
Forward-Secure Multi-Signatures

Manu Drijvers Gregory Neven

DFINITY

Abstract

Multi-signatures allow a group of signers to jointly sign a message in a compact and ef-
ficiently verifiable signature, ideally independent of the number of signers in the group. We
present the first provably secure forward-secure multi-signature scheme by deriving a forward-
secure signature scheme from the hierarchical identity-based encryption of Boneh, Boyen, and
Goh (Eurocrypt 2005) and showing how the signatures in that scheme can be securely com-
posed. Multi-signatures in our scheme contain just two group elements (one from each of the
base groups) and require one exponentation and three pairing computations to verify.

1 Introduction

There is a long line of work in cryptography on techniques to compress many signatures by differ-
ent signers while maintaining verifiability under the signers’ public keys. Multi-signatures [IN83]
compress signatures by n different signers on the same message M into a single compact signature,
preferably with size independent of n, while aggregate signatures [BGLS03] can compress signatures
on different messages M1, . . . ,Mn.

While somewhat more restricted in terms of functionality, many multi-signature schemes [MOR01,
Bol03, MPSW18, DEF+18, BDN18a] offer the additional advantage of having verification time
(practically) independent of n. Multi-signatures have recently gained popularity for their use in
cryptocurrencies [MPSW18, Poe19] to save precious block space for multi-input transactions, or as
an additional layer of security to protect user wallets.

Another long line of work tries to mitigate the damage done to a cryptosystem when the adver-
sary gets hold of the long-term keys. The concept of forward security [And00] requires that honest
users periodically update their secret keys, so that when their secret key is compromised, the trans-
actions in previous time periods remain secure. For signatures, this means that an adversary who
gains access to the signing key in time period t̄, is still unable to forge signatures for time periods
t < t̄.

Given the widespread use of multi-signatures in cryptocurrencies and the considerable financial
consequences of key exposure, it makes sense to add forward security to multi-signature schemes.
To the best of our knowledge, only a single scheme combining these features has appeared in the
literature [SA09] based on ElGamal signatures [ElG85], but without a proof of security.

1.1 Our Contributions

We propose the first provably secure forward-secure multi-signature scheme. Our scheme is based
on pairing-friendly elliptic curves and is best understood as being derived from the key structure

1

of the Boneh-Boyen-Goh (BBG) hierarchical identity-based encryption (HIBE) scheme [BBG05a].
Our signing algorithm is non-interactive, meaning that individual signers can independently gen-
erate their contribution to the multi-signature, and any third party can combine their individual
contributions into a multi-signature.

Cannetti, Halevi, and Katz [CHK07] described how to derive a forward-secure encryption scheme
from a HIBE scheme by embedding the time periods in the identity tree of the HIBE scheme, and
by letting the secret key at period t consist of the decryption keys from which the current and all
future keys can be derived. It is well known that the key structure of an identity-based encryption
scheme naturally yields a signature scheme [BF01, CFH+07] and that a two-level HIBE scheme
yields an identity-based signature scheme [GS02]. Analogously, it is not hard to see that the key
structure of a HIBE-derived forward-secure encryption scheme also yields a forward-secure signature
scheme [BSSW06].

A particular advantage of the BBG HIBE scheme for use as a signature scheme, as opposed to
other HIBE schemes [GS02, BB04, Wat05], is that keys in the BBG HIBE become smaller in size
as one descends the hierarchy. Keys at the leaves therefore become attractive to use as signatures
because they are quite compact, namely one element of G1 and one element of G2 when instantiated
over a curve with an admissible pairing e : G1×G2 → Gt. Moreover, we show that, similar to other
pairing-based multi-signatures [Bol03, LOS+06], signatures on the same message M by multiple
signers are easily aggregated through component-wise multiplication into a compact and efficiently
verifiable multi-signature.

The straightforward scheme, however, is vulnerable to the same rogue-key attacks that have
plagued other multi-signature schemes in the past [MOR01, Bol03, BN06, RY07, MPSW18], mean-
ing that an adversary who chooses his signing key as a function of other signers’ keys can forge
multi-signatures. We show that the Ristenpart-Yilek technique [RY07] of adding a proof of pos-
session to the public key restores security. We prove our scheme secure in the random-oracle
model [BR93] under a variant of the bilinear Diffie-Hellman inversion (BDHI) assumption.

1.2 Related Work

Multi-signature schemes have been proposed based on different assumptions, including RSA [IN83,
OO93, BN07], discrete logarithms [HZ93, LHL95, OO99, MOR01, BN06, BCJ08, MWLD10, MPSW18,
DEF+18], pairings [Bol03, LOS+06, RY07, BGOY07, LBG09, BDN18a], and lattices [BS16]. The
schemes also differ in the way signatures are being generated. All known discrete-logarithm based
schemes require at least two rounds of interaction between the signers. Schemes based on RSA tend
to require a sequential interaction among signers [IN83] or be fully interactive [OO93, BN07]. The
only known non-interactive schemes, i.e., where each signer locally computes his contribution to
the multi-signature and anyone can combine these contributions into a multi-signature, are based
on pairings [Bol03, LOS+06, RY07, BGOY07, LBG09, BDN18a].

There also exist signature schemes that can compress signatures on different messages. Ag-
gregate signatures [BGLS03] can do so in a non-interactive way, while sequential aggregate signa-
tures [LMRS04, LOS+06, Nev08, BGR12, GOR18] require signers to take turns in adding their
signatures to the aggregate. None of these schemes have efficient verification, though, in the sense
of being independent of the number of aggregated signatures.

Forward security was originally proposed for key exchange protocols [And00], but was later
extended and formalized to signature schemes [BM99]. Generic constructions of forward-secure
signature schemes [BM99, MMM02, Kra00] usually organize public keys of any standard signature

2

scheme in a tree structure for certification and apply clever techniques to make signing, verifi-
cation, and key update more efficient. Direct constructions have also been proposed based on
factoring [AR00], RSA [IR01, KR03].

Finally, Boyen et al. [BSSW06] proposed a forward-secure signature scheme with untrusted key
updates, meaning, where key updates can be performed on encrypted versions of the key. They
also base their construction on a forward-secure signature scheme derived from the BBG HIBE,
just like we do. We make the underlying forward-secure signature scheme explicit here, re-prove it
in the asymmetric pairing setting, and show how it can be used as a multi-signature.

2 Preliminaries

Let G1,G2,Gt be multiplicative groups of prime order q with an admissible pairing function e :
G1 ×G2 → Gt. Let g1 and g2 be generators of G1 and G2, respectively.

In analogy with the weak bilinear Diffie-Hellman inversion problem `-wBDHI∗ [BBG05b], which
was originally defined for Type-1 pairings (i.e., symmetric pairings e : G × G → Gt), we define the
following variant for Type-3 pairings denoted `-wBDHI∗3.

