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Abstract. Cube attack is an important cryptanalytic technique against symmetric
cryptosystems, especially for stream ciphers. The key step in cube attack is recov-
ering superpoly. However, when cube size is large, the large time complexity of
recovering the exact algebraic normal form (ANF) of superpoly confines cube attack.
At CRYPTO 2017, Todo et al. applied conventional bit-based division property (CB-
DP) into cube attack which could exploit large cube sizes. However, CBDP based
cube attacks cannot ensure that the superpoly of a cube is non-constant. Hence the
key recovery attack may be just a distinguisher. Moreover, CBDP based cube at-
tacks can only recover partial ANF coefficients of superpoly. The time complexity of
recovering the reminding ANF coefficients is very large, because it has to query the
encryption oracle and sum over the cube set. To overcome these limits, in this paper,
we propose a practical method to recover the ANF coefficients of superpoly. This
new method is developed based on bit-based division property using three subsets
(BDPT) proposed by Todo at FSE 2016. We apply this new method to reduced-
round Trivium. To be specific, the time complexity of recovering the superpoly of
832-round Trivium at CRYPTO 2017 is reduced from 277 to practical, and the time
complexity of recovering the superpoly of 839-round Trivium at CRYPTO 2018 is
reduced from 279 to practical. Then, we propose a theoretical attack which can re-
cover the superpoly of Trivium up to 842 round. As far as we know, this is the first
time that the superpoly can be recovered for Trivium up to 842 rounds.
Keywords: Trivium · MILP · Cube attack · Division property · Stream cipher

1 Introduction
Cube attack proposed by Dinur and Shamir [2] at EUROCRYPT 2009 is one of the gen-
eral cryptanalytic techniques against symmetric cryptosystems. And it can be seen as a
generalization of higher-order differential attack [11] and chosen IV statistical attack [4, 5].
The core idea of cube attack is to simplify the polynomial by summing the output of cryp-
tosystem over a subset of public variables, called cube. And the target of cube attack is
to recover secret variables from the simplified polynomial denoted as superpoly. In the
original paper of cube attack [2], the authors regarded stream cipher as a blackbox poly-
nomial and introduced a linearity test to recover the structure of the superpoly. Moreover,
a quadraticity test was introduced in [14]. Recently, many variants of cube attacks were
put forward such as dynamic cube attacks [3], conditional cube attacks [10], correlation
cube attacks [12], division property based cube attacks [18, 19], and deterministic cube
attacks [22].

When applying cube attack to stream cipher, we have to analyze the ANF of superpoly.
At the beginning, due to the complicated structure of stream cipher, the cube attacks
regarded it as blackbox. Therefore, the ANF of superpoly could only be detected by
practical experiments. Such as in [6], when the cube size was 32, the secret keys of 799-
round Trivium could be recovered. Note that the initial cube attacks are experimental
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cryptanalysis, and we cannot evaluate the security when the size of cube exceeds 40, which
limits their wide applications.

In [12], Liu et al. proposed a new key recovery attack on Trivium referred as correlation
cube attack, which could mount to 835-round Trivium using small dimensional cubes. For
a cube, they first tried to find a set of low-degree polynomials, called a basis. Then,
by exploiting the conditional correlation properties between the low-degree basis and the
superpoly, they could obtain a set of probabilistic equations with the secret key variables.
In [22], Ye et al. proposed a new variant of cube attack, named deterministic cube attacks.
Their attacks were developed based on degree evaluation method proposed by Liu et al.
at CRYPTO 2017 [13]. They proposed a special type of cube that the numeric degree
of every term was always less than or equal to the cube size, called useful cube. With
a 37-dimensional useful cube, they recovered the corresponding exact superpoly for up
to 838-round Trivium. However, as the authors wrote in their paper, it seemed hard
to increase the number of attacking round when the cube size increased. Namely, their
methods didn’t work well for large cube size.

Division property is a generalization of integral property proposed by Todo [17] at
EUROCRYPT 2015. It can exploit the algebraic structure of block ciphers to construct
integral distinguishers even if the block ciphers have non-bijective, bit-oriented, or low-
degree structures. Then, at CRYPTO 2015, Todo applied this new technique to MISTY1
and achieved the first theoretical cryptanalysis of the full-round MISTY1 [15]. In order
to exploit the concrete structure of round function, Todo and Morii [16] proposed bit-
based division property at FSE 2016. There are two kinds of bit-based division property:
conventional bit-based division property (CBDP) and bit-based division property using
three subsets (BDPT). CBDP focuses on that the parity

⊕
x∈X

xu is 0 or unknown, while

BDPT focuses on that the parity
⊕

x∈X
xu is 0, 1, or unknown. Therefore, BDPT can

find more accurate integral characteristics than CBDP. For example, CBDP proved the
existence of the 14-round integral distinguisher for SIMON32 while BDPT found the 15-
round integral distinguisher [16].

Although CBDP and BDPT could find accurate integral distinguishers, the huge com-
plexity once restricted their wide applications. As shown in [16], for an n-bit block cipher,
the propagation of bit-based division property required 2n complexity. At ASIACRYP-
T 2016, Xiang et al. [21] applied mixed integer linear programming (MILP) method to
search integral distinguishers based on CBDP, which allowed them to analyze block cipher-
s with large sizes. Compared with the propagation of CBDP, the propagation of BDPT
is more complicated and cannot be modeled by MILP method directly. But recently, by
using pruning techniques, Wang et al. [20] proposed the MILP-aided method to solve the
propagation of BDPT.

At CRYPTO 2017 [18], Todo et al. treated the polynomial as non-blackbox and
applied CBDP to the cube attack on stream ciphers. Due to the MILP-aided CBDP, they
evaluate the ANF of the superpoly with large cube size. By using a 72-dimensional cube,
they proposed a theoretical cube attack on 832-round Trivium. Then, at CRYPTO 2018
[19], Wang et al. introduced several techniques (flag technique, degree evaluation, and
term enumeration) to improve the CBDP based cube attacks. With these new techniques,
they proposed the key recovery attack on 839-round Trivium. For CBDP based cube
attacks, the superpolies of large cubes can be recovered by theoretical method. But the
theory of CBDP can not ensure that the superpoly of a cube is non-constant. Hence the
key recovery attack may be just a distinguisher.

Besides the CBDP based cube attack, it is also noticeable that, at CRYPTO 2018, Fu
et al. [7] proposed a key recovery attack on 855-round Trivium which somewhat resembled
dynamic cube attacks [3]. Their basic idea is finding a proper internal state whose ANF
representation is P1. Suppose the output bit polynomial z could be formally represented
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as z = P1P2 ⊕ P3, where P2 is much more complex than P3. If multiply P1 ⊕ 1 in both
sides, (P1 ⊕ 1) z = (P1 ⊕ 1) P3 will be simplified. The right guess of key bits involved
in P1 will lead the cube sum to be zero, otherwise the cube sum will be random. They
declared that three secret key bits could be recovered from the 855-round Trivium with
the online complexity of 274. For the attack in [7], the paper [9] pointed out that there
was possibility that the correct key guesses and the wrong ones shared the same zero-sum
property. It means the key recovery attack may degenerate to distinguish attack.

1.1 Our Contributions

Except for deterministic cube attacks, all the prior well-known cube attacks may have
failure probabilities. However, the deterministic cube attacks don’t work well for large
cube size. To overcome these drawbacks, we propose a BDPT based cube attack which
can recover the exact ANF of superpoly with large cube size.

Inspired by the CBDP based cube attack in [18, 19], our method is based on the prop-
agation of BDPT. The BDPT focuses on not only the integral distinguishers whose sums
are 0, but also the integral distinguishers whose sums are 1. So BDPT can determine that
the ANF coefficients of some terms in polynomial are 1. In the following, our contribu-
tions are summarized into three aspects.

