, 2019. https://
wiki.parity.io/Configuring-Parity-Ethereum.html.

[19] geth transaction fee order preference, 2019.
https://github.com/ethereum/go-ethereum/blob/
290e851f57f5d27a1d5f0f7ad784c836e017c337/core/
types/transaction.go#L372.

[20] Frontrun.me - visualizing ethereum gas auctions, 2019.
http://frontrun.me/.

[21] Implementing ethereum trading front-runs

on the bancor exchange in python, 2019.
https://hackernoon.com/front-running-bancor-in-150-
lines-of-python-with-ethereum-api-d5e2bfd0d798.

[22] Blockchain frontrunning - swende.se, 2019. http://
swende.se/blog/Frontrunning.html.

[23] Libsubmarine - to sink frontrunners, send in the sub-
marines, 2019. http://hackingdistributed.com/2017/08/
28/submarine-sends/.

[24] Nir Bitansky, Ran Canetti, Alessandro Chiesa, and Eran
Tromer. From extractable collision resistance to succinct
non-interactive arguments of knowledge, and back again.
In Proceedings of the 3rd Innovations in Theoretical
Computer Science Conference, pages 326–349. ACM,
2012.

[25] Ralph C. Merkle. A Digital Signature Based on a Con-
ventional Encryption Function, pages 369–378. Springer
Berlin Heidelberg, Berlin, Heidelberg, 1988.

[26] Merkle mountain ranges, 2019. https:
//github.com/opentimestamps/opentimestamps-
server/blob/master/doc/merkle-mountain-range.md.

[27] Eleftherios Kokoris Kogias, Philipp Jovanovic, Nicolas
Gailly, Ismail Khoffi, Linus Gasser, and Bryan Ford.
Enhancing bitcoin security and performance with strong
consistency via collective signing. In 25th USENIX
Security Symposium (USENIX Security 16), pages 279–
296. USENIX Association, 2016.

[28] Loi Luu, Viswesh Narayanan, Kunal Baweja, Chaodong
Zheng, Seth Gilbert, and Prateek Saxena. Scp: A
computationally-scalable byzantine consensus protocol
for blockchains. IACR Cryptology ePrint Archive,
2015:1168, 2015.

[29] Rafael Pass and Elaine Shi. Hybrid consensus: Efficient
consensus in the permissionless model, 2016.

[30] Ittay Eyal, Adem Efe Gencer, Emin Gun Sirer, and
Robbert Van Renesse. Bitcoin-ng: A scalable blockchain
protocol. In 13th USENIX Symposium on Networked
Systems Design and Implementation (NSDI 16), pages
45–59. USENIX Association, 2016.

[31] Loi Luu, Viswesh Narayanan, Chaodong Zheng, Kunal
Baweja, Seth Gilbert, and Prateek Saxena. A secure
sharding protocol for open blockchains. In Proceedings
of the 2016 ACM SIGSAC Conference on Computer and
Communications Security, pages 17–30. ACM, 2016.

[32] Adem Efe Gencer, Robbert van Renesse, and Emin Gün
Sirer. Service-oriented sharding with aspen. arXiv
preprint arXiv:1611.06816, 2016.

[33] Pavel Prihodko, Slava Zhigulin, Mykola Sahno, Aleksei
Ostrovskiy, and Olaoluwa Osuntokun. Flare: An ap-
proach to routing in lightning network. 2016.

[34] Andrew Miller, Iddo Bentov, Ranjit Kumaresan, and
Patrick McCorry. Sprites: Payment channels that go
faster than lightning. arXiv preprint arXiv:1702.05812,
2017.

[35] Joseph Poon and Thaddeus Dryja. The bitcoin lightning
network: Scalable off-chain instant payments, 2015.

