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Abstract. We present several transformations that combine a set of
attribute-based encryption (ABE) schemes for simpler predicates into
a new ABE scheme for more expressive composed predicates. Previous
proposals for predicate compositions of this kind, the most recent one
being that of Ambrona et al. at Crypto’17, can be considered static
(or partially dynamic), meaning that the policy (or its structure) that
specifies a composition must be fixed at the setup. Contrastingly, our
transformations are dynamic and unbounded: they allow a user to specify
an arbitrary and unbounded-size composition policy right into his/her
own key or ciphertext. We propose transformations for three classes of
composition policies, namely, the classes of any monotone span programs,
any branching programs, and any deterministic finite automata. These
generalized policies are defined over arbitrary predicates, hence admitting
modular compositions. One application from modularity is a new kind of
ABE for which policies can be “nested” over ciphertext and key policies.
As another application, we achieve the first fully secure completely un-
bounded key-policy ABE for non-monotone span programs, in a modular
and clean manner, under the q-ratio assumption. Our transformations
work inside a generic framework for ABE called symbolic pair encoding,
proposed by Agrawal and Chase at Eurocrypt’17. At the core of our
transformations, we observe and exploit an unbounded nature of the
symbolic property so as to achieve unbounded-size policy compositions.

1 Introduction

Attribute-based encryption (ABE), introduced by Sahai and Waters [36], is a
paradigm that generalizes traditional public key encryption. Instead of encrypting
to a target recipient, a sender can specify in a more general way about who
should be able to view the message. In ABE for predicate P : X × Y → {0, 1},
a ciphertext encrypting message M is associated with a ciphertext attribute,
say, y ∈ Y, while a secret key, issued by an authority, is associated with a key
attribute, say, x ∈ X, and the decryption will succeed if and only if P (x, y) = 1.
From an application point of view, we can consider one kind of attributes as
policies, and the other kind as inputs to policies. In this sense, we have two basic
forms of ABE called key-policy (KP) and ciphertext-policy (CP), depending on
which side has a policy associated to.
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Predicate Compositions. A central theme to ABE has been to expand the
expressiveness by constructing new ABE for more powerful predicates (e.g.,
[24,14,32,33,34,23]). In this work, we continue this theme by focusing on how
to construct ABE for compositions of predicates. We are interested in devising
transformations that combine ABE schemes for based predicates to a new ABE
scheme for their composed predicate. To motivate that this can be powerful in
the first place, we introduce an example pritimive called Nested-policy ABE.

Example: Nested-policy ABE. As the name suggests, it allows a key policy
and a ciphertext policy to be nested to each other. This might be best described
by an example. Suppose there are three categories for attributes: Person, Place,
Content. Attached to a key, we could have attribute sets/policies categorized
to three categories, Person:{Trainee, Doctor}, Place:{Paris, Zip:75001},
Content:‘(Kidney and Disease) or Emergency’, with a “composition policy”
such as ‘Person or (Place and Content)’, which plays the role of concluding
the whole policy. A ciphertext could be associated to Person:‘Senior and
Doctor’, Place:‘Paris or London’, Content:{Kidney, Disease, Cancer}.
Now we argue that the above key can be used to decrypt the ciphertext since
the attribute set for Place satisfies the corresponding policy in the ciphertext,
while the policy for Content is satisfied by the corresponding attribute sets
in the ciphertext, and the concluding policy (attached to the key) states that if
both Place and Content categories are satisfied, then it can decrypt.

We can consider this as a composition of two CP-ABE sub-schemes for the
first two categories and KP-ABE for the last category, while on the top of that,
a KP-ABE scheme over the three categories is then applied. To the best of our
knowledge, no ABE with nested-policy functionality has been proposed so far,
and it is not clear in the first place how to construct even for specific policies.

