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Abstract. We provide a generic construction of non-interactive zero-knowledge (NIZK) schemes.
Our construction is a refinement of Dwork and Naor’s (FOCS 2000) implementation of the hid-
den bits model using verifiable pseudorandom generators (VPRGs). Our refinement simplifies
their construction and relaxes the necessary assumptions considerably.
As a result of this conceptual improvement, we obtain interesting new instantiations:
– A designated-verifier NIZK (with unbounded soundness) based on the computational Diffie-

Hellman (CDH) problem. If a pairing is available, this NIZK becomes publicly verifiable.
This constitutes the first fully secure CDH-based designated-verifier NIZKs (and more
generally, the first fully secure designated-verifier NIZK from a non-generic assumption
which does not already imply publicly-verifiable NIZKs), and it answers an open problem
recently raised by Kim and Wu (CRYPTO 2018).

– A NIZK based on the learning with errors (LWE) assumption, and assuming a non-
interactive witness-indistinguishable (NIWI) proof system for bounded distance decoding
(BDD). This simplifies and improves upon a recent NIZK from LWE that assumes a NIZK
for BDD (Rothblum et al., PKC 2019).

Keywords: non-interactive zero-knowledge, computational Diffie-Hellman, learning with er-
rors, verifiable pseudorandom generators.

1 Introduction

Zero-knowledge proof systems allow a prover to convince someone of the truth of a statement, without
revealing anything beyond the fact that the statement is true. After their introduction in the seminal
work of Goldwasser, Micali, and Rackoff [GMR89], they have proven to be a fundamental primitive
in cryptography. Among them, non-interactive zero-knowledge proofs [BFM88] (NIZK proofs), where
the proof consists of a single flow from the prover to the verifier, are of particular interest, in part due
to their tremendous number of applications in cryptographic primitives and protocols, and in part
due to the theoretical and technical challenges that they represent.

On Building Non-Interactive Zero-Knowledge Proofs. It is known that zero-knowledge proofs
for arbitrary NP languages can be constructed from any one-way function [GMW86], and that this is
a minimal assumption [OW93,Vad04,OV07]. In contrast, non-interactive zero-knowledge proofs have
proven to be considerably harder to construct. NIZKs in the plain model can only exist for trivial
languages [Ore87]; therefore, NIZKs for non-trivial languages are typically constructed in the common
reference string model, where the prover and the verifier are given access to a common string honestly
generated ahead of time in a setup phase. Generic constructions of NIZK proof systems for NP in
the CRS model have been described from primitives such as doubly-enhanced trapdoor permuta-
tions [FLS90], invariant signatures [GO93], and verifiable pseudorandom generators [DN00], where
the last two are known to be also necessary for NIZKs. However, concrete instantiations of these
primitives are currently known only from factorization-related assumption [BFM88], pairing-based
assumptions [CHK03], and indistinguishability obfuscation [BP15,CL18] (together with injective one-
way functions). More recently, direct constructions of NIZKs in the CRS model have been given from
pairings [GOS06b,GOS06a,GS08], or from strong and less-understood assumptions such as indistin-
guishability obfuscation [SW14,BP15] and exponentially-strong KDM-secure encryption [CCRR18].

A fundamental and intriguing open question remains: is it possible to build NIZKs from other
classical and well-established assumptions, such as discrete-logarithm-type assumptions, or lattice-
based assumptions? Faced with the difficulty of tackling this hard problem upfront, the researchers
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2 Geoffroy Couteau and Dennis Hofheinz

have investigated indirect approaches, which can be divided into two main categories: the bottom-up
approach, and the top-down approach.

The Bottom-Up Approach. This line of research fundamentally asks the following: starting from
classical assumptions, either generic (OWF, public-key encryption) or concrete (CDH, LWE), how
close to full-fledged NIZKs in the CRS model can we get, in terms of functionality? Early results in
this direction have established the existence of NIZKs for NP in the preprocessing model (where the
prover and the verifier execute ahead of time a preprocessing phase to generate respectively a secret
proving key and a secret verification) assuming any one-way function [DMP90], and designated-verifier
NIZKs for NP (where anyone can compute a proof, but a secret verification key is required to verify a
proof) from any semantically-secure public-key encryption scheme [PsV06]. In addition to requiring
the prover and/or the verifier to hold a secret key, these early results all suffered from a severe
limitation: they only achieve a bounded form of soundness, where forging a proof for an incorrect
statement is hard only if the prover is not given access to a verification oracle. This strongly limits
their usability as a replacement for full-fledged NIZKs in most applications. More recently, various
NIZK proof systems with unbounded soundness have been proposed, from the LPN assumption in
the preprocessing model [BCGI18], from strong form of partially homomorphic encryption in the
designated-verifier setting [CC18], and from LWE in the designated-prover setting [KW18] (where
a secret key is required to compute a proof but anyone can verify a proof; the latter work also
implies a NIZK with unbounded soundness in the preprocessing model from a strong variant of the
Diffie-Hellman assumption). A slightly different approach was taken in [BCPW15], where the authors
introduce (and construct from the DDH assumption) implicit zero-knowledge proofs, which are not
NIZKs, but can replace them in applications related to secure computation.

The Top-Down Approach. This line of research tackles the problem from another angle: sticking
with the goal of building full-fledged NIZKs in the CRS model, it attempts to identify the minimal
“missing piece” which would allow to build NIZKs from classical assumptions. The work of [PV08]
conjectured that a NIZK proof system for a specific language (GapSVP) would allow to build a NIZK
proof system for all of NP from lattice assumptions, and the work of [RSS19] almost confirmed
this conjecture, by establishing that a non-interactive zero-knowledge proof for a specific language
(bounded distance decoding, BDD) would imply the existence of a full-fledged NIZK proof system for
NP in the CRS model, from the LWE assumption.

1.1 Our Contribution

In this paper, we revisit the problem of building non-interactive zero-knowledge proofs for NP from
classical assumptions, investigating both the bottom-up approach and the top-down approach.

Our starting point is a fresh view on the work [DN00] of Dwork and Naor. In a nutshell, they
construct a NIZK proof for NP by implementing the hidden bits model (HBM, [FLS90]) using a
tool they call verifiable pseudorandom generator (VPRG).1 Intuitively, a VPRG is a pseudorandom
generator (PRG) that allows to selectively prove that certain parts of the PRG output are consistent
(relative to a commitment to the PRG input).

In the first part of our work, we relax the definition of VPRGs, and show that the relaxed definition
is still sufficient to implement the HBM (and thus to obtain NIZK proofs for NP). Unlike the definition
of [DN00], our definition also generalizes to the designated-verifier setting. In the second part of our
work, we show that our new definition allows for considerably simple and new instantiations, both
in the designated-verifier and standard (publicly verifiable) setting. We obtain instantiations from
computational assumptions which were so far not known to imply NIZKs for NP. Specifically, we
provide:
– A designated-verifier NIZK (DVNIZK) system for NP from the CDH assumption (with adaptive

unbounded soundness and adaptive multi-theorem zero-knowledge). If the underlying group allows
for a (symmetric) pairing, our construction can be made publicly verifiable. This is the first
DVNIZK for NP from a concrete (i.e., non-generic) assumption that is not already known to
imply publicly verifiable NIZKs for NP. Our result resolves an open problem recently raised by

1 In the HBM, there exist unconditionally secure NIZK proofs [FLS90].
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Kim and Wu in [KW18], regarding the possibility of building multi-theorem NIZKs from DDH
in the preprocessing model. Note that our result achieves a strictly stronger form of NIZK and
under a weaker assumption.

– A NIZK system for NP (satisfying adaptive soundness and adaptive multi-theorem zero-knowledge)
that assumes LWE and a non-interactive witness-indistinguishable proof system Π ′ for BDD. If
Π ′ is designated-verifier, resp. publicly verifiable, then so is our NIZK system for NP. Our scheme
improves the mentioned work of [RSS19] that requires non-interactive zero-knowledge proof sys-
tem for BDD. (We comment below on what allows us to avoid the need for simulation inherent
in the approach of [RSS19].)

1.2 Our approach

The proof system of Dwork and Naor. To outline our conceptual contribution, we provide more
background on the definitions and model of Dwork and Naor [DN00]. First, the hidden bits model
(HBM) is an abstract model of computation for a prover and a verifier that allows to formulate the
NIZK protocol for graph Hamiltonicity from [FLS90] in a convenient way. In the HBM, the prover
receives an ideally random string hb = (hbi)

t
i=1 ∈ {0, 1}t of bits, as well as an NP-statement x with

witness w. In order to prove x, the prover then selects a subset S ⊂ [t] of bit indices and auxiliary
information M . The verifier is then invoked with hb[S] = (hbi)i∈S and M , and outputs 1 if it is
convinced of the truth of x. [FLS90] provide a NIZK proof in the HBM that is statistically sound
and statistically zero-knowledge. (Of course, at least one of those properties will have to become
computational when implementing the HBM.)

Now Dwork and Naor [DN00] implement the HBM using VPRGs. Formally, a VPRG is a pseu-
dorandom generator G : {0, 1}λ → {0, 1}m which allows to construct commitments pvk to seeds (i.e.,
G-inputs) s and publicly verifiable openings of individual bits of G(s) (relative to pvk). [DN00] require
the following:
1. pvk information-theoretically determines a unique value y in the image of G,
2. valid openings to bits not consistent with the y determined by pvk do not exist, and
3. an opening computationally leaks nothing about unopened bits of y.
Given a VPRG, [DN00] implement the HBM as follows. The prover initially selects a seed s $← {0, 1}λ
and then generates a commitment pvk to s. This implicitly sets hb = G(s). After selecting S, the
prover then sends to the verifier pvk and an opening of hb[S].

Observe that this protocol may still allow the prover to cheat by choosing a “bad” seed s that
might allow breaking soundness. However, since the HBM protocol of [FLS90] is statistically sound,
there can be only comparatively few “bad” HBM strings hb that allow cheating. Hence, the probability
that there exists a seed s such that hb = G(s) is bad will be negligible.2

Our conceptual improvement. We show that points 1. and 2. from the VPRG definition can be
simplified. Specifically:
– We require that pvk uniquely determines some y, but we do not require that y is in the image of
G. Instead, we require that the bitlength |pvk| of pvk is short (i.e., independent of m). Observe
that now up to 2|pvk| “bad” y (and thus “bad” hb) might exist. However, since |pvk| is still short
(compared to m), essentially the original proof strategy of [FLS90] applies.

– We only require that it is computationally infeasible to come up with an opening not consistent
with y. This relaxation requires a careful tracking of “bad events” during the security proof, but
is essentially compatible with the proof strategy from [DN00].

