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Abstract. Robust secret sharing enables the reconstruction of a secret-
shared message in the presence of up to t (out of n) incorrect shares.
The most challenging case is when n = 2t+ 1, which is the largest t for
which the task is still possible, up to a small error probability 2−κ and
with some overhead in the share size.
Recently, Bishop, Pastro, Rajaraman and Wichs [3] proposed a scheme

with an (almost) optimal overhead of Õ(κ). This seems to answer the
open question posed by Cevallos et al. [6] who proposed a scheme with

overhead of Õ(n+κ) and asked whether the linear dependency on n was
necessary or not. However, a subtle issue with Bishop et al.’s solution is
that it (implicitly) assumes a non-rushing adversary, and thus it satisfies
a weaker notion of security compared to the scheme by Cevallos et al. [6],
or to the classical scheme by Rabin and BenOr [13].
In this work, we almost close this gap. We propose a new robust secret
sharing scheme that offers full security against a rushing adversary, and
that has an overhead of O(κnε), where ε > 0 is arbitrary but fixed. This

nε-factor is obviously worse than the polylog(n)-factor hidden in the Õ
notation of the scheme of Bishop et al. [3], but it greatly improves on the
linear dependency on n of the best known scheme that features security
against a rushing adversary (when κ is substantially smaller than n).

A small variation of our scheme has the same Õ(κ) overhead as the
scheme of Bishop et al. and achieves security against a rushing adversary,
but suffers from a (slightly) superpolynomial reconstruction complexity.

1 Introduction

Background. Robust secret sharing is an extended version of secret sharing as
originally introduced by Shamir [14] and Blakley [4], where the reconstruction
is required to work even if some of the shares are incorrect (rather than missing,
as in the standard notion). Concretely, a robust secret sharing scheme needs to
satisfy t-privacy: any t shares reveal no information on the secret, as well as
t-robust-reconstructability: as long as no more than t shares are incorrect the
secret can be reconstructed from the full set of n (partly correct, partly incor-
rect) shares. For t < n/3 this can easily be achieved by means of error correct
techniques, whereas for t ≥ n/2 the task is impossible. Thus, the interesting
region is n/3 ≤ t < n/2, respectively n = 2t + 1 if we want t maximal, where



robust secret sharing is possible but only up to a small error probability 2−κ

(which can be controlled by a statistical security parameter κ) and only with
some overhead in the share size (beyond the size of the “ordinary”, e.g., Shamir
share). There are many works [13, 5, 8, 6, 9, 2, 7, 3, 11] in this direction.3

The classical scheme proposed by Rabin and BenOr [13] has an overhead
in share size of O(κn), i.e., next to the actual share of the secret, each player
has to hold an additional O(κn) bits of information as part of his share. This
additional information is in the form of n − 1 authentication tags and keys.
Concretely, every player Pi holds n − 1 authentication keys keyi,j that allow
him to verify the (Shamir) shares sj of all parties Pj , plus n− 1 authentication
tags σi,j that allow the other parties to verify his share si by means of their
keys. By this way, the honest parties can recognize all incorrect shares — and,
in case the reconstructor is not a share holder, he would keep those shares that
are correctly verified by at least t+ 1 other parties and dismiss the others (note
that a dishonest share holder may also lie about his authentication key, and thus
make look a a correct share incorrect).

Cevallos, Fehr, Ostrovsky and Rabani [6] proposed an improvement, which

results in an overhead in share size of Õ(n+ κ) instead. The core insight is that
in the Rabin-BenOr scheme, one can reduce the size of the authentication keys
and tags (and thus weaken the security of the authentication) at the expense of
a slightly more involved reconstruction procedure — and a significantly more in-
volved analysis. Since the linear dependency of the overhead on κ is unavoidable,
they posed the question of whether the linear dependency on n is necessary, or
whether an overhead of Õ(κ) is possible.

Bishop, Pastro, Rajaraman and Wichs [3] gave a positive answer to this
question by proposing a scheme that indeed has an overhead in share size of
Õ(κ). At first glance, this seems to settle the case. However, a subtle issue is
that their scheme is proven secure only against a weaker attacker than what is
considered in the above works. Concretely, the security of their scheme relies on
the (implicit) assumption that the attacker is non-rushing, whereas the above
discussed schemes remain secure in the presence of a rushing attacker. As such,
the open question of Cevallos et al. [6] is not fully answered.

Recall that for the attacker to be rushing, it means that during the recon-
struction procedure, when the parties announce their shares, he can decide on
the incorrect shares of the corrupt parties depending on the shares that the hon-
est parties announce (rather than on the shares of the corrupt parties alone).
This is in particular meaningful and desirable if it is the parties themselves that
do the reconstruction — in this case there is little one can do to prevent the
corrupt parties from waiting and receiving the honest parties’s shares, and then
“rush” and announce their own shares before the end of the communication
round. Even if the shares (which may include authentication tags and keys etc.)
are announced gradually, in multiple rounds, in each round the attacker can still
rush in that sense.

3 In particular, [9, 7, 3, 11] use partly similar tools than we do but achieve weaker or
incomparable results.
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To the best of our knowledge, it has not been pointed out before that the
scheme of Bishop et al. does not (necessarily) offer security against a rushing at-
tacker. It is also not explicitly discussed in [3], but becomes clear when inspecting
the considered security definition carefully.

The Scheme in [3]. We briefly discuss some of the features of the scheme by
Bishop, Pastro, Rajaraman and Wichs [3], and why it is not secure against a rush-
ing adversary. Like the schemes above, their scheme is also based on verification
of shares by means of pairwise authentication using a message authentication
code (MAC). However, in order to reduce the number of keys and tags so as to
obtain an overhead that is independent of n, every party can now verify only a
subset of the shares of the other parties, where the subset is randomly chosen
(during the sharing phase) and of constant size. However, this makes the recon-
struction procedure much more delicate, and Bishop et al. [3] need to pair this
basic idea with various additional clever tricks in order to get the reconstruction
working. One of these enhancements is that they need to avoid that a dishonest
party can make an honest party look dishonest by announcing an incorrect au-
thentication key without being identified as a cheater by other honest parties.
This is done by authenticating not only the Shamir share of the party under
consideration, but also that party’s authentication keys. Concretely, if Pj is cho-
sen to be one of the parties that Pi can verify, then this verification is enabled
by means of an authentication tag σi,j that is computed as

σi,j = MACkeyi,j (sj , keyj)

where keyi,j is Pi’s verification key, and keyj is the collection of keys that Pj
holds for verification of the shares (and keys) that he can verify.4

It is now not hard to see that this construction design is inherently insecure
against a rushing adversary. Even if the reconstruction is done in multiple rounds
where first the Shamir shares and authentication tags are announced and only
then the keys (which is what one has to do to make the Rabin-BenOr scheme and
the scheme by Cevallos et al. secure in the rushing setting), given that a rushing
adversary can choose an incorrect keyj depending on the authentication key
keyi,j , the MAC offers no security. Worse, this cannot be fixed by, say, enhancing
the MAC: either the adversary has some freedom in choosing incorrect keyj once
given keyi,j , or then it is uniquely determined by keyi,j and so Pi knows it — and
so it cannot serve the purpose of an authentication key.5

We emphasize that we do not claim an explicit rushing attack against the
scheme of Bishop et al. [3]. What the above shows is the existence of an attack
that prevents a certain property on the consistency graph to hold upon which

4 One might feel uncomfortable about that there seems to be some circularity there;
but it turns out that this is no issue.

5 The actual scheme is significantly more involved than the simplifies exposition given
here, e.g., the identities of the parties that Pj can verify are authenticated as well,
and the authentication tags are not stored “locally” but in a “robust and distributed”
manner, but the issue pointed out here remains.
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the reconstruction procedure appears to crucially rely — certainly the proof does.
Thus, our claim is that we see no reason why the scheme of Bishop et al. should
offer security against a rushing adversary.

Our Result. In this work, we propose a new robust secret sharing scheme.
Our new scheme is secure against a rushing adversary and close to optimal in
terms of overhead. By “close to optimal” we mean that our new scheme has an
overhead of O(κnε) and runs in polynomial time for any arbitrary fixed constant
ε > 0. This is obviously slightly worse than the scheme of Bishop et al. [3], which
has an overhead of O(κ ·polylog(n)), but it greatly improves over the best known
scheme that features security against a rushing adversary when n is significantly
larger than κ.

Our approach recycles some of the ideas from Bishop et al. [3] (e.g. to use
“small random subsets” for the verifying parties, and to store the authentication
tags in a “robust and distributed” manner) but our scheme also differs in many
aspects. The crucial difference is that we do not require the authentication keys
to be authenticated; this is what enables us to obtain security against a rushing
adversary. Also, how the reconstruction actually works — and why it works — is
very different. In our approach, we mainly exploit the expander property of the
“verification graph” given by the randomly chosen set of neighbors for each Pi,
i.e., the set of parties whose share Pi can verify.