Our Design Goal. We aim at constructing unbounded, dynamic, and generic
transformations for predicate compositions. Dynamicity refers to the property
that one can choose any composition policy (defined in some sufficiently large
classes) when composing predicates. In the above example, this translates to
the property that the concluding policy is not fixed-once-and-for-all, where, for
instance, one might want to define it instead as ‘(Person and Content) or
Place’, when a key is issued. Moreover, we aim at modular compositions where
we can recursively define policies over policies, over and over again. Furthermore,
for highest flexibility, we focus on unbounded compositions, meaning that the sizes
of composition policies and attribute sets are not a-priori bounded at the setup.
Generality refers to that we can transform any ABE for any based predicates.
This level of generality might be too ambitious, since this would imply an attempt
to construct ABE from ID-based Encryption (IBE), of which no transformation
is known. We thus confine our goal to within some well-defined ABE framework
and/or a class of predicates. Towards this, we first confine our attention to ABE
based on bilinear groups, which are now considerably efficient and have always
been the main tool for constructing ABE since the original papers [36,24].

Previous Work on Predicate Compositions. We categorize as follows.
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– Static & Specific. Dual-policy ABE (DP-ABE), introduced in [6], is the AND
composition of KP-ABE and CP-ABE (both fixed for the Boolean formulae
predicate). The fixed AND means that it is static. The underlying ABE schemes
are also specific schemes, namely, those of [24,39].

– Static & Small-class & Generic. Attrapadung and Yamada [12] proposed
a more general conversion that can combine ABE for any predicates that can
be interpreted in the so-called pair encoding framework [7,8,1,2], but again,
fixed for only the AND connector. A generic DUAL conversion, which swaps
key and ciphertext attribute, was also proposed in [7,12]. All in all, only a
small class of compositions were possible at this point.

– Static/Partially-dynamic & Large-class & Generic. Most recently, at
Crypto’17, Ambrona, Barthe, and Schmidt [3] proposed general tranformations
for DUAL, AND, OR, and NOT connectors, hence complete any Boolean for-
mulation, and thus enable a large class of combinations. Their scheme is generic
and can combine ABE for any predicates in the so-called predicate encoding
framework [42,19]. However, their compositions are static ones, where such a
composition policy has to be fixed at the setup. A more flexible combination (§2
of [3]), which we call partially dynamic, is also presented, where the structure
of the boolean combination must be fixed.

Our Contributions: Dynamic & Large-class & Generic. We propose
unbounded, dynamic, and generic transformations for predicate compositions that
contain a large class of policies. They are generic in the sense that applicable ABE
schemes can be any schemes within the generic framework of pair encoding, see
below. These transformation convert ABE schemes for a set of “atomic” predicates
P = {P1, . . . , Pk} to an ABE scheme for what we call policy-augmented predicate
over P. Both key-policy and ciphertext-policy augmentations are possible. In
the key-policy case, the dynamicity allows a key issuer to specify a policy over
atomic predicates, like the concluding policy over three sub-schemes in the above
nested example. In the ciphertext-policy case, it allows an encryptor to specify
such a policy. Below, we focus on the key-policy variant for illustrating purpose.

We propose the following four composition transformations.

1. Span Programs over Predicates. In this class, we let a composition policy
be dynamically defined as any monotone span program (MSP) [25] where each
of their Boolean inputs comes from each evaluation of atomic predicate. This is
illustrated in Fig. 1. A key attribute is a tuple M = (A, (i1, x1), . . . , (im, xm))
depicted on the left, where A is a span program (or, think of it as a boolean
formula). A ciphertext attribute is a set Y = {(j1, y1), . . . , (jt, yt)}. The
indexes id and jh specify the index of predicates in P, that is, id, jh ∈ [1, k]. To
evaluate M on Y , we proceed as follows. First, we evaluate a “link” between
node (id, xd) and node (jh, yh) to on if id = jh =: i and Pi(xd, yh) = 1. Then,
if one of the edges adjacent to the d-th node is on, then we input 1 as the
d-th input to A, and evaluate A. Our transformation is unbounded, meaning
that m and t can be arbitrary. Note that since span programs imply boolean
formulae, we can think of it as boolean formula over atomic predicates.
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Fig. 1: Span program over predicates
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Fig. 2: Branching program over predicates