Input: A1 = gα1 , A2 = g
(α2)
1 , . . . , A` = g

(α`)
1 , A′1 = gα2 , B for α←$ Zq , B ←$ G2

Compute: e(g1, B)(α`+1)

The advantage Adv
`-wBDHI∗3
G1×G2

(A) of an adversary A is defined as its probability in solving this
problem.

3 Forward-Secure Signatures

3.1 Definition

We use the Bellare-Miner model [BM99] to define syntax and security of a forward-secure signature
scheme. A forward-secure signature scheme FS for a message space M consists of the following
algorithms:

Key generation: (pk , sk0) ←$ Kg. The signer runs the key generation algorithm on input the
maximum number of time periods T to generate a public verification key pk and an initial
secret signing key sk0 for time period t = 0.

Key update: sk t+1 ←$ Upd(sk t). The signer updates its secret key sk t for time period t to sk t+1

for the next period using the key update algorithm.

Signing: σ ←$ Sign(sk t,M). On input the current signing key sk t and message M ∈M, the signer
uses this algorithm to compute a signature σ.

Verification. b ← Vf(pk , t,M, σ). Anyone can verify a signature σ for on message M for time
period t under public key pk by running the verification algorithm, which returns 1 to indicate
that the signature is valid and 0 otherwise.

3

Correctness requires that for all messages M ∈ M and for all time periods t ∈ {0, . . . , T − 1]
it holds that Vf(pk , t,M,Sign(sk t,M)) = 1 with probability one if (pk , sk0) ←$ Kg and sk i+1 ←
Upd(sk i) for i = 0, . . . , t− 1.

Unforgeability under chosen-message attack for forward-secure signatures is defined through the
following game. The experiment generates a fresh key pair (pk , sk0) and hands the public key pk
to the adversary A. The adversary is given access to the following oracles:

Key update. If the current time period t (initially set to t = 0) is less than T −1, then this oracle
updates the key sk t to sk t+1 and increases t.

Signing. On input a message M , this oracle runs the signing oracle with the current secret key
sk t and message M , and returns the resulting signature σ.

Break in. The experiment records the break-in time t̄← t and hands the current signing key sk t̄
to the adversary. This oracle can only be queried once, and after it has been queried, the
adversary can make no further queries to the key update or signing oracles.

At the end of the game, the adversary outputs its forgery (t∗,M∗, σ∗. It wins the game if σ∗ verifies
correctly under pk for time period t∗ and message M∗, if it never queried the signing oracle on M∗

during time period t∗, and if it queried the corrupt oracle, then it did so in a time period t̄ > t∗.
We define A’s advantage Advfu-cma

FS (A) as its probability in winning the above game.
We also define a selective variant of the above notion, referred to as sfu-cma, where the adversary

first has to commit to t̄, t∗, and M∗. More specifically, A first outputs (t̄, t∗,M∗), then receives
the public key pk , is allowed to make signature and key update queries until time period t = t̄ is
reached, at which point it is given sk t̄ and outputs its forgery σ∗.

3.2 Construction

The following scheme is essentially the result of applying the Canetti-Halevi-Katz technique to ob-
tain forward security from hierarchical identity-based encryption (HIBE) [CHK07] to the signature
scheme determined by the key structure of the Boneh-Boyen-Goh HIBE scheme [BBG05a].

Common parameters. LetM be the message space of the scheme and let Hq :M→ {0, 1}κ be a
hash function that maps messages to bit strings of length κ such that 2κ < q. Apart from the
description of the groups, the common system parameters also contain the maximum number
of time slots T = 2` and random group elements h, h0, . . . , h`+1 ←$ G1. These parameters
could, for example, be generated as the output of a hash function modeled as a random oracle.

Key generation. Each signer chooses x←$ Zq and computes y ← gx2 . It sets its public to pk = y
and computes its initial secret keys as sk0 ← hx.

Key update. Imagine the time periods 0, . . . , 2` − 1 as being organized as the leaves of a binary
tree of depth `, sorted in increasing order from left to right. Then one can see that the path
from the root of the tree to leaf node t is simply the binary representation of t = t1 . . . t`,
where ti = 0 means taking the left branch at level i, and ti = 1 means taking the right branch.

In the same way, each internal node w in the tree can be identified by a bit string w1 . . . wi
describing the path from the root, where i = |w| is the level of the node in the tree. Let’s

4

associate to each node w a key of the form

(c, d, ei+1, . . . , e`+1) =

(
gr2 , h

x(h0

i∏
j=1

h
wj
j)r , hri+1 , . . . , h

r
`+1

)
for r ←$ Zq. Given the key of an internal node w = w1 . . . wi, one can derive a key for a
descendant node w′ = w1 . . . wk for k > i as

(c′, d′, e′k+1, . . . , e
′
`+1) =

(
c ·gr

′

2 , d ·
k∏

j=i+1

e
wj
j · (h0

k∏
j=1

h
wj
j)r

′
, ek+1 ·hr

′

k+1 , . . . , e`+1 ·hr
′

`+1

)
for r′ ←$ Zq.
Let the minimal cover of leaves {t, . . . , T − 1} be defined as the smallest subset of nodes so
that the subset contains an ancestor of all leaves in {t, . . . , T − 1}, but doesn’t contain any
ancestor of any leaf in {0, . . . , t− 1}. The secret key sk t at time period t then contains keys
corresponding to all nodes in the minimal cover Ct of {t, . . . , T−1}. To update sk t to the secret
key sk t+1 for time period t+1, the signer determines the cover Ct+1 of {t+1, . . . , T−1}, derives
keys for all nodes in Ct+1 \Ct using the keys in sk t, and securely deletes all re-randomization
exponents r′ as well as all keys in Ct \ Ct+1.

Signing. To generate a signature on message M ∈ {0, 1}∗ in time period t ∈ ZT , the signer derives
from the keys in sk t a key (c, d, e`+1) for the leaf node t = t1 . . . t`. It then chooses r′ ←$ Zq
and outputs

(σ1, σ2) =

(
d · eHq(M)

`+1 ·
(
h0 ·

∏̀
j=1

h
tj
j · h

Hq(M)
`+1

)r′
, c · gr

′

2

)
.

Verification. Anyone can verify a signature (σ1, σ2) ∈ G1 × G2 on message M under public key
pk = y in time period t by checking whether

e(σ1, g2) = e(h, y) · e
(
h0 ·

∏̀
j=1

h
tj
j · h

Hq(M)
`+1 , σ2

)
.