For instance, in a first step, our reconstruction procedure checks if the number
of incorrect Shamir shares is almost t (i.e., maximal) or whether there is a small
linear gap. It does so by checking if there are t+1 parties that accept sufficiently
more than half of the shares they verify. This works because by the random choice
of the neighbors, the local view of each honest party provides a good estimate of
the global picture (except with small probability). e.g., if almost half of all the
shares are incorrect, then for each honest party roughly half of his neighbors has
an incorrect share.

If the outcome is that there is a (small but positive) linear gap between the
number of incorrect shares and t then we can employ list-decoding to obtain a
poly-size list of possible candidates for the secret. In order to find the right secret
from the list we need to further inspect the “consistency graph”, given by who
accepts whom. Concretely, for every secret on the list (and the corresponding
error-corrected list of shares) it is checked if there exist t+1 parties whose shares
are deemed correct and who accept a party whose share is deemed incorrect. It is
clear that this cannot happen if the secret in question is the right one, because no
one of the t+ 1 honest parties would accept an incorrect share. And, vice versa,
if the secret in question is incorrect then, because of the promised redundancy
in the correct shares, there must be a certain number of correct shares that are
deemed incorrect and, with the parameters suitably chosen, each honest party
has one of them as neighbor (except with small probability) and so will accept
that one.

If, on the other hand, the outcome of the initial check is that there are almost t
incorrect shares, then the reconstruction procedure uses a very different approach
to find the correct shares. Explaining the strategy in detail is beyond the scope of
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this high-level sketch, but the idea is to start with a set that consists of a single
party and then recursively pull those parties into the set that are accepted by the
current parties in the set. The hope is that when we start with an honest party
then we keep mostly including other honest parties. Of course, we cannot expect
to end up with honest parties only, because an honest party may pull a party into
the set that has announced a correct share (and thus looks honest) but which
is actually dishonest and accepts incorrect shares of other dishonest parties,
which then get pulled into the set as well. But note, given that we are in the
case of almost t incorrect shares, there are not many such “passively dishonest”
parties, and we can indeed control this and show that if we stop at the right
moment, the set will consist of mainly honest parties and only a few dishonest
parties with incorrect shares. By further inspection of the “consistency graph”,
trying to identify the missing honest parties and removing dishonest ones, we
are eventually able to obtain a set of parties that consists of all honest parties,
plus where the number of “actively dishonest” parties is at most half the number
of “passively dishonest” parties (except with small probability), so that we have
sufficient redundancy in the shares to recover the secret (using Reed-Solomon
error correction).

By choosing the out-degree of the “verification graph” (i.e., the number of
parties each party can verify) appropriately, so that the above informal reasoning
can be rigorously proven (to a large extent by exploiting the randomness of each
party’s neighborhood and applying the Chernoff-Hoeffding bound), we obtain
the claimed overhead O(κnε) for an arbitrary choice of ε > 0.

As a simple variation of our approach, by choosing the out-degree of the
“verification graph” to be polylog(n), we obtain the same (asymptotic) Õ(κ)
overhead as Bishop et al. [6] and still have security against a rushing adversary,
but then the reconstruction becomes (slightly) superpolynomial (because the
size of the list produced by the list-decoder becomes superpolynomial).

2 Preliminaries

2.1 Graph Notation

Let G = (V,E) be a graph with vertex set V and edge set E. By convention,
(v, w) ∈ E is the edge directed from v to w. For S ⊆ V , we let G|S be the
restriction of G to S, i.e., G|S = (S,E|S) with E|S = {(u, v) ∈ E : u, v ∈ S}.
Furthermore, we introduce the following notation.

For v ∈ V , we set

Nout(v) = {w ∈ V : (v, w) ∈ E} and N in(v) = {w ∈ V : (w, v) ∈ E}.

We often write Ev as a short hand for Nout(v), and call it the neighborhood of v.
For S ⊆ V , we set

Nout
S (v) = Nout(v) ∩ S and N in

S (v) = Nout(v) ∩ S .
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We extend this notation to a labeled graph, i.e., when G comes with a function
L : E → {good, bad} that labels each edge. Namely, for v ∈ V we set

Nout(v, good) = {w ∈ Nout(v) : L(v, w) = good},
N in(v, good) = {w ∈ N in(v) : L(w, v) = good},

and similarly Nout(v, bad) and N in(v, bad). Also, Nout
S (v, good), N in

S (v, good),
Nout
S (v, bad) and N in

S (v, bad) are defined accordingly for S ⊆ V . Finally, we set

nout(v) = |Nout(v)| and ninS (v, bad) = |N in
S (v, bad)|

and similarly for all other variations.
We refer to a graph G = (V,E) as a randomized graph if the edges E are

chosen in a randomized manner, i.e., if E is actually a random variable. We are
particularly interested in randomized graphs where (some or all of) the Ev’s
are uniformly random and independent subsets Ev ⊂ V \ {v} of a given size d.
For easier terminology, we refer to such neighborhoods Ev as being random and
independent.

2.2 Chernoff Bound

Like for [3], much of our analysis relies on the Chernoff-Hoeffding bound, and
its variation to “sampling without replacement”. Here and throughout, [n] is a
short hand for {1, 2, . . . , n}.

Definition 1 (Negative Correlation [1]). Let X1, . . . , Xn be binary random
variables. We say that they are negatively correlated if for all I ⊂ [n]:

Pr[Xi = 1 ∀ i ∈ I] ≤
∏
i∈I

Pr[Xi = 1], Pr[Xi = 0 ∀ i ∈ I] ≤
∏
i∈I

Pr[Xi = 0].

Theorem 1 (Chernoff-Hoeffding Bound). Let X1, . . . , Xn be random vari-
ables that are independent and in the range 0 ≤ Xi ≤ 1, or binary and negatively
correlated, and let u = E

[∑n
i=1Xi

]
. Then, for any 0 < δ < 1:

Pr

[
n∑
i=1

Xi ≤ (1− δ)u

]
≤ e−δ

2u/2 and Pr[

[
n∑
i=1

Xi ≥ (1 + δ)u

]
≤ e−δ

2u/3.

As immediate consequence, we obtain the following two bounds. The first
follows from Chernoff-Hoeffding with independent random variables, and the
latter from Chernoff-Hoeffding with negatively correlated random variables. We
refer to [1] for more details, e.g., for showing that the random variables Xj = 1
if j ∈ Ev and 0 otherwise are negatively correlated for Ev as in Corollary 1

Corollary 1. Let G be a randomized graph with the property that, for some fixed
v ∈ V , the neighborhood Ev is a random subset of V \ {v} of size d. Then, for
any fixed subset T ⊂ V , we have

Pr
[
noutT (v) ≥ (1+ε) |T |d|V |

]
≤ e−ε

2 |T |d
2|V | and Pr

[
noutT (v) ≤ (1−ε) |T |d|V |

]
≤ e−ε

2 |T |d
3|V | .
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Corollary 2. Let G be a randomized graph with the property that, for some fixed
T ⊂ V , the neighborhoods Ev for v ∈ T are random and independent of size d
(in the sense as explained in Sect. 2.1). Then, for any v 6∈ T , we have

Pr
[
ninT (v) ≥ (1+ε) |T |d|V |

]
≤ e−ε

2 |T |d
2|V | and Pr

[
ninT (v) ≤ (1−ε) |T |d|V |

]
≤ e−ε

2 |T |d
3|V | .

We emphasize than when we apply these corollaries, we consider a graph
G where a priori all Ev’s are random and independent. However, our reasoning
typically is applied a posteriori, given some additional information on G, like the
adversaries view. As such, we have to be careful each time that the considered
neighborhoods are still random conditioned on this additional information on G.

2.3 Robust Secret Sharing

A robust secret sharing scheme consists of two interactive protocols: the sharing
protocol Share and the reconstruction protocol Rec. The sharing protocol is
executed by a dealer D and n parties 1, . . . , n: the dealer takes as input a message
msg, and each party i ∈ {1, . . . , n} obtains as output a so-called share. Typically,
these shares are locally computed by the dealer and then individually sent to
the parties. The reconstruction protocol is executed by a receiver R and the n
parties: each party is supposed to use its share as input, and the goal is that
R obtains msg as output. Here, the protocol is typically so that the parties
send their shares to R (possibly “piece-wise”, distributed over multiple rounds
of communication), and R then performs some local computation.

Such a robust secret sharing should be “secure” in the presence of an adver-
sary that can adaptively corrupt up to t of the parties 1, . . . , n. Once a party
is corrupted, the adversary is able to see the share of this party, and he can
choose the next corruption based on the shares of the currently corrupt parties.
Furthermore, in the reconstruction protocol, the corrupt parties can arbitrarily
deviated from the protocol and, e.g., use incorrect shares. The following captures
the security of a robust secret sharing in the list of such an adversary.

