
A Modular Treatment of Blind Signatures from
Identification Schemes

Eduard Hauck Eike Kiltz Julian Loss

Ruhr University Bochum
{eduard.hauck,eike.kiltz,julian.loss}@rub.de

Abstract

We propose a modular security treatment of blind signatures derived from linear identification
schemes in the random oracle model. To this end, we present a general framework that captures
several well known schemes from the literature and allows to prove their security.

Our modular security reduction introduces a new security notion for identification schemes
called One-More-Man In the Middle Security which we show equivalent to the classical One-More-
Unforgeability notion for blind signatures.

We also propose a generalized version of the Forking Lemma due to Bellare and Neven (CCS
2006) and show how it can be used to greatly improve the understandability of the classical security
proofs for blind signatures schemes by Pointcheval and Stern (Journal of Cryptology 2000).

Keywords: Blind Signatures

1 Introduction
Blind Signatures are a fundamental cryptographic building block. Informally, a blind signature scheme is
an interactive protocol between a signer and an user in which the signer issues signatures on messages
chosen by the user. There are two security requirements: blindness ensures that the signer cannot
link a signature to the run of the protocol in which it was created and one-more unforgeability that
the user cannot forge a new signature. Originally proposed by Chaum [15] as the basis of his e-cash
system, blind signatures have since found numerous applications including e-voting [32] and anonymous
credentials [16, 26, 12, 14, 13, 7, 5]. Despite a flurry of schemes having been published over the past
three and a half decades, only a handful of works has considered blind signature schemes which are
mutually efficient, instantiable from standard assumptions, and remain secure even when executed in an
arbitrarily concurrent fashion. The notoriously difficult task of constructing such schemes was first tackled
by Pointcheval and Stern [29]. Their groundbreaking work introduces the well-known forking lemma and
shows how it can be applied to prove security of the Okamoto-Schnorr blind signature scheme [25] under
the discrete logarithm assumption in the random oracle model (ROM) [10]. Their proof technique was
subsequently employed to prove the security of further schemes [28, 33, 6]. Unfortunately, due to the
complexity and subtlety of the argument in [29], these works present either only proof sketches [28] or
follow the proof of [29] almost verbatim.

1.1 Our Contribution: A Modular Framework for Blind Signatures
In this work, we propose a general framework which shows how to derive a blind signature scheme from any
linear function family (with certain properties), as recently introduced by Backendal et al. [4]. Whereas
blindness can be proved directly, one-more unforgeability is proved in two modular steps. In the first step,
one builds a linear identification scheme from the linear function family. One-more unforgeability of the
blind signature scheme in the random oracle model is shown to be tightly equivalent to a new and natural
security notion of the linear identification scheme, which we call one-more man-in-the-middle security. In
the second, technically involved, step it is shown that the latter is implied by collision resistance of the
linear function family. Our framework captures several important schemes from the literature including

Name Type Definition of linear function F Collision resistance
OS Group F : Z2

q → G, (x1, x2) 7→ gx1
1 gx2

2 DLP
OGQ RSA F : Zλ × Z∗N → Z∗N , (x1, x2) 7→ ax1xλ2 RSA
FS Factoring F : (Z∗N)k → (Z∗N)k, (x1, . . . , xk) 7→ (x2

1, . . . , x
2
k) FAC

Table 1: Examples of linear function families. Group type functions are defined over G of prime order q
with generators g1, g2. RSA and factoring type functions are defined over an RSA modulus N = P ·Q s.t.
gcd(λ, ϕ(N)) = gcd(λ,N) = 1 and a ∈ Z∗N .

the Okamoto-Schnorr (OS) [25], the Okamoto-GQ (OGQ) [25], and (a slightly modified version of) the
Fiat-Shamir (FS) [28] blind signature schemes and offers, for the first time, a complete and formal proof
for some of them. We now provide some details of our contributions.
Linear Function Families and Identification Schemes. In the following, we denote with LF a
family of linear (hash) functions. An identification scheme ID = ID[LF] is called a linear identification
scheme [4] if it follows a certain homomorphic structure induced by a linear (i.e., homomorphic) function
F from the family LF. For the purpose of building blind signatures, we will require that ID[LF] be perfectly
correct and that LF satisfy collision resistance. We will also assume some additional algebraic properties
about the functions in LF that will be introduced in further detail in Section 3. Example instantiations of
(collision resistant) linear function families can be derived from OS, OGQ, and FS (Table 1).
OMMIM Security of Linear Identification Schemes. We introduce a natural new security notion
for (arbitrary, not necessarily linear) canonical identification schemes called One-More Man-in-the-Middle
(OMMIM) security. Informally, ID is OMMIM-secure if it is infeasible to complete QP + 1 (or more) runs
of ID in the role of prover P after completing at most QP runs of ID in the role of verifier Ver. Note that
OMMIM is weaker than standard Man-in-the-Middle security [19] (which we show to be unachievable for
linear identification schemes) but stronger than impersonation against active attacks [17, 9].

Our first main result can be stated as follows:

Theorem 4.3 (informal). If LF is collision resistant, then ID[LF] is OMMIM-secure.

Our proof is based on a new Subset Forking Lemma that generalizes the one by Bellare and Neven
[8] and contains many technical ingredients from [29] who prove the security of the Okamoto-Schnorr
Blind Signature scheme. Unfortunately, the security bound from Theorem 4.3 is only meaningful if
QQP+1

Ch ≤ |S| =: q, where QCh refers to the (potentially large) number of sessions with the verifier and
challenge set S is a parameter of the identification scheme. We next show in Theorem 4.4 that a natural
generalization of Schnorr’s ROS-problem [34] to linear functions can be used to break the OMMIM security
of ID[LF]. The ROS-problem (for the relevant parameters) becomes information theoretically hard when
QQP+1

Ch ≤ q. For all other cases, it can be solved in sub-exponential time (QCh + 1) 2
√

log q/(1+log(QCh+1))

using Wagner’s k-List algorithm [36]. Our ROS-based attack works whenever S is a finite field, which is
the case for OS.
Canonical Blind Signature Schemes. We introduce the notion of canonical blind signature schemes
(BS), which are three-move blind signature schemes of a specific form. In terms of security, we define
blindness and one-more unforgeability (OMUF). Intuitively, OMUF states that the adversary can not
produce more valid message-signatures pairs than it has completed successful sessions with the signer.
(Note that each such session yields a valid message-signature pair.) Here we consider a natural and
strong version of OMUF in which abandoned session with the signer (i.e., sessions that are started but
never completed) are not counted as a successful sessions with the signer, as they do not yield a valid
message-signature pair. We propose a general compiler to convert any linear identification scheme ID[LF]
and a hash function H into a canonical blind signature scheme BS[LF,H]. Our second main result can be
stated as follows:

Theorem 5.7 (informal). OMUF security of BS[LF,H] is tightly equivalent to OMMIM security of ID[LF]
in the random oracle model.
Theorem 5.8 (informal). BS[LF,H] is blind in the random oracle model.

Figure 1.1 summarizes our modular security analysis of BS[LF,H]. Combining our main theorems, we
obtain security proofs for the OS, OGQ, and FS blind signature schemes. Here, the number of random

2

CRLF OMMIMID[LF] OMUFBS[LF,H]

ROSLF

Th. 4.3 Th. 5.7

Th. 4.4

Figure 1: Overview of our modular security analysis for BS[LF,H]. The arrows denote security implications.

oracle queries QH corresponds to the number QCh of open sessions with the verifier, whereas the number
QS of signing sessions corresponds to the number of sessions QP with the prover. Hence, OMUF security
of BS[LF,H] is only guaranteed if QQS+1

H � q, i.e., for polylogarithmically parallel signing sessions QS.
Our ROS-based attack demonstrates that this restriction is required.

1.2 Technical details
We now give an intuition for the proof of Theorem 4.3. Roughly, it states that one can reduce the
OMMIM security of ID[LF] from the problem of finding a non-trivial collision with respect to the linear
function family LF. Our proof follows the ideas of Pointcheval and Stern [29], but uses as a key ingredient
a novel forking lemma, which enables us to present the proof in [29] in a much more clean and general
fashion. The main idea behind our reduction is to run the adversary M against OMMIM security twice,
where the instance I and randomness ω in the second run are kept the same, and part of the oracle
answers, denoted h,h′, are re-sampled uniformly. In this way, we hope to obtain from M two distinct
values χ̂, χ̂′ which yield a collision with respect to LF. The main challenge in our setting is that χ̂ and χ̂′
depend on the internal state of M. To show that χ̂ 6= χ̂′ with high probability, one requires an intricate
argument that heavily builds upon a generalized version of Bellare and Neven’s Forking Lemma [8].
Our lemma is tailored toward the ideas of the proof in [29] and allows for a more fine-grained replay
strategy than the version of [8]. More precisely, our version of the forking lemma considers not only
the probability of successfully running an algorithm twice with the same instance I, randomness ω, and
(partially distinct) oracle answers h,h′, but also allows to analyze in more detail the properties of the
triples (I, ω,h), (I, ω,h′).

1.3 Blind Signatures from Lattices?
We remark that our proof requires linear functions with perfect correctness. This leaves open the question
of whether our framework can be extended to cover also the lattice-based identification scheme due to
Lyubashevsky [23] and the resulting blind signature scheme due to Rückert [33]. At a technical level,
imperfect correctness causes a problem in the proof of Theorem 5.7 which relates the OMMIM-security of
ID[LF] to OMUF-security of BS[LF,H]. If the adversary manages to abort even a single run of BS[LF,H]
in the simulated OMUF experiment, our reduction fails at simulating the necessary amount of completed
runs of BS[LF,H] to the adversary. This subtlety in the proof arises from the fact that in the OMMIM
experiment, there is no way of telling whether a run of ID[LF] with the adversary in the role of the verifier
was completed. On the other hand, in BS[LF,H], the user can prove to the signer that it obtained an
invalid signature for a particular run of the protocol and hence force a restart. We leave it as an open
problem to adapt our framework to linear functions with correctness errors.

1.4 History
This paper appeared at EUROCRYPT 2019 [20], this is the full version. Since publishing our paper, it
underwent some changes. Most notably, as kindly pointed out to us by Jesse Selover, a previous version of
our framework incorrectly stated that the algebraic structure defined by the Okamoto-Guillou-Quisquater
and Fiat-Shamir linear function families defined modules rather than pseudo modules. Unfortunately,
both our proofs of correctness and blindness relied on the distributive law over the resulting modules. To
overcome this issue, we introduced in this version a further algorithm to the definition of a linear function
family which we have called the distributor function, because it effectively acts as an error correction term

3

whenever distributivity was previously required. In the process, we have also added a much more detailed
description of these two linear function families. We also would like to thank Fabrice Benhamouda,
Mariana Raykova, and Tancrède Lepoint for pointing out subtle issues with a previous definition of pseudo
modules. After adapting the definition, there have been some minor changes to the proof of our main
theorem. Further changes in the latest version include some simplifications and minor corrections in some
of our proofs. Most notably, the ROS problem is now parametrised by its dimension ` for convenience,
whereas in a previous version, the adversary was free to choose the dimension of the equation system.
We also removed a false claim stating that the ROS attack applies to the Okamoto-Guillou-Quisquater
scheme.

2 Preliminaries and Notation
In this section, we introduce notation, basic definitions, and recurring proof tools. We begin by defining
(mathematical) notations for sets, vectors, sampling processes, and more. We also introduce security
games [11] and the Random Oracle Model (ROM) [10]. Finally we state some technical lemmas that we
will use in our analysis.

2.1 Notation

Sets and Vectors. For n ∈ N, [n] denotes the set {1, . . . , n}. We use bold-faced, lower case letters h
to denote a vector of elements and denote the length of h as |h|. For j ≥ 1, we write hj to denote the
j-th element of h and we write h[j] to refer to the first j entries of h, i.e., the elements h1, ...,hj . We use
boldface, upper case letters A to denote matrices. We denote the i-th row of A as Ai and the j-th entry
of Ai as Ai,j .
Sampling from Sets. We write h $← S to denote that the variable h is uniformly sampled from the
set S. For 1 ≤ j ≤ Q and g ∈ Sj−1, we write h′ $← SQ|g to denote that the vector h′ is uniformly
sampled from SQ, conditioned on h′

[j−1] = g. This sampling process can be implemented by copying
vector g into the first j − 1 entries of h′ and next sampling the remaining Q − j + 1 entries of h, i.e.,
h′j , . . . ,h

′
Q

$← SQ−j+1.)
Modular Arithmetic. Let N ∈ Z, N > 0. Throughout this work, we write ZN to denote the set
of integers {0, . . . , N − 1}. We write Z∗N to denote the set of integers a ∈ ZN s.t. gcd(a,N) = 1. For
convenience, we will write a ≡N b to denote that a = b mod N . We also sometimes denote the remainder
of a ∈ Z by division of N as [a]N .
Algorithms. We use uppercase, serif-free letters A,B to denote algorithms. Unless otherwise stated,
algorithms are probabilistic and we write (y1, . . .) $← A(x1, . . .) to denote that A returns (y1, . . .) when
run on input (x1, . . .). We write AB to denote that A has oracle access to B during its execution. To make
the randomness ω of an algorithm A on input x explicit, we write A(x;ω). Note that in this notation,
A is deterministic. For a randomised algorithm A, we use the notation y ∈ A(x) to denote that y is a
possible output of A on input x.
Security Games. We use standard code-based security games [11]. A game G is a probability experiment
in which an adversary A interacts with an implicit challenger that answers oracle queries issued by A. G
has one main procedure and an arbitrary amount of additional oracle procedures which describe how these
oracle queries are answered. To distinguish game-related oracle procedures from algorithmic procedures
more clearly, we denote the former using monospaced font, e.g., Oracle. We denote the (binary) output
b of game G between a challenger and an adversary A as GA ⇒ b. A is said to win G if GA ⇒ 1. Unless
otherwise stated, the randomness in the probability term Pr[GA ⇒ 1] is over all the random coins in
game G.
The Random Oracle Model. A common approach to analyse the security of cryptographic schemes
which internally use a hash function H is the random oracle model [10]. In this model, a hash function H
is treated as an idealised random function. Concretely, H is modelled as an oracle H with the following
properties. The oracle internally keeps a list H for bookkeeping purposes. Initially, all entries of H are
set to ⊥. On input x from the domain of H, the oracle first checks whether H[x] 6= ⊥, i.e., whether it has
already been defined via a prior query on the value x. If so, it returns H[x]. Otherwise, it sets H[x] to a

4

uniformly random value in the codomain of H and then returns H[x]. We write QH ≤ 2κ to denote the
maximal number of allowed hash queries, i.e., the number of times that the adversary may call the oracle
H. In this manner, QH becomes a parameter in our security notions.
Security Paramater. Throughout this work, we denote as κ the security parameter. We slightly
abuse notation and refer to the security parameter’s unary representation 1κ as the security parameter
indiscriminately.

2.2 Useful Lemmas

Splitting Lemmas. We first recall the well known splitting lemma [29]. This lemma is also sometimes
referred to as the ‘heavy row’ lemma in the literature (e.g. [3]).

Lemma 2.1 (Splitting Lemma). Let X ,Y be sets of finite size and B ⊂ X × Y be such that

Pr
(x,y) $←X×Y

[(x, y) ∈ B] := ε.

For any α ≤ ε, define
Bα =

{
(x, y) ∈ X × Y | Pr

y′
$←Y

[(x, y′) ∈ B] ≥ ε− α
}
.

Then the following statements hold for any α ≤ ε:

(i) Pr
(x,y) $←X×Y

[(x, y) ∈ Bα] ≥ α

(ii) ∀(x, y) ∈ Bα : Pr
y′

$←Y
[(x, y′) ∈ B] ≥ ε− α

(iii) Pr
(x,y) $←B

[(x, y) ∈ Bα] = Pr
(x,y) $←X×Y

[(x, y) ∈ Bα | (x, y) ∈ B] ≥ α/ε

We refer to [29] for a proof of Theorem 2.1. For our purposes, the following version of Theorem 2.1
will actually be more convenient.

Lemma 2.2 (Subset Splitting Lemma). Let sets X ,Y,B,Bα be as in Theorem 2.1. Then

Pr
y,y′

$←Y,x $←X
[(x, y′) ∈ B ∧ (x, y) ∈ B] ≥ (ε− α) · α.

Proof. For the conditional probability, we have that

Pr
y,y′

$←Y,x $←X
[(x, y′) ∈ B | (x, y) ∈ B]

≥ Pr
y,y′

$←Y,x $←X
[(x, y′) ∈ B ∧ (x, y) ∈ Bα | (x, y) ∈ B]

= Pr
y,y′

$←Y,x $←X
[(x, y′) ∈ B | (x, y) ∈ Bα ∩ B] · Pr

(x,y) $←X×Y
[(x, y) ∈ Bα | (x, y) ∈ B]

≥ (ε− α) · α
ε
,

where the last inequality follows from (ii) and (iii) in Theorem 2.1. We conclude the proof by

Pr
y,y′

$←Y,x $←X
[(x, y′) ∈ B ∧ (x, y) ∈ B]

= Pr
y,y′

$←Y,x $←X
[(x, y′) ∈ B | (x, y) ∈ B] · Pr

(x,y) $←X×Y
[(x, y) ∈ B]

≥ (ε− α) · α
ε
· ε = (ε− α) · α.

(Simplified) Jensen Inequality. The following inequality can be inferred from Jensen’s inequality [21]
and was proven in [2].