[36] Rami Khalil and Arthur Gervais. Revive: Rebalancing

14

https://www.finma.ch/en/news/2015/12/20151217-mm-devisenhandel/
https://www.finma.ch/en/news/2015/12/20151217-mm-devisenhandel/
https://www.nasdaq.com/investing/glossary/f/front-running
https://www.nasdaq.com/investing/glossary/f/front-running
https://idex.market/
https://github.com/OasisDEX/oasis/wiki
https://github.com/OasisDEX/oasis/wiki
https://etherscan.io/stat/dextracker
https://etherscan.io/stat/dextracker
https://github.com/binance-exchange/binance-official-api-docs/blob/master/rest-api.md
https://github.com/binance-exchange/binance-official-api-docs/blob/master/rest-api.md
https://github.com/binance-exchange/binance-official-api-docs/blob/master/rest-api.md
https://www.blockchaintransparency.org
https://www.blockchaintransparency.org
https://www.investopedia.com/terms/o/order-book.asp
https://www.investopedia.com/terms/o/order-book.asp
https://www.sec.gov/fast-answers/answerslimithtm.html
https://www.sec.gov/fast-answers/answerslimithtm.html
https://z.cash/technology/zksnarks
https://z.cash/technology/zksnarks
https://wiki.parity.io/Configuring-Parity-Ethereum.html
https://wiki.parity.io/Configuring-Parity-Ethereum.html
https://github.com/ethereum/go-ethereum/blob/290e851f57f5d27a1d5f0f7ad784c836e017c337/core/types/transaction.go#L372
https://github.com/ethereum/go-ethereum/blob/290e851f57f5d27a1d5f0f7ad784c836e017c337/core/types/transaction.go#L372
https://github.com/ethereum/go-ethereum/blob/290e851f57f5d27a1d5f0f7ad784c836e017c337/core/types/transaction.go#L372
http://frontrun.me/
https://hackernoon.com/front-running-bancor-in-150-lines-of-python-with-ethereum-api-d5e2bfd0d798
https://hackernoon.com/front-running-bancor-in-150-lines-of-python-with-ethereum-api-d5e2bfd0d798
http://swende.se/blog/Frontrunning.html
http://swende.se/blog/Frontrunning.html
http://hackingdistributed.com/2017/08/28/submarine-sends/
http://hackingdistributed.com/2017/08/28/submarine-sends/
https://github.com/opentimestamps/opentimestamps-server/blob/master/doc/merkle-mountain-range.md
https://github.com/opentimestamps/opentimestamps-server/blob/master/doc/merkle-mountain-range.md
https://github.com/opentimestamps/opentimestamps-server/blob/master/doc/merkle-mountain-range.md

BC An operational blockchain.
6⊂ An instance of TEX.
O6⊂ The 6⊂ operator server.
V6⊂ The 6⊂ parent-chain verifier smart-contract.
P The set of participants in 6⊂.
Pi A single participant Pi ∈P.
e The current eon (round).
B The commit-chain account-based ledger.
BG The global parent-chain component of B.
BL The local commit-chain component of B.
Ai Initially allotted balance of Pi.
Ri The total received on the commit-chain by Pi.
Si The total sent on the commit-chain by Pi.
Ti The commit-chain transactions involving Pi.
Ci The reserve collateral allocated for Pi.
Di The total deposited by Pi.
Wi The total requested for withdrawal by Pi.
Ti,j A transfer from Pi to Pj
Xi A swap by Pi.
Bi A challenge of Pi’s balance integrity.
Ei A challenge of the delivery of a transfer.
Si A challenge of a swap by Pi.
A An exclusive balance allotment tree.
C An exclusive collateral allocation tree.
Ai A proof of exclusive balance allotment for Pi.
Ci A proof of exclusive collateral allocation for Pi.
K0 Random seed value for the delayed key disclosure setup.

TABLE III: A summary of notation used in TEX. Any symbol
can be parameterized to refer to its value for a specific coin
and/or a specific eon. For example, AX

i (e) would denote the
initially allotted X-coin balance of Pi at eon e.

off-blockchain payment networks. Proceedings of the
2017 ACM SIGSAC Conference on Computer and Com-
munications Security, 2017.

[37] Bitcoinj. https://bitcoinj.github.io/working-with-
micropayments.

[38] Conrad Burchert, Christian Decker, and Roger Watten-
hofer. Scalable funding of bitcoin micropayment channel
networks. Royal Society open science, 5(8):180089,
2018.

