Robust Encryption, Extended

Rémi Géraud', David Naccache', and Rézvan Rosie!?

1 ENS, CNRS, INRIA, PSL Research University, Paris, France
2 University of Luxembourg
remi.geraud@ens.fr david.naccache@ens.fr razvan.rosie@ens.fr

Abstract Robustness is a notion often tacitly assumed while working
with encrypted data. Roughly speaking, it states that a ciphertext cannot
be decrypted under different keys. Initially formalized in a public-key
context, it has been further extended to key-encapsulation mechanisms,
and more recently to pseudorandom functions, message authentication
codes and authenticated encryption. In this work, we motivate the impor-
tance of establishing similar guarantees for functional encryption schemes,
even under adversarially generated keys. Our main security notion is
intended to capture the scenario where a ciphertext obtained under a
master key (corresponding to Authority 1) is decrypted by functional
keys issued under a different master key (Authority 2). Furthermore, we
show there exist simple functional encryption schemes where robustness
under adversarial key-generation is not achieved. As a secondary and
independent result, we formalize robustness for digital signatures — a
signature should not verify under multiple keys — and point out that
certain signature schemes are not robust when the keys are adversarially
generated.

We present simple, generic transforms that turn a scheme into a robust
one, while maintaining the original scheme’s security. For the case of
public-key functional encryption, we look into ciphertext anonymity and
provide a transform achieving it.

Keywords: robustness, functional encryption, signatures, anonymity.

1 Introduction

Cryptographic primitives, such as encryption and signature schemes, provide
security guarantees under the condition, often left implicit, that they are “used
correctly”. Fatal examples of cryptographic misuse abound, from weak key
generation to nonce-reuse. This reliance on operational security has attracted
attackers, who can for instance impose faulty or backdoored random number
generators to erode cryptographic protections. At the same time, the social
usage of technology leans towards a more open environment than the one in
which historic primitives were designed: keys are generated by one party, shared
with another, certified by third... These two observations raise new interesting
questions, which have only recently been addressed in the cryptographic literature.
For instance, if Alice generates keys that she is using, but doesn’t share, can an

adversary (observing Alice or influencing her in some way) nevertheless generate
a different set of keys, which would allow decryption (maybe only partial)?
Intuitively this should not be the case, but it was not until the seminal work of
Abdalla, Bellare and Neven [ABN10], that this situation was formally analysed.
They introduced the notion of robustness, which ensures that a ciphertext cannot
be decrypted under multiple keys.

Is ROBUSTNESS DESIRABLE? Imagine a scenario where users within a network
exchange messages by broadcasting them, and further encrypt them with the
public key of the recipient to ensure confidentiality. If this is the case, we usually
assume that there is only one receiver, by arguing that no other members apart
from the intended recipient can decrypt the ciphertext and obtain a valid (non-_1)
plaintext. But if the adversary can somehow tamper with the key generation
process, she may “craft” keys that behave unexpectedly for some messages,
or design alternative keys that give at least some information on some of the
messages.

Farshim et al. [FLPQ13] refined the original definition of robustness, by
covering the cases where the keys are adversarially generated, under a master
notion called “complete robustness”. Mohassel addressed the question in the
context of key-encapsulation mechanisms [Moh10]. More recently, Farshim et
al. also defined robustness for symmetric primitives [FOR17], motivated by the
security of oblivious transfer protocols [CO15] or message authentication codes.
Further extensions of their security notions found applications in novel password-
authenticated key-exchange protocols described by Jarecki et al. [JKX18] or
(fast) message-franking schemes [GLR17]. Surprisingly, achieving robustness in
the symmetric setting seems to be more challenging than the public-key case: the
technique applied in [ABN10] of committing to the public-key and encrypting
the decommitment is no longer applicable, since there is no reference information
such as a pk to commit to.

The above line of work, however, leaves open several questions. Indeed, to the
best of our knowledge there has been no notion of robustness defined for digital
signatures [GMR84,BGI14] (counterparts of MACs in the public-key world) or
functional encryption [BSW11,0’N10]. Yet, some existing schemes seem to be
vulnerable to attacks that a proper notion of robustness would prevent. Consider
digital signature schemes (DS), that are used to authenticate electronic documents.
The textbook notion, capturing the existential unforgeability of a DS ensures
that an adversary, interacting with one signing oracle, cannot forge a signature
(for a message he did not previously query). On the other hand, a real-world
scenario is placed in a multi-user context, where it is often assumed (but not
necessarily proven) that a signature can only be verified under the issuer’s key.

Example 1: Consider a practical situation where a clerk has acquired a digital
signature for daily use, with a third party generating the pairs of keys. Even if the
scheme remains unforgeable according to the classical definition, we do not have
formal guarantees that two pairs of keys — (sk, pk) and (sk’, pk’) — generated by
the third party (potentially malicious), cannot be used to produce a signature
o for some chosen message M, verifiable under both pk and pk’ — something

completely undesirable in practice. To be fully explicit with our example, let us
suppose one pair of keys (pk, sk) is given to the clerk and the second pair (pk’, sk’),
is issued by the third party and is covertly used by a local/global security agency.
When needed (and if needed), an operator can issue a signature (using sk’) for
the message: “I attest [...] is true.” which can later be verified under pk, thus
having baleful consequences for the clerk.

To give a flavour of a signature scheme where such an attack is feasible,
consider the one obtained from a toy version of the Boneh—Boyen scheme [BB04].
The construction is pairing-based and can be summarized as follows: (1) key-
generation samples two group generators g € G; and go € Go, both of prime
order p, and publishes as a public key (g1, g2, 9%, ¢e(g1,92)) — for a uniformly

sampled x over Z, — keeping = as a secret key. To sign the message M, one

computes o g%/ @+M) " A robustness attack against this simple signature

scheme exploits the randomness in choosing the secret keys, observing that for
a different pair (pk’,sk’), one can choose ¢/ = ¢! (mod p) and then can set
' =t(x+ M)— M (mod p) such that o = gil/(wl+M).

The above example provides the intuition that robustness has practical conse-
quences. As expected, under correct key generation, standard unforgeability does
imply robustness. But it fails in a malicious setting. Fortunately, we can provide a
trivial construction that generically transforms any unforgeable signature scheme
into a completely robust one (allowing for adversarial, yet well-formed keys).
As we prove in Section 4.1, the natural idea of including the public key (or a
collision-resistant hash of it) in the signature is indeed sufficient.

Speaking roughly about robustness as the property of a ciphertext of not being
decryptable under multiple keys, then, when it comes to decryption, a functional
encryption (FE) scheme trivially does not exhibit this property. The reason resides
in the broken symmetry to the way decryption works in symmetric/public-key
schemes. Through its purpose, a functional ciphertext can be decrypted under
multiple keys [BSW11,0’N10]. In this respect, an adversary holding multiple
functional keys (which is not a restriction by itself) will be able to decrypt under
multiple keys. Therefore, defining robustness in terms of decryption itself is
fallacious. Instead, an appropriate definition should ensure the FE ciphertext can
be decrypted only by the intended set of receivers.

Example 2: Consider a simple use case of a functional encryption scheme
for the “inner product” function (IP FE) [ABDP15,ALS16]. From a technical
perspective, suppose the ciphertext is generated by encrypting a plaintext M as
C < FE.Enc(mpk, M; R). If msk is somehow corrupted® to msk’, then is it possible
that performing decryption under sk; reveals a different plaintext M’ #= M?
Intuitively, if the functional encryption scheme meets robustness, we expect that
no ciphertext can be decrypted under functional keys issued by different master
secret keys.