Definition 2 (Robust Secret Sharing). Such a pair (Share,Rec) of pro-
tocols is called a (t, δ)-robust secret sharing scheme if it satisfies the following
properties hold for any distribution of msg (from a given domain).

– Privacy: Before Rec is started, the adversary has no more information on
the shared secret msg than he had before the execution of Share.

– Robust reconstructability: At the end of Rec, the reconstructor R output
msg′ = msg except with probability at most δ.

2.4 On the Power of Rushing

As defined above, there is still some ambiguity in the security notion, given that
we have not specified yet the adversary’s (dis)ability of eavesdropping on the
communication of the sharing and the reconstruction protocols. Obviously, for
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the privacy condition to make sense, it has to be assumed that during the exe-
cution of the sharing protocol the adversary has no access to the communication
between D and the uncorrupt parties. On the other hand, it is commonly as-
sumed that the adversary has access to the communication between the parties
and R during the execution of the reconstruction protocol. This in particular
means that the adversary can choose the incorrect shares, which the corrupt
parties send to R, depending on the honest parties’ (correct) shares.6 Such an
adversary is referred to as a rushing adversary. In contrast, if it is assumed that
the adversary has to choose the incorrect shares depending on the shares of the
corrupt parties only, one speaks of a non-rushing adversary. Thus, Definition 2
above comes in two flavors, depending on whether one considers a rushing or a
non-rushing adversary. Obviously, considering a rushing adversary gives rise to a
stronger notion of security. In order to deal with a rushing adversary, it is useful
to reveal the shares “in one go” but piece-by-piece, so as to limit the dependence
between incorrect and correct shares.

In this work, in order to be in-par with [13] and [6], we require security
against a rushing adversary. On the other hand, the scheme by Bishop, Pastro,
Rajaraman and Wichs [3] offers security against a non-rushing adversary only —
and, as explained in the introduction, there are inherent reasons why it cannot
handle a rushing adversary.

3 Overview of Scheme

Our Approach. As in [3], the sharing phase is set up in such a manner that
every party i can verify (by means of a MAC) the Shamir shares of the parties
j of a randomly sampled subset Ei ⊂ [n]\{i} of parties. However, in contrast to
[3], in our scheme only the Shamir share is authenticated; in particular, we do
not authenticate the authentication keys (nor the set Ej).

If the reconstruction is then set up in such a way that first the Shamir shares
are announced, and only afterwards the authentication keys, it is ensured (even
in the presence of a rushing adversary) that the consistency graph, which labels
an edge from i to j ∈ Ei as “good” if and only if i correctly verifies j’s Shamir
share, satisfies the following:

– All edges from honest parties to passive or honest parties are labeled good.
– All edges form honest parties to active parties are labeled bad.

Here, and in the remainder, a corrupt party is called active if it announced
an incorrect Shamir share in the reconstruction, and it is called passive if it
announced a correct Shamir share, but may still lie about other parts, like the

6 This may look artificial at first glance, but one motivation comes from the fact that in
some applications one might want to do the reconstruction among the parties, where
then each party individually plays the role of R (and performs the local computation
that the reconstruction protocol prescribes). In this case, every party sends his share
to every other party, and thus the corrupt parties unavoidably get to see the shares
of the honest parties and can decide on the incorrect shares depending on those.
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authentication keys. This is a significant difference to [3], where it is also ensured
that corrupt parties that lie about their authentication keys are recognized as
well.

Divide the Discussion. Similarly to [3], the reconstructor first tries to distin-
guish between the (non-exclusive) cases |P | ≤ εn and |P | ≥ εn

4 , where P denotes
the set of passive parties (as defined above). In order to do so, we observe that
the honest party is expected to have (|P | + |H|) dn good outgoing edges, where
H is the set of honest parties. Thus, if there exist t+ 1 parties with more than
(1 + ε)d/2 good outgoing edges, we are likely to be in the case |P | ≥ εn

4 , and
otherwise |P | ≤ εn.

Based on this distinction, the reconstructor will then refer to either of the
following two algorithms to recover the secret.

Code Based Algorithm. This algorithm is used to handle the case |P | ≥ εn
4 .

Here, one can use the redundancy provided by the correct shares of the parties
in P to do list-decoding. This works given that the Shamir sharing is done by
means of a folded Reed-Solomon code. Since those are maximum distance sep-
arable (MDS) codes, the corresponding secret sharing scheme is still threshold;
moreover, it enjoys the nice feature that we can apply list decoding to correct
up to t − εn/4 corruptions for any small constant ε. Finding the right entry in
the list can then be done by a further inspection of the consistency graph.

Graph Algorithm. This graph algorithm is used in case |P | ≤ εn. The basic
algorithm starts off with a particular party, and produces the correct secret
(with high probability) if that party happens to be honest. Hence, applying
this algorithm to all choices for that party and taking a majority enables to
reconstruct the secret.

The algorithm consists of three steps.

– The first step is to find a big subset V that contains many honest parties
and very small proportion of dishonest parties. We do so by starting off
with V = {i} for a particular party i (which we assume to be honest for
the discussion) and recursively include all parties into V that are correctly
verified by the parties in V . A simple argument shows that in each step, we
expect to include d/2 honest parties and at most εd passive parties.
By the expander property of the consistency graph restricted to the honest
parties ensures that the set V will soon be expanded to a set containing
many honest parties. On the other hand, we can limit the “damage” done
by passive parties by only including parties that have at most d

2 (1+3ε) good
outgoing edges. Given that there are only very few passive parties and that
we limit the number of active parties they can pull into V , we can show that
V can be expanded to a set of size Ω(εn) such that at most a O(

√
ε)-fraction

of the parties in V are corrupt.
– The next step is to rely on the authentication of parties in V to include all

honest parties and few dishonest parties where the majority is passive. We
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first expand V to contain all honest parties and at most O(
√
εn) dishonest

parties. Then, we remove all active parties from V (but possibly also some
honest and passive ones). Let W be the set of all parties removed from V .
We show that the resulting set V still contains almost all honest parties and
few passive parties, and W is of size O(

√
εn) and contains the rest of honest

parties.

A subtle issue now is that the sets V and W above depend on the Ei’s of
the honest parties; this then means that now given these two sets, we cannot
rely anymore on the randomness of the Ei’s. In order to circumvent this,
we resort to another layer of authentication that is done in parallel to the
former, with fresh E′i’s, and by means of this, we can then eventually identify
a subset S ⊆ [n] that contains all t+1 honest parties, as well as some number
h of passive parties and at most h

2 active parties (with high probability).

– Given that we have “sufficiently more redundancy that errors”, the secret
can now be recovered by means of Reed-Solomon error correction (noting
that a codeword of a folded Reed-Solomon code is also a codeword of some
classic Reed-Solomon code).

4 Building Blocks

We present three building blocks here which are used in our construction.

4.1 Shamir Secret Sharing with List Decoding

It is well known that the share-vector in Shamir’s secret sharing scheme is noth-
ing else than a codeword of a Reed-Solomon code. Thus, Reed-Solomon decoding
techniques can be applied when we are in the regime of unique decoding. Fur-
thermore, if we use a folded Reed-Solomon code, then we still get a Shamir-like
threshold secret sharing scheme, but in addition we can employ list-decoding
when we are in a regime were decoding is not unique anymore.

In summary, we have the following (see Appendix A.1 and [12] for the details).

Proposition 1. Let γ be any small constant. There exists 2t+1-party threshold

secret sharing scheme over Fq with q = t
O( 1

γ2
)

such that:

– This scheme enjoys t-privacy and t+ 1-reconstruction.

– There is a randomized list decoding algorithm that corrects up to t−γ(2t+1)
incorrect shares and outputs a list of candidates containing the correct secret

with probability at least 1 − 2−Ω(t). The list size is λ = ( 1
γ )

1
γ log 1

γ and this

list decoding algorithm runs in time poly(t, λ)

– There exists an efficient decoding algorithm that reconstructs the secret from
any t+ 1 + 2a shares of which at most a are incorrect.
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4.2 MAC Construction

Similarly to [3], our construction requires a message authentication code (MAC)
with some additional features. There is some overlap with the features needed
in [3], but also some differences.

Definition 3. A message authentication code (MAC) for a finite message space
M consists of a family of functions {MACkey :M×R→ T }key∈K. This MAC
is said to be (`, ε)-secure if the following three conditions hold.

1. Authentication security: For all (m, r) 6= (m′, r′) ∈M×R and all σ, σ′ ∈ T ,

Pr
key←K

[MACkey(m′, r′) = σ′|MACkey(m, r) = σ] ≤ ε.