5

Lemma 2.3 Let q ∈ N, q > 0 and let x1, . . . , xq ≥ 0 be real numbers. Then

q∑
i=1

x2
i ≥

1
q
·

(
q∑
i=1

xi

)2

. (1)

3 Linear Functions
In this section, we introduce modules, pseudomodules and linear function families. We give instantiations
of linear function families in Section 8.
Basic Algebra. We say that sets S andM form a module, if S is a ring with multiplicative identity
element 1S andM is an additive Abelian group, and there exists a mapping · : S ×M→M, s.t. for all
r, s ∈ S and x, y ∈M we have (i) r · (x+y) = r ·x+r ·y; (ii) (r+s) ·x = r ·x+s ·x; (iii) (rs) ·x = r · (s ·x);
and (iv) 1S · x = x. In an analogous fashion, we say that S andM form a pseudo module, if S,M are
additive Abelian groups and there exists a mapping · : S ×M →M, s.t. for all r ∈ S and x, y ∈ M
we have r · (x + y) = r · x + r · y. Moreover, we define the notation x − r · y := x + (−r) · y and write
x+ r · (−y) do denote that the mapping is applied to r ∈ S and −y ∈M.

Remarks on Pseudo Modules. Clearly, if S andM form a module, then they also form a pseudo
module. Observe also that we denote an application of the operation · in an inline fashion, i.e., we
write r · x instead of ·(r, x). When convenient, we also sometimes disregard the order of arguments when
applying ·, i.e, we sometimes write r · x = x · r, x ∈M, r ∈ S. Note that in a pseudo module, we do not
necessarily have (r+ s) ·x = r ·x+ r · s; in particular, it is possible that (r− r) ·x = 0M 6= r ·x− r ·x. On
the other hand, the distributive law for pseudo modules ensures that (x−x) ·r = 0M for all x ∈M, r ∈ S.

3.1 Syntax of Linear Function Families
The notion of linear function families was introduced in [4]. We adapt their definitions for this work, so
as to include some additional properties that we require.

Definition 3.1 (Linear Function Family). A linear function family LF is a tuple of algorithms (PGen,F,Ψ)
defined as follows.

• The randomized parameter generation algorithm PGen takes as input the security parameter 1κ
and returns system parameters par which implicitly define the sets S(par),D(par) and R(par).
S(par) is a set of scalars such that D(par) and R(par) form pseudo modules over S(par) and
|R(par)| ≥ |S(par)| ≥ 22κ.

• The deterministic evaluation function F takes as input system parameters par and a point x ∈ D(par).
It returns y, where y ∈ R(par). For all par ∈ PGen(1κ), we require that the following properties
are satisfied:

– F(par , ·) is a pseudo module homomorphism: For all x, y ∈ D(par) and s ∈ S(par), we have
that

F(par , s · x+ y) = s · F(par , x) + F(par , y).

– F(par , ·) has a pseudo torsion-free element from the kernel: There exist z∗ ∈ D(par) \ {0} such
that (i) F(par , z∗) = 0; and (ii) for all s, s′ ∈ S(par), s 6= s′, we have s · z∗ 6= s′ · z∗. Note that
this implies that F(par , ·) is a many-to-one mapping.

– F(par , ·) is smooth: for x $← D(par), F(par , x) is uniformly distributed over R.

• The determinstic distributor function Ψ takes as input system parameters par , a point y ∈ R(par),
and points s, s′ ∈ S(par). It outputs a point x ∈ D(par). For all par ∈ PGen(1κ) and points
x ∈ D(par), s, s′ ∈ S(par), we require that Ψ(par , ·) satisfy

(s+ s′) · F(par , x) = s · F(par , x) + s′ · F(par , x) + F(Ψ(par ,F(par , x), s, s′)).

6

Game CRLF :
00 par $← PGen(1κ)
01 (x1, x2) $← A(par)
02 If F(x1) = F(x2) ∧ x1 6= x2 : Return 1
03 Return 0

Figure 2: Game CRLF with adversary A.

Game `-ROSLF :
00 par $← PGen(1κ)
01
(
c ∈ S`+1, A ∈ S(`+1)×(`+1)) $← AH(par)

02 If (c`+1 = −1) ∧ (Ac = 0) ∧ (∀i, j ∈ [` + 1] : H(Ai,1, . . . , Ai,`) = Ai,`+1) ∧ (Ai 6= Aj) : Return 1
03 Return 0

Figure 3: Game `-ROSLF with adversary A. H : {0, 1}∗ → S is a random oracle.

Intuitively, the distributor function Ψ(par , ·) can be thought of as a correction term that allows to treat
a pseudo module as if the operation + over S(par) distributes over R(par). In particular, the distributor
function becomes the trivial zero function whenever D(par) and R(par) form full-fledged modules with
S(par). In the following, we simplify our notation by writing S = S(par),D = D(par),R = R(par), as
well as F(·) = F(par , ·),Ψ(·) = Ψ(par , ·).

3.2 Security Properties of Linear Function Families
We now define two security properties of a linear function family (collision resistance and ROS security)
which will play a significant role in the subsequent sections. For the linear function family LF, we define
its collision resistance via game CRLF which is depicted in Figure 2. We define A’s advantage in CRLF
as AdvA

LF := Pr[CRA
LF ⇒ 1] and denote its running time as TimeCR

LF (A).

Definition 3.2 (Collision Resistance). Let LF be a linear function family. LF is said to be (ε, t)-collision
resistant if for all adversaries A satisfying TimeCR

LF (A) ≤ t, we have that AdvCR
LF (A) ≤ ε. We say that A

breaks (ε, t)-collision resistance of LF if TimeCR
LF (A) ≤ t and AdvCR

LF (A) > ε.

Next, we define hardness of the ROS problem associated with linear function family LF. The
ROS (Random inhomogenities in an Overdetermined, Solvable system of linear equations) problem was
introduced by Schnorr [34] (also in the context of blind signatures). For the remainder of this chapter, we
consider, for any choice of par ∈ PGen(1κ), the hash function H(par , ·) : {0, 1}∗ → S(par). As above, we
will (for simplicity of notation) henceforth omit par from H’s input and simply write H(x) := H(par , x).
We now generalise Schnorr’s formulation of the ROS problem to linear function families. For a linear
function family LF and positive integer `, the game `-ROSLF is defined via Figure 3. The advantage of
adversary A in `-ROSLF is defined as Adv`-ROS

LF (A) := Pr[`-ROSA
LF ⇒ 1] and its running time is denoted

as Time`-ROS
LF (A).

Definition 3.3 (`-ROS Hardness). Let ` ∈ N, ` > 0 and let LF be a linear function family. `-ROSLF is
said to be (ε, t,QH)-hard in the random oracle model if for all adversaries A satisfying Time`-ROS

LF (A) ≤ t
and making at most QH queries to H, we have that Adv`-ROS

LF (A) ≤ ε. We say that A (ε, t,QH)-breaks
`-ROSLF in the random oracle model if Time`-ROS

LF (A) ≤ t, A makes at most QH queries to H, and
Adv`-ROS

LF (A) > ε.

The following Lemma summarizes the known hardness results for the `-ROS-Problem for the specific
case in which S is a field of prime order and D and R form modules with S.

Lemma 3.4 ([34, 36, 24]). Let LF be a linear function family for which S is a field of prime order
|S| = O(22κ) and D,R form S-modules. For every t, `-ROSLF is (ε = Q`+1

H /22κ, t, QH)-hard in the
random oracle model. Conversely, `-ROSLF is not (1/4, t, QH)-hard in the random oracle model for
t ≈ QH = O

(
(`+ 1) · 2(2κ/(1+log(`+1))).

7

Prover: sk Verifier: pk

(R, st) $← ID.P1(sk)

c $← S

s $← ID.P2(sk, R, c, st) b← ID.Ver(pk, R, c, s)

R

c

s

Figure 4: A canonical three-move identification scheme ID = (ID.PG, ID.KG, ID.P1, ID.P2, ID.Ver) and its
transcript (R, c, s).

4 Canonical Identification Schemes
In this section, we introduce the syntax and security of what we call canonical identification schemes. We
first give the basic definitions for syntax and security. Then we give a generic construction that gives a
canonical identification scheme ID[LF] from any linear function family LF.

4.1 Syntax and Security
We now recall the definition of define canonical (three-move) identification schemes [1] and discuss their
security notions.

Definition 4.1 (Canonical Three-Move Identification Scheme). A canonical three-move identification
scheme is a tuple of algorithms ID = (ID.PG, ID.KG, ID.P = (ID.P1, ID.P2), ID.Ver).

• The randomised parameter generation algorithm ID.PG takes as input the security parameter 1κ
and returns system parameters par .

• The randomised key generation algorithm ID.KG takes as input system parameters par and returns
a public/secret key pair (pk, sk). We assume that pk implicitly defines a challenge space S := S(pk)
and that pk is distributed (and hence known) to all parties.

• The prover algorithm ID.P is split into two algorithms, i.e., ID.P := (ID.P1, ID.P2), where:

– The randomised algorithm ID.P1 takes as input a secret key sk and returns a commitment R
and a state st.

– The deterministic algorithm ID.P2 takes as input a secret key sk, a commitment R, a challenge
c, and a state st. It returns a response s.

• The deterministic verification algorithm ID.Ver takes as input a public key pk, a commitment R, a
challenge c, and a response s. It returns 1 (accept) or 0 (reject).

We remark that modeling ID.P2 as a deterministic algorithm is w.l.o.g. since randomness can be
transmitted through the state st. Figure 4 shows the interaction between algorithms ID.P1, ID.P2, and
ID.Ver.

Standard security notions for canonical identification schemes include impersonation security against
passive and active attacks, and Man-in-the-Middle security [1, 9]. We now introduce a new security
notion called One-More Man-in-the-Middle security. The One-More Man-in-the-Middle (OMMIM)
security experiment for an identification scheme ID and an adversary A is defined in Figure 5. Adversary
A simultaneously plays against a prover (modeled through oracles P1 and P2) and a verifier (modeled
through oracles V1 and V2). Session identifiers pSid and vSid are used to model an interaction with
the prover and the verifier, respectively. A call to P1 returns a new prover session identifier pSid and
sets flag pSesspSid to open. A call to P2(pSid, ·) with the same pSid sets the flag pSesspSid to closed.
Similarly, a call to V1 returns a new verifier session identifier vSid and sets flag vSessvSid to open. A
call to V2(vSid, ·) with the same pSid sets the flag vSessvSid to closed. A closed verifier session vSid is
successful if the oracle V2(vSid, ·) returns 1. Lines 04-07 define several internal random variables for later
references. Variable QP2(A) counts the number of closed prover sessions and QP1(A) counts the number

8

of abandoned sessions (i.e., sessions that were opened but never closed). Most importantly, variable `(A)
counts the number of successful verifier sessions and variable QP2(A) counts the number of closed sessions
with the prover. Adversary A wins the OMMIMID game, if `(A) ≥ QP2(A) + 1, i.e., if A convinces the
verifier in at least one more successful verifier sessions than there exist closed sessions with the prover.
A’s advantage in OMMIMID is defined as AdvOMMIM

ID (A) := Pr[OMMIMA
ID ⇒ 1] and we denote its

running time as TimeOMMIM
ID (A).

Definition 4.2 (One-more man-in-the-middle security). We say that ID is (ε, t,QCh, QP1 , QP2)-OMMIM-
secure if for all adversaries A satisfying TimeOMMIM

ID (A) ≤ t QCh(A) ≤ QCh, QP2(A) ≤ QP2 , and
QP1(A) ≤ QP1 , we have AdvOMMIM

ID (A) ≤ ε. We say that A breaks (ε, t,QCh, QP1 , QP2)-OMMIM
security of ID if TimeOMMIM

ID (A) ≤ t, QCh(A) ≤ QCh, QP2(A) ≤ QP2 , QP1(A) ≤ QP1 , and we have
AdvOMMIM

ID (A) > ε.

Game OMMIMA
ID:

00 par $← ID.PG(1κ)
01 (sk, pk)← ID.KG(par)
02 pSid ← 0, vSid ← 0
03 AP1,P2,Ch,Ver(pk)
04 QCh(A)← vSid //#total sessions with verifier
05 QP1(A)← #{1 ≤ k ≤ pSid | pSessk = open} //#abandoned prover sessions
06 QP2(A)← #{1 ≤ k ≤ pSid | pSessk = closed} //#closed prover sessions
07 `(A)← #{1 ≤ k ≤ vSid | vSessk = closed ∧ b′k = 1} //#successful verifier sessions
08 If `(A) ≥ QP2(A) + 1: Return 1 //A’s winning condition
09 Return 0
Oracle P1 :
10 pSid ← pSid + 1
11 pSesspSid ← open
12 (stpSid ,RpSid) $← ID.P1
13 Return (pSid,RpSid)
Oracle P2(pSid, c) :
14 If pSesspSid 6= open : Return ⊥
15 pSesspSid ← closed
16 s← ID.P2(stpSid , sk,RpSid , c)
17 Return s

Oracle Ch(R′) :
18 vSid ← vSid + 1
19 vSessvSid ← open
20 R′vSid ← R′; c′vSid

$← S
21 Return (vSid, c′vSid)
Oracle Ver(vSid, s′) :
22 If vSessvSid 6= open : Return ⊥
23 vSessvSid ← closed
24 b′vSid ← ID.Ver(pk,R′vSid , c

′
vSid , s

′)
25 Return b′vSid

Figure 5: The One-More Man-in-the-Middle security game OMMIMA
ID

We remark that security against impersonation under active and passive attacks is a weaker notion
than OMMIM security, whereas man-in-the-middle security is stronger. Concretely, in the standard
man-in-the-middle experiment, the winning condition is relaxed in the sense that there only has to exist
a successful session with the verifier with a transcript that does not result from a closed session with the
prover.

4.2 Identification Schemes from Linear Function Families
As shown in [4], a linear function family LF directly implies a canonical three-move identification scheme
ID[LF]. The construction is given in Figure 6. It is easy to verify that ID[LF] satisfies perfect correctness.
Notation. To avoid too much notational overhead, we make the simple convention that if public key pk
has the form pk = (F(sk), par), then we will instead write pk = F(sk). Note that using this notation, we
can also write c · pk := c · F(sk).

We will prove later that ID[LF] is OMMIM secure. This is the best we can hope for since by the
linearity of LF, ID[LF] can never be (fully) man-in-the-middle secure. (Concretely, an adversary receiving

9

Algorithm ID[LF].KG(par) :
00 sk $← D
01 pk ← (F(sk), par)
02 S ← S
03 Return (sk, pk)
Algorithm ID[LF].Ver(pk, R, c, s) :
04 S ← F(s)
05 If S = c · pk +R : Return 1
06 Return 0

Algorithm ID[LF].P1(sk) :
07 r $← D
08 R← F(r)
09 stP ← r
10 Return (stP, R)
Algorithm ID[LF].P2(sk, stP, c) :
11 r ← stP
12 s← c · sk + r
13 Return s

Figure 6: Construction of ID[LF] := (ID[LF].PG := PGen, ID[LF].KG, ID[LF].P, ID[LF].Ver), where LF =
(PGen,F,Ψ) is a linear function family and ID[LF].P := (ID[LF].P1, ID[LF].P2).

Adversary BP1,P2,Ch,Ver(pk) :
00 For j ∈ [QP2] do:
01 (pSessj ,Rj) $← P1 //Start QP2 sessions with Prover
02 (c ∈ SQP2 +1,A ∈ S(QP2 +1)×(QP2 +1)) $← AH(par)
03 Parse (Z ∈ S(QP2 +1)×QP2 , z ∈ SQP2 +1)← A
04 For j ∈ [QP2] do:
05 sj ← P2(pSessj , cj) //Close QP2 sessions with Prover
06 For i ∈ [QP2 + 1] do:
07 s′i ←

∑QP2
j=1 Ai,jsj

08 bi ← Ver(vSessZi , s
′
i)

Procedure H(a) :
09 R′a ←

∑QP2
j=1 ajRj

10 (vSessa, c′a) $← Ch(R′a)
11 Return c′a

Figure 7: Adversary B in game OMMIMID.

a commitment R from the prover can send R′ = F(r̂) +R for some r̂ 6= 0 to the verifier. After forwarding
c′ = c from verifier to prover, it receives s from the prover and submits s′ = s+ r̂ to the verifier. Since
(R, c, s) 6= (R′, c′, s′), A wins the man-in-the-middle experiment with advantage 1.)

Theorem 4.3 Let LF be a linear function family. If LF is (ε′, t′)-collision resistant then ID[LF] is
(ε, t,QCh, QP1 , QP2)-OMMIM-secure, where

t′ = 2t, ε′ =
ε/2−

Q
QP2 +1
Ch ·(QP2 +QP1

QP1
)

q

32Q2
Ch(QP2 + 1)3 ·

ε− Q
QP2 +1
Ch ·

(QP2 +QP1
QP1

)
q

− 16Q2
Ch(QP2 + 1)2

q

 · ε/2.
Moreover, assuming QP1 ≥ QP2 > 0,

ε′ = O

((
ε/2− (QChQP1)QP2 +1

22κ

)3 1
Q2

ChQ
3
P2

)
.

The proof of this theorem will be given in Section 7. The following theorem establishes a link between
`-ROSLF and OMMIMID[LF]

Theorem 4.4 Let LF = (PGen,F,Ψ) be a linear function family and let ID := ID[LF]. Suppose that ID
is (ε, t,QCh, QP1 = 0, QP2)-OMMIM-secure and R forms a module with S. Further, set ` := QP2 and
QH := QCh. Then `-ROSLF is (ε, t,QH)-hard.