As a concrete scenario, consider a Computer Science (CS) department’s
registry, which holds the marks obtained by each student in the Crypto course,

3 There are several scenarios leading to such corruption, including memory corruption.

the final grade being computed as a weighted average of the stored marks
(i.e. homework counts 30%, midterm 20% and final 50%). A priori established
confidentiality rules ask that a clerk should not have access to the marks, but
still, it must be possible to compute the final grade. Therefore, considering the
set of marks as the vector and the weights as y, one can use an IP FE scheme,
to obtain the final grade, its formula mapping to " - ¢. In order to achieve this,
for each course: (1) the course leader encrypts the marks; (2) later, the clerk
obtains a new key sk, (depending on the established course weights), and uses it
to obtain the final average. A failure to guarantee robustness could result in a
successful decryption, but the final average being incorrect (and possibly under
the control of an adversary). To illustrate this, consider the (bounded-norm) IP
FE scheme instantiated from ElGamal and introduced in [ABDP15]: encrypting
a plaintext under mpk = (¢°*,...,¢°") — where msk = s = (s1,...,8,) — is
done as follows: C<s (g",g"*1T1 ... g"$»T%) for r sampled uniformly at
random over Z,. If an attacker wishes to obtain the same C, then r remains the
same, but it can use different s’ and @’, implicitly changing the value of msk. As
expected, even if FE.KDer is correct, and the queried key is indeed issued for the
vector y, the final decrypted result corresponds to @’ -y rather than to ' - y.

OUR CONTRIBUTIONS. We begin by motivating and defining the notion of robust
signature schemes under honest and adversarial keys, denoted as strong (SROB)
and complete (CROB) robustness (Section 3.1). A natural question is whether
existing schemes already possess a form of robustness: we show that while SROB
is indeed typically guaranteed, it is not the case of CROB, thus providing a
separation between the two security concepts. Fortunately, there exists a simple
generic transform, in the standard model, that turns a SROB signature scheme
into a CROB one (Section 4.1).

In Section 3.2, we define robustness for functional encryption in a multi-
authority context. The strongest security notion we propose (FEROB) is intended
to capture adversaries able to generate the keys and the randomness used during
encryption and key-derivation, while remaining as simple as possible. As regards
the generic transforms, we provide them in the public and private-key paradigms
(Section 4.2). The case for private-key FE schemes [BKS16,KS17] relies on right-
injective PRGs and collision-resistant PRFs, concepts that we review in Section 2.
Finally, in the original spirit of the security notion we consider, we discuss
anonymity in the context of functional encryption schemes.

2 Preliminaries

NOTATIONS. We denote the security parameter by A € N* and we assume it
is implicitly given to all algorithms in the unary representation 1*. An algo-
rithm is equivalent to a Turing machine. Algorithms are assumed to be ran-
domized unless stated otherwise; PPT stands for “probabilistic polynomial-
time,” in the security parameter (rather than the total length of its inputs).
Given a randomized algorithm A we denote the action of running A on in-
put(s) (1*,2y,...) with uniform random coins r and assigning the output(s)

to (y1,...) by (y1,...) s A(1*,z1,... ;7). When A is given oracle access to
some procedure O, we write A®. For a finite set S, we denote its cardinality
by |S| and the action of sampling a uniformly at random element z from X by
x+s X. We define [k] .= {1,...,k}. A real-valued function NEGL() is negligible
if NEGL(A) € O(A\~“())). We denote the set of all negligible functions by NEGL.
Throughout the paper L stands for a special error symbol, while || denotes
concatenation. For completeness, we recall definitions of cryptographic primitives
to be used in Appendix A, and detail below on the most important concepts.

2.1 (Right-Injective) Pseudorandom Generators

Definition 1. A pseudorandom generator PRG : {0, 1} — {0,1}"+¢ takes as
input a random seed s of length n and outputs a pseudorandom binary string of
length n + £. We require a negligible advantage for any PPT adversary A against
the PRG security experiment defined in Figure 1:

AdVRSec (M) =2 Pr [PRG;‘RG(A) =1] =1 € NEcL() .

RIGHT-INJECTIVE PRGS. We will make use of length-doubling, right-injective
PRGs, where the right-injectivity condition is defined as

Ry=R), = s=4

for R1||R2 < PRG(s) and R{|| R} + PRG(s’). Such constructions can be achieved
assuming the existence of one-way permutations, as shown by Yao [Yao82].

2.2 (Collision-Resistant) Pseudorandom Functions

The notion of a pseudorandom function (PRF), introduced in the seminal work
of Goldreich, Goldwasser, and Micali [GGMS86], is a foundational building block
in theoretical cryptography. A PRF is a keyed functionality guaranteeing the
randomness of its output under various assumptions. PRFs found applications in
the construction of both symmetric and public-key primitives.

Definition 2. A PRF is a pair of PPT algorithms (PRF.Gen, PRF.Eval) such
that:

— sk s PRF.Gen(1*): is the randomized procedure that samples a secret key sk,
given as input the unary version of the security parameter.

— y < PRF.Eval(sk, M): is the deterministic procedure that outputs y, corre-
sponding to the evaluation of M under sk.

We require the advantage of any PPT adversary A in the PRF security experiment
defined in Figure 1 to be negligible:

Advif}”FRF()‘) =2-Pr [PRFS‘RF()\)] —1 € NEGL(\) .

PRGZA(\): PRFpge()): ANONA (\):

bs{0,1} b+s{0,1} bs{0,1}

s+s{0,1}" L0 (mpk,, msko) <s Gen(1*)

y < PRG(s) sk +—s Gen(1") (mpky, mski)<s Gen(1%)

if b= 0 then b s ABVE(1Y) M s A(1*, mpk,, mpk;)
y<s{0,1}* return b’ = b C <+s Enc(mpk,, M)

b s A(y) Vs A(1*, 0)

return b’ = b Proc. EvaL(M): return b = b’

if M € L then return L
y < Eval(sk, M)
if b =0 then
y<s{0, 1}V
L+ Lu{M}
return y

Figure 1. Experiments defining pseudorandomness for PRGs (left) and PRFs (middle).
Anonymity for public-key functional encryption is defined on the right.

CoLLISION-RESISTANT PRFS. We make use of collision-resistant PRFs [FOR17].
The collision-resistance property is defined over both the secret-keys and the
inputs:

PRF.Eval(sk, M) = PRF.Eval(sk’, M) = (sk, M) = (sk’, M’) .

Such constructions can be achieved by combining (1) length-doubling right-
injective PRGs and (2) key-injective PRFs. The latter primitive can be obtained
via the GGM construction (see for instance [CHN*16, Appendix C]).

2.3 Functional Encryption

Functional encryption [BSW11,0’N10] is one of the most general encryption
paradigms, allowing for surgical access over encrypted data: ciphertexts corre-
spond to messages M, keys are derived for functions f, while adversaries are able
to learn f(M) and (ideally) nothing more. FE can be also defined in a private-key
setting: the master secret key msk is used to encrypt the plaintext M, as there is
no mpk. We defer the formalization of private-key FE to Appendix A.

Definition 3 (Functional Encryption Scheme - Public-Key Setting). 4
functional encryption scheme FE in the public-key setting consists of a tuple of
PPT algorithms (Setup, Gen, KDer, Enc, Dec) such that:

— pars <—s FE.Setup(1*): we assume the existence of a Setup algorithm producing
a set of public parameters which are implicitly given to all algorithms. When
omitted, the output of FE.Setup is ().

— (msk, mpk) <—s FE.Gen(1*) : takes as input the unary representation of the
security parameter \ and outputs a pair of master secret/public keys.

— sky <—s FE.KDer(msk, f): given the master secret key and a function f, the
(possibly randomized) key-derivation procedure outputs a corresponding sky.

— C < FE.Enc(mpk, M): the randomized encryption procedure encrypts the
plaintext M with respect to mpk.

— FE.Dec(sky, C): decrypts the ciphertext C using the functional key sky in
order to learn a valid message f(M) or a special symbol L, in case the
decryption procedure fails.