2. Branching Programs over Predicates. In this class, we let a composition
policy be dynamically defined as any branching program (BP) where each
edge is evaluated in a similar manner as in each link in the case of span
program composition above. This is depicted in Fig. 2. A branching program
is described by a direct acyclic graph (DAG) with labels. It accepts Y if the
on edges include a directed path from the start node to an accept node. A
direct application for this is a predicate that comprises if-then clauses. We
achieve this by a general implication from the first transformation, similarly
to the implication from ABE for span programs to ABE for BP in [8].

3. DFA over Predicates. In this class, a composition policy can be defined
as any deterministic finite automata (DFA) where each transition in DFA is
defined based on atomic predicates. Such a DFA has an input as a vector
y = ((j1, y1), . . . , (jt, yt)) which it reads in sequence. It allows any direct graph,
even contains directed cycles and loops (as opposed to DAG for branching
programs), and can read arbitrarily long vectors y. This transformation fully
generalizes ABE for regular languages [41,7], which can deal only with the
equality predicate at each transition, to any predicates.

4. Bundling ABE with Parameter Reuse. We propose a generic way to
bundle ABE schemes (without a policy over them, and where each scheme
works separately) so that almost all of their parameters can be set to the same
set of values among those ABE schemes. This is quite surprising in the first
place since usually parameters for different schemes would play different roles
(in both syntax and security proof). Nevertheless, we show that they can be
reused. Loosely speaking, to combine k schemes where the maximum number
of parameters (i.e., public key size) among them is n, then the number of
parameters for the combined scheme is n+2k. Trivially combining them would
yield O(nk) size. We call this as the direct sum with parameter reuse.

We denote the above first three key-policy-augmented predicates over P as KP[P],
KB[P], KA[P], respectively. For ciphertext-policy case, we use C instead of K. Also,
we call the generalized machines in the above classes as predicative machines.

Scope of Our Transformations. Our conversions apply to ABE that can
be interpreted in the pair encoding framework, which is a generic framework
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Fig. 3: DFA over predicates

for achieving fully secure ABE from a primitive called Pair Encoding Scheme
(PES), proposed by Attrapadung [7]. PESs for many predicates have been pro-
posed [7,12,8,2], notably, including regular language functionality [41,7]. Agrawal
and Chase [2], at Eurocrypt’17, recently extended such a framework by intro-
ducing a notion called symbolic security for PES, which greatly simplifies both
designing and security analysis of PES and ABE. A symbolically secure PES for
predicate P can be used to construct fully secure ABE for the same predicate
under the k-linear and the q-ratio assumption [2] in (prime-order) bilinear groups.
Our conversions indeed work by converting PESs for a set P of predicates to a
PES for KP[P], KB[P], and KA[P], that preserves symbolic security.
Applications. Among many applications (discussed in §9 and §L), we obtain:

– ABE with multi-layer/multi-base functionalities and nested-policy. The gen-
erality of our transformations make it possible to augment ABE schemes in
a modular and recursive manner. This enables multi-layer functionalities in
one scheme, e.g., ABE for predicate KP[KB[KA[P]]], which can deal with first
checking regular expression (over predicates) via DFA, then inputting to an if-
clause in branching program, and finally checking the whole policy. By skewing
key and ciphertext policy, we can obtain a nested-policy ABE, e.g., predicate
KP[CP[P]]. Moreover, the fact that we combine a set of predicates into a
composed one enables multiple based functionalities, e.g., revocation [3,43],
range/subset membership [10], regular string matching [41], etc. This level of
“plug-and-play” was not possible before this work.