Efficiency. A signature contains one element of G1 and one element of G2, or 32+48=80 bytes
on a BLS12-381 curve. The secret key contains at most one node key at every level d = 1, . . . , `
at any given time, and the key at level d contains one element in G2 and ` − d + 2 elements in
G1, summing up to at most ` elements in G2 and `2/2 + 3`/2 elements in G1 in total. For the
BLS12-381 curve and T = 230 time periods, this comes down to at most 16800 bytes of secret key
material.

Signing efficiency depends on the structure of the node keys in sk t, but when the key for the
leaf node t is precomputed, it takes one simple exponentiation in G1, one 2-multi-exponentiation
in G1, and one exponentiation in G2. By precomputing

σ1,1 ← d ·
(
h0 ·

∏̀
j=1

h
tj
j

)r′
σ1,2 ← e`+1 · hr

′

`+1

σ2 ← c · gr
′

2 ,

5

the signature can be computed as σ1 ← σ1,1 · σ
Hq(M)
1,2 once the message M is known, bringing the

online computation down to a single exponentiation. Verification takes one exponentiation in G1

and three pairings (or one 3-multi-pairing). Key update can take up to ` exponentiations in G2

and `2/2 + 3`/2 exponentiations in G1, or 30 exponentiations in G2 and 495 exponentiations in G1

for T = 230 time periods. Key updates can of course be entirely precomputed, if necessary.

3.3 Security

Theorem 1. For any fu-cma adversary A against the above forward-secure signature scheme in
the random-oracle model for T = 2` time periods, there exists an adversary B with essentially the
same running time and advantage in solving the (`+ 1-wBDHI∗3 problem

Adv
(`+1)-wBDHI∗3
G1×G2

(B) ≥ 1

T · qH
·Advfu-cma

FS (A)− q2
H

2κ
,

where qH is the number of random-oracle queries made by A.

Proof. We prove the theorem by first proving that the scheme is selectively secure when the message
spaceM = {0, 1}κ and Hq is the identity function, meaning, interpreting a κ-bit string as an integer
in Zq. Full fu-cma security for M = {0, 1}∗ and with Hq : M → {0, 1}κ modeled as a random
oracle then follows because, given an fu-cma adversary A in the random-oracle model, one can
build a sfu-cma adversary A′ that guesses the time period t∗ and the index of A’s random-oracle
query for Hq(M

∗), and sets t̄ ← t∗ + 1. If A′ correctly guesses t∗, then it can use sk t̄ to simulate
A’s signature, key update, and break-in queries after time t̄ until A’s choice of break-in time t̄′, at
which point it can hand over sk t̄′ .

If A′ moreover correctly guessed the index of Hq(M
∗), and if A never made colliding queries

Hq(M) = Hq(M
′) for M 6= M ′, then A’s forgery is also a valid forgery for A′. Note that for A to

be successful, it must hold that t̄′ > t∗, so it must hold that t̄′ ≥ t̄. The advantage of A′ is given by

Advsfu-cma
FS (A′) ≥ 1

T · qH
·Advfu-cma

FS (A)− q2
H

2κ
, (1)

where qH is an upper bound on A’s number of random-oracle queries.
We show that the scheme with message space M = {0, 1}κ and Hq the identity function is

sfu-cma-secure under the (` + 1)-wBDHI∗3 assumption by describing an algorithm B that, given
a successful sfu-cma forger A′, solves the (` + 1)-wBDHI∗3 problem. On input (A1 = gα1 , A2 =

g
(α2)
1 , . . . , A`+1 = g

(α`+1)
1 , A′1 = gα2 , B), algorithm B proceeds as follows.

It first runs A to obtain (t̄, t∗,M∗). It then sets the public key and public parameters as

y ← A′1

h ← gγ1 ·A`+1

h0 ← gγ01 ·
∏̀
i=1

A
−t∗i
`−i+2 ·A

−M∗
1

hi ← gγi1 ·A`−i+2 for i = 1, . . . , `+ 1 ,

where γ, γ0, . . . , γ`+1 ←$ Zq. By setting the parameters as such, B implicitly sets x = α and

sk0 = hx = Aγ1 · g
(α`+2)
1 . The goal of the reduction is to extract the value of hx from A′, allowing

B to easily compute its (`+ 1)-wBDHI∗3 solution e(g1, B)(α`+2).

6

Algorithm B responds to A′’s oracle queries as follows.

Key update. There is no need for B to simulate anything beyond keeping track of the current
time period t.

Signing. To answer a signing query for message M in time period t 6= t∗, B first internally derives
a valid key (c, d, e`+1) for the leaf corresponding to t, from which it can then compute a
signature on M in the standard way. In fact, B derives a valid key (c, d, ek+1, . . . , e`+1) for
the k-th level ancestor of the leaf node t, where k = mini(ti 6= t∗i) is the leftmost bit of t that
is different from the same bit in t∗. (Note that k must exist and 1 ≤ k ≤ ` because t 6= t∗.)
From this key, B can further derive a key for the leaf node t and a signature for M in the
standard way.

The key for the k-th level ancestor of t must have a structure

(c, d, ek+1, . . . , e`+1) =

(
gr2 , h

x
(
h0

k∏
i=1

htii
)r
, hrk+1 , . . . , h

r
`+1

)
for a uniformly distributed value of r. Focusing on the second component d first, we have
that

d = hx ·

(
h0 ·

k∏
i=1

htii

)r

= (gγ1A`+1)
α ·

((
gγ01 ·

∏̀
i=1

A
−t∗i
`−i+2 ·A

−M∗
1

)
·
k∏
i=1

(
gγi1 ·A`−i+2

)ti)r

= Aγ1 · g
(α`+2)
1 ·

(
g
γ0+

∑k
i=1 γiti

1 ·Atk−t
∗
k

`−k+2 ·
∏̀

i=k+1

A
−t∗i
`−i+2 ·A

−M∗
1

)r
,

where the third equality holds because ti = t∗i for i < k. (Note that in the product notation∏`
i=k+1 above, we let the result of the product simply be the unity element if k ≥ `.) Let us

denote the four factors between parentheses in the last equation as F1, F2, F3, and F4, and

denote their product as F . If we let r ← r′ + αk

t∗k−tk
for a random r′ ←$ Zq, then we have that

d = Aγ1 · g
(α`+2)
1 · F r

′
· F

αk

t∗
k
−tk .

The first and third factors in this product are easy to compute. The second factor would

allow B to compute the solution its (` + 1)-wBDHI∗3 problem as e(g
(α`+2)
1 , B), so B cannot

7

simply compute it. The last factor can be split up as

B
αk

t∗
k
−tk

1 = A

γ0+
∑k
i=1 γiti

t∗
k
−tk

k

B
αk

t∗
k
−tk

2 = A−α
k

`−k+2 = g
−(α`+2)
1

B
αk

t∗
k
−tk

3 =
∏̀

i=k+1

A

−t∗i
t∗
k
−tk

`+k−i+2 =

`−k∏
i=1

A

−t∗k+i
t∗
k
−tk

`−i+2

B
αk

t∗
k
−tk

4 = A
−M∗
t∗
k
−tk

k+1 .