2. Privacy over Randomness: For all m ∈ M and key1, . . . , key` ∈ K, the
distribution of ` values σi = MACkeyi(m, r) is independent of m over the
choice of random string r ∈ R, i.e.,

Pr
r←R

[(σ1, . . . , σ`) = c|m] = Pr
r←R

[(σ1, . . . , σ`) = c]

for any c ∈ T `.
3. Uniformity: For all (m, r) ∈M×R, the distribution of σ = MACkey(m, r)

is uniform at random over the random element key ∈ K.

The above privacy condition will be necessary for the privacy of the robust
secret sharing scheme, since the Shamir shares will be authenticated by means of
such a MAC but the corresponding tags will not be hidden from the adversary.

The uniformity property will be crucial in a lazy sampling argument, were
we need to “simulate” certain tags before we know which messages they actually
authenticate. With the uniformity property, this can obviously be done by pick-
ing σ uniformly at random from T . When m and r become available, we can
then sample a uniformly random key key subject to MACkey(m, r) = σ. This
has the same distribution as when key is chosen uniformly at random and σ is
computed as σ = MACkey(m, r).

The following variation of the standard polynomial-evaluation MAC con-
struction meets all the requirements.

Theorem 2 (Polynomial Evaluation). Let F be a finite field. Let M = Fa,
R = F` and T = F such that a+`

|F| ≤ ε. Define the family of MAC functions

{MAC(x,y) : Fa × F` → F}(x,y)∈F2 such that

MAC(x,y)(m, r) =

a∑
i=1

mix
i+` +

∑̀
i=1

rix
i + y

for all m = (m1, . . . ,ma) ∈ Fa, r = (r1, . . . , r`) ∈ F` and (x, y) ∈ F2. Then, this
family of MAC functions is (`, ε)-secure.
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4.3 Robust Distributed Storage

A robust distributed storage scheme is a robust secret sharing scheme as in Def-
inition 2 but without the privacy requirement. This was used in [3] in order to
ensure that dishonest parties cannot lie about the tags that authenticate their
shares (so as to, say, provoke disagreement among honest parties about the cor-
rectness of the share).7 Also our construction uses a robust distributed storage
scheme for storing the authentication tags. It does not play such a crucial role
here as in [3], but it makes certain things simpler.

A robust distributed storage scheme can easily be obtained by encoding the
message by means of a list-decodable code and distribute the components of
the code word among the parties, and to give each party additionally a random
key and the hash of the message under the party’s key (using almost-universal
hashing). In order to reconstruct, each party runs the list-decoding algorithm
and uses his key and hash to find the correct message in the list. The exact
parameters then follow from list-decoding parameters.

Therefore, each party i holds two components, the i-th share of list-decodable
code, pi, and a hash-key and the hash of the message, jointly referred to as qi.
While [3] did not consider a rushing adversary, it is easy to see that security
of this robust distributed storage scheme against a rushing adversary can be
obtained by having the parties reveal pi and qi in two different communication
rounds (so that the adversary has to decide on an incorrect pi before he knows
the keys that the honest parties will use). Therefore, the following result from [3],
which is obtained by using suitable parameters for the list decoding an hashing,
is also applicable in rushing-adversary model.

Theorem 3 ([3]). For any n = 2t + 1 and u ≥ log n, there exists a robust
distributed storage with messages of length m = Ω(nu) and shares of length O(u)

that can recover the message with probability 1−O(n
2

2u ) up to t corruptions.

In our application, the length of shares is O(u) = O(n
√
ε) and the length of

messages is m = Ω(nu). If we apply this theorem directly, the size of Fq in
their construction is 2u which is unnecessarily big. Instead, We pick Fq with
q = Ω(n5). Then, we obtain following.

Theorem 4. For any n = 2t + 1 and u = O(n
√
ε) for small constant ε, there

exists a robust distributed storage against rushing adversary with messages of
length m = Ω(nu), shares of length O(u) that can recover the message with
probability 1−O( 1

n2 ) up to t corruptions. In this robust distributed storage, party
i holds two components, pi and qi, revealed in two rounds.

7 On the other hand, this is why the additional privacy property of the MAC is
necessary, since the robust distributed storage does not offer privacy, and thus the
tags are (potentially) known.
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5 The Robust Secret Sharing Scheme

5.1 Sharing Protocol

Let t be an arbitrary positive integer and n = 2t + 1. Let ε > 0 be a small
constant and d = n

√
ε. Let (Sh,Lis) be the sharing and list decoding algorithm

of the threshold secret sharing scheme in Proposition 1 with γ = ε
4 . Also, we

use the MAC construction from Theorem 2 with ` = 4d, and with the remaining
parameters to be determined later (but chosen so that a share produced by Sh
can be authenticated).

On input msg ∈ Fq, our sharing procedure Share(msg) proceeds as follows.

1. Let (s1, . . . , sn)← Sh(msg) to be a non-robust secret sharing of msg.
2. For each i ∈ [n], sample MAC randomness ri ← T 4d and do the following

operation twice.

(a) For each i ∈ [n], choose a random set Ei ⊆ [n]\{i} of size d. If there
exists j ∈ [n] with in-degree more than 2d, do it again.8

(b) For each i ∈ [n], sample the d random MAC keys keyi,j ∈ T 2 for j ∈ Ei.
Define Ki = {keyi,j : j ∈ Ei} to be the collection of these d random
keys.

(c) Compute the MAC

σi→j = MACkeyi,j (sj , rj) ∈ T ∀j ∈ Ei.

Let Ei, keyi,j and σi→j be the output of the first round and E′i, key
′
i,j and

σ′i→j be the output of the second round.

3. For each i ∈ [n], define tagi = {σi→j : j ∈ Ei} ∈ T d and tag′i = {σ′i→j : j ∈
E′i} ∈ T d. Let tag = (tag1, tag′1, . . . , tagn, tag′n) ∈ T 2nd. Use the robust
distributed storage scheme to store tag. Party i holds pi and qi.

4. For i ∈ [n], define si = (si, Ei, E
′
i,Ki,K′i, ri, pi, qi) to be the share of party i.

Output (s1, . . . , sn).

5.2 Reconstruction Protocol

1. The first round: Every party i sends (si, ri, pi) to the reconstructor R.
2. The second round: Every party i sends (qi, Ei,Ki) to the reconstructor R.
3. The third round: Every party i sends (E′i,K′i) to the reconstructor R.

Remark 1. We emphasize that since the keys for the authentication tags are
announced after the Shamir shares, it is ensured that the MAC does its job also
in the case of a rushing adversary. Furthermore, it will be crucial that also the
Ei’s are revealed in the second round only, so as to ensure that once the (correct
and incorrect) Shamir shares are “one the table”, the Ei’s for the honest parties
are still random and independent. Similarly for the E′i’s in the third round.

8 This is for the privacy purpose.
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On receiving the shares of n parties, our reconstruction scheme Rec(s1, . . . , sn)
goes as follows:

1. R collects the share of robust distributed storage: (pi, qi)i∈[n].
2. Reconstruct the tag = (tag1, tag′1, . . . , tagn, tag′n) and parse tagi = {σi→j :
j ∈ Ei} and tag′i = {σ′i→j : j ∈ E′i}.

3. Define two graphes G = ([n], E) and G′ = ([n], E′) such that E = {(i, j) :
i ∈ [n], j ∈ Ei} and E′ = {(i, j) : i ∈ [n], j ∈ E′i}.

4. Assign a label L(e) ∈ {good, bad} to each edge e = (i, j) ∈ E such that
L(e) = good if

σi→j = MACkeyi,j (sj , rj)

and bad otherwise. Do the same thing to the edge e ∈ E′.
5. Run the Check(G,L, ε),

(a) If the output is Yes, Let s = (s1, . . . , sn) and c = List(G, s, ε/4).
(b) Otherwise, for each i ∈ [n], let ci = Graph(G,G′, ε, i). If there exists a

codeword ci repeating at least t+ 1 times, let c = ci. Otherwise, c =⊥.

6. Output c.

Note that step 5 in the reconstruction refers to subroutines: Check, List and
Graph, which we specify only later.

5.3 The Privacy Property

Theorem 5. The scheme (Share, Rec) satisfies perfect privacy.

Proof. Let C ⊂ [n] be of size t. We let msg ∈M be arbitrarily distributed and
consider Share(msg) = (s1, . . . , sn). Our goal is to show that the distribution of
(si)i∈C is independent of msg. Note that si = (si, ri, pi, qi, Ei, E

′
i,Ki,K′i). Since

our threshold secret sharing scheme has t-privacy, the collection of shares si for
i ∈ C is independent of msg. By construction, ri, Ei, E

′
i,Ki,K′i are independent-

ly chosen as well. Since the (pi, qi)’s are computed from tag (using independent
randomness), it suffices to show that tag reveals no information on msg. Recall
that tag is used to verify the integrity of (sj , rj) for all j. For any j /∈ C, there
are at most 4d tags σi→j = MACkeyi,j (sj , rj) corresponding to the total degree
of vertex i in two graphs. By the “privacy over randomness” of the MAC, tag
is independent of these shares sj , and hence the privacy of msg is ensured.

