
Reusable Designated-Verifier NIZKs for all NP

from CDH

Willy Quach
Northeastern University∗

Ron D. Rothblum
Technion†

Daniel Wichs
Northeastern University‡

Abstract

Non-interactive zero-knowledge proofs (NIZKs) are a fundamental cryptographic
primitive. Despite a long history of research, we only know how to construct NIZKs
under a few select assumptions, such as the hardness of factoring or using bilinear
maps. Notably, there are no known constructions based on either the computational or
decisional Diffie-Hellman (CDH/DDH) assumption without relying on a bilinear map.

In this paper, we study a relaxation of NIZKs in the designated verifier setting (DV-
NIZK), in which the public common-reference string is generated together with a secret
key that is given to the verifier in order to verify proofs. In this setting, we distinguish
between one-time and reusable schemes, depending on whether they can be used to
prove only a single statement or arbitrarily many statements. For reusable schemes, the
main difficulty is to ensure that soundness continues to hold even when the malicious
prover learns whether various proofs are accepted or rejected by the verifier. One-time
DV-NIZKs are known to exist for general NP statements assuming only public-key
encryption. However, prior to this work, we did not have any construction of reusable
DV-NIZKs for general NP statements from any assumption under which we didn’t
already also have standard NIZKs.

In this work, we construct reusable DV-NIZKs for general NP statements under
the CDH assumption, without requiring a bilinear map. Our construction is based on
the hidden-bits paradigm, which was previously used to construct standard NIZKs. We
define a cryptographic primitive called a hidden-bits generator (HBG), along with a
designated-verifier variant (DV-HBG), which modularly abstract out how to use this
paradigm to get both standard NIZKs and reusable DV-NIZKs. We construct a DV-
HBG scheme under the CDH assumption by relying on techniques from the Cramer-
Shoup hash-proof system, and this yields our reusable DV-NIZK for general NP state-
ments under CDH.

We also consider a strengthening of DV-NIZKs to the malicious designated-verifier
setting (MDV-NIZK) where the setup consists of an honestly generated common random
string and the verifier then gets to choose his own (potentially malicious) public/secret
key pair to generate/verify proofs. We construct MDV-NIZKs under the “one-more
CDH” assumption without relying on bilinear maps.

∗Email: quach.w@husky.neu.edu.
†Email: rothblum@cs.technion.ac.il. Research supported in part by the Israeli Science Foundation

(Grant No. 1262/18).
‡Email: wichs@ccs.neu.edu. Research supported by NSF grants CNS-1314722, CNS-1413964, CNS-

1750795 and the Alfred P. Sloan Research Fellowship.

1

mailto:quach.w@husky.neu.edu
mailto:rothblum@cs.technion.ac.il
mailto:wichs@ccs.neu.edu

1 Introduction

(Non-Interactive) Zero-Knowledge. Zero-knowledge proofs, introduced in the semi-
nal work of Goldwasser, Micali, and Rackoff [GMR85, GMR89], allow a prover to convince
a verifier that a statement is valid without revealing anything beyond its validity. Stan-
dard zero-knowledge proof systems are interactive. Blum, Feldman, and Micali [BFM88]
introduced the concept of non-interactive zero-knowledge (NIZK) proofs, which consist of
a single message from the prover to the verifier. Such NIZKs cannot exist in the plain
model, and are therefore considered in the common reference string (CRS) model, where
a trusted third party chooses some common string (either uniformly at random or from
some designated distribution) which is given to both the prover and the verifier. Such
NIZKs for general NP statements have been constructed from a few select assumptions
such as: (doubly-enhanced) trapdoor permutations which can be instantiated from factor-
ing [BFM88, DMP88, FLS99, Gol11], the Diffie-Hellman assumption over bilinear groups
[CHK03, GOS06] indistinguishability obfuscation [SW14] or fully exponential KDM hard-
ness [CCRR18]. We also have such NIZKs in the random-oracle model [FS87].1 However,
despite a long history of research, we don’t have any constructions based on several com-
mon standard assumptions: most notably the computational or decisional Diffie-Hellman
assumptions (CDH, DDH) without requiring a bilinear map, or the learning-with-errors
(LWE) assumption.

Designated-Verifier NIZK. In this work, we focus on a relaxed notion of NIZKs in
the designated-verifier setting (DV-NIZK). In this model a trusted-third party generates a
CRS together with secret key which is given to the verifier and is used to verify whether
proofs are accepting or rejecting. We distinguish between schemes having one-time (a.k.a.
single-theorem) security versus reusable (a.k.a. multi-theorem) security. One-time secure
schemes only guarantee soundness for a single proof of a single statement. However, since
the verifier’s decision whether to accept or reject a proof depends on the secret key, a
malicious prover may be able to learn something about the secret key over time by producing
many proofs and seeing whether they are accepted or rejected by the verifier. Reusable
DV-NIZKs ensure that soundness continues to hold even in such settings, where a prover
can test whether the verifier accepts or rejects various proofs. In terms of constructions,
there appears to be a huge gap between these notions. One-time secure DV-NIZKs were
constructed for general NP statements assuming only the existence of public-key encryption
[PsV06]. On the other hand, prior to this work, we did not have any constructions of
reusable DV-NIZKs for general NP statements based on any assumptions under which we
don’t already also have standard NIZKs.

Malicious-Designated-Verifier NIZK. We also consider a strengthening of (reusable)
DV-NIZKs to the malicious-designated-verifier setting (MDV-NIZKs). In this setting, the
trusted party only generates a common uniformly random string. The verifier then gets to
choose a public/secret key pair where the public key is used by the prover to generate proofs

1Additionally, we have constructions of NIZKs with an inefficient prover based on one-way permutations
[FLS99]. In this work, we restrict ourselves to NIZKs where the prover can generate proofs efficiently given
an NP witness.

2

and the secret key is used by the verifier to verify proofs. The main difference between DV-
NIZKs and MDV-NIZKs is that, in the latter, we require zero-knowledge to hold even if
the public key is chosen maliciously by the verifier. Therefore, an MDV-NIZK is similar to
standard NIZKs in that the only trusted setup consists of a common random string, but an
MDV-NIZK also requires additional potentially untrusted setup where the verifier publishes
a public-key for which it keeps the corresponding secret key.

The notion of (reusable) MDV-NIZKs is equivalent to 2-round malicious-verifier ZK
protocols in the common random string model (where the verifier’s first-round message is
reusable) by thinking of the verifier’s public key as the first-round message. It is easy to see
that the construction of non-reusable DV-NIZKs of [PsV06] extends naturally to yield non-
reusable MDV-NIZKs assuming 2-round maliciously secure oblivious transfer in the common
random string model. However, prior to this work, we did not have any constructions of
reusable MDV-NIZKs for general NP statements based on any assumptions under which
we don’t already also have standard NIZKs.

Prior Work on DV-NIZKs and NIZKs with Pre-Processing. In prior work, the
notion of DV-NIZKs was mainly studied in the context of non-malleable and CCA secure
encryption. It is known that one-time DV-NIZKs allow us to compile any CPA secure
(public-key) encryption scheme into a non-malleable one [PsV06] and reusable DV-NIZKs
can compile it into a CCA secure one (by adapting the [NY90, DDN91] paradigm to the
designated-verifier case). In this context, the work of Cramer and Shoup [CS98, CS02]
constructed “hash-proof systems” which are unconditionally secure reusable DV-NIZKs
for specific “algebraic” languages (e.g., the equality of two discrete logarithms) and used
them to get practical CCA secure encryption. However, reusable DV-NIZKs have received
surprisingly little attention as a general primitive. We believe that this notion is naturally
interesting beyond its applications to non-malleable and CCA encryption. For example, it
can take the place of standard NIZKs in the context of multiparty computation in scenarios
where there is some (reusable) trusted setup.

DV-NIZKs can be thought of as a special case of a more general notion of “NIZKs
with preprocessing” in which a trusted-third party creates a CRS together with two secret
key: tdV given to the verifier and tdP given to the prover. We can consider two special
cases of such NIZKs with preprocessing: if tdP is empty then this corresponds to the
“designated-verifier” (DV-NIZK) setting that we study in this work, and if tdV is empty
then we can think of this as a “designated-prover” (DP-NIZK). Several prior works study
NIZKs with preprocessing [DMP90, KMO90, LS91, Dam93, DFN06, CC18] but all either
(1) only consider specific “algebraic” languages rather than general NP, (2) are not reusable
or (3) require assumptions such as factoring from which we already have standard NIZKs.
The one exception is a very recent work of Kim and Wu [KW18] (CRYPTO 2018), which
gave a novel construction of reusable DP-NIZKs for general NP languages under the LWE
assumption. In that work, they explicitly asked the question whether one can construct
reusable NIZKs in the preprocessing model under the CDH/DDH assumption. We answer
their open question positively in this paper by constructing reusable DV-NIZKs under CDH.
It remains a fascinating open question whether one can construct reusable DV-NIZKs under
LWE, and conversely, whether one can construct reusable DP-NIZKs under CDH/DDH.

3

1.1 Our Results.

In this work, we construct reusable DV-NIZKs for general NP languages under the com-
putational Diffie-Hellman (CDH) assumption without requiring a bilinear map.

Theorem 1.1. Under the CDH assumption, there exists an (adaptively secure, statistically
sound) reusable DV-NIZK proof system for all NP.

We also construct reusable MDV-NIZKs for general NP languages under the one-more
CDH (OM-CDH) assumption without requiring a bilinear map.

Theorem 1.2. Under the One-More CDH assumption (Definition 6.3), there exists an
(adaptively secure, statistically sound) reusable MDV-NIZK proof system for all NP.

Our construction goes through the hidden-bits paradigm introduced by Feige, Lapidot
and Shamir [FLS99] (see also [Gol01, Gol11]) to construct standard NIZKs. This paradigm
consists of two steps. First, construct a NIZK for general NP statements in an idealized
model called the “hidden-bits model” where the prover is given a long string of uniformly
random bits and can choose to reveal some subset of them to the verifier. Such NIZKs in
the hidden-bits model were constructed unconditionally with statistical soundness and zero
knowledge. Second, use a cryptographic tool to compile NIZKs in the hidden-bits model
to NIZKs in the CRS model. Such a compiler was constructed concretely using (doubly
enhanced) trapdoor permutations, which can be instantiated based on factoring.

We generalize the second step of the hidden bits paradigm by defining a cryptographic
primitive called a “hidden-bits generator” (HBG) which can be used to compile NIZKs
in the hidden-bits model into ones in the CRS model.2 This primitive modularizes the
“hidden-bits paradigm” and simplifies the task of constructing NIZKs by reducing it to the
task of constructing a HBG. We also clarify how to use HBG to get adaptive ZK security via
the “hidden bits paradigm”, which turns out to be surprisingly subtle and was not very clear
from prior presentations of this paradigm. To get our main result, we generalize the hidden
bits paradigm even further by extending the notion of HBG to the designated-verifier setting
(DV-HBG) and the malicious-designated-verifier setting (MDV-HBG) and showing that the
same compiler allows us to go from DV-HBG (resp. MDV-HBG) to reusable DV-NIZKs
(resp. MDV-NIZKs). We then show how to construct DV-HBG from the computational
Diffie-Hellman (CDH) assumption without bilinear maps. The last step uses the Cramer-
Shoup hash-proof system, which can be thought of as a reusable DV-NIZK for equality of
two discrete logarithms. Therefore we are in some sense bootstrapping a reusable DV-NIZK
for this specific language to get a reusable DV-NIZK for all of NP. Finally, we show how
to construct MDV-HBG from the one-more CDH (OM-CDH) assumption. This essentially
starts with our construction of DV-HBG, which is clearly insecure in the the malicious-
designated-verifier setting, and shows how to immunize it against malicious attacks. While
the high level idea is simple, the proof of security is quite involved and uses techniques
which may be of independent interest.

2A similar primitive called a “verifiable pseudorandom generator” was defined by [DN00] for the purpose
of constructing ZAPs, which also lead to a construction of NIZKs.

4

1.2 Technical Overview

NIZKs via the Hidden-Bits Paradigm. We first review the “hidden-bits paradigm”
proposed by [FLS99]; see [Gol01, Gol11] for a modern presentation which we follow here.

The starting point of this paradigm is a construction of NIZKs in an idealized model
called the “hidden-bits model”. In this model, there is a trusted third party that generates
uniformly random bits r1, . . . , rk and gives them to the prover. The prover outputs a
proof π along with a subset I ⊆ [k] of the bits to open. The verifier gets (I, π) from the
prover together with the bits {ri}i∈I from the trusted third party. Note that the verifier
does not learn anything about the unopened bits {ri}i 6∈I and the prover cannot modify the
values of the opened bits {ri}i∈I . Such NIZKs in the hidden-bits model can be constructed
unconditionally with security against an unbounded prover/verifier where the soundness
error can be made exponentially small.

The second step compiles NIZKs in the hidden-bits model into NIZKs in the CRS
model. Such a compiler was presented by [FLS99, Gol01, Gol11] using doubly-enhanced
trapdoor permutations (TDPs) (see also [BY93, GR13, CL17]). On a high level, the CRS
consists of random values y1, . . . , yk in the range of the TDP. The prover chooses a random
permutation fcom along with an inversion trapdoor sk and inverts all of the values in the CRS
to get preimages x1, . . . , xk. Define r1, . . . , rk to be hardcore bits of x1, . . . , xk. The prover
then runs the hidden-bits prover with r1, . . . , rk to generate some proof (π, I) to which it
appends the values com, {xi}i∈I . The verifier checks yi = fcom(xi), computes {ri}i∈I to be
the hardcore bit of xi and then runs the hidden bits verifier on (π, I). Intuitively, a malicious
prover has a extremely limited ability to control the randomness r1, . . . , rk by choosing com;
by relying on an exponentially small soundness error of the hidden-bits proofs which survives
a union-bound over all such com’s, this flexibility is insufficient to break soundness. On the
other hand, the verifier does not learn anything about the values {ri}i 6∈I by the security
of the TDP.3 While this is the high level approach, there are some subtleties involved; see
[BY93, Gol01, Gol04, Gol11, GR13, CL17].

Hidden-Bits Generator (HBG). We begin by defining an abstract cryptographic prim-
itive, which we call a hidden-bits generator (HBG), that can be used to compile NIZKs in
the hidden-bits model to NIZKs in the CRS model. An HBG that generates k bits consists
of three algorithms:

• Setup creates a crs.

• GenBits(crs) outputs a short commitment com whose size is much smaller than k,
along with hidden-bits {ri}i∈[k], and certificates {πi}i∈[k].

• Verify(crs, com, i, ri, πi) checks the certificate πi to verify that ri is indeed the i’th
hidden bit.

An HBG should satisfy two simple properties. Firstly, we require the scheme to be
statistically binding, meaning that (crs, com) together completely determine some sequence
of bits r1, . . . , rk and no (even inefficient) prover can come up with a valid certificate π′i

3The basic compiler only achieves zero-knowledge for a single theorem and [FLS99] then relies on another
generic compiler via the “or trick” to go from single-theorem to multi-theorem zero-knowledge.

5

for the wrong bit r′i 6= ri. Intuitively, by combining the above property together with the
requirement that com is short, we ensure that the prover does not have much control over
the bits ri that he can open and the limited control that he does have is insufficient to
break the soundness of the hidden-bits NIZK (by amplifying its soundness sufficiently so
that it survives a union bound over all the com’s that the prover can choose). Secondly, we
require the scheme to be computationally hiding, meaning that for any set I ⊆ [k], if we are
given honestly generated crs, com, {ri, πi}i∈I then the “unopened” hidden bits {rj}j 6∈I are
computationally indistinguishable from uniform.

Compiling from Hidden-Bits Model to CRS Model. Intuitively, we would like to
use HBG to compile NIZKs from the hidden-bits model to the CRS model by letting the
prover generate the hidden-bits via the HBG GenBits algorithm. There are two issues with
this basic approach:

• For soundness, if the malicious prover chooses a “bad” (not uniformly random) com
then the HBG abstraction does not provide any guarantees that the bits ri to which he
is committed are random and hence we cannot rely on the soundness of the hidden-bits
NIZK.