Our first change allows us to omit an explicit proof of consistency of pvk that was necessary in [DN00].
This simplification will be highly useful in our concrete instantiations. Furthermore, our second change
allows to consider designated-verifier NIZKs. Indeed, observe that the original requirement 2. above
states that no valid openings inconsistent with y exist. This excludes designated-verifier realizations
of VPRGs in which the verifier secret key can be used to forge proofs. However, since most existing
DVNIZK proofs have this property (otherwise, they could be made publicly verifiable by making the
secret verification key public), they are not helpful to construct VPRGs in the sense of [DN00]. In
contrast, our relaxation is compatible with existing DVNIZKs (and indeed our first VPRG instantiation
crucially relies on DVNIZKs).
2 A formal argument requires a little care in choosing parameters, and in randomizing hb with an additional
component in the NIZK common reference string.
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Concrete constructions. We offer two VPRG constructions from concrete assumptions. The first
construction assumes a CDH group G = 〈g〉 of (not necessarily prime) order n. A seed is an exponent
s ∈ Zn, and a commitment to s is gs. Given public ui, vi ∈ G (for i ∈ [t]), the i-th bit G(s)i of
the PRG image is B(usi , v

s
i ), where B is a hard-core predicate of the CDH function. A proof πi that

certifies a given G(s)i consists of usi , vsi , as well as proofs that both (g, gs, ui, u
s
i ) and (g, gs, vi, v

s
i )

are Diffie-Hellman tuples. In a designated-verifier setting, such proofs are known from hash proof
systems [CS02,CKS08]. Alternatively, a symmetric pairing G × G → GT can be used to check the
Diffie-Hellman property of these tuples even without explicit proof.

Our second construction assumes LWE and uses the notion of homomorphic commitments from
[GVW15]. These commitments have a “dual-mode” flavor, much like the commitments from [DN02,
GS08]. Specifically, under LWE, the public parameters of these commitments can be switched between
a “binding” mode (in which commitments are perfectly binding) and a “hiding” mode (in which
commitments are statistically hiding). Furthermore, given a commitment coms to s, it is possible to
publicly compute a commitment comC(s) to C(s) for any (a-priori bounded) circuit C.

In our construction, we will assume any PRG G, and set coms to be a commitment to a PRG
seed s ∈ {0, 1}λ. Let Gi be a circuit that computes the i-th bit of G. An opening of the i-th bit is
then an opening of the commitment comGi(s) to Gi(s). (Note that comGi(s) can be publicly computed
from coms.) Unfortunately, in the construction of [GVW15], the opening of commitments may reveal
sensitive information about intermediate computation results (or even about s in our case).

Hence, we will have to assume an additional proof system to open commitments without revealing
additional information. For the commitments of [GVW15], the corresponding language is the language
of a BDD problem. Fortunately, the strong secrecy properties of these commitments allow us to restrict
ourselves to a witness-indistinguishable (and not necessarily zero-knowledge) proof system for BDD.3

Relation to [RSS19]. We note that recently, [RSS19] established a reduction from NIZKs for NP
from LWE to the existence of an NIZK for BDD, also through implementing the HBM. Informally, and
casting the construction of their work in the language of VPRGs,4 the core reason why a NIZK was
required in [RSS19] is the need for a consistency proof for pvk (as in [DN00]). Since the consistency of
pvk is a unique-witness relation, and since the proof must hide predicates of the seed, it does not seem
feasible to replace this NIZK, e.g., by a NIWI or a witness-hiding proof. We note that although NIWIs
for NP imply the existence of NIZKs for NP, it is not clear whether a NIWI for a simple language such
as BDD can be used to build a NIZK for BDD.

Relation to [Abu13]. We also note that Abusalah [Abu13] also implements the HBM using Diffie-
Hellman-related assumptions (such as CDH in a pairing-friendly group). However, he does not follow
the PRG-based paradigm of [DN00] that we refine. Instead, he directly generalizes the original HBM
implementation of [FLS90] to generalizations of trapdoor permutations.

1.3 Concurrent Works

Concurrently and independently to our work, two other works [QRW19,KNYY19] have achieved a re-
sult comparable to the first of our two main contributions, namely, designated-verifier non-interactive
zero-knowledge proofs for NP from CDH. In all three works, the construction proceeds in a compa-
rable way, by designing a CDH-based primitive which allows to compile the hidden-bit model into a
designated-verifier NIZK. We summarize below the main differences between our works.

– The work of [QRW19] provides in addition a construction of malicious designated-verifier NIZK
for NP, where the setup consists of an (honestly generated) common random string and the verifier

3 One might wonder why we do not follow another route to obtain VPRGs from NIWI proofs for BDD.
Specifically, [Bit17, GHKW17] construct even verifiable random functions from a NIWI for a (complex)
LWE-related language. However, these constructions inherently use disjunctions, and it seems unlikely that
the corresponding NIWIs can be reduced to the BDD language.

4 The actual construction of [RSS19] relies on a new notion of public-key encryption with prover-assisted
oblivious ciphertext sampling, but the high level idea is comparable to the VPRG-based approach. A side
contribution of our construction is that it is conceptually much simpler and straightforward than the
construction of [RSS19].
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then gets to choose his own (potentially malicious) public/secret key pair to generate and verify
proofs. The assumption underlying their construction is a stronger “one-more type” variant of
CDH (i.e., the hardness of solving n+1 CDH challenges given n calls to an oracle solving CDH).

– The work of [KNYY19] provides two relatively different additional constructions of NIZKs: a
designated-prover NIZK for NP with proofs of size |C|+ poly(λ) (where C is the circuit checking
the NP relation), under a strong Diffie-Hellman-type assumption over pairing groups, and a
preprocessing NIZK for NP with proofs of size |C| + poly(λ) from the DDH assumption over
pairing-free groups.

– The construction of NIZKs for NP assuming LWE and a NIWI for BDD is new to our work.

1.4 Organization

Section 2 introduces necessary preliminaries about non-interactive proof systems. Section 3 formally
introduces designated-verifier pseudorandom generators, and defines their security properties. Sec-
tion 4 provides a generic construction of a (designated-verifier) non-interactive zero-knowledge proof
system for NP from our relaxed and generalized notion of DVPRGs, by instantiating the hidden bit
model. Section 5 provides two instantiations of DVPRGs, from the CDH assumption in arbitrary group,
and from the LWE assumption assuming in addition a NIWI proof system for BDD (where the result-
ing scheme is publicly verifiable iff the NIWI scheme is publicly verifiable). Eventually, Appendix A of
the supplementary material introduces another security notion for DVPRGs, the consistency, which
provides a useful tool to analyze their security.

2 Preliminaries

Notation. Throughout this paper, λ denotes the security parameter. A probabilistic polynomial time
algorithm (PPT, also denoted efficient algorithm) runs in time polynomial in the (implicit) security
parameter λ. A function f is negligible if for any positive polynomial p there exists a bound B > 0
such that, for any integer k ≥ B, |f(k)| ≤ 1/|p(k)|. An event occurs with overwhelming probability
when its probability is at least 1 − negl(λ) for a negligible function negl. Given a finite set S, the
notation x

$← S means a uniformly random assignment of an element of S to the variable x. We
represent adversaries as interactive probabilistic Turing machines; the notation AdvO indicates that
the machine Adv is given oracle access to O. Adversaries will sometimes output an arbitrary state st
to capture stateful interactions. For an integer n, [n] denotes the set of integers from 1 to n. Given a
string x of length n, we denote by xi its ith bit (for any i ≤ n), and by x[S] the subsequence of the
bits of x indexed by a subset S of [n].

2.1 Non-Interactive Zero-Knowledge

We recall the definition of non-interactive zero-knowledge (NIZK) proofs and argument.

Definition 1 (Non-Interactive Zero-Knowledge Argument System). A non-interactive zero-
knowledge argument system for an NP-language L with relation RL is a triple of probabilistic
polynomial-time algorithms (Setup,Prove,Verify) such that

– Setup(1λ), outputs a common reference string crs and a trapdoor T ,
– Prove(crs, x, w), on input the crs crs, a word x, and a witness w, outputs a proof π,
– Verify(crs, x, π, T ), on input the crs crs, a word x, a proof π, and the trapdoor T , outputs b ∈ {0, 1},

which satisfies the completeness, soundness, and zero-knowledge properties defined below.

If the trapdoor T of the non-interactive proof system is set to ⊥ (or, alternatively, if it is included
in the crs), we call the argument system publicly verifiable. Otherwise, we call it a designated-verifier
non-interactive argument system. If the soundness guarantee holds with respect to computationally
unbounded adversary, we have a NIZK proof system.

Definition 2 (Perfect Completeness). A non-interactive argument system (Setup,Prove,Verify)
for an NP-language L with witness relation RL satisfies perfect completeness if for every x ∈ L and
every witness w such that RL (x,w) = 1,

Pr[(crs, T ) $← Setup(1λ),π ← Prove(crs, x, w) : Verify(crs, x,π, T ) = 1] = 1.
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The soundness notion can come in several flavors: it is non-adaptive if the adversary must decide
on a word on which to forge a proof before the common reference string is drawn, and it is adaptive if
the adversary can dynamically choose the word given the common reference string. We will consider
a strong variant of adaptive soundness, denoted unbounded adaptive soundness, where the adversary
is given oracle access to a verification oracle. Note that in the publicly-verifiable setting, this is
equivalent to the standard soundness notion, where the adversary must forge a valid proof on an
incorrect statement without the help of any oracle. However, in the designated-verifier setting, this
is a strictly stronger notion: the standard soundness notion only guarantees, in this setting, that the
argument system remains sound as long as the prover receives at most logarithmically many feedback
on previous proofs. On the other hand, if the argument system satisfies unbounded soundness, its
soundness is maintained even if the adversary receives an arbitrary (polynomial) number of feedback
on previous proofs.

Definition 3 (Unbounded Adaptive Soundness). A non-interactive argument system (Setup,
Prove,Verify) for an NP-language L with relation RL satisfies unbounded adaptive soundness if for
any PPT A,

Pr

[
(crs, T ) $← Setup(1λ),

(x,π)
$← AO(crs,·,·,T )(crs) : Verify(crs, x,π, T ) = 1 ∧ x /∈ L

]
≈ 0,

where A can make polynomially many queries to an oracle O(crs, ·, ·, T ) which, on input (x,π), outputs
Verify(crs, x,π, T ).

We now define zero-knowledge, which can again come in several flavors. We will consider adaptive
zero-knowledge argument systems, where the adversary is allowed to pick a word on which to forge a
proof after seeing the common reference string. We will also distinguish single-theorem zero-knowledge,
in which the prover generates a single proof (and the length of the common reference string can be
larger than the length of the statement to prove) and multi-theorem zero-knowledge (where the
adversary can adaptively ask for polynomially many proofs on arbitrary pairs (x,w) for the same
common reference string).

Definition 4 (Adaptive Single-Theorem Zero-Knowledge). A non-interactive argument sys-
tem (Setup,Prove,Verify) for an NP-language L with relation RL satisfies (adaptive) single-theorem
zero-knowledge if for any stateful PPT algorithm A, there exists a simulator (Sim0,Sim1) such that∣∣∣∣∣∣∣Pr

 (crs, T )
$← Setup(1λ),

(x,w)
$← A(crs, T ), : (RL (x,w) = 1) ∧ (A(π) = 1)

π
$← Prove(crs, x, w)

−
Pr

 (crs, T )
$← Sim0(1

λ),

(x,w)
$← A(crs, T ), : (RL (x,w) = 1) ∧ (A(π) = 1)

π
$← Sim1(crs, T , x)


∣∣∣∣∣∣∣ ≈ 0.

Definition 5 (Adaptive Multi-Theorem Zero-Knowledge). A non-interactive argument sys-
tem (Setup,Prove,Verify) for an NP-language L with relation RL satisfies (adaptive) multi-theorem
zero-knowledge if for any stateful PPT algorithm A, there exists a simulator (Sim0,Sim1) such that
A has negligible advantage in distinguishing the experiments Expzk,0

A (1λ) and Expzk,1
A (1λ) given on

Figure 1.