6 The Robustness Property

6.1 Preliminary Observations

From the security properties of the robust distributed storage and of the MAC,
we immediately obtain the following results.

Lemma 1. tag is correctly reconstructed expect with probability εtag = O(1/n2).
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This is not negligible; this will be dealt with later by parallel repetition.
Here and in the remainder of the analysis of the robustness property, H

denotes the set of honest parties, and C denotes the set of dishonest parties.
Furthermore, we decompose C into C = A ∪ P , where A is the set of dishonest
parties that announced an incorrect (si, ri) in the first communication round
and P denotes the (complementary) set of dishonest parties that announced a
correct (si, ri). The parties in A are called active parties, and the parties in P
are referred to as passive parties.

Proposition 2. If tag was correctly reconstructed then the labelling of the graph
G satisfies the following, except with probability εmac ≤ 4(t+4d)dt/|T |. For every
h ∈ H and for every edge e = (h, j) ∈ Eh = Nout(h), it holds that

L(e) =

{
bad if j ∈ A
good if j ∈ H ∪ P .

I.e., all the edges from honest parties to active parties are labeled bad and all
edges from honest parties to honest parties or passive parties are labeled good.
The same holds for G′.

Proof. By the definition of passive parties and the construction of MAC, all edges
from honest parties to passive parties are labeled good. It remains to prove the
first half of the claim. Let us fix an active party i. According to the definition
of active party, he claims (s′j , r

′
j) 6= (sj , rj) ∈ T a × T 4d. For any honest party i

with j ∈ Ei or j ∈ E′i, the edge (i, j) is label good if σi→j = MACkeyi,j (s
′
j , r
′
j).

This event happens with

Pr
keyi,j←T 2

[σi→j = MACkeyi,j (s
′
j , r
′
j)] ≤

a+ 4d

|T |

due to the authentication of MAC. Note that each vertex has at most 4d incoming
edges. Taking a union bound over all these edges and the active parties, the
desired result follows.

6.2 On the Randomness of the Graph

Much of our analysis relies on the randomness of the graph G (and G′). A subtle
point is that even though a priori all of the Ei are chosen to be random and
independent (in the sense as explained in Sect. 2.1), we have to be careful about
the a posteriori randomness of the Ei given the adversary’s view. In particular,
since the adversary can corrupt parties adaptively (i.e., depending on what he
has seen so far), if we consider a particular dishonest party j then the mere fact
that this party is dishonest may affect the a posteriori distribution of G.

However, and this is what will be crucial for us is that, conditioned on the
adversary’s view, the Ei’s of the honest parties i remain random and indepen-
dent.
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Proposition 3. Up to right before the second communication round of the re-
construction protocol, conditioned on the adversary’s view of the protocol, the
graph G is such that the Ei for i ∈ H are random and independent.
The corresponding holds for G′ up to right before the third communication round.

Proof. The claim follows from a straightforward lazy-sampling argument. It fol-
lows by inspection of the protocol that one can delay the random choice of each
Ei (and E′i) to the point where party i gets corrupted, or is announced in the cor-
responding round in the reconstruction protocol. The only subtle issue is that, at
first glance it seems that the computation of the tags σi→j = MACkeyi,j (sj , rj)
for j ∈ Ei requires knowledge of Ei. However, by the uniformity property of
MAC, these tags can instead be “computed” by sampling d tags uniformly at
random from T , and once party i gets corrupted and Ei is sampled, one can
choose the keys keyi,j appropriately for j ∈ Ei.

Remark 2. In the sequel, when making probabilistic statements, they should be
understood as being conditioned on an arbitrary but fixed choice of the adver-
sary’s view. This in particular means that H, P and A are fixed sets then (since
they are determined by the view of the adversary), and we can quantify over,
say, all honest parties. The randomness in the statements then stems from the
randomness of the Ei’s (and E′i’s) of the honest parties i ∈ H, as guaranteed by
Proposition 3 above.

Remark 3. The remaining analysis below is done under the implicit assumption
that tag is correctly reconstructed and that the labelling of G and of G′ is as
specified in Proposition 2. We will incorporate the respective error probabilities
then in the end.

6.3 The Check Subroutine

Roughly speaking, the following subroutine allows the reconstructor to find out
if |P |, the number of passive parties, is linear in n or not.

Check(G,L, ε)

– Input: G = ([n], E, L) and ε.
– If |{i ∈ [n] : nout(i, good) ≥ d

2 (1 + ε)}| ≥ t+ 1, then output “Yes”.
– Otherwise, output “No”.

Theorem 6. Except with probability εcheck ≤ 2−Ω(εd), Check(G,L, ε) outputs
“Yes” if |P | ≥ εn and “No” if |P | ≤ εn/4 (and either of the two otherwise).

Proof. We only analyze the case that |P | ≤ εn
4 . The same kind of reasoning can

be applied to the case |P | ≥ εn. By Proposition 3 (and Remark 2), we know that
for given P and H, the Ei’s for i ∈ H are random and independent. It follows
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that nout(i, good) = noutP∪H(i) is expected to be |P |+|H|n ≤ d
2 (1 + ε

2 ), and thus, by
Corollary 1,

Pr
[
nout(i, good) ≥ d

2 (1 + ε)
]
≤ 2−Ω(εd).

Taking a union bound over all honest parties, we have

Pr
[
∃ i ∈ H : nout(i, good) ≥ d

2 (1 + ε)
]
≤ (t+ 1)2−Ω(εd) = 2−Ω(εd).

Thus, except with probability (t + 1)2−Ω(εd), nout(i, good) ≥ d
2 (1 + ε) can only

hold for dishonest parties i, and in this case Check(G,L, ε) outputs “No”. The
desired result follows.

Remark 4. The subroutine Check(G,L, ε) allows us to find out if |P | ≥ εn
4 or

|P | ≤ εn. If Check(G,L, ε) tells us that |P | ≥ εn
4 (by outputting “Yes”) then

we use the redundancy provided by the shares of the parties in P to recover the
secret by means of the code based algorithm List(G, s, ε/4). If Check(G,L, ε)
tells us that |P | ≤ εn (by outputting “No”) then we run the graph algorithm
Graph(G,G′, ε, v) for every choice of party v. For honest v, it is ensure to output
the correct secret (with high probability), and so we can do a majority decision.
We leave the description and the analysis of the code based algorithm and the
graph algorithm to the respective next two sections.

6.4 Code Based Algorithm

Recall that γ = ε
4 .H is the set of honest parties, P is the set of passive parties and

A is the set of active parties. In this section, we present an algorithm List(G, s, γ)
based on the list decoding algorithm of secret sharing scheme in Proposition 1
up to t− γn errors.

Code Based Algorithm, List(G, s, γ)

– Input G = ([n], E, L), s, γ.
– Run the list decoding algorithm on s to correct up to t − γn errors and

output the list of candidates (c1, . . . , c`).
– Let Si (Ti) be the set of parties whose shares agree (do not agree) with ci.
– For 1 ≤ i ≤ `, run Cand(G,Si, Ti). If the output is “succeed” then output

ci.
– Output “fail”.

We proceed to the analysis of the algorithm. The input of the list decoding
algorithm is n shares of s. Since |P | ≥ γn, there are at most t− γn = n

2 (1− 2γ)
shares that are corrupted. Thus, by Proposition 1, the output of this list decoding
algorithm will contain the correct codeword with probability at least 1−2−Ω(n).
Moreover, the list size of this algorithm is at most ( 1

γ )O(1/γ log 1/γ). We may
assume that this list only include codewords that are at most t− γn away from
the n shares. Let c1, . . . , c` be the candidates on this list. To find the correct one,
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we resort to the labelled graph G = ([n], E, L). Note that ci for 1 ≤ i ≤ ` are
determined right after the first communication round. Thus, by Proposition 3,
conditioned on c1, . . . , c` (and the entire view of the adversary at this point), the
Ei’s for i ∈ H are random and independent. For each candidate ci, we run the
algorithm Cand(G,Si, Ti, γ) to check if it is the correct codeword. For the correct
codeword cr, we claim that this algorithm Cand(G,Sr, Tr, γ) will always output
succeed. To see this, we notice that Sr must contain the set of t+1 honest parties
H. Meanwhile, Tr is a subset of active parties A. By our assumption, there does
not exist good edge from H to Tr. The desired results follows as these t + 1
honest parties will remain in Sr after calling Cand(G,Sr, Tr, γ).