Because 1 ≤ k ≤ `, it is clear that all but the second of these can be computed from B’s

inputs, and that the second cancels out with the factor g
(α`+2)
1 in d, so that it can indeed

compute d this way. The other components of the key are also efficiently computable as

c = gr
′

1 ·A
1

t∗
k
−tk

k

ei = hr
′

i ·A`+k−i+2 for i = k + 1, . . . , `+ 1

= hr
′

k+i ·A`−i+2 for i = 1, . . . , `− k + 1 .

For a signing query with t = t∗ but M 6= M∗, B proceeds in a similar way, but derives
the signature (σ1, σ2) directly. Algorithm B can generate a valid signature using a similar
approach as we used above to derive a key at level k, because a signature is essentially a key
at level `+ 1. Namely, B computes a signature

σ1 = hx ·

(
h0 ·

∏̀
i=1

h
t∗i
i · h

M
`+1

)r

= (gγ1A`+1)
α ·

((
gγ01 ·

∏̀
i=1

A
−t∗i
`−i+2 ·A

−M∗
1

)
·
∏̀
i=1

(
gγi1 ·A`−i+2

)t∗i
· (gγ`+1

1 ·A1)M

)r
= Aγ1 · g

(α`+2)
1 ·

(
g
γ0+

∑`
i=1 γiti+γ`+1M

1 ·AM−M
∗

1

)r
σ2 = gr2

by setting r ← r′ + α`+1

M∗−M for r′ ←$ Zq, so that B can compute (σ1, σ2) from its inputs
A1, . . . , A`+1.

Break in. The only nodes in the tree for which B cannot simulate valid keys using the above
approach are nodes that correspond to prefixes of t∗. These nodes are all ancestors of leaf
t∗, however, and therefore cannot be present in the minimal cover of leaf t̄ > t∗. So B can
simulate sk t̄ by deriving the needed node keys in the same way as above.

Forgery. When A′ outputs a forgery (σ∗1 , σ
∗
2) that satisfies the verification equation

e(σ∗1 , g2) = e(h, y) · e
(
h0 ·

∏̀
j=1

h
tj
j · h

M
`+1 , σ

∗
2

)
,

8

then there exists an r ∈ Zq such that

σ∗1 = hα ·
(
h0 ·

∏̀
i=1

h
t∗i
i · h

M
`+1

)r
σ∗2 = gr2 .

By the way that B chose the parameters h, h0, . . . , h`+1, this means that

σ∗1 = Aγ1 · g
(α`+2)
1 · (gr1)

γ0+
∑`
i=1 γit

∗
i+γ`+1M

∗
,

so that we have that

e(σ∗1 , B) = e(Aγ1 , B) · e(g
(α`+2)
1 , B) · e(g1, σ

∗
2)γ0+

∑`
i=1 γit

∗
i+γ`+1M

∗
,

from which B can easily compute and output its response as e(g1, B)(α`+2). It does so whenever
A′ is successful, so that

Adv
(`+1)-wBDHI∗3
G1×G2

(B) ≥ Advsfu-cma
FS (A′) .

Together with Equation (1), we obtain the inequality of the theorem statement.

4 Forward-Secure Multi-Signatures

The easiest way to turn the forward-secure signature scheme from the previous section into a multi-
signature scheme is to observe that the component-wise product (Σ1,Σ2) = (

∏n
i=1 σi,1,

∏n
i=1 σi,2)

of a number of signatures (σ1,1, σ1,2), . . . , (σn,1, σn,2) satisfies the verification equation with respect
of the product of public keys Y = y1 · . . . · yn. This method of combining signatures is vulnerable
to a rogue-key attack, however, where a malicious signer chooses his public key based on that of an
honest signer, so that the malicious signer can compute valid signatures for their aggregated public
key. The scheme below borrows a technique due to Ristenpart and Yilek [RY07] using proofs of
possession to prevent against these types of attack.

4.1 Definitions

In addition to the algorithms of a forward-secure signature scheme in Section 3.1, a forward-secure
multi-signature scheme FMS adds the following algorithms.

Key aggregation: apk ←$ KAgg(pk1, . . . , pkn). On input a list of individual public keys (pk1, . . . , pkn),
the key aggregation returns an aggregate public key apk , or ⊥ to indicate that key aggregation
failed.

Signature aggregation. Σ←$ SAgg((pk1, σ1), . . . , (pkn, σn), t,M). Anyone can aggregate a given
list of individual signatures (σ1, . . . , σn) by different signers with public keys (pk1, . . . , pkn)
on the same message M and for the same period t into a single multi-signature Σ.

9

Aggregate verification. b ← AVf(apk , t,M,Σ). Given an aggregate public key apk , a message
M , a time period t, and an aggregate signature Σ, the verification algorithm returns 1 to
indicate that all signers in apk signed M in period t, or 0 to indicate that verification failed.

Correctness requires that for all messages M ∈ {0, 1}∗, for all n ∈ Z, and for all time peri-
ods t ∈ {0, . . . , T − 1}, it holds that AVf(KAgg(pk1, . . . , pkn), t,M,SAgg((pk1,Sign(sk1,t,M)), . . . ,
(pkn,Sign(skn,t)), t,M)) = 1 with probability one if (pk i, sk i,0) ←$ Kg and sk i, j + 1 ←$ Upd(sk i,j)
for i = 1, . . . , n and j = 0, . . . , t− 1.

Unforgeability (fu-cma) is defined through a game that is similar to that described in Section 3.1.
The adversary is given the public key pk of an honest signer and access to the same key update,
signing, and break-in oracles. However, at the end of the game, the adversary’s forgery consists of
a list of public keys (pk∗1, . . . , pk

∗
n), a message M∗, a time period t∗, and a multi-signature Σ∗. The

forgery is considered valid if

• pk ∈ {pk∗1, . . . , pk
∗
n},

• Σ∗ is valid with respect to the aggregate public key apk∗ of (pk∗1, . . . , pk
∗
n), message M∗, and

time period t∗,

• t̄ > t∗,

• and A never made a signing query for M∗ during time period t∗.

4.2 Construction

Let HG1
: {0, 1}∗ → G∗1 be a hash function. The multi-signature scheme reuses the key update

and signature algorithms from the scheme from Section 3.2, but uses different key generation and
verification algorithms, and adds signature and key aggregation.