A functional encryption scheme is s-IND-FE-CPA-secure if the advantage of
any PPT adversary A against the IND-FE-CPA-game defined in Figure 2 is
negligible:

AdviRE TFOPA(N) i= 2. Pr [s-IND-FE-CPA#: () = 1] — 1 € NEGL()) .
Stmilarly we say that it is adaptive IND-FE-CPA-secure if

AdVRFETPA(N) =2 Pr [IND-FE-CPA{L(\) = 1] — 1 € NEGL()) .

A .
s-IND-FE-CPAA (\): IND-FE-CPA7e (A):
bs{0,1} b<s{0,1}
L L+ 0
(Mo, My;state) «s A(1%) (mpk, msk) | msk <—s FE.Gen(1*)
(mpk, msk) | msk <—s FE.Gen(1%) (Mo, My) s AXP™Rmsi(),FEENCnac () (71
C* <—s FE*.EnC(msk, M) ‘ (Mo, My) s AKDERmsk(»>vak(1>\)
b s ACT KD () BN 0 (12 state) C* s Enc(msk, M,)
b/ s AC*’KDRR"‘Sk(')’mpk(l)\,State) b/ s AKDH“msk(-),ET\'Cmsk(-)(1)\)
if Isky € L s.t. f(sky, Mo) # f(sky, M) b s AC*’KDER’“S"(‘)’mpk(l)‘,state)
return 0 if 3sk; € L s.t. f(sky, Mo) # f(skp, My) :
return b = b’ return 0
return b = b’
Proc. KDERmsk(f): Proc. KDERme(f):
L+ LU{f} L+ LU{f}
sky <—s FE.KDer(msk, f) sk +s FE.KDer(msk, f)
return sky return sk

Figure 2. The selective and adaptive indistinguishability experiments defined for a
functional encryption scheme. The difference between the private-key and the public

settings are marked in lines of codes, corresponding to the latter notion.

ANONYMITY. We define the classical notion of anonymity to the context of
functional encryption and its security experiment in Figure 1 (right). We point
out that usually, in a FE scheme, a central authority answers key-derivation
queries from a potential set of users U, therefore it is unnatural to assume
that a user does not know from whom it received the functional key. What we

want to ensure is that an adversary A ¢ U cannot tell which authority issued a
ciphertext, without interacting with the key-derivation procedures, otherwise the
game becomes trivial. In consequence, we define anonymity only in the context of
public-key FE, as for a private scheme, the adversary uses encryption oracles to
obtain a ciphertext. Thus, anonymity requires that a PPT bounded adversary can
tell which mpk was used to encrypt a ciphertext only with negligible probability:
AdviTEN () =2 Pr [ANON#:(A) = 1] — 1 € NecL()) .

3 Robustness: Definitions, Implications and Separations

Robustness guarantees hardness in finding ciphertexts (resp. signatures) generated
under adversarial, but well-formed keys, decryptable (resp. verifiable) under
multiple secret (resp. verification) keys. As stated in the introductory part, this
property is often tacitly presumed, but almost as often left without a proof. In this
work, we capture two levels of strengths of an adversary: strong robustness models
the case where the keys are honestly generated and the adversary is agnostic of
their actual values, the interaction being interfaced through decryption/signing
oracles. A related, stronger notion, dubbed complete robustness gives an adversary
the ability to generate keys (not necessarily honestly). In this work, we restrict
to the cases where the keys are malicious, but well-formed.*

We commence by presenting the security definition for digital signatures in
Section 3.1, and then for functional encryption in Section 3.2.

3.1 Warm-Up: Robustness for Digital Signatures

The case for digital signatures is treated with respect to two security notions,
which we denote strong and complete robustness. The winning condition remains
the same in both experiments: that of obtaining a signature/message pair in
such a way that it verifies under both public keys. In the SROB experiment, two
signing oracles under skj, sko are given to the adversary, while a CROB adversary
generates its intrinsic keys for accomplishing essentially the same break.

Definition 4 (SROB and CROB Security). Let DS be a digital signature
scheme. We say DS achieves complete robustness if the advantage of any PPT
adversary A against the CROB game depicted in Figure 3 (right side) is negligible:
Advif{D%B()\) = Pr [CROBS‘S(/\) = 1]. SROB-security is defined similarly, the
SROB{s(\) game being defined in Figure 3 (left side).

Notice the difference to the classical unforgeability game where the adversary
obtains signatures issued under the same secret key. We prove any EUF-scheme

is implicitly strong-robust, and show there exist signature schemes that fail
to achieve complete robustness (thus providing a separation between the two).

Remark 1 (Comparison with Unambiguity). Bellare and Duan [BD09] had de-
scribed, earlier but in a different context, a notion of digital signature unambiguity.

4 We may assume that malformed keys would be easily recognisable and rejected.

SROBps(\): CROB#5(\):

(pky,ski) «s Gen(1?) (pky, pko, o, M) <—s A(1%)

(pky, ska) <5 Gen(1%) if pk; = pk, :

(M, o) s ASEnsk ():Signsg (O (1A by pk,) return 0

if Ver(pk,, o0, M) =1 A if Ver(pky,o, M) =1 A

Ver(pk,, o, M) = 1: Ver(pky, o, M) = 1:

return 1 return 1

return 0 return 0

Figure 3. Games defining strong robustness SROB (left) and complete robustness
CROB (right) for a digital signature scheme DS. We assume a negligible probability of
sampling pk; = pk, in the SROB game.

As stated in [BDO09], “Unambi-
guity can be viewed as a signature N
analogue of the robustness property (p|f2’Sk.2) s Gen(1%)
of anonymous encryption defined in build Slgns‘ﬂéf) S
[ABN10]. [...] Unambiguity [...] can be | (M) s AT 01580 O (pl pk,)
viewed as preventing forgery under an if M € Signg,, (-).SignedMessages()
adversarially-modified verification key, abort
something not part of the normal defi- | return (M, o)
nition of a signature.” The original mo-
tivation for unambiguity stems from Figure4. The reduction A’ in Lemma 1.
the design of partial signatures.

It is natural to wonder whether un-
ambiguity (UNAMB) coincides with either notion of signature robustness dis-
cussed above. Since unforgeability does not imply unambiguity, and since any
partial signature scheme is a signature scheme, we have SROB # UNAMB. How-
ever, it turns out that the definition UNAMB (for partial signatures) is naturally
extended to signatures and matches CROB.

Algorithm A, (A, pky, Signg, (-)):

Proposition 1. Let DS be a CROB-secure digital signature scheme. Then DS
is also SROB-secure, the advantage of breaking the strong robustness game being
bounded as follows: AdvvsfgsB()\) < Advfﬁg?(/\) .

Proof (Proposition 1).

Suppose DS is not SROB-secure. Let A be a PPT adversary that wins the SROB
game with advantage at most esrop. We construct a PPT adversary A’ against
the CROB game as follows: (1) sample two pairs of keys (sky, pk;), (ska, pko) using
Gen(1*); (2) A’ publishes pk;,pk, and constructs the signing oracles Signg,, (+)
and Signg, (-); (3) A’ runs A w.r.t. signing oracles and public-keys to obtain
(M,0); (4) A" constructs the tuple (pky, pky, o, M) and outputs it. We obtain
that Adv5 9 (A) < AdvBe® (). 0

Of interest, is a minimal level of robustness achieved by any digital signature
scheme, and as it turns out, SROB is accomplished.

Lemma 1. Any EUF-secure digital signature scheme DS is SROB-secure. The
advantage of breaking the SROB game is bounded by the advantage of breaking
the EUF game: Adv{5e’ (A) < 2+ Advy ps(N)

Proof (Lemma 1). Let A be a PPT adversary against the strong robustness
game. Let A’ stand for an adversary against the unforgeability of the digital
signature. We assume without loss of generality that A: (1) never queries a
“winning” message M to the second signing oracle after it has been signed by the
first oracle (since it can check it right away) and (2) it never queries a “winning”
message M to the first oracle after it has been signed by the second oracle (for
the same reason). We present the reduction in Figure 4 and describe it below:

1. The EUF game proceeds by sampling (ski, pk;) and builds a signing oracle
Signskl () .

2. The reduction A’ is given pk; and oracle access to the Signg (-). A" samples
uniformly at random (skg, pky) via DS.Gen and constructs a second signing
oracle Signg (-).