• For zero-knowledge, we notice that the honest hidden-bits prover may choose the set
I adaptively depending on all of the bits {ri}i∈[k] (and indeed this is the case for
the hidden-bits NIZK constructed in [FLS99]) and we still need to argue that the
unopened bits {rj}j 6∈I are hidden. The hiding property of HBG only guarantees that
the unopened bits are hidden when I is chosen ahead of time.

To fix both of the above issues we add additional uniformly random bits s1, . . . , sk to the
CRS of the NIZK and define the hidden-bits to be ri ⊕ si where ri comes from the HBG.
This ensures that for any fixed com chosen by a malicious prover the hidden-bits that he
can open are uniform over the choice of si.

4 It also ensures that the choice of the set I
chosen by the honest hidden-bits prover is independent of the outputs ri of the HBG and
therefore allows us to rely on HBG security.

We uncover an additional complication when proving adaptive ZK, where the malicious
verifier can choose the statement to be proven adaptively depending on the CRS. The work
of [FLS99] showed adaptive ZK for their particular protocol (using particular hidden-bits
NIZK) but it did not give a modular proof. Indeed, our attempts to prove that the compiler
can generically start with any hidden-bits NIZK and achieve adaptive ZK failed for subtle
reasons involving “selective opening” failures. Instead, we were able to abstract out a special
property of the hidden-bits NIZK of [FLS99] which we call “special ZK”, which we show to
be sufficient to get adaptive ZK in the CRS model via the above compiler.

Using the compiler, we reduce the task of constructing NIZKs to that of constructing
an HBG, which is a conceptually much simpler primitive.

Designated Verifier Setting: (M)DV-HBG to (M)DV-NIZK. We generalize the
notion of HBG to the designated-verifier setting (DV-HBG). The only differences are that:

4The fact that the prover can adaptively choose com after seeing s1, . . . , sk is handled by simply taking
a union bound over all possible choices of com.

6

(1) the Setup algorithm generates a crs together with a trapdoor td which is given to the
verifier and the Verify algorithm takes the trapdoor td as an input, (2) we modify the
statistically binding security property to hold even if a computationally unbounded prover
can make polynomially many queries to the Verify(crs, td, · · ·) oracle which allows it to check
whether various certificates are valid or invalid, and (3) we modify the computationally
hiding property to hold even given td. To get our main result, we naturally extend our
compiler to show that DV-HBG allows us to compile NIZKs in the hidden-bits model into
reusable DV-NIZKs. Therefore, we reduce the task of constructing reusable DV-NIZKs to
that of constructing DV-HBG.

We further generalize the notion of HBG to the malicious-designated-verifier setting
(MDV-HBG). Now, in addition to a Setup algorithm that generates the crs there is a KeyGen
algorithm that generates a public key pk along an associated secret key sk. Essentially, we
think of crs, pk as together corresponding to the crs in the previous definition, and of sk as
the trapdoor. The binding property is essentially the same as before. However, we require
that hiding holds even if pk is generated maliciously (and adaptively depending on crs). We
show that MDV-HBG allows us to compile NIZKs in the hidden-bits model into reusable
MDV-NIZKs. Therefore, we reduce the task of constructing reusable MDV-NIZKs to that
of constructing MDV-HBG.

DV-HBG from CDH. We show how to instantiate a designated-verifier DV-HBG based
on the computational Diffie-Hellman (CDH) assumption to get our reusable DV-NIZK from
CDH. Our construction relies on the ideas underlying the Cramer-Shoup (1-universal) hash-
proof system [CS98, CS02] which can be thought of as an unconditionally secure reusable
DV-NIZK for the “equality of two discrete logs” – i.e., given some public group elements
g, h we define the language consisting of tuples (g′, h′) such that DLOGg(g

′) = DLOGh(h′).
In particular, we think of the projection key of the hash-proof system as the CRS of the DV-
NIZK, and the hashing key as the associated trapdoor. In the body of our paper, we give
our full construction using the specific Cramer-Shoup instantiation, but for the introduction
we will treat the Cramer-Shoup reusable DV-NIZK proof system as a black-box.

Our DV-HBG construction works as follows. Let G be some cyclic group of order p and
let g be a generator.

• The Setup algorithm chooses random group elements h1, . . . , hk. It also instantiates k
copies of the Cramer-Shoup DV-NIZK with respect to the public group elements (g, hi)
respectively. The crs consists of g, h1, . . . , hk together with the k values {crsi}i∈[k] of
the Cramer-Shoup DV-NIZK. The trapdoor td = {tdi}i∈[k] consists of the k trapdoors
for the Cramer-Shoup DV-NIZK.

• The GenBits(crs) algorithm chooses y ← Zq and sets com = gy. For i = 1 . . . , k,
it sets ti = hyi , ri = hc(ti), where hc is a hardcore predicate (e.g., Goldreich-Levin
[GL89]). Finally it sets πi = (ti, π

CS
i) where πCSi is a Cramer-Shoup proof that

DLOGg(com) = DLOGhi(ti).

• The Verify algorithm gets ri and πi = (ti, π
CS
i) and checks that ri = hc(ti) and that

πCSi is a valid Cramer-Shoup proof using the corresponding trapdoor tdi.

7

For the statistically binding property we note that given crs, com the values ti = hyi and
therefore also the hidden bits ri = hc(ti) are completely determined. The prover cannot lie
about ti and therefore also about ri by the unconditional reusable security of the Cramer-
Shoup proof, and this holds even given oracle access to the Cramer-Shoup verifier. For the
computational hiding property we rely on the fact that, given g, hi, g

y, the CDH assumption
ensures that hyi is computationally unpredictable and therefore hc(hyi) is indistinguishable
from uniform. This holds even given hj , h

y
j for various random hj since the distinguisher

can sample such values himself by sampling hj = gxj and computing hyj = (gy)xj .

MDV-HBG from One-More CDH. Finally, we show how to instantiate our malicious-
designated-verifier MDV-HBG based on the one-more CDH assumption to get our reusable
MDV-NIZK from one-more CDH. The construction and the security intuition are somewhat
involved and so we present them in several stages.

Initial Attempt. As a first attempt, we can try to use the previous construction directly
as an MDV-HBG. In particular, we can set the crs to only consist of the uniformly random
values crs = (h1, . . . , hk). The Cramer-Shoup DV-NIZKs then naturally define pk, sk. Here
it helps to be concrete about how the Cramer-Shoup DV-NIZK works. For each i, the
Cramer-Shoup proof system defines pki = haii g

bi and the corresponding ski = (ai, bi). The
MDV-HBG public keys and secret keys consist of these values pk = {pki}, sk = {ski}. Given
a commitment com = gy, recall that the i’th hidden bit is defined by taking a hardcore
predicate ri = hc(ti) where ti = hyi . The opening to the i’th hidden bit consists of ti = hyi
and the Cramer-Shoup proof πCSi = pkyi .

Attack On Initial Attempt. Unfortunately, it’s clear that the above is not secure as
MDV-HBG. For example, if the malicious verifier chooses pki = hj for j 6= i then, by
opening the i’th hidden bit and giving a proof πCSi = pkyi = hyj , the prover inadvertently
also reveals the j’th hidden bit! While the above is easily detectable, the malicious verifier
can alternately set pki = hxj for a random x and still perform the same attack without being
detectable. At the very least, we need to modify our solution to overcome this particular
attack.

The Fix. We start with the above “base scheme”, which is not secure in the MDV
setting, and show how to immunize against the above attack. To do so, we use the “base
scheme” to generate ` “base hidden values” for some `� k and then combine them carefully
to create the k “actual hidden bits”. Recall that the base scheme defines a commitment
gy and the ` base hidden values are tj = hyj . We can open any base value by giving the

opening πCSj = pkyj .
Instead of using the base values directly, we define each of the k “actual hidden bits”

by combining together a small group of base values and applying a (Goldreich-Levin) hard-
core predicate hc. The groups are chosen via a pseudo-random mapping ϕ which maps each
i ∈ [k] to a small group ϕ(i) ⊆ [`]. In other words, the i’th actual hidden bit is defined as
ri = hc({tj : j ∈ ϕ(i)}). The mapping ϕ is chosen by the prover and is a part of com. To
open any actual hidden bit i ∈ [k] the prover opens all of the base hidden values tyj and also
provides the corresponding Cramer-Shoup proofs pkyj for j ∈ ϕ(i). Note that, since ϕ is a
part of com and we require com to be short, it is important that ϕ has a short description
size and therefore it must be a pseudo-random rather than truly random mapping. For
concreteness, we set the number of based hidden values to ` = 3kλ and the group size to

8

|ϕ(i)| = λ, where λ is the security parameter.
Intuition for the Fix. Intuitively, this prevents the above attacks for the following reason.

Assume that the verifier can choose pk maliciously so that the opening of any base value
j can inadvertently also reveal some other base value j′ = ψ(j), where ψ is some mapping
defined implicitly by the choice of pk. Nevertheless, it is likely that each hidden bit i depends
on some hidden value j ∈ ϕ(i) that is not revealed even if we open all the other hidden bits
i′ 6= i. In particular, opening the bits i′ 6= i corresponds to giving out the base hidden value
j′ as well as the inadvertently opened values ψ(j′) for each j′ ∈ ϕ(i′). But the entire set of
revealed values R = {j′, ψ(j′) : j′ ∈ ϕ(i′), i′ 6= i} is of size |R| ≤ 2kλ and ϕ(i) ⊂ [` = 3kλ]
appears to be a random and independent subset of size |ϕ(i)| = λ. Hence it is likely that
ϕ(i) contains some value j 6∈ R which was not revealed. Here we crucially rely on the fact
that ϕ is chosen (pseudo-)randomly by the prover after the verifier chooses pk which defines
the mapping ψ.

The One-More CDH Assumption. While the above idea seems to immunize against the
particular class of attacks we previously discussed, proving security against general attacks is
more challenging. Nevertheless, we manage to do so under the “one-more CDH” assumption.
The one-more CDH assumption considers an adversary who is given g, gy, h1, . . . , hk along
with an oracle Oy(·) which takes as input an arbitrary group element f and returns Oy(f) =
fy. It says that even if the adversary makes m arbitrary calls to the oracle Oy he cannot
predict more than m of the values {hyj}.

Security Under One-More CDH. Our high level proof goes as follows. Assume that a
malicious verifier gets to choose pk = {pkj}j∈[`] maliciously after seeing crs = {hj}j∈[`] and
can break hiding. This means that for some i ∈ [k], if the verifier gets a random com and
openings to all the hidden bits except for the i’th one, he can distinguish hidden bit i from
uniform with non-negligible advantage. Since the i’th hidden bit is defined by taking the
Goldreich-Levin hardcore bit of the base hidden values j ∈ ϕ(i), this means that the verifier
can also predict all these values with non-negligible probability. So, if the verifier gets
ϕ, g, gy, {hyj , pk

y
j : j ∈ ϕ(i′), i′ ∈ [k] \ {i}} then he can predict {hyj : j ∈ ϕ(i)}. Intuitively,

we want to use such a verifier to break one-more CDH.
But in the above scenario, the verifier gets many more values raised to the y power than

he is able to output. To get around this, we want to “rewind” the verifier run him on many
different choices of ϕ to get more values {hyj : j ∈ ϕ(i)} out of him. But each time we rewind
we also need to provide him with the appropriate values {hyj , pk

y
j : j ∈ ϕ(i′), i′ ∈ [k] \ {i}}

so we are again getting fewer powers of y out than we need to put in, which appears to be
self-defeating. If ϕ were truly random, we could get around this by freshly sample ϕ(i) on
each rewinding but keep ϕ(i′) : i′ ∈ [k] \ i fixed – that way we would only need to give
out some fixed 2kλ values {hyj , pk

y
j : j ∈ ϕ(i′), i′ ∈ [k] \ {i}} but on each rewinding we get

some additional fresh values {hyj : j ∈ ϕ(i)} out of the verifier, and eventually we get more
out than we put in which allows us to break one-more CDH.

Unfortunately ϕ needs to have a short description, and therefore can only be pseudoran-
dom, in which case it’s not clear how to freshly re-sample ϕ(i) while keeping ϕ(i′) : i′ ∈ [k]\i
fixed. We resolve this issue by using a special form of pseudorandom functions (PRFs) called
“somewhere equivocal PRFs” [HJO+16] which essentially allow us to do exactly this while
keeping the description of ϕ short. Furthermore, such somewhere equivocal PRFs were
constructed from only one-way functions using the ideas of “distributed point functions”

9

[GI14, BGI15] and therefore don’t introduce any additional assumptions.

1.3 Concurrent works

Concurrently and independently of ours, the works of [CH19] and [KNYY19] present a
similar construction of reusable DV-NIZKs from CDH, compiling the hidden-bits NIZK of
[FLS99] using the Cramer-Shoup hash-proof system [CS98, CS02, CKS08]. Additionally,
they respectively obtain the following results:

• [CH19] gives a construction of NIZKs for all NP assuming LWE, along with a non-
interactive witness intistinguishable (NIWI) proof for the Bounded Distance Decoding
problem.

• [KNYY19] builds pre-processing NIZKs for all NP with succinct proofs, namely a
pre-processing NIZK from DDH with proofs of size |C|+poly(λ) (where C is a circuit
checking the NP relation), and a designated-prover NIZK from (strong) assumptions
over pairing-friendly groups, with proof size |C|+ poly(λ).

Meanwhile, our work introduces the notion of malicious designated-verifier NIZKs (MDV-
NIZK), and presents a construction from the One-More CDH assumption.

Organization

Basic definitions and notations are given in Section 2. In Section 3 we introduce our new
notion of Hidden Bits Generator (HBG). In Section 4 we show how to use an HBG to
construct NIZKs. In Section 5 we construct a designated-verifier Hidden Bits Generator
assuming CDH. A few extension are mentioned in Section 7.

Lastly, in Appendix A we give a construction of a HBG from the CDH assumption over
bilinear groups and in Appendix B we construct a HBG from (doubly-enhanced) trapdoor
permutations.

2 Preliminaries

We will denote by λ the security parameter. The notation negl(λ) denotes any function f
such that f(λ) = λ−ω(1), and poly(λ) denotes any function f such that f(λ) = O(λc) for
some c > 0.

We define the statistical distance between two random variables X and Y over some
domain Ω as: SD(X,Y) = 1

2

∑
w∈Ω |X(w)− Y (w)| . We say that two ensembles of random

variables X = {Xλ}, Y = {Yλ} are statistically indistinguishable, denoted X
s
≈ Y , if

SD(Xλ, Yλ) ≤ negl(λ).
We say that two ensembles of random variables X = {Xλ}, and Y = {Yλ} are compu-

tationally indistinguishable, denoted X
c
≈ Y , if, for all (non-uniform) PPT distinguishers

Adv, we have |Pr[Adv(Xλ) = 1]− Pr[Adv(Yλ) = 1]| ≤ negl(λ).
For a set X, integer k and sequence x ∈ Xk, we denote by xi the i-th entry in the

sequence, for any i ∈ [k]. For a subset I ⊂ [k], we denote by xI = (xi)i∈I the subsequence
of x in locations I.

10

For a probabilistic algorithm alg(·), we may explicit its internal randomness as follows:
alg(· ; coins).

2.1 The Diffie-Hellman Assumption

A group generator (G, p, g)← GroupGen(1λ) is a PPT algorithm which, on input 1λ, outputs
the description of a cyclic group G of order p, and a generator g of G. We require that there
are efficient algorithms running in time poly(λ) to perform the group operation in G and
to test membership in G. For notational simplicity, we will often shorten such an output
(G, p, g) to G and assume that g, p are implicit. A prime-order group generator additionally
ensures that p is prime.