Note that Osim is only given the witness w to artificially enforce that A queries only words x in
the language L .

Zero-knowledge is a strong, simulation-style security notion. A common relaxation of zero-knowledge
to an indistinguishability-based security notion is known as witness-indistinguishability.

Definition 6 (Computational Witness-Indistinguishability). A non-interactive proof system
(Setup,Prove,Verify) for an NP-language L with relation RL is (computationally) witness-indistin-
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Expzk,0
A (1λ) :

(crs, T ) $← Setup(1λ)

return b
$← AOprove(crs,·,·)(crs)

Oprove(crs, x, w) :
if RL (x,w) = 1 then

return Prove(crs, x, w)
else

return ⊥
end if

Expzk,1
A (1λ) :

(crs, T ) $← Sim0(1
λ)

return b
$← AOsim(crs,T ,·,·)(crs)

Osim(crs, T , x, w) :
if RL (x,w) = 1 then

return Sim1(crs, T , x)
else

return ⊥
end if

Fig. 1. Experiments Expzk,0
A (1λ) and Expzk,1

A (1λ), and oracles Oprove(crs, x, w) and Osim(crs, T , x, w), for the
(adaptive) multi-theorem zero-knowledge property of a non-interactive argument system.A outputs b ∈ {0, 1}.

guishable if for any PPT algorithm A,∣∣∣∣∣∣∣Pr
 (crs, T )

$← Setup(1λ), A(crs,π) = 1

(x,w0, w1)
$← A(crs), : ∧RL (x,w0) = 1

π
$← Prove(crs, x, w0) ∧RL (x,w1) = 1


− Pr

 (crs, T )
$← Setup(1λ), A(crs,π) = 1

(x,w0, w1)
$← A(crs), : ∧RL (x,w0) = 1

π
$← Prove(crs, x, w1) ∧RL (x,w1) = 1


∣∣∣∣∣∣∣ ≈ 0

We call such a proof system a non-interactive witness-indistinguishable (NIWI) proof system.

It is known that the existence of a NIWI proof system for NP implies the existence of a NIZK
proof system for NP in the CRS model [FLS90]. However, this does not extend to proof systems for
specific languages: the existence of a NIWI proof system for a language L does not generally imply
the existence of a NIZK proof system in the CRS model for the same language.

3 Designated-Verifier Pseudorandom Generators

Verifiable pseudorandom generators (VPRG) have been introduced in the seminal paper of Dwork
and Naor [DN00], as a tool to construct non-interactive witness-indistinguishable proofs and NIZKs
in the CRS model. Informally, a VPRG enhances a PRG with verifiability properties: the prover can
compute a kind commitment to the seed (called the verification key), and issue proofs that a given
position i of the pseudorandom string stretched from the committed seed is equal to a given bit.
Furthermore, this proof does not leak anything about the output values at positions j 6= i.

In this section, we revisit the notion of verifiable pseudorandom generators. Toward our goal of
building VPRGs from new assumptions, we significantly weaken the binding property of VPRGs (which
states, informally, that the verification key binds the prover to the seed) to a security notion that is
simpler to achieve and still allows to build NIZKs in the CRS model, and we extend the definition
to the more general setting of designated-verifier VPRGs (DVPRGs) (this strictly encompasses public
VPRGs since we recover the standard notion by restricting the secret verification key to be ⊥).

3.1 On Defining DVPRGs

A natural attempt to define the binding property of a DVPRG would be as follows: it should be infea-
sible, for any polytime adversary, to output two accepting proofs π0 and π1 that a given output of the
PRG is equal to 0 and 1 respectively (relative to the same committed parameters) . However, this secu-
rity notion turns out to be too weak for the construction of non-interactive witness-indistinguishable
proofs from VPRG of [DN00]. Intuitively, this stems from the fact that a cheating prover will never
send more than a single proof for a given output, hence we cannot extract two contradictory proofs
from this adversary. Instead, the argument of [DN00] crucially rely on the following stronger defini-
tion: a VPRG is binding if for every (possibly malicious) public verification key pvk, there exists a
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single associated string x in the range of the stretching algorithm of the DVPRG, and for any accepting
proof π of correct opening to a subset y[I] of the bits of a string y, it must hold that y[I] = x[I].

Unfortunately, this binding property turns out to be too strong for our purpose. The reason is
that we seek to build candidate DVPRGs from assumptions such as LWE, where natural approaches
lead to schemes where there exists malicious public verification keys associated to strings which are
not in the range of the DVPRG, and which cannot be distinguished from honest verification keys
(typically, in our LWE-based construction, an honest verification key will be a list of LWE samples,
which are indistinguishable from random samples). A comparable issue arose in the work of [RSS19],
which tackled this issue by appending to the verification key (or, in their language, the public key of
an obliviously-sampleable encryption scheme) a NIZK proof of validity.

Instead, we opt for a different approach and introduce a weaker binding property for DVPRGs,
which does not require assuming any specific structure of the public verification key beyond its length.
Namely, we consider the following notion: a DVPRG is binding if there exists a (possibly inefficient)
extractor Ext such that no PPT adversary can output a triple (pvk, i, π) where π is a proof of correct
opening of position i to 1 − xi, and x = Ext(pvk). Note that our definition does only consider
verification keys generated by a computationally bounded adversary (instead of arbitrary pvk), and
does not require pvk to be in the range of the DVPRG. This binding notion would in fact be trivial
to achieve without further constraints (e.g. one could define pvk to be a sequence of extractable
commitments to each bits of the pseudorandom string stretched from the seed), hence we further
require that pvk must be short (of size s(λ), for a polynomial s independent of the stretch of the
DVPRG). Afterward, we prove that this weaker notion still suffices to build NIZKs for NP in the CRS
model.

Generalizing to the designated-verifier setting, where verification can involve a secret-verification
key, we strengthen the above property to the unbounded binding property, which states that no PPT
adversary can produce a triple (pvk, i, π) as above, even given oracle access to a verification oracle
(which has the secret verification key hardcoded). We note that the above weakening of the binding
notion is also necessary for our generalization to the designated-verifier setting: in this setting, the
stronger binding notion of [DN00] does typically not hold, since there always exists accepting proofs
of opening to an incorrect bit (if this was not the case, we could safely make the secret verification key
public, since it would not allow to find proofs of opening to incorrect values); however, it is infeasible to
find such proof (without knowing the secret verification key). Below, we formally introduce designated-
verifier pseudorandom generators and the corresponding security notions.

3.2 Definition

Definition 7 (Designated-Verifier Pseudorandom Generator). A designated-verifier pseudo-
random generator (DVPRG) is a four-tuple of efficient algorithms (Setup,Stretch,Prove,Verify) such
that

– Setup(1λ,m), on input the security parameter (in unary) and a bound m(λ) = poly(λ), outputs a
pair (pp, T ) where pp is a set of public parameters (which contains 1λ), and T is a trapdoor;

– Stretch(pp), on input the public parameters, outputs a triple (pvk, x, aux), where pvk is a public
verification key of polynomial length s(λ) independent of m, x is an m-bit pseudorandom string,
and aux is an auxiliary information;

– Prove(pp, aux, i), on input the public parameters, auxiliary informations aux, an index i ∈ [m],
outputs a proof π;

– Verify(pp, pvk, T , i, b, π), on input the public parameters, a public verification key pvk, a trapdoor
T , a position i ∈ [m], a bit b, and a proof π, outputs a bit β;

which is in addition complete, hiding, and binding, as defined below.

Note that the above definition also captures publicly verifiable pseudorandom generators, which
are DVPRGs where we restrict Setup(1λ,m) to always output pairs of the form (pp,⊥).

Definition 8 (Completeness of a DVPRG). For any i ∈ [m], a perfectly complete DVPRG scheme
(Setup,Stretch,Prove,Verify) satisfies:

Pr

 (pp, T )
$← Setup(1λ,m),

(pvk, x, aux)
$← Stretch(pp), : Verify(pp, pvk, T , i, xi, π) = 1

π
$← Prove(pp, aux, i),

 = 1.
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We now define the binding property of a DVPRG. We consider a flavor of the binding property
which is significantly weaker than the one considered in [DN00], yet still suffices for the application
to NIZKs (see the discussion in Section 3.1).

Definition 9 (Binding Property of a DVPRG). Let (Setup,Stretch,Prove,Verify) be a DVPRG. A
DVPRG is binding if there exists a (possibly inefficient) extractor Ext such that for any PPT A, it
holds that

Pr

 (pp, T ) $← Setup(1λ,m),

(pvk, i, π)
$← A(pp), : Verify(pp, pvk, T , i, 1− xi, π) = 1

x← Ext(pvk)

 ≈ 0.

As for non-interactive zero-knowledge proofs, the designated-verifier setting requires to explicitly
consider whether the adversary is given access to a verification oracle. We therefore extend the above
definition and consider the unbounded binding property:

Definition 10 (Unbounded Binding Property of a DVPRG). Let (Setup,Stretch,Prove,Verify)
be a DVPRG. A DVPRG satisfies unbounded binding if there exists a (possibly inefficient) extractor
Ext such that for any PPT A, it holds that

Pr

 (pp, T ) $← Setup(1λ,m),

(pvk, i, π)
$← AVerify(pp,·,T ,·,·,·)(pp), : Verify(pp, pvk, T , i, 1− xi, π) = 1

x← Ext(pvk)

 ≈ 0.

Note that in the case of publicly verifiable pseudorandom generators, where T is set to ⊥, this security
notion is equivalent to the binding property.

We now define equivocability. Intuitively, it states that no computationally bounded adversary
can distinguish honestly generated proofs of correctness for bits of the pseudorandom sequence from
simulated proofs (using T ) of opening to true random bits.

Definition 11 (Equivocability of a DVPRG). A designated-verifier pseudorandom generator (Setup,
Stretch,Prove,Equivocate,Verify) is equivocable if there are two additional algorithms (SimSetup,
Equivocate) such that

– SimSetup(1λ,m), on input the security parameter in unary, outputs a triple (pp, T , Ts),
– Equivocate(pp, pvk, i, b, Ts), on input the public parameters, a public verification key pvk, an index
i ∈ [m], a bit b, and a simulation trapdoor Ts, outputs a simulated proof π′;

such that the following distributions are computationally indistinguishable:(pp, T ) $← Setup(1λ,m),

(pvk, x, aux)
$← Stretch(pp)

π
$← (Prove(pp, aux, i))i

: (pp, pvk, T , x,π)

 = D0

≈

(pp, T , Ts) $← SimSetup(1λ,m),

(pvk, x′, aux)
$← Stretch(pp), x

$← {0, 1}m,
π

$← (Equivocate(pp, pvk, i, xi, Ts))i
: (pp, pvk, T , x,π)

 = D1.

A weaker variant of equivocability is the following hiding property, which states that an adversary
cannot guess the value of a particular output (with non-negligible advantage over the random guess),
even if he is given the values of all other outputs together with proofs of correct opening. This notion
is implied by the equivocability property, and it suffices for for the Dwork and Naor construction
of a NIZK proof system for NP; however, equivocable DVPRGs allow for a simpler and more direct
construction of NIZKs, without having to rely on the FLS transform which constructs NIZKs from
NIWI [FLS90].