3. A runs A w.r.t. the two (pky, pk,) and the corresponding signing oracles
Signg, (+), Signg,, (-). A" keeps track of the queried messages to each oracle.

4. A returns a pair (o, M) which verifies under both public keys with probability
€srOB, S:t. M has been queried to either Signg or Signg, but not to both.

5. A’ returns (o, M). If M € Signg (-).SignedMessages(), A" aborts and runs A
again. With probability %, M was not queried before to Signg, (-). The tuple
(0, M) wins the EUF game w.r.t. (pky,ski) with probability > 1 - esroB.

Thus, the reduction (Figure 4) shows the advantage of winning SROB is bounded
by the advantage of breaking EUF, which completes the proof. O

We also show a separation between the SROB and CROB, by pointing to a
signature scheme that is not CROB secure (but already SROB).

Proposition 2. There exist DS schemes that are not CROB-secure.

Proof (Proposition 2). We provide a simple counterexample as follows. Consider
the digital signature scheme in [BB08]:

— Gen: selects uniformly at random g; <—s Gq, g2 <—s G2 and (z,y) < Zg. Set
sk « (x,y) and pk < (91, 92,95, 95, ¢e(g1,92)), where e : G; X Go — Gr is a
pairing®.

— Sign: given a message M, sample 7 <s Z, and compute o + gi/(gHM'H’T).

Note that with overwhelming probability, x + M + yr # 0 mod p, where p is

the order of G;. The signature is the pair (o,r).
— Verify: check that e (o, g5 - 937 - (¢3)") L e(g1,92)-

To win the CROB game, an adversary A proceeds as follows:

5 See for instance [BB08] for the definition and usage of a cryptographic pairing.

10

1. A samples a key-pair: sk <—s (z,y); pk < (91, 92, 9%, 95, €(g1,92)) and a mes-
sage M € Z,.

2. A samples 7 s Z, and computes o under sky. Since ¢g’; can be written as
gt, Asets t,a’,y’ such that 1/(z + M +yr) =t/(2’ + M + y'r) (equate the
exponents to obtain the same o corresponding to M). This can be done by
assigning random values to z’,y" and setting ¢t < (z'+ M +y'r)/(x+ M +yr).

3. Asets sk’ « (2/,y'); pk’ < (g'l,g'g,g'g/,g’g/,e(g’l,g’Q)), for some uniformly
sampled generator ¢’y <—s Go.

4. Finally, observe that (o, r) verifies under (ski, pky) through the correctness
of the signature scheme, but also under (pk,,sks), since

t /+M+ , ’ M ’
e (g/ M g5 gy (08)7) = elghgla) -

A halts and returns (pk, pk’, (o,7), M). Note that A runs in probabilistic
polynomial time. a

3.2 Robustness for Functional Encryption

As discussed in the motivational part of Section 1, robustness should be considered
as a security notion achieved by a functional encryption scheme. In what follows,
we define it for the public/private key settings. We stress about the existence of
essentially two major paths one can explore. A first stream of work would study
the meaning of robustness in a single-authority context.

In rough terms, the problem one would like to solve can be stated as: if a
ciphertext is correctly generated, and the adversary issues two keys, is there a
chance that one of the keys fails in decrypting the ciphertext? An astute reader
may immediately notice that in such a setting, an adversary may always win
such a game by issuing a pair of correct/random functional keys, as it owns the
master secret key (assuming msk is adversarially generated). In a “dual” mode,
if the functional keys are correctly generated under the same msk, is there a
ciphertext decryptable under one key and not under the other? The intuition
behind: if C' is generated with respect to some mpk, we want the decryption to
pass for any functional key correctly generated with respect to the (mpk, msk).
However, if C is obtained under some other mpk’ # mpk or is sampled according
to some distribution, we expect decryption not to pass under any functional
keys generated with respect to msk. Therefore, a definition should capture this
problematic case: decryption “works” under one correctly generated key out of
two.

MULTI-AUTHORITY SETTING. A second path is placed in a multi-authority con-
text — that is, assuming there exist multiple pairs (msk, mpk). Aiming for a
correct definition, one property that should be guaranteed is that a ciphertext
should not be decryptable under two (or more) functional keys issued via different
master secret keys. Stated differently, if msk; produces sk, and msky # msky
produces sky, for two functionalities f1, f2, we do not want that C' (say encrypted
under mpk;) to be decrypted under sk, (it already decrypts under sk, with

11

high probability due to the correctness of the scheme). We follow the lines of
Definition 4, and propose two new flavours of robustness, corresponding to the
cases where the adversary has oracle access to the (encryption, if in a private key
setting case), key-derivation and decryption oracles. The security experiments
are depicted in Figure 5. The difference between the two paradigms may seem
minor (for our purpose), but in fact having a public master key confers a sig-
nificant advantage when it comes to deriving a generic transform for achieving
complete robustness, as detailed in Section 4. In what follows, we will explore
the multi-authority path, since it naturally maps to our motivational examples.

Definition 5 (SROB and FEROB Security for FE). Let FE be a functional
encryption scheme. We say FE achieves functional robustness if the advantage of
any PPT adversary A against the FEROB game defined in Figure 5 (bottom) is

negligible: Advi?ﬁgfprvm(/\) = Pr FEROBEAub/PerE(/\) = 1]. SROB-security is
defined similarly, the SROBé‘ub/PNFE(/\) game being defined in Figure 5 (top).

As stated in the algorithmic description of the security experiment, an adver-
sary against the strongest notion of FEROB attempts to find colliding ciphertexts,
which decrypt under two msk-separated keys sk, ,sky,.

Lemma 2 (Implications). Let FE denote a functional encryption scheme. If
FE is FEROB-secure, then it is also SROB-secure.

Proof (Lemma 2). We prove the implication holds in both the public and private
key settings:

PuBLic-KEY FE. We take the contrapositive. For a scheme FE, we assume the
existence of an adversary A winning the SROB-game with non-negligible advan-
tage esrop- A reduction A’ that wins the FEROB game is built as follows: (1)
A’ samples uniformly at random (msky, mpk;, msks, mpks); (2) the corresponding
oracles for key-derivation are built; (3) A runs with access to the aforementioned
oracles, returning (C,sky,,sky,). If A outputs a winning tuple, then A" wins
the FEROB game by releasing the messages and the randomness terms used to
construct (C,sky,,sky,). Hence, Advil?FOEB()\) < Advi};’l;‘EOB()\).

PrIVATE-KEY FE. We take the contrapositive. For a scheme FE, we assume
the existence of an adversary A winning the SROB-game with non-negligible
advantage esgrop. A reduction A’ that wins the FEROB game is built as follows:
(1) A’ samples uniformly at random (msk;, msks); (2) A’ constructs the encryption
and key-derivation oracles under the two keys; (3) A’ runs A with access to these
oracles, records the random coins used and obtains (C,sky,,sky,). Finally A’
wins the FEROB game by issuing the FEROB tuple, using the random coins
used to derive the functional keys and the ciphertext and therefore we have:
AdvEERP(N) < AdVEFREP (M) - O

Proposition 3 (Separations). There exist functional encryption schemes in
the public/private-key setting that are not FEROB-secure.