Definition 2.1 (Computational Diffie-Hellman (CDH) assumption). Let GroupGen be a
group generator. We say that the Computational Diffie-Hellman (CDH) assumption holds
relative to GroupGen if for all PPT algorithm A, we have:

Pr
[
A
(
G, p, g, ga, gb

)
= gab : (G, p, g)← GroupGen(1λ), (a, b)

$← Z2
p

]
≤ negl(λ).

Given such a group generator satisfying the CDH assumption, we can consider an as-
sociated (randomized) hard-core bit hc : G→ {0, 1} such that for all PPT algorithm A, we
have:

Pr

A(G, p, g, ga, gb, τ) = hc(gab ; τ) :

τ
$← {0, 1}L(λ)

(G, p, g) ← GroupGen(1λ)

(a, b)
$← Z2

p

 ≤ 1/2 + negl(λ),

where the hard-core bit hc uses L(λ) random coins.
Such a hard-core bit can be generically obtained, using the Goldreich-Levin construction

[GL89].

2.2 Reusable Designated-Verifier NIZKs

In this section we define the notion of Reusable Designated-Verifier NIZKs (and obtain the
standard notion of NIZK as a special case).

Definition 2.2 (Reusable DV-NIZKs). Let be L an NP language with witness relation RL.
A Reusable Designated-Verifier Non-Interactive Zero-Knowledge (DV-NIZK) Proof for L is
a tuple of PPT algorithms (Setup,P,V) where:

• Setup(1λ, 1n): On input the security parameter λ and statement length n, outputs a
common reference string crs and a trapdoor td;

• P(crs, x, w): On input a common reference string crs, a statement x of length n and
a witness w, outputs a proof π;

• V(crs, td, x, π): On input a common reference string crs, a trapdoor td, a statement x
and a proof π, outputs accept or reject,

such that they satisfy the following properties:

11

• Completeness: We require that for all (x,w) ∈ RL, we have:

Pr

[
V(crs, td, x, π) = accept :

(crs, td) ← Setup(1λ, 1|x|)
π ← P(crs, x, w)

]
= 1;

• Statistical Soundness: Let n and Q be any polynomials, and let P̃ be any (compu-
tationally unbounded) cheating prover that makes at most Q(λ) queries to an oracle
V(crs, td, ·, ·) which takes as input (x, π), and outputs V(crs, td, x, π)). We require that:

Pr

[
V(crs, td, x, π) = accept ∧ x /∈ L :

(crs, td) ← Setup(1λ, 1n(λ))

(x, π) ← P̃ V(crs,td,·,·)(crs)

]
≤ negl(λ);

• Zero-Knowledge (Selective): We require that there exists a PPT simulator Sim
such that for any PPT stateful5 adversary A, the two following distributions are com-
putationally indistinguishable:

expReal(1λ) : expIdeal(1λ) :

(x,w)← A(1λ) (x,w)← A(1λ)
where (x,w) ∈ RL where (x,w) ∈ RL

(crs, td)← Setup(1λ, 1|x|), π ← P(crs, x, w) (crs, td, π)← Sim(1λ, x)
Output A(crs, td, π) Output A(crs, td, π)

Our basic definition only considers selective ZK where the statement being proven is
chosen ahead of time, prior to seeing the CRS. In Section 4.2 we also consider a stronger
notion of adaptive ZK.

Our definition of designated-verifier NIZK coincides with that of standard (publicly
verifiable) NIZK if the trapdoor td is empty.

Definition 2.3. A publicly-verifiable NIZK is a reusable designated-verifier NIZK where
the trapdoor td output by Setup is an empty string.

Remark 2.4 (Bounding the number of queries to the Verify oracle). Notice that for sound-
ness we only allow the unbounded cheating prover to make a polynomial number of queries
to V(crs, td, ·, ·). One would ideally allow the unbounded cheating prover to make arbitrarily
many queries to V (matching more closely the publicly-verifiable setting, where a cheating
prover can indeed query the verification algorithm on arbitrarily many inputs). It turns out
that any DV-NIZK satisfying this stronger notion can be generically turned into a publicly-
verifiable one. This is because the cheating prover can query all possible proofs to V for
any x /∈ L; and therefore soundness can only hold if there are no valid proof of any false
statement (with overwhelming probability over the choice of crs), in which case soundness
also holds when the prover is given the trapdoor. Therefore this is essentially the best re-
quirement one can hope for as a meaningful notion of reusable DV-NIZKs which is weaker
than publicly-verifiable ones.

5Throughout this paper we follow the convention that whenever a stateful adversary A is invoked with
some inputs it also produces some state which it gets as input on the next invocation.

12

Remark 2.5 (Single-Theorem vs. Multi-Theorem Zero-Knowledge.). The definition of ZK
above is often referred to as “single-theorem ZK” since it only requires zero-knowledge to
hold for a single statement. However, there is a generic compiler from single-theorem ZK to
multi-theorem ZK where zero-knowledge holds polynomially many statements via the “OR
trick” [FLS99]. We note that the very same transformation directly applies to both the
selective and adaptive ZK setting and also both the publicly-verifiable and the designated-
verifier setting.

2.3 NIZKs in the Hidden-Bits Model

We now recall the definition of a NIZK in the hidden-bits model:

Definition 2.6 (NIZK in the Hidden-Bits Model). Let L be an NP language and n be an
integer. A Non-Interactive Zero-Knowledge Proof in the Hidden-Bits Model for L is given
by a pair of PPT algorithms (P,V), and a polynomial k(λ, n), where:

• P(1λ, r, x, w): On input string r ∈ {0, 1}k(λ,n), a statement x of size |x| = n and a
witness w, output a set of indices I ⊆ [k] and proof π.

• V(1λ, I, rI , x, π): On input a subset I ⊆ [k], a string rI , a statement x and a proof π,
outputs accept or reject,

such that they satisfy the following properties:

• Completeness: We require that for all x ∈ L of size |x| = n with witness w we have:

Pr

[
V(1λ, I, rI , x, π) = accept : r

$← {0, 1}k(λ,n)

(I, π) ← P(1λ, r, x, w)

]
= 1;

• Soundness: We require that for all polynomial n = n(λ), and all unbounded cheating
prover P̃, we have:

Pr

 V(1λ, I, rI , x, π) = accept

∧ x /∈ L
∧ |x| = n

:
r

$← {0, 1}k(λ,n)

(x, π, I) ← P̃(1λ, r)

 ≤ negl(λ);

• Zero-Knowledge: We require that there exists an efficient simulator Sim such that
for any adversary A the two following distributions are statistically indistinguishable:

(I, rI , π)
s
≈ (I ′, r′I , π

′)

where (x,w)← A(1λ), r ← {0, 1}k(λ,|x|), (I, π)← P(1λ, r, x, w), (I ′, r′I , π
′)← Sim(1λ, x).

When clear from context, we will omit 1λ as an argument to the algorithms defined
above.

13

Remark 2.7 (Amplifying soundness). Let `(λ, n) be a polynomial. Then, given any NIZK
in the hidden-bits model, we can build one with soundness 2−`(λ,n) · negl(λ). This is simply
done by running `(λ, n) copies of the NIZK in parallel, and where the new verification
algorithm accepts a proof if and only if all of the executions accept. Note that doing so
requires to use k · `(λ, n) hidden bits instead of k initially.

Theorem 2.8 ([FLS99], see also [Gol01, Section 4.10.2]). Every L ∈ NP has a NIZK in
the Hidden-Bits Model.

3 Hidden-Bits Generator

In this section, we define our new notion of Hidden-Bits Generator (HBG). For simplicity,
we first define a publicly verifiable version of HBG and then extend the definition to a
designated-verifier version (DV-HBG).

Definition 3.1 (Hidden-Bits Generator). A Hidden-Bits Generator (HBG) is given by a
set of PPT algorithms (Setup,GenBits,Verify):

• Setup(1λ, 1k): Outputs a common reference string crs.

• GenBits(crs): Outputs a triple
(
com, r, {πi}i∈[k]

)
, where r ∈ {0, 1}k.

• Verify(crs, com, i, ri, πi): Outputs accept or reject, where i ∈ [k].

We require any Hidden-Bits Generator to satisfy the following properties:

Correctness: We require that for every polynomial k = k(λ) and for all i ∈ [k], we have:

Pr
[
Verify(crs, com, i, ri, πi) = accept :

crs ← Setup(1λ, 1k)
(com, r, π[k]) ← GenBits(crs)

]
= 1.

Succinct Commitment: We require that there exists some set COM(λ) and some con-

stant δ < 1 such that |COM(λ)| ≤ 2k
δpoly(λ), and such that for all crs output by Setup(1λ, 1k)

and all com output by GenBits(crs) we have com ∈ COM(λ). Furthermore, we require that
for all com /∈ COM(λ), Verify(crs, com, ·, ·) always outputs reject.6

Statistical Binding: There exists an (inefficient) deterministic algorithm Open(1k, crs, com)
such that for every polynomial k = k(λ), on input 1k, crs and com, the algorithms outputs
r such that for every (potentially unbounded) cheating prover P̃:

Pr

 r∗i 6= ri
∧ Verify(crs, com, i, r∗i , πi) = accept

:

crs ← Setup(1λ, 1k)

(com, i, r∗i , πi) ← P̃(crs)
r ← Open(1k, crs, com)

 ≤ negl(λ).

6The set of commitments COM should not be thought of as the set of all valid commitments (and indeed
it may contain commitments not in the support of GenBits). In particular, the simplest way to satisfy this
property is to bound the bit-length of com and have the verifier reject commitments that are too large. Note
that additional structural properties about com can be checked by the Verify algorithm.

14

Computationally Hiding: We require that for all polynomial k = k(λ) and I ⊆ [k], the
two following distributions are computationally indistinguishable:(

crs, com, I, rI , πI , rĪ

)
c
≈(

crs, com, I, rI , πI , r
′
Ī

)
,

where crs← Setup(1λ, 1k), (com, r, π[k])← GenBits(crs) and r′
$← {0, 1}k.

Designated-Verifier Hidden-Bits Generator. We define the Designated-Verifier ver-
sion of a Hidden-Bits Generator (DV-HBG) similarly, but with the following differences:

• Setup(1λ, 1k) : Now outputs (crs, td), where td is a trapdoor associated to the crs;

• Verify(crs, td, com, i, ri, πi) takes the trapdoor td as an additional input, and outputs
accept or reject as before;

• For Statistical Binding, the cheating prover P̃ can now make a polynomial number of
oracle queries to Verify(crs, td, · · ·). We require that for any such P̃ :

Pr

 r∗i 6= ri
∧ Verify(crs, td, com, i, r∗i , πi) = accept

:

(crs, td) ← Setup(1λ, 1k)

(com, i, r∗i , πi) ← P̃Verify(crs,td,···)(crs)
r ← Open(1k, crs, com)

 ≤ negl(λ).

• For Computational Hiding, we require that the distributions are indistinguishable
given the associated trapdoor td:(

crs, td, com, I, rI , πI , rĪ

)
c
≈
(
crs, td, com, I, rI , πI , r

′
Ī

)
,

where (crs, td)← Setup(1λ, 1k), (com, r, π[k])← GenBits(crs) and r′
$← {0, 1}k.

4 From Hidden-Bits Generator to NIZKs

We now prove that we can combine any (DV-)HBG with a NIZK in the Hidden-Bits model
to get a (Reusable DV-)NIZK in the CRS model. Recall that our basic notion of NIZKs
considered selective version of ZK where the statement to be proven is chosen prior to seeing
the CRS. In Section 4.2 we will then extend our compiler to the adaptive ZK setting.

Theorem 4.1. Suppose there exists a Hidden-Bits Generator, then there exists a pub-
licly verifiable NIZK. Suppose there exists a designated-verifier Hidden-Bits Generator (DV-
HBG), then there exists a reusable designated-verifier NIZK (reusable DV-NIZK).

4.1 Proof of Theorem 4.1

For simplicity, we first consider the publicly verifiable version of Theorem 4.1, and then
discuss the minor differences that are needed to extend it to the designated-verifier setting.

15

Construction. Let L be an NP language and n be an integer. Let (SetupBG, GenBits,

Verify) be a hidden-bits generator (Definition 3.1), where |COM| = |COM(λ)| ≤ 2k
δp(λ) for

some polynomial p and constant δ < 1. (where k is the number of hidden bits generated).
Given a NIZK in the hidden-bits model for L using k′ = k′(λ, n) hidden bits (which exists

unconditionally by Theorem 2.8), by Remark 2.7, there exists, for all polynomial q(λ, n)
(which we will set later), a NIZK in the hidden-bits model (PHB,VHB) using k = k′ · q(λ, n)
hidden bits with soundness-error 2−q(λ,n) · negl(λ).

Consider the following candidate NIZK (SetupZK,P,V) in the CRS model:

• SetupZK(1λ, 1n): Compute crsBG ← SetupBG(1λ, 1k), sample s
$← {0, 1}k and output:

crs = (crsBG, s);

• P(crs, x, w): Compute (com, rBG, π[k]) ← GenBits(crsBG). Set ri = rBGi ⊕ si for all

i ∈ [k], and run the hidden-bits prover to get (I ⊆ [k], πHB)← PHB(r, x, w). Output:

Π = (I, πHB, com, rI , πI).

• V(crs, x,Π = ((I, πHB, com, rI , πI))): Compute rBGi = ri ⊕ si for all i ∈ [k]. Accept if
for all i ∈ I, Verify(crsBG, com, i, rBGi , πi) accepts, and if VHB(I, rI , x, π

HB) also accepts.

Completeness. By completeness of the HBG, Verify(crsBG, com, i, rBGi , πi) accepts for all
i ∈ I, and by completeness of the hidden-bits NIZK, VHB(I, rI , x, π

HB) also accepts.

Soundness. Suppose the (unbounded) cheating prover P̃(crs) has a µ(λ) probability of
outputting x 6∈ L and Π∗ = (I, πHB, com, r∗I , πI) such that Π∗ is an accepting proof:

µ(λ)
def
= Pr

 V(crs, x,Π∗) = accept

∧
x /∈ L

:
crs ← SetupZK(1λ, 1n)

(x,Π∗ = (I, πHB, com∗, r∗I , πI)) ← P̃(crs)

By statistical binding of the HBG, we know that if Π∗ is accepting then with all but

negligible probability r∗I = rBGI ⊕ sI where rBG = Open(1k, crsBG, com∗). Furthermore, by
succinctness of HBG, we know that com∗ ∈ COM(λ). Therefore, the prover’s success
probability can only go down negligibly if we replace r∗I by rI = rBGI ⊕ sI and we require
com∗ ∈ COM(λ). This means:

ν(λ)
def
= Pr

 VHB(I, rI , x, π
HB) = accept

∧ x /∈ L
∧ com∗ ∈ COM(λ)

:

crs = (crsBG, s) ← SetupZK(1λ, 1n)

(x,Π∗ = (I, πHB, com∗, r∗I , πI)) ← P̃(crs)
rBG = Open(1k, crsBG, com∗), r = rBG ⊕ s

≥ µ(λ)− negl(λ).

16

Fix any com ∈ COM(λ). Define the probability of the prover winning the previous
game and satisfying com∗ = com:

νcom(λ)
def
= Pr

 VHB(I, rI , x, π
HB) = accept

∧ x /∈ L
∧ com∗ = com

:

crs = (crsBG, s) ← SetupZK(1λ, 1n)

(x,Π∗ = (I, πHB, com∗, r∗I , πI)) ← P̃(crs)
rBG = Open(1k, crsBG, com∗), r = rBG ⊕ s

≤ Pr

 VHB(I, rI , x, π
HB) = accept

∧
x /∈ L

:

crs = (crsBG, s) ← SetupZK(1λ, 1n)
rBG = Open(1k, crsBG, com), r = rBG ⊕ s
(x, I, πHB)← P̂crsBG,com(r)

≤ 2−q(λ,n) · negl(λ).