Definition 12 (Hiding Property of a DVPRG). A DVPRG scheme (Setup,Stretch,Prove,Verify)
is hiding if for any i ∈ [m] and any PPT adversary A that outputs bits, it holds that:

Pr

 (pp, T )
$← Setup(1λ,m),

(pvk, x, aux)
$← Stretch(pp), : A(pp, pvk, i, (xj , πj)j 6=i) = xi

(πj
$← Prove(pp, aux, j))j

 ≈ 1/2.
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Eventually, we define an additional security notion, the consistency, which will prove useful to
analyze the unbounded binding property of one of our candidates:

Definition 13 (Consistency of a DVPRG). Given a DVPRG (Setup,Stretch,Prove,Verify) and a
pair (pp, T ) = Setup(1λ,m; r) for some random coin r, we define for any ε the set ε-Good(r) to be
the set of 4-tuples (pvk, i, π, xi) satisfying

Pr
[
T ′ $← Dist(r) : Verify(pp, pvk, T ′, i, xi, π) = 1

]
≥ ε,

where Dist(r) samples random pairs (pp′, T ′) with Setup(1λ,m) subject to the constraint pp′ = pp,
and outputs T ′. Note that for any ε′ ≥ ε, it holds that ε′-Good(r) ⊂ ε-Good(r). Then, we say that a
DVPRG is consistent if there exists a negligible function ε such that for any PPT adversary A,

Pr

[
r

$← R, (pp, T )← Setup(1λ,m; r), (pvk, i, π, b)
$← A(pp) :

(pvk, i, π, b) ∈ ε-Good(r) \ 1-Good(r)

]
≈ 0.

In Appendix A of the supplementary material, we prove the following:

Theorem 14. Let G = (Setup,Stretch,Prove,Verify) be a binding and consistent DVPRG, such that
for any r, the distribution Dist(r) is efficiently sampleable. Then G is unbounded binding.

4 DVNIZK Proof for NP from DVPRG

4.1 The Hidden Bit Model, and HB Proofs

The hidden bit model is an ideal formalization of a scenario in which both the prover and the verifier
have access to a long string of hidden random bits (let us denote with hb the random bits and t = t(λ)
the length of the hidden string). In this idealized model, the prover can send to the verifier a subset
S ⊂ [t] of the positions of the hidden bits (together with additional informations). The verifier is
restricted to inspecting only the bits of hb residing in the locations specified by the prover, while the
prover can see hb entirely.

Definition 15. A non-interactive proof system HB in the hidden bit model is a pair of PPT algo-
rithms (HB.Prove,HB.Verify) such that

– HB.Prove(hb, x, w), on input a random bit string hb ∈ {0, 1}t, and a word x ∈ L with witness w,
outputs a subset S ⊂ [t] together with a string M of auxiliary informations,

– HB.Verify(x, hb[S],M), on input a word x, the subsequence of hb indexed by S, and an auxiliary
information M , outputs b ∈ {0, 1},

which satisfies the following perfect completeness, ε-soundness, and (adaptive, single-theorem) zero-
knowledge properties:

– Perfect Completeness. For any x ∈ L with witness w, any hb ∈ {0, 1}t, and for (S,M)
$←

HB.Prove(hb, x, w), it holds that HB.Verify(x, hb[S],M) = 1.
– ε-Soundness. For any (possibly unbounded) adversary A,

Pr

[
hb

$← {0, 1}t,
(x, S,M)

$← A(hb) : HB.Verify(x, hb[S],M) = 1 ∧ x /∈ L

]
≤ ε.

– Single-Theorem Zero-Knowledge. For any (possibly unbounded) stateful adversary A, there
exists a simulator (Simzk,Sim

′
zk) such that for every x ∈ L and any w satisfying RL (x,w) = 1,

• the distributions

{(hb[S], S,M) : hb
$← {0, 1}t, (S,M)

$← HB.Prove(hb, x, w)}

and {Simzk(x)} are perfectly indistinguishable;
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• the distributions

{(hb, S,M) : hb
$← {0, 1}t, (S,M)

$← HB.Prove(hb, x, w)}

and
{(hb, S,M) : (hb[S], S,M)

$← Simzk(x), hb
$← Sim′zk(hb[S], S,M, x,w)}

are perfectly indistinguishable. That is, the simulator can generate (hb[S], S,M) without a
witness, and find a completion of the hidden string hb given a witness w, which is identically
distributed to an honestly generated hidden string and proof with w.

Note that in the hidden bit model, the parties do not have access to a common random string,
but to a string of bits which are perfectly hidden to the verifier until the prover opens a subsequence
of them. Therefore, the adaptive and non-adaptive formulations of zero-knowledge are equivalent
since the verifier does not get to see anything about hb before producing a word x with a witness
w (put differently, it is equivalent to define zero-knowledge for all x ∈ L or with respect to adver-
sarially chosen x). Examples of non-interactive proof systems in the hidden-bit model can be found
in [FLS90, KP98]. We stress that the security of these proof systems is unconditional (although a
specific implementation of the HB model can involve cryptography).

4.2 A DVNIZK for NP from any DVPRG

We describe on Figure 2 a general transformation that converts any (unconditional) proof system in
the HB model into a DVNIZK for the same language, given any DVPRG. The DVNIZK inherits the
specificities of the DVPRG: it satisfies unbounded soundness and/or statistical soundness whenever
the DVPRG is unbounded binding and/or statistically binding. At the exception of using a DVPRG
instead of a VPRG, the proof system is identical to the one of [DN00, Section 5.1] (actually, [DN00]
provides a ZAP in the plain model where the first flow can be fixed non-uniformly, which immediately
implies a NIZK in the CRS model. Our construction does not imply a ZAP in the plain model, as we
need to setup a CRS containing, in particular, the public parameters of the DVPRG. These public
parameters must be honestly sampled to maintain the hiding property, hence they cannot be picked
by the verifier in the first round.)

While the scheme is almost identical to the scheme of [DN00], the proof of soundness is more
involved, as it must cope with the weaker binding property of our PRGs. To prove soundness, we
proceed as follows: we identify a “bad event”, which occurs whenever the adversary outputs pvk and
a proof π for some position i of correct opening to 1−xi, where x = Ext(pvk) (Ext being the possibly
inefficient extractor guaranteed by the unbounded binding security notion of the DVPRG). We show
that when this bad even does not happen, then there is a string (essentially x⊕ ρ, where ρ is a long
random string which is part of the CRS) which is a bad string, in the sense that if this string is used
as the hidden bit string of the HB proof system, there exists accepting proofs of incorrect statement
with respect to this hidden string. Then, we rely on the statistical soundness of the HB proof system
to argue that only a tiny fraction of all possible strings (of a given length) are bad strings. Since ρ
is random and x is uniquely defined given pvk, we can rely on the fact that pvk is short to argue,
with a counting argument, that there is a negligible probability (over the random choice of ρ) that
there exists a short pvk such that ρ ⊕ Ext(pvk) is a bad string. Hence, this situation is statistically
unlikely, and we must be in the case where the bad event happens; then, we conclude the proof by
observing that an occurrence of this bad event directly contradicts the unbounded binding property
of the DVPRG. In contrast, the argument of [DN00] uses a counting argument over all possible seeds
of the VPRG, which crucially relies on their stronger binding property which states that any possible
pvk is in the stretch of the PRG, and is bound to a seed (while this seed need not be unique, all seeds
associated to a given pvk must lead to the same pseudorandom string).

Theorem 16. Let G be a hiding unbounded binding DVPRG, and let (Π.Setup, Π.Prove, Π.Verify) be
the DVNIZK proof system given on Figure 2. Then Π satisfies computational witness-indistinguishability
and unbounded adaptive soundness. Furthermore, if G is equivocable, Π satisfies (adaptive, single-
theorem) zero-knowledge.

The completeness of Π follows immediately from the completeness of HB and G. In the remainder
of this section, we prove Theorem 16. The proof of witness-indistinguishability is similar to the one
given in [DN00], but the proof of soundness is more involved (see the previous discussion).
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DVNIZK Proof System Π

Let L be a language and let y ∈ L be a word with witness w. Let λ ← |y|. The DVNIZK
relies on an HB proof system HB for the statement y ∈ L which uses ` = `(λ) hidden bits, and
achieves 2−λ-statistical soundness. Let G = (G.Setup,G.Stretch,G.Prove,G.Verify) be a DVPRG,
with public verification key size s(λ) and output size m(λ), satisfying m > (1 + s/λ)` + `2/λ. In
the following, we consider the HB proof system HB′ obtain by executing HB m/` times in parallel
(with independent hidden bits) and accepting only if all executions are accepted. Note that HB′

uses m hidden bits and achieves 2−λm/`-statistical soundness.

– Π.Setup(1λ) : on input the security parameter in unary, compute (pp, T ) $← G.Setup(1λ,m(λ)),
and ρ $← {0, 1}m. Output crs← (pp, ρ) and T .

– Π.Prove(crs, y, w) : parse crs as (pp, ρ). Compute (pvk, x, aux)
$← G.Stretch(pp). Pick θ

$←
{0, 1}`. For i = 1 to m, set hbi ← xi ⊕ ρi ⊕ θ(i−1 mod `)+1. Define hb = (hbi)i to be the hidden
string of HB′. Compute an HB proof (S,M)

$← HB′.Prove(hb, y, w). For every i ∈ S, compute
πi

$← G.Prove(pp, aux, i). Output (pvk, θ, S, hb[S],M, (πi)i∈S).
– Π.Verify(crs, G,π, T ) : parse crs as (pp, ρ) and π as (pvk, θ, S, hb[S],M, (πi)i∈S). For every
i ∈ S, set xi ← hbi ⊕ ρi ⊕ θ(i−1 mod `)+1 and check that G.Verify(pp, pvk, T , i, xi, πi). Check
that HB′.Verify(y, hb[S],M) returns 1. Output 1 if all checks succeeded, and 0 otherwise.

Fig. 2. Designated-verifier non-interactive zero-knowledge proof system Π for a language L using a DVPRG
G and an HB proof system HB

4.3 Witness Indistinguishability of Π

We prove the witness-indistinguishability of Π through a sequence of hybrids. Let A be a PPT
adversary; assume toward contradiction that∣∣∣∣∣∣∣Pr

 (crs, T )
$← Π.Setup(1λ), A(crs,π) = 1

(y, w0, w1)
$← A(crs), : ∧RL (y, w0) = 1

π
$← Π.Prove(crs, y, w0) ∧RL (y, w1) = 1


− Pr

 (crs, T )
$← Π.Setup(1λ), A(crs,π) = 1

(y, w0, w1)
$← A(crs), : ∧RL (y, w0) = 1

π
$← Π.Prove(crs, y, w1) ∧RL (y, w1) = 1


∣∣∣∣∣∣∣ ≥ ε

for some non-negligible quantity ε. Let us denote Hb for b ∈ {0, 1} the experiment in which we set
(crs, T ) $← Π.Setup(1λ), (y, w0, w1)

$← A(crs), π $← Π.Prove(crs, y, wb), and output b′ $← A(crs,π).
Recall that HB′ consists of m/` parallel repetitions of HB (with independent hidden bits hbj). We

consider a sequence of intermediate hybrids H0.j for j = 0 to m/`, in which we use the witness w1

for the j first repetitions (computing (Sj ,Mj) as HB.Prove(hbj , y, w0)) and the witness w0 for the
repetitions j+1 to m/`. By a standard pigeonhole argument, there exists a j such that the advantage
of A in distinguishing H0.j from H0.j+1 is at least ε`/m. We further divide H0.j in the following
sub-hybrids:

– H0.j.0. In this hybrid, we modify the generation of (hbj+1, Sj+1,Mj+1). Namely, we compute
(pvk, x, aux)

$← G.Stretch(pp) (let xj+1, ρj+1 denote the (j + 1)-th block of ` bits of x, ρ), generate
(hbj+1[Sj+1], Sj+1,Mj+1)

$← Simzk(y), hbj+1 $← Sim′zk(hb
j+1[Sj+1], Sj+1,Mj+1, y, w1), and set

θ ← xj+1 ⊕ ρj+1 ⊕ hbj+1. The other repetitions of HB are executed as before; note that it holds
that hbi = xi ⊕ ρi ⊕ θ(i−1) mod ` for every i ≤ m. By the (perfect) single-theorem zero-knowledge
property of HB, the distribution of (crs,π) in H0.j.1 is identical to its distribution in H0.j , hence
the advantage of A in distinguishing H0.j.1 from H0.j+1 is at least ε`/m.