12

SROBPAubFE()‘):

L+ 0

Lo+ 0

(mpk,, mskq) <—s Gen(1%)
(mpks, mska) <—s Gen(1*)
(C,Skfl,skf,z) s

KDERmSk1 (),
s A KDERmsk, (+)

if Skf1 cLloVv Skf2 € Ly:
return 0
if Dec(C,sky,) # L A
Dec(C,sky,) # L:
return 1
return 0

(mpk17 mpk2)

KDERmsk; (f):
sk <—s KDer(msk;, f)
Li < Li U{(sky, /)}

SROBnre(N):

Li 0

Lo +— 1]

msk; s Gen(1*)

mska s Gen(1*)

(C, Skfl,Skfz) s
ENCmSkl ()7
ENCmst ()7
KDERmSkl ()7

s A\KDERmsi,)

if Skf1 cloV Skf2 € Li:
return 0
if Dec(C,sky,) # L A
Dec(C,sky,) # L:
return 1
return 0

(1"

KDERmsk, (f):

sk <—s KDer(msk;, f)
Li = Li U{(sks,)}

(mpky, msky, Ry, M, f1, Ry,
mpky, mska, Ra, Ma, f2, Ry,) < A(l)‘)

Ci s Enc(mpk,, M1; Ry)

Ca <—s Enc(mpk,, Ma; R2)

if C1 = C> A mpk; # mpk,:
sky, <—s KDer(msky, f1; Ry,)
sky, <—s KDer(msks, f2; Ry,)
if Dec(C,sky,) # L A

Dec(C,sky,) # L:
return 1
return 0

return sk return sk

ENCmpki (M) ENCmski (M)

C <s Enc(mpk,, M) C <—s Enc(msk;, M)
return C return C
FEROB, e (N): FEROB#, e (\):

(mskl, R1, Ml, fl, Rf17
mskz, Ra, Mo, f2, Rs,) s A(1%)
C1 s Enc(msky, M1; R1)
02 <3 Enc(msk27 MQ; RQ)
lf 01 = 02 AN msk1 75 mskg:
sk, <—s KDer(msky, f1; Ry,)
sk, <—s KDer(mska, fa2; Ry,)
if Dec(C,sky,) # LA
Dec(C,sky,) # L:
return 1
return 0

Figure 5. We introduce FEROB and SROB in the context of FE schemes defined
both in the public and private key setting. For the SROB games, we give the oracles
implementing Enc and KDer procedures, mentioning that each query to the latter oracle
adds an entry of the form (f,sky) in the corresponding list L; — where ¢ € {1, 2} stands

for the index of the used master keys.

13

Proof (Proposition 3). As sketched in Section 1, a DDH instantiation for the
FE scheme of [ABDP15] is not FEROB-secure. The adversary is built upon the
idea presented in the introduction and is shown in Figure 6. Given that any
public-key functional encryption scheme can be trivially converted into one in the
private-key setting simply by making mpk private, we obtain an FE scheme for the
inner product functionality in the private-key setting that is not FEROB-secure.

FEROB adversary Afg°B(\):
1' (gs, S: T7 w7 y: (Z)

gSI7 SI’ /r.7 m,’ y7 @) H$ Gen(lA)
such that r-s; +z; =r-s, +z, and s # s’
2. observe that Enc(g®, &) = (¢",¢" 517 ..., g7 nton) =

(g7, g7 1t™ . g7t) = Enc(g® , x’)

.sky s -y
skl s’y
. Dec(C,sky) =y -x# L
. Dec(C,sky) =y" o’ # L

S O W

Figure 6. A FEROB adversary against the DDH instantiation of the bounded-norm
inner product scheme in [ABDP15].

4 Achieving Robustness via Generic Transforms

4.1 Robust Digital Signatures

We put forward a generic transform similar in spirit to the original work of
Abdalla, Bellare, and Neven [ABN10] in the context of digital signatures. For a
digital signature scheme, we benefit from the fact that pk acts as an “immutable”
value to which one can easily commit to, while signing a message. Thus, checking
if a message verifies under another public key implicitly breaks the binding
property of the commitment scheme. For simplicity, we use a hash instead of a
commitment scheme.

Lemma 3. Let DS be an EUF-secure digital signature scheme. Let H denote a
collision-resistant hash function. The digital signature DS obtained through the
transform depicted in Figure 7 is CROB-secure.

Proof (Lemma 3). We prove both the unforgeability and the complete robustness
of the newly obtained construction:

UNFORGEABILITY. Assume the existence of a PPT adversary A against DS. We
build an adversary A’ against the EUF of the underlying DS. The unforgeability
experiment EUF for DS samples (pk, sk) and constructs a signing oracle under
sk, which is given to A’. A’ is given a collision resistant hash function H and

14

Gen(1%): Sign(sk, M): Ver(pk,&, M):
(sk, pk) = DS.Gen(1%) sk — sk pk < pk
pk < pk a1 s DS.Sign(sk, M) (01,02) T
sk<—sk o2+ H(pk) return DS.Ver(pk,o1) =1 A
return (sk, pk) 7 « (01,02) oo 2 H(pk)
return o
Setup(1%):
K < H.Gen(1*); H « Hg; return H

Figure 7. A generic transform that turns any digital signature scheme DS into one that
is, in addition, CROB-secure. The (publicly available) collision-resistant hash function
H can be based on claw-free permutations in the standard model, as shown in the
seminal work of Damgérd [Dam88]. It is used as a commitment to the public-key.

builds its own signing oracle Sign; when queried, Sign returns the output of Sign
concatenated to the value of H(pk). When A replies with (7, M), it must be the
case that Ver(pk, o, M) passes, which breaks EUF for DS. Thus we conclude that:
AdVETES(A) < AdviBs(A) -

CROB. To show robustness, we rely on the collision-resistance of H. The CROB
game in Figure 3 specifies that the adversary A against the CROB game finds
pk; # pky such that Ver passes. The latter implies H(pk,) = H(pks,), trivially

breaking the collision-resistance of H, giving us: /—\dvi%%B()\) < AdvgliH(A) . O

4.2 Achieving Robustness for Functional Encryption

The ABN Transform [ABN10] adapted to Public-Key FE. As for the
case of digital signatures, one can reuse the elegant idea rooted in the binding
property of a commitment scheme. Concretely, one can start from a FE scheme,
encrypt the plaintext, and post-process the resulting ciphertext through the
use of a public-key encryption scheme. The transform consists in committing to
the two public keys (corresponding to FE and PK) and encrypting the resulting
decommitment together with the output of FE.Enc under pk. For decryption,
in addition to the functional key, the secret key sk® is needed to recover the
decommitment from the “middle” part of the ciphertext. A key difference to the
ABN transform would be rooted in the innate nature of FE: one cannot encrypt
the plaintext under pk, as this would break indistinguishability.

Simple Robustness Transforms in the Public-Key Setting. A simpler
idea makes use of a collision-resistant hash function and simply appends the hash
of mpk||C' to the already existing ciphertext.

Lemma 4. Let FE be an IND-FE-CPA-secure functional encryption scheme
in the public setting and let H denote a collision-resistant hash function. The

5 sk is common to all users querying a skj.

15

Gen(1*): Enc(mpk, M):
(mpk, msk) <—s FE.Gen(1%) mpk < mpk
mpk < mpk C1 <s FE.Enc(mpk, M)
msk < msk gz +s H(mpk||C)
return (msk, mpk) C+ (G, Cr)

return C'
KDer(msk, f): Dec(sky, O):
msk, <— msk sky %
sky <—s FE.KDer(msk, f) (C1,C) - C
sky = sky if H(mpk||Cy) # Cs :
return sk return L

return FE.Dec(sky, C1)
Setup(lA):
K + H.Gen(1?); H + Hg; return H

Figure 8. Generic transform that turns an FE scheme into a FEROB scheme FE.

functional encryption scheme FE obtained through the transform depicted in
Figure 8 is FEROB-secure, while preserving the IND-FE-CPA -security.