Proof. Let A be an adversary that (ε, t,QH)-breaks `-ROSLF. We assume w.l.o.g. that A only makes
distinct queries to the random oracle H. In Figure 7, we show how to construct an adversary B that breaks
(ε, t,QCh, 0, QP2)-OMMIM security of ID and uses A as a subroutine. First, B starts QP2 sessions with the
Prover oracle P1, receiving commitments R. Next, A is executed, where B answers a query of the form

10

H(a) from A as c′a, where c′a := Ch
(∑QP2

j=1 ajRj

)
. Note that in this manner, each query to H prompts B

to open a session with the verifier in OMMIMID. Once A returns a solution to (c,A) to `-ROSLF, B
closes the QP2 opened sessions with the prover by calling P2 on input (pSessj , cj) for all j ∈ [QP2]. We
denote as s the vector of answers that P2 returns to these queries. Finally, from A’s solution to `-ROSLF,
B computes a vector s′ of QP2 + 1 answers as described in Figure 7. If A is successful then cQP2 +1 = −1
and ∧ Ac = 0. Furthermore for all i ∈ [QP2 + 1], H(Zi) = Ai,QP2 +1 and we have

F (s′i) = F

QP2∑
j=1

Ai,jsj


=

QP2∑
j=1

Ai,j(cj · pk +Rj) = pk
QP2∑
j=1

Ai,jcj +R′Zi = pk · c′Zi +R′Zi ,

which is equivalent to ID.Ver(pk,R′Zi , c
′
Zi , s

′
i) = 1. Observe that in the second to last step, we have used

the associative law over the module formed by S and R. This shows bi = 1 for all i ∈ [QP2 + 1], which
concludes the proof.

5 Canonical Blind Signature Schemes
In this section, we introduce the syntax and security of a special type of blind signature scheme, which
we call canonical three-move blind signature scheme. In Section 5.1, we first introduce the syntax of
such schemes and give the proper security definitions. Then, we give a generic construction that gives a
canonical three-move blind signature scheme BS[LF] from any linear function family LF.

5.1 Syntax and Correctness
We now introduce the syntax of a canonical three-move blind signature scheme.

Definition 5.1 (Canonical Three-Move Blind Signature Scheme). A canonical three-move blind signature
scheme BS is a tuple of algorithms BS = (BS.PG,BS.KG,BS.S,BS.U,BS.Ver).

• The randomised parameter generation algorithm BS.PG takes as input the security parameter 1κ
and returns system parameters par .

• The randomised key generation algorithm BS.KG takes as input system parameters par and outputs
a public key/secret key pair (pk, sk). We assume that pk defines a challenge set S := S(pk) and
that pk is known to all parties.

• The signer algorithm BS.S is split into two algorithms, i.e., BS.S := (BS.S1,BS.S2), where:

– The randomised algorithm BS.S1 takes as input the secret key sk and returns a commitment
R and the signer’s state stBS.S.

– The deterministic algorithm BS.S2 takes as input the signer’s state stBS.S, a secret key sk, a
commitment R, and a challenge c ∈ S. It returns the response s.

• The user algorithm BS.U is split into two algorithms, i.e., BS.U := (BS.U1,BS.U2), where:

– The randomised algorithm BS.U1 takes as input the public key pk, a commitment R, and a
message m. It returns the user’s state stBS.U and a challenge c ∈ S.

– The deterministic algorithm BS.U2 takes as input the public key pk, a commitment R, a
challenge c ∈ S, a response s, a message m, and the user’s state stBS.U. It returns a signature
σ where, possibly, σ = ⊥.

• The deterministic verification algorithm BS.Ver takes as input the public key pk, a signature σ,
and a message m. It outputs 1 (accept) or 0 (reject). We make the convention that BS.Ver always
outputs 0 on input a signature σ = ⊥.

11

Game BlindBS:
00 par $← PG(1κ)
01 b $← {0, 1}; b1 ← b; b2 ← 1− b
02 (pk, sk) $← BS.KG(1κ)
03 b′ $← AInit,U1,U2(pk, sk)
04 Return b = b′

Oracle Init(m̃0, m̃1) : //Only once
05 m0 ← m̃0,m1 ← m̃1
06 sess1 ← sess2 ← init

Oracle U1(sid, R) :
07 If sid 6∈ {1, 2} ∨ sesssid 6= init : Return ⊥
08 sesssid ← open
09 Rsid ← R
10 (stsid , csid) $← BS.U1(pk,Rsid ,mbsid)
11 Return (sid, csid)

Oracle U2(sid, s) :
12 If sesssid 6= open : Return ⊥
13 sesssid ← closed
14 ssid ← s
15 σbsid

$← BS.U2(pk,Rsid , csid , ssid , stsid)
16 If sess1 = sess2 = closed :
17 If σ0 = ⊥ ∨ σ1 = ⊥ : Return (⊥,⊥)
18 Return (σ0,σ1)
19 Return (sid, closed)

Figure 8: Games defining BlindBS for a canonical three-move blind signature scheme BS, with the
convention that adversary A makes exactly one query to Init at the beginning of its execution.

As usual, modelling BS.S2 and BS.U2 as deterministic algorithms is w.l.o.g. since randomness can be
transmitted through the states.

The diagram below depicts an interaction between signer BS.S and user BS.U.

Signer BS.S(sk) User BS.U(pk,m)
(stBS.S, R) $← BS.S1(sk) R−→

c←− (stBS.U, c) $← BS.U1(pk, R,m)
s← BS.S2(sk, R, c, stBS.S) s−→ σ ← BS.U2(pk, R, c, s,m, stBS.U)

Output σ

Definition 5.2 (Perfect Correctness). We say that BS = (BS.PG,BS.KG,BS.S,BS.U,BS.Ver) is perfectly
correct, if for all par ∈ BS.PG(1κ), (pk, sk) ∈ BS.KG(par), messages m ∈ {0, 1}∗, and signatures σ that
are a possible output of the interaction of BS.S(sk) and BS.U(pk,m), we have BS.Ver(pk, σ,m) = 1.

5.2 Security Notions
Security of a Canonical Three-Move Blind Signature Scheme BS is captured by two security notions:
blindness and one-more unforgeability.
Blindness. Intuitively, blindness ensures that a signer BS.S that issues signatures on two messages
(m0,m1) of its own choice to a user BS.U, can not tell in what order it issues them. In particular, BS.S
is given both resulting signatures σ0,σ1, and gets to keep the transcripts of both interactions with BS.U.
We remark that we consider for this work the weaker notion of blindness in the honest signer model [22]
as compared to the malicious signer model [18]. The difference between these two models is that in the
honest signer model, the adversary obtains the keys from the experiment, whereas in the malicious signer
model, the adversary gets to choose its own keys. We formalize the notion of blindness (for a canonical
three-move blind signature scheme BS) via game BlindBS depicted in Figure 8. In BlindBS, the game
takes the role of the user and A takes the role of the signer. First, the game selects a random bit b which
determines the order of adversarially chosen messages in both transcripts. It then runs A on a freshly
generated key pair (pk, sk). A is given access to the three oracles Init, U1 and U2. By convention, A
first has to query oracle Init. Subsequently, A may open at most two sessions. For each of these two
sessions, A obtains corresponding transcripts T1 = (R1, c1, s1) and T2 = (R2, c2, s2). The game uses
mb and m1−b to generate the transcripts T1 and T2, respectively. If A honestly completes both sessions
with the game, it obtains signatures σb and σ1−b on messages mb and m1−b. Note that A obtains σb
and σ1−b by calling U2 twice. More precisely, the first call to U closes the first session and the second
call closes the second session. Once both sessions are closed, the game checks if A acted honestly in
both of them and if so, returns the signatures (σb,σ1−b). If instead A has behaved dishonestly and, as
a result, σb = ⊥ or σ1−b = ⊥ at the time of closing the second session, U2 returs (⊥,⊥). At the end

12

Game OMUFBS:
00 par $← BS.PG(1κ)
01 (sk, pk) $← BS.KG(par)
02 sid ← 0 //initialize signer session id
03 ((m1,σ1), ..., (m`(A),σ`(A)))← AS1,S2(pk)
04 If ∃i 6= j : mi = mj : Return 0 //all messages have to be distinct
05 If ∃i ∈ [`(A)] : BS.Ver(pk,mi,σi) = 0: Return 0 //All signatures have to be valid
06 QS1(A)← #{k | sessk = open} //#abandoned signer sessions
07 QS2(A)← #{k | sessk = closed} //#closed signer sessions
08 If `(A) ≥ QS2(A) + 1: Return 1
09 Return 0
Oracle S1 :
10 sid ← sid + 1
11 sesssid ← open
12 (stsid ,Rsid) $← BS.S1(sk)
13 Return (sid,Rsid)

Oracle S2(sid, c) :
14 If sesssid 6= open : Return ⊥
15 sesssid = closed
16 ssid ← BS.S2(sk, stsid ,Rsid , c)
17 Return ssid

Figure 9: Game OMUFBS with adversary A.

of the experiment, A has to guess the bit b. We define the advantage of adversary A in BlindBS as
AdvBlind

BS (A) :=
∣∣∣Pr[BlindA

BS ⇒ 1]− 1
2

∣∣∣.
Definition 5.3 (Blindness). Let BS be a canonical three-move blind signature scheme. We say that BS is
perfectly blind if for all (even unbounded) adversaries A, AdvBlind

BS (A) = 0. We say that it is statistically
blind if for all adversaries A that run in time at most 2κ, AdvBlind

BS (A) ≤ 2−κ.

OMUF Security of Blind Signature Schemes. We now define the standard unforgeability notion for
blind signatures, namely one-more unforgeability. Intuitively, one-more unforgeability ensures that a user
BS.U can not produce even a single signature more than it should be able to learn from its interactions
with the signer BS.S. We formalize the notion of one-more unforgeability (for a canonical three-move
blind signature scheme BS) via game OMUFBS as depicted in Figure 9. In OMUFBS, an adversary A in
the role of BS.U is run on input the public key of the signer BS.S and subsequently interacts with oracles
that imitate the behaviour of BS.S. A call to S1 returns a new session identifier sid and sets flag sesssid
to open. A call to S2(sid, ·) with the same sid sets the flag sesssid to closed. The closed sessions result
in (at most) QS2 transcripts (Rk, ck, sk), where the challenges c are chosen by A. (The remaining (at
most) QS1 abandoned sessions are of the form (Rk,⊥,⊥) and hence do not contain a complete transcript.)
A wins the experiment, if it is able to produce `(A) ≥ QS2(A) + 1 signatures (on distinct messages) after
having closed QS2(A) ≤ QS2 signer sessions (from which it should be able to compute QS2(A) signatures).
We define the advantage of adversary A in OMUFBS as AdvOMUF

BS (A) := Pr[OMUFA
BS ⇒ 1] and denote

its running time as TimeOMUF
BS (A).

Definition 5.4 (One-More Unforgeability). Let BS be a canonical three-move blind signature scheme.
We say that BS is (ε, t,QS1 , QS2 , QH)-OMUF-secure in the random oracle model if for all adversaries A
satisfying

TimeOMUF
BS (A) ≤ t, QS1(A) ≤ QS1 , QS2(A) ≤ QS2 , (2)

we have AdvOMUF
BS (A) ≤ ε. We say that A breaks (ε, t,QS1 , QS2 , QH)-OMUF security of BS if it satisfies

2 and AdvOMUF
BS (A) > ε.

5.3 Blind Signature Schemes from Linear Function Families
Let LF be a linear function family and H : {0, 1}∗ → S be a hash function. Figure 10 shows how to
construct a canonical three-move blind signature scheme BS[LF,H].
Correctness of BS[LF,H]. We begin by proving correctness of BS[LF,H].

13

Algorithm BS.S1(sk) :
00 r $← D, R← F(r)
01 stBS.S ← r
02 Return (stBS.S, R)
Algorithm BS.S2(sk, stBS.S, c) :
03 r ← stBS.S
04 s← c · sk + r
05 Return s
Algorithm BS.U1(pk, R,m) :
06 α $← D, β $← S
07 R′ ← R+ F(α) + β · pk
08 c′ ← H(R′,m)
09 c← c′ + β
10 stBS.U ← (α, β, c)
11 Return (c, stBS.U)

Algorithm BS.U2(pk, R, c, s,m, stBS.U) :
12 S ← F(s)
13 If S 6= c · pk +R : Return ⊥
14 (α, β, c)← stBS.U
15 R′ ← R+ F(α) + β · pk
16 c′ ← H(R′,m)
17 s′ ← s+ α+ Ψ(pk,−c′, c)
18 σ ← (c′, s′)
19 Return σ
Algorithm BS.Ver(pk, σ,m) :
20 (c′, s′)← σ
21 R′ ← F(s′)− c′ · pk
22 If c′ 6= H(R′,m) : Return 0
23 Return 1

Figure 10: Let LF be a linear function and H : {0, 1}∗ → S be a hash function. This figure shows the
construction of the canonical three-move blind signature scheme BS := BS[LF,H] where BS := (BS.PG =
ID[LF].PG,BS.KG := ID[LF].KG,BS.S = (BS.S1,BS.S2),BS.U = (BS.U1,BS.U2),BS.Ver). Note that we
again implicitly set S := S.

Lemma 5.5 Let LF = (PGen,F,Ψ) be a linear function family, let H : {0, 1}∗ → S be a hash function,
and BS := BS[LF,H]. Then BS has perfect correctness.

Proof. Consider a signature σ = (s′, c′) that is the result of an interaction between an honestly behaving
signer BS.S holding the secret key sk ∈ D and an honestly behaving user BS.U holding the public
key pk = F(sk) ∈ R. We denote with (R, c, s) the transcript resulting from this interaction and with
α ∈ D, β ∈ S the associated blinding parameters that BS.U1 samples. Finally, let r ∈ D be the value
chosen by BS.S1 s.t. F(r) = R. To ensure that BS.Ver(pk, σ,m) = 1, we need to show that

R+ F(α) + β · pk = R′ = F(s′)− c′ · pk. (3)

Writing β = (c− c′), we obtain

R+ F(α) + β · pk = R+ F(α) + (c− c′) · pk

for the left hand side of Equation (3). Expanding s′ as

s′ = s+ α+ Ψ(pk,−c′, c) = r + c · sk + α+ Ψ(pk,−c′, c),

the right hand side becomes:

F(s′)− c′ · pk = F(r + c · sk + α+ Ψ(pk,−c′, c))− c′ · pk
= F(r) + c · F(sk) + F(α) + F(Ψ(pk,−c′, c))− c′ · pk
= R+ (c · F(sk) + F(Ψ(F(sk),−c′, c))− c′ · F(sk)) + F(α)
= R+ (c− c′) · F(sk) + F(α)
= R+ (c− c′) · pk + F(α).

The proof is complete since both sides of Equation (3) are equal (by commutativity of + on R).

One-More Unforgeability of BS[LF,H]. In this subsection, we show that OMUFBS[LF,H] is equivalent
(in the ROM) to OMMIMID[LF].

Theorem 5.6 Let LF be a linear function family, let H : {0, 1}∗ → S be a hash function, and let ID :=
ID[LF],BS := BS[LF,H]. If ID is (ε′, t′, QCh, QP1 , QP2)-OMMIM-secure then BS is (ε, t,QS1 , QS2 , QH)-
OMUF-secure in the random oracle model, where

t′ = t, ε′ = ε, QCh = QH +QS2 + 1, QP1 = QS1 , QP2 = QS2 .

14

Adversary BP1,P2,Ch,Ver(pk):
00
(
(m1,σ1), ..., (m`(A),σ`(A))

)
← AS1,S2,H(pk)

01 For i ∈ [`(A)] do:
02 (c′i, s′i)← σi
03 R′i ← F(s′i)− c′i · pk
04 H(R′i,mi)
05 vSid ← vSessR′

i
,mi

06 bi ← Ver(vSid, s′i)
Procedure S1 :
07 (pSid,RpSid) $← P1
08 Return (pSid,RpSid)

Procedure S2(pSid, c) :
09 spSid ← P2(pSid, c)
10 Return spSid

Procedure H(R′,m) :
11 if H[R′,m] 6= ⊥ : Return H[R′,m]
12 (vSid, c′) $← Ch(R′)
13 vSessR′,m ← vSid
14 H[R′,m]← c′

15 Return H[R′,m]

Figure 11: Reduction from OMMIMID to OMUFBS[LF,H]

Proof. Let A be an adversary that breaks (ε, t,QS1 , QS2 , QH)-one-more-unforgeability of BS[LF,H] in the
random oracle model. In Figure 11 we construct an adversary B that runs in the OMMIMID experiment
and perfectly simulates A’s oracles S1, S2 and H via its own oracles P1, P2, and Ch, respectively. Note that
B calls P2 at most QP2 = QS2 many times over the course of its simulation and moreover, QP2(B) = QS2(A).
We show that B breaks (ε′, t′, QCh, QP1 , QP2)-OMMIM security of ID. Suppose that A is successful, i.e.,
it outputs `(A) ≥ QS2(A) + 1 = QP2(B) + 1 valid signatures on distinct messages and the number of
closed sessions with the signer is at most QS2(A) = QP2(B). Since all messages in m are distinct, each
signature corresponds to a distinct session with the oracle Ch via the relation H(R′,mi) = Ch(R′). Since
also σi = (c′i, s′i) is a valid signature on mi, we know that H(F(s′i)− c′i · pk,m) = H(R′i,m) = Ch(R′i).
Therefore, B can make a successful query to oracle Ver(vSid, s′i) in line 06 resulting in bi = 1 for every
valid signature. Since overall, B makes `(B) = QP2(B) + 1 successful queries to Ver, B wins OMMIMID
whenever A wins OMUFBS. This proves ε′ ≥ ε. Moreover, the number of abandoned sessions (denoted
as QS1(A)) in the OMUFBS experiment equals the number of abandoned sessions (denoted as QP1(B))
in the OMMIMID experiment and the number QCh(B) of calls to oracle Ch is bounded by QH (for the
simulation of H) plus additional QP2(A) + 1 calls in Line 04 (the latter calls are necessary in case A
guesses the output of Ch on some points). Finally, the running times of A and B are roughly the same, i.e.
t ≈ t′.