In the first inequality above, we define P̂crsBG,com(r) to run P̃(crsBG,Open(1k, crsBG, com)⊕
r) and output the relevant components. The second inequality then follows from soundness
of the NIZK in the hidden-bits model by thinking of P̂crsBG,com as a malicious hidden-bits

model prover and noting that r = rBG ⊕ s is uniformly random over the choice of s.
Setting q(λ, n) = (k′(λ, n) · p(λ))1/(1−δ), we have:

kδ · p(λ) = (k′ · q(λ, n))δ · p(λ) ≤ qδ(λ, n) · q1−δ(λ, n),

so that |COM| · νcom(λ) ≤ negl(λ). Combining the above, and using an union bound we
get:

µ(λ)− negl(λ) ≤ ν(λ) ≤
∑

com∈COM(λ)

νcom(λ) ≤ negl(λ)

which shows that µ(λ) = negl(λ) and concludes the proof of soundness.

Zero-Knowledge. Let SimHB be a hidden-bits simulator (given by zero-knowledge). De-
fine the following simulator for the NIZK:

• Sim(1λ, x):

Compute (I, rI , π
HB)← SimHB(x).

Compute crsBG ← SetupBG(1λ, 1k), and (com, rBG, π[k])← GenBits(crsBG).

Set for all i ∈ [k]: si = ri ⊕ rBGi if i ∈ I; and si
$← {0, 1} otherwise.

Output crs = (crsBG, s[k]), Π = (I, πHB, com, rI , πI).

We now prove that no PPT adversary A can distinguish between (crs,Π) generated by
the Real or the Ideal experiment (see Definition 2.2). The proof proceeds via a sequence of
hybrids.

H0 : This is the Real experiment. The adversary chooses (x,w) ∈ RL with |x| = n. Let
k = k(λ, n). The experiment proceeds as follows:

• crsBG ← SetupBG(1λ, 1k), s
$← {0, 1}k

• (com, rBG, π[k])← GenBits(crsBG)

17

• ri := rBGi ⊕ si for all i ∈ [k]

• (I, πHB)← PHB(r, x, w)

Output crs = (crsBG, s),Π = (I, πHB, com, rI , πI).

H1: In this experiment we switch how r, s are picked: we first pick r
$← {0, 1}k, and then

set s = r ⊕ rBG. This allows us to reorder the operations as follows:

• r $← {0, 1}k

• (I, πHB)← PHB(r, x, w)

• crsBG ← SetupBG(1λ, 1k), (com, rBG, π[k])← GenBits(crsBG)

• si := rBGi ⊕ ri for all i ∈ [k]

Output crs = (crsBG, s),Π = (I, πHB, com, rI , πI).

The hybrid H1 is distributed identically to H0.

H2: We now switch how s is computed.

• r $← {0, 1}k

• (I, πHB)← PHB(r, x, w)

• crsBG ← SetupBG(1λ, 1k), (com, rBG, π[k])← GenBits(crsBG)

• si = ri ⊕ rBGi if i ∈ I and si
$← {0, 1} otherwise.

Output crs = (crsBG, s),Π = (I, πHB, com, rI , πI).

The view of the adversary in H2 is indistinguishable from H1 by the computationally
hiding property of the HBG. In particular, this property ensures that, even given all the
other components seen by the adversary in Hybrid H1 the values rBGi are indistinguishable
from uniform for i 6∈ I. Note that the set I is chosen a-priori before generating any of the
components of the HBG.

H3: We now switch how (I, rI , π
HB) are computed by using SimHB(x) to generate them:

• (I, rI , π
HB)← SimHB(x)

• crsBG ← SetupBG(1λ, 1k), (com, rBG, π[k])← GenBits(crsBG)

• si = ri ⊕ rBGi if i ∈ I and si
$← {0, 1} otherwise.

18

Output crs = (crsBG, s),Π = (I, πHB, com, rI , πI).

Hybrid H3 is statistically indistinguishable from H2 by the zero-knowledge property of
the hidden-bits NIZK.

Note that hybrid H3 is equivalent to the Ideal experiment with our simulator. Therefore
the above hybrids show that the Real and Ideal experiments are computationally indistin-
guishable as needed to prove the zero-knowledge property.

Reusable DV-NIZK from DV-HBG: The above construction of NIZKs from a Hidden-
Bits Generator (HBG) and its proof of security extend naturally to the designated-verifier
setting to get a construction of reusable DV-NIZKs from DV-HBG. This is essentially imme-
diate and we outline the minor syntactic changes that are needed in the designated-verifier
setting.

In the construction, the NIZK setup (crs, td) ← SetupZK(1λ, 1n) now also generates
a trapdoor td which it gets from SetupBG of the DV-HBG. The NIZK verification algo-
rithm V(crs, td, x,Π) now needs to use this trapdoor to check the HBG proofs by running
Verify(crsBG, td, com, i, rBGi , πi).

In the proof of soundness, the only difference is that the cheating prover P̃ now can
make polynomially many queries to the NIZK verification algorithm V(crs, td, · · ·) with
the trapdoor td which translates to making polynomially many queries to the DV-HBG
verification algorithm Verify(crsBG, td, · · ·). The proof remains identical otherwise, and when
we use the statistical soundness of the DV-HBG we rely on the fact that it holds even given
polynomially queries to the DV-HBG verification algorithm Verify(crsBG, td, · · ·).

In the proof of zero-knowledge, the only difference is that we now sample (crsBG, td)←
SetupBG(1λ, 1k) and include the trapdoor td in the view of the adversary. The entire sequence
of hybirds is otherwise identical and when we use the computational hiding property of the
HBG, we rely on the fact that it holds even given td.

4.2 Adaptive ZK

Our default definition of (reusable designated-verifier) NIZKs considers a selective version of
the zero-knowledge property, where the statement x is chosen before the CRS. We now also
consider a stronger adaptive zero-knowledge property, where the statement x can depend
adaptively on the CRS. Let us begin by defining adaptive ZK.

Definition 4.2 (Adaptive ZK). A (reusable designated-verifier) NIZK satisfies adaptive
Zero-Knowledge (adaptive ZK) if the following holds. We require that there exists a stateful
PPT simulator Sim such that for any stateful PPT adversary A the two following distribu-
tions are computationally indistinguishable:

19

expReal(1λ) : expIdeal(1λ) :

1n ← A(1λ) 1n ← A(1λ)
(crs, td)← Setup(1λ, 1n) (crs, td)← Sim(1λ, 1n)
(x,w)← A(crs, td) (x,w)← A(crs, td)

where (x,w) ∈ RL, |x| = n where (x,w) ∈ RL, |x| = n
π ← P(crs, x, w) π ← Sim(x)
Output A(π) Output A(π)

Outline of Our Results. We show how to extend Theorem 4.1 to the adaptive setting
but in doing so we need to overcome some fairly subtle issues.

Initially, one may hope that the same proof of selective ZK security would naturally
extend to the adaptive setting. However, this appears to already fail when we try to define
an adaptive ZK simulator. Recall that in the selective setting, the simulator first ran the
hidden-bits simulator (I, rI , π

HB) ← SimHB(x) and then carefully “programmed” the CRS
by choosing s to ensure that the values of the opened hidden bits was rI . But that means
that the simulator needed to know the statement x before outputting the CRS while in the
adaptive setting it would need to create the CRS before knowing x. To overcome this, we
need to rely on special properties of the NIZK in the hidden-bits model.

As a start, we identified the following property (*) of NIZKs in the hidden-bits model:
we can break up the simulator into two components: r ← SimHB

1 chooses some value r, which
may not be uniformly random, and (I, πHB) ← SimHB

2 (x) outputs some values depending
on x such that the resultant distribution of (I, rI , π

HB) is statistically close to the output
of the real prover. Using property (*), we can already define a meaningful ZK simulator
for the compiled NIZK. In particular, the simulator would program the CRS by choosing
s to ensure that the values of the hidden bits was r ← SimHB

1 . However, we were unable
to prove indistinguishability with this simulator. Indeed, the difficulty is related to subtle
“selective-opening” issues: the fact that the adversary can choose the statement x and
therefore also influence the choice I of positions to open adaptively after seeing the CRS
appears to prevent natural reductions. We leave it open whether one can generically show
that the compiler achieves adaptive ZK security if one starts from an arbitrary hidden-
bits NIZK which is guaranteed to satisfying property (*); we conjecture that the answer is
negative and that one can get “unnatural counterexamples” along the lines of [HRW16].

Instead we identify an even stronger property of the NIZK in the hidden bits model
which we refer to as “special ZK” and which does suffice to get the proof to go through. For
special ZK we require that there is a two-part simulator (SimHB

1 , SimHB
2) with the syntax

r′ = SimHB
1 (r) and (I, π) = SimHB

2 (x, r). We want to ensure that if r′ = SimHB
1 (r) and if the

honest hidden-bits prover outputs (I, π) ← P(r, x, w) it must be the case that rI = r′I . In
other words, the honest prover only opens bits on which r and r′ agree. Furthermore if r
is random and r′ = SimHB

1 (r) then the distribution of (r′, I, π) is statistically close whether
(I, π) ← P(r, x, w) or (I, π) ← SimHB

2 (x, r). With the above special ZK property, we are
able to show that the same compiler from the previous section also achieves adaptive ZK
security. In particular, we can rely on the computational hiding property of the HBG to
switch between programming the CRS to r and r′ while knowing that the values of r, r′

on the set I of positions that will be opened are the same in both cases since rI = r′I . In
other words, the set of positions that needs to be switched when going from a real CRS to

20

a simulated CRS is {i : ri 6= r′i} which is fixed and does not itself depend adaptively on
the CRS.

Special-ZK in Hidden-Bits Model. We define a restricted notion of ZK in the hidden-
bits model, which we refer to as special-ZK. Jumping ahead, we will use NIZKs in the hidden-
bits model with the special-ZK property in order to get publicly verifiable or designated-
verifier NIZKs with adaptive ZK.

Definition 4.3 (Special ZK). A NIZK (P,V) in the Hidden Bits Model satisfies the special-
ZK property if there exists an efficient simulator Sim1, Sim2 such that the following properties
hold.

1. For any (x,w) ∈ RL and any r ∈ {0, 1}k(λ,|x|) if we let r′ = Sim1(r) and (I, π) ←
P(1λ, r, x, w) then r′I = rI .

2. For any adversary A and any n = n(λ), the two following distributions are statistically
indistinguishable:

(I, r′, π)
s
≈ (I ′, r′, π′)

where r ← {0, 1}k(λ,n), r′ = Sim1(r), (x,w)← A(r′), (I, π)← P(1λ, r, x, w), (I ′, π′)←
Sim2(r, x).

Note that special-ZK implies the original ZK property in the hidden bits model. This
is because: by property (1) the honestly generated proof (I, rI , π) is identical to (I, r′I , π)
where r′ = Sim1(r), and by property (2) we have that (I, r′I , π) is statistically close to
(I ′, r′I , π

′).

Lemma 4.4. For every L ∈ NP , there exists a NIZK in the hidden-bits model satisfying
the special-ZK property (see Definition 4.3).

Proof Sketch. We show that the classical NIZK construction of Theorem 2.8 (due to [FLS99])
satisfies the special ZK property. For ease of presentation, we first give the construction
in a variant of the hidden-bits model where the bits r can come from some designated
distribution and then discuss how to extend it to the case where r is uniformly ranodm.

The protocol of [FLS99] is for the NP complete language of Hamiltonicity and proceeds
as follows. Consider an input graph G = (V,E) on n = |V | vertices. The hidden-bits r
specify a random cycle graph C on n vertices, represented by its n × n adjacency matrix.
Given as input a Hamiltonian graph G (together with a corresponding Hamiltonian cycle),
the prover finds an injective mapping π : V → C that preserves the cycle structure. The
prover sends the mapping π and also reveals all the entries in C that correspond to non-edges
of π(G) = {(π(u), π(v)) : (u, v) ∈ E}.

Given as input G, the proof π and the revealed entries of C, the verifier checks that
(1) π is a permutation and (2) that every non-edge of G was indeed mapped to a revealed
non-edge of C (i.e., a 0 in the adjacency matrix).

The fact that this protocol is an NIZK in the hidden bits model is established in [FLS99]
and here we focus on showing it satisfies the special ZK property (as in Definition 4.3).

Consider a simulator Sim1 that simply outputs the all 0’s string. Since the honest prover
only ever reveals 0 entries (i.e., non-edges), the first condition of special ZK holds trivially.

21

To see that the second condition holds, consider a simulator Sim2, that given as input
the (Hamiltonian) graph G = (V,E) chooses a random permutation π′ of the vertices,
constructs a graph C ′ = {(π(u), π(v)) : (u, v) ∈ E} and outputs (I ′, π′) where I ′ ⊆ V
corresponds to the set of non-edges in C ′.

We first argue that π and π′ are identically distributed. This follows from the fact that
π is an (injective) mapping to a random cycle and is therefore a random injective function.
Next, we observe that I and I ′ are computed by applying the same function to (G, π)
and (G, π′), respectively (specifically, the function that generates the graph induced by π
and outputs all the non-edges). Therefore (I, π) and (I ′, π′) are identically distributed, as
required.

Handling Uniform Hidden Bits. Following the presentation in [Gol01, Section 4.10.2],
we first describe a construction that uses uniformly distributed random bits, but only
achieves an inverse polynomial gap between completeness and soundness.

The idea is for the hidden bits to be an n5 × n5 uniformly distributed matrix M . It is
shown in [FLS99, Gol01] that with some inverse polynomial probability this matrix contains
as a generalized sub-matrix, the adjacency matrix of a cycle graph (and this property can
be efficiently checked). We say that such a matrix M is useful.

In case M is not useful, the prover reveals all of the hidden bits and the verifier (after
checking that M is indeed useful) immediately accepts. Otherwise (i.e., if M is useful)
the prover and verifier run the procedure described above using the cycle graph embedded
within M as the hidden bit string. Perfect completeness is immediate and the fact that the
soundness error is bounded by 1− 1/poly(n) follows from the above discussion.

For special zero-knowledge (as in Definition 4.3), we construct a simulator (Sim1, Sim2)
as follows. Recall that the simulator Sim1 is given as input a random string M specifying
a hidden bit string. In case M is not useful, Sim1 simply outputs M and otherwise Sim1

outputs the all-zeros string.
As for Sim2, in case M is not useful, it outputs I ′ specifying the entire matrix M and an

empty proof π′ (since in the corresponding real interaction there is no proof and the verifier
immediately accepts). In case M is useful, Sim2 operates as discussed in the setting of the
non-uniform hidden bit string.

The first condition of special ZK holds immediately (since in the “not useful case” the
entire hidden bit string is opened and in the “useful case” only 0’s are revealed). The second
condition holds trivially in the not useful case and by the above discussion also in the useful
case.

To obtain a construction with negligible soundness error, the above protocol is repeated
poly(n) times (in parallel), while observing that parallel repetition reduces the soundness
error at an exponential rate and preserves the special zero-knowledge property (since we
can run the two simulators independently poly(n) times).

The Adaptive Compiler. We are now ready to extend our compiler from Theorem 4.1
to the adaptive setting.

Theorem 4.5. Suppose there exists a Hidden-Bits Generator, then there exists a pub-
licly verifiable NIZK with adaptive ZK security. Suppose there exists a designated-verifier

22

Hidden-Bits Generator (DV-HBG), then there exists a reusable designated-verifier NIZK
(DV-NIZK) with adaptive ZK security.

Proof. We use the same construction as in the selective case, but require the underlying
NIZK in the hidden-bits model to satisfy the stronger special-ZK property. The proof of
completeness and soundness is therefore identical to the selective case and we are only left
to show adaptive ZK. For simplicity, we begin by giving the proof in the publicly-verifiable
setting, but the proof extends naturally to the designated-verifier setting by just adding the
HBG trapdoor to all the views.

Let SimHB
1 , SimHB

2 be a special-ZK simulator of the underlying hidden-bits NIZK. We
define the following simulator for the constructed NIZK:

• Sim:

– On input (1λ, 1n): Let k = k(λ, n)

Sample crsBG ← SetupBG(1λ, 1k), r ← {0, 1}k. Let r′ = SimHB
1 (r).