Key generation. Each signer chooses x←$ Zq and computes y ← gx2 and y′ ← HG1
(PoP, y), where

PoP is a fixed string used as a prefix for domain separation. It sets its public key to pk = (y, y′)
and computes its initial secret key as sk0 ← hx.

Key aggregation. Given public keys pk1 = (y1, y
′
1), . . . , (yn, y

′
n), the key aggregation algorithm

first validates the proofs of possession in the public keys by checking whether

e(y′i, g2) = e(HG1
(PoP, yi), yi)

for i = 1, . . . , n, or equivalently, whether

e
(n∏
i=1

y′1, g2

)
=

n∏
i=1

e(HG1
(PoP, yi), yi) .

Of course, these verifications only need to be performed once for each key; after that, the key
can be marked as valid and used in more key aggregation without verifying again. If these
checks pass, then it computes Y ←

∏n
i=1 yi and returns the aggregate public key apk = y. If

not, it returns ⊥.

10

Signature aggregation. Given signatures (σ1,1, σ1,2), . . . , (σn,1, σn,2) ∈ G1 × G2 on the same
message M , the signature aggregation algorithm outputs

(Σ1,Σ2) =
(n∏
i=1

σi,1 ,

n∏
i=1

σi,2
)
.

Aggregate verification. Given an aggregate signature (Σ1,Σ2) ∈ G1 ×G2 on message M under
aggregate public key apk = Y in time period t, the verifier accepts if and only if apk 6= ⊥ and

e(Σ1, g2) = e(h, Y) · e
(
h0 ·

∏̀
j=1

h
tj
j · h

Hq(M)
`+1 , Σ2

)
.

4.3 Security

Theorem 2. For any fu-cma adversary A against the above forward-secure multi-signature scheme
for T = 2` time periods in the random-oracle model, there exists an adversary B with essentially
the same running time that solves the (`+ 1)-wBDHI∗3 problem with advantage

Adv
(`+1)-wBDHI∗3
G1×G2

(B) ≥ 1

T · qH
·Advfu-cma

FMS (A)− q2
H

2κ
,

where qH is the number of random-oracle queries made by A.

Proof. We prove the theorem by showing that a successful forgery A against the multi-signature
scheme yields a successful forger A′ against the single-signer scheme of Section 3.2 such that

Advfu-cma
FS (A′) ≥ Advfu-cma

FS (A) .

The theorem then follows from Theorem 1.
On input the parameters (T, h, h0, . . . , h`+1) and a public key y for the single-signer scheme,

algorithm A′ chooses r ←$ Z∗q and stores (y,⊥, gr1) in a list L. It computes y′ ← yr and runs A on
the same common parameters and target public key pk = (y, y′). Algorithm B answers all of A’s
key update, signing, and break-in oracle queries, as well as random-oracle queries for Hq, by simply
relaying queries and responses to and from A′’s own oracles. Queries to the random oracle for HG1

are answered as follows.

Random oracle HG1
. On input z, A′ checks whether there already exists a tuple (z, ·, v) ∈ L. If

so, it returns v. If not, it chooses r ←$ Z∗q , computes v ← hr, adds a tuple (z, r, v) to L and
returns v.

When A outputs its forgery (pk∗1, . . . , pk
∗
n),M∗, t∗,Σ∗, algorithm A′ first computes the aggregate

public key apk∗ for (pk∗1, . . . , pk
∗
n), creating additional entries in L if necessary. Let pk∗i = (yi, y

′
i)

and yi = gxi2 . If apk∗ = Y 6= ⊥, then it holds that y′i = HG1
(PoP, yi)

xi for all i = 1, . . . , n. From
the aggregate verification equation

e(Σ∗1, g2) = e(h, Y) · e
(
h0 ·

∏̀
j=1

h
t∗j
j · h

Hq(M
∗)

`+1 , Σ∗2
)

11

and the fact that Y =
∏n
i=1 yi = y · g

∑n
i=1,yi 6=y

xi

2 , we have that

e(Σ∗1, g2) = e(h, y) · e(h, g2)
∑n
i=1,yi 6=y

xi · e
(
h0 ·

∏̀
j=1

h
t∗j
j · h

Hq(M
∗)

`+1 , Σ∗2
)

⇔ e(Σ∗1 · h
−

∑n
i=1,yi 6=y

xi , g2) = e(h, y) · e
(
h0 ·

∏̀
j=1

h
t∗j
j · h

Hq(M
∗)

`+1 , Σ∗2
)
.

For all yi 6= y, A′ looks up the tuple (yi, ri, vi) in L. We know that vi = hri , and hence that
y′i = hrixi . By comparing the last equation above to the verification equation of the single-signer
scheme, and by observing that y′i = hrixi , we know that the pair

σ∗1 ← Σ∗1 ·
n∏

i=1,yi 6=y

y′i
−1/ri

σ∗2 ← Σ∗2

is a valid forgery for the single-signer scheme, so A′ outputs (σ∗1 , σ
∗
2).

5 Variants and Extensions

Using internal nodes. For ease of exposition, our scheme only assigns time periods to leaf nodes
in the tree. Alternatively, one could follow the approach of [CHK07] to use all nodes in the tree, in
a pre-order traversal, as time periods, which will improve the efficiency of the key update algorithm.
Time periods are then identified by bit strings of length at most `, rather than exactly ` bits, and
a signature in time period t = t1 . . . td is a tuple of the form

(σ1, σ2) =

(
hx ·

(
h0

d∏
j=1

h
tj
j · h

Hq(M)
`+1

)r
, gr2

)
.

Details are left to the reader.

Non-binary trees. One could try to reduce the key size by using b-ary trees instead of binary
trees. A larger value of b reduces the depth of the tree, but increases the amount of key material
that must be kept at each level of the tree. To support T time periods, one needs a b-ary tree of
depth ` = dlogb T e. A node key at level d, however, can now take up to b− 1 keys of one element
in G2 and (`+ d− 2) elements of G1.

The savings effect is quite limited, however, because the disadvantage of needing more keys per
level quickly starts dominating the advantage of having less levels. For practical values of T , the
maximum size of the secret key will usually be minimal for b = 3.

Parallel key timelines. In some applications, a signer may want to maintain several parallel
timelines for different usages of a signing key. For example, in a sharded blockchain, the shards may
be running in parallel at different speeds, without strict synchronization between the shards. If a
time frame of the forward-secure signature scheme corresponds to the block height of a blockchain,
for example, then the signer needs to maintain a different key schedule for the different shards.