Using BDPT to Recover the ANF Coefficients of Polynomial. Since BDPT
is a tool to find integral distinguishers whose sums are 0 or 1. We show the conditions un-
der which the ANF coefficient of the maximum term in a polynomial can be recovered by
the propagation of BDPT. In order to determine the remaining ANF coefficients through
BDPT, we construct a new polynomial called similar polynomial. If we want to recover
the ANF coefficient of a non-maximum term, we only need to recover the ANF coefficient
of the maximum term in a similar polynomial.

MILP-aided Algorithm to Recover the ANF Coefficient of Superpoly. We
show the conditions under which the ANF coefficients of superpoly can be obtained by
the propagation of BDPT. However, when the number of vectors in the initial BDPT
vector set is larger, it will cause trouble to the propagation of BDPT. So we present two
techniques to reduce the initial BDPT’s L set. Finally, we propose an MILP-aided algo-
rithm to recover the ANF coefficient of superpoly.

The BDPT Based Cube Attack. In order to analyze the security of ciphers better, we
divide ciphers into two categories: public-update ciphers and secret-update ciphers. For
public-update ciphers, we proved that the exact ANF of superpoly can be fully recovered
by BDPT. Fortunately, many stream ciphers belong to public-update ciphers. So our
method has a good application future.

In order to verify the correctness and effectiveness of our method, we apply our new
cube attack to Trivium which is a public-update cipher. Our results show that the CBDP
based cube attack on 839-round Trivium in [19] is not a key recovery attack. For the CBDP
based cube attack on 832-round Trivium in [18], only proper non-cube IV assignments can
obtain a non-constant superpoly. Because our method can recover the ANF coefficients
of superpoly in practical time, we show a theoretical attack on 842-round Trivium. The
summarization of cube attacks on Trivium is shown in Table 1. The time complexity
in the table means the time complexity of recovering superpoly. And c is the average
computational complexity of tracing the propagation of BDPT using MILP-aided method.
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1.2 Organization.
The remainder of this paper is organized as follows. Sect.2 provides the background of
cube attacks, division property, and the CBDP based cube attack etc. In Sect.3, we use
BDPT to analyze the ANF coefficients of polynomial and superpoly. In Sect.4, a new
variant of cube attack based on BDPT is proposed. In Sect.5, we apply our new attack
to Trivium. Sect.6 concludes the paper and summarizes our results.

Table 1: Summarization of cube attacks on Trivium

Rounds Cube size Exact superpoly Complexity Reference
799 32 no practical [6]

832 72 yes
277 [18]

276.7 [19]
practical Sect.5.3

835 36/37 no 275 [12]
838 37 yes practical [22]

839 78 yes 279 [19]
practical Sect.5.3

842 79 yes 232 · c Sect.5.4

2 Preliminaries

2.1 Notations
Here, we present the notations used throughout this paper. Let F2 denote the finite field
{0, 1} and a = (a1, a2, . . . , an) ∈ Fn

2 be an n-bit vector, where ai denotes the i-th bit of
a. The hamming weight of a is calculated as hm (a) =

∑n
i=1 ai. We use ⊕ and + as

the bit-based addition of Fn
2 and addition of Z, where Z denotes the integer ring. Let ∅

be an empty set. For a subset I ⊂ {1, 2, . . . , n}, uI denotes an n-dimensional bit vector
satisfying ui = 1 if i ∈ I and ui = 0 otherwise. For any k, k′ ∈ Fn

2 , define k ≽ k′ if ki ≥ k′
i

holds for all i = 1, 2, . . . , n, and k ≼ k′ if ki ≤ k′
i holds for all i = 1, 2, . . . , n.

2.2 Cube Attack
Cube attack, which can be regarded as an extension of higher-order differential cryptanal-
ysis [11], was proposed by Dinur and Shamir at EUROCRYPT 2009 [2]. For a cipher with
n secret variables x = (x1, x2, . . . , xn) and m public variables v = (v1, v2, . . . , vm), the
output bits can be represented as f(x, v). In the case of stream ciphers, x is the secret
key, v is the initialization vector, and f(x, v) is the first bit of the key stream sequences.
Attackers determine an indices subset Iv = {i1, i2, . . . , i|Iv|} ⊂ {1, 2, . . . , m}, then f(x, v)
can be uniquely represented as

f (x, v) = vuIv · p (x, v)⊕ q (x, v) ,

where vuIv = vi1 · · · vi|Iv| . Then, p (x, v) is called the superpoly of Iv in f (x, v), and every
term in q (x, v) misses at least one variable from

(
vi1 , vi2 , . . . , vi|Iv|

)
.

Because p (x, v) doesn’t contain any of the cube variables
(
vi1 , vi2 , . . . , vi|Iv|

)
, the

value of it can only be affected by secret key bits and the assignment to the non-cube
public variables. Attackers can prepare a cube set denoted as CIv,Jv,Kv , where public
variables indexed by Iv are taking all possible combinations of values, public variables
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indexed by Jv ⊂ {1, 2, . . . , m} − Iv are set to constant 1, and public variables indexed by
Kv = {1, 2, · · · , m} − Iv − Jv are set to constant 0. Then, it can be expressed as follow

CIv,Jv,Kv = {v ∈ Fm
2 |vi ∈ F2 for i ∈ Iv, vj = 1 for j ∈ Jv, and vk = 0 for k ∈ Kv} . (1)

What’s more, the sum of f (x, v) over the cube set CIv,Jv,Kv is⊕
v∈CIv,Jv,Kv

f (x, v) =
⊕

v∈CIv,Jv,Kv

vuIv · p (x, v)⊕
⊕

v∈CIv,Jv,Kv

q (x, v) = pIv,Jv,Kv (x) . (2)

If pIv,Jv,Kv (x) is not a constant polynomial, attackers can query the encryption oracle
with the chosen cube CIv,Jv,Kv

to get the equation with secret variables. Otherwise, Eq.
(2) can only provide a distinguisher for the cipher.

2.3 Bit-based Division Property
Division property, a generalization of integral property, was proposed by Todo at EURO-
CRYPT 2015 [17]. Then, two kinds of bit-based division property (CBDP and BDPT)
were introduced by Todo and Morii at FSE 2016 [16]. In this subsection, we will briefly
introduce these two kinds of bit-based division property and their propagation rules.

Definition 1. (CBDP [16]). Let X be a multiset whose elements take values from Fn
2 .

When the multiset X has the division property D1n

K , where K denotes a set of n-dimensional
vectors whose i-th element takes a value between 0 and 1, it fulfills the following conditions:⊕

x∈X

xu =
{

unknown, if there exists k ∈ K satisfying u ≽ k
0, otherwise ,

where u ≽ k if ui ≥ ki holds for all i = 1, 2, . . . , n, and xu =
∏n

i=1 xui
i .

CBDP focuses on that the parity
⊕

x∈X
xu is 0 or unknown. Because CBDP is insufficient

to find the 15-round integral distinguisher for SIMON32, the paper [16] introduced a new
variant of bit-based division property called bit-based division property using three subsets
(BDPT). BDPT focuses on that the parity

⊕
x∈X

xu is 0, 1, or unknown.

Definition 2. (BDPT [16]). Let X be a multiset whose elements take a value of Fn
2 . Let

K and L be two sets whose elements take n-dimensional bit vectors. When the multiset X
has the BDPT D1n

K,L, it fulfills the following conditions:

⊕
x∈X

xu =

 unknown, if there is k ∈ K satisfying u ≽ k
1, else if there is ℓ ∈ L satisfying u = ℓ
0, otherwise

.

If there are k ∈ K and k′ ∈ K satisfying k ≽ k′, k can be removed from K because
the vector k is redundant. What’s more, if there are ℓ ∈ L and k ∈ K, the vector ℓ is
also redundant if ℓ ≽ k. The propagation rules of K in CBDP are the same with BDPT.
So here we only show the propagation rules of BDPT. For more details, please refer to [16].

BDPT Rule 1 (Copy [16]). Let (x1, x2, . . . , xn) ∈ Fn
2 be the input of a Copy func-

tion, and (x1, x1, x2, . . . , xn) be the output. Assuming the input multiset X has D1n

K,L, then
the output multiset Y has D1n+1

K′,L′ .