– H0.j.k. We denote by ` − r the size of Sj+1 (r is the size of the “unopened” subsequence of
hbj+1). For k = 0 to r, we modify the generation of hbj+1 as follows: we generate as before
(hbj+1[Sj+1], Sj+1,Mj+1)

$← Simzk(y), denote Rj+1 the set [`] \ Sj+1 of unopened positions of
hbj+1, and compute
• hbj+1.0[Rj+1]

$← Sim′zk(hb
j+1[Sj+1], Sj+1,Mj+1, y, w0),
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• hbj+1.1[Rj+1]
$← Sim′zk(hb

j+1[Sj+1], Sj+1,Mj+1, y, w1).
Then, we define hbj+1[Rj+1] to be the string that agrees with hbj+1.1[Rj+1] for positions 1 to k,
and with hbj+1.0[Rj+1] for positions k+1 to r. By a standard pingeonhole argument, there exists
a k such that A distinguishes H0.j.k from H0.j.k+1 with probability at least ε`/(mr) ≥ ε/m.

Note that the string hbj+1 differs by a single bit between H0.j.k and H0.j.k+1. From there, we imme-
diately reach a contradiction to the hiding property of G: denoting i ← (j + 1)` + k + 1, we receive
(pp, pvk, i, (xt, πt)t6=i, compute (hbj+1[Sj+1], Sj+1,Mj+1)

$← Simzk(y), guess the value xi at random
(completing the string x), and set θ ← xj+1 ⊕ ρj+1 ⊕ hbj+1. Depending on our guess of xi, the dis-
tribution of (crs,π) is either identical to its distribution in H0.j.k or in H0.j.k+1, hence we distinguish
between xi = 0 and xi = 1 with probability at least ε/m. This concludes the proof.

4.4 Adaptive Single-Theorem Zero-Knowledge of Π

A witness-indistinguishable NIZK proof system for NP implies an adaptive zero-knowledge proof
system for NP, by the transformation of [FLS90]. However, if G is equivocable, there is a more direct
construction: we prove that in this case, the DVNIZK Π is adaptive single-theorem zero knowledge
(and can be made adaptive multi-theorem zero-knowledge using [FLS90]); the argument is simpler
than for witness indistinguishability, does only use Simzk (the simulator Sim′zk is not needed), and
does not require θ (which can be removed from the construction – we keep it in the proof below for
simplicity). Let A be a PPT adversary against the (adaptive) single-theorem zero-knowledge of Π.
Let Sim = (Sim0,Sim1) be the following simulator:

– On input 1λ, Sim0 computes (pp, T ) $← G.SimSetup(1λ,m), and ρ $← {0, 1}m. He outputs crs ←
(pp, ρ) and T .

– On input (crs, T , y), Sim parses crs as (pp, ρ) and computes (pvk, x′, aux) $← G.Stretch(pp). Then,
Sim1 runs (hb[S], S,M)

$← Simzk(y), where Simzk is the simulator of the zero-knowledge property
of HB′. Sim1 picks θ

$← {0, 1}`. For every i ∈ S, he sets xi ← hbi⊕ρi⊕θ(i−1 mod `)+1 and computes
πi

$← G.Equivocate(pp, pvk, i, xi, T ). Sim1 outputs (pvk, θ, S, hb[S],M, (πi)i∈S).

We prove that ∣∣∣∣∣∣∣Pr
 (crs, T )

$← Setup(1λ),

(y, w)
$← A(crs, T ), : (RL (y, w) = 1) ∧ (A(π) = 1)

π
$← Π.Prove(crs, y, w)

−
Pr

 (crs, T )
$← Sim0(1

λ),

(y, w)
$← A(crs, T ), : (RL (y, w) = 1) ∧ (A(π) = 1)

π
$← Sim1(crs, T , y)


∣∣∣∣∣∣∣ ≈ 0,

through a sequence of hybrids.

– Game H0. This is the real game, where we generate (crs, T ) $← Setup(1λ), run (y, w)
$← A(crs, T ),

π
$← Π.Prove(crs, y, w), and b $← A(π).

– Game H1. In this game, we generate instead (crs, T ) as Sim0(1
λ) (that is, we compute (pp, T ) $←

G.SimSetup(1λ,m) and ρ
$← {0, 1}m). Furthermore, we modify Π.Prove(crs, y, w) as follow: af-

ter computing (pvk, x′, aux)
$← G.Stretch(pp), we pick x

$← {0, 1}m and set hbi ← xi ⊕ ρi ⊕
θ(i−1 mod `)+1. We compute the HB proof (S,M) honestly using (y, w) and the hidden string hb.
Finally, we compute the πi as G.Equivocate(pp, pvk, T , i, xi).
By the equivocability of G, the distribution of (pp, pvk, T , x, (πi)i∈S) in H1 is computation-
ally indistinguishable from its distribution in H0, and the rest of the proof is computed from
(pp, pvk, T , x) identically in both games, hence there is a direct reduction from breaking the
equivocability of G to distinguishing H0 and H1.

– Game H2. In this game, instead of picking x $← {0, 1}m and setting hbi ← xi⊕ρi⊕θ(i−1 mod `)+1,
we first pick hb

$← {0, 1} and set xi ← hbi ⊕ ρi ⊕ θ(i−1 mod `)+1 for every i ≤ m. Note that
this is a purely syntactic change, since hb and x are just a uniformly random sharing of (ρi ⊕
θ(i−1 mod `)+1)i≤m, hence this game is perfectly indistinguishable from the previous one.
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– Game H3. In this game, we play as in GameH2 except that we compute (hb[S], S,M)
$← Simzk(y)

instead (note that the remaining hidden bits of hb are never used). By the single-theorem zero-
knowledge property of HB, this game is perfectly indistinguishable from the previous one. Note
that Game H3 does exactly correspond to the simulation with (Sim0,Sim1). This concludes the
proof.

4.5 Unbounded Adaptive Soundness of Π

Let A be a PPT adversary against the soundness of Π, which is given oracle access to a verification
oracle O(crs, ·, ·, T ). Let (crs, T ) $← Π.Setup(1λ), and parse crs as (pp, ρ). Run (y,π)

$← A(crs). Let ε
denote the probability (over the coins of Π.Setup) that Π.Verify(crs, y,π, T ) = 1 and y /∈ L :

Pr

[
(crs, T ) $← Setup(1λ),

(y,π)
$← AO(crs,·,·,T )(crs)

: Π.Verify(crs, y,π, T ) = 1 ∧ y /∈ L

]
= ε.

In the following, we assume for the sake of contradiction that ε is non-negligible. We will construct
from A an adversary B which contradicts the unbounded binding of G. B interacts with A in the
unbounded soundness security experiment of Π. The challenger of the unbounded binding property
of G samples (pp, T ) $← Setup(1λ,m). B receives pp and is given oracle access to G.Verify(pp, ·, T , ·, ·, ·).
It picks ρ $← {0, 1}m, sets crs← (pp, ρ), and runs A(crs). Let q be the number of queries that A asks
to O(crs, ·, ·, T ) in the unbounded soundness security experiment of Π. B simulates the answers of
O(crs, ·, ·, T ) as follows: on input π = (pvk, θ, S, hb[S],M, (πi)i∈S) it sets for every i ∈ S xi ←
hbi ⊕ ρi ⊕ θ(i−1 mod `)+1 and calls G.Verify(pp, ·, T , ·, ·, ·) on input (pvk, i, xi, πi). Then, it verifies the
HB proof (S, hb[S],M) for the statement y ∈ L and outputs 1 iff all checks succeeded. Then, A
outputs a pair (y,π). Since B perfectly simulates crs and the answers of O(crs, ·, ·, T ), it holds that
Π.Verify(crs, y,π, T ) = 1∧y /∈ L with probability ε over the coins of the challenger and A,B. Finally,
B parses π as (pvk∗, θ, S, hb[S],M, (πi)i∈S), picks i∗

$← S, and outputs (pvk∗, i∗, πi∗). To simplify
the analysis in the following, we assume that B also outputs (crs, y,π) in addition to (pvk∗, i∗, πi∗)
(it is only a syntactic modification that will make it more convenient to describe the probability
experiments).

We analyze the probability that G.Verify(pp, pvk∗, T , i∗, 1 − xi∗ , πi∗) = 1. Let us call ‘bad’ a
string hb for which there exists y /∈ L and an accepting proof of y ∈ L under the HB proof
system HB′. Under the 2−λm/`-statistical soundness of HB′, the ratio of bad strings must be at most
2−λm/` < 2λ+s+`. Let us say that a string hb′ is “close to a bad string w.r.t. pp” hb if there exists
θ ∈ {0, 1}` and a public verification key pvk ∈ {0, 1}s(λ) such that hb′ = (xi ⊕ hbi ⊕ θ(i−1 mod `)+1)i
is a bad string, where x = Ext(pp, pvk). As there are at most 2`+s possible choices of (θ, pvk), for any
choice of public parameters pp, the ratio of strings which are close to a bad string w.r.t. pp must be
at most 2−λ−s−` ·2`+s = 2−λ. Therefore, with overwhelming probability 1−2−λ over the distribution
of ρ, ρ is not close to a bad string w.r.t. pp, hence there does not exist a string (y, pvk, θ) with y /∈ L
such that (hbi)i = (xi ⊕ ρi ⊕ θ(i−1 mod `)+1)i is a bad string.