Proof (Lemma 4). ROBUSTNESS. To show the transform achieves FEROB, we
argue that if an adversary concludes with (mpk;, Ry, My, mpky,, Ro, Ms,...) such
that FE.Enc(mpk,, M;; R;) = FE.Enc(mpk,, Ms; R,), then the adversary is
essentially able to find two tuples such that H(mpk, ||FE.Enc(mpk,, M;; R;)) =
H(mpk,||FE.Enc(mpky, Ms; Rs)) which cannot happen with non-negligible proba-
bility down to the collision-resistance of H.

INDISTINGUISHABILITY. The proof follows easily down to the indistinguishability
of the underlying scheme FE: during the challenge phase, the reduction will be
given the C* corresponding to M, (chosen by A); after appending H(C*||mpk),
the adversary will be given C*. Observe that the reduction can answer all the
functional key-derivation queries the adversary makes. Hence the advantage
in winning the IND-FE-CPA game against FE is bounded by the advantage of
winning the IND-FE-CPA game against FE.

FEROB Transform in the Private-Key FE Setting. In this part, we
provide a similar generic transform for turning any FE scheme into one that is
FEROB-secure, in the private-key framework.

Lemma 5. Let FE be an IND-FE-CPA functional encryption scheme in the
private-key setting. Let PRG denote a right-injective length doubling pseudoran-
dom generator from {0,1}* to {0,1}>* and PRF a collision-resistant PRF. The
functional encryption scheme FE obtained through the transform depicted in
Figure 9 is FEROB-secure, while preserving IND-FE-CPA -security.

16

Gen(1%): Enc(msk, M):
R+s{0,1}* (msk, sk) < msk
R1||R2 < PRG.Eval(R) C1 +—s FE.Enc(msk, M)
msk < FE.Enc(1%; Ry) C» +s PRF.Eval(sk, C1)
Sk7<— Ra C «+ (01, Cz)
msk < (msk, sk) return C
return msk
KDer(msk, f): Dec(sky, O):
(msk, sk) <+ msk (sky,sk) < skg
sky <—s FE.KDer(msk, f) (C1, C2) + C
sky = (sky,sk) if PRF.Eval(sk, 1) # Cs :
return sk return L

return FE.Dec(sky, C1)

Figure9. A generic transform that turns a FE scheme in the private-key setting into
a FEROB-secure scheme FE.

Proof (Lemma 5).

ROBUSTNESS. Assuming the FEROB adversary A outputs (mskq, Ry, M1, f1, Ry, ,
mska, Ra, Ma, fo, Ry,) such that FE.Enc(msky, My; Ry) = FE.Enc(mskg, Ma; Rz),
we argue that:

— (5 = PRF.Eval(sky, C) = PRF.Eval(ska, C1). Down to the collision-resistance
(over both keys and inputs) property of the PRF, it results that sk; = ska.

— the Gen function makes use of a right injective pseudorandom generator.
Since the right half is exactly sky (= ska), through the injectivity property, it
must be the case that the seed R used to feed the PRG is the same.

— since the randomness R is the same for both cases, it results that the random
coins used by FE.Gen are the same, implying that msk; = msks.

— finally, we obtain that msk; = msks, which is not allowed in the robustness
game.

Therefore, the advantage of breaking the FEROB game is bounded by the union
bound applied on the collision-resistance of the PRF and right-injectivity of the
PRG: Advi 5P (V) < Adviipre (M) + Adviyrh pre () -

IND-FE-CPA-sSECURITY. The reduction proceeds via one game hop:

— Gameyg: is the game, where the adversary runs against the scheme depicted
in Figure 9 — the output of the PRG is the expected one.

— Game;: based on the pseudorandomness property of the PRG, we change the
output to a truly random string, ensuring independence between msk and
sk. The distance to Gamey is bounded by the pseudorandomness advantage
against PRG. We now show that the advantage of an adversary winning the
IND-FE-CPA experiment against FE in this setting is negligible.

17

Assume the existence of a PPT adversary A against the IND-FE-CPA of FE. We
build an adversary A’ against the IND-FE-CPA of the underlying FE scheme.
The IND-FE-CPA experiment samples a bit &', the key msk and constructs a
key-derivation oracle KDer under msk, such that it can be accessed A’. The
reduction then proceeds as follows:

1. A’ chooses uniformly at random sk to key the PRF utility.

2. A’ builds the FE.Enc oracle and the FE.KDer oracle by querying the given
FE.Enc, FE.KDer. The PRF is evaluated under sk.

3. A’ runs A, obtains a tuple (M, M) and gets back the encryption of My
(say C*) by querying FE.Enc(msk, My). A’ computes the corresponding C*,
which is passed to A.

4. finally, A returns a bit b, which constitutes the output of A’.

Analysis of the reduction. The correctness of the reduction follows trivially. Thus
we conclude that in Game;, the probability of winning is:

Pr[Gamet'()) = 1] < AdVINREECPA()) |

For the analysis, we also include the fact that the transition between Gamey and
Game; is bounded by the pseudorandomness of PRG:

Pr[Game;'()) = 1] — Pr[Game!(\) = 1] < AdviB,G’PRG()\) .
Finally, it follows that:

AV () < AdVIDRE TRV 4+ AdVEESpre (M)

5 Anonymity and Robustness

Interestingly, FEROB does not imply anonymity as defined in Figure 1 (right)
for the public-key case. And based on FEROB = SROB, it follows that SROB
does not imply anonymity in a generic fashion. Therefore, we have the following
separation:

Proposition 4. There exist FEROB transforms for public-key functional en-
cryption that do not ensure anonymity (as defined in Figure 1).

Proof (Proposition /). We consider the scheme in Figure 8 and observe that the
anonymity game can be easily won as follows: an adversary, given two master
public keys and the ciphertext C' < (Cj, C3), decides the issuer by checking

whether H(Cy||mpk;) 20 or H(Cy||mpksy) Z ¢y, via the publicly available
H. O

We also show that specific FE schemes enjoy anonymity.

18

Proposition 5. The ElGamal instantiation of the inner-product functional en-
cryption scheme presented in [ABDP15] reaches anonymity (Figure 1).

The proof is given in Appendix B. A similar result can be trivially shown for
the FE scheme for general circuits supporting a single functional key by Sahai
and Seyalioglu [SS10] when instantiated with an anonymous PKE.

Finally, we give a generic construction of an anonymous FEROB scheme.
Reaching both anonymity and robustness for FE is non-trivial: on one hand, we
expect the ciphertext to be “robust” w.r.t. a sole authority (mpk), but the “link”
should not be detectable when included in the ciphertext (anonymity). Therefore,
we attempt to embed such a link in the functional key. Our solution ensures
FEROB through the means of a collision-resistant PRF with keys K generated
on the fly. An independent functional key to compute the PRF value is issued

via a second FE supporting general circuits, while the PRF key K is encrypted
under the additional mpk’.

Gen(1): Enc(mpk, 1)

(mpk, msk) <—s FE.Gen(1%) (msk, msk’) < msk
(mpk’, msk’) <—s FE'.Gen(1%) (mpk, mpk’) < mpk
mpk < (mpk, mpk’) C1 +—s FE.Enc(mpk, M)
msk < (msk, msk’) K+s K

return (msk, mpk) C> + PRF(K, mpk)

Cs +s FE'.Enc(mpk’, K)
C« (C1, Ca, Gy)

return C
KDer(msk, f): Dec(sky, C):
msk < msk (sky,sky) < sky
sk <—s FE.KDer(msk, f) (C1,Ce, C3) + C
skg s FE'.KDer(msk’, Cpre(. mpk)) if FE.Dec(sky, C3) # Cs :
sk« (sky,sky) return L
return sk return FE.Dec(sky, C)

Figure 10. A generic transform that converts an FE scheme into a FEROB scheme
FE, without ensuring anonymity. Here Cprr denotes the circuit that computes the PRF
value, where mpk is hard-coded in the circuit.