K′ ←
{
{(0, 0, k2, . . . , kn)}, if k1 = 0
{(1, 0, k2, . . . , kn) , (0, 1, k2, . . . , kn)} , if k1 = 1 ,
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L′ ←
{
{(0, 0, ℓ2, . . . , ℓn)}, if ℓ1 = 0
{(1, 0, ℓ2, . . . , ℓn) , (0, 1, ℓ2, . . . , ℓn) , (1, 1, ℓ2, . . . , ℓn)} , if ℓ1 = 1 ,

computed from all k ∈ K and all ℓ ∈ L, respectively.

BDPT Rule 2 (And [16]). Let (x1, x2, . . . , xn) ∈ Fn
2 be the input of And function,

and (x1 ∧ x2, . . . , xn) be the output. Assuming the input multiset X has D1n

K,L, then the
output multiset Y has D1n−1

K′,L′

K′ ←
(⌈

k1 + k2

2

⌉
, k3, . . . , kn

)
,L′ ←

(⌈
ℓ1 + ℓ2

2

⌉
, ℓ3, . . . , ℓn

)
,

where K′ is computed from all k ∈ K and L′ is computed from all ℓ ∈ L satisfying
(ℓ1, ℓ2) = (0, 0) or (1, 1).

BDPT Rule 3 (Xor [16]). Let (x1, x2, . . . , xn) ∈ Fn
2 be the input of Xor function,

and (x1 ⊕ x2, x3, . . . , xn) be the output. Assuming the input multiset X has D1n

K,L, then the
output multiset Y has D1n−1

K′,L′

K′ ← (k1 + k2, k3, . . . , kn) ,L′ x← (ℓ1 + ℓ2, ℓ3, . . . , ℓn) ,

where K′ is computed from all k ∈ K satisfying (k1, k2) = (0, 0) , (1, 0) , or (0, 1) and L′ is
computed from all ℓ ∈ L satisfying (ℓ1, ℓ2) = (0, 0), (1, 0), or (0, 1). And L x← ℓ means

L :=
{

L ∪ {ℓ} if the original L does not include ℓ,
L \ {ℓ} if the original L includes ℓ.

BDPT Rule 4 (Xor with Secret Round Key [16]). Let X and Y be the input and
output multiset satisfying D1n

K,L and D1n

K′,L′ , respectively. Then, y ∈ Y is computed as
y = x ⊕ rk, where rk is the secret round key. Assuming a round key is Xored with the
i-th bit, then K′ and L′ is computed as

K′ ← (ℓ1, ℓ2, . . . , ℓi ∨ 1, . . . , ℓn) ,L′ = L,

for all ℓ ∈ L satisfying ℓi = 0.

BDPT Rule 5 (S-box [20]). Let x = (x1, x2, . . . , xn) and y = (y1, y2, . . . , yn) de-
note the input and output of an n-bit S-box, respectively. And yi, i ∈ {1, 2, . . . , n} can be
expressed as a Boolean function of (x1, x2, . . . , xn). For the input BDPT D1n

K,L={ℓ}, the
output BDPT D1n

K′,L′ is as follows

K′ = {u′ ∈ Fn
2 | if yu′

contains any term xvsatisfying v ≽ u, u ∈ K},

L′ = {u′ ∈ Fn
2 | if yu′

contains the monomial xℓ}.

When we consider the propagation of bit-based division property for public functions,
we don’t need to care about the dependencies between K and L. However, independent
propagations may generate many redundant vectors. Although for any u, the redundant
vectors in K′ and L′ do not affect whether the parity becomes 0, 1, or unknown, we should
remove redundant vectors if possible because of the only reason of complexity.

2.4 The MILP Representation of CBDP
Although CBDP has been proven to be a powerful tool to find integral distinguishers, the
time and memory complexity once restricted its applications to block ciphers whose block
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sizes were large. At ASIACRYPT 2016, Xiang et al. [21] modeled CBDP propagations
of three basic operations (Copy, Xor, And) by linear inequalities. Then, they converted
a search algorithm under Todo’s framework into an MILP problem and solved the MILP
problem by the openly available MILP optimizer Gurobi [8]. Recently, Wang et al. [19]
improved the MILP models of Copy, Xor, and And by introducing the flag technique and
named their improved version as copyf, xorf, andf. Here, we only introduce the MILP
models for copyf, xorf, andf.

Flag Technique [19]. Every variable in the MILP model v ∈ M.var corresponds to
an additional flag v.F ∈ {0c, 1c, δ}, where 1c means the bit is constant 1, 0c means the
bit is constant 0, and δ means the remaining cases. Corresponding to the bitwise Copy,
Xor, and And operations, the flag values 0c, 1c, δ have =, ⊕, and × operations. The =
operation is naturally 1c = 1c, 0c = 0c, and δ = δ. The ⊕ operation follows the rules: 1c ⊕ 1c = 0c

0c ⊕ x = x⊕ 0c = x for arbitrary x ∈ {1c, 0c, δ}
δ ⊕ x = x⊕ δ = δ

The × operation follows the rules: 1c × x = x× 1c = x
0c × x = x× 0c = 0c for arbitrary x ∈ {1c, 0c, δ}
δ × δ = δ

Proposition 1. (MILP Model for copyf [19]). Let a→ (b1, b2, . . . , bn) be a division
trail of Copy. The following inequalities are sufficient to describe the propagation of the
division property for copyf M.var ← a, b1, b2, . . . , bn as binary.

M.con← a = b1 + b2 + · · ·+ bn

a.F = b1.F = . . . = bn.F

This process is denoted as (M, b1, . . . , bn)← copyf (M, a, n).

Proposition 2. (MILP Model for xorf [19]). Let (a1, a2, . . . , an)→ b be a division
trail of Xor. The following inequalities are sufficient to describe the propagation of the
division property for xorf M.var ← a1, a2, . . . , an, b as binary.

M.con← a1 + a2 + · · ·+ an = b
b.F = a1.F ⊕ a2.F ⊕ · · · ⊕ an.F

This process is denoted as (M, b)← xorf (M, a1, . . . , an).

Proposition 3. (MILP Model for andf [19]). Let (a1, a2, . . . , an)→ b be a division
trail of And. The following inequalities are sufficient to describe the propagation of the
division property for andf

M.var ← a1, a2, . . . , an, b as binary.
M.con← b > ai for all i ∈ {1, 2, . . . , n}
b.F = a1.F × a2.F × · · · × an.F
M.con← b = 0 if b.F = 0c

This process is denoted as (M, b)← andf (M, a1, . . . , an).

Note that MILP models for copyf, xorf, and andf are sufficient to represent any
circuit. We are able to construct a linear inequality system L describing r-round CBDP.
All the feasible solutions of L correspond to all the r-round division trails, which are
defined as follows.
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Definition 3. (Division Trail [21]). Let us consider the propagation of the CBDP
{k} def= K0 → K1 → K2 → · · · → Kr. Moreover, for any vector ki+1 ∈ Ki+1, there must
exist a vector ki ∈ Ki such that ki can propagate to ki+1 by the propagation rules of
CBDP. Furthermore, for (k0, k1, . . . , kr) ∈ K0×K1×· · ·×Kr, if ki can propagate to ki+1
for all i ∈ {0, 1, . . . r − 1}, we call (k0 → k1 → · · · → kr) an r-round division trail.

If Kr+1 for the first time contains all the n unit vectors, the CBDP propagation
should stop and an r-round distinguisher can be derived. For more details, please refer to
[15, 16, 17, 21].

2.5 The Pruning Techniques of BDPT
Compared with the propagation of CBDP, the propagation of BDPT is more complicated
and cannot be modeled by MILP method directly. Recently, an MILP-aided method of
searching integral distinguishers based on BDPT was proposed in [20]. The main insights
are the pruning techniques of BDPT as below. For more information, please refer to [20].