We consider two complementary cases, one of which must necessarily occur:

Case 1. With probability at least ε/2, the output (y,π) of A satisfies Π.Verify(crs, y,π, T ) = 1∧y /∈
L , and for every i ∈ S, it holds that G.Verify(pp, pvk∗, T , i∗, 1− xi, πi) = 1. That is,

Pr

(pp, T ) $← Setup(1λ,m),

(pvk∗, i∗, πi∗ , crs, y,π)
$← B(pp),

x← Ext(pp, pvk∗)

:
Π.Verify(crs, y,π, T ) = 1
∧ y /∈ L ∧ ∀i ∈ S,
G.Verify(pp, pvk∗, T , i, 1− xi, πi) = 1

 ≥ ε

2
,

where B is given oracle access to G.Verify(pp, ·, T , ·, ·, ·). Now, parse π as (pvk∗, θ, S, hb[S],M, (πi)i∈S).
Let x′ denote Ext(pp, pvk∗), and let (hb′i)i = (x′i ⊕ ρi ⊕ θ(i−1 mod `)+1)i. Since a random ρ has
probability at most 1/2λ to be close to a bad string w.r.t. pp, (hb′i)i has probability at most 1/2λ of
being a bad string. Therefore, if case 1 happens, we necessarily have (denoting µ = ε/2− 1/2λ):

Pr

(pp, T ) $← Setup(1λ,m),

(pvk∗, i∗, πi∗ , crs, y,π)
$← B(pp),

x← Ext(pp, pvk∗)

:

Π.Verify(crs, y,π, T ) = 1
∧ y /∈ L ∧ ∀i ∈ S,
G.Verify(pp, pvk∗, T , i, 1− xi, πi) = 1
∧ hb′ is not a bad string

 ≥ µ.
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Note that the condition Π.Verify(crs, y,π, T ) = 1 implies that for all i ∈ S, denoting xi ←
hbi ⊕ ρi ⊕ θ(i−1 mod `)+1, G.Verify(pp, pvk∗, T , i, xi, πi) = 1. Denoting x′ = Ext(pp, pvk∗), it holds by
assumption that G.Verify(pp, pvk∗, T , i, 1 − xi, πi) = 1 for every i ∈ S, hence G.Verify(pp, pvk∗, T ,
i, 1− x′i, πi) = 0. This implies that for any i ∈ S, xi 6= 1− x′i, hence that (xi)i∈S = (x′i)i∈S , which in
turns implies that hb[S] = hb′[S]. Therefore, if case 1 happens, with probability at least ε/2 − 1/2λ

we have the following:

– y /∈ L ,
– Π.Verify(crs, y,π, T ) = 1,
– hb[S] = hb′[S] is not a bad string.

However, by the soundness of the HB proof system HB′, there cannot exist any accepting proof
(S, hb[S],M) for a statement y /∈ L unless hb[S] is a bad string. Since Π.Verify does also check the
HB proof, this event can never happen and we get:

ε

2
− 1

2λ
= 0,

contradicting our assumption that ε is non-negligible. Hence, case 1 never happens and the following
case necessarily happens:

Case 2. There exists i ∈ S such that G.Verify(pp, pvk∗, T , i, 1− xi, πi) = 1 with probability at least
ε/2. That is,

Pr

(pp, T ) $← Setup(1λ,m),

(pvk∗, i∗, πi∗ , crs, y,π)
$← B(pp)

:
Π.Verify(crs, y,π, T ) = 1
∧ y /∈ L ∧ ∃i ∈ S,
G.Verify(pp, pvk∗, T , i, 1− xi, πi) = 1

 ≥ ε

2
.

Since B picks i∗ at random in a set S of size at most m, this gives us in particular

Pr

[
(pp, T ) $← Setup(1λ,m),

(pvk∗, i∗, πi∗ , crs, y,π)
$← B(pp)

: G.Verify(pp, pvk∗, T , i∗, 1− xi, π∗) = 1

]
≥ ε

2m
,

which immediately gives a contradiction to the unbounded binding of G, concluding the proof.

Impact on our LWE-Based Instantiation. Note that our alternative proof strategy, which does
not use any assumed structure for pvk except a bound on its length, is the key to our LWE-based
instantiation. Indeed, if we had to assume some structure of pvk (such as “pvk was honestly generated”),
we would have to include a NIZK proof of validity of pvk in our instantiation (which is similar to the
NIZK proof of validity for the public key used in [RSS19]). Since there might not exist more than a
single witness for the validity of pvk, it seems unlikely that we could use a NIWI instead of a NIZK
here. By removing entirely the need for proving validity of pvk in our LWE-based instantiation, we
enable the construction of a NIZK for NP from LWE using only a NIWI for a simple language (bounded
distance decoding), improving over the result of [RSS19].

5 Constructions of Designated-Verifier Pseudorandom Generators

5.1 A DVPRG from the CDH Assumption

Assumptions. Let DHGen denote a PPT algorithm which, on input 1λ, outputs an integer n, the
description of a group G of order n, and a generator g of G. The computational Diffie-Hellman as-
sumption (CDH), with respect to g over G, states that it is computationally infeasible, for any PPT
algorithm which is given (n, g,G) and a random pair (ga, gb) from G2, to compute gab. The decisional
Diffie-Hellman assumption (DDH), with respect to g over G, states that it is computationally infea-
sible for any PPT algorithm to distinguish the distribution {(ga, gb, gab) | (a, b) $← Z3

n} of random
DDH tuples from the uniform distribution over G3.

The twin (computational or decisional) Diffie-Hellman assumption (twin-CDH and twin-DDH),
defined in [CKS08], are variants of the CDH and DDH assumptions. The twin-CDH problem with
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respect to g over G states that it is computationally infeasible, for any PPT algorithm which is given
(n, g,G) and a random triple (ga, gb, gc) from G3, to compute (gab, gac); twin-DDH is its natural
decisional variant. Twin-CDH (resp. twin-DDH) is equivalent to the standard CDH (resp. DDH)
assumption. However, there is a natural trapdoor test that allows to check the correctness of twin-
DDH tuples: let (α, β) be a random pair of exponents satisfying gc = gα(gb)−β (note that many such
pairs exist). Then given an input (ga, gb, gc), the probability for an arbitrary (possibly unbounded)
adversary A to output a pair (h1, h2) such that the truth value of hβ1h2 = (ga)α does not agree with
the truth value of (h1 = gab) ∧ (h2 = gac) is at most 1/n (see [CKS08]). Therefore, a verifier which
is given the trapdoor (α, β) can check the correctness of a twin Diffie-Hellman tuple, with negligible
error probability. This trapdoor test implies that the gap twin Diffie-Hellman problem, which states
that solving the twin-CDH problem is hard even given an oracle that solves the twin-DDH problem,
is at least as hard as the standard CDH problem.

Our Construction. Our construction will rely on the conjectured hardness of the computational
Diffie-Hellman (CDH) assumption. Let B : G3 7→ {0, 1} be a predicate satisfying the following
property: given (ga, gb, gc), computing B(ga, gab, gac) should be as hard (up to polynomial factors)
as computing (ga, gab, gac). Note that this implies that distinguishing B(ga, gab, gac) from a random
bit given a random triple (ga, gb, gc) is as hard as solving CDH. There are standard method to build
this predicate using e.g. the Goldreich-Levin construction [GL89], see e.g. [CKS08] for an illustration
in the specific case of CDH. Our construction proceeds as follows:

– Setup(1λ,m) : sample (n,G, g) $← DHGen(1λ). For i = 1 to m, pick (ai, bi)
$← Z2

n and set
(ui, vi) ← (gai , gbi). Set pp = (ui, vi)i≤m. For i = 1 to m, pick βi

$← Zn and set αi ← bi + aiβi
(observe that (αi, βi) are uniformly distributed exponents subject to vi = gαiu−βi

i ). Output pp
and T ← (αi, βi)i≤m. We also define SimSetup(1λ,m) to be identical to Setup(1λ,m) and define
Ts = T .

– Stretch(pp) : pick r $← Zn, set pvk ← gr, and for i = 1 to m, set xi
$← B(pvk, uri , v

r
i ). Output

(pvk, x, aux = r).
– Prove(pp, aux, i) : output π ← (uri , v

r
i ).

– Equivocate(pp, pvk, Ts, i, σ) : pick u′ $← G, set v′ = pvkαi(u′)−βi , and check whetherB(pvk, u′, v′) =
σ; if it does not hold, start again. Output π ← (u′, v′).

– Verify(pp, pvk, T , i, σ, π) : parse π as (u′, v′), check whether B(pvk, u′, v′) = σ and check whether
(u′)βiv′ = pvkαi . If both checks pass, output 1; otherwise, output 0.

This construction follows the twin Diffie-Hellman paradigm of Cash, Kiltz, and Shoup [CKS08],
which relies on the fact that computing the twin Diffie-Hellman function, which on input (gx, gy1 , gy2)
outputs (gxy1 , gxy2), is at least as hard as solving the CDH problem, even given an oracle for twin-
DDH.

Theorem 17. If the CDH assumption holds over G, then the above construction is a computationally
hiding unbounded statistically binding DVPRG. Furthermore, if the DDH assumption holds over G,
the above construction is also equivocable.

Proof. Completeness follows easily by inspection. We now look at the unbounded binding property;
by Theorem 14, it suffices to show that the scheme is binding, consistent, and that we can efficiently
sample trapdoors consistent with pp (a proof of Theorem 14 is given in Appendix A). From the
analysis of [CKS08, Section 2], as (gx, gy1 , gy2) uniquely define the pair (h1, h2) such that (h1 =
gxy1) ∧ (h2 = gxy2) and any adversary has negligible probability 1/n of outputting a non-twin-DH
pair (h1, h2) that fools the test, it follows that the scheme is statistically binding (the inefficient
extractor Ext simply extracts r from pvk = gr and computes the string x as xi

$← B(pvk, uri , v
r
i ) for

i = 1 to m). Second, observe that we can efficiently sample trapdoors consistent with pp, by storing
the random values (ai, bi)i and sampling each trapdoor T = (αi, βi) as βi

$← Zn and αi ← bi + aiβi.
Therefore, this defines an efficiently sampleable distribution Dist((ai, bi)i).

We now show that our construction satisfies consistency. Let ε← 2/n5 and let A be an adversary
that, on input pp = (ui, vi)i = (gai , gbi)i, outputs a 4-tuple (pvk, i, π = (u′, v′), σ) such that

Pr[βi
$← Zn : Verify(pp, pvk, (αi, bi + aiβi), i, σ, (u

′, v′)) = 1] ≥ ε.
5 Since n is the order of G and G is a group in which CDH is assumed to hold, 2/n is negligible in the security
parameter.
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The above implies that A outputs (pvk, u′, v′) such that (u′)βiv′ = pvkαi holds with probability at
least 2/n. Suppose now that (pvk, ui, vi, u

′, v′) is not a twin-DH tuple; let us denote pvk = gr and
(u′, v′) = (gs, gt) with s 6= air or t 6= bir. Then the previous equation becomes gsβi+t = grαi , which
gives

βi(s− air) = rbi − t.

However, if s− air 6= 0 or rbi− t 6= 0, then this equation holds with probability at most 1/n over the
random choice of βi, hence since we assumed that this equation is satisfied with probability at least
2/n, it must be that s − air = rbi − t = 0, hence (pvk, ui, vi, u

′, v′) is a twin-DH tuple. But then, it
immediately follows that the above equation is always satisfied, independently of the choice of βi:

Pr[βi
$← Zn : Verify(pp, pvk, (αi, bi + aiβi), i, σ, (u

′, v′)) = 1] = 1,

which concludes the proof of consistency. Since the DVPRG is also statistically binding (in a bounded
sense), we use Theorem 14 to conclude that the above construction satisfies (statistical) unbounded
binding.

We now discuss the hiding property. We show that a PPT adversary against the hiding property of
the above scheme implies the existence of a PPT adversary that solves the computational twin Diffie-
Hellman problem. The result follows from the proof of [CKS08] that the computational twin Diffie-
Hellman problem is at least as hard as the CDH problem. The reduction is relatively straightforward:
given a position i ≤ m, we pick (aj , bj)j 6=i, receive a computational twin-DH challenge (c0, c1, c2), and
set pvk← c0, (uj , vj)← (gaj , gbj ) for every j 6= i, and (ui, vi)← (c1, c2). We output pp← (uj , vj)j≤m,
pvk, and (xj , πj)

$← (B(pvk, cai0 , c
bj
0 ), (cai0 , c

bj
0 )) for every j 6= i. Note that pp, pvk and the xj , πj are

distributed exactly as in an honest execution of the experiment. Then, we run A(pp, pvk, (xj , πj)j 6=i)
and get a bit b. If A guesses the value of xi = B(pvk, c′1, c

′
2), where (c′1, c

′
2) = (cr1, c

r
2) for the value

r such that c0 = pvk = gr, then we efficiently find a hardcore bit for the twin-DH problem with
non-negligible probability. As guessing a hardcore bit for twin-DH is at least as hard as solving the
computational twin-DH problem, the proof follows.