Theorem 1. Let PRF denote a collision-resistant PRF computable by circuits in
a class €. Let FE' be an ANON-secure functional encryption scheme supporting
circuits in €. Given an ANON, IND-FE-CPA -secure scheme FE, the functional
encryption scheme FE obtained via the transform in Figure 10 is FEROB-secure
while preserving the original scheme’s security guarantees.

Proof (Theorem 1).

19

RoBUSTNESS. FEROB follows from the collision resistance of the PRF: if an ad-
versary A is able to find (K, C1), (K’, Cy) such that PRF(K, Cy) = PRF(K’, C}),
then A wins the collision resistance game against the PRF.

INDISTINGUISHABILITY. Follows from the IND-FE-CPA-security of the underly-
ing scheme FE. For any adversary A against the IND-FE-CPA-security of the
scheme FE in Figure 10, we build the reduction A’ that wins the IND-FE-CPA
game against FE as follows:

First, the IND-FE-CPA experiment samples its own master keys and initializes
the key-derivation oracle. The reduction A’ instantiates FE' by sampling the
master keys (msk’, mpk’).

Regarding the challenge ciphertext, whenever the adversary A sends the
challenge tuple (Mp, My), the reduction A’ proceeds as follows: (1) obtains
challenge ciphertext Cj from the IND-FE-CPA experiment; (2) samples (on the
fly) its own key K; (3) computes Cy, C3, which are forwarded to .A. Note that all
these steps are perfectly computable, as A’ knows mpk’.

Regarding key-derivation queries, whenever A requests a functional key for
some f, A’ forwards the request to the key-generation oracle. Independently, the
reduction obtains a functional key for Cprr(.,mpk), @ circuit that is designed to
compute Cs (the PRF value) over the encrypted K.

It is clear the reduction A’ can simulate the IND-FE-CPA game for FE in
the view of its adversary A’. Thus, whenever A returns b, A’ returns the same
bit and wins under the same advantage.

ANONYMITY. Follows from the anonymity of the underlying FE scheme. We use a
hybrid argument. We start from a setting corresponding to b = 0 in the ANON’F“—E
game (Gamey).

— Gamey: in Game;, we change C3 from FE'.Enc(mpk,, K) to FE'.Enc(mpk,, K),
based on the ANON property of FE', the hop between the two games being
bounded by AdvFgN (A).

— Gameg: we change C; from FE.Enc(mpky, M) to FE.Enc(mpk,, M), based
on the anonymity of the underlying FE scheme, the distance to the pre-
vious game being bounded by Advﬁl,\IFCE)N()\). Implicitly, in Games, the re-
duction updates the value of the PRF from PRF(K,FE.Enc(mpky, C1)) to

PRF(K, FE.Enc(mpky, C1)).

Finally observe that Game; maps to the setting where b = 1 in the anonymity

game for the FE scheme. Therefore, Advi{\gN < Advﬁlj_gg (N —|—Advﬁ§?§ (N. O

Acknowledgements. The authors thank to anonymous reviewers for valuable
comments, including the link to unambiguity. The last author was supported by
EU Horizon 2020 research and innovation programme under grant agreements
No H2020-MSCA-ITN-2014-643161 ECRYPT-NET and No H2020-ERC-2017-
ADG-787390 CLOUDMAP.

20

References

ABDP15. Michel Abdalla, Florian Bourse, Angelo De Caro, and David Pointcheval.

ABN10.

ALS16.

BB04.

BBO08.

BCPO02.

BDO09.

BGI14.

BKS16.

BSW11.

Simple functional encryption schemes for inner products. In Jonathan Katz,
editor, PKC 2015: 18th International Conference on Theory and Practice of
Public Key Cryptography, volume 9020 of Lecture Notes in Computer Science,
pages 733-751, Gaithersburg, MD, USA, March 30 — April 1, 2015. Springer,
Heidelberg, Germany.

Michel Abdalla, Mihir Bellare, and Gregory Neven. Robust encryption. In
Daniele Micciancio, editor, TCC 2010: 7th Theory of Cryptography Confer-
ence, volume 5978 of Lecture Notes in Computer Science, pages 480-497,
Zurich, Switzerland, February 9-11, 2010. Springer, Heidelberg, Germany.
Shweta Agrawal, Benoit Libert, and Damien Stehlé. Fully secure functional
encryption for inner products, from standard assumptions. In Matthew Rob-
shaw and Jonathan Katz, editors, Advances in Cryptology — CRYPTO 2016,
Part III, volume 9816 of Lecture Notes in Computer Science, pages 333—
362, Santa Barbara, CA, USA, August 14-18, 2016. Springer, Heidelberg,
Germany.

Dan Boneh and Xavier Boyen. Short signatures without random oracles.
In Christian Cachin and Jan Camenisch, editors, Advances in Cryptology
— EUROCRYPT 2004, volume 3027 of Lecture Notes in Computer Science,
pages 5673, Interlaken, Switzerland, May 2—6, 2004. Springer, Heidelberg,
Germany.

Dan Boneh and Xavier Boyen. Short signatures without random oracles and
the SDH assumption in bilinear groups. Journal of Cryptology, 21(2):149-177,
April 2008.

Emmanuel Bresson, Olivier Chevassut, and David Pointcheval. Dynamic
group Diffie-Hellman key exchange under standard assumptions. In Lars R.
Knudsen, editor, Advances in Cryptology — EUROCRYPT 2002, volume
2332 of Lecture Notes in Computer Science, pages 321-336, Amsterdam, The
Netherlands, April 28 — May 2, 2002. Springer, Heidelberg, Germany.
Mihir Bellare and Shanshan Duan. Partial signatures and their applications.
Cryptology ePrint Archive, Report 2009/336, 2009. http://eprint.iacr.
org/2009/336.

Elette Boyle, Shafi Goldwasser, and Ioana Ivan. Functional signatures
and pseudorandom functions. In Hugo Krawczyk, editor, PKC 2014: 17th
International Conference on Theory and Practice of Public Key Cryptography,
volume 8383 of Lecture Notes in Computer Science, pages 501-519, Buenos
Aires, Argentina, March 2628, 2014. Springer, Heidelberg, Germany.
Zvika Brakerski, Ilan Komargodski, and Gil Segev. Multi-input functional
encryption in the private-key setting: Stronger security from weaker assump-
tions. In Marc Fischlin and Jean-Sébastien Coron, editors, Advances in
Cryptology — EUROCRYPT 2016, Part II, volume 9666 of Lecture Notes in
Computer Science, pages 852—-880, Vienna, Austria, May 812, 2016. Springer,
Heidelberg, Germany.

Dan Boneh, Amit Sahai, and Brent Waters. Functional encryption: Defi-
nitions and challenges. In Yuval Ishai, editor, TCC 2011: 8th Theory of
Cryptography Conference, volume 6597 of Lecture Notes in Computer Sci-
ence, pages 253-273, Providence, RI, USA, March 28-30, 2011. Springer,
Heidelberg, Germany.

21

http://eprint.iacr.org/2009/336
http://eprint.iacr.org/2009/336

CHNT16.

CO15.

Dam88.

FLPQ13.

FOR17.
GGMS6.

GLR17.

GMR&84.

JKX18.

KS17.

Moh10.

O’N10.

SS10.

Aloni Cohen, Justin Holmgren, Ryo Nishimaki, Vinod Vaikuntanathan, and
Daniel Wichs. Watermarking cryptographic capabilities. In Daniel Wichs
and Yishay Mansour, editors, 48th Annual ACM Symposium on Theory of
Computing, pages 1115-1127, Cambridge, MA, USA, June 18-21, 2016. ACM
Press.

Tung Chou and Claudio Orlandi. The simplest protocol for oblivious transfer.
In Kristin E. Lauter and Francisco Rodriguez-Henriquez, editors, Progress in
Cryptology - LATINCRYPT 2015: 4th International Conference on Cryptol-
ogy and Information Security in Latin America, volume 9230 of Lecture Notes
in Computer Science, pages 40-58, Guadalajara, Mexico, August 2326, 2015.
Springer, Heidelberg, Germany.