Proposition 4. (Prune K [20]) For r-round cipher f = fr · fr−1 · · · · · f1, let D1n

Ki,Li
be

the input BDPT of f(r,i+1) = fr · fr−1 · · · fi+1. If D1n

K={k} cannot generate the output unit
vector em of f(r,i+1) based on CBDP, then D1n

Ki,Li
is equivalent to D1n

Ki→k,Li
on whether

em ∈ Kr and em ∈ Lr or not, where Ki → k denotes removing k from Ki.

Proposition 5. (Prune L [20]) For r-round cipher f = fr · fr−1 · · · · · f1, let D1n

Ki,Li
be

the input BDPT of f(r,i+1) = fr · fr−1 · · · fi+1. If D1n

K={ℓ} cannot generate the output unit
vector em of f(r,i+1) based on CBDP, then D1n

Ki,Li
is equivalent to D1n

Ki,Li→ℓ on whether
em ∈ Kr and em ∈ Lr or not, where Li → ℓ denotes removing ℓ from Li.

2.6 The Cube Attack Based on CBDP
At CRYPTO 2017, Todo et al. successfully applied the CBDP to cube attack [18]. They
regarded the superpoly as non-blackbox polynomial and proposed a method to determine
the ANF of superpoly. Then, at CRYPTO 2018, Wang et al. [19] showed an improved
version which could further reduce the complexity of recovering the superpoly.

Lemma 1. [18] Let f (x) =
⊕

u∈Fn
2

af
u · xu be a polynomial from Fn

2 to F2 and af
u ∈ F2 be

the ANF coefficients. Let k be an n-dimensional bit vector. Assuming there is no division
trail such that D1n

K={k}
f→ 1, then af

u is always 0 for u ≽ k .

Proposition 6. [18] Let f (x, v) be a polynomial, where x ∈ Fn
2 and v ∈ Fm

2 denote the
secret and public variables, respectively. For a cube set CIv,Jv,Kv

defined as Eq. (1), let ei

be the unit vector whose only i-th element is 1. Assuming there is no division trail such
that D1n+m

K={(ei,uIv )}
f→ 1 , then xi is not involved in the superpoly of the cube CIv,Jv,Kv .

When f (x, v) represents the first output bit after the initial iterations, we can identify
the involved keys by checking whether there is division trial D1n+m

K={(ei,uIv )}
f→ 1 for i =

1, · · · , n using the MILP modeling method. Then, we will get the involved keys set I and
the ANF of pIv,Jv,Kv

(x) can be represented as

pIv,Jv,Kv (x) =
⊕

u≼uI

a
pIv,Jv,Kv
u · xu

If the degree of the superpoly is upper bounded by d, then for all u satisfying hw (u) > d,
we have a

pIv,Jv,Kv
u = 0. Such a degree evaluation is based on the following proposition,

which can be regarded as a generalization of Proposition 6.
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Proposition 7. [19] For a set Ix =
{

i1, i2, . . . , i|Ix|
}
⊂ {1, 2, . . . , n}, if there is no divi-

sion trail D1n+m

K={(uIx ,uIv )}
f→1, then xuIx is not involved in the superpoly of cube CIv,Jv,Kv

.

After getting the involved key set I and the degree d of superpoly, the superpoly can

be represented with
∑d

i=0

(
|I|
i

)
coefficients. Therefore, by selecting

∑d
i=0

(
|I|
i

)
different

x’s, a linear system with
∑d

i=0

(
|I|
i

)
variables can be constructed. Then, the whole ANF

of pIv,Jv,Kv (x) can be recovered by solving such a linear system. So the complexity of

recovering the superpoly of cube CIv,Jv,Kv is 2|Iv| ×
∑d

i=0

(
|I|
i

)
.

3 What Can BDPT Do
In this section, we propose a new technique to analyze the ANF coefficients of non-
blackbox polynomial and superpoly in cube attack.

3.1 Analyze the ANF Coefficients of Non-blackbox Polynomial
Let f (x) =

⊕
u∈Fn

2

af
u ·xu be a polynomial, where x ∈ Fn

2 denotes the variables. For subsets

of indices I ⊂ {1, 2, . . . , n}, J ⊂ {1, 2, · · · , n}− I, and K = {1, 2, · · · , n}− I−J , if fix the
variable xj = 1 for j ∈ J , and xk = 0 for k ∈ K, we can obtain a new polynomial denoted
as fI,J,K (x). And the ANF of fI,J,K (x) can be represented as follow

fI,J,K (x) =
⊕

u≼uI

a
fI,J,K
u · xu.

Lemma 2. Let CI,J,K be a set of 2|I| values, where the variables {xi|i ∈ I} are taking
all possible combinations of values, xj = 1 for j ∈ J , and xk = 0 for k ∈ K. Then, the
initial BDPT of CI,J,K is D1n

K,L, where K = ∅ and L = {u|uI ≼ u ≼ uI ⊕ uJ}.

Proof. Because all the values of elements in cube set CI,J,K are fixed. Then, for any n-bit
vector u, the value of

⊕
x∈CI,J,K

xu is deterministic. According to Definition 2, we know

that K = ∅.
For any vector u ∈ {u|uI ≼ u ≼ uI ⊕ uJ}, we have⊕

x∈CI,J,K

xu =
⊕

x∈CI,J,K

∏
i∈I

xi
ui

∏
j∈J

xj
uj

∏
k∈K

xk
uk =

⊕
x∈CI,J,K

∏
i∈I

xi = 1. (3)

Then, for any n-bit vector u /∈ {u|uI ≼ u ≼ uI ⊕ uJ}, if there is k ∈ K satisfying uk = 1,
we have ⊕

x∈CI,J,K

xu =
⊕

x∈CI,J,K

∏
i∈I

xi
ui

∏
j∈J

xj
uj

∏
k∈K

xk
uk =

⊕
x∈CI,J,K

0 = 0.

If there is i′ ∈ I satisfying ui′ = 0, we have⊕
x∈CI,J,K

xu =
⊕

x∈CI,J,K

xi′ =0

∏
i∈I
i ̸=i′

xi
ui

∏
j∈J

xj
uj

∏
k∈K

xk
uk⊕

⊕
x∈CI,J,K

xi′ =1

∏
i∈I
i ̸=i′

xi
ui

∏
j∈J

xj
uj

∏
k∈K

xk
uk = 0.

So, for any n-bit vector u /∈ {u|uI ≼ u ≼ uI ⊕ uJ}, we have
⊕

x∈CI,J,K

xu = 0. Overall,

the initial BDPT of CI,J,K is D1n

K,L, where K = ∅ and L = {u|uI ≼ u ≼ uI ⊕ uJ}.
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Lemma 3. Let fI,J,K (x) =
⊕

u≼uI

a
fI,J,K
u ·xu be a polynomial, and CI,J,K be the cube set.

Considering the initial BDPT D1n

K,L, where K = ∅ and L = {u|uI ≼ u ≼ uI ⊕ uJ}, we
have

(1) Assuming there are no division trails such that D1n

K,L
fI,J,K−−−−→ D1n

{1},∅ and the number of

division trails such that D1n

K,L
fI,J,K−−−−→ D1n

∅,{1} is odd, then the maximum term xuI ’s
ANF coefficient in fI,J,K (x) is 1.

(2) Assuming there are no division trails such that D1n

K,L
fI,J,K−−−−→ D1n

{1},∅ and the number of

division trails such that D1n

K,L
fI,J,K−−−−→ D1n

∅,{1} is even, then the maximum term xuI ’s
ANF coefficient in fI,J,K (x) is 0.

Proof. The ANF coefficient of xuI can be obtained by calculating⊕
x∈CI,J,K

fI,J,K (x) =
⊕

x∈CI,J,K

⊕
u≼uI

a
fI,J,K
u · xu = a

fI,J,K
uI (4)

(1) When there are no division trails such that D1n

K,L
fI,J,K−−−−→ D1n

{1},∅ and the number

of division trails such that D1n

K,L
fI,J,K−−−−→ D1n

∅,{1} is odd, it means that the sum of fI,J,K (x)
over all values of the cube set CI,J,K is 1, i.e.