12

A trivial approach to “scope” a forward-secure signature scheme is of course to use certificates.
More specifically, the signer generates a standard signature key pair (pk , sk) and one forward-secure
signature key pair (pk scope , sk scope,0) for every scope that he plans to use. The signer creates and
publishes certificates for all public keys pk scope using sk and securely deletes sk . (Deleting sk is
needed because otherwise an adversary, after breaking in, can re-generate and re-certify a fresh key
pair (pk scope , sk scope,0) for an existing scope.)

A more efficient approach for our particular scheme is to replace the fixed common parameter h
with the output of a hash function HG1(scope, scope). Meaning, during key generation, the signer
generates sk scope,0 ← {HG1

(scope, scope)x for all relevant scopes scope and deletes the master key
x. It can then update, sign, and aggregate signatures for each scope separately in the same way
as before, but substituting HG1

(scope, scope) for h. Verification of individual signatures and of
multi-signatures is also the same as before, substituting HG1(scope, scope) for h.

Tighter security. The loss in tightness in Equation (1) of T · qH can be brought down to T · qS

using Coron’s technique [Cor00], where qS is the number of signing queries made by the adversary
A, by hashing the message into G1 instead of into Zq. Namely, a multi-signature would be a tuple
(Σ1,Σ2,Σ3) satisfying

e(Σ1, g2) = e(h, Y) · e
(
h0 ·

∏̀
j=1

h
tj
j , Σ2

)
· e
(
HG1

(msg,M),Σ3

)
.

This scheme has the additional advantage of saving up to ` elements of G1 in secret key size, but
signatures are one element of G2 longer than the base scheme. We leave details to the reader.

Alternative key aggregation mechanisms. In situations where public key length is crit-
ical, one could alternatively reuse techniques from [MPSW18, BDN18b] where signers’ public
keys are simply given by pk i = yi = gxi2 , but the aggregate public key is computed as apk ←∏n
i=1 pk

Hq({pk1,...,pkn},pki)
i . Individual signatures (σ1,1, σ1,2), . . . , (σn,1, σn,2) are aggregated as

(Σ1,Σ2) ←
(n∏
i=1

σ
Hq({pk1,...,pkn},pki)
i,1 ,

n∏
i=1

σ
Hq({pk1,...,pkn},pki)
i,2

)
,

so that verification can be performed as usual.

Partial aggregation of multi-signatures. Further savings in terms of signature length can be
obtained by partially aggregating multi-signatures. Multi-signatures (Σi,1,Σi,2) under aggregate
public keys apk i = Yi on messages Mi for time periods ti for i = 1, . . . , n, can be compressed into
an aggregate multi-signature (Σ1,Σ1,2, . . . ,Σn,2) where Σ1 ←

∏n
i=1 Σi,1, which can be verified by

checking that

e(Σ1, g2) = e(h,

n∏
i=1

Yi) ·
n∏
i=1

e
(
h0 ·

∏̀
j=1

h
ti,j
j · hHq(Mi)

`+1 , Σi,2
)
.

Care must be taken, however, that either the messages Mi are all different, or that all aggregate
public keys apk1, . . . , apkn are “trusted”, in the sense that the verifier checks that they are composed
of individual public keys with valid proofs of possession. One could enforce the messages Mi to be

13

all different by including the aggregate public key in the message Mi = apk i‖M ′i , but this has the
disadvantage that the aggregate public key (and hence, the set of signers in the aggregate) must be
known at the time of signing. Failure to follow these precautions makes the scheme insecure, because
for a given aggregate public key apk1 it is easy to come up with a “rogue” key apk2 = gx2/apk1

that allows an adversary to forge an aggregate signature on any message under apk1 and apk2.

Acknowledgements

We would like to thank Jens Groth for his useful feedback.

References

[And00] Ross Anderson. Two remarks on public-key cryptology. Manuscript. Relevant material
presented by the author in an invited lecture at the 4th ACM Conference on Com-
puter and Communications Security, CCS 1997, Zurich, Switzerland, April 1–4, 1997,
September 2000.

[AR00] Michel Abdalla and Leonid Reyzin. A new forward-secure digital signature scheme. In
Tatsuaki Okamoto, editor, Advances in Cryptology – ASIACRYPT 2000, volume 1976
of Lecture Notes in Computer Science, pages 116–129, Kyoto, Japan, December 3–7,
2000. Springer, Heidelberg, Germany.

[BB04] Dan Boneh and Xavier Boyen. Efficient selective-ID secure identity based encryption
without random oracles. In Christian Cachin and Jan Camenisch, editors, Advances in
Cryptology – EUROCRYPT 2004, volume 3027 of Lecture Notes in Computer Science,
pages 223–238, Interlaken, Switzerland, May 2–6, 2004. Springer, Heidelberg, Germany.

[BBG05a] Dan Boneh, Xavier Boyen, and Eu-Jin Goh. Hierarchical identity based encryption
with constant size ciphertext. In Ronald Cramer, editor, Advances in Cryptology –
EUROCRYPT 2005, volume 3494 of Lecture Notes in Computer Science, pages 440–
456, Aarhus, Denmark, May 22–26, 2005. Springer, Heidelberg, Germany.

[BBG05b] Dan Boneh, Xavier Boyen, and Eu-Jin Goh. Hierarchical identity based encryption
with constant size ciphertext. Cryptology ePrint Archive, Report 2005/015, 2005.
http://eprint.iacr.org/2005/015.

[BCJ08] Ali Bagherzandi, Jung Hee Cheon, and Stanislaw Jarecki. Multisignatures secure un-
der the discrete logarithm assumption and a generalized forking lemma. In Peng Ning,
Paul F. Syverson, and Somesh Jha, editors, ACM CCS 08: 15th Conference on Com-
puter and Communications Security, pages 449–458, Alexandria, Virginia, USA, Octo-
ber 27–31, 2008. ACM Press.

[BDN18a] Dan Boneh, Manu Drijvers, and Gregory Neven. Compact multi-signatures for smaller
blockchains. In Thomas Peyrin and Steven Galbraith, editors, Advances in Cryptology –
ASIACRYPT 2018, Part II, volume 11273 of Lecture Notes in Computer Science, pages
435–464, Brisbane, Queensland, Australia, December 2–6, 2018. Springer, Heidelberg,
Germany.

14

[BDN18b] Dan Boneh, Manu Drijvers, and Gregory Neven. Compact multi-signatures for smaller
blockchains. Cryptology ePrint Archive, Report 2018/483, 2018. https://eprint.

iacr.org/2018/483.

[BF01] Dan Boneh and Matthew K. Franklin. Identity-based encryption from the Weil pairing.
In Joe Kilian, editor, Advances in Cryptology – CRYPTO 2001, volume 2139 of Lecture
Notes in Computer Science, pages 213–229, Santa Barbara, CA, USA, August 19–23,
2001. Springer, Heidelberg, Germany.