Ivan Damgard. Collision free hash functions and public key signature schemes.
In David Chaum and Wyn L. Price, editors, Advances in Cryptology — EU-
ROCRYPT’87, volume 304 of Lecture Notes in Computer Science, pages
203-216, Amsterdam, The Netherlands, April 13-15, 1988. Springer, Heidel-
berg, Germany.

Pooya Farshim, Benoit Libert, Kenneth G. Paterson, and Elizabeth A.
Quaglia. Robust encryption, revisited. In Kaoru Kurosawa and Goichiro
Hanaoka, editors, PKC 2013: 16th International Conference on Theory
and Practice of Public Key Cryptography, volume 7778 of Lecture Notes in
Computer Science, pages 352-368, Nara, Japan, February 26 — March 1, 2013.
Springer, Heidelberg, Germany.

Pooya Farshim, Claudio Orlandi, and Razvan Rosie. Security of symmetric
primitives under incorrect usage of keys. 2017(1):449-473, 2017.

Oded Goldreich, Shafi Goldwasser, and Silvio Micali. How to construct
random functions. Journal of the ACM, 33(4):792-807, October 1986.
Paul Grubbs, Jiahui Lu, and Thomas Ristenpart. Message franking via
committing authenticated encryption. Lecture Notes in Computer Science,
pages 66-97, Santa Barbara, CA, USA, 2017. Springer, Heidelberg, Germany.
Shafi Goldwasser, Silvio Micali, and Ronald L. Rivest. A “paradoxical”
solution to the signature problem (abstract) (impromptu talk). In G. R.
Blakley and David Chaum, editors, Advances in Cryptology — CRYPTO’84,
volume 196 of Lecture Notes in Computer Science, page 467, Santa Barbara,
CA, USA, August 19-23, 1984. Springer, Heidelberg, Germany.

Stanislaw Jarecki, Hugo Krawczyk, and Jiayu Xu. OPAQUE: An asymmetric
PAKE protocol secure against pre-computation attacks. Lecture Notes in
Computer Science, pages 456-486. Springer, Heidelberg, Germany, 2018.
Tlan Komargodski and Gil Segev. From minicrypt to obfustopia via private-
key functional encryption. Lecture Notes in Computer Science, pages 122—-151.
Springer, Heidelberg, Germany, 2017.

Payman Mohassel. A closer look at anonymity and robustness in encryp-
tion schemes. In Masayuki Abe, editor, Advances in Cryptology — ASI-
ACRYPT 2010, volume 6477 of Lecture Notes in Computer Science, pages
501-518, Singapore, December 5-9, 2010. Springer, Heidelberg, Germany.
Adam O’Neill. Definitional issues in functional encryption. Cryptology ePrint
Archive, Report 2010/556, 2010. http://eprint.iacr.org/2010/556.
Amit Sahai and Hakan Seyalioglu. Worry-free encryption: functional encryp-
tion with public keys. In Ehab Al-Shaer, Angelos D. Keromytis, and Vitaly
Shmatikov, editors, ACM CCS 10: 17th Conference on Computer and Com-
munications Security, pages 463—472, Chicago, Illinois, USA, October 4-8,
2010. ACM Press.

22

http://eprint.iacr.org/2010/556

Yao82. Andrew Chi-Chih Yao. Theory and applications of trapdoor functions
(extended abstract). In 23rd Annual Symposium on Foundations of Computer
Science, pages 80-91, Chicago, Illinois, November 3-5, 1982. IEEE Computer
Society Press.

23

A Additional Definitions

A.1 Digital Signature Schemes

Definition 6 (Digital Signature Scheme). A digital signature scheme DS
defined over a message-space M consists of a tuple of four PPT algorithms
(DS.Setup, DS.Gen, DS.Sign, DS.Ver) such that:

— pars <—s DS.Setup(1*): we assume the existence of a Setup algorithm producing
a set of public parameters which are implicitly given to all algorithms.

— (sk, pk) <—s DS.Gen(1*): the randomized key generation algorithm takes as
input the unary representation of the security parameter A and outputs a pair
of secret/verification keys.

— o0+ DS.Sign(sk, M): the (possibly randomized) signing algorithm takes a
message M € M as input and produces a signature o on message M under
the secret key sk.

— b + DS.Ver(pk,o, M): the deterministic verification algorithm receives as
mput a signature o of M and checks its validity with respect to the verification
key pk and M. It outputs a bit b.

We require that a digital signature satisfies the following properties:
— Correctness: for any message M € M we have that

(sk, pk) <—s DS.Gen(1*)A

Pr |1 < DS.Ver(pk,o, M) o -+ DS.Sign(sk, M)

€1—NEGL(A) .

— A signature scheme is EUF-secure if the advantage of any PPT adversary A
against the EUF-game defined in Figure 11 is negligible:

Adviy D5 () = Pr [EUFHs(\) = 1] € NEGL()) .

EUFA (\): Proc. Sign, (M):
L« o s DS.Sign(sk, M)
(sk, pk) +—s DS.Gen(1?) L Lu{M}
(M*, O'*) s .ASignsk(-)(lk7 pk) return o
if M* & L:

return DS.Ver(pk, M*,0") Proc. VERp(M, 0):
return 0 return DS.Ver(pk, M, o)

Figure1l. The existential unforgeability experiment defined for digital signature
schemes.

24

A.2 Private-Key Functional Encryption

Definition 7 (Functional Encryption Scheme — Private Key Setting).
A functional encryption scheme FE is a tuple of PPT algorithms (FE.Gen,
FE.KDer, FE.Enc, FE.Dec) such that:

— msk <s FE.Gen(1%) : takes as input the unary representation of the security
parameters and outputs msk.

— sky <—s FE.KDer(msk, f): given the master secret key and a function f, the
(randomized) key-derivation procedure outputs a corresponding sky.

— C < FE.Enc(msk, M): the randomized encryption procedure encrypts the
plaintext M with respect to msk.

— FE.Dec(sky, C): decrypts the ciphertext C' using the functional key sky in
order to learn a valid message f(M) or a special symbol L, in case the
decryption procedure fails.

A functional encryption scheme is IND-FE-CPA-secure if the advantage of
any PPT adversary A against the IND-FE-CPA-game defined in Figure 2 is
negligible:

AdvINEFE-CPA(\) .= Pr [IND-FE-CPA# (A) = 1] € NEGL()) .

B Proof of Proposition 5

Proof. The ANON game releases two master public keys mpk and mpk’. Encrypt-
ingx = (x1,...2,) w.r.t.mpk = (¢g51,..., g°") results in (g", g™ s1T%1 ... g"SntIn),
The simple idea is to show the scheme is IND$ and use this fact to “jump” from
C < FE.Enc(mpk, M) to uniform distribution defined over the ciphertext space,
and from there to C’ < FE.Enc(mpk’, M).

The proof relies on the multiple-DDH problem introduced in [BCP02], essen-
tially stating that for a PPT adversary A, the following advantage is non-negligible
(assuming uniformly sampled generators g; and exponents z;):

Advr}{DDH(x\) = Pr [1 +—s A (1A7 (grl N {Qzﬂj}lgiqgn))] _
Pr [1 +—s A (IA, (91, we oy Gn, {gi,j}1§i<j§n))} S NEGL(/\) .

Therefore, given a challenge tuple of the form (¢", g°*, ..., ¢°",...,¢"%1,g"°2,...),
our reduction uses all pairs of the form ¢g"® to compute the ciphertext. If
an adversary can distinguish between the distribution of C' and the uniform
distribution, then it can break the multiple-DDH assumption. This proves that
Enc(mpk, M) =, $.

In a similar way, one can show that Enc(mpk’, M) ~, $, which essentially

shows the anonymity of the schemes down to 2 - AdvEXH)_DDH()\). a

25

	Robust Encryption, Extended