Theorem 5.7 Let LF be a linear function family, let H : {0, 1}∗ → S be a hash function, and let
BS := BS[LF,H], ID := ID[LF]. If BS is (ε, t,QS1 , QS2 , QH)-OMUF-secure in the random oracle model then
ID is (ε′, t′, QCh, QP1 , QP2)-OMMIM-secure, where

t′ = t, ε′ = ε, QCh = 2 ·QH, QP1 = QS1 , QP2 = QS2 .

Proof. Let B be an adversary that breaks (ε′, t′, QCh, QP1 , QP2)-OMMIM security of ID. In Figure 12 we
construct an adversary A that is executed in game OMUFBS. A perfectly simulates B’s oracles P1, P2 and
Ch via its own oracles S1, S2 and H, respectively. We show that A breaks (ε, t,QS1 , QS2 , QH)-one-more-
unforgeability of BS. To simulate oracle Ver, A executes the same code as specified in the OMMIMID
experiment, with the only difference being line 20. This additional line does not change the behavior of
Ver and is thus not detectable by B. Suppose that B is successful, i.e., it completes QP2(B) sessions with
P2 and at least QP2(B) + 1 sessions with Ver (denoted as `(B) in the OMMIMID experiment). From the
`(B) successful calls of B to Ver, it follows that A learns `(B) ≥ QS2(A) + 1 transcripts (R, c, s). The
messages m are defined by executing BS.U1 in Line 12. Note that each execution of BS.U1 internally
entails a call to H. Furthermore, each call to BS.Ver on Line 18 entails a further call to H. Thus, for
each session that B initiates with the verifier in OMMIMID, A calls H at most twice, implying that
QCh ≤ 2 · QH. It is easy to see that A creates `(B) valid signatures after learning values s by simply
following the protocol specification of BS.U2 as done in Line 05. This proves ε′ = ε. Moreover the
number of abandoned sessions (denoted as QP1(B)) in the OMMIMID experiment equals the number of
abandoned sessions (denoted as QS1(A)) in the OMUFBS experiment. Finally, the running times of A
and B are roughly the same, i.e. t ≈ t′.

15

Adversary A S1,S2,H(pk):
00 vSid ← 0
01 B P1,P2,Ch,Ver(pk)
02 i← 1
03 For 1 ≤ k ≤ vSid where (vSessk = closed) ∧ (bk = 1) do:
04 c′k := ck − βk
05 mi ← k,σi ← (c′k, s′k := sk +αk + Ψ(pk,−c′k, ck))
06 i← i+ 1
07 Return (m1,σ1), . . . , (mi−1,σi−1)
Procedure P1 :
08 (pSid,RpSid) $← S1
09 Return (pSid,RpSid)
Procedure Ch(R) :
10 vSid ← vSid + 1
11 vSessvSid ← open
12 (cvSid , stvSid)← BS.U1(pk,R,m := vSid)
13 (αvSid ,βvSid , cvSid)← stvSid
14 Return (vSid, cvSid)

Procedure P2(pSid, c) :
15 spSid ← S2(pSid, c)
16 Return spSid

Procedure Ver(vSid, s) :
17 If vSessvSid 6= open : Return ⊥
18 bvSid ← BS.Ver(pk, vSid, cvSid , s)
19 vSessvSid ← closed
20 svSid ← s
21 Return bvSid

Figure 12: Reduction from OMUFBS[LF,H] to OMMIMID[LF]

Theorem 5.8 Let LF = (PGen,F,Ψ) be a linear function family and let H : {0, 1}∗ → S be a hash
function. Then BS[LF,H] is statistically blind in the random oracle model. In addition, if for all (fixed)
y ∈ R and β $← S, the element y · β is uniformly distributed in R, then BS[LF,H] is perfectly blind in the
random oracle model.

Proof. Let A be an adversary playing in game BlindA
BS[LF,H]. A obtains as input a valid pair of keys

(pk, sk) ∈ BS.KG(1κ). Note that this ensures that we can write pk = F(sk).1 After its execution, A
holds (m0,σ0), (m1,σ1) where σ0 is a signature on m0 and σ1 is a signature on m1. (Here we assume
without loss of generality that both signatures are valid as otherwise A obtains σ0 = σ1 = ⊥ and
thus AdvA

Blind,BS[LF,H] = 0.) Adversary A furthermore learns two transcripts T1 = (R1, c1, s1) and
T2 = (R2, c2, s2) from its interaction with the first and the second signer session, respectively. The goal
of A is to match the message/signature pairs with the two transcripts.

We show that there exists no adversary which is able to distinguish, whether the messagem0 was used
by the experiment to create Transcript T1 or T2. We argue that for all sessions 1 ≤ i ≤ 2 and indexes
0 ≤ j ≤ 1, the tuple (Ti,mj ,σj) completely determines a properly distributed state stj = (αi,j ,βi,j , cj)
of BS.U1. This implies that given A’s view, it is equally likely that the experiment was executed with
b = 0 or b = 1 since for both choices b ∈ {0, 1} there exist properly distributed states (st0, st1) that
would have resulted in A’s view.

It remains to argue that Ti = (Ri, ci, si), mj , and σj = (c′j , s′j) determine values αi,j ,βi,j which
are identically distributed (in their respective sets) for all i, j, conditioned on the view of A in the
experiment before A obtains the signatures and such that c′j = H(Ri + βi,j · pk + F(αi,j),mj) and
αi,j = s′j −si−Ψ(pk,−c′j , ci),βi,j = ci−c′j after A obtains them. Let us denote αj and βj as the actual
blinding values used by the experiment in the jth session and consider A’s view before obtaining σ0, σ1.

• Statistical Blindness. βi,j is distributed according to ci − H(R′j) in S. Its uniformity follows
from the fact that c′j = H(R′j) is uniformly distributed as long as A does not query H on R′j . To
bound the probability of this query, note that βj is uniformly distributed in S as it comes from
the experiment. Moreover, S and R are of size at least 22κ and A makes at most 2κ queries to H.
Hence, this query is made with probability at most 2−κ. Uniformity of αi,j is implied by uniformity
of s′j = sj + αj + Ψ(pk,−c′j , cj), which comes from the experiment. Note here that αj remains
uniformly distributed and independent from c′j in the view of A as long as the query c′j = H(R′j)
has not been made. It immediately follows that αi,j is independent from βi,j . Thus, for any

1Indeed, it is here that we require the keys to be honestly generated by the experiment.

16

combination of i and j and conditioned on A’s view in the experiment, the random variables βi,j
and αi,j have statistical distance at most O(2−κ) from the uniform distribution.

• Perfect Blindness. In case βj · pk is uniform for uniform βj ∈ S, we can argue perfect blindness
along the same lines as above. The main difference is that even if the adversary queries R′j to H,
the distribution of c′j is independent of βj and αj , since now, R′j = Rj + F(αj) + βj · pk perfectly
hides these values.

Since Ti is a valid transcript, we have F(si) = Ri + ci · pk. Therefore,

Ri + βi,j · pk + F(αi,j) = Ri + (ci − c′j) · pk + F(s′j − si −Ψ(pk,−c′j , ci))
= Ri + (ci − c′j) · F(sk) + F(s′j − si −Ψ(F(sk),−c′j , ci))
= Ri + ci · F(sk)− c′j · F(sk) + F(Ψ(F(sk),−c′j , ci)) + F(s′j − si −Ψ(F(sk),−c′j , ci))
= (Ri + ci · pk − F(si)) + F(s′j)− c′j · pk +

(
F(Ψ(pk,−c′j , ci))− F(Ψ(pk,−c′j , ci))

)
= F(s′j)− c′j · pk .

Since σj is a valid signature on mj we have H(F(s′j)− c′j · pk,mj) = c′j which concludes the proof.

Corollary 5.9 Let LF be a linear function family and let H : {0, 1}∗ → S be a hash function. If LF is
(ε′, t′)-collision resistant, then BS[LF,H] is (ε, t,QS1 , QS2 , QH)-OMUF-secure in thee random oracle model
where

t′ = 2t, ε′ = O

((
ε/2− (Q ·QS1)QS2 +1

22κ

)3 1
Q2Q3

S2

)
,

and Q = QH + QS2 + 1 and we assume QS1 ≥ QS2 > 0.2 Moreover, BS[LF,H] is perfectly blind in the
random oracle model.

Proof. The proof of the one-more unforgability security follows from combining Theorems 4.3 and 5.7.
Perfect blindness follows directly from Theorem 5.8.

6 The Subset Forking Lemma
In this section, we prove a further generalization of the forking lemma, which was first introduced in the
groundbreaking work of Pointcheval and Stern [29]. The original version of the forking lemma was stated
in a specialized form that only applied to some specific signature schemes and blind signature schemes. In
later work, Bellare and Neven [8] generalised the forking lemma by rephrasing it a as purely probabilistic
statement. Very roughly, it states that one can run the algorithm C twice on the same instance I and
randomness ω, but different challenge values h, h′ to obtain (with non-negligible probability) two different,
but related answers σ, σ′, from which it is possible to solve the instance I.3 Due to the generality of this
statement, the forking lemma (in the version of [8]) is widely applicable and has become an indispensable
tool for cryptographic proofs. As we observe in this work, the lemma in [8], in spite of its general nature,
is insufficient to prove certain types of statements that attempt to use the above rewinding strategy. As
we will see, the reason for this is that [8] only talks about the probability that one obtains from C two
successful runs and related answers σ, σ′. However, it says nothing about the distribution of the answers
σ, σ′. As a simple example, one might be interested in the probability that C returns in both runs the
most likely answer σ̂ corresponding to a successful run of C (where the probability is over I, ω, and h).
There seems to be no way to infer such a statement from [8]. For this reason, we now prove a more
general version of the forking lemma called subset forking lemma, which is closer to the proof strategy
of [29]. At a high level, the subset forking lemma considers an adversary C that obtains Q challenges h
in addition to the instance I and randomness ω. It produces an answer σ that we refer to as the side
output below. If C is successful, then one can relate σ to one of the Q challenges that C has obtained over
the course of its run, say hj . Therefore, we can associate any successful run of C with the corresponding
j ∈ [Q] and an unsuccessful run of C with the value j = 0. We denote below as Wj the set of inputs

2A (somewhat more complicated) statement can also easily be derived for 0 ≤ QS1 < QS2 .
3This discussion is (intentionally) somewhat simplified; the lemma in [8] actually considers an algorithm C that obtains

partially identical vectors of challenges h,h′.

17

(I, ω,h) to C for which C produces an output of the form (j, σ), j ≥ 1. One can view the set W :=
⋃
jWj

as the set of all such triples for which C is successful.

Lemma 6.1 (Subset Forking Lemma). Fix any integer Q ≥ 1 and a set H of size ≥ 2 as well as a
set of side outputs Σ, instances I, and a randomness space Ω. Let C be an algorithm that on input
(I,h) ∈ I ×HQ and randomness ω ∈ Ω returns a tuple (j, σ), where 0 ≤ j ≤ Q and σ ∈ Σ. We partition
its input space I × Ω×HQ into sets W1, . . . ,WQ where for fixed 1 ≤ j ≤ Q, Wj is the set of all (I, ω,h)
that result in (j, σ)← C(h, I;ω) for some arbitrary side output σ.

For any 1 ≤ j ≤ Q and B ⊆ Wj define

acc(B) := Pr
(I,ω,h) $←I×Ω×HQ

[(I, ω,h) ∈ B]

frk(B, j) := Pr
(I,ω,h) $←I×Ω×HQ,h′ $←HQ|h[j−1]

[(
hj 6= h′j

)
∧

((I, ω,h) ∈ B) ∧ ((I, ω,h′) ∈ B)

]
.

Then
frk(B, j) ≥ acc(B) ·

(
acc(B)

4 − 1
|H|

)
.

Proof. By applying Theorem 2.2 to ε = acc(B), α := ε/2, and to the two sets X = I × Ω×Hj−1 and
Y = HQ−j+1, we obtain

Pr
(I,ω,h) $←I×Ω×HQ,h′ $←HQ|h[j−1]

[(I, ω,h) ∈ B ∧ (I, ω,h′) ∈ B] ≥ acc2(B)
4 .

Next, we observe that

frk(B, j) = Pr[(I, ω,h) ∈ B ∧ (I, ω,h′) ∈ B ∧ hj 6= h′j]
= Pr[(I, ω,h) ∈ B ∧ (I, ω,h′) ∈ B]− Pr[(I, ω,h) ∈ B ∧ (I, ω,h′) ∈ B ∧ hj = h′j]
≥ Pr[(I, ω,h) ∈ B ∧ (I, ω,h′) ∈ B]− Pr[(I, ω,h) ∈ B ∧ hj = h′j]

= Pr[(I, ω,h) ∈ B ∧ (I, ω,h′) ∈ B]− Pr[(I, ω,h) ∈ B]
|H|

,

where the last equation follows from independence and uniformity of hj and h′j . We continue with

= Pr[(I, ω,h) ∈ B ∧ (I, ω,h′) ∈ B]− Pr[(I, ω,h) ∈ B]
|H|

≥ acc2(B)
4 − Pr[(I, ω,h) ∈ B]

|H|
= acc2(B)

4 − acc(B)
|H|

= acc(B) ·
(

acc(B)
4 − 1

|H|

)
,

which completes the proof.

We remark that Theorem 6.1 implies the version of the Forking Lemma in [8]. Below, we consider

frk :=
Q∑
j=1

frk(Wj , j) which can be seen as the probability of simply running C successfully twice and

obtaining two outputs of the form (j, σ), (j, σ′), where j ∈ [Q]. We also write acc to denote the probability
of C producing a successful output (j, σ), j ∈ [Q]. Using the notation from Theorem 6.1, we obtain:

Corollary 6.2 ([8]). Let W =
⋃
jWj. Define

acc := Pr
(I,ω,h) $←I×Ω×HQ

[(I, ω,h) ∈ W]

and

frk :=
Q∑
j=1

frk(Wj , j).

18

Then

frk ≥ acc ·
(

acc
4Q −

1
|H|

)
.

Proof. Note that acc =
Q∑
j=1

acc(Wj). It follows that

frk =
Q∑
j=1

frk(Wj , j) ≥
Q∑
j=1

acc(Wj) ·
(

acc(Wj)
4 − 1

|H|

)

=

 Q∑
j=1

acc2(Wj)
4

− acc
|H|
≥ 1

4Q

 Q∑
j=1

acc(Wj)

2

− acc
|H|

= 1
4Qacc2 − acc

|H|
= acc ·

(
acc
4Q −

1
|H|

)
,

where the first inequality follows from Theorem 6.1 and the second inequality follows from Theorem 2.3.

7 Proof of Theorem 4.3
Before we give the proof of Theorem 4.3, we provide some intuition about the difficulty that arises in the
context of proving the OMMIM-security of ID[LF] and how our proof overcomes it. The main issue is that
the adversary M in OMMIM can interleave sessions between the oracles P1,P2 and Ch, Ver. This gives
M strong adaptive capabilities which lead to the ROS-attack described in Section 4.2. The ROS-attack
is reflected in Corollary 7.6, which can be translated into an upper bound on M’s success probability
of providing our reduction with two identical values χ̂, χ̂′ that result from running the adversary twice
with fixed public key pk and randomness ω, but (partially) different replies h,h′ to Ch. If the adversary
succeeds in setting χ̂ = χ̂′, the reduction fails in recovering values χ̂ 6= χ̂′ s.t. F(χ̂) = F(χ̂′).

To prove the bound in Corollary 7.6, our proof follows the ideas of [29], but takes into account also
the abandoned sessions with P1, which [29] does not consider.4 The intuitive idea behind ensuring χ̂ 6= χ̂′

is to run M on input pk that could be the result of applying F to either sk or ŝk = sk + z∗ from the
domain D of F. One can show that from M’s perspective, the resulting view is identical in both cases
(Lemma 7.4). On the other hand, since χ̂ depends non-trivially on sk (or ŝk, respectively), it should take
(with high probability) different values from the reduction’s point of view, depending on whether the
reduction used sk or sk + (−z∗) as a preimage to pk. Indeed, this intuition is supported by Corollary 7.6.
However, Corollary 7.6 can only be translated into an upper bound on the probability that χ̂ takes the
same particular value C(sk, ω,h), regardless of whether sk or ŝk was used by the reduction. Intuitively,
C(sk, ω,h) is the value that is most likely taken by the random variable χ̂′, which occurs as the result
of rewinding M with the same sk, ω, but a partially different set of Ch-replies h′ (i.e., the probability is
over the resampled values in h′). To ensure that χ̂ 6= χ̂′, the analysis first defines the set B of tuples
(sk, ω,h) which yield a successful run of M, but for which χ̂(sk, ω,h) 6= C(sk, ω,h). It then estimates the
probability that both tuples (sk, ω,h), (sk, ω,h′) that are used to run M, are tuples from the set B. The
final step of the proof is to leverage this fact to obtain a lower bound on the success probability of the
reduction, i.e., to ensure that χ̂ 6= χ̂′ (Lemma 7.1). To argue that not only both runs of M are successful,
but yield tuples in B, we require the subset forking lemma introduced in Section 6.

7.1 The Reduction Algorithm
Let M be an adversary that breaks (ε, t,QCh, QP1 , QP2)-OMMIM security of ID[LF]. We show an adversary
B that breaks (ε′, t′)-collision resistance of LF.