Sample (com, rBG, π[k])← GenBits(crsBG). Set s = rBG ⊕ r′.
Output crs = (crsBG, s).

– On input x:

Compute (I, πHB)← SimHB
2 (r, x).

Output Π = (I, πHB, com, rI , πI),

We now prove that no PPT adversary A can distinguish between (crs,Π) generated by
the Real or the Ideal experiment of Definition 4.2. The proof proceeds via a sequence of
hybrids.

H0: This is the Real experiment:

• The adversary specifies (1λ, 1n). Let k = k(λ, n).

– crsBG ← SetupBG(1λ, 1k), s
$← {0, 1}k

– Output crs = (crsBG, s).

• The adversary specifies (x,w) ∈ RL.

– (com, rBG, π[k])← GenBits(crsBG)

– ri := rBGi ⊕ si for all i ∈ [k]

– (I, πHB)← PHB(r, x, w)

– Output Π = (I, πHB, com, rI , πI).

H1: In this experiment we switch how r, s are picked: we first pick r
$← {0, 1}k, and then

set s = r ⊕ rBG. We reorder the operations as follows:

• The adversary specifies (1λ, 1n). Let k = k(λ, n).

– r
$← {0, 1}k

23

– crsBG ← SetupBG(1λ, 1k)

– (com, rBG, π[k])← GenBits(crsBG)

– si := rBGi ⊕ ri for all i ∈ [k]

– Output crs = (crsBG, s).

• The adversary specifies (x,w) ∈ RL.

– (I, πHB)← PHB(r, x, w)

– Output Π = (I, πHB, com, rI , πI).

The hybrid H1 is distributed identically to H0.

H2: We now switch how s is computed.

• The adversary specifies (1λ, 1n). Let k = k(λ, n).

– r
$← {0, 1}k

– r′ = SimHB
1 (r)

– crsBG ← SetupBG(1λ, 1k)

– (com, rBG, π[k])← GenBits(crsBG)

– si := rBGi ⊕ r′i for all i ∈ [k]

– Output crs = (crsBG, s).

• The adversary specifies (x,w) ∈ RL.

– (I, πHB)← PHB(r, x, w)

– Output Π = (I, πHB, com, rI , πI).

The view of the Adversary in H2 is indistinguishable from H1 by the computationally
hiding property of the HBG and condition (1) of the special-ZK property of the hidden-bits
NIZK.

Fix any r, r′ chosen in the first two steps of the experiment and let I∗ = {i : ri = r′i}.
We are only changing the distribution of si for i 6∈ I∗ between the two hybrids. By the
computational hiding property of the HBG, the adversary cannot distinguish the values rBGi
from uniform for i 6∈ I∗ even given crsBG, com, rI∗ , πI∗ . Therefore, he cannot distinguish
between si := rBGi ⊕ ri and si := rBGi ⊕ r′i for i /∈ I∗. Note that the set I∗ is chosen a-priori
before generating any of the components of the HBG. Furthermore, by condition (1) of the
special-ZK property, we know that the set I chosen later in the experiment has to satisfy
I ⊆ I∗ and therefore, no matter what (x,w) the adversary chooses, the values rI , πI that
the adversary gets later are just a subset of rI∗ , πI∗ .

24

H3: We now switch how (I, πHB) is computed.

• The adversary specifies (1λ, 1n). Let k = k(λ, n).

– r
$← {0, 1}k

– r′ = SimHB
1 (r)

– crsBG ← SetupBG(1λ, 1k)

– (com, rBG, π[k])← GenBits(crsBG)

– si := rBGi ⊕ r′i for all i ∈ [k]

– Output crs = (crsBG, s).

• The adversary specifies (x,w) ∈ RL.

– (I, πHB)← SimHB
2 (r, x)

– Output Π = (I, πHB, com, rI , πI).

Hybrid H3 is statistically indistinguishable from H2 by condition (2) of the special-
ZK property of the Hidden-Bits NIZK. In particular, even if the adversary can choose
(x,w) adaptively depending on r′ he cannot distinguish between (r′,PHB(r, x, w)) and
(r′,SimHB

2 (r, x)).
Note that hybrid H3 is equivalent to the Ideal experiment with our simulator. Therefore

the above hybrids show that the Real and Ideal experiments are computationally indistin-
guishable, which concludes the proof of adaptive zero-knowledge in the publicly verifiable
setting.

To extend the above proof to the designated verifier setting, the only difference is that
we now sample (crsBG, td) ← SetupBG(1λ, 1k) and give the trapdoor td to the adversary
together with the crs. The entire sequence of hybrids is otherwise identical and when we
use the computational hiding property of the HBG, we rely on the fact that it holds even
given td.

5 Designated-Verifier Hidden-Bits Generator from CDH

Let (G, p, g) ← GroupGen(1λ) be a prime-order group generator so that G is a group of
prime order p, with a generator g. Let hc be the corresponding Goldreich-Levin [GL89]
hard-core bit. Let us define the following hidden-bits generator:

• Setup(1λ, 1k): Let (G, p, g) ← GroupGen(1λ). For all i ∈ [k], pick random ai, bi
$← Zp

and hi
$← G and compute:

fi = haii · g
bi .

Sample some random coins γ matching the randomness used by hc(·). Output:(
crs =

(
G, {(hi, fi)}i∈[k], γ

)
, td = {(ai, bi)}i∈[k]

)
.

25

• GenBits(crs): Pick a random y ← Zp, and compute for all i ∈ [k]: ti = hyi and ui = fyi .
Output:

com = s = gy,

{ri = hc(ti; γ)}i∈[k],

{πi = (ui, ti)}i∈[k].

• Verify(crs, td = {(ai, bi)}, com = s, i, ri, πi = (ui, ti)) : Compute:

ρi = taii · s
bi ,

and accept if and only if ρi = ui, and ri = hc(ti; γ).

Theorem 5.1. The triple (Setup,GenBits,Verify) is a Designated-Verifier Hidden-Bits Gen-
erator under CDH.

Proof. We prove completeness, succinctness, statistical binding and computational hiding.

Completeness: For all i ∈ [k] we have by construction that ri = hc(ti; γ), and for all
hi ∈ G, ai, bi, y ∈ Zp, we have:

ρi = taii · s
bi = hy·aii · gy·bi = fyi = ui.

Succinctness: We have |COM| = |G| = p where p = 2poly(λ) is independent of k. Fur-
thermore since we can test group membership in polynomial time, the verifier rejects if
com 6∈ COM = G.

Statistical Binding: The statistical binding property relies on the following lemma.

Lemma 5.2. [CS98, CS02] Let G be a group of prime order p with a generator g, and let

h ∈ G. Then for all (s = gy, t) ∈ G2 such that t 6= hy, we have that for a, b
$← Zp:(

ta · sb, ha · gb
)
≡ U(G×G),

over the randomness of a, b
$← Zp, and where U(G×G) is uniform over G×G.

Proof of Lemma. Let x, z ∈ Zp be such that h = gx, t = gz. Then
(
ta · sb, ha · gb

)
=

(gaz+by, gax+b). Since the exponents are two linearly independent equations in (a, b) they
are pairwise independent.

To prove statistical binding, define Open(1k, crs, com = s) to inefficiently find y such
that gy = s and output:

{ri = hc(hyi ; γ)}i∈[k] .

We now argue that for every (potentially unbounded) cheating prover P̃:

Pr

 r∗i 6= ri
∧ Verify(crs, td, com, i, r∗i , πi) = accept

:

(crs, td) ← Setup(1λ, 1k)

(com, i, r∗i , πi) ← P̃Verify(crs,td,···)(crs)
r ← Open(1k, crs, com)

 ≤ negl(λ).

26

Consider oracle calls from P̃ to Verify(crs, td, · · ·), which are of the form (com = s, i, ri, π =
(t, u)). Let y ∈ Zp be such that gy = s.

Note also that without loss of generality, P̃ does not make any such queries where
t = hyi . This is because the prover can test himself whether any such query accepts or

rejects without knowing td. In particular, instead of performing the check u
?
= tai · sbi that

the verifier would do, the prover can perform the equivalent check u
?
= fyi . Note that since

the prover is inefficient he can compute y himself.
Also, without loss of generality, we assume that P̃ queries the Verify oracle on his output.

Define the event BadCall to occur if the prover makes a query where t 6= hyi and the Verify

oracle accepts. We argue that if P̃ wins then he must trigger the BadCall event – this is
because, whenever P̃ wins, the query corresponding to his output must satisfy t 6= hyi and
must cause the Verify oracle to accept. Therefore, to prove binding, it suffices to show that
the probability of BadCall occurring is negligible. Let BadCallj be the event that the jth

query from P̃ to Verify is the first such oracle query that causes BadCall to occur. We argue
that for each j, the probability of BadCallj occurring is negligible and therefore by union
bound the probability of BadCall is negligible as well. Recall that the Verify oracle only
accepts if tai · sbi = u. Furthermore, since the event BadCallj occurs only if the first j − 1
queries output reject, the only information about ai, bi that is available to the prover after
making j−1 rejecting queries is the value fi = haii g

bi and the fact that tai ·sbi 6∈ U for some
set U of size |U | < j. By Lemma 5.2, the values tai · sbi and haii g

bi are pairwise uniform in
G over the randomness of ai, bi and so tai · sbi is uniform over G \ U . This means that the
probability of BadCallj is 1/|G \ U | which is negligible.

Computational Hiding: We want to prove that, for all I ⊆ [k], given:(
{(hi, fi = haii g

bi , γ)}i∈[k], s = gy, {ri = hc(hyi ; γ)}i∈I , {πi = (fyi , h
y
i)}i∈I

)
,

the values {ri = hc(hyi ; γ)}i/∈I still look pseudorandom. Let hi = gxi . Intuitively, the above
follows since hc is a hard-core bit for gxi·y which is computationally unpredictable even
given gxi and gy. In more detail, we define a sequence of hybrids for j /∈ I where we switch
rj = hc(hyj ; γ) to uniform one-by-one. To prove indistinguishability between any pair of
successive hybrids, we give a reduction which receives γ, gxj and gy along with a bit b such
that either b = hc(gxjy; γ) or b is uniform. It samples itself ai, bi for all i ∈ [k], xi for all
i 6= j, and computes hi = gxi and fi = gaixi+bi for all i 6= j, and fj = (gxj)aj · gbj . It
computes itself for all i ∈ I: ri = hc((gy)xi ; γ), πi = ((gy)aixi+bi , (gy)xi). Additionally, for
i /∈ I, i < j it sets ri as uniform and for i /∈ I, i > j it sets ri = hc((gy)xi ; γ). Finally it sets
rj = b. Depending on whether b = hc(gxjy; γ) or b is uniform this corresponds to one of the
two consecutive hybrids.

Combining Theorems 4.5 and 5.1, and Remark 2.5, we obtain the following:

Theorem 5.3 (Reusable DV-NIZK from CDH). Under the CDH assumption, there exists
a reusable DV-NIZK for all NP with statistical soundness, and adaptive, multi-theorem
zero-knowledge (Definitions 2.2, 4.2).

27

6 Malicious-Designated-Verifier NIZKs

In this section we consider a strengthening of designated-verifier NIZKs to the malicious-
designated-verifier setting (MDV-NIZK). In this setting, the trusted setup consists solely
of a common random string (CRS). Given the CRS, the (potentially malicious) verifier
generates a public key pk along with a secret key sk. The rest of the protocol is otherwise
similar to the previous setting: any prover can use the CRS along with the newly generated
public key to build non-interactive proofs of (many) NP statements, which can be verified
using the corresponding secret key. The main difference is that we require zero-knowledge
to hold against malicious verifiers, who can generate arbitrarily malformed public keys pk.

6.1 More Preliminaries

6.1.1 Reusable Malicious-Designated-Verifier NIZK

Definition 6.1 (Reusable Malicious-Designated-Verifier NIZK (MDV-NIZK)). Let L be
an NP language with witness relation RL. A Reusable Malicious-Designated-Verifier NIZK
(MDV-NIZK) for L is a tuple of PPT algorithms (Setup,KeyGen,P,V) where:

• Setup(1λ, 1n): outputs a common random string crs;

• KeyGen(crs): outputs a public key pk along with an associated secret key sk;

• P(crs, pk, x, w): outputs a proof π;

• V(crs, sk, pk, x, π): Outputs accept or reject.

We require those algorithms to satisfy the same completeness and statistical soundness prop-
erties as Reusable DV-NIZKs (see Definition 2.2) with direct modifications to match the new
syntax above, where now (crs, pk) together act in place of what was previously just the crs.
The requirement for zero-knowledge is strengthened to the following:

Malicious Zero-Knowledge (Adaptive): We require that there exists a PPT simula-
tor Sim such that for any PPT stateful adversary A, the two following distributions are
computationally indistinguishable:

expReal(1λ) : expIdeal(1λ) :

1n ← A(1λ) 1n ← A(1λ)
crs← Setup(1λ, 1n) crs← Sim(1λ, 1n)
(x,w, pk)← A(crs) (x,w, pk)← A(crs)

where (x,w) ∈ RL, |x| = n where (x,w) ∈ RL, |x| = n
π ← P(crs, pk, x, w) π ← Sim(pk, x)
Output A(π) Output A(π)

Remark 6.2 (Single-Theorem vs. Multi-Theorem Zero-Knowledge). As in Definition 2.2,
the definition above only captures single-theorem zero-knowledge. However the same “Or
trick” of [FLS99] as in Remark 2.5 allows to generically compile any MDV-NIZK with
single-theorem, adaptive (resp. selective) ZK into one satisfying multi-theorem, adaptive
(resp. selective) ZK.

28

6.1.2 One-More CDH

We will use in this section a strengthening of the CDH assumption called One-More CDH.
Intuitively, it states that given a set of challenge elements {hj = gbj} and the ability to
make m queries to an oracle that raises arbitrary elements to some hidden exponent a ∈ Zp,
it is hard to guess more than m of the values h

aj
j = gabj .

Definition 6.3 (One-More Computational Diffie-Hellman assumption (One-More CDH)).
Let GroupGen be a group generator. Let ` = `(λ) and m = m(λ) be polynomials. Consider,
for any PPT A, the following experiment:

ExpOne-More CDH(1λ)

1. (G, p, g)← GroupGen(1λ)

2.
(
ga, {gbi}i≤`

)
$← G1+`

3. L← AOa(·)(G, p, g, ga, {gbi}i≤`)

4. Output 1 if ∃ i1 < · · · < im+1 ∈ [`] such that ∀j ≤ m+ 1,, g
a·bij ∈ L;

Otherwise output 0,

where the oracle Oa takes as input a group element h ∈ G and outputs ha.
We say that the One-More CDH assumption holds relative to GroupGen7 if for all PPT

algorithm A making at most m queries to Oa, we have:

Pr[ExpOne-More CDH(1λ) = 1] ≤ negl(λ).

Remark 6.4 (One-More CDH in Prior Works). A variety of previous works defined as-
sumptions similar to the one above. To our knowledge, the first of this kind was introduced
in the context of blind signatures in [Bol03], following the steps of [BNPS03] who first intro-
duced One-More variants of the RSA and Discrete Log assumptions. More recently, another
variant was used in the context of Oblivious PRFs (e.g. [JKK14]). The variant of [Bol03]
requires the adversary to output one single guess for each target index j ∈ J , as opposed
to a list of candidates L. As the adversary a-priori cannot test himself whether an element
is correct, this makes it more difficult for the adversary to win the game and therefore the
assumption of [Bol03] is weaker than our version in Definition 6.3. In [JKK14], on the
other hand, the adversary is also given oracle access to a procedure that tests whether an
element is a correct CDH output associated to some target index, but still has to output a
single element for each target index. A direct reduction shows that this assumption is at
least as strong as our variant: an adversary in the latter can call the oracle of [JKK14] on
the whole list L to recover the matching indices.