⊕
x∈CI,J,K

fI,J,K (x) = 1. According to Eq.

(4), we obtain that xuI ’s ANF coefficient in fI,J,K (x) is 1.

(2) When there are no division trails such that D1n

K,L
fI,J,K−−−−→ D1n

{1},∅ and the number of

division trails such that D1n

K,L
fI,J,K−−−−→ D1n

∅,{1} is even, it means that the sum of fI,J,K (x)
over all values of the cube set CI,J,K is 0, i.e.

⊕
x∈CI,J,K

fI,J,K (x) = 0. According to Eq.

(4), we obtain that xuI ’s ANF coefficient in fI,J,K (x) is 0.

Lemma 3 shows the relationship between BDPT and the ANF coefficient of the max-
imum term. But for the remaining ANF coefficients of polynomial, it is nontrivial to
obtain their values. In order to determine the values of these ANF coefficients through
BDPT, we construct a new polynomial called similar polynomial.

Definition 4. (Similar Polynomial). For subsets of indices I ′ ⊂ I, K ′ = {1, 2, . . . , n}−
I ′ − J , the polynomial fI′,J,K′ (x) is called the similar polynomial of fI,J,K (x).

Lemma 4. If fI′,J,K′ (x) is the similar polynomial of fI,J,K (x), then the value of AN-
F coefficient a

fI′,J,K′
uI′ in fI′,J,K′ (x) is equal to the value of ANF coefficients a

fI,J,K
uI′ in

fI,J,K (x).

Proof. For fI,J,K (x), if all the variables of {xi|i ∈ I − I ′} are assigned 0, it becomes the
function fI′,J,K′ (x). Compared with the ANF of fI,J,K (x), the ANF of fI′,J,K′ (x) only
misses terms that contain any variables of {xi|i ∈ I− I ′}. Moreover, xuI′ doesn’t contain
any variables of {xi|i ∈ I − I ′}, so a

fI,J,K
uI′ = a

fI′,J,K′
uI′ .

Because xuI′ is the maximum term of fI′,J,K′ (x), we can use Lemma 3 to get the
value of ANF coefficient a

fI′,J,K′
uI′ . Then, according to Lemma 4, we can get the ANF

coefficient of term xuI′ in fI,J,K (x).
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3.2 Analyze the ANF Coefficients of Superpoly
The most important part of cube attack is recovering the superpoly. Once the superpoly
is recovered, attackers can compute the sum of encryptions over the cube and get one
equation about secret variables.
Proposition 8. Let f (x, v) be a polynomial, where x ∈ Fn

2 and v ∈ Fm
2 denote the

secret and public variables, respectively. In cube attack, fIv,Jv,Kv (x, v) denotes a func-
tion that the public variables indexed by Iv ⊂ {1, 2, · · · , m} are chosen as cube variables,
public variables indexed by Jv ⊂ {1, 2, · · · , m} − I are set to 1, and the remaining public
variables Kv = {1, 2, · · · , m} − Iv − Jv are set to 0. Then, for fIv,Jv,Kv (x, v), when fix-
ing the secret variables {xk|k ∈ {1, 2, · · · , n} − Ix} to 0, we get a new polynomial denoted
as fIx,Iv,Jv,Kv (x, v), where Ix ⊂ {1, 2, · · · , n} is an index subset of secret variables. Let
CIv,Jv,Kv be a cube set of 2|Iv| values, where the variables {vi|i ∈ Iv} are taking all possible
combinations of values, vj = 1 for j ∈ Jv, and vk = 0 for k ∈ Kv. Then, the superpoly of
CIv,Jv,Kv is pIv,Jv,Kv (x) =

⊕
v∈CIv,Jv,Kv

fIv,Jv,Kv (x, v). For BDPT D1n+m

K,L , where K = ∅,

and L = {(uIx , uv) |uIv ≼ uv ≼ uIv ⊕ uJv}, we have

(1) Assuming there are no division trails such that D1n+m

K,L
fIx,Iv,Jv,Kv−−−−−−−−→ D1n+m

{1},∅ , and the

number of division trails such that D1n+m

K,L
fIx,Iv,Jv,Kv−−−−−−−−→ D1n+m

∅,{1} is odd, then the ANF
coefficient of term xuIx in the superpoly pIv,Jv,Kv (x) is 1.

(2) Assuming there are no division trails such that D1n+m

K,L
fIx,Iv,Jv,Kv−−−−−−−−→ D1n+m

{1},∅ , and the

number of division trails such that D1n+m

K,L
fIx,Iv,Jv,Kv−−−−−−−−→ D1n+m

∅,{1} is even, then the ANF
coefficient of term xuIx in the superpoly pIv,Jv,Kv

(x) is 0.

Proof. For the function fIv,Jv,Kv (x, v) =
⊕

(ux,uv)∈(Fn
2 ,Fm

2 )
a

fIv,Jv,Kv

(ux,uv) (x, v)(ux,uv), as showed

in Sect.2.2, it can be unique represented as

fIv,Jv,Kv (x, v) = vuIv · pIv,Jv,Kv (x)⊕ qIv,Jv,Kv (x, v) . (5)

And the ANF of pIv,Jv,Kv (x) can be presented as pIv,Jv,Kv (x) =
⊕

u∈Fn
2

a
pIv,Jv,Kv
u ·xu. Then,

the ANF coefficient of term xuIx in pIv,Jv,Kv (x) is a
pIv,Jv,Kv
uIx

.
Moreover, the ANF of vuIv · pIv,Jv,Kv (x) can be presented as

vuIv · pIv,Jv,Kv (x) =
⊕

u∈Fn
2

a
pIv,Jv,Kv
u · (x, v)(u,uIv )

.

Then, the ANF coefficient of term (x, v)(uIx ,uIv ) in vuIv ·pIv,Jv,Kv (x, v) is also a
pIv,Jv,Kv
uIx

.
Because every term in qIv,Jv,Kv (x, v) misses at least one variable from {vi|i ∈ Iv}, the

term (x, v)(uIx ,uIv ) doesn’t exist in qIv,Jv,Kv (x, v). According to Eq. (5), We obtain that
the ANF coefficient of term (x, v)uIx ,uIv in fIv,Jv,Kv (x, v) is a

pIv,Jv,Kv
uIx

. Namely,

a
pIv,Jv,Kv
uIx

= a
fIv,Jv,Kv

(uIx ,uIv ) (6)

(1) If there are no division trails such that D1n+m

K,L
fIx,Iv,Jv,Kv−−−−−−−−→ D1n+m

{1},∅ , and the number

of division trails such that D1n+m

K,L
fIx,Iv,Jv,Kv−−−−−−−−→ D1n+m

∅,{1} is odd, according to Lemma 3,
the term (x, v)(uIx ,uIv )’s ANF coefficient in fIx,Iv,Jv,Kv (x, v) is 1. Then, according to
Lemma 4, the term (x, v)(uIx ,uIv )’s ANF coefficient in fIv,Jv,Kv (x, v) is also 1, that is
a

fIv,Jv,Kv

(uIx ,uIv ) = 1. Therefore, we can get a
pIv,Jv,Kv
uIx

= 1 from Eq. (6).
(2) We can complete the proof in a similar way to the above (1).
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Proposition 8 can imply the existences of some terms in superpoly. Compared with
the linearity test of cube attack which is statistical in nature, our method is algebraic,
deterministic and it has no low-degree restriction.

3.3 The Algorithm to Compute the ANF Coefficients of Superpoly
According to Sect.2.6, for a polynomial fIv,Jv,Kv (x, v) and cube set CIv,Jv,Kv , we can use
MILP method to evaluate the secret variables involved in the superpoly and the upper
bound degree of superpoly. We denote the involved secret variables indices set as I and
the upper bound degree as d. Then, in order to recover the superpoly, we only need to
determine the coefficients a

pIv,Jv,Kv
u satisfying u ≼ uI and hw (u) ≤ d.