Without loss of generality, we will assume throughout the proof that QP1(M) = QP1 , QP2(M) =
QP2 , QCh(M) = QCh, `(M) = QP2 + 1. For 1 ≤ i ≤ QP2 + 1, we define an auxiliary algorithm Ai which
‘sandboxes’ M and that will be used later by adversary B to break collision resistance of LF. More

4However, the same bound was given (without proof) by Pointcheval in Theorem 5 of [27].

19

concretely, Ai obtains as input an instance I = (sk, par), runs M on random tape ω and uses vector
h ∈ SQCh to answer M’s QCh queries to Ch. Throughout the proof, we will denote with q = |S| ≥ 22κ the
size of the challenge space S = S(par). The description of algorithm Ai is given in Figure 13. Note that
Ai is deterministic for fixed randomness ω.
Analysis of Ai. To analyse Ai, we now introduce some notation. First, consider the variables Ĵ i, χ̂i, ŝ′,
and ĥi defined on Lines 31 through 34 of Figure 13. These variables are introduced to simplify the
referencing of values associated with successful calls to the verification oracle Ver(vSid, ·) over the course
of the proof. Concretely, the variable

χ̂i = ŝ′i − ĥi · sk

results from the i-th successful call to the verification oracle Ver(vSid, ·), whereas the index Ĵ i indicates
which session identity vSid corresponds to this call.

We will fix an execution of Ai via the tuples I = (sk, par), h, and Ai’s randomness ω. We define the
set W of successful inputs of Ai as the set of all tuples (I, ω,h) which lead to a successful run of Ai, i.e.,

W := {(I, ω,h) | Ĵ i 6= 0; (Ĵ i, χ̂i)← Ai(I,h;ω)}

Note that W is independent of i and, by construction of Ai,

Pr
par $←PG(1κ),(sk,ω,h) $←D×Ω×SQCh

[(sk, par , ω,h) ∈ W] = AdvOMMIM
ID[LF] (M) = ε.

Let P denote the set of parameters par such that

Pr
(sk,ω,h) $←D×Ω×SQCh

[(sk, par , ω,h) ∈ W] ≥ ε/2.

It is easy to see that Pr
par $←PG(1κ)

[par ∈ P] ≥ ε/2; otherwise,

ε = Pr
par $←PG(1κ),(sk,ω,h) $←D×Ω×SQCh

[(sk, par , ω,h) ∈ W]

=
∑
par

Pr
(sk,ω,h) $←D×Ω×SQCh

[(sk, par , ω,h) ∈ W] · Pr
par′ $←PG(1κ)

[par ′ = par]

=
∑

par∈P
Pr

(sk,ω,h) $←D×Ω×SQCh
[(sk, par , ω,h) ∈ W] · Pr

par′ $←PG(1κ)
[par ′ = par]

+
∑

par 6∈P
Pr

(sk,ω,h) $←D×Ω×SQCh
[(sk, par , ω,h) ∈ W] · Pr

par′ $←PG(1κ)
[par ′ = par]

< 1 ·
∑

par∈P
Pr

par′ $←PG(1κ)
[par ′ = par] + ε/2 ·

∑
par 6∈P

· Pr
par′ $←PG(1κ)

[par ′ = par]

= Pr
par $←PG(1κ)

[par ∈ P] + ε/2 · Pr
par $←PG(1κ)

[par 6∈ P] < ε/2 + ε/2 · 1 = ε.

Below and in the proofs of lemmas 7.1 and 7.2, we fix some arbitrary parameters par ∈ P and make the
convention that I = (sk, par) $← I samples sk uniformly from D(par) (but keeps par fixed)5. We can view
Ĵ i, χ̂i, ŝ′, and ĥi as random variables whose distribution is induced by the the uniform distribution on
(I × Ω× SQCh). Furthermore, their outcome is uniquely determined given (I, ω,h) ∈ W, so let us write(

Ĵ i(I, ω,h), χ̂i(I, ω,h)
)
← Ai(I,h;ω).

In the following, when stating probability distributions over I, ω, and h, unless specified differently,
we will always refer to the uniform distributions. That is, (I, ω,h) $← (I × Ω× SQCh). We consider the
following probability for fixed (I, ω,h), j, c and i:

Pr
h′ $←SQCh |h[j−1]

[Ĵ i(I, ω,h′) = j ∧ χ̂i(I, ω,h′) = c], (4)

5Thus, we will assume, from here on out, that Pr
(I,ω,h) $←(I×Ω×SQCh)

[(I, ω,h) ∈ W] = AdvOMMIM
ID[LF] (M) ≥ ε/2.

20

Adversary Ai(I = (sk, par),h;ω):
00 Parse (ωM, r)← ω
01 R← F(r)
02 pk ← (F(sk), par)
03 ctr ← 0; pSid ← 0; vSid ← 0
04 MP1,P2,Ch,Ver(pk)
05 `(M)← #{k | vSessk = closed ∧ b′k = 1}
06 QP2(M)← #{k | pSessk = closed}
07 QP1(M)← #{k | pSessk = open}
08 QCh(M)← vSid
09 If (`(M) ≥ QP2(M) + 1) : Return (Ĵ i, χ̂i)
10 Return (Ĵ i, χ̂i)← (0, 0)
Procedure P1
11 pSid ← pSid + 1
12 pSesspSid ← open
13 cpSid ← ⊥
14 spSid ← ⊥
15 Return (pSid,RpSid)
Procedure P2(pSid, c)
16 If pSesspSid 6= open : Return ⊥
17 pSesspSid ← closed
18 spSid ← c · sk + rpSid
19 cpSid ← c
20 Return spSid

Procedure Ch(R′)
21 vSid ← vSid + 1
22 R′vSid ← R′

23 vSesspSid ← open
24 Return (vSid,hvSid)
Procedure Ver(vSid, s′)
25 If vSessvSid 6= open : Return ⊥
26 S′vSid ← F(s′)
27 vSessvSid ← closed
28 b′vSid ← 0
29 If S′vSid = hvSid · pk +R′vSid :
30 ctr ← ctr + 1
31 ŝ′ctr ← s′

32 ĥctr ← hvSid
33 χ̂ctr ← ŝ′ctr − ĥctr · sk
34 Ĵctr ← vSid
35 b′vSid ← 1
36 Return b′vSid

Figure 13: Wrapping adversaries Ai for 1 ≤ i ≤ QP2 + 1

Adversary B(par):
00 i∗ $← [QP2 + 1]
01 h $← SQCh

02 ω $← Ω
03 sk $← D
04 (Ĵ i∗ , χ̂i∗)← Ai∗(I = (sk, par),h;ω) //First execution of Ai∗
05 If Ĵ i∗ = 0: Return ⊥
06 h′ $← SQCh |h[Ĵi∗−1] //Conditionally resample h′

07 (Ĵ ′i∗ , χ̂′i∗)← Ai∗(I = (sk, par),h′;ω) //Second execution of Ai∗
08 If (Ĵ ′i∗ = Ĵ i∗) ∧ (χ̂i∗ 6= χ̂′i∗) : Return (χ̂i∗ , χ̂′i∗)
09 Return ⊥

Figure 14: Adversary B against collision resistance of LF.

21

where the conditional probability h′ $← SQCh |h[j−1] was introduced in Section 2.
We denote by ci,j(I, ω,h) the lexicographically first value c s.t. the probability in (4) is maximized

when (I, ω,h), j, i are fixed. We then write Ci(I, ω,h) = ci,Ĵi(I,ω,h)(I, ω,h). For fixed i, j, let us define
Bi,j ⊂ W as

Bi,j := {(I, ω,h) ∈ W | Ĵ i(I, ω,h) = j ∧ χ̂i(I, ω,h) 6= Ci(I, ω,h)}.

and

βi,j := Pr
(I,ω,h) $←(I×Ω×SQCh)

[(I, ω,h) ∈ Bi,j]

δi,j := Pr
(I,ω,h) $←(I×Ω×SQCh),h′ $←SQCh |h[j−1]

[
χ̂i(I, ω,h′) 6= χ̂i(I, ω,h)
∧Ĵ i(I, ω,h) = Ĵ i(I, ω,h′) = j

]
.

Lemma 7.1 For all i, j: δi,j ≥ βi,j
(
βi,j

8 −
1
2q

)
.

The proof of this lemma is postponed to Section 7.2.

Lemma 7.2 There exist i ∈ [QP2 +1], j ∈ [QCh] such that βi,j >
(
ε/2−

Q
QP2 +1
Ch ·(QP2 +QP1

QP1
)

q

)
· 1

2QCh(QP2 +1) .

The proof of this lemma is postponed to Section 7.3.
Adversary B against Collision Resistance of LF. We are now ready to describe our adversary B
depicted in Figure 14, which plays in the collision resistance game of LF. B works roughly as follows. On
input par $← PGen(1κ), it first samples randomness ω $← Ω, a secret key sk $← D, a vector h $← SQCh , and
an index i∗ $← [QP2 + 1] and runs Ai∗ on input (I = (sk, par),h;ω). It samples a second random vector
h′ as h′ $← SQCh |h[Ĵi∗−1] and runs Ai∗ a second time with the same randomness ω and the same instance
I, but replacing h by h′. In the case that B does not abort, note that by definition of Ai∗ ,

F(χ̂i∗) =F(ŝ′i∗ − ĥi∗ · sk)
=S′Ĵi∗ − hĴi∗ · pk = R′Ĵi∗

Because Ai∗ sees identical answers for the first Ĵ i∗ − 1 queries to Ch, it behaves identically in both runs
until it receives the answer to the Ĵ i∗ -th query to Ch. In particular, Ai∗ poses the same Ĵ i∗ -th query to
Ch which means that F(χ̂′i∗) = R′Ĵi∗

and therefore also F(χ̂i∗) = F(χ̂′i∗). For par ∈ P, we now consider

Pr
(χ̂i∗ ,χ̂′i∗) $←B(par)

[χ̂i∗ 6= χ̂′i∗ ∧ F(χ̂i∗) = F(χ̂′i∗)] =
QCh∑
j=1

Pr[χ̂i∗ 6= χ̂′i∗ ∧ F(χ̂i∗) = F(χ̂′i∗) ∧ Ĵ i∗ = Ĵ ′i∗ = j]

=
QCh∑
j=1

Pr[χ̂i∗ 6= χ̂′i∗ ∧ Ĵ i∗ = Ĵ ′i∗ = j] =
QCh∑
j=1

δi∗,j ≥
1

QP2 + 1 · max
i∈[QP2 +1]

QCh∑
j=1

δi,j

≥ max
i,j

βi,j
2(QP2 + 1)

(
βi,j
4 − 1

q

)
≥
ε/2−

Q
QP2 +1
Ch ·(QP2 +QP1

QP1
)

q

32Q2
Ch(QP2 + 1)3 ·

ε/2− Q
QP2 +1
Ch ·

(QP2 +QP1
QP1

)
q

− 16Q2
Ch(QP2 + 1)2

q

 ,

where for the first inequality we used that
∑
δi∗,j = maxi

∑
δi,j with probability at least 1/(QP2 + 1).

Moreover, we have applied Lemmas 7.1 and 7.2 in the second to last and last inequality, respectively
(relative to our choice of par). By reintroducing randomness over the choice of parameters par , we finally

22

obtain

ε′ = AdvCR
LF (B) = Pr

par $←PGen(1κ),(χ̂i∗ ,χ̂′i∗) $←B(par)
[χ̂i∗ 6= χ̂′i∗ ∧ F(χ̂i∗) = F(χ̂′i∗)]

≥ Pr
par $←PGen(1κ),(χ̂i∗ ,χ̂′i∗) $←B(par)

[χ̂i∗ 6= χ̂′i∗ ∧ F(χ̂i∗) = F(χ̂′i∗) | par ∈ P] · Pr
par $←PG(1κ)

[par ∈ P]

≥
ε/2−

Q
QP2 +1
Ch ·(QP2 +QP1

QP1
)

q

32Q2
Ch(QP2 + 1)3 ·

ε− Q
QP2 +1
Ch ·

(QP2 +QP1
QP1

)
q

− 16Q2
Ch(QP2 + 1)2

q

 · ε/2
= O

((
ε/2− (QCh ·QP1)QP2 +1

q

)2 1
Q2

ChQ
3
P2

)
· ε/2 = O

((
ε/2− (QCh ·QP1)QP2 +1

22κ

)3 1
Q2

ChQ
3
P2

)
,

where the second-to-last equality holds for QP1 ≥ QP2 > 0.

7.2 Proof of Lemma 7.1
We will show in the following that for all (I, ω,h) ∈ (I × Ω× SQCh), d ∈ D :

αi,j(I, ω,h, d) := Pr
h′ $←SQCh |h[j−1]

[χ̂i(I, ω,h′) 6= d ∧ Ĵ i(I, ω,h′) = j]

≥ µi,j(I, ω,h)/2, (5)

where

µi,j(I, ω,h) := Pr
h′ $←SQCh |h[j−1]

[(I, ω,h′) ∈ Bi,j ∧ hj 6= h′j].

For a true/false statement s, define B(s) as 1 if s is true and 0 otherwise. It is easy to see that (5) implies
the theorem statement since

δi,j = Pr
(I,ω,h) $←(I×Ω×SQCh),h′ $←SQCh |h[j−1]

[
χ̂i(I, ω,h′) 6= χ̂i(I, ω,h)
∧Ĵ i(I, ω,h) = Ĵ i(I, ω,h′) = j

]
=
∑
d

Pr
(I,ω,h) $←(I×Ω×SQCh),h′ $←SQCh |h[j−1]

[
χ̂i(I, ω,h′) 6= d ∧ χ̂i(I, ω,h) = d

∧Ĵ i(I, ω,h) = Ĵ i(I, ω,h′) = j

]
=
∑
d

EI,ω,h[B(χ̂i(I, ω,h) = d ∧ Ĵ i(I, ω,h) = j) · αi,j(I, ω,h, d)]

≥ 1
2
∑
d

EI,ω,h[B(χ̂i(I, ω,h) = d ∧ Ĵ i(I, ω,h) = j) · µi,j(I, ω,h)],

where in the last step, we have applied linearity and monotonicity of the expectation and the fact that
due to (5), for all I, ω,h ∈ CQCh , d, we have αi,j(I, ω,h, d) ≥ µi,j(I, ω,h)/2. We continue with

1
2
∑
d

EI,ω,h[B(χ̂i(I, ω,h) = d ∧ Ĵ i(I, ω,h) = j) · µi,j(I, ω,h)]

= 1
2 ·
∑
d

Pr
(I,ω,h) $←(I×Ω×SQCh),h′ $←SQCh |h[j−1]

[
χ̂i(I, ω,h) = d ∧ Ĵ i(I, ω,h) = j
∧(I, ω,h′) ∈ Bi,j ∧ hj 6= h′j

]
= 1

2 · Pr
(I,ω,h) $←(I×Ω×SQCh),h′ $←SQCh |h[j−1]

[
Ĵ i(I, ω,h) = j
∧(I, ω,h′) ∈ Bi,j ∧ hj 6= h′j

]
(6)

≥ 1
2 · Pr

(I,ω,h) $←(I×Ω×SQCh),h′ $←SQCh |h[j−1]

[(I, ω,h) ∈ Bi,j ∧ (I, ω,h′) ∈ Bi,j ∧ hj 6= h′j] (7)

= 1
2 · frk(Bi,j , j) (8)

≥ βi,j
(
βi,j/8−

1
2q

)
, (9)

23

where from (6) to (7), we have used the fact that (I, ω,h′) ∈ Bi,j implies Ĵ i(I, ω,h′) = j. The inequality
from (8) to (9) follows directly from Lemma 6.1. We prove (5) by analyzing two cases. For all I, ω,h, d,
we define

γi,j(I, ω,h, d) := Pr
h′ $←SQCh |h[j−1]

[χ̂i(I, ω,h′) = d ∧ (I, ω,h′) ∈ Bi,j ∧ hj 6= h′j].

Case 1: γi,j(I, ω,h, d) ≥ µi,j(I, ω,h)/2. Note that in this case we can assume d 6= ci,j(I, ω,h). This is
because if d = ci,j(I, ω,h), then

γi,j(I, ω,h, d) ≤ Pr[χ̂i(I, ω,h′) = ci,j(I, ω,h) ∧ (I, ω,h′) ∈ Bi,j]
= Pr[χ̂i(I, ω,h′) = ci,j(I, ω,h′) ∧ (I, ω,h′) ∈ Bi,j]
= Pr[χ̂i(I, ω,h′) = Ci(I, ω,h′) ∧ (I, ω,h′) ∈ Bi,j] = 0,

which would trivialize the claim. For the first equality, we have used the fact that ci,j(I, ω,h) = ci,j(I, ω,h′)
for any h = h′ that agree on the first j − 1 entries. For the second equality, we have again used the fact
that (I, ω,h′) ∈ Bi,j implies Ĵ i(I, ω,h′) = j. Assuming that d 6= ci,j(I, ω,h), we continue with

αi,j(I, ω,h, d) = Pr
h′ $←SQCh |h[j−1]

[χ̂i(I, ω,h′) 6= d ∧ Ĵ i(I, ω,h′) = j]

≥ Pr[χ̂i(I, ω,h′) = ci,j(I, ω,h) ∧ Ĵ i(I, ω,h′) = j]
≥ Pr[χ̂i(I, ω,h′) = d ∧ Ĵ i(I, ω,h′) = j].