7Later, we will also use the (mild) additional property that one can obliviously sample uniform group
elements in G, so that the One-More CDH assumption holds even given the random coins used to sample
the group elements in Step 2. (and in particular a and the bi’s should be computationally hidden). Note
that most standard groups (such as Z∗p or elliptic curves) allow to do so. Looking ahead, if such a property
does not hold, the resulting MDV-NIZK (Theorem 6.17) will use a common reference string instead.

29

6.1.3 Somewhere-Equivocable PRFs (SEPRFs)

We recall here the concept of Somewhere-Equivocable pseudorandom function (SEPRF)s,
introduced in [HJO+16]. This is a function PRF(K, ·) with two modes of generating a
key. There is the standard key generation algorithm which generates a key K honestly.
In addition, there is a way to generate a key K ′ that leaves a “hole” at some particular
point x∗ but defines the PRF output at all other points; later one can “plug the hole” to
any value r by creating a key K∗ which agrees with K ′ on all values other than x∗ but on
x∗ it outputs r. For any x∗ and a random r one cannot distinguish between an honestly
generated key K and the key K∗ created as above. Intuitively, the second mode of key
generation ensures that the function PRF(K∗, ·) outputs a truly random and independent
value on some specific point x∗.

Definition 6.5 (1-Somewhere-Equivocable PRFs (1-SEPRFs) [HJO+16]). A 1-Somewhere-
Equivocable PRF (1-SEPRF) with input size s and output size d is a tuple of PPT algo-
rithms (ObvGen,PRF,Sim1, Sim2):

• ObvGen(1λ): outputs a key K such that PRF(K, ·) maps {0, 1}s to {0, 1}d;

• Sim1(x∗): on input x∗ ∈ {0, 1}s, outputs a key K and a state state;

• Sim2(state, r): on input r ∈ {0, 1}d, outputs a key K ′.

such that the following properties hold:

Correctness: We have that for all x∗ ∈ {0, 1}s and r ∈ {0, 1}d, if (K, state)
$← Sim1(x∗)

and K ′
$← Sim2(state, r), then:

PRF(K,x) = PRF(K ′, x) if x 6= x∗

PRF(K ′, x∗) = r.

Equivocation security: For all PPT adversary A we have:∣∣∣∣∣∣∣∣∣Pr

 x∗
$← A(1λ)

K
$← ObvGen(1λ)
A(K) = 1

− Pr

x∗

$← A(1λ), r∗
$← {0, 1}d

(K, state)← Sim1(x∗)

K ′
$← Sim2(state, r∗)
A(K ′) = 1

∣∣∣∣∣∣∣∣∣ ≤ negl(λ).

Claim 6.6 ([HJO+16]). Assuming one-way functions exist, there exist 1-SEPRFs, with key
size O(s · d · λ).

6.2 Reusable Malicious-Designated-Verifier HBG (MDV-HBG)

To define a reusable Malicious-Designated-Verifier Hidden-Bits Generator (MDV-HBG), we
extend the definition of a DV-HBG in a manner analogous to the difference between DV-
NIZKs and MDV-NIZKs. Namely, instead of having a trusted setup that generates a public
crs along with a secret key sk for the verifier, we now only have the setup algorithm generate

30

the crs and allow the (potentially malicious) verifier to generate pk, sk on his own via a new
KeyGen algorithm. Furthermore, we want to ensure that the generated hidden bits only
depend on crs but not on pk; only the openings of the hidden bits can depend on pk.

Definition 6.7 (Reusable Malicious-Designated-Verifier HBG (MDV-HBG)). A Reusable
Malicious-Designated-Verifier HBG is a tuple of PPT algorithms (Setup,KeyGen, (GenBits.Commit,
GenBits.Prove),Verify):

• Setup(1λ, 1k): outputs a common random string crs.

• KeyGen(crs): outputs a public key pk with an associated secret key sk.

• GenBits(crs, pk) is now split into two sub-procedures:

• GenBits.Commit(crs): on input a crs, outputs a commitment com, some bits r ∈
{0, 1}k and a state state.

• GenBits.Prove(crs, pk, state): on input a public key pk, a crs and a state state,
produces proofs {πi}i∈k.

It outputs (com, r, {πi}i∈[k]).

• Verify(crs, sk, com, i, ri, πi): Outputs accept or reject.

We require an MDV-HBG to satisfy the following properties. The first three (correct-
ness, succinctness of the commitments and statistical binding), are direct adaptations of
Definition 3.1 to the new syntax:

Correctness: We require that for every polynomial k = k(λ) and for all i ∈ [k], we have:

Pr
[
Verify(crs, sk, com, i, ri, πi) = accept :

crs ← Setup(1λ, 1k)
(pk, sk) ← KeyGen(crs)

(com, r, π[k]) ← GenBits(crs, pk)

]
= 1.

Succinct Commitment: We require that there exists some set COM(λ) and some con-

stant δ < 1 such that |COM(λ)| ≤ 2k
δpoly(λ), and such that for all crs output by Setup(1λ, 1k)

and all com output by GenBits(crs) we have com ∈ COM(λ). Furthermore, we require that
for all com /∈ COM(λ), Verify(crs, com, ·, ·) always outputs reject.

Statistical Binding: There exists an (inefficient) deterministic algorithm Open(1k, crs, com)
such that for every polynomial k = k(λ), on input 1k, crs and com, the algorithms outputs
r such that for every (potentially unbounded) cheating prover P̃:

Pr

 r∗i 6= ri
∧ Verify(crs, sk, com, i, r∗i , πi) = accept

:

crs ← Setup(1λ, 1k)
(pk, sk) ← KeyGen(crs)

(com, i, r∗i , πi) ← P̃(crs, pk)
r ← Open(1k, crs, com)

 ≤ negl(λ).

The main conceptual difference with Definition 3.1 comes from the computational hiding
property, which now captures security against malicious verifiers:

31

Computationally Hiding against Malicious Verifiers: Consider, for an integer k, a
bit b, and a stateful PPT adversary A, the following experiment:

ExpHiding,b(1λ, 1k)

0. I ⊆ [k]← A(1k)

1. crs← Setup(1λ, 1k)

2. pk← A(crs)

3. Compute (com, r, {πi}i∈[k])← GenBits(crs, pk).

Set for all i /∈ I :

{
ρi = ri if b = 0;

ρi
$← {0, 1} otherwise.

4. Output : β ← A (crs, com, I, rI , πI , {ρi}i/∈I)

We require that for all polynomial k = k(λ) and stateful PPT adversary A:∣∣∣Pr
[
ExpHiding,0(1λ) = 1

]
− Pr

[
ExpHiding,1(1λ) = 1

]∣∣∣ ≤ negl(λ).

6.3 Reusable MDV-NIZK from MDV-HBG

We prove here an analogue to Theorem 4.1 in the malicious-verifier setting.

Theorem 6.8. Suppose there exists a MDV-HBG. Then there exists a reusable MDV-NIZK
with adaptive ZK security.

The construction is a straight adaptation of the one in Section 4.1 to the new syntax,
where the verifier’s public key and secret key are respectively the public key and the secret
key from the underlying HBG. The proofs of Correctness, Succinctness of the commitment
and Statistical Binding are almost identical, with the only differences being syntactical
(where (crs, pk) now acts as crs in the definitions and proofs from Sections 3 and 4).

The proof of Malicious Zero-Knowledge is also very similar to the proof of zero-knowledge
in Section 4.1, where we now use the fact that GenBits.Commit does not take pk as an input.
Intuitively this ensures that the adversary does not have any control on the generated
hidden-bits. Technically, this allows the simulator to program as before the hidden-bits
generated by the HBG to the simulated hidden-bits given by the hidden-bits NIZK simulator
without the adversary being able to tell the difference.

Let us highlight the difference in the selective case for simplicity; the adaptive case being
very similar. The only non-syntactical difference is that we can still switch from hybrid H2

to hybrid H3 (from the proof of zero-knowledge in Section 4.1), where in H2 the advesary
receives random hidden-bits, where in H3 it receives simulated ones. These two hybrids are
now slightly different syntactically:

H2: We now switch how s is computed.

• r $← {0, 1}k

• (I, πHB)← PHB(r, x, w)

32

• crsBG ← SetupBG(1λ, 1k), (com, rBG, state)← GenBits.Commit(crsBG)

• si = ri ⊕ rBGi if i ∈ I and si
$← {0, 1} otherwise.

• pk← A(crs = (crsBG, s))

• π[k] ← GenBits.Prove(crsBG, pk, state)

Set crs = (crsBG, s),Π = (I, πHB, com, rI , πI), and output A(crs,Π).

H3: We now switch how (I, rI , π
HB) are computed by using SimHB(x) to generate them:

• (I, rI , π
HB)← SimHB(x)

• crsBG ← SetupBG(1λ, 1k), (com, rBG, state)← GenBits.Commit(crsBG)

• si = ri ⊕ rBGi if i ∈ I and si
$← {0, 1} otherwise.

• pk← A(crs = (crsBG, s))

• π[k] ← GenBits.Prove(crsBG, pk, state)

Set crs = (crsBG, s),Π = (I, πHB, com, rI , πI), and output A(crs,Π).

Here we use the fact that the output of GenBits.Commit is independent of pk, so that we
can compute s (included in the crs) before receiving the public key from the adversary. As
before, the two hybrids are indistinguishable by zero-knowledge of the hidden-bits NIZK,
and again, the view of the adversary in H3 now corresponds to the one produced in the
ideal experiment.

The difference in the adaptive case is almost identical: in the proof of Theorem 4.5, the
same argument now allows to switch from H1 to H2.

6.4 MDV-HBG from One-More CDH

Notation. Let d, k and ` be integers, where ` is a power-of-two. Given a function ϕ :
[k]→ [`]d and some index i ∈ [k], we define, for some vector u of dimension `, the vector:

uϕ(i) :=
(
uϕ(i)1 , . . . , uϕ(i)d

)
.

In other words, we can think of ϕ(i) as a set of neighbors of vertex i ∈ [k] in the bipartite
(multi-)graph ([k], [`]). Furthermore if the vertices j ∈ [`] are labelled with some element
uj , then uϕ(i) denotes the list of labels associated to neighbors of i. Note that vertices in
[k] have d neighbors in [`] (where there can be multiple occurrences of the same edge). We
naturally extend this definition for sets of indices: for I ⊆ [k], we define

uϕ(I) :=
(
uϕ(i)1 , . . . , uϕ(i)d

)
i∈I .

Let hc be the Goldreich-Levin [GL89] hard-core bit (which, on input a bit-string x ∈
{0, 1}L, uses randomness r

$← {0, 1}L and outputs hc(x; r) := (〈x, r〉, r)).

33

Construction. Let (G, p, g) ← GroupGen(1λ) be a prime-order group generator so that
G is a group of prime order p, with a generator g. For λ, k ∈ N, let ` = `(λ, k) be the least
power-of-two greater than 3kλ (i.e. ` = 2dlog(3kλ)e), and let d = λ. Let (ObvGen,PRF, Sim1, Sim2)
be a 1-SEPRF (as defined in Section 6.1.3) where ObvGen(1λ) outputs keys K such that
PRF(K, ·) maps {0, 1}dlog ke to {0, 1}d·log ` (and in particular maps [k] to [`]).

Let us define the following hidden-bits generator:

• Setup(1λ, 1k): Let (G, p, g)← GroupGen(1λ). For all j ∈ [`], pick hj
$← G. Output:

crs = (G, {hj}j∈[`]).

• KeyGen(crs): For all j ∈ [`], pick random aj , bj
$← Zp, compute:

fj = h
aj
j · g

bj ,

and output:

pk = {fj}j∈[`],

sk = {(aj , bj)}j∈[`].

• GenBits(crs, pk):

• GenBits.Commit(crs): Pick a random y ← Zp and set s = gy. Compute for
all j ∈ [`]: tj = hyj . Sample some random coins γ matching the randomness

used by hc(·) taking as input (the bit-representation of) elements in Gd. Sample
K ← ObvGen(1λ). Parsing the output of PRF(K, ·) as d blocks of log ` bits, this
defines for all i ∈ [k]:

ϕ(i) := (PRF(K, i)1, . . . ,PRF(K, i)d) ∈ [`]d. (1)

Compute for all i ∈ [k]: ri = hc
(
(hy)ϕ(i) ; γ

)
, where we recall that by definition

(hy)ϕ(i) =
(
hyPRF(K,i)1

, . . . , hyPRF(K,i)d

)
. Output:

com = (s, γ,K),

{ri}i∈[k],

state = (y,K).

• GenBits.Prove(crs, pk, state): Parse pk as {fj}j∈[`]. The key K in state defines a
function ϕ as per Equation 1. Compute for all j ∈ [`]: tj = hyj and uj = fyj .
Compute for all i ∈ [k]:

πi = {(tj , uj)}j∈ϕ(i).

Output:
(com, r, {πi}i∈[k]).

34

• Verify(crs, sk, com, i, ri, πi) : Parse sk = {(aj , bj)}j∈[`], com = (s, γ,K), πi = {(tj , uj)}j∈ϕ(i).
Compute for j ∈ ϕ(i) (where ϕ(i) is defined as per Equation 1):

ρj = t
aj
j · s

bj ,

and accept if and only if ρj = uj for all j ∈ ϕ(i), and ri = hc
(
{t}ϕ(i) ; γ

)
.

Theorem 6.9. Suppose that (ObvGen,PRF,Sim1,Sim2) is a 1-SEPRF (Definition 6.5).
Then, assuming the One-More CDH assumption holds (Definition 6.3, (Setup,GenBits,Verify)
is a reusable Malicious-Designated-Verifier Hidden-Bits Generator (Definition 6.7).

Claim 6.10. (Setup,GenBits,Verify) satisfy completeness, statistical binding and succinct-
ness of its commitments (Definition 6.7).

Proof. Completeness and statistical binding are direct adaptations of the corresponding
proof of Theorem 5.1, where we now define:

• Open(1k, crs, com) : Parse com as (s, γ,K) (which defines ϕ by Equation 1). Compute
(inefficiently) y ∈ Zp such that gy = s, and output:

ri = hc
(

(hy)ϕ(i) ; γ
)
.

For succinctness, we use the fact that both the bit-length of γ (used by hc) and the
number of SEPRF keys are independent of k, and polynomial in λ. This is because the
group elements size and the size d of the (multi)sets ϕ(i) satisfy those properties. The
(bit-)size of the SEPRF keys grows logarithmically with k (as its output consists of log k
bits) (and polynomially with λ). Overall the set of valid commitments is of size at most
poly(k) · 2poly(sec), which gives succinctness.

It remains to prove computationally hiding against malicious verifiers as defined in
Section 6.2, which is the most technical part of the proof.

Claim 6.11. Assume that (ObvGen,PRF, Sim1, Sim2) is a 1-SEPRF (Definition 6.5). Then,
assuming the One-More CDH assumption holds (Definition 6.3), then (Setup,GenBits,Verify)
is computationally hiding against malicious verifiers (Definition 6.7).

6.4.1 Proof of Claim 6.11

Proof. Let I ⊆ [k] be the set of indices fixed by the adversary in the malicious computational
hiding experiment. Without loss of generality, we can suppose I = [k] \ {i∗} for some index
i∗ ∈ [k]. This is because if malicious computational hiding holds for all such sets, then it
also holds for all subsets I ⊆ [k] by a simple hybrid argument.

The proof goes in three steps. First, we show that any distinguisher breaking malicious
hiding of the HBG induces an appropriate decoder (Definition 6.12, Lemma 6.13). Then,
we show that any such decoder also succeeds in a slightly modified decoding experiment
(Definition 6.14, Lemma 6.15). Finally, we turn any such decoder into an adversary for the
One-More CDH experiment (Definition 6.3, Lemma 6.16).

We first introduce a bit of notation, and define the following modified commit algorithm
which we will use in our decoding experiment:

35

• GenBits.CommitDec(crs) :

– First, compute GenBits.Commit1(crs) = (s = gy, state1 = y);

– Second, compute GenBits.Commit2(crs, state1) = (K, state2 = (y,K)).

Output:
comDec = (s,K), state = (y,K).