Verify the candidate, Cand(G,S, T )

– Input: G = ([n], E, L), S, T .
– Remove all i from S if noutT (i, good) ≥ 1.
– If |S| ≥ t+ 1, output “succeed”. Otherwise, output “fail”.

It remains to show that with high probability this algorithm will output fail
for all of the incorrect candidates.

Lemma 2. If ci is not a correct codeword then the algorithm Cand(G,Si, Ti)
will output fail except with probability at most 2−Ω(γd)

Proof. By the guarantee of the list decoding algorithm, it is ensured that |Ti| ≤
t−γn and thus |Si| ≥ t+1+γn. Let Wi be the set of passive and honest parties
in Ti. We observe that |Wi| ≥ γn; otherwise, ci and the correct codeword would
have t+1 shares in common, which would imply that they are the same codeword.
Furthermore, for every honest party j in Si, we have that

noutT (j, good) ≥ noutWi
(j, good) = noutWi

(j)

and Corollary 1 ensures that this is 0 with probability at most 2−Ω(γd). Taking
union bound over all honest parties in Si, with probability at least 1− 2−Ω(γd),
all the honest parties will be removed from Si. The desired result follows as Si
has size at most t when all honest parties are removed.

Taking a union bound over all these ` candidates, we obtain the following.

Theorem 7. Assume |P | ≥ γn. With probability εcode at least 1− 2−Ω(γd), the

algorithm List(G, s, γ) will output the correct codeword in time poly
(
m,n, ( 1

ε )Õ( 1
ε )
)
.

6.5 Graph Algorithm

In this section, we assume that our graph algorithm Graph(G,G′, ε, v) starts
with an honest party v. Under this assumption and |P | ≤ εn, we show that this
algorithm will output the correct secret with high probability. Recall that the
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out-degree of vertices in G and G′ is d = n
√
ε for some small constant ε and

that by assumption (justified by Proposition 2) the edges from honest parties to
active parties are labeled bad, and the edges from honest parties to honest or
passive parties are labeled good.

We also recall that, by definition, whether a corrupt party i ∈ C is passive
or active, i.e., in P or in A, only depends on si and ri announced in the first
communication round in the reconstruction protocol; a passive party may well lie
about, say, his neighborhood Ei. Our reasoning only relies on the neighborhoods
of the honest parties, which are random and independent conditioned on the
adversary’s view, as explained in Proposition 3 and Remark 2.

The graph algorithm Graph(G,G′, ε, v) goes as follows. Note that n′
out
W refers

to noutW but for the graph G′ rather than G, and similarly for n′
in
V .

The algorithm Graph(G,G′, ε, v)

i. Input G = ([n], E, L), G′ = ([n], E′, L′), d, ε and v ∈ [n].

ii. Expand set V = {v} to include more honest parties:

While |V | ≤ εt

d
do V := Expan(G,V, ε).

iii. Include all honest parties into V :

V := V ∪
{
v /∈ V : ninV (v, good) ≥ d|V |

2n

}
.

iv. Remove all active parties from V (and maybe few honest parties as well):

W :=
{
v ∈ V : ninV (v, bad) ≥ d

4

}
and V := V \W.

v. 1. Bound the degree of parties in V :

V := V \
{
v ∈ V : n′

out
W (v) ≥ d

8

}
.

2. Include the honest parties from W (and perhaps few active parties):

V := V ∪
{
v ∈W : n′

in
V (v, good) ≥ d

4

}
.

3. Error correction: run the unique decoding algorithm algorithm on the
shares of parties in V and output the result.

Remark 5. Each time we call Expan(G,V, ε), the size of V increases. After Step
ii, we hope that the V has size Ω(εn) instead of barely bigger than εt

d . To achieve
this, we require that the input V of the last loop to be of size Ω( εtd ). It can be
achieved as follows. Assume that |V | > εt

d . Take out each party in V with same
probability such that the expectation of resulting V is less than εt

2d . Then, the
proportion of honest party and dishonest party stays almost the same but the
size of V is below the threshold εt

d with probability at least 1 − 2−Ω(εn/d). It
will not affect our randomness argument since we treat each party equally. We
skip this step for simplicity. In our following analysis, we assume that V has size
Ω(εn) at the end of Step ii.
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Graph expansion algorithm Expan(G,V, ε)

– Input: G = ([n], E, L), V and ε.
– Set V ′ = ∅. For each vertex v ∈ V do the following:

if nout(v, good) ≤ d
2 (1 + 3ε) then V ′ := V ′ ∪Nout(v, good).

– Output V ′ ∪ V .

Theorem 8. Under the assumption in Remark 3, and assuming that the graph
algorithm takes an honest party v as input and that |P | ≤ εn, the following

holds. Except with failure probability εgraph ≤ 2−Ω(ε2d), the algorithm will output
a correct secret. Moreover, it runs in time poly(n,m, 1ε ).

We will prove this theorem in the following subsections.

6.6 Graph Expansion

We start by analyzing the expansion property of G|H , the subgraph of G re-
stricted to the set of honest parties H.

Lemma 3 (Expansion property of G|H). If H ′ ⊂ H is so that |H ′| ≤ ε|H|
d

and the Ev’s for v ∈ H ′ are still random and independent in G when given H ′

and H, then

noutH (H ′) :=

∣∣∣∣ ⋃
v∈H′

Nout
H (v)

∣∣∣∣ ≥ d

2
(1− 2ε)|H ′|

except with probability 2−Ω(ε2d|H′|).

Informally, this ensures that, as long as H ′ is still reasonably small, including
all the honest “neighbours” increases the set essentially by a factor d/2, as is
to be expected: each party in H ′ is expected to pull in d/2 new honest parties.
The formal proof is almost the same as the proof for a random expander graph
except that we require a different parameter setting for our own purpose.

Proof. By assumption on the Ei’s and by Corollary 1, the probability for any
vertex v ∈ H ′ to have noutH (v) < 1

2 (1−ε)d is at most ≤ e−ε2d/4 = 2−Ω(ε2d). Taking
the union bound, this hold for all v ∈ H ′. In the remainder of the proof, we may
thus assume that Nout

H (v) consist of d′ := 1
2 (1 − ε)d random outgoing edges.

Let N := |H|, N ′ := |H ′|, and let v1, . . . , vd′N ′ denote the list of neighbours
of all v ∈ H ′, with repetition. To prove the conclusion, it suffices to bound the
probability pf that more than d

2 εN
′ of these d′N ′ vertices are repeated.

The probability that a vertex vi is equal to one of v1, . . . , vi−1 is at most

i

N − 1
≤ d′N ′

N − 1
=

1

2
(1− ε)d · ε|H|

d
· 1

N − 1
≤ ε

2
.
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Taking over all vertex sets of size d
2 εN

′ in these d′N ′ neighbours, the union
bound shows that pf is at most(

d′N ′

d
2 εN

′

)( ε
2

) d
2 εN

′

≤ 2d
′N ′H( ε

1−ε )+
d
2 εN

′(log ε−1)

≤ 2
d(1−ε)

2 N ′(− ε
1−ε log ε+ ε

ln 2+O(ε2))+ d
2N
′ε(log ε−1)

≤ 2
d
2N
′ε( 1

ln 2−1+O(ε))

≤ 2−Ω(dN ′ε)

The first inequality is due to that
(
n
k

)
≤ 2nH( kn ) and the second due to

H
( ε

1− ε

)
= − ε

1− ε
log

ε

1− ε
− 1− 2ε

1− ε
log

1− 2ε

1− ε
≤ − ε

1− ε
log ε− log

(
1− ε

1− ε

)
= − ε

1− ε
log ε+

1

ln 2

( ε

1− ε
+O(ε2)

)
≤ − ε

1− ε
log ε+

ε

ln 2
+O(ε2)

for small ε and the Taylor series ln(1− x) =
∑
i≥1

xi

i .

6.7 Analysis of Step ii

The following shows that after Step ii, at most an O(
√
ε)-fraction of the parties

in V is dishonest. This is pretty much a consequence of Lemma 3.

Proposition 4. At the end of Step ii, with probability at least 1 − 2−Ω(ε2d), V
is a set of size Ω(εn) with |H ∩ V | ≥ (1−O(

√
ε))|V | and |C ∩ V | ≤ O(

√
ε)|V |.

Proof. Let Vi be the set V after Expan has been called i times, i.e., V0 = {v},
V1 = Expan(G,V0, ε) etc., and let H0 = {v} and H1 = Expan(G,H0, ε) ∩ H,
H2 = Expan(G,H2, ε) ∩H etc. be the corresponding sets when we include only
honest parties into the sets.