Using once more that (I, ω,h′) ∈ Bi,j implies Ĵ i(I, ω,h′) = j, we obtain

Pr[χ̂i(I, ω,h′) = d ∧ Ĵ i(I, ω,h′) = j] ≥ Pr[χ̂i(I, ω,h′) = d ∧ (I, ω,h′) ∈ Bi,j]
≥ γi,j(I, ω,h, d) ≥ µi,j(I, ω,h)/2.

Case 2: γi,j(I, ω,h, d) < µi,j(I, ω,h)/2. Now,

αi,j(I, ω,h, d) = Pr
h′ $←SQCh |h[j−1]

[χ̂i(I, ω,h′) 6= d ∧ Ĵ i(I, ω,h′) = j]

≥ Pr[χ̂i(I, ω,h′) 6= d ∧ (I, ω,h′) ∈ Bi,j ∧ hj 6= h′j]
= Pr[(I, ω,h′) ∈ Bi,j ∧ hj 6= h′j]
− Pr[χ̂i(I, ω,h′) = d ∧ (I, ω,h′) ∈ Bi,j ∧ hj 6= h′j]

= µi,j(I, ω,h)− γi,j(I, ω,h, d) > µi,j(I, ω,h)/2.

This proves (5) and hence the lemma.

7.3 Proof of Lemma 7.2
Consider again the algorithm Ai in Figure 13 and its internal variables. On input (I = (sk, par), ω =
(ωM, r),h), Ai invokes M on pk = F(sk) and randomness ωM and answers its queries using the values
in r,h. Similarly as before, this allows us to fix an execution of M (within Ai) via a tuple of the form
(I, ω,h) = (I, (ωM, r),h) . Let c(I, ω,h) denote the vector of challenge values as defined in Line 19 of
Figure 13.

Recall that we have assumed that F : D −→ R and the existence of a pseudo torsion-free element
z∗ ∈ D \ {0} such that (i) F(z∗) = 0; and (ii) ∀s, s′ ∈ C : s 6= s′ =⇒ s · z∗ 6= s′ · z∗.

Lemma 7.3 Consider the mapping

Φ :W −→ (I × Ω× SQCh)
((sk, par), (ωM, r),h) 7→ ((sk + (−z∗), par), (ωM, r + z∗ · c(I, ω,h)),h) ,

where we make the convention that for v ∈ D ∪ S ∪R, v · ⊥ := 0. Then Φ is a permutation on W.

For the proof we require the following claim.

24

Claim 7.4 Let (I, ω,h) ∈ W. Then the tuples (I, ω,h) and Φ(I, ω,h) fix the same execution of M.

Proof. We show that M sees identical values in both executions corresponding to (I, ω,h) and Φ(I, ω,h).
To this end we consider all values in the view of M.

• Initial input to M. Since Φ does not alter the values of ωM and par , we only need to verify
that M obtains the same public key in both executions. This is ensured via F(sk + (−z∗)) =
F(sk) + F(−(z∗)) = F(sk) = pk.6

• Outputs of oracle P1. Oracle P1 consecutively returns the values from R = F(r), as defined in
Line 01 of Figure 13. They remain the same in both executions since F(r) = R = R+0 ·c(I, ω,h) =
F(r) + F(z∗) · c(I, ω,h) = F(r + z∗) · c(I, ω,h)).

• Outputs of oracle Ver. Oracle Ver consecutively returns the values from b′. They remain the
same in both executions since they depend on R, h, and the randomness ωM.

• Outputs of oracle P2. Oracle P2 consecutively returns the values from s = c · sk + r, as defined
in Line 18 of Figure 13. Note that c1 in both executions is the same (as it only depends on values
that we have already argued to remain the same in both executions), i.e., c1 = c1(I, ω,h) =
c1(Φ(I, ω,h)). If c1 = ⊥, then s1(I, ω,h) = s1(Φ(I, ω,h)) = ⊥. We can thus inductively
argue for all i = 2, ..., k − 1 that si(I, ω,h) = si(Φ(I, ω,h)) = ⊥ where k is the first entry
of c(I, ω,h) s.t. ck(I, ω,h) 6= ⊥. Moreover, it follows that ck(I, ω,h) = ck(Φ(I, ω,h)). Thus,
sk(I, ω,h) = rk + sk · ck(I, ω,h) = rk + z∗ · c1(I, ω,h) + (−z∗) · ck(I, ω,h) + sk · ck(I, ω,h) =
(rk + z∗ · ck(Φ(I, ω,h))) + (sk + (−z∗)) · ck(Φ(I, ω,h)) = sk(Φ(I, ω,h)), where in the second and
third step, we have used the distributive law over the pseudo module formed by S and D. By a
simple inductive argument, it now follows that s(I, ω,h) = s(Φ(I, ω,h)).

Thus, (I, ω,h) and Φ(I, ω,h) fix the same executions of M.

Proof of Lemma 7.3. First note that Lemma 7.4 implies that Φ maps to W. It remains to prove that Φ
is also a bijection. Suppose Φ is not injective. Thus, for distinct tuples (I, (ωM, r),h) 6= (I ′, (ω′M, r′),h′),
Φ (I, (ωM, r),h) = Φ(I ′, (ω′M, r′),h′). This implies par = par ′, ωM = ω′M and h = h′. Similarly, sk +
(−z∗) = sk ′+(−z∗), which implies that sk = sk ′. Lastly, r+z∗·c (I, (ωM, r),h) = r′+z∗·c(I ′, (ω′M, r′),h′).
Since Φ (I, (ωM, r),h) = Φ(I ′, (ω′M, r′),h′), by Claim 7.4, (I, (ωM, r),h) and (I ′, (ω′M, r′),h′) fix the same
execution and therefore also c (I, (ωM, r),h) = c(I ′, (ω′M, r′),h′). This implies r = r′, leading to the
contradiction (I, (ωM, r),h) = (I ′, (ω′M, r′),h′).

To prove that Φ is surjective, we consider the function Φ−1 : (I × Ω × SQCh) −→ (I × Ω × SQCh),
defined as Φ−1((sk, par), (ωM, r),h) = ((sk + z∗, par), (ωM, r + (−z∗) · c(I, ω,h)),h), which is the inverse
of Φ. With the same argument as above, one can also prove that Φ−1 is injective which implies the
surjectivity of Φ.

We now introduce the following notation. Let B =
⋃
i,j

Bi,j and let G = W \ B. That is, for all

(I, ω,h) ∈ G, we have ∀k ∈ [QP2 + 1] : χ̂k(I, ω,h) = Ck(I, ω,h). The following combinatorial lemma will
help to lower bound the probability that χ̂ takes different values (i.e., differs in at least one component)
as a result of distinct instances I = (sk, par), I ′ = (sk + (−z∗), par).

Lemma 7.5 For any fixed (I, (ωM, r)) ∈ I × Ω,

Pr
h

$←SQCh
[(I, (ωM, r),h) ∈ G ∧ Φ (I, (ωM, r),h) ∈ G] ≤

Q
QP2 +1
Ch ·

(QP2 +QP1
QP1

)
q

.

Proof. We argue by contradiction. Thus, assume that for some (I, (ωM, r)) ∈ I × Ω,

Pr
h

$←SQCh
[(I, (ωM, r),h) ∈ G ∧ Φ (I, (ωM, r),h) ∈ G] >

Q
QP2 +1
Ch ·

(QP2 +QP1
QP1

)
q

.

6Note that if z∗ is a torsion-free element from the kernel, then so is (−z∗).

25

Then there exist a set {u1, ..., uQP2 +1} of QP2 + 1 distinct indices from [QCh] such that

Pr
h

$←SQCh

[
((I, (ωM, r),h) ∈ G) ∧ (Φ (I, (ωM, r),h) ∈ G)
∧∀j : Ĵ j (I, (ωM, r),h) = uj

]
>

(QP2 +QP1
QP1

)
q

.

Similarly, there exists a vector d ∈ (S ∪ {⊥})QP2 +QP1 of challenges such that d has exactly QP1 entries
which are ⊥ and furthermore has the property that

Pr
h

$←SQCh

[
((I, (ωM, r),h) ∈ G) ∧ (Φ (I, (ωM, r),h) ∈ G)
∧ (c (I, (ωM, r),h) = d) ∧

(
∀j : Ĵ j (I, (ωM, r),h) = uj

)]
>

1
qQP2 +1 .

Lastly, there exists a set {v1, ..., vQCh−QP2−1} ofQCh−QP2−1 distinct indices from [QCh]\{u1, ..., uQP2 +1}
and a vector (h̃v1 , ..., h̃vQCh−QP2−1) ∈ SQCh−QP2−1 such that

Pr
h

$←SQCh

[
((I, (ωM, r),h) ∈ G) ∧ (Φ (I, (ωM, r),h) ∈ G) ∧ (c (I, (ωM, r),h) = d)
∧
(
∀j : (Ĵ j (I, (ωM, r),h) = uj

)
∧
(
∀j : hvj = h̃vj

)]

>
1

qQP2 +1qQCh−QP2−1 = 1
qQCh

.

Since the random variable h takes a particular value k ∈ SQCh with probability exactly q−QCh , the
statement inside the probability term above must be true for at least two distinct vectors k,k′ ∈ SQCh .
Furthermore, since the condition in the probability term above fixes all but the QP2 + 1 components
{u1, ..., uQP2 +1} of k and k′, there exists an index i ∈ [QP2 + 1] s.t. kui 6= k′ui .

W.l.o.g., let i be the smallest such index. This implies that ∀j < ui : kj = k′j and kui 6= k′ui .
Therefore,

Ci(I, (ωM, r),k) = ci,Ĵi(I,(ωM,r),k)(I, (ωM, r),k)
= ci,ui(I, (ωM, r),k) = ci,ui(I, (ωM, r),k′)
= ci,Ĵi(I,(ωM,r),k′)(I, (ωM, r),k′) = Ci(I, (ωM, r),k′). (10)

By Lemma 7.4, Ĵ i(I, (ωM, r),k) = Ĵ i(Φ(I, (ωM, r),k)) = ui and ŝ′i(I, (ωM, r),k) = ŝ′i(Φ(I, (ωM, r),k)).
Furhtermore, since also (I, (ωM, r),k) ∈ G and Φ(I, (ωM, r),k) ∈ G, we know that χ̂i(I, (ωM, r),k) =
Ci(I, (ωM, r),k) = ŝ′i(I, (ωM, r),k)−sk·kui and χ̂i (Φ(I, (ωM, r),k)) = Ci (Φ(I, (ωM, r),k)) = ŝ′i (Φ(I, (ωM, r),k))−
(sk + (−z∗)) · kui . Putting things together, we obtain

Ci(I, (ωM, r),k) = ŝ′i(I, (ωM, r),k)− sk · kui
= ŝ′i(Φ(I, (ωM, r),k))− sk · kui
= ŝ′i(Φ(I, (ωM, r),k)) + sk · (−kui)
= ŝ′i(Φ(I, (ωM, r),k)) + sk · (−kui) + z∗ · (−kui) + (−z∗) · (−kui)
= ŝ′i(Φ(I, (ωM, r),k)) + (sk + (−z∗)) · (−kui) + z∗ · (−kui)
= ŝ′i(Φ(I, (ωM, r),k))− (sk + (−z∗)) · kui + z∗ · (−kui)
= Ci(Φ(I, (ωM, r),k))− z∗ · kui , (11)

(12)

where we have again applied the laws of the pseudo module formed by S and D. Analogously, we infer

Ci(I, (ωM, r),k′) = Ci(Φ(I, (ωM, r),k′))− z∗ · k′ui . (13)

Combining (in this order) equations 11, 10, and 13, we obtain:

Ci(Φ(I, (ωM, r),k))− z∗ · kui
= Ci(I, (ωM, r),k) = Ci(I, (ωM, r),k′)
= Ci(Φ(I, (ωM, r),k′))− z∗ · k′ui . (14)

26

Denote again I ′ = (sk + (−z∗), par). Since above we have fixed c(I, (ωM, r),k) = c(I, (ωM, r),k′) = d,
we also know that

Ci(Φ(I, (ωM, r),k)) (15)
= Ci(I ′, ωM, r + z∗ · c(I, (ωM, r),k),k)
= Ci(I ′, ωM, r + z∗ · d,k)
= Ci(I ′, ωM, r + z∗ · d,k′) (16)
= Ci(I ′, ωM, r + z∗ · c(I, (ωM, r),k′),k′)
= Ci(Φ(I, (ωM, r),k′)), (17)

where 16 follows again from the fact that ∀j < ui : kj = k′j and Ĵ i(Φ(I, (ωM, r),k)) = Ĵ i(Φ(I, (ωM, r),k′)) =
ui. By combining 14 and 17, it now follows that z∗ · (−kui) = −z∗ · kui = −z∗ · k′ui = z∗ · (−k′ui).
Thus, pseudo torsion-freeness of z∗ implies that −kui = −k′ui , and hence kui = k′ui , contradicting that
kui 6= k′ui . This completes the proof.

Corollary 7.6 Pr
(I,ω,h) $←(I×Ω×SQCh)

[(I, ω,h) ∈ G ∧ Φ(I, ω,h) ∈ G] ≤
Q
QP2 +1
Ch ·(QP2 +QP1

QP1
)

q .

Discussion. The lower bound in Theorem 7.6 exponentially depreciates with the number QP2 of parallel
sessions allowed in the OMMIM experiment. Unfortunately, the ROS-attack in 4.2 shows that the
bound in Theorem 7.6 can not be improved beyond a factor of

(QP2 +QP1
QP1

)
. The reason for this is that

our attacker computes χ̂ in a manner that does not depend on h, but only on ω, I (more precisely, any
contribution of h–and therefore of sk– ‘cancels out’ in the values returned by the attacker). Therefore, χ̂
always takes the ‘most likely’ value according to 4 in the sense that, regardless of h, the attacker can
force (ω, I,h) ∈ G and Φ(ω, I,h) ∈ G.

Lemma 7.7 Pr
(I,ω,h) $←(I×Ω×SQCh)

[(I, ω,h) ∈ B] ≥ 1
2

(
ε/2−

Q
QP2 +1
Ch ·(QP2 +QP1

QP1
)

q

)
.

Proof. We partition G into subsets Gg,Gb such that all elements in Gg are mapped into G via Φ and all
elements in Gb are mapped into B via Φ. It follows that

Pr
(I,ω,h) $←(I×Ω×SQCh)

[(I, ω,h) ∈ G]

= Pr
(I,ω,h) $←(I×Ω×SQCh)

[(I, ω,h) ∈ Gg] + Pr
(I,ω,h) $←(I×Ω×SQCh)

[(I, ω,h) ∈ Gb]. (18)

By Corollary 7.6 and because Φ is a bijection, we can infer that

Pr
(I,ω,h) $←(I×Ω×SQCh)

[(I, ω,h) ∈ Gg] ≤
Q
QP2 +1
Ch ·

(QP2 +QP1
QP1

)
q

, (19)

Pr
(I,ω,h) $←(I×Ω×SQCh)

[(I, ω,h) ∈ Gb] ≤ Pr
(I,ω,h) $←(I×Ω×SQCh)

[(I, ω,h) ∈ B]. (20)

It follows from 18,19, 20 that

Pr[(I, ω,h) ∈ G] ≤
Q
QP2 +1
Ch ·

(QP2 +QP1
QP1

)
q

+ Pr[(I, ω,h) ∈ B]. (21)

From 21, we can bound Pr[(I, ω,h) ∈ B] as

Pr[(I, ω,h) ∈ B] = Pr[(I, ω,h) ∈ W]− Pr[(I, ω,h) ∈ G]

≥ Pr[(I, ω,h) ∈ W]− Pr[(I, ω,h) ∈ B]−
Q
QP2 +1
Ch ·

(QP2 +QP1
QP1

)
q

.

27

Since ε/2 = Pr
(I,ω,h) $←(I×Ω×SQCh)

[(I, ω,h) ∈ W], we finally obtain

Pr
(I,ω,h) $←(I×Ω×SQCh)

[(I, ω,h) ∈ B] ≥ 1
2

ε/2− Q
QP2 +1
Ch ·

(QP2 +QP1
QP1

)
q

 .

We are now ready to prove Lemma 7.2, i.e., we show that there exist i ∈ [QP2 + 1], j ∈ [QCh] such

that βi,j >
(
ε/2−

Q
QP2 +1
Ch ·(QP2 +QP1

QP1
)

q

)
· 1

2QCh(QP2 +1) . Toward a contradiction, suppose instead that for all

i ∈ [QP2 + 1], j ∈ [QCh], we have that

Pr
(I,ω,h) $←(I×Ω×SQCh)

[(I, ω,h) ∈ Bi,j] <

ε/2− Q
QP2 +1
Ch ·

(QP2 +QP1
QP1

)
q

 · 1
2QCh(QP2 + 1) .

By Lemma 7.7,

1
2

ε/2− Q
QP2 +1
Ch ·

(QP2 +QP1
QP1

)
q

 ≤ Pr[(I, ω,h) ∈ B] = Pr[(I, ω,h) ∈
⋃
i,j

Bi,j]

≤
∑
i,j

Pr[(I, ω,h) ∈ Bi,j] <
1
2

ε/2− Q
QP2 +1
Ch ·

(QP2 +QP1
QP1

)
q

 .

This is a contradiction.

8 Instantiations of Linear Function Families
In this section we first give three hardness assumptions and three instatiations of linear function families
basing their security notion on the hardness of these assumptions.