[BGLS03] Dan Boneh, Craig Gentry, Ben Lynn, and Hovav Shacham. Aggregate and verifiably
encrypted signatures from bilinear maps. In Eli Biham, editor, Advances in Cryptology
– EUROCRYPT 2003, volume 2656 of Lecture Notes in Computer Science, pages 416–
432, Warsaw, Poland, May 4–8, 2003. Springer, Heidelberg, Germany.

[BGOY07] Alexandra Boldyreva, Craig Gentry, Adam O’Neill, and Dae Hyun Yum. Ordered
multisignatures and identity-based sequential aggregate signatures, with applications
to secure routing. In Peng Ning, Sabrina De Capitani di Vimercati, and Paul F.
Syverson, editors, ACM CCS 07: 14th Conference on Computer and Communications
Security, pages 276–285, Alexandria, Virginia, USA, October 28–31, 2007. ACM Press.

[BGR12] Kyle Brogle, Sharon Goldberg, and Leonid Reyzin. Sequential aggregate signatures
with lazy verification from trapdoor permutations - (extended abstract). In Xiaoyun
Wang and Kazue Sako, editors, Advances in Cryptology – ASIACRYPT 2012, volume
7658 of Lecture Notes in Computer Science, pages 644–662, Beijing, China, Decem-
ber 2–6, 2012. Springer, Heidelberg, Germany.

[BM99] Mihir Bellare and Sara K. Miner. A forward-secure digital signature scheme. In
Michael J. Wiener, editor, Advances in Cryptology – CRYPTO’99, volume 1666 of
Lecture Notes in Computer Science, pages 431–448, Santa Barbara, CA, USA, Au-
gust 15–19, 1999. Springer, Heidelberg, Germany.

[BN06] Mihir Bellare and Gregory Neven. Multi-signatures in the plain public-key model and
a general forking lemma. In Ari Juels, Rebecca N. Wright, and Sabrina De Capitani di
Vimercati, editors, ACM CCS 06: 13th Conference on Computer and Communications
Security, pages 390–399, Alexandria, Virginia, USA, October 30 – November 3, 2006.
ACM Press.

[BN07] Mihir Bellare and Gregory Neven. Identity-based multi-signatures from RSA. In
Masayuki Abe, editor, Topics in Cryptology – CT-RSA 2007, volume 4377 of Lecture
Notes in Computer Science, pages 145–162, San Francisco, CA, USA, February 5–9,
2007. Springer, Heidelberg, Germany.

[Bol03] Alexandra Boldyreva. Threshold signatures, multisignatures and blind signatures based
on the gap-Diffie-Hellman-group signature scheme. In Yvo Desmedt, editor, PKC 2003:
6th International Workshop on Theory and Practice in Public Key Cryptography, vol-
ume 2567 of Lecture Notes in Computer Science, pages 31–46, Miami, FL, USA, Jan-
uary 6–8, 2003. Springer, Heidelberg, Germany.

[BR93] Mihir Bellare and Phillip Rogaway. Random oracles are practical: A paradigm for
designing efficient protocols. In V. Ashby, editor, ACM CCS 93: 1st Conference on

15

Computer and Communications Security, pages 62–73, Fairfax, Virginia, USA, Novem-
ber 3–5, 1993. ACM Press.

[BS16] Rachid El Bansarkhani and Jan Sturm. An efficient lattice-based multisignature scheme
with applications to bitcoins. In Sara Foresti and Giuseppe Persiano, editors, CANS
16: 15th International Conference on Cryptology and Network Security, volume 10052
of Lecture Notes in Computer Science, pages 140–155, Milan, Italy, November 14–16,
2016. Springer, Heidelberg, Germany.

[BSSW06] Xavier Boyen, Hovav Shacham, Emily Shen, and Brent Waters. Forward-secure signa-
tures with untrusted update. In Ari Juels, Rebecca N. Wright, and Sabrina De Capitani
di Vimercati, editors, ACM CCS 06: 13th Conference on Computer and Communica-
tions Security, pages 191–200, Alexandria, Virginia, USA, October 30 – November 3,
2006. ACM Press.

[CFH+07] Yang Cui, Eiichiro Fujisaki, Goichiro Hanaoka, Hideki Imai, and Rui Zhang. Formal
security treatments for signatures from identity-based encryption. In Willy Susilo,
Joseph K. Liu, and Yi Mu, editors, ProvSec 2007: 1st International Conference on
Provable Security, volume 4784 of Lecture Notes in Computer Science, pages 218–227,
Wollongong, Australia, November 1–2, 2007. Springer, Heidelberg, Germany.

[CHK07] Ran Canetti, Shai Halevi, and Jonathan Katz. A forward-secure public-key encryption
scheme. Journal of Cryptology, 20(3):265–294, July 2007.

[Cor00] Jean-Sébastien Coron. On the exact security of full domain hash. In Mihir Bellare,
editor, Advances in Cryptology – CRYPTO 2000, volume 1880 of Lecture Notes in
Computer Science, pages 229–235, Santa Barbara, CA, USA, August 20–24, 2000.
Springer, Heidelberg, Germany.

[DEF+18] Manu Drijvers, Kasra Edalatnejad, Bryan Ford, Eike Kiltz, Julian Loss, Gregory Neven,
and Igors Stepanovs. On the security of two-round multi-signatures. Cryptology ePrint
Archive, Report 2018/417, 2018. https://eprint.iacr.org/2018/417.

[ElG85] Taher ElGamal. A public key cryptosystem and a signature scheme based on discrete
logarithms. IEEE Transactions on Information Theory, 31:469–472, 1985.

[GOR18] Craig Gentry, Adam O’Neill, and Leonid Reyzin. A unified framework for trapdoor-
permutation-based sequential aggregate signatures. In Michel Abdalla and Ricardo
Dahab, editors, PKC 2018: 21st International Conference on Theory and Practice of
Public Key Cryptography, Part II, volume 10770 of Lecture Notes in Computer Science,
pages 34–57, Rio de Janeiro, Brazil, March 25–29, 2018. Springer, Heidelberg, Germany.

[GS02] Craig Gentry and Alice Silverberg. Hierarchical ID-based cryptography. In Yuliang
Zheng, editor, Advances in Cryptology – ASIACRYPT 2002, volume 2501 of Lecture
Notes in Computer Science, pages 548–566, Queenstown, New Zealand, December 1–5,
2002. Springer, Heidelberg, Germany.

[HZ93] Thomas Hardjono and Yuliang Zheng. A practical digital multisignature scheme based
on discrete logarithms. In Jennifer Seberry and Yuliang Zheng, editors, Advances
in Cryptology – AUSCRYPT’92, volume 718 of Lecture Notes in Computer Science,

16

pages 122–132, Gold Coast, Queensland, Australia, December 13–16, 1993. Springer,
Heidelberg, Germany.