From Proposition 8, when there are no division trails such that D1n+m

K,L
fIx,Iv,Jv,Kv−−−−−−−−→

D1n+m

{1},∅ , the ANF coefficient of xuIx in superpoly pIv,Jv,Kv (x) can be got by the prop-
agation of L = {(uIx , uv) |uIv ≼ uv ≼ uIv ⊕ uJv}. And the set L has 2|Jv| vectors. If
|Jv| is large, it will cause trouble to the propagation of BDPT. According to Proposi-
tion 5, for ℓ ∈ L, if there are no division trails such that D1n+m

K={ℓ}
fIx,Iv,Jv,Kv−−−−−−−−→ D1n+m

K={1},
we can discard ℓ from L without affecting the result of BDPT propagation. For L =
{(uIx

, uv) |uIv
≼ uv ≼ uIv

⊕ uJv
}, we will identify the set of involved public variable

indices JIx
v ⊂ Jv. The meaning of JIx

v is that the values of all the public variables
vj , j ∈ Jv − JIx

v don’t affect the result of BDPT propagation. Then, L can be replaced by
L′ =

{
(uIx , uv) |uIv ≼ uv ≼ uIv ⊕ uJIx

v

}
. The specific progress is shown in Algorithm 1.

Algorithm 1: Identify the involved public variables

1 procedure InvolvedPublicVariable (Ix, Iv, Jv, Kv)
2 Declare an empty MILP model M
3 Declare x as n MILP variables of M corresponding to secret variables.
4 Declare v as m MILP variables of M corresponding to public variables.
5 M.con← xi = 1 and assign xi.F = δ for all i ∈ Ix

6 M.con← xi = 0 and assign xi.F = 0 for all i ∈ {1, 2, · · · , n} − Ix

7 M.con← vi = 1 and assign vi.F = δ for all i ∈ Iv

8 M.con← vi = 0 and assign vi.F = 0 for all i ∈ Kv

9 M.con←
∑

i∈Jv

vi = 1 and assign vi.F = δ for all i ∈ Jv

10 Update M according to the function fIx,Iv,Jv,Kv (x, v)
11 initial JIx

v = ∅
12 do
13 solve MILP model M
14 if M is feasible then
15 pick index j ∈ Jv s.t. vj = 1, and JIx

v = JIx
v

∪
{j}

16 M.con← vj = 0
17 end if
18 while M is feasible
19 return JIx

v

20 end procedure

In order to further reduce the number of vectors in L′, we will get the upper bound
hamming weight of L′, denoted as uhw(Ix,Iv,JIx

v ). The meaning of uhw(Ix,Iv,JIx
v ) is that,

for all ℓ ∈ L′ satisfying hw (ℓ) > uhw(Ix,Iv,JIx
v ), the division trail D1n+m

K={ℓ}
fIx,Iv,Jv,Kv−−−−−−−−→

D1n+m

K={1} does not exist, then we can discard them from L′. Therefore, L′ can be replaced
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by L′′ =
{

(uIx , uv) |uIv ≼ uv ≼ uIv ⊕ uJIx
v

and hw (uIx , uv) ≤ uhw(Ix,Iv,JIx
v )

}
. Using

MILP, this uhw(Ix,Iv,JIx
v ) can be naturally modeled as the maximum of the objective

function
∑

i∈Ix

xi

∑
j∈Iv

∪
JIx

v

vj . The specific progress is shown in Algorithm 2.

Algorithm 2: Evaluate the upper bound hamming weight

1 procedure HammingEvaluate(Ix, Iv, JIx
v )

2 Declare an empty MILP model M
3 Declare x as n MILP variables of M corresponding to secret variables.
4 Declare v as m MILP variables of M corresponding to public variables.
5 M.con← xi = 1 and assign xi.F = δ for all i ∈ Ix

6 M.con← xi = 0 and assign xi.F = 0 for all i ∈ {1, 2, · · · , n} − Ix

7 M.con← vi = 1 and assign vi.F = δ for all i ∈ Iv

8 M.con← vi = 0 and assign vi.F = 0 for all i ∈ {1, 2, · · · , m} − Iv − JIx
v

9 Assign vi.F = δ for all i ∈ JIx
v

10 Set the objective function M.obj ←
∑

i∈Ix

xi

∑
j∈Iv

∪
JIx

v

vj

11 Update M according to the function fIx,Iv,Jv,Kv (x, v)
12 Solve MILP model M
13 return The solution of M.
14 end procedure

After getting the set of involved secret key indices I and the upper bound degree d of
superpoly, for every Ix satisfying Ix ⊂ I and hw (uIx) ≤ d, we can get the corresponding
involved public variables JIx

v , and the upper bound hamming weight uhw(Ix,Iv,JIx
v ). Then,

we propose Algorithm 3 to recover the ANF coefficient of xuIx in superpoly pIv,Jv,Kv (x).

Algorithm 3: Recover the ANF coefficient of xuIx in superpoly pIv,Jv,Kv (x)

1 procedure RecoverCoefficient(Ix, JIx
v ,uhw(Ix,Iv,JIx

v ))
2 Initial K = ∅
3 Initial L =

{
(uIx , uv) |uIv ≼ uv ≼ uIv ⊕ uIx

Jv
and hw (uIx , uv) ≤ uhw(Ix,Iv,JIx

v )
}

4 if there is division trail DK,L
fIx,Iv,Jv,Kv−−−−−−−−→ D{1},∅

5 return unknown
6 else if the number of division trails such that DK,L

fIx,Iv,Jv,Kv−−−−−−−−→ D∅,{1} is odd
7 return 1
8 else
9 return 0
10 end procedure

4 The BDPT Based Cube Attacks
In order to analyze the ciphers better, we divide them into two categories: public-update
ciphers and secret-update ciphers.

Definition 5. Let f = fn · fn−1 · · · · f1 (x, v) be an n-round cipher, where fi is the
i-th round update function, x denotes the secret variables, and v denotes the public
variables. If the secret variables aren’t involved in any of the round update functions
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fi, i ∈ {1, 2, · · · , n}, we call it public-update cipher. Otherwise we call it secret-update
cipher.

4.1 The BDPT Based Cube Attack on Public-update Cipher
Proposition 9. Let fIv,Jv,Kv (x, v) be a public-update cipher. Then, for cube set CIv,Jv,Kv ,
the exact superpoly pIv,Jv,Kv (x) can be fully recovered by the propagation of BDPT.

Proof. The superpoly pIv,Jv,Kv (x) is a function of secret variables x. If for arbitrary term
xuIx , we can determine its ANF coefficient. Then, the exact superpoly can be obtained.

Because fIv,Jv,Kv (x, v) is a public-update cipher, fIx,Iv,Jv,Kv (x, v) is also a public-
update cipher. Then, for arbitrary term xuIx , we will research the division trails such
that D1n+m

K,L
fIx,Iv,Jv,Kv−−−−−−−−→ D1n+m

{1},∅ , where K = ∅ and L = {(uIx , uv) |uIv ≼ uv ≼ uIv ⊕ uJv}.
Let the output BDPT of fIx,Iv,Jv,Kv

(x, v) be D1n+m

K′,L′ . The initial K = ∅ means that there
is no division trail from K = ∅ to K′. From Sect.2.3, we know that for public function,
the BDPT propagation of K and L is independent. Only when the secret round key is
involved, some vectors of L will affect K. That means, there is no division trail from L
to K′ when all the update functions are public. So there is no division trail such that
D1n+m

K,L
fIx,Iv,Jv,Kv−−−−−−−−→ D1n+m

{1},∅ . According to (1) and (2) of Proposition 8, the term xuIx ’s
ANF coefficient in the superpoly pIv,Jv,Kv (x, v) can be determined by the number of
division trails such that D1n+m

K,L
fIx,Iv,Jv,Kv−−−−−−−−→ D1n+m

∅,{1} .