8.1 Hardness Assumptions
In the following, let GGen denote a group generating algorithm which on input the security parameter 1κ
outputs the description of a group G := (G, q, g), where G is a cyclic group of prime order q with generator
g and we assume that q has bit length 2κ+ 1. This way, when instantiated over a suitable elliptic curve,
the discrete logarithm problem has κ bits of security, given current knowledge. More concretely, the best
known algorithm, i.e., Pollard’s rho algorithm [30], requires (heuristically) an expected running time of at
least 2κ in order to achieve constant success probability in this regime.
Discrete Logarithm Problem. The discrete logarithm problem relative to GGen is defined via game
DLPGGen (Figure 15). We define A’s advantage in DLPGGen as AdvDLP

GGen (A) := Pr[DLPA
GGen ⇒ 1] and

denote its running time as TimeDLP
GGen (A).

Definition 8.1 (DLP Security). We say that DLPGGen is (ε, t)-hard if for all adversaries A satisfying
TimeDLP

GGen (A) ≤ t, we have that AdvDLP
GGen (A) ≤ ε. We say that A (ε, t)-breaks DLPGGen if TimeDLP

GGen (A) ≤
t and AdvDLP

GGen (A) > ε.

Factoring Problem. Let PG denote a parameter generating algorithm which on input the security
parameter 1κ outputs par := (P,Q). Here, P and Q are random primes of bit length κ · τ(κ), where,
throughout this work, τ(κ) ∈ N denotes the smallest natural number such that for n = 22κ·τ(κ),

log
(
Ln

[
1
3 ,

3

√
64
9

])
≥ κ

28

Game DLPGGen:
00 (G, q, g) $← GGen(1κ)
01 x $← Zq
02 X ← gx

03 z $← A(X,G)
04 If z ≡q x : Return 1
05 Return 0

Figure 15: Game DLPGGen with adversary A.

Game FACPG:
00 (P,Q) $← PG(1κ)
01 N = P ·Q
02 (P ′, Q′) $← A(N)
03 If (P ′, Q′ 6= N) ∧N = P ′ ·Q′ : Return 1
04 Return 0

Figure 16: Game FACPG with adversary A.

and where

Ln[c, α] := e(α+o(1))(lnn)c(ln lnn)1−c
.

More concretely, Ln
[

1
3 ,

3
√

64
9

]
denotes the sub-exponential (heuristic) complexity of the general number

field sieve algorithm [31], which is the best known factoring algorithm. As in the previous subsection,
this choice of size for P and Q guarantees an expected running time of at least 2κ for the best known
factoring algorithm to factor the modulus N = P ·Q into its prime components P,Q with constant success
probability. The factoring problem relative to PG is defined via game FACPG (Figure 16). We define A’s
advantage in FACPG as AdvFAC

PG (A) := Pr[FACA
PG ⇒ 1] and denote its running time as TimeFAC

PG (A).

Definition 8.2 (FAC Security). We say that FACPG is (ε, t)-hard if for all adversaries A satisfying
TimeFAC

PG (A) ≤ t, we have that AdvFAC
PG (A) ≤ ε. We say that A (ε, t)-breaks FACPG if TimeFAC

PG (A) ≤ t
and AdvFAC

PG (A) > ε.

RSA Problem. We now state the RSA problem over Z∗N . In the following, let us denote with ϕ(N)
Euler’s totient function. If N = P · Q, for primes P,Q, then ϕ(N) = (P − 1)(Q − 1). We assume a
slightly modified parameter generating algorithm PG that on input the security parameter 1κ outputs
par := (N = P ·Q, e) where P and Q are random primes of bit length κ · τ(κ) and e is positive integer
satisfying gcd(e, ϕ(N)) = 1. The RSA problem relative to PG is defined via game RSAPG (Figure 17).
We define A’s advantage in RSAPG as AdvRSA

PG (A) := Pr[RSAA
PG ⇒ 1] and denote its running time as

TimeRSA
PG (A).

Definition 8.3 (RSA Security). We say that RSAPG is (ε, t)-hard if for all adversaries A satisfying

Game RSAPG:
00 (N, e) $← PG(1κ)
01 x $← Z∗N
02 y ← xe

03 z $← A(N, e, y)
04 If ze = y : Return 1
05 Return 0

Figure 17: Game RSAPG with adversary A.

29

TimeRSA
PG (A) ≤ t, we have that AdvRSA

PG (A) ≤ ε. We say that A (ε, t)-breaks RSAPG if TimeRSA
PG (A) ≤ t

and AdvRSA
PG (A) > ε.

8.2 Instantiations
We now present some examples of linear function families. It is easy to see that all of the following
examples satisfy the smoothness requirement.
Okamoto-Schnorr. On input the security parameter 1κ, PGen returns parameters par := (G, g1, g2, q),
where G is a cyclic group of prime order q and q has bit length 2κ + 1. Furthermore, g1, g2 ∈ G. par
defines the sets S,D,R, as well as the homomorphic evaluation function F as follows:

S := Zq; D := Z2
q; R := G; F : Z2

q → G, (x1, x2) 7→ gx1
1 gx2

2 .

For s ∈ S, x ∈ D and Z ∈ R, we define s · x = xs, s · Z = Zs, i.e., as the s-fold component wise
application of + (modulo q) to x with itself when applied to x ∈ D and the s-fold application of the
group operation in G = R to Z with itself when applied to Z ∈ R. It is easy to verify that D,R form
S-modules (and therefore S-pseudo modules), that F is a smooth pseudo module homomorphism with the
trivial distributor function Ψ ≡ 0, and that LF is (ε, t)-collision resistant if DLPGGen (defined as usual) is
(ε, t)-hard. Furthermore, for x := dlogg1(g2), F has a pseudo torsion-free element from the kernel with
z∗ := (x,−1) satisfying the required properties.
Okamoto-Guillou-Quisquater. On input 1κ, PGen returns system parameters par := (N = P ·Q,λ, a),
where P,Q are primes, a ∈ Z∗N and λ is a prime number of bit length 2κ+ 1 that satisfies gcd(ϕ(N), λ) =
gcd(N,λ) = 1. The parameters par define

S := Zλ; R := Z∗N ; D = S ×R,

where the group operation on S is the addition modulo λ, the group operation on R is the multiplication
modulo N and D is an abelian group with the group operation

(x1, x2) ◦ (y1, y2) =
(

[x1 + y1]λ,
[
x2y2a

b x1+y1
λ c

]
N

)
,

as we prove in Theorem 8.4. Furthermore, for s ∈ S, x ∈ D and Z ∈ R, we define sx := s·x = xs, sZ = Zs,
i.e., as the s-fold application of ◦ to x with itself when applied to x ∈ D and the s-fold application of
multiplication modulo N to Z with itself when applied to Z ∈ R. We write sx, sZ rather than s · x, s · Z
to distinguish the way that elements from S are applied to elements of D and R from the way that
elements from D and R are composed via ◦ and the multiplication modulo N , respectively. Given that D
forms a group with the operation ◦, it is easy to see that S and D and S and R form pseudo modules.

Lemma 8.4 〈D, ◦〉 is an abelian group.

Proof. We show that the group axioms are satisfied for 〈D, ◦〉. It follows by inspection that D is closed
under ◦ and that ◦ is commutative. Furthermore:

• Neutral Element: We see that the element (0, 1) ∈ D satisfies (0, 1)◦(x1, x2) =
(

[x1 + 0]λ, [x2 · 1 · ab
x1+0
λ c]N

)
=(

x1, [x2 · 1 · a0]N
)

= (x1, x2) for all (x1, x2) ∈ D. The second to last equality follows from the fact
that since x1 ∈ Zλ, we have that

⌊
x1
λ

⌋
= 0.

• Inverses: Let (x1, x2) ∈ D. Then the element (−x1, x
−1
2 a−1) ∈ D satisfies (x1, x2)◦(−x1, x

−1
2 a−1) =

(x1, x2)◦(λ−x1, x
−1
2 a−1) =

(
[x1 − x1]λ, [x2x

−1
2 · ab

x1+λ−x1
λ ca−1]N

)
=
(
[x1 − x1]λ, [x2x

−1
2 · a1a−1]N

)
=(

0, [a0]N
)

= (0, 1).

We now show that ◦ is associative.

Claim 8.5 ◦ is an associative operation on D.

Proof. Let (x1, y1), (x2, y2), (x3, y3) ∈ D. We have to show that

(x1, y1) ◦
(
(x2, y2) ◦ (x3, y3)

)
=
(
(x1, y1) ◦ (x2, y2)

)
◦ (x3, y3). (22)

30

This
page
is ex-
ceed-
ing
the
page
limit.

Equation (22) leads to(
[x1 + [x2 + x3]λ]λ ,

[
y1y2y3a

⌊
x1+[x2+x3]λ

λ

⌋
ab

x2+x3
λ c

]
N

)
(23)

=
(

[[x1 + x2]λ + x3]λ ,
[
y1y2y3a

⌊ [x1+x2]λ+x3
λ

⌋
ab

x1+x2
λ c

]
N

)
. (24)

Let

A0 :=
⌊
x1 + [x2 + x3]λ

λ

⌋
, B0 :=

⌊
x2 + x3

λ

⌋
,

A1 :=
⌊

[x1 + x2]λ + x3

λ

⌋
, B1 :=

⌊
x1 + x2

λ

⌋
.

The two sides of Equation (23) are equal if either

(A0 = A1) ∧ (B0 = B1) (25)

or

(A0 = B1) ∧ (B0 = A1) . (26)

Observe that A0, A1, B0, B1 ∈ {0, 1}. We now carry out a case distinction over the possible combinations
of values that can be taken by A0 and B0 which rules out all cases for which both Equation (25) and
Equation (26) are violated.

• Case A0 = B0 = 0. In this case, we have that

(x1 + [x2 + x3]λ < λ) ∧ (x2 + x3 < λ) , (27)

which leads to

x1 + x2 + x3 < λ. (28)

We analyse two subcases:

– Case A1 = 1. In this case, x1 + x2 + x3 ≥ [x1 + x2]λ + x3 ≥ λ, which is in contradiction to
Equation (28).

– Case B1 = 1. In this case, x1 + x2 + x3 ≥ x1 + x2 ≥ λ, which is in contradiction to
Equation (28).

• Case A0 = 1, B0 = 0. In this case, we have that

(x1 + [x2 + x3]λ ≥ λ) ∧ (x2 + x3 < λ) , (29)

which leads to

λ ≤ x1 + x2 + x3. (30)

We analyse two subcases:

– Case B1 = 0, A1 = 0. In this case, x1 + x2 < λ and [x1 + x2]λ + x3 < λ, which simplifies to
x1 + x2 + x3 < λ and is in contradiction to Equation (30).

– Case B1 = 1, A1 = 1. In this case, x1 + x2 ≥ λ and [x1 + x2]λ + x3 ≥ λ, which simplifies to
x1+x2+x3−λ ≥ λ. From Equation (29) it now follows that λ ≤ x1+x2+x3−λ < x1+λ−λ = x1,
which contradicts x1 < λ.

• Case A0 = 0, B0 = 1. In this case, we have that

(x1 + [x2 + x3]λ < λ) ∧ (x2 + x3 ≥ λ) , (31)

which leads to

λ > x1 + x2 + x3 − λ. (32)

We analyse two subcases:

31

This
page
is ex-
ceed-
ing
the
page
limit.

– Case B1 = 0, A1 = 0. In this case, x1 + x2 < λ and [x1 + x2]λ + x3 < λ, which simplifies
to x1 + x2 + x3 < λ. Now, Equation (31) leads to a contradiction since λ ≤ x2 + x3 ≤
x1 + x2 + x3 < λ.

– Case B1 = 1, A1 = 1. In this case, x1 + x2 ≥ λ and [x1 + x2]λ + x3 ≥ λ, which simplifies to
x1 + x2 + x3 − λ ≥ λ. This is in direct contradiction to Equation (32).

• Case A0 = 1, B0 = 1. In this case, we have that

(x1 + [x2 + x3]λ ≥ λ) ∧ (x2 + x3 ≥ λ) , (33)

which leads to

λ ≤ x1 + x2 + x3 − λ. (34)

We analyse two subcases:

– Case B1 = 0. In this case, x1 + x2 < λ. Equation (34) now leads to λ ≤ x1 + x2 + x3 − λ <
x3 + λ− λ = x3, contradicting that λ > x3.

– Case A1 = 0, B1 = 1. In this case, [x1 + x2]λ + x3 < λ and x1 + x2 ≥ λ, leading to
x1 + x2 − λ+ x3 < λ which again contradicts Equation (34).

This concludes the proof.

For the following proofs, we will use the identity [x]λ = x− λ
⌊
x
λ

⌋
, which holds for all x ∈ Z, λ ∈ N.7

The evaluation function F is defined as

F : Zλ × Z∗N → Z∗N ,F(x1, x2) :=
[
ax1xλ2

]
N
.

Lemma 8.6 F is a pseudo module homomorphism.

Proof. Let (x1, x2), (y1, y2) ∈ D and s ∈ S. Then

F((x1, x2) ◦ (y1, y2)) = F
(

[x1 + y1]λ,
[
x2y2a

b x1+y1
λ c

]
N

)
=
[
a[x1+y1]λ

(
x2y2a

b x1+y1
λ c

)λ]
N

≡N a[(x1+y1)]λ+λb x1+y1
λ c(x2y2)λ

≡N ax1+y1(x2y2)λ ≡N
(
ax1xλ2

) (
ay1yλ2

)
≡N

[
ax1xλ2

]
N

[
ay1yλ2

]
N

= F(x1, x2)F(y1, y2).

Since for all s ∈ S and (x1, x2) ∈ D, we have defined s · (x1, x2) = (x1, x2)s = (x1, x2) ◦ · · · ◦ (x1, x2), it
immediately follows that

F(s(x1, x2) ◦ (y1, y2) = F((x1, x2)s ◦ (y1, y2)) = F(x1, x2)s · F(y1, y2) = sF(x1, x2) · F(y1, y2).

Lemma 8.7 If RSAPGen is (ε, t)-hard then LF is (ε, t)-collision resistant.

Proof. Let A be an adversary that breaks (ε, t)-collision resistance of LF. We show an adversary B
that (ε, t)-breaks RSAPGen. B obtains the problem instance (N,λ, y = uλ,). B now runs A on input
(N,λ, a := y). When A returns pairs (x1, x2), (x′1, x′2) s.t. F(x1, x2) = F(x′1, x′2), we have that

uλ·(x1−x′1) ≡N a(x1−x′1) ≡N (x′2/x2)λ (35)

and thus

ux1−x′1 ≡N x′2/x2,

which follows from gcd (λ, ϕ(N)) = 1.
7More precisely, we will implicitly use the identity [x]λ ≡ord(a) x− λ

⌊
x
λ

⌋
.

32

This
page
is ex-
ceed-
ing
the
page
limit.

Claim 8.8 If (x1, x2) 6= (x′1, x′2) then x1 6= x′1.

Proof. Suppose that (x1, x2) 6= (x′1, x′2) and x1 = x′1. Therefore, x2 6= x′2. Here, x1, x
′
1 ∈ Zλ, x2, x

′
2 ∈ Z∗N .

Since gcd (λ, ϕ(N)) = 1, we know that 1 has the unique λ-th root 1 modulo N , i.e., zλ ≡N 1 if and only
if z ≡N 1. Setting z := x′2/x2 6≡N 1, Equality 35 leads to the contradiction

1 ≡N a0 ≡N ax1−x′1 ≡N (x′2/x2)λ = zλ,

i.e., z 6≡N 1 is a λ-th root of 1.

By the claim, we may assume in the following that x1 6= x′1. Furthermore, since x1, x
′
1 ∈ Zλ and λ is

a prime number, we also have gcd (λ, x1 − x′1) = 1. Thus, B can use the extended Euclidean Algorithm
to efficiently compute values d, e such that d · (x1 − x′1) + e · λ = 1. In turn, it can compute

(x′2/x2)d ae ≡N ud·(x1−x′1)ue·λ ≡N ud·(x1−x′1)+e·λ ≡N u.

B returns u and terminates. Clearly, B wins RSAPGen whenever A wins CRLF, which completes the proof.

Lemma 8.9 F has a pseudo torsion-free element from the kernel.

Proof. Let par = (N = PQ, λ, a) ∈ PGen(1κ). We show that the element z∗ = (−1, a1/λa−1) =
(λ− 1, a1/λa−1) satisfies the required properties.8

• We have F(z∗) = aλ−1(a1/λ)λa−λ ≡N a−1a ≡N 1, where 1 = 0R is the neutral element in R.

• For all s, s′ ∈ Zλ, s 6= s′, we have that sz∗ 6= s′z∗, since [−s]λ 6= [−s′]λ.

This proves the claim.

For Z ∈ R, s′, s ∈ S the distributor function Ψ is defined as

Ψ : Z∗N × Zλ × Zλ −→ D, (Z, s, s′) 7→
(

0, Z−
⌊
s+s′
λ

⌋)
.

Lemma 8.10 For all x = (x1, x2) ∈ D, s′, s ∈ S, F ((s+ s′)x) = F(sx+ s′x+ Ψ(F(x), s, s′)).

Proof. Let x = (x1, x2) ∈ D, s′, s ∈ S. We have

F ((s+ s′)x) ≡N [(s+ s′)]λF(x) ≡N a[(s+s′)]λx1x
λ[(s+s′)]λ
2

and

F(sx+ s′x+ Ψ(F(x), s, s′))
≡N sF(x) + s′F(x) + F(Ψ(F(x), s, s′))

≡N asx1xλs2 as
′x1xλs

′

2 F
((

0, (ax1xλ2)−
⌊
s+s′
λ

⌋))
≡N asx1xλs2 as

′x1xλs
′

2 (ax1xλ2)−λ
⌊
s+s′
λ

⌋
≡N a

(s+s′)x1−x1λ
⌊
s+s′
λ

⌋
x
λ(s+s′)−λ2

⌊
s+s′
λ

⌋
2 .