Namely, the algorithm GenBits.CommitDec does not sample the randomness γ for the hard-
core bit, and does not compute the hidden-bits r.

This induces the following modified algorithm:

• GenBitsDec(crs, pk):

– Compute (comDec, state)← GenBits.CommitDec(crs);

– Compute {πi}i∈[k] ← GenBits.Prove(crs, pk, state).

Output:
(comDec, {πi}i∈[k]),

We now describe our (first) decoding experiment:

Definition 6.12 (Decoding Experiment). Consider, for an integer k, and a stateful adver-
sary A, the following experiment:

ExpDec(1λ, 1k)

0. I = [k] \ {i∗} ← A(1k)

1. crs = (G, {hj}j∈[`])← Setup(1λ, 1k)

2. pk← A(crs)

3. Compute (comDec = (s = gy,K), {πi}i∈[k])← GenBitsDec(crs, pk).

4. x ∈ Gd ← A
(
crs, comDec, πI

)
.

Output :

{
1 if x = (hy)ϕ(i∗)

0 otherwise
,

where ϕ is defined by K as in Equation 1.
We say that a PPT adversary A is a decoder for ExpDec(1λ, 1k) if there exists a non-

negligible function α such that:

Pr[ExpDec(1λ, 1k)) = 1] ≥ α(λ).

Lemma 6.13 (Distinguisher to decoder [GL89]). Suppose hc is the Goldreich-Levin hard-
core bit [GL89]. Suppose furthermore that there exists an efficient distinguisher for the
malicious hiding experiments ExpHiding,b(1λ, 1k) (Definition 6.7). Then there exists a PPT
decoder for ExpDec(1λ, 1k).

36

The proof of Lemma 6.13 is almost identical to the one of the (plain) decoding property
of the Goldreich-Levin hard-core bit [GL89]. Namely, we only use the fact that for all γ
(which is picked by the reduction in the proof), the bits rI are efficiently computable given
γ and πI (which are provided by the decoding experiment).

Next, we slightly modify the decoding experiment of Definition 6.12, namely, we mod-
ify the way GenBits.CommitDec computes SEPRF keys. Recall that the SEPRF consists
of algorithms (ObvGen,PRF, Sim1,Sim2) (Section 6.1.3). Define the following modified
GenBits.CommitSimDec algorithm:

• GenBits.CommitSimDec(crs, I = [k] \ {i∗}) :

– First, compute GenBits.CommitSim1(crs) = (s = gy, state1 = y);

– Second, compute GenBits.CommitSim2(crs, I) as follows:

1. GenBits.CommitSim
(1)
2 (crs): Compute (K, state)← Sim1(i∗).

Note that at the point one can compute πi ← GenBits.Prove(crs, com) for all
i 6= i∗, by correctness of the SEPRF.

2. GenBits.CommitSim
(2)
2 (crs, state): Sample a random ρ

$← [`]d and outputK ′ ← Sim2(ρ, state).

Output:
comDec = (s,K ′), state = (y,K ′).

This naturally defines an algorithm GenBitsSimDec(crs, pk, I) which runs GenBits.CommitSimDec(crs, I)
(instead of GenBits.CommitDec(crs)), and the original algorithm GenBits.Prove(crs, pk, state).
This in turn, defines the following natural modified decoding experiment:

Definition 6.14 (Simulated decoding experiment). Consider, for an integer k, and a state-
ful adversary A, the following experiment:

ExpDec
Sim(1λ, 1k)

0. I = [k] \ {i∗} ← A(1k)

1. crs = (G, {hj}j∈[`])← Setup(1λ, 1k)

2. pk← A(crs)

3. Compute (comDec = (s = gy,K ′), {πi}i∈[k])← GenBitsSimDec(crs, pk, I).

4. x ∈ Gd ← A
(
crs, comDec, πI

)
.

Output :

{
1 if x = (hy)ϕ(i∗)

0 otherwise
.

We say that a PPT adversary A is a decoder for ExpDec
Sim(1λ, 1k) if there exists a non-

negligible function α such that:

Pr[ExpDec(1λ, 1k)) = 1] ≥ α(λ).

Now the outputs of ExpDec(1λ, 1k) and ExpDec
Sim(1λ, 1k), with the same adversary A, are

computationally indistinguishable; this follows directly by the equivocation property of the
SEPRF (Definition 6.5).

37

Lemma 6.15. Suppose (ObvGen,PRF,Sim1,Sim2) is a 1-SEPRF (Definition 6.5). Then,
for all PPT adversary A:∣∣∣Pr[ExpDec(1λ, 1k) = 1] − Pr[ExpDec

Sim(1λ, 1k) = 1]
∣∣∣ ≤ negl(λ).

Finally, we argue that any decoder for ExpDec
Sim induces an adversary for the One-More

CDH experiment:

Lemma 6.16. Suppose that there exists an efficient decoder A for ExpDec
Sim(1λ, 1k) (Defini-

tion 6.14), and that (ObvGen,PRF,Sim1,Sim2) satisfies correctness (Definition 6.5). Then
there exists an efficient adversary for the One-More CDH experiment (Definition 6.3) with
non-negligible advantage.

Given such an efficient decoder A for ExpDec
Sim(1λ, 1k), we build an adversary for the

One-More CDH experiment as follows:

Adversary for the One-More CDH experiment: LetA be a decoder for ExpDec
Sim(1λ, 1k)

with non-negligible advantage α(λ). Define the following adversary for the One-More CDH
experiment ExpOne-More CDH(1λ):

1. First initialize an empty set L, and run the decoder A to define the index set I =
[k] \ {i∗}.

2. After receiving group elements {hj}j∈[`], and gy from Step 2. of the One-More CDH

experiment ExpOne-More CDH(1λ), it sets

crs = {hj}j∈[`], s = gy,

(which is normally output by GenBits.CommitSim1(crs)). It then runs the decoder A
to get a public key: pk = {fj}j∈[`] ← A(crs).

Then, it computes (K, state) ← Sim1(i∗) using the 1-SEPRF simulator (which is

normally the output of GenBits.CommitSim
(1)
2 (crs)). Note that by correctness of the

SEPRF, the simulated key K defines ϕ everywhere except on i∗ as per Equation 1.

It now submits 2|I|d = 2(k−1)d CDH oracle queries (hϕ(I), fϕ(I)) using its knowledge
of crs, pk and ϕ(I). It receives the values (hyϕ(I), f

y
ϕ(I)), which he sets as πI (normally

output of GenBits.Prove).

It also adds the elements of {hy}ϕ(I) to the list L.

3. Repeat the following polynomially many times (discussed later):

• Sample a random value ρ
$← [`]d. Compute K ′ ← Sim2(ρ, state), and set

(comDec = (s,K ′).

• Run the decoder: L′ ← A(crs, comDec, πI) (from Step 4 of ExpDec
Sim(1λ, 1k)), and

all the elements of L′ to L.

4. Output the list L.

38

To argue that this adversary indeed breaks the One-More CDH assumption, it suffices
to show that:

• With good probability, if the adversary runs Step 3 sufficiently many times, then L
will eventually succeed many times and include many sets hyϕ(i∗) (which are defined

by Steps 1 to 3);

• With good probability, those sets hyϕ(i∗) include new CDH elements that were not
previously in L.

Let coins = (coins1, coins2) be the randomness used by our adversary, where:

• coins1 denotes the random coins used in Step 2. In the decoding experiment, this corre-

sponds to all the randomness used by Setup, GenBits.CommitSim1, GenBits.CommitSim
(1)
2 (crs)

and GenBits.Prove.

• coins2 denotes the random coins used in Step 3. In the decoding experiment, this

corresponds to the randomness used by GenBits.CommitSim
(2)
2 (crs, state), and the ran-

domness of the decoder at Step 4. of ExpDec
Sim(1λ, 1k).

We say that coins1 are good, and write coins1 ∈ Good, if:

Pr
coins2

[
ExpDec

Sim

(
1λ, 1k; (coins1, coins2)

)
= 1
]
≥ α(λ)/2.

A standard averaging argument (over the success probability of A in ExpDec
Sim(1λ, 1k)) shows

that Pr[coins1 ∈ Good] ≥ α(λ)/2, and is in particular non-negligible.
Let L be the current list of group elements; let us analyze the behaviour of Step 3.

Suppose without loss of generality that L contains at most 2(k − 1)d distinct elements
{hyj}j∈[`]; otherwise L already makes the One-More CDH experiment output 1. Let known ⊆
[`] be a set of indices defined as:

i ∈ known ⇐⇒ hyi ∈ L.

Then, if the decoder succeeds, hyϕ(i∗) contains no new CDH elements in L only if ϕ(i∗) ⊆
known, that is ρl ∈ known for all l ∈ [d], by definition of ϕ and correctness of the SEPRF.
Now ρ is entirely determined by coins2; and over the randomness of coins2, the above happens
with probability at most (|known|/`)d, which is negligible by our choice of parameters.

In other words, define the set Bad as coins2 ∈ Bad if, for all l ∈ [d], ρl ∈ known.
Now, the probability that the decoder A succeeds in Step 3. and coins2 /∈ Bad is at least
Adv = α(λ)− negl(λ) which is non-negligible, independently of the list L (as long as it does
not contain enough elements). Now:

• We have: Pr[coins1 ∈ Good] ≥ α(λ)/2;

• Suppose coins1 ∈ Good. Let q be a polynomial such that Adv ≥ 1/q(λ) for infinitely
many λ. Then, if the adversary runs Step 3. λ · q(λ) times, then for such λ, we have
that with overwhelming probability, it adds a correct, new distinct element hyi to L
(supposing L does not contain enough elements yet).

39

In particular if we run Step 3. λ · q(λ) · (|I| · d + 1) times, then with overwhelming
probability (for such λ), the list L will have at least 2(k − 1)d + 1 distinct CDH
elements.

Overall, our adversary wins in the the One-More CDH experiment with probability
α(λ)/2− negl(λ) for infinitely many λ.

Wrapping-up. Assuming a decoder for ExpDec
Sim(1λ, 1k), we built a PPT adversary for the

One-More CDH experiment ExpOne-More CDH(1λ) such that:

• It uses (at most) 2|I| · d = 2(k − 1) · d calls to the CDH oracle (in Step 2);

• It outputs a list of group elements L such that with non-negligible probability, there
are at least 2(k− 1) ·d+ 1 indices i ∈ [`], such that L contains all the associated CDH
elements hyi .

Therefore such an adversary breaks the One-More CDH assumption This concludes the
proof of Lemma 6.16, and therefore the proof of Claim 6.11.

Combining Claim 6.6, Theorems 6.8 and 6.9, and Remark 6.2, we obtain the following:

Theorem 6.17 (MDV-NIZK from One-More CDH). Under the One-More CDH assump-
tion (Definition 6.3), there exists a MDV-NIZK for all NP (Definition 6.1) with statistical
soundness, and adaptive, multi-theorem zero-knowledge.

7 Extensions

We informally describe two simple extensions of our construction.

Unbounded Statement Size. In our construction of (reusable DV-)NIZKs, we need to
have a bound n on the size of the statements that can be proved and the size of the CRS
depends on n. Ideally, we would have a fixed-size CRS which allows us to prove statements
of arbitrary size. Indeed, we can achieve this using non-interactive statistically-binding
commitments in the CRS model, which exist assuming OWFs [Nao90, Nao91]. Let us fix
3SAT as the NP-complete language. To prove that some 3CNF is satisfiable the prover
commits to the satisfying assignments one variable at a time. Then he uses a (reusable
DV-)NIZK scheme for each clause separately to show that the 3 relevant committed values
satisfy the clause. Note that the size of the statements being proved by the underlying
(reusable DV-)NIZK is independent of the size of the actual 3CNF formula. Therefore the
above technique bootstraps a (reusable DV-)NIZK for statements of some fixed size which
depends only on the security parameter to construct a (reusable DV-)NIZK for statements
of arbitrary size.

40

Proof of Knowledge. While our basic construction is not a proof-of-knowledge it is easy
to generically add this property assuming the existence of public-key encryption (PKE). We
can add a public-key com of a PKE scheme to the CRS and have the prover encrypt the
witness under com and then use the (reusable DV-)NIZK to prove that the ciphertext is
an encryption of a valid witness for the statement. The extractor would choose com along
with a corresponding decryption key sk and use it to extract the witness.

Acknowledgments

We thank Geoffroy Couteau, Dennis Hofheinz, Shuichi Katsumata, Ryo Nishimaki, Shota
Yamada, and Takashi Yamakawa for sharing their manuscripts [CH19, KNYY19] and for
helpful discussions.

References

[BFM88] Manuel Blum, Paul Feldman, and Silvio Micali. Non-interactive zero-knowledge
and its applications (extended abstract). In 20th Annual ACM Symposium on
Theory of Computing, pages 103–112, Chicago, IL, USA, May 2–4, 1988. ACM
Press.

[BGI15] Elette Boyle, Niv Gilboa, and Yuval Ishai. Function secret sharing. In Elis-
abeth Oswald and Marc Fischlin, editors, Advances in Cryptology – EURO-
CRYPT 2015, Part II, volume 9057 of Lecture Notes in Computer Science,
pages 337–367, Sofia, Bulgaria, April 26–30, 2015. Springer, Heidelberg, Ger-
many.

[BNPS03] Mihir Bellare, Chanathip Namprempre, David Pointcheval, and Michael Se-
manko. The one-more-RSA-inversion problems and the security of Chaum’s
blind signature scheme. Journal of Cryptology, 16(3):185–215, June 2003.

[Bol03] Alexandra Boldyreva. Threshold signatures, multisignatures and blind signa-
tures based on the gap-Diffie-Hellman-group signature scheme. In Yvo Desmedt,
editor, PKC 2003: 6th International Workshop on Theory and Practice in Pub-
lic Key Cryptography, volume 2567 of Lecture Notes in Computer Science, pages
31–46, Miami, FL, USA, January 6–8, 2003. Springer, Heidelberg, Germany.

[BY93] Mihir Bellare and Moti Yung. Certifying cryptographic tools: The case of
trapdoor permutations. In Ernest F. Brickell, editor, Advances in Cryptology –
CRYPTO’92, volume 740 of Lecture Notes in Computer Science, pages 442–460,
Santa Barbara, CA, USA, August 16–20, 1993. Springer, Heidelberg, Germany.

[CC18] Pyrros Chaidos and Geoffroy Couteau. Efficient designated-verifier non-
interactive zero-knowledge proofs of knowledge. In Jesper Buus Nielsen and Vin-
cent Rijmen, editors, Advances in Cryptology – EUROCRYPT 2018, Part III,
volume 10822 of Lecture Notes in Computer Science, pages 193–221, Tel Aviv,
Israel, April 29 – May 3, 2018. Springer, Heidelberg, Germany.

41

[CCRR18] Ran Canetti, Yilei Chen, Leonid Reyzin, and Ron D. Rothblum. Fiat-Shamir
and correlation intractability from strong KDM-secure encryption. In Advances
in Cryptology - EUROCRYPT 2018 - 37th Annual International Conference
on the Theory and Applications of Cryptographic Techniques, Tel Aviv, Israel,
April 29 - May 3, 2018 Proceedings, Part I, pages 91–122, 2018.

[CH19] Geoffroy Couteau and Dennis Hofheinz. Towards non-interactive zero-knowledge
proofs from CDH and LWE. In EUROCRYPT, 2019.

[CHK03] Ran Canetti, Shai Halevi, and Jonathan Katz. A forward-secure public-key
encryption scheme. In Eli Biham, editor, Advances in Cryptology – EURO-
CRYPT 2003, volume 2656 of Lecture Notes in Computer Science, pages 255–
271, Warsaw, Poland, May 4–8, 2003. Springer, Heidelberg, Germany.

[CKS08] David Cash, Eike Kiltz, and Victor Shoup. The twin Diffie-Hellman problem
and applications. In Nigel P. Smart, editor, Advances in Cryptology – EU-
ROCRYPT 2008, volume 4965 of Lecture Notes in Computer Science, pages
127–145, Istanbul, Turkey, April 13–17, 2008. Springer, Heidelberg, Germany.