[39] Joseph Poon and Vitalik Buterin. Plasma: Scalable
autonomous smart contracts. White paper, 2017.

[40] Rami Khalil and Arthur Gervais. Nocust–a non-custodial
2 nd-layer financial intermediary. Technical report, Cryp-
tology ePrint Archive, Report 2018/642. https://eprint.
iacr. org/2018/642, 2018.

[41] Stefanie Roos, Pedro Moreno-Sanchez, Aniket Kate, and
Ian Goldberg. Settling payments fast and private: Ef-
ficient decentralized routing for path-based transactions.
arXiv preprint arXiv:1709.05748, 2017.

[42] Giulio Malavolta, Pedro Moreno-Sanchez, Aniket Kate,
Matteo Maffei, and Srivatsan Ravi. Concurrency and
privacy with payment-channel networks. In Proceedings
of the 2017 ACM SIGSAC Conference on Computer and
Communications Security, pages 455–471. ACM, 2017.

[43] Adam Back, Matt Corallo, Luke Dashjr, Mark
Friedenbach, Gregory Maxwell, Andrew Miller,
Andrew Poelstra, Jorge Timón, and Pieter Wuille.
Enabling blockchain innovations with pegged

sidechains. URL: http://www. opensciencereview.
com/papers/123/enablingblockchain-innovations-with-
pegged-sidechains, 2014.

[44] Eli Ben-Sasson, Iddo Bentov, Yinon Horesh, and Michael
Riabzev. Scalable, transparent, and post-quantum secure
computational integrity. IACR Cryptology ePrint Archive,
2018:46, 2018.

[45] Dan Boneh and Moni Naor. Timed commitments. In
Annual International Cryptology Conference, pages 236–
254. Springer, 2000.

[46] Amos Fiat and Adi Shamir. How to prove yourself: Prac-
tical solutions to identification and signature problems. In
Advances in Cryptology—CRYPTO’86, pages 186–194.
Springer, 1986.

[47] Lenore Blum, Manuel Blum, and Mike Shub. A simple
unpredictable pseudo-random number generator. SIAM
Journal on computing, 15(2):364–383, 1986.

[48] Danny Dolev and Andrew Yao. On the security of public
key protocols. IEEE Transactions on information theory,
29(2):198–208, 1983.

[49] Washtrading definition, 2019. https://www.investopedia.
com/terms/w/washtrading.asp.

APPENDIX A
NOTATION

Table III provides an overview of the notation in this paper.

APPENDIX B
WASH TRADING

A trader might perform wash trading by purchasing and sell-
ing a financial asset, e.g. a crypto-currency coin, for the sole
purpose to feed the market with misleading information [49].
While wash trading is illegal for security assets in e.g. the
US, it currently is unregulated for many crypto-currency coins.
There are increasingly efforts to provide more transparency on
such malpractices [8], while missing identities for blockchain
addresses clearly hinder the practical detection of wash trading
on anonymous decentralized exchanges.

A. Implications of Moonwalk Order Books on Wash Trading

Wash trading is challenging to detect on order books without
enforcable order sequence and exchanges with missing trader
identification procedures (e.g. know-your-customer verifica-
tions). That is because the exchange operator can collude with
a wash trader and match the sell and buy order of the same
entity, s.t. the wash trader is unlikely to suffer from financial
losses, if e.g. his order were matched with other accounts. An
exchange has an incentive to support wash trading to increase
its apparent trading volume.

Given TEX’s moonwalk order submission model, a wash
trader is required to repeatedly provide buy and sell orders
with the least possible time delay to increase the likelihood
of matching with its own orders. Such pattern are possibly
identifyable and could potentially deter wash traders.