First of all, we can use MILP method to obtain the involved key indices I = {i1, i2, · · · , i|I|}
and the degree of the superpoly d. By using Algorithm 3, our attack strategy to recover
partial secret variables consists of two phases: offline phase and online phase

1. Offline Phase (Superpoly Recovery). For a cube CIv,Jv,Kv , attackers query

Algorithm 3 to determine all
∑d

i=0

(
|I|
i

)
ANF coefficients a

pIv,Jv,Kv
u satisfying hw (u) ≤ d

and u ≼ uI .
2. Online Phase (Partial Key Recovery). Attackers query the encryption oracle

and acquire the exact value of pIv,Jv,Kv (x) by summing over the cube CIv,Jv,Kv as Eq.
(2). Then, one polynomial about involved secret variables can be got, and some values in
involved secret variables are discarded.

Time Complexity. In order to recover the exact superpoly, we need to query the Algo-

rithm 3
∑d

i=0

(
|I|
i

)
times. The time complexity of Phase 1 is c ·

∑d
i=0

(
|I|
i

)
, where c is

the average computational complexity of Algorithm 3. Phase 2 requires 2|Iv| encryptions.
Therefore, the number of encryptions that an available attack requires is

max

{
c ·

∑d

i=0

(
|I|
i

)
, 2|Iv|

}
< 2n (7)

Compared with CBDP based cube attack in Sect.2.6, we can know that when c < 2|Iv|,
our method can obtain better results.

4.2 The BDPT Based Cube Attack on Secret-update Cipher
Due to the influence of secret keys in the intermediate rounds, new vectors may be gener-
ated from Li and added to Ki. Therefore, the condition that there are no division trails
such that D1n+m

K,L
fIx,Iv,Jv,Kv−−−−−−−−→ D1n+m

{1},∅ may not hold. Namely, only a part of the ANF
coefficients in superpoly pIv,Jv,Kv (x, v) can be obtained by BDPT. In the offline phase, if
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there are N ANF coefficients that cannot be determined by BDPT, we have to get their
ANF coefficients by the method used in the CBDP based cube attack. Therefore, the
number of encryptions that an available attack requires is

max

{
c ·

∑d

i=0

(
|I|
i

)
+ N · 2|Iv|, 2|Iv|

}
< 2n.

5 Applications to Trivium
For public-update ciphers, the exact ANF of superpoly can be fully recovered by exploring
the propagation of BDPT. Fortunately, many present stream ciphers are public-update
ciphers. In order to verify the correctness and effectiveness of our method, we apply it to
Trivium [1] which is a public-update cipher.

5.1 Descriptions of Trivium
Trivium [1] is a bit-oriented stream cipher. The internal state of Trivium, denoted by
s = (s1, s2, . . . , s288), is initialized by loading the 80-bit Key and 80-bit IV into three
registers, and the other state bits are set to 0 except for the last three bits of the third
register. Then, the algorithm would not output any keystream bit until the internal state
is updated 1152 rounds. A complete description of Trivium is given by the following
simple pseudo-code.

(s1, s2, . . . , s93)← (K1, . . . , K80, 0, . . . , 0)
(s94, s95, . . . , s177)← (IV1, . . . , IV80, 0, . . . , 0)
(s178, s179, . . . , s288)← (0, . . . , 0, 1, 1, 1)
for i = 1 to N do

if i > 1152 then
zi−1152 ← s66 ⊕ s93 ⊕ s162 ⊕ s177 ⊕ s243 ⊕ s288

end if
t1 ← s66 ⊕ s91 · s92 ⊕ s93 ⊕ s171

t2 ← s162 ⊕ s175 · s176 ⊕ s177 ⊕ s264

t3 ← s243 ⊕ s286 · s287 ⊕ s288 ⊕ s69

(s1, s2, . . . , s93)← (t3, s1, . . . , s92)
(s94, s95, . . . , s177)← (t1, s94, . . . , s176)
(s178, s179, . . . , s288)← (t2, s178, . . . , s287)

end for

5.2 The MILP-aided Algorithm for Trivium
To outline our technique more conveniently, we describe Trivium using the following ex-
pression. Let x = (x1, x2, · · · , x80) denote the secret variables, and v = (v1, v2, · · · , v208)
denote the public variables. For public variables, v14, v15, · · · , v93 are the IV variables
whose values can be chosen by attackers, {v206, v207, v208} are set to 1, and others are set
to 0. Then, the output bit of Trivium can be seen as the function of (x, v). The only non-
linear component of Trivium is a 2-degree core function denoted as s′ = fcore (s, i1, . . . , i5),
where i1, . . . , i5 are indices, and s, s′ are 288-bit state satisfying

s′
i =

{
si1si2 + si3 + si4 + si5 , i = i5

si, otherwise.
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The MILP model of core function can be represented as CoreModel(M, s, i1, i2, i3, i4, i5)
in Algorithm 4. The input of CoreModel consists of M as the current MILP model, a
vector s describing the current CBDP of the 288-bit state, and 5 indices i1, i2, i3, i4, i5
corresponding to the input bits. Then, CoreModel outputs the updated model M, and a
vector s′ describing the CBDP after fcore. With the definition of CoreModel, the MILP
model of Trivium from the r-th round to R-th round can be represented as TriviumMod-
el(r, R, k, k.F ) in Algorithm 4. The input of TriviumModel consist of the initial round
number r, and the number R for the last round, the initial CBDP K = {k} and its flag
k.F . Then, TriviumModel output the MILP model M and the flag value vector sr.F .

Algorithm 4: MILP model of CBDP for Trivium

1 procedure CoreModel(M, s, i1, i2, i3, i4, i5)
2

(
M, s′

i1
, z1

)
← copyf(M, si1)

3
(
M, s′

i2
, z2

)
← copyf(M, si2)

4
(
M, s′

i3
, z3

)
← copyf(M, si3)

5
(
M, s′

i4
, z4

)
← copyf(M, si4)

6 (M, a)← andf(M, z1, z2)
7

(
M, s′

i5

)
← xorf(M, a, z2, z3, z4, si5)

8 for all i ∈ {1, 2, · · · , 288} − {i1, i2, i3, i4, i5} do
9 s′

i = si

10 end for
11 return (M, s′)
12 end procedure

1 procedure TriviumModel(r, R, k, k.F )
2 prepare empty MILP model M
3 M.var ← sr−1

i for i ∈ {1, 2, . . . , 288}
4 sr−1

i = ki and sr−1
i .F = ki.F for i ∈ {1, 2, . . . , 288}

5 for i = r to R do
6 (M, s′) = CoreModel

(
M, si−1, 66, 171, 91, 92, 93

)
7 (M, s′′) = CoreModel(M, s′, 162, 264, 175, 176, 177)
8 (M, s′′′) = CoreModel(M, s′′, 243, 69, 286, 287, 288)
9 si = s′′′ ≫ 1
10 end for
11 M.con←

(
xR

66 + sR
93 + sR

162 + sR
177 + sR

243 + sR
288

)
= 1

12 return (M, sr.F )
13 end procedure

Because Trivium is a public-update cipher, during the progress of recovering the ANF
coefficients of superpoly, the set K is always empty. We only show the propagation of
L in Algorithm 5. The input of procedure RoundPropagation in Algorithm 5 is the r-th
round BDPT Lr, and the outputs is the (r + 1)-th round BDPT Lr+1. Finally, in order
to recover the ANF coefficients of superpoly in R-round Trivium, we proposed Algorithm
6 which is the instantiation of Algorithm 3.