[IN83] K. Itakura and K. Nakamura. A public-key cryptosystem suitable for digital multisig-
natures. Technical report, NEC Research and Development, 1983.

[IR01] Gene Itkis and Leonid Reyzin. Forward-secure signatures with optimal signing and
verifying. In Joe Kilian, editor, Advances in Cryptology – CRYPTO 2001, volume
2139 of Lecture Notes in Computer Science, pages 332–354, Santa Barbara, CA, USA,
August 19–23, 2001. Springer, Heidelberg, Germany.

[KR03] Anton Kozlov and Leonid Reyzin. Forward-secure signatures with fast key update.
In Stelvio Cimato, Clemente Galdi, and Giuseppe Persiano, editors, SCN 02: 3rd
International Conference on Security in Communication Networks, volume 2576 of
Lecture Notes in Computer Science, pages 241–256, Amalfi, Italy, September 12–13,
2003. Springer, Heidelberg, Germany.

[Kra00] Hugo Krawczyk. Simple forward-secure signatures from any signature scheme. In
S. Jajodia and P. Samarati, editors, ACM CCS 00: 7th Conference on Computer and
Communications Security, pages 108–115, Athens, Greece, November 1–4, 2000. ACM
Press.

[LBG09] Duc-Phong Le, Alexis Bonnecaze, and Alban Gabillon. Multisignatures as secure as
the Diffie-Hellman problem in the plain public-key model. In Hovav Shacham and
Brent Waters, editors, PAIRING 2009: 3rd International Conference on Pairing-based
Cryptography, volume 5671 of Lecture Notes in Computer Science, pages 35–51, Palo
Alto, CA, USA, August 12–14, 2009. Springer, Heidelberg, Germany.

[LHL95] Chuan-Ming Li, Tzonelih Hwang, and Narn-Yih Lee. Threshold-multisignature schemes
where suspected forgery implies traceability of adversarial shareholders. In Alfredo De
Santis, editor, Advances in Cryptology – EUROCRYPT’94, volume 950 of Lecture Notes
in Computer Science, pages 194–204, Perugia, Italy, May 9–12, 1995. Springer, Heidel-
berg, Germany.

[LMRS04] Anna Lysyanskaya, Silvio Micali, Leonid Reyzin, and Hovav Shacham. Sequential
aggregate signatures from trapdoor permutations. In Christian Cachin and Jan Ca-
menisch, editors, Advances in Cryptology – EUROCRYPT 2004, volume 3027 of Lec-
ture Notes in Computer Science, pages 74–90, Interlaken, Switzerland, May 2–6, 2004.
Springer, Heidelberg, Germany.

[LOS+06] Steve Lu, Rafail Ostrovsky, Amit Sahai, Hovav Shacham, and Brent Waters. Sequential
aggregate signatures and multisignatures without random oracles. In Serge Vaudenay,
editor, Advances in Cryptology – EUROCRYPT 2006, volume 4004 of Lecture Notes
in Computer Science, pages 465–485, St. Petersburg, Russia, May 28 – June 1, 2006.
Springer, Heidelberg, Germany.

[MMM02] Tal Malkin, Daniele Micciancio, and Sara K. Miner. Efficient generic forward-secure
signatures with an unbounded number of time periods. In Lars R. Knudsen, editor,

17

Advances in Cryptology – EUROCRYPT 2002, volume 2332 of Lecture Notes in Com-
puter Science, pages 400–417, Amsterdam, The Netherlands, April 28 – May 2, 2002.
Springer, Heidelberg, Germany.

[MOR01] Silvio Micali, Kazuo Ohta, and Leonid Reyzin. Accountable-subgroup multisignatures:
Extended abstract. In ACM CCS 01: 8th Conference on Computer and Communi-
cations Security, pages 245–254, Philadelphia, PA, USA, November 5–8, 2001. ACM
Press.

[MPSW18] Gregory Maxwell, Andrew Poelstra, Yannick Seurin, and Pieter Wuille. Simple schnorr
multi-signatures with applications to bitcoin. Cryptology ePrint Archive, Report
2018/068, 2018. https://eprint.iacr.org/2018/068.

[MWLD10] Changshe Ma, Jian Weng, Yingjiu Li, and Robert H. Deng. Efficient discrete logarithm
based multi-signature scheme in the plain public key model. Des. Codes Cryptography,
54(2):121–133, 2010.

[Nev08] Gregory Neven. Efficient sequential aggregate signed data. In Nigel P. Smart, editor,
Advances in Cryptology – EUROCRYPT 2008, volume 4965 of Lecture Notes in Com-
puter Science, pages 52–69, Istanbul, Turkey, April 13–17, 2008. Springer, Heidelberg,
Germany.

[OO93] Kazuo Ohta and Tatsuaki Okamoto. A digital multisignature scheme based on the Fiat-
Shamir scheme. In Hideki Imai, Ronald L. Rivest, and Tsutomu Matsumoto, editors,
Advances in Cryptology – ASIACRYPT’91, volume 739 of Lecture Notes in Computer
Science, pages 139–148, Fujiyoshida, Japan, November 11–14, 1993. Springer, Heidel-
berg, Germany.

[OO99] Kazuo Ohta and Tatsuaki Okamoto. Multi-signature schemes secure against active
insider attacks. IEICE Transactions on Fundamentals of Electronics, Communications
and Computer Sciences, 82(1):21–31, 1999.

[Poe19] Andrew Poelstra. Musig: A new multisignature standard, 2019. https://

blockstream.com/2019/02/18/musig-a-new-multisignature-standard/.

[RY07] Thomas Ristenpart and Scott Yilek. The power of proofs-of-possession: Securing mul-
tiparty signatures against rogue-key attacks. In Moni Naor, editor, Advances in Cryp-
tology – EUROCRYPT 2007, volume 4515 of Lecture Notes in Computer Science, pages
228–245, Barcelona, Spain, May 20–24, 2007. Springer, Heidelberg, Germany.

[SA09] N. R. Sunitha and B. B. Amberker. Forward-secure multi-signatures. In Manish
Parashar and Sanjeev K. Aggarwal, editors, Distributed Computing and Internet Tech-
nology, 5th International Conference, ICDCIT 2008, volume 5375 of Lecture Notes in
Computer Science. Springer, 2009.

[Wat05] Brent R. Waters. Efficient identity-based encryption without random oracles. In Ronald
Cramer, editor, Advances in Cryptology – EUROCRYPT 2005, volume 3494 of Lec-
ture Notes in Computer Science, pages 114–127, Aarhus, Denmark, May 22–26, 2005.
Springer, Heidelberg, Germany.

18