15

https://www.investopedia.com/terms/w/washtrading.asp
https://www.investopedia.com/terms/w/washtrading.asp

Algorithm 8: verifyOrder
Verifier Input : Θk

m,, A(e), XX,Yi

Prover Input : {θkm+x(0)...θkm+x(n)}, π, Θk
m+x, AXi (e),

updateXi (e − 1)
Verifier Output: Θk+1

m+x

validate ;
validate updateXi (e − 1) is applied in AXi (e);
validate AXi (e) leads to A(e);

assert Θk
m+x =

n⋃
i=0

θkm+x(i)

rem vol ← verifyMatchCombinerπ(Θk
m, Θk

m+x, XX,Yi)
if rem vol > 0 then

if XX,Yi is sell then
assert Θk

m+x.max buy < XX,Yi .price;
else

assert Θk
m+x.min sell > XX,Yi .price;

end
end

return Θk+1
m+x =

n⋃
i=0

{θkm+x(i)∪ XX,Yi }

Algorithm 9: verifyMatchingSettlement
Verifier Input : AX(e − 1), AX(e)
Prover Input : πS , πM , A(e − 1), A(e)
Verifier Output: H(Θ)
debited ← verifyAccountIntegrityπS

(AX(e − 1), AX(e))
Θ← verifyOrderCombinerπM

(∅, A(e))
assert debited = Θ.matched volume[X];
return H(AX(e − 1)), H(AX(e)), H(Θ)

Algorithm 10: ratifySwap
Input : updateXi , updateYi , XX,Yi

Output: Sig(updateXi , O6⊂), Sig(updateYi , O6⊂)
assert XX,Yi ∈ updateXi ;
assert XX,Yi ∈ updateYi ;
assert updateXi debits the full amountX ;
assert updateYi credits no additional Y coins;
return Sig(updateXi , O6⊂), Sig(updateYi , O6⊂)

Algorithm 11: verifyPuzzle
Verifier Input: n, h, k, CK , α, b, y
g ← hΠr

i=1qi mod n
c← H(α‖b) mod R
for j in 1..s do

for i in 1..k do
assert gyi,j ∗ b−ci,ji−1,j = gαi,j mod n

assert byi,ji−1,j ∗ b
−ci,j
i,j = b

αi,j

i−1,j mod n
end

end
assert CK = bk (mod n)

Algorithm 7: verifyMatch
Verifier Input : Θk

m, Θk
m+1, XX,Yi

Prover Input : λ(XY,Xj ∈ Θk
m), XY,Xj

Verifier Output: XX,Yi .rem out vol
n ← XY,Xj ;
for s ∈ λ(XY,Xj ∈ Θk

m do
if if XX,Yi is a sell order then

assert n is first child with max buy price ≥ XX,Yi .price;
else

assert n is first child with min sell price ≤ XX,Yi .price;
end
n.buy = max(n.buy, s.buy);
n.sell = min(n.sell, s.sell);
if if s is left child then

n.hash ← H(n.sell ‖ s.hash ‖ n.hash ‖ n.buy);
else

n.hash ← H(n.sell ‖ n.hash ‖ s.hash ‖ n.buy);
end

end
assert n.hash = Θk

m;
matched volume ← min(XX,Yi .rem out vol,
XY,Xj .rem in vol);

XY,Xj .rem in vol -= matched volume;
XY,Xj .rem out vol -= matched volume * XX,Yi .price;
n ← XY,Xj ;
if XY,Xj .rem vol == 0 or XY,Xj is sell then

n.buy ← 0;
end
if XY,Xj .rem vol == 0 or XY,Xj is buy then

n.sell ← INF;
end
for s ∈ λ(XY,Xj ∈ Θk

m do
n.buy = max(n.buy, s.buy);
n.sell = min(n.sell, s.sell);
if if s is left child then

n.hash ← H(n.sell ‖ s.hash ‖ n.hash ‖ n.buy);
else

n.hash ← H(n.sell ‖ n.hash ‖ s.hash ‖ n.buy);
end

end
assert n.hash = Θk

m+1;
return XX,Yi .rem out vol - matched volume

APPENDIX C
EXTENDED SPECIFICATIONS

A. Recursiveley Composable ZK Proofs

We outline the algorithms 7 and 8 for the recursively
composable ZKP.

A swap challenge enforces that a trade is matched with at
least the asked limit price (cf. Section V-C1). Figure 7 shows
the cost evolution of swap challenges given the number of
swaps within one eon (measured with 10 users). Note that
these costs are reset each eon.