5.3 Experimental Verification
All the experiments are conducted on the following platform: Intel Core i5-4590 CPU
@3.3GHz, 8.00G RAM. And the optimizer we used to search integral distinguishers is
Gurobi 8.1.0 [8]. Identical to [18], we firstly use the cube Iv = {14, 24, 34, 44, 54, 64, 74, 84}
to verify our attacks and implementations.
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Algorithm 5: The propagation of L for the round function

1 procedure CorePropagation(L, i1, i2, i3, i4, i5)
2 Let x = (x1, x2, x3, x4, x5) be the variables
3 Let y be the function of x, and y = (x1, x2, x3, x4, x1x2 + x3 + x4 + x5)
4 L′ = ∅
5 for ℓ in L
6 for all u = (u1, u2, u3, u4, u5) ∈ F5

2 do
7 if yu contains the term x(ℓi1 ,ℓi2 ℓi3 ,ℓi4 ,ℓi5) then
8 ℓ′ = ℓ
9 ℓ′

i1
= u1, ℓ′

i2
= u2, ℓ′

i3
= u3, ℓ′

i4
= u4, ℓ′

i5
= u5

10 L′ x← ℓ′

11 end if
12 end for
13 end for
14 return L′

15 end procedure

1 procedure RoundPropagation(Lr)
2 initial L′ = ∅, L′′ = ∅, L′′′ = ∅, Lr+1 = ∅
3 L′ =CorePropagation(Lr, 66, 171, 91, 92, 93)
4 L′′ =CorePropagation(L′, 162, 164, 175, 176, 177)
5 L′′′ =CorePropagation(L′′, 243, 69, 286, 287, 288)
6 for all ℓ in L′′′ do
7 Lr+1 = Lr+1

∪
{ℓ ≫ 1}

8 end for
9 return Lr+1
10 end procedure

Example 1. For 591-round Trivium, when the cube is CIv,Jv,Kv , where Iv = {14, 24, 34,
44, 54, 64, 74, 84}, Jv = {15, 30, 33, 206, 207, 208}, and Kv = {1, 2, · · · , 208} − Iv − Jv, we
can get that the involved secret variables are {x23, x24, x25, x67}, the degree of superpoly
is not larger than 2. Then, we use Algorithm 6 to recover all the ANF coefficients of the
superpoly, which is in accordance with the following superpoly recovered by practical

pIv,Jv,Kv (x) = x67 + x25 + x24x23 + 1.

Example 2. For 591-round Trivium, when the cube is CIv,Jv,Kv , where Iv = {14, 24, 34,
44, 54, 64, 74, 84}, Jv = {14, 15, · · · , 93, 206, 207, 208}−Iv, and Kv = {1, 2, · · · , 208}−Iv−
Jv, we can get that the involved secret variables are {x23, x24, x25, x66, x67}, the degree of
superpoly is not larger than 3. Then, we use Algorithm 6 to recover the superpoly, which
is in accordance with the following superpoly recovered by practical

pIv,Jv,Kv (x) = x66x24x23 + x66x25 + x67x66 + x66.

To further confirm the correctness of our method, we use the cube above and conduct
practical experiments on different rounds, namely 576,577,587,590 (selected from Table 2
of [18]). The superpolies got by our method are all in accordance with the real superpolies.

At CRYPTO 2017 [18], Todo et al. proposed a CBDP based cube attack on the
832-round Trivium. Then, at CRYPTO 2018 [19], Wang et al. improved the result and
presented a CBDP based cube attack on 839-round Trivium. But both methods cannot
ensure whether the cube attacks are key recovery attacks or not. After applying Algorith-
m 6 to the 832-round and 839-round Trivium, we have the following results.
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Algorithm 6: Recover the ANF coefficient of superpoly in R-round Trivium

1 procedure TriviumRecover(R, Ix, Iv, JIx
v ,uhwIx,Iv,JIx

v
)

2 Initial K0 = ∅
3 Initial L0 =

{
(uIx

, uv) |uIv
≼ uv ≼ uIv

⊕ uIx

Jv
and hw (uIx

, uv) ≤ uhwIx,Iv,JIx
v

}
4 Assign s0

i .F = δ for i ∈ Ix

5 Assign s0
i .F = 0 for i ∈ {1, 2, . . . , 93} − Ix

6 Assign s0
80+i.F = δ for i ∈ Iv

7 Assign s0
80+i.F = 1 for i ∈ JIx

v

8 Assign s0
80+i.F = 0 for {1, 2, . . . , 208} − Iv − JIx

v

9 for (r = 1; r ≤ R; i + +)
10 Initial L′ = ∅
11 for ℓ in Lr−1 do
12 (M, sr.F ) = TriviumModel

(
r, R, ℓ, sr−1.F

)
13 if M is feasible
14 L′ = L′ ∪

ℓ
15 end if
16 end for
17 if L′ = ∅
18 return 0
19 end if
20 Lr = RoundPropagation (L′)
21 end for
22 return 1
23 end procedure

Result 1. For the cube set CIv,Jv,Kv , where Iv = {14, . . . , 46, 48, . . . , 59, 61, . . . , 93},
no matter what the assignment to the non-cube IVs {47, 60} is, the corresponding super-
poly of 839-round Trivium in the paper [19] is constant. So the cube attack based on
CBDP in the paper [19] is not key recovery attack.

Result 2. For the cube set CIv,Jv,Kv , where Iv = {14, 15, . . . , 78, 80, 82, . . . , 92}, the
superpolies of some assignments to the non-cube IVs {79, 81, 83, 85, 87, 89, 91, 93} are
constant. For example, when Jv = {206, 207, 208} and Kv = {1, 2, . . . , 208} − Iv − Jv,
the superpoly recovered is pIv,Jv,Kv (x) = 0. And the superpolies of some assignments
to the non-cube IVs {79, 81, 83, 85, 87, 89, 91, 93} are non-constant. For example, when
Jv = {81, 91, 206, 207, 208} and Kv = {1, 2, . . . , 208}− Iv − Jv, the superpoly recovered is
pIv,Jv,Kv (x) = x57x58x59 + x33x57 + x57x60. In a word, the assignment to the non-cube
IVs will affect whether the cube attack on 832-round Trivium in the paper [18] is key
recovery attack or not.

5.4 Theoretical Results
From [19], we know that superpoly has sparse monomial distribution properties and many
ANF coefficients can be determined by CBDP method. For the remaining coefficients, we
need query Algorithm 6. In our experiments, the running time of Algorithm 6 on a com-
mon PC (Intel Core i5-4590 CPU @3.3GHz, 8.00G RAM) is practical. For example, it

spends about 10 days to recover all the
∑3

i=0

(
5
i

)
= 26 ANF coefficients of superpoly in

Result 2.
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Result 3. Let CIv,Jv,Kv be a cube set, where Iv = {14, 15, . . . , 92}, Jv = {206, 207, 208},
and Kv = {1, 2, . . . , 205} − Iv. Using the MILP method, we can get that the degree

of superpoly in 842-round Trivium is not larger than 7. Then, we have
∑d

i=0

(
|I|
i

)
≤∑7

i=0

(
80
i

)
≤ 232. That means we can use no more than 232 MILP propagation of BDPT

to recover the exact superpoly of 842-round Trivium.

6 Conclusion
In this paper, we propose a new method to recover exact superpoly in cube attack. Our
method is developed from BDPT, and as far as we know, this is the first application of
BDPT to stream ciphers. For public-update ciphers, the exact ANF of superpoly can
be fully recovered by exploring the propagation of BDPT. Fortunately, many present
stream ciphers are public-update ciphers. To verify the correctness and effectiveness of
our method, we apply it to Trivium. For the cube attack on the 832-round Trivium [18],
we obtain that only some proper non-cube IV assignments can obtain non-constant super-
polies. And the complexity of recovering the superpoly is reduced from 277 to practical.
For the cube attack on 839-round Trivium [19], our result shows that the superpoly is
always constant. Because our method can determine the ANF coefficients of superpoly in
practical time, we propose a theoretical cube attack on 842-round Trivium.

For secret-update ciphers, due to the influence of intermediate round keys, not all
the ANF coefficients can be obtained by BDPT. From this perspective, when we design
stream ciphers, the secret-update ciphers are more secure. How to recover the superpoly
of secret-update ciphers is our future work.
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