Regarding equivocability, the reduction gets a DDH challenge (c0, c1, c2). It sets pvk← gr, samples
(αi, βi)i

$← Z2m
n and pp = (ui, vi)i as (cai1 , g

αiu−βi

i )i with random ai’s. It computes each proof πi
as (u′, v′)← (cai2 , pvk

αi(u′)−βi). Observe that the distribution of (pp, T , pvk, (πi)i) is identical to the
distribution obtained with an honest run of the DVPRG when (c0, c1, c2) is a DDH tuple, and identical
to a run of the DVPRG with the algorithm Equivocate when (c0, c1, c2). Hence, distinguishing honest
proofs from equivocated proofs is equivalent to breaking the DDH assumption.

Corollary 18. Assuming the computational Diffie-Hellman assumption, there exists an unbounded
designated-verifier non-interactive (adaptive, multi-theorem) zero-knowledge proof system for NP.

Note that the above construction also implies that the existence of a (publicly verifiable) NIZK
proof system for the DDH language (together with the CDH assumption) would imply a NIZK proof
system for NP.

5.2 A DVPRG from the LWE Assumption

We also give a construction of a DVPRG in the LWE setting. Our construction already assumes a
designated-verifier NIWI proof system Π for the LWE language. We stress, however, that Π does not
have to enjoy zero-knowledge; witness-indistinguishability is sufficient. We also note that Π can be
publicly verifiable, in which case the DVPRG becomes publicly verifiable.

Algebraic setting. We largely follow the presentation of [GVW15] and abstract the setting as far as
possible. In the following, let n,m = poly(λ) and q, β = 2poly(λ) with m > n and q > β be suitable
integers. We also assume an error distribution χ that outputs integers e with |e| < β.

The Learning With Errors (LWE) problem (relative to n,m, q, β) is to distinguish access to an
oracle Olwe

real,s (with hardwired uniform s ∈ Znq ) from access to another oracle Olwe
rand. Here, Olwe

real,s

(parameterized over s ∈ Znq ) outputs samples (a, s>a + e) for fresh a
$← Znq and e ← χ, and Olwe

real,s

outputs (a, r) with fresh a
$← Znq and r $← Zq. The LWE assumption is that for every PPT adversary

A, ∣∣∣Pr [AOlwe
real,s(1λ) = 1

]
− Pr

[
AO

lwe
rand(1λ) = 1

]∣∣∣ ≈ 0,
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where the probability is over s $← Znq and the random coins of A and the oracles.
In the following, let A ∈ Zn×mq , and consider the language

LA :=
{
Au | u ∈ Zmq with ||u||∞ < β

}
.

Depending on A, LA may be trivial. However, if A can be written as A =

(
A′

s>A′ + e

)
with ||e||∞ <

β, then LA consists of all zero-encryptions under Regev’s encryption scheme [Reg05]. In that case,
LA is hard to decide under the LWE assumption.

Homomorphic commitments. In the setting above, Gorbunov, Vaikuntanathan, and Wichs [GVW15]
construct homomorphic trapdoor functions (HTDFs). As they point out, HTDFs can also be viewed
as homomorphic commitments. Formally, an HTDF HF consists of the following PPT algorithms:
Key generation. HF.Setup(1λ) outputs a keypair (pk, sk). We require that pk defines input, output,

and index sets U , V, and X . These sets must be efficiently decidable, and we assume are efficiently
samplable distributions DU and DV over U and V.

Function evaluation. fpk,x evaluates a deterministic function from U to V. We can view fpk,x(u)
as a commitment under pk to x with random coins u.

Function inversion. Invsk,x probabilistically samples a preimage of fpk,x. We require that for every
(pk, sk) in the range of HF.Setup, every x ∈ X , and every v in the range of fpk,x, the value Invsk,x(v)
is distributed statistically close to a random preimage of v under fpk,x sampled from DU .

Homomorphic evaluation. Evalin and Evalout allow homomorphic computations on inputs and
outputs, in the following sense. For all pk in the range of HF.Setup, all ` ∈ N, all functions g
(represented as circuits), all (xi, ui, vi) ∈ X × U × V (1 ≤ i ≤ `) with vi = fpk,xi

(ui), and for
u∗ := Evalinpk(g, (xi, ui)

`
i=1) and v∗ := Evaloutpk (g, (vi)

`
i=1), we have

fpk,g(x1,...,x`)(u
∗) = v∗.

Dual-mode homomorphic commitments. For security, [GVW15] require that it is computationally
hard to find (x, u, x′, u′) with x 6= x′ and fpk,x(u) = fpk,x′(u

′). When viewing HTDFs as commitment
schemes, this corresponds to a computational binding property. For our purposes, however, we require
a stronger property that [GVW15] mention but do not formally define or use. Namely, in analogy
to dual-mode commitment schemes [GS08], we require that there are two computationally indistin-
guishable ways to sample public keys: one way leads to a statistically hiding commitment scheme,
and the other to a statistically binding scheme. In the HTDF setting, this translates to the following
requirements:
Statistically hiding. For any fixed pk in the range of HF.Setup, and any x, x′ ∈ X , the random

variables fpk,x(u) and fpk,x′(u) (for random u← DU ) are statistically close.
Perfectly binding under alternate key generation. There exists a PPT algorithm HF.Setupbind

that outputs public keys pkbind with the following properties:
– pkbind

c
≈ pk for public keys pk output by HF.Setup,

– the “function evaluation” and “homomorphic evaluation” properties above also hold (perfectly)
for public keys pkbind,

– for all pkbind in the range of HF.Setupbind, and all x, x′ ∈ X with x 6= x′, the sets {fpkbind,x(u) |
u ∈ U} and {fpkbind,x′(u) | u ∈ U} are disjoint. In other words, there are no (x, u, x′, u′) with
x 6= x′ and fpkbind,x(u) = fpkbind,x′(u

′).

The instantiation of Gorbunov, Vaikuntanathan, and Wichs. [GVW15] offer a leveled instantiation
of dual-mode homomorphic commitments. That is, their construction only allows for an arbitrary,
but a-priori bounded number of homomorphic base operations on commitments. If this number of
operations is exceeded, correctness will cease to hold. For our purposes, this leveled construction is
sufficient, since the number and type of homomorphic operations is known in advance.

We further note that their HTDF application does not require any dual-mode features. However,
in [GVW15, App. B], they explicitly describe and analyze what we call HF.Setupbind above. They
show that their construction is secure (in the sense above) under the LWE assumption.

We will not need to consider any specifics of their construction, except for one. Namely, in their
scheme, {0, 1} ⊂ X ⊂ Z, and commitments to x are of the form fpk,x(u) = AU + xG for fixed
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A,G ∈ Zn×mq defined in pk, and a short U ∈ Zm×mq with ||U||∞ < β. In other words, commitments
to x = 0 are composed of m elements of the language LA defined above. Furthermore, a preimage u
is the corresponding witness U. Hence, given an argument system for LA, we can prove that a given
commitment v commits to a given x by proving that v − xG ∈ LmA.

Our construction. We can now give our construction of a DVPRG. We assume dual-mode homomorphic
commitments HF as described above, and any family of PRGs Gm : {0, 1}λ → {0, 1}m. In the
following, let Gm,i denote the circuit that computes the i-th output bit of Gm. Furthermore, we
assume a NIWI proof system Π = (Π.Gen, Π.Prove, Π.Verify) for the language LA. Slightly abusing
notation, we will use NIWI as an argument system for the language (LA)m.

– Setup(1λ,m) runs pkbind
$← HF.Setupbind(1

λ) and (crs, T ) $← Π.Gen(1λ) (for the language LA

given by the matrix A defined in pkbind), and outputs public parameters pp = (pkbind, crs) and a
trapdoor T .

– Stretch(pp) samples s = (s1, . . . , sλ)
$← {0, 1}λ and u1, . . . , uλ

$← DU , then computes vi =
fpkbind,si(ui), and finally outputs pvk = (vi)

λ
i=1, x = Gm(s), and aux = (s, (ui)

λ
i=1). Observe

that the size of pvk does not depend on m.6
– Prove(pp, aux, i) (for aux = (s, (uj)

λ
j=1)) computes vi = fpkbind,si(ui) exactly as Stretch, and derives

a witness u∗ = Evalinpkbind(Gm,i, (sj , uj)
λ
j=1) that explains v∗ = Evaloutpkbind

(Gm,i, (vj)
λ
j=1) as v∗ =

fpkbind,b(u
∗). By our discussion above, we have that hence v∗ − biG ∈ LmA with witness u∗. Hence,

Prove next computes and outputs a proof π $← Π.Prove(crs, v∗ − bG, u∗).
– Verify(pp, pvk, T , i, b, π) parses pvk = (vi)

λ
i=1, then computes

v∗ = Evaloutpkbind

(
Gm,i, (vj)

λ
j=1

)
,

and finally returns Π.Verify(crs, v∗ − biG, π, T ).

Theorem 19. Assume that LWE holds for the parameters from [GVW15], that Gm is pseudorandom,
and that Π is perfectly complete, computationally witness-indistinguishable and satisfies unbounded
adaptive soundness. Then the above DVPRG is perfectly complete, equivocable, and has the unbounded
binding property.

We provide a proof of Theorem 19 in Appendix B.
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Supplementary Material

A Sufficient Condition for Unbounded Binding DVPRGs

To simplify the construction of unbounded binding DVPRGs, we introduce a new security notion, the
consistency, which provides a simple sufficient condition for satisfying unbounded binding. Informally,
the consistency property states that if A can produce a proof which is accepted with non-negligible
probability over a random choice of trapdoor (conditioned on being consistent with the public pa-
rameters), then this proof must be accepted with overwhelming probability over the choice of T . We
prove afterwards that if a DVPRG is binding and consistent, it also satisfies the unbounded binding
property. The proof of this implication proceeds by showing that we can replace the verification oracle
with T hardcoded by a verification oracle which samples a fresh trapdoor T ′ to answer each query,
and that this change will not be noticeable by A since, by the binding property and the consistency
of the DVPRG, A has negligible probability to produce a proof that would have been accepted (resp.
refused) by the verification with T , but refused (resp. accepted) by the verification with T ′. Intu-
itively, the consistency capture the following idea: a DVPRG will satisfy unbounded binding if the
verification of a proof does not leak a significant amount of information about the trapdoor, in the
sense that a verification with a different trapdoor consistent with the public parameters will return
the same result with overwhelming probability.