[CL17] Ran Canetti and Amit Lichtenberg. Certifying trapdoor permutations, revisited.
IACR Cryptology ePrint Archive, 2017:631, 2017.

[CS98] Ronald Cramer and Victor Shoup. A practical public key cryptosystem provably
secure against adaptive chosen ciphertext attack. In Hugo Krawczyk, editor, Ad-
vances in Cryptology – CRYPTO’98, volume 1462 of Lecture Notes in Computer
Science, pages 13–25, Santa Barbara, CA, USA, August 23–27, 1998. Springer,
Heidelberg, Germany.

[CS02] Ronald Cramer and Victor Shoup. Universal hash proofs and a paradigm for
adaptive chosen ciphertext secure public-key encryption. In Lars R. Knud-
sen, editor, Advances in Cryptology – EUROCRYPT 2002, volume 2332 of Lec-
ture Notes in Computer Science, pages 45–64, Amsterdam, The Netherlands,
April 28 – May 2, 2002. Springer, Heidelberg, Germany.

[Dam93] Ivan Damg̊ard. Non-interactive circuit based proofs and non-interactive perfect
zero-knowledge with proprocessing. In Rainer A. Rueppel, editor, Advances
in Cryptology – EUROCRYPT’92, volume 658 of Lecture Notes in Computer
Science, pages 341–355, Balatonfüred, Hungary, May 24–28, 1993. Springer,
Heidelberg, Germany.

[DDN91] Danny Dolev, Cynthia Dwork, and Moni Naor. Non-malleable cryptography
(extended abstract). In 23rd Annual ACM Symposium on Theory of Computing,
pages 542–552, New Orleans, LA, USA, May 6–8, 1991. ACM Press.

[DFN06] Ivan Damg̊ard, Nelly Fazio, and Antonio Nicolosi. Non-interactive zero-
knowledge from homomorphic encryption. In Shai Halevi and Tal Rabin, editors,
TCC 2006: 3rd Theory of Cryptography Conference, volume 3876 of Lecture
Notes in Computer Science, pages 41–59, New York, NY, USA, March 4–7,
2006. Springer, Heidelberg, Germany.

42

[DMP88] Alfredo De Santis, Silvio Micali, and Giuseppe Persiano. Non-interactive zero-
knowledge proof systems. In Carl Pomerance, editor, Advances in Cryptology –
CRYPTO’87, volume 293 of Lecture Notes in Computer Science, pages 52–72,
Santa Barbara, CA, USA, August 16–20, 1988. Springer, Heidelberg, Germany.

[DMP90] Alfredo De Santis, Silvio Micali, and Giuseppe Persiano. Non-interactive zero-
knowledge with preprocessing. In Shafi Goldwasser, editor, Advances in Cryp-
tology – CRYPTO’88, volume 403 of Lecture Notes in Computer Science, pages
269–282, Santa Barbara, CA, USA, August 21–25, 1990. Springer, Heidelberg,
Germany.

[DN00] Cynthia Dwork and Moni Naor. Zaps and their applications. In 41st An-
nual Symposium on Foundations of Computer Science, pages 283–293, Redondo
Beach, CA, USA, November 12–14, 2000. IEEE Computer Society Press.

[FLS99] Uriel Feige, Dror Lapidot, and Adi Shamir. Multiple noninteractive zero knowl-
edge proofs under general assumptions. SIAM J. Comput., 29(1):1–28, Septem-
ber 1999.

[FS87] Amos Fiat and Adi Shamir. How to prove yourself: Practical solutions to
identification and signature problems. In Andrew M. Odlyzko, editor, Advances
in Cryptology – CRYPTO’86, volume 263 of Lecture Notes in Computer Science,
pages 186–194, Santa Barbara, CA, USA, August 1987. Springer, Heidelberg,
Germany.

[GI14] Niv Gilboa and Yuval Ishai. Distributed point functions and their applications.
In Phong Q. Nguyen and Elisabeth Oswald, editors, Advances in Cryptology
– EUROCRYPT 2014, volume 8441 of Lecture Notes in Computer Science,
pages 640–658, Copenhagen, Denmark, May 11–15, 2014. Springer, Heidelberg,
Germany.

[GL89] Oded Goldreich and Leonid A. Levin. A hard-core predicate for all one-way
functions. In 21st Annual ACM Symposium on Theory of Computing, pages
25–32, Seattle, WA, USA, May 15–17, 1989. ACM Press.

[GMR85] Shafi Goldwasser, Silvio Micali, and Charles Rackoff. The knowledge complexity
of interactive proof-systems (extended abstract). In 17th Annual ACM Sympo-
sium on Theory of Computing, pages 291–304, Providence, RI, USA, May 6–8,
1985. ACM Press.

[GMR89] Shafi Goldwasser, Silvio Micali, and Charles Rackoff. The knowledge complexity
of interactive proof systems. SIAM Journal on Computing, 18(1):186–208, 1989.

[Gol01] Oded Goldreich. Foundations of Cryptography: Basic Tools, volume 1. Cam-
bridge University Press, Cambridge, UK, 2001.

[Gol04] Oded Goldreich. Foundations of Cryptography: Basic Applications, volume 2.
Cambridge University Press, Cambridge, UK, 2004.

43

[Gol11] Oded Goldreich. Basing Non-Interactive Zero-Knowledge on (Enhanced) Trap-
door Permutations: The State of the Art, pages 406–421. Springer Berlin Hei-
delberg, Berlin, Heidelberg, 2011.

[GOS06] Jens Groth, Rafail Ostrovsky, and Amit Sahai. Perfect non-interactive zero
knowledge for NP. In Serge Vaudenay, editor, Advances in Cryptology – EU-
ROCRYPT 2006, volume 4004 of Lecture Notes in Computer Science, pages
339–358, St. Petersburg, Russia, May 28 – June 1, 2006. Springer, Heidelberg,
Germany.

[GR13] Oded Goldreich and Ron D. Rothblum. Enhancements of trapdoor permuta-
tions. J. Cryptology, 26(3):484–512, 2013.

[HJO+16] Brett Hemenway, Zahra Jafargholi, Rafail Ostrovsky, Alessandra Scafuro, and
Daniel Wichs. Adaptively secure garbled circuits from one-way functions.
In Matthew Robshaw and Jonathan Katz, editors, Advances in Cryptology –
CRYPTO 2016, Part III, volume 9816 of Lecture Notes in Computer Science,
pages 149–178, Santa Barbara, CA, USA, August 14–18, 2016. Springer, Hei-
delberg, Germany.

[HRW16] Dennis Hofheinz, Vanishree Rao, and Daniel Wichs. Standard security does not
imply indistinguishability under selective opening. In Martin Hirt and Adam D.
Smith, editors, TCC 2016-B: 14th Theory of Cryptography Conference, Part II,
volume 9986 of Lecture Notes in Computer Science, pages 121–145, Beijing,
China, October 31 – November 3, 2016. Springer, Heidelberg, Germany.

[JKK14] Stanislaw Jarecki, Aggelos Kiayias, and Hugo Krawczyk. Round-optimal
password-protected secret sharing and T-PAKE in the password-only model.
In Palash Sarkar and Tetsu Iwata, editors, Advances in Cryptology – ASI-
ACRYPT 2014, Part II, volume 8874 of Lecture Notes in Computer Science,
pages 233–253, Kaoshiung, Taiwan, R.O.C., December 7–11, 2014. Springer,
Heidelberg, Germany.

[KMO90] Joe Kilian, Silvio Micali, and Rafail Ostrovsky. Minimum resource zero-
knowledge proofs (extended abstract). In Gilles Brassard, editor, Advances
in Cryptology – CRYPTO’89, volume 435 of Lecture Notes in Computer Sci-
ence, pages 545–546, Santa Barbara, CA, USA, August 20–24, 1990. Springer,
Heidelberg, Germany.

[KNYY19] Shuichi Katsumata, Ryo Nishimaki, Shota Yamada, and Takashi Yamakawa.
Designated verifier/prover and preprocessing NIZKs from Diffie-Hellman as-
sumptions. In EUROCRYPT, 2019.

[KW18] Sam Kim and David J. Wu. Multi-theorem preprocessing NIZKs from lattices.
In Hovav Shacham and Alexandra Boldyreva, editors, Advances in Cryptology
– CRYPTO 2018, Part II, volume 10992 of Lecture Notes in Computer Sci-
ence, pages 733–765, Santa Barbara, CA, USA, August 19–23, 2018. Springer,
Heidelberg, Germany.

44

[LS91] Dror Lapidot and Adi Shamir. Publicly verifiable non-interactive zero-
knowledge proofs. In Alfred J. Menezes and Scott A. Vanstone, editors, Ad-
vances in Cryptology – CRYPTO’90, volume 537 of Lecture Notes in Computer
Science, pages 353–365, Santa Barbara, CA, USA, August 11–15, 1991. Springer,
Heidelberg, Germany.

[Nao90] Moni Naor. Bit commitment using pseudo-randomness. In Gilles Brassard,
editor, Advances in Cryptology – CRYPTO’89, volume 435 of Lecture Notes in
Computer Science, pages 128–136, Santa Barbara, CA, USA, August 20–24,
1990. Springer, Heidelberg, Germany.

[Nao91] Moni Naor. Bit commitment using pseudorandomness. Journal of Cryptology,
4(2):151–158, 1991.

[NY90] Moni Naor and Moti Yung. Public-key cryptosystems provably secure against
chosen ciphertext attacks. In 22nd Annual ACM Symposium on Theory of
Computing, pages 427–437, Baltimore, MD, USA, May 14–16, 1990. ACM Press.

[PsV06] Rafael Pass, abhi shelat, and Vinod Vaikuntanathan. Construction of a non-
malleable encryption scheme from any semantically secure one. In Cynthia
Dwork, editor, Advances in Cryptology – CRYPTO 2006, volume 4117 of Lec-
ture Notes in Computer Science, pages 271–289, Santa Barbara, CA, USA,
August 20–24, 2006. Springer, Heidelberg, Germany.

[Rot10] Ron Rothblum. A taxonomy of enhanced trapdoor permutations. Electronic
Colloquium on Computational Complexity (ECCC), 17:145, 2010.

[SW14] Amit Sahai and Brent Waters. How to use indistinguishability obfuscation:
deniable encryption, and more. In David B. Shmoys, editor, 46th Annual ACM
Symposium on Theory of Computing, pages 475–484, New York, NY, USA,
May 31 – June 3, 2014. ACM Press.

A Hidden-Bits Generator from gap-CDH in Bilinear Groups

Let (G,GT , e, p, g) ← GroupGen(λ) be a “bilinear group generator” which outputs cyclic
groups G,GT of order p along with a generator g for G and a bilinear map e : G×G→ GT .

The gap-CDH assumption states that CDH holds in the group G even though the
presence of a bilinear map makes DDH easy. In other words given gx, gy for random x, y,
it should be hard to compute gxy even though the bilinear map makes it easy to recognize
the solution gxy by checking e(gx, gy)

?
= e(g, gxy). Let hc be a hard-core bit associated with

the CDH assumption in G.
Let us define the following HBG:

• Setup(1λ, 1k): For all i ∈ [k], pick a random hi ← G. Let γ be randomness for the
hardcore bit hc. Output crs = (h1, . . . , hk, γ).

45

• GenBits(crs): Pick a random y ← Zp, and compute ti = hyi for all i ∈ [k]. Output:

com = gy,

{ri = hc(ti; γ)}i∈[k]

{πi = ti}i∈[k].

• Verify(crs, com, i, ri, πi) : Accept if e(com, hi) = e(g, πi) and ri = hc(πi; γ).

Theorem A.1. The triple (Setup,GenBits,Verify) is a weak Hidden-Bits Generator under
the gap-CDH assumption.

Proof. We prove completeness, succinctness, statistical binding and computational hiding.

Completeness: If com = gy and πi = hyi and ri = hc(hyi ; γ) are correctly generated by
GenBits then e(com, hi) = e(g, hi)

y = e(g, πi) and ri = hc(πi; γ) so Verify accepts.

Succinctness: First, we have |COM| = |G| is some fixed polynomial in the security
parameter independent of k.

Statistical Binding: Define Open(1k, crs, com): compute y such that gy = com. Output:

{ri = hc(hyi ; γ)}i∈[k] .

If Verify(crs, com, i, r′i, πi) accepts then: firstly, e(com, hi) = e(g, hi)
y = e(g, πi) which

only occurs if πi = hyi and secondly r′i = hc(πi; γ) = hc(hyi ; γ). Therefore it must be the
case that ri = r′i.

Computational Hiding: We want to prove that, for all I ⊆ [k], given:(
crs = ({hi}i∈[k], γ), com = gy, {ri = hc(hyi ; γ)}i∈I , {πi = hyi }i∈I

)
,

the values {rj = hc(hyj ; γ)}j /∈I are indistinguishable from uniform. This follows via a hybrid
argument over j /∈ I. For each such j we first argue that, by the gap-CDH assumption, the
value hyj is hard to compute even given all the other values – the reduction gets hj = gx, gy,
samples xi ← Zp and sets hi = gxi for all i 6= j to simulate the adversary’s input. Then we
rely on the fact that hc is a hardcore bit to replace rj by uniform.

B Hidden-Bits Generator from TDP

In this appendix we sketch the construction of a Hidden Bits Generator from doubly-
enhanced trapdoor permutation. We follow notations of [GR13] and assume basic familiarity
with the definitions of trapdoor permutations and their various enhancements as in [Gol11,
Rot10, GR13, CL17]. For simplicity we assume that the trapdoor permutation has an
efficiently recognizable index set and mention that the case that it does not can be handled
via the techniques in [BY93, CL17].

46

Let {fα : Dα → Dα}α be a collection of doubly-enhanced trapdoor permutations. Let
hc be an enhanced hardcore predicate for this collection (such a predicate exists without
loss of generality by [GL89]). Using {fα}α we construct a Hidden Bits Generator as follows.
The CRS is (s1, . . . , sk) where each si is a random string for the domain sampling algorithm
S of the TDP. Given these si’s the GenBits algorithm selects a random index/trapdoor pair
(α, τ) and sets α as the commitment. The hidden bits are now defined as ri = hc(xi), where
xi = f−1

α (S(α; si)) (which can be computed using τ). The proofs string is simply {xi}i.
The Verify algorithm accepts, given α, si, xi and ri, if and only if α belongs to the

index set (recall that we assumed that this set is efficiently recognizable) ri = hc(xi) and
fα(xi) = S(α; si).

Correctness is immediate. The fact that the commitment set is succinct follows from
the fact that α was chosen independently of k. Statistical binding follows from the fact that
since α specifies a permutation (and we are ensured of that since the verifier checks that it
comes from the index set), then for every si the value of ri is determined and there simply
does not exist a preimage xi of S(α; si) whose hardcore bit is not ri.

The computational hiding property follows from the fact that hc is an enhanced hardcore
predicate and a hybrid argument (where we used the “doubly-enhanced sampling algorithm”
to make the hybrid argument go through).

47

	Introduction
	Our Results.
	Technical Overview
	Concurrent works

	Preliminaries
	The Diffie-Hellman Assumption
	Reusable Designated-Verifier NIZKs
	NIZKs in the Hidden-Bits Model

	Hidden-Bits Generator
	From Hidden-Bits Generator to NIZKs
	Proof of Theorem 4.1
	Adaptive ZK

	Designated-Verifier Hidden-Bits Generator from CDH
	Malicious-Designated-Verifier NIZKs
	More Preliminaries
	Reusable Malicious-Designated-Verifier NIZK
	One-More CDH
	Somewhere-Equivocable PRFs (SEPRFs)

	Reusable Malicious-Designated-Verifier HBG (MDV-HBG)
	Reusable MDV-NIZK from MDV-HBG
	MDV-HBG from One-More CDH
	Proof of Claim 6.11

	Extensions
	Hidden-Bits Generator from gap-CDH in Bilinear Groups
	Hidden-Bits Generator from TDP