We want to show that

a[(s+s′)]λx1x
λ[(s+s′)]λ
2 ≡N [(s+ s′)]λF(x) ≡N sF(x) + s′F(x) + F(Ψ(F(x), s, s′))

≡N a
(s+s′)x1−x1λ

⌊
s+s′
λ

⌋
x
λ(s+s′)−λ2

⌊
s+s′
λ

⌋
2 .

8Here, 1/λ denotes the inverse of λ modulo ϕ(N).

33

This
page
is ex-
ceed-
ing
the
page
limit.

It suffices to notice that

[(s+ s′)]λx1 = (s+ s′)x1 − x1λ

⌊
s+ s′

λ

⌋
and

λ[(s+ s′)]λ = λ

(
(s+ s′)− λ

⌊
s+ s′

λ

⌋)
= λ(s+ s′)− λ2

⌊
s+ s′

λ

⌋
.

Lemma 8.11 F is smooth.

Proof. From the arguments of Lemma 8.2, it is clear that F is also a group homomorphism between D
and R. Moreover, for all y ∈ R = Z∗N , (1, y1/λ) satisfies F(1, y1/λ) = y, so F is surjective. It now follows
from standard arguments that F is smooth (see e.g. Theorem 8.5 in Shoup [35]).

We remark that we have managed to avoid the cumbersome requirement that ord(a) > λ which was
required originally by Pointcheval and Stern.
Fiat-Shamir. PGen returns parameters par := (N = P ·Q, k), where P,Q are prime and k > 2κ is an
integer. Parameters par define

S := Zk2 ; D := (Z∗N)k,R := (QR∗N)k;
F : (Z∗N)k → (QR∗N)k,F(x1, . . . , xk) 7→ (x2

1, . . . , x
2
k).

Here QR∗N denotes the group of quadratic residues modulo N . For s ∈ S, z ∈ Z∗N , we define s · z :=
(zs1

1 , . . . , zskk) = ([zs1
1]N , . . . , [zskk]N). Furthermore, we define the group operation on S as the component

wise addition modulo 2 and the group operation on D and R as the component wise multiplication
modulo N .9 It is easy to see that S forms a pseudo module with both D and R and that F is a smooth
pseudo module homomorphism. (Smoothness immediately follows since every element in QR∗N has the
same number of modular square roots). Moreover, it is straight-forward to verify that LF is (ε, t)-collision
resistant if FACPG is (ε, t)-secure (for PG defined as in Section 8).

Lemma 8.12 F has a pseudo torsion-free element from the kernel.

Proof. For all parameters par = (N = P ·Q, k) ∈ PGen(1κ).We show that the element z∗ = (z∗1 , . . . , z∗k) :=
(−1, . . . ,−1) satisfies the required properties.

• We have F(z∗) =
(
−12, . . . ,−12) = (1, . . . , 1), where (1, . . . , 1) = 0R is the neutral element in R.

• For all s, s′ ∈ Zk2 , s 6= s′, we have s · z∗ = (−1s1 , . . . ,−1sk) 6= (−1s′1 , . . . ,−1s′k) = s′ · z∗.

This completes the proof.

For z ∈ R, s′, s ∈ S we define the distributor function Ψ : (Z∗N)k × Zk2 × Zk2 −→ (Z∗N)k component
wise as Ψ(z, s, s′) = (Ψ1(z1, s1, s

′
1), . . . ,Ψk(zk, sk, s′k)), where for i ∈ [k],

Ψi(zi, si, s′i) := z
−(si>[s′i+si]2)
i .

Here, the boolean operation b > b′ on the binary inputs b, b′ returns 1 iff b = 1 and b′ = 0, and returns
0 otherwise. In other words, Ψi(zi, si, s′i) = z−1

i if si > [s′i + si]2, and Ψi(zi, si, s′i) = 1 otherwise.
Equivalently, Ψi(zi, si, s′i) = z−1

i if si = s′i = 1 and Ψi(zi, si, s′i) = 1 otherwise. Note that this also
implies that Ψi(zi, si, s′i) = Ψi(zi, s′i, si).

Lemma 8.13 For all x ∈ D, s′, s ∈ S, F ((s+ s′)x) = F(sx+ s′x+ Ψ(F(x), s, s′)).
9Inversion is also defined as inverting the elements component wise modulo the respective modulus.

34

This
page
is ex-
ceed-
ing
the
page
limit.

Proof. Let s′, s ∈ S, x ∈ D. We have

F ((s+ s′)x) =
(
x

2[s1+s′1]2
1 , . . . , x

2[sk+s′k]2
k

)
and

F(sx+ s′x+ Ψ(F(x), s, s′))

=
(
x

2(s1+s′1)
1 , . . . , x

2(sk+s′k)
k

)
+ F

((
x
−2(s1>[s′1+s1]2)
1 , . . . , x

−2(sk>[s′k+sk]2)
k

))
=
(
x

2(s1+s′1)
1 , . . . , x

2(sk+s′k)
k

)
+
(
x
−4(s1>[s′1+s1]2)
1 , . . . , x

−4(sk>[s′k+sk]2)
k

)
=
(
x

2(s1+s′1)−4(s1>[s′1+s1]2)
1 , . . . , x

2(sk+s′k)−4(sk>[s′k+sk]2)
k

)
.

In the following, we show that(
x

2[s1+s′1]2
1 , . . . , x

2[sk+s′k]2
k

)
= F ((s+ s′)x) = F(sx+ s′x+ Ψ(F(x), s, s′))

=
(
x

2(s1+s′1)−4(s1>[s′1+s1]2)
1 , . . . , x

2(sk+s′k)−4(sk>[s′k+sk]2)
k

)
,

by performing a case distinction (for component i) over the possible values that si, s′i can take.

• si = s′i = 0 : In this case, we have

x
2[si+s′i]2
i = x

2[0+0]2
i = 1 = x2·0−4·0

i

x
2(0+0)−4·(0>[0+0]2)
i = x

2(si+s′i)−4·(si>[s′i+si]2)
i .

• si = 0, s′i = 1 : In this case, we have

x
2[si+s′i]2
i = x

2[0+1]2
i = x2

i = x2·1−4·0
i

x
2(0+1)−4·(0>[1+0]2)
i = x

2(si+s′i)−4·(si>[s′i+si]2)
i .

• si = 1, s′i = 0 : In this case, we have

x
2[si+s′i]2
i = x

2[1+0]2
i = x2

i = x2·1−4·0
i

= x
2(1+0)−4·(1>[0+1]2)
i = x

2(si+s′i)−4·(si>[s′i+si]2)
i .

• si = 1, s′i = 1 : In this case, we have

x
2[si+s′i]2
i = x

2[1+1]2
i = 1 = x2·2−4·1

i

= x
2(1+1)−4·(1>[1+1]2)
i = x

2(si+s′i)−4·(si>[s′i+si]2)
i .

This concludes the proof.

Acknowledgments
We would like to thank David Pointcheval for helpful discussions and for answering many of our questions.
We also thank Jesse Selover for pointing out to us that a previous version of our framework was incorrect
and did not capture the Okamoto-Guillou-Quisquater and Fiat-Shamir instantiations. This work was
supported by the Deutsche Forschungsgemeinschaft (DFG) under Germany’s Excellence Strategy (EXC
2092 CASA), the ERC Project ERCC (FP7/615074), and the German Federal Ministry of Education and
Research (BMBF) iBlockchain project.

35

This
page
is ex-
ceed-
ing
the
page
limit.

References
[1] M. Abdalla, J. H. An, M. Bellare, and C. Namprempre. From identification to signatures via the

Fiat-Shamir transform: Minimizing assumptions for security and forward-security. In L. R. Knudsen,
editor, EUROCRYPT 2002, volume 2332 of LNCS, pages 418–433. Springer, Heidelberg, Apr. / May
2002. (Cited on page 8.)

[2] M. Abdalla and L. Reyzin. A new forward-secure digital signature scheme. In T. Okamoto, editor,
ASIACRYPT 2000, volume 1976 of LNCS, pages 116–129. Springer, Heidelberg, Dec. 2000. (Cited
on page 5.)

[3] M. Abe and T. Okamoto. Provably secure partially blind signatures. In M. Bellare, editor,
CRYPTO 2000, volume 1880 of LNCS, pages 271–286. Springer, Heidelberg, Aug. 2000. (Cited on
page 5.)

[4] M. Backendal, M. Bellare, J. Sorrell, and J. Sun. The fiat-shamir zoo: Relating the security of
different signature variants. Cryptology ePrint Archive, Report 2018/775, 2018. https://eprint.
iacr.org/2018/775. (Cited on page 1, 2, 6, 9.)

[5] F. Baldimtsi and A. Lysyanskaya. Anonymous credentials light. In A.-R. Sadeghi, V. D. Gligor, and
M. Yung, editors, ACM CCS 2013, pages 1087–1098. ACM Press, Nov. 2013. (Cited on page 1.)

[6] F. Baldimtsi and A. Lysyanskaya. On the security of one-witness blind signature schemes. In K. Sako
and P. Sarkar, editors, ASIACRYPT 2013, Part II, volume 8270 of LNCS, pages 82–99. Springer,
Heidelberg, Dec. 2013. (Cited on page 1.)

[7] M. Belenkiy, J. Camenisch, M. Chase, M. Kohlweiss, A. Lysyanskaya, and H. Shacham. Randomizable
proofs and delegatable anonymous credentials. In S. Halevi, editor, CRYPTO 2009, volume 5677 of
LNCS, pages 108–125. Springer, Heidelberg, Aug. 2009. (Cited on page 1.)

[8] M. Bellare and G. Neven. Multi-signatures in the plain public-key model and a general forking
lemma. In A. Juels, R. N. Wright, and S. De Capitani di Vimercati, editors, ACM CCS 2006, pages
390–399. ACM Press, Oct. / Nov. 2006. (Cited on page 2, 3, 17, 18.)

[9] M. Bellare and A. Palacio. GQ and Schnorr identification schemes: Proofs of security against
impersonation under active and concurrent attacks. In M. Yung, editor, CRYPTO 2002, volume
2442 of LNCS, pages 162–177. Springer, Heidelberg, Aug. 2002. (Cited on page 2, 8.)

[10] M. Bellare and P. Rogaway. Random oracles are practical: A paradigm for designing efficient
protocols. In D. E. Denning, R. Pyle, R. Ganesan, R. S. Sandhu, and V. Ashby, editors, ACM CCS
93, pages 62–73. ACM Press, Nov. 1993. (Cited on page 1, 4.)

[11] M. Bellare and P. Rogaway. Code-based game-playing proofs and the security of triple encryption.
Cryptology ePrint Archive, Report 2004/331, 2004. http://eprint.iacr.org/2004/331. (Cited
on page 4.)

[12] S. Brands. Untraceable off-line cash in wallets with observers (extended abstract). In D. R. Stinson,
editor, CRYPTO’93, volume 773 of LNCS, pages 302–318. Springer, Heidelberg, Aug. 1994. (Cited
on page 1.)

[13] J. Camenisch, S. Hohenberger, and A. Lysyanskaya. Compact e-cash. In R. Cramer, editor,
EUROCRYPT 2005, volume 3494 of LNCS, pages 302–321. Springer, Heidelberg, May 2005. (Cited
on page 1.)

[14] J. Camenisch and A. Lysyanskaya. An efficient system for non-transferable anonymous credentials
with optional anonymity revocation. In B. Pfitzmann, editor, EUROCRYPT 2001, volume 2045 of
LNCS, pages 93–118. Springer, Heidelberg, May 2001. (Cited on page 1.)

[15] D. Chaum. Blind signatures for untraceable payments. In D. Chaum, R. L. Rivest, and A. T.
Sherman, editors, CRYPTO’82, pages 199–203. Plenum Press, New York, USA, 1982. (Cited on
page 1.)

36

https://eprint.iacr.org/2018/775
https://eprint.iacr.org/2018/775
http://eprint.iacr.org/2004/331

This
page
is ex-
ceed-
ing
the
page
limit.

[16] D. Chaum, A. Fiat, and M. Naor. Untraceable electronic cash. In S. Goldwasser, editor, CRYPTO’88,
volume 403 of LNCS, pages 319–327. Springer, Heidelberg, Aug. 1990. (Cited on page 1.)

[17] U. Feige, A. Fiat, and A. Shamir. Zero-knowledge proofs of identity. Journal of Cryptology, 1(2):77–94,
June 1988. (Cited on page 2.)

[18] M. Fischlin. Round-optimal composable blind signatures in the common reference string model. In
C. Dwork, editor, CRYPTO 2006, volume 4117 of LNCS, pages 60–77. Springer, Heidelberg, Aug.
2006. (Cited on page 12.)

[19] R. Gennaro. Multi-trapdoor commitments and their applications to proofs of knowledge secure
under concurrent man-in-the-middle attacks. In M. Franklin, editor, CRYPTO 2004, volume 3152 of
LNCS, pages 220–236. Springer, Heidelberg, Aug. 2004. (Cited on page 2.)

[20] E. Hauck, E. Kiltz, and J. Loss. A modular treatment of blind signatures from identification schemes.
In Y. Ishai and V. Rijmen, editors, EUROCRYPT 2019, Part III, volume 11478 of LNCS, pages
345–375. Springer, Heidelberg, May 2019. (Cited on page 3.)

[21] J. L. W. V. Jensen. Sur les fonctions convexes et les inégalités entre les valeurs moyennes. Acta
Mathematica, 30(1):175–193. (Cited on page 5.)

[22] A. Juels, M. Luby, and R. Ostrovsky. Security of blind digital signatures (extended abstract). In
B. S. Kaliski Jr., editor, CRYPTO’97, volume 1294 of LNCS, pages 150–164. Springer, Heidelberg,
Aug. 1997. (Cited on page 12.)

[23] V. Lyubashevsky. Lattice-based identification schemes secure under active attacks. In R. Cramer,
editor, PKC 2008, volume 4939 of LNCS, pages 162–179. Springer, Heidelberg, Mar. 2008. (Cited on
page 3.)

[24] L. Minder and A. Sinclair. The extended k-tree algorithm. In C. Mathieu, editor, 20th SODA, pages
586–595. ACM-SIAM, Jan. 2009. (Cited on page 7.)

[25] T. Okamoto. Provably secure and practical identification schemes and corresponding signature
schemes. In E. F. Brickell, editor, CRYPTO’92, volume 740 of LNCS, pages 31–53. Springer,
Heidelberg, Aug. 1993. (Cited on page 1, 2.)

[26] T. Okamoto and K. Ohta. Universal electronic cash. In J. Feigenbaum, editor, CRYPTO’91, volume
576 of LNCS, pages 324–337. Springer, Heidelberg, Aug. 1992. (Cited on page 1.)

[27] D. Pointcheval. Strengthened security for blind signatures. In K. Nyberg, editor, EUROCRYPT’98,
volume 1403 of LNCS, pages 391–405. Springer, Heidelberg, May / June 1998. (Cited on page 19.)

[28] D. Pointcheval and J. Stern. New blind signatures equivalent to factorization (extended abstract).
In R. Graveman, P. A. Janson, C. Neuman, and L. Gong, editors, ACM CCS 97, pages 92–99. ACM
Press, Apr. 1997. (Cited on page 1, 2.)

[29] D. Pointcheval and J. Stern. Security arguments for digital signatures and blind signatures. Journal
of Cryptology, 13(3):361–396, June 2000. (Cited on page 1, 2, 3, 5, 17, 19.)

[30] J. M. Pollard. Monte Carlo methods for index computation mod p. Mathematics of Computation,
32:918–924, 1978. (Cited on page 28.)

[31] C. Pomerance and R. Crandall. Prime Numbers: A Computational Perspective. Springer, 2001.
(Cited on page 29.)

[32] F. Rodriuguez-Henriquez, D. Ortiz-Arroyo, and C. Garcia-Zamora. Yet another improvement over
the mu-varadharajan e-voting protocol. Comput. Stand. Interfaces, 29(4):471–480, 2007. (Cited on
page 1.)

[33] M. Rückert. Lattice-based blind signatures. In M. Abe, editor, ASIACRYPT 2010, volume 6477 of
LNCS, pages 413–430. Springer, Heidelberg, Dec. 2010. (Cited on page 1, 3.)

37

This
page
is ex-
ceed-
ing
the
page
limit.

[34] C.-P. Schnorr. Security of blind discrete log signatures against interactive attacks. In S. Qing,
T. Okamoto, and J. Zhou, editors, ICICS 01, volume 2229 of LNCS, pages 1–12. Springer, Heidelberg,
Nov. 2001. (Cited on page 2, 7.)

[35] V. Shoup. A Computational Introduction to Number Theory and Algebra. Cambridge University
Press, 2008. (Cited on page 34.)

[36] D. Wagner. A generalized birthday problem. In M. Yung, editor, CRYPTO 2002, volume 2442 of
LNCS, pages 288–303. Springer, Heidelberg, Aug. 2002. (Cited on page 2, 7.)

38

	Introduction
	Our Contribution: A Modular Framework for Blind Signatures
	Technical details
	Blind Signatures from Lattices?
	History

	Preliminaries and Notation
	Notation
	Useful Lemmas

	Linear Functions
	Syntax of Linear Function Families
	Security Properties of Linear Function Families

	Canonical Identification Schemes
	Syntax and Security
	Identification Schemes from Linear Function Families

	Canonical Blind Signature Schemes
	Syntax and Correctness
	Security Notions
	Blind Signature Schemes from Linear Function Families

	The Subset Forking Lemma
	Proof of Theorem 4.3
	The Reduction Algorithm
	Proof of Lemma 7.1
	Proof of Lemma 7.2

	Instantiations of Linear Function Families
	Hardness Assumptions
	Instantiations