Definition 20 (Consistency of a DVPRG). Given a DVPRG (Setup,Stretch,Prove,Verify) and a
pair (pp, T ) = Setup(1λ,m; r) for some r, we define for any ε the set ε-Good(r) to be the set of 4-tuple
(pvk, i, π, xi) satisfying

Pr
[
T ′ $← Dist(r) : Verify(pp, pvk, T ′, i, xi, π) = 1

]
≥ ε,

where Dist(r) samples random pairs (pp′, T ′) with Setup(1λ,m) subject to the constraint pp′ = pp,
and outputs T ′. Note that for any ε′ ≥ ε, it holds that ε′-Good(r) ⊂ ε-Good(r). Then, we say that a
DVPRG is consistent if there exists a negligible function ε such that for any PPT adversary A,

Pr

[
r

$← R, (pp, T )← Setup(1λ,m; r), (pvk, i, π, b)← A(pp) :
(pvk, i, π, b) ∈ ε-Good(r) \ 1-Good(r)

]
≈ 0.

The following lemma will prove useful in the analysis:

Lemma 21. Let (Setup,Stretch,Prove,Verify) be a binding and consistent DVPRG scheme, with ran-
dom space R for Setup. Then, it holds that

Pr


r

$← R,
(pp, T )← Setup(1λ,m; r),

T ′ $← Dist(r),
(pvk, i, xi, π)

$← A(pp)

:
Verify(pp, pvk, T , i, xi, π)
6= Verify(pp, pvk, T ′, i, xi, π)

 ≈ 0.

Proof. By the binding property of the DVPRG, we have for any PPT A

Pr

 (pp, T ) $← Setup(1λ,m),

(pvk, i, π)
$← A(pp), : Verify(pp, pvk, T , i, 1− xi, π) = 1

x← Ext(pvk)

 ≈ 0.

Therefore, let r $← R, (pp, T ) ← Setup(1λ,m; r), T ′ $← Dist(r), and (pvk, i, xi, π)
$← A(pp). By the

binding property of the DVPRG, it must be (except with negligible probability) that Verify(pp, pvk, T ,
i, 1−xi, π) = 0. But then, since A is only given pp, it must hold that Verify(pp, pvk, T ′, i, 1−xi, π) = 1
happens with non-negligible probability for any trapdoor T ′ consistent with pp; that is, there exists
a string x′ = x′1 · · ·x′m such that

Pr
[
T ′ $← Dist(r) : Verify(pp, pvk, T ′, i, 1− x′i, π) = 1

]
≈ 0.
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Let x′ be such a string. Observe that

Pr[r
$← R, (pp, T )← Setup(1λ,m; r), T ′ $← Dist(r) : Verify(pp, pvk, T ′, i, xi, π)]

=Pr[r
$← R, (pp, T )← Setup(1λ,m; r) : Verify(pp, pvk, T , i, xi, π)]

by definition of Dist(r). Let us denote p this probability. We can consider two cases:

– Either xi = 1−x′i, in which case p ≈ 0 by the binding property of the DVPRG, hence Verify(pp, pvk,
T , i, xi, π) = Verify(pp, pvk, T ′, i, xi, π) = 0 except with negligible probability over the choice of
(r, T ′).

– Either xi = x′i. Assume toward contradiction that

Pr


r

$← R,
(pp, T )← Setup(1λ,m; r),

T ′ $← Dist(r),
(pvk, i, xi, π)

$← A(pp)

:
Verify(pp, pvk, T , i, xi, π)
6= Verify(pp, pvk, T ′, i, xi, π)

 ≥ µ,
where we define µ(λ) to be 2ε · (1 − ε), with ε being the negligible function guaranteed by the
consistency definition (note that since ε is a negligible function, so is µ). Then we immediately
have that

Pr[(pp, T ) $← Setup(1λ,m) : Verify(pp, pvk, T , i, xi, π)] ≥ ε.

As the DVPRG is consistent, this further implies that Pr[(pp, T ) $← Setup(1λ,m) : Verify(pp, pvk,
T , i, xi, π)] = 1− negl(λ). Therefore,

Pr


r

$← R,
(pp, T )← Setup(1λ,m; r),

T ′ $← Dist(pp),
(pvk, i, xi, π)

$← A(pp)

:
Verify(pp, pvk, T , i, xi, π)
6= Verify(pp, pvk, T ′, i, xi, π)

 ≈ 0,

contradicting our assumption.
ut

Given Lemma 21, we obtain the following sufficient conditions for a DVPRG to be unbounded
binding (repeated from Section 3):

Theorem 22. Let G = (Setup,Stretch,Prove,Verify) be a binding and consistent DVPRG, such that
for any r, the distribution Dist(r) is efficiently sampleable. Then G is unbounded binding.

Proof. Let A be a PPT adversary against the unbounded binding of G. We must show that

Pr

 (pp, T ) $← Setup(1λ,m),

(pvk∗, i∗, π∗)
$← AVerify(pp,·,T ,·,·,·)(pp), : Verify(pp, pvk∗, T , i∗, 1− xi, π∗)

x← Ext(pvk∗)

 ≈ 0.

In the real game H0, the challenger samples (pp, T ) $← Setup(1λ,m). Let q be the number of calls
to Verify(pp, ·, T , ·, ·, ·); that is, A interacts (adaptively) with Verify(pp, ·, T , ·, ·, ·) for q queries, and
outputs a triple (pvk∗, i∗, π∗). We prove theorem 14 through a sequence of q+2 hybrids, starting with
j = 0.

Hybrid Hj. In this game, upon receiving the kth query (pvk, i, b, π) from A, the oracle Ojpp,T an-
swers as follows: if k ≤ j, it samples a new trapdoor Tk $← Dist(pp) and outputs G.Verify(pp, pvk, Tk, i,
b, π). Otherwise, it outputs Verify(pp, pvk, T , i, b, π).

Claim. For all j ≤ q, games Hj and Hj+1 are indistinguishable.

Proof. First, note that the probability

Pr


r

$← R,
(pp, T )← Setup(1λ,m; r),

T ′ $← Dist(r),
(pvk, i, xi, π)

$← A(pp)

:
Verify(pp, pvk, T , i, xi, π)
6= Verify(pp, pvk, T ′, i, xi, π)
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is identical to the probability

Pr


r

$← R,
(pp, T )← Setup(1λ,m; r),

(T0, T1) $← Dist2(r),
(pvk, i, xi, π)

$← A(pp)

:
Verify(pp, pvk, T0, i, xi, π)
6= Verify(pp, pvk, T1, i, xi, π)

 ,
since the distributions {(pp, T ) $← Setup(1λ,m)} and {(pp, T ′) : r $← R, (pp, T )← Setup(1λ,m; r), T ′ $←
Dist(r)} are identical.

Assume now that there is a PPT adversary A that can distinguish between the games Hj and
Hj+1 with non-negligible probability. Since the only difference between these hybrids is the answer
of the oracle to the (j + 1)th query, it must necessarily hold that the answer of the oracle to the
(j+1)th query is different in Hj and Hj+1 with non-negligible probability. Consider now the following
adversary B against the consistency of G: upon receiving pp from the challenger, it runs A on pp.
For kth query (pvk, i, b, π) of A from k = 1 to j, it perfectly simulates the behavior of the oracle
Ojpp,T by sampling a fresh new trapdoor Tj and returning G.Verify(pp, pvk, T , i, b, π) (note that by
assumption, this sampling procedure is efficient). then, upon receiving the (j+1)th query (pvk, i, b, π)
of A, it outputs (pvk, i, b, π) and aborts the simulation. Note that the simulation never used the
actual value of T ; by our assumption, if we now sample T and Tj+1 from Dist(r), it must be
that G.Verify(pp, pvk, T , i, xi, π) 6= G.Verify(pp, pvk, Tj+1, i, xi, π) holds with non-negligible probability,
contradicting the result of Lemma 21

Hybrid Hq+1. Note that in game Hq, the oracle Oqpp,T does not use T anymore; rather, it samples
new trapdoors consistent with pp to answer every query. In game Hq+1, the challenger will exactly
play the game of the (bounded) binding of G. Furthermore, it perfectly simulates all q answers
of the oracle Oqpp,T by sampling a new trapdoor Tk $← Dist(r) for each query k (which can be
done efficiently by assumption), and answering Verify(pp, pvk, Tk, i, b, π). Note that Hq and Hq+1 are
perfectly indistinguishable. By the (bounded) binding property of G, A has negligible probability to
win game Hq+1, which concludes the proof. ut

B Proof of Security for the LWE-Based Construction

We provide a proof of Theorem 19 below:

Proof. Completeness. Completeness follows from the correctness of HF and the completeness of Π.
Binding. To prove that our scheme satisfies the unbounded binding property from Definition 10,
observe that any given pp = pkbind, pvk = (vj)

λ
j=1, and i determine a unique HTDF image v∗ =

Evaloutpkbind
(Gm,i, (vj)

λ
j=1). By the binding property of HF (when using alternate keys generated by

HF.Setupbind), this means that v∗−xiG ∈ LA for at most one value of xi. Consider the extractor Ext
that, on input pp, pvk, outputs x = (x1, . . . , xm). Observe that now, any successful forgery (pvk, i, π)
in the sense of Definition 10 for a bit 1 − xi directly corresponds to a valid proof Π for a false
statement. Hence, unbounded soundness follows from the unbounded adaptive soundness of NIWI.
Equivocability.We first describe the SimSetup and Equivocate algorithms. The algorithm SimSetup(1λ,m)

proceeds like Setup(1λ,m), except that it chooses a non-binding pk through (pk, sk)
$← HF.Setup(1λ),

and additionally outputs an equivocation trapdoor Teq = sk.
Equivocate(pp, pvk, i, b, Teq), first parses its input as pp = (pk, crs), pvk = (vi)

λ
i=1, and Teq = sk,

and then samples a preimage u∗ $← Invsk,b(v
∗) of v∗ = Evaloutpk (Gm,i, (vj)

λ
j=1). We note that because

of the statistical hiding property of HF, such a preimage exists even when Gm,i(s) 6= b. Since this
preimage satisfies fpk,b(u∗) = v∗, u∗ is a witness for a true instance of LA. Equivocate thus computes
and outputs a proof π $← Π.Prove(crs, v∗ − bG, u∗).

We now show indistinguishability of the two distributions from Definition 11. We proceed with a
number of intermediate distributions:
D0 is the distribution from the left-hand side of Definition 11:

D0 =

(pp, T ) $← Setup(1λ,m),

(pvk, x, aux)
$← Stretch(pp)

π
$← (Prove(pp, aux, i))i

: (pp, pvk, T , x,π)
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D0.1 uses parameters pp = (pk, crs) generated through SimSetup (instead of through Setup). By the
dual-mode property of HF, this changes A’s success probability only negligibly. We will use the
now-available trapdoor Teq = sk generated additionally by SimSetup shortly.

D0.2 uses Equivocate to compute proofs πi
$← Equivocate(pp, pvk, i, xi, Teq). Note that we still use the

bits xi generated by Stretch. By construction of Equivocate, this change only modifies the witness
used to compute the corresponding NIWI proofs πi. Hence, by the witness-indistinguishability of
Π, this only changes the distribution of proofs πi in an indistinguishable way.

D0.3 changes the initial commitment pvk = (vi)i such that each vi is computed as vi = fpk,s′i(ui)
(instead of vi = fpk,si(ui)). Observe that the values ui are independently random and are now
used only to generate the vi. Hence, the statistical hiding property of HF implies that this change
is only statistical.

D1 We now change the values xi that determine what bits are opened from xi = Gm,i(s) to indepen-
dently random bits. Since the seed bits si are at this point used nowhere else in the game, this
change can be justified with the pseudorandomness of Gm. The resulting distribution is exactly
the distribution from the right-hand side of Definition 11.
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