16

s8

e + 1

s0
estart

s4
e

s5
e

s6

e + 1

s3
e

s2
e

s1
e

s7

e + 1

P
i →

O
6⊂ :

X
X
,Y

i

Pi → O6⊂: Ti,j

O 6⊂
→
V 6⊂

: A
63
T i,

X i

O6⊂ →V6⊂ : A 3 T
i

O6⊂ →V6⊂ : A 3 XX
i

P j
→

O 6⊂
: T

i,
j

O 6⊂
→ V 6⊂: A

3 Ti

O
6⊂ →

V
6⊂ :
A
63
T
i,j

O 6⊂ →V6⊂: A 63 Ti,j

O 6⊂ →V6⊂: A 3 Ti,j

O
6⊂
→

P
j :
T
i,j ∈

A

O
6⊂
→

P
i :
T
i,j ∈

A

O 6⊂
→
V 6⊂

: A
3
T i

O 6⊂
→

V 6⊂
: A
3
T i,

j

O6⊂ →V6⊂ : A 63 T
i,j

O 6⊂ → V 6⊂: A 3 XX,Y
i

O 6⊂ → V 6⊂: A 63 XX
i

O 6⊂
→

P i
: X

X i
∈
A

O 6⊂
→
V 6⊂

: A
3
X

X
i

O
6⊂ →

V
6⊂ :
A
3
X X

,Yi

O 6⊂
→ V 6⊂: A

63 X
X,Y

i

Pi → V 6⊂: WX
i

Fig. 6: Finite state automaton capturing the provable integrity of O 6⊂. A dishonest O6⊂ always finds itself trapped in a reject
state, while an honest O 6⊂ can prove its integrity in eon e+ 1 after committing to its e operations regardless of the behavior
of members of P..

101 102 103 104 105 106 107 108

Number of swaps per user per eon

100000

200000

300000

400000

G
as

co
st

Initiate swap challenge

Answer swap challenge

0.05

0.10

0.15

0.20

0.25

0.30

G
as

co
st

in
U

S
D

Fig. 7: Cost evolution for swap challenges depending on the number of swaps executed by a single user. The continuous line
is measured empirically, the dotted line estimated.

17

	Introduction
	Background and Related Work
	Financial Exchanges
	Centralized (Custodian) vs. Decentralized (Non-Custodial)
	Trade Order Front-Running
	Cryptography for a Front-Running Resilient Order Book
	Time-Lock Puzzle
	Zero Knowledge Proofs of Knowledge
	Merkle Mountain Ranges

	Non-Custodial Trade Settlement Layer
	Payment Channels
	Commit-Chains

	TEX Overview
	Untrusted Centralized Intermediaries
	System Model
	High-Level Operations of TEX
	Order Book
	Trade Settlement System

	Main Properties
	Collateral for Instant Trade Finality
	Liveness Requirements

	Attacker Models
	Order Book Adversarial Model
	Settlement System Adversarial Model

	Notations

	TEX Moonwalk Order Details
	Delayed Key Disclosure
	Moonwalk Order Generation
	Blind Receipts
	Behavior Analysis
	Order Matching Constraints
	Provably Consistent Orderbook Matching

	TEX Settlement Details
	Commit-Chain Ledger
	Periodic Commitments
	Involved Participants
	V Parent-chain Verifier
	O Commit-chain Operator
	P Users

	Provably Consistent Settlement Checkpoints
	Provably Consistent Matching Settlement

	Security Analysis
	Threat Model
	Order Book Guarantees
	Order Secrecy
	Immutable Orderbook History
	Consistent Order Matching
	Front-Running Resilience

	Commit-Chain Settlement Guarantees
	Account Integrity
	Double-Spend Futility
	Operational Integrity
	Volatility Protection

	Evaluation
	TEX Commit-Chain Evaluation
	Storage Costs and Performance
	Instant Exchange Collateral Costs

	Conclusion
	Acknowledgements
	Appendix A: Notation
	Appendix B: Wash Trading
	Implications of Moonwalk Order Books on Wash Trading

	Appendix C: Extended Specifications
	Recursiveley Composable ZK Proofs