Using a similar lazy-sampling argument as for Proposition 3, it follows that
conditioned on H0, H1, . . . ,Hi, the Ej ’s for j ∈ Hi \ Hi−1 are random and
independent for any i.9 Therefore, we can apply Lemma 3 to H ′i = Hi \Hi−1 to
obtain that |Hi+1| ≥ |H ′i|d2 (1− 2ε). It follows10 that |Hi| ≥ (d2 (1− 2ε))i except

with probability 2−Ω(ε2d). According to Remark 5, our algorithm jumps out of
Step ii when V is of size Ω(εn). We bound the number of rounds in this step.
For i = 2√

ε
, noting that d = n

√
ε, it thus follows that

|Vi| ≥ |Hi| ≥
(d

2
(1− 2ε)

)i
=

n2

2
2√
ε

(1− 2ε)
2√
ε ≥ Ω(n2).

9 The crucial point here is that Hi is determined by the Ej ’s with j ∈ Hi−1 only.
10 The size of Hi−1 is negligible compared to Hi; indeed, |Hi| = Ω(d|Hi−1|) and thus
|Hi \Hi−1| = (1− o(1))|Hi|. So, we may ignore the difference between Hi and H ′i.
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That means Expan(G,V, ε) is called r ≤ 2√
ε

times assuming n is large enough.

On the other hand, we trivially have |Vr| ≤ (d2 (1 + 3ε))r by specification of
Expan. Thus,

|Vr| − |Hr| ≤
(d

2
(1 + 3ε)

)r
−
(d

2
(1− 2ε)

)r
=

5εd

2

(
r−1∑
i=0

(d
2

(1 + 3ε)
)i(d

2
(1− 2ε)

)r−1−i) ≤ 5εd

2
r
(d

2
(1 + 3ε)

)r−1
≤ 5rε

(d
2

(1 + 3ε)
)r
≤ 10

√
ε|Vr|.

The first equality is due to an − bn = (a − b)(
∑n−1
i=0 a

ibn−1−i) and the last one
is due to r ≤ 2√

ε
.

This upper bound implies that there are at least |Vr|(1−10
√
ε) honest parties

in Vr while the number of dishonest parties is at most 10
√
ε|Vr|.

6.8 Analysis of Step iii

The intuition for the next observation is simply that because V consists almost
entirely of honest parties, every honest party v not yet in V will get sufficient
support in Step iii from the parties in V to be included as well; indeed, any such
v is expected have have close to d

n |V | good incoming edges from the parties in V .

Proposition 5. At the end of Step iii, with probability at least 1 − 2−Ω(εd), V
contains all honest parties and O(

√
εn) dishonest parties.

Proof. Recall the notation from the proof in the previous section, and the ob-
servation that conditioned on Hr, the Ei’s for i ∈ Hr \ Hr−1 are random and
independent.

Setting H̃ := Hr \Hr−1 and d1 := |V |d
n = Ω(εd), and using Corollary 2 for

the final bound, it follows that for a given honest party v /∈ H̃,

Pr
[
ninV (v, good) <

d1
2

]
≤ Pr

[
nin
H̃

(v, good) <
d1
2

]
= Pr

[
nin
H̃

(v) <
d1
2

]
≤ 2−Ω(εd).

By union bound over all honest parties outside H̃, all these honest parties are
added to V with probability at least 1− 2−Ω(εd).

On the other hand, any active party w outside V needs at least d1
2 good

incoming edges to be admitted. These edges must come from dishonest parties
in V . Since there are at most O(

√
ε)|V | of them in V and each of them contributes

to at most d good incoming edges, the number of active parties admitted to V

is at most O(
√
ε)|V |d
d1/2

= O(
√
εn).
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6.9 Analysis of Step iv

By construction, after Step iv, V and W together obviously still contain all
honest parties. Furthermore, as we show below, there is now no active party left
in V and only few honest parties ended up in V . The idea here is that the active
parties in V will be recongnized as being dishonest by many honest parties in V .

Proposition 6. At the end of Step iv, with probability at least 1 − 2−Ω(εd), V
consists of t+ 1−O(

√
εn) honest parties and no active parties, and W consists

of the rest of honest parties and O(
√
εn) dishonest parties.

Proof. Observe that |H|dn ≥ d
2 . It follows, again using Corollary 2, that for an

active party w in V , we have

Pr
[
ninV (w, bad) <

d

4

]
≤ Pr

[
ninH(w, bad) <

d

4

]
= Pr

[
ninH(w) <

d

4

]
≤ 2−Ω(d).

By union bound over all active parties in V , all of them are removed from V
with probability at least 1− t2−Ω(d) = 1− 2−Ω(d).

On the other hand, if the honest party v is removed from V , he must receive
at least d

4 bad incoming edges from dishonest parties in V . Since the number

of dishonest parties is at most a := O(
√
εn), there are at most ad

d/4 = O(
√
εn)

honest parties removed from V in Step 2.

In order to analyze the last step (see next section), we introduce the following
notation. We partition V into the set of honest parties VH and the set of passive
parties VP . We also partition W into the set of honest parties WH and the set of
dishonest parties WC . From above, we know that |W | = |WH |+|WC | = O(

√
εn),

VH ∪WH = H and |VH | = t+ 1−O(
√
εn).

6.10 Analysis of Step v

Proposition 7. Except with probability 2−Ω(d), after Step v the set V will con-
tain all honest parties and at least twice as many passive parties as active ones.
Therefore, Step v will output the correct secret with probability at least 1−2−Ω(d).

Note that, given the aversary’s strategy, all the previous steps of the graph
algorithm are determined by the graph G. Therefore, by Proposition 3, at this
point in the algorithm the E′i’s for i ∈ H are still random and independent given
VH , VP ,WC ,WH .

Proof. Step v.1. For any i ∈ VH , n′
out
W (i) is expected to be |W |dn = O(

√
εd).

By Corollary 1 we thus have

Pr
[
n′

out
W (i) ≥ d

8

]
≤ 2−Ω(d) .

Hence, by union bound, all honest parties in V remain in V except with proba-
bility 2−Ω(d).
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Let V ′P be the set of passive parties left in V after this step, and set p := |V ′P |.
Note that noutW (v) ≤ d/8 for every v ∈ V .

Step v.2. Observe that d|VH |
n = ( 1

2 − O(
√
ε))d. It follows from Corollary 2

that for any honest party i ∈WH ,

Pr
[
n′

in
V (i, good) ≤ d

4

]
≤ Pr

[
n′

in
VH (i, good) ≤ d

4

]
= Pr

[
n′

in
VH (i) ≤ d

4

]
≤ 2−Ω(d) .

Thus, all honest parties in W are added to V , except with probability 2−Ω(d).
On the other hand, the active parties only receive good incoming edges from

passive parties in V ′P . Observe that each party in V is allowed to have at most
d
8 outgoing neighbours in W . This implies there are at most pd/8

d/4 = p
2 active

parties admitted to V in this step, proving the first part of the statement.
Step v.3. Observe that the shares of the parties in S form a code with length

|V | and dimension (t+1). Since the fraction of errors is at most p
2|V | <

(|V |−t−1)
2|V | ,

by Proposition 1, the unique decoding algorithm will output a correct secret.

7 Parameters of Construction and Parallel Repetition

We first determine the parameters in our algorithm and then show how to reach
the security parameter κ by parallel repeating this algorithm for O(κ) times. This
parallel repetition idea comes from [3]. Assume that there are n parties and m-
bit secret msg to share among these n parties. Note that we have already set
d = n

√
ε with ε a small constant. Let log q = O(m+logn

ε2 ). We choose log |T | =
logm + 5 log n and then the random string ri has length 4d log |T |. The key
keyi,j is defined over T 2 and thus has length 2 log |T |. It follows that |Ki| =
|K′i| = 2d log |T | and tag has length 4nd log |T |. By theorem 4, (pi, qi) has length

Õ(d). By Theorem 2 and plug a = O(m+logn
ε2 ), the error probability of the

MAC εmac is at most 4(a+4d)dt
|T | = O( mnd

ε2mn5 ) ≤ O( 1
n3 ). The failure probability

of our reconstruction scheme consists of the error probability εmac = O(1/n3)
of the MAC authentication, error probability εtag = O(1/n2) of reconstructing
tag , error probability εcheck = 2−O(εd) of determining the situation whether
|P | ≥ εn/4 or |P | ≤ εn, error probability εcode = 2−Ω(εd) of code based algorithm

and error probability εgraph = 2−Ω(ε2d) of graph algorithm. The total error
probability of our algorithm is

δ = εmac + εtag + εcheck + (t+ 1)εgraph + εcode = O(
1

n2
).

We summarize our result as follows.

Theorem 9. The scheme (Share, Rec) is a 2t+1-party (t, O( 1
n2 ))-robust secret

sharing scheme with running time poly
(
m,n, ( 1

ε )Õ( 1
ε )
)

and share size Õ(m+n
√
ε).

Next, we describe how to achieve the security parameter δ = 2−κ based on
this “weakly-robust” secret sharing scheme (Share, Rec) with δ = O( 1

n2 ). Given
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a secret msg, we run Share(msg) q = O(κ) times to produce q robust sharings
msg, except that the first step of Share(msg) is executed only once, i.e., only
one set of non-robust shares (s1, . . . , sn) ← Sh(msg) is produced, and then re-
used in the otherwise independent q executions of Share(msg). This is exactly

the same idea as that in [3]. The resulting share size is then Õ(m+ κn
√
ε).

The analysis is almost the same as that in [3], so we omit it here.

Theorem 10. The scheme (Share′, Rec′) is a 2t+1-party (t, 2−κ)-robust secret

sharing scheme against rushing adversary with share size Õ(m + κn
√
ε) and

running time poly
(
κ,m, n, ( 1

ε )Õ( 1
ε )
)
.

8 Further Improvement and Existence Result

If we do not consider the efficiency of our algorithm, by setting proper parame-
ters, our algorithm can also achieve the optimal Õ(m+ κ) share size. The algo-
rithm is exactly the same as we described above except that we set ε = 1

log2 n
,

d = Ω(log5 n) and γ = ε
4 = O( 1

log2 n
). This parameter setting will affect the effi-

ciency and error probability of our algorithm. We briefly review this improvement
by pointing out the differences. Since d = Ω(log5 n), we use the tag construction
in Theorem 3 with u = Ω(log5 n). The error probability εtag of reconstructing

tags now becomes 2−Ω(u) = 2−Ω(log5 n). The error probability εCheck becomes

2−Ω(εd) = 2−Ω(log3 n). In the code based algorithm, the list size ( 1
γ )Õ( 1

γ ) now

becomes 2Õ(log2 n).11 By taking union bound over candidates on this new list,
we get

εcode = 2Õ(log2 n)2−Ω(γd) = 2Õ(log2 n)2−Ω(log4 n) = 2−Ω(log4 n).

In the graph algorithm, we bound the size of Vr and Hr. First, we notice that

dlogn = nlog logn. This implies that r < log n =
√

1
ε . In worst case scenario, we

assume that |Vr| = (d2 (1 + 3ε))r and |Hr| = (d2 (1 − 2ε))r. It follows that the
number of dishonest parties is at most

|Vr| − |Hr| =
(d

2
(1 + 3ε)

)r
−
(d

2
(1− 2ε)

)r
=

5εd

2

(
r−1∑
i=0

(d
2

(1 + 3ε)
)i(d

2
(1− 2ε)

)r−1−i) ≤ 5rε
(d

2
(1 + 3ε)

)r
≤ 5
√
ε|Vr|.

The rest of the algorithm are the same. Therefore, the error probability of our
graph algorithm now becomes εgraph = 2−Ω(ε2d) = 2−Ω(logn). It follows that the
total error probability of our algorithm is 2−Ω(logn). The overhead of share size
is O(d) = O(log5 n). By the parallel repetition technique, we can reduce it to

2−κ. The share size then becomes Õ(m+ κ). As a trade-off, the running time of

our algorithm now becomes 2Õ(log2 n) which is super-polynomial in n.

11 Here, we hide the poly(log logn) in Õ(·)
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Theorem 11. There exists 2t + 1-party (t, 2−κ)-robust secret sharing scheme

against rushing adversary with share size Õ(m+κ) and running time 2Õ(log2 n).
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A Appendix

A.1 Folded Reed-Solomon Codes

Instead of using the Reed-Solomon codes to share our secret, our robust secret
sharing scheme is encoded by the folded Reed-Solomon codes. Since the fold-
ed Reed-Solomon code is a class of MDS codes, it is an eligible candidate for
threshold secret sharing scheme. Moreover, the folded Reed-Solomon codes first
introduced by Guruswami and Rudra [10] can be list decoded up to 1 − R − γ
fraction of errors for any constant γ. This extra nice property allows us to divide
our reconstruction scheme into two scenarios, one with small number of passive
parties and another with big one. Let us first introduce the formal definition of
fold Reed-Solomon codes.

Let q be a prime power, n+1 ≤ q−1
s and β be a primitive element of Fq. The

folded Reed-Solomon code FRSq,s(n+1, d) is a code over Fsq. To every polynomial
P (X) ∈ Fq[X] of degree at most d, the encoding algorithm goes as follows:

P (X) 7→ cP =




P (β)
P (β2)

...
P (βs−1)

 ,


P (βs)
P (βs+1)

...
P (β2s−1)

 , · · · ,


P (βns)
P (βns+1)

...
P (β(n+1)s−1)


 .

It is easy to verify that FRSq,s(n+ 1, d) is an Fq-linear code with code length
n+ 1, rate d+1

(n+1)s and distance at least (n+ 1)−bds c. The folded Reed-Solomon

code is a class of MDS code when d + 1 is divisible by s. In our robust secret
sharing scheme, we set n = 2t + 1 and d + 1 = (t + 1)s. For every secret
s ∈ Fsq, we find the P (X) of degree at most d uniform at random such that
s = (P (β), P (β2), . . . , P (βs−1)). The party i receives the i+ 1-th component of
cP . It is easy to verify that this scheme is a threshold secret sharing scheme with
t-privacy and t+ 1-reconstruction. Moreover, if we write the n shares as

(P (βs), P (βs+1), . . . , P (β(n+1)s−1)) ∈ Fnsq .

Then, it becomes a classic Reed-Solomon codes with length ns, dimension (t+1)s
and distance (n− (t+ 1))s+ 1. We will use this fact in our robust secret sharing
scheme.

Besides the MDS property, the folded Reed-Solomon codes enjoy a large list
decoding radius up to the Singleton bound while the list size is bounded by a
polynomial in q. There are many works aimed at reducing the list size of the
folded Reed-Solomon codes. Recently, Kopparty et.al., [12] proved that the list
size of the folded Reed-Solomon codes is at most a constant in γ.
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Theorem 12 (Theorem 3.1 [12]). Let γ > 0 such that 16
γ2 ≤ s. The folded

Reed-Solomon code FRSq,s(n, d) can be list decoded up to 1 − d
sn − γ with list

size at most ( 1
γ )

1
γ log 1

γ . Moreover, there exists a randomized algorithm that list

decodes this code with above parameters in time poly(log q, s, d, n, ( 1
γ )

1
γ log 1

γ ).

Remark 6. By running this polynomial list decoding algorithm n times and tak-
ing the union of all its output, with probability at least 1− 2−Ω(n), we will find
all the codewords within distance 1− d

sn − γ to the corrupted vector. This error
probability is good enough for our robust secret sharing scheme. Compared with
the approach in [10], the new algorithm runs faster and ensures a significantly
small list of candidates.

A.2 Proof of Theorem 2

Proof. We need to verify three conditions in Definition 3.
Privacy over Randomness: It suffices to consider that all the ` keys are

distinct. Otherwise, we keep one key for each value and apply the argument
to these distinct keys. Let (x1, y1), . . . , (x`, y`) ∈ F2 be the ` distinct keys. Let
σi = MAC(xi,yi)(m, r). For any m ∈ Fa, we will show that (σ1, . . . , σ`) ∈ F` are
distributed uniformly at random. To see this, we write

MACx,y(m, r) = fm(x) + gr(x) + y

where fm(x) =
∑a
i=1mix

i+` and gr(x) =
∑`
i=1 rix

i. For any `-tuple (σ1, . . . , σ`)
∈ F`, we obtain the evaluation of gr(x) at ` points, i.e., gr(xi) = σi−fm(xi)−yi.
Since gr is a polynomial of degree `− 1, the polynomial interpolation yields an
unique gr(x). This implies that for any m ∈ Fa, the distribution of (σ1, . . . , σ`)
is uniform at random over r ∈ F`.

Authentication: For (m, r) 6= (m′, r′) ∈ Fa×F`,MAC(x,y)(m, r)-MAC(x,y)(m
′, r′)

is a nonzero polynomial in x of degree at most t+ ` over F. Thus, for any b ∈ F,
the equation

MAC(x,y)(m, r)−MAC(x,y)(m
′, r′) = b

has at most (a+ `)|F| pairs (x, y) as its solutions. The desired result follows as
(a+`)(|F|)
|F|2 ≤ ε.
Uniformity: We need to show that given any (m, r) ∈ Fa × F`, the tag

σ = MAC(x,y)(m, r) is uniform at random over the random key (x, y) ∈ F2. Let
us fix (m, r). By the definition of MAC, we have

σ = MAC(x,y)(m, r) = fm(x) + gr(x) + y.

For each σ ∈ F, there exists exactly q distinct keys (x, y) to satisfy this MAC.
Thus, the tag σ is uniform at random over the random key. The desired result
follows.
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