– The first fully secure completely-unbounded KP-ABE for non-monotone span
programs (NSP) over large universe.1 Previous ABE for NSP is either only
selectively secure [32,11,44] or has some bounded attribute reuse [33,34]. See
Table 1 in §9.2 for a summary. Our approach is simple as we can obtain
this modularly. As a downside, we have to rely on the q-type assumption
inherited from the Agrawal-Chase framework [2]. Nevertheless, all the current
completely unbounded KP-ABE for even monotone span programs still need
q-type assumptions [35,7,2], even selectively secure one [35].

– Mixed-policy ABE. In nested-policy ABE, the nesting structure is fixed. Mixed-
policy ABE generalizes it so as to be able to deal with arbitrary nesting struc-
ture in one scheme. The scheme crucially uses the direct sum with parameter
reuse, so that its parameter size will not blow up exponentially.

1 For large-universe ABE, there is no known conversion from ABE for monotone span
programs. Intuitively, one would have to include negative attributes for all of the
complement of a considering attribute set, which is of exponential size (see §L.1).
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Comparing to ABS17 [3]. Here, we compare our transformations to those of
Ambrona et al. [3]. The most distinguished features of our transformations are
finite automata based, and branching program based compositions. Moreover,
all of our transformations are unbounded. For monotone Boolean formulae over
predicates, our framework allows dynamic compositions, as opposed to static
or partially-dynamic (thus, bounded-size) ones in ABS. As for applicability to
based predicates, ours cover a larger class due to the different based frameworks
(ours use symbolic pair encoding of [2], while ABS use predicate encoding of [19]).
Notable differences are that pair encodings cover unbounded ABE for MSP, ABE
for MSP with constant-size keys or ciphertexts, ABE for regular languages, while
these are not known for predicate encodings. One drawback of using symbolic
pair encoding is that we have to rely on q-type assumptions. A result in ABS also
implies (static) non-monotone Boolean formulae composition (via their negation
conversion). Although we do not consider negation conversion, we can use known
pair encoding for negation of some common predicates such as IBE and negated
of IBE (as we will do in §9). In this sense, non-monotone formulae composition
can be done in our framework albeit in a semi-generic (but dynamic) manner.

We provide some more related works and possible future directions in §L.6.

2 Intuition and Informal Overview

This section provides some intuition on our approaches in an informal manner.

Pair Encoding. We first informally describe PES [7] as refined in [2]. It consists
of two encoding algorithms as the main components. The ciphertext encoding
EncCt encodes y ∈ Y to a vector c = c(s, ŝ,b) = (c1, . . . , cw3

) of polynomials
in variables s = (s0, . . . , sw1

), ŝ = (ŝ1, . . . , ŝw2
), and b = (b1, . . . , bn). The key

encoding EncKey encodes x ∈ X to a vector k = k(r, r̂,b) = (k1, . . . , km3
) of

polynomials in variables r = (r1, . . . , rm1
), r̂ = (α, r̂1, . . . , r̂m2

), and b. The
correctness requires that if P (x, y) = 1, then we can “pair” c and k to to obtain
αs0, which refers to the property that there exists a linear combination of terms
ciru and kjst that is αs0. Loosely speaking, to construct ABE from PES, we use
a bilinear group G = (G1,G2) that conforms to dual system groups [20,1,2]. Let
g1, g2 be their generators. The public key is (gb

2 , e(g1, g2)α), a ciphertext for y
encrypting a message M consists of gc

2 , g
s
2, and e(g1, g2)αs0 ·M , and a key for x

consists of gk
1 , g

r
1. (In particular, the hatted variables are only internal to each

encoding.) Decryption is done by pairing c and k to obtain αs0 in the exponent.

Symbolic Security. In a nutshell, the symbolic security [2] of PES involves
“substitution” of scalar variables in PES to vectors/matrices so that all the
substituted polynomials in the two encodings c and k will evaluate to zero for
any pair x, y such that P (x, y) = 0. The intuition for zero evaluation is that,
behind the scene, there are some cancellations going on over values which cannot
be computed from the underlying assumptions. To rule out the trivial all-zero
substitutions, there is one more rule that the inner product of the substituted
vectors for special variables that define correctness, namely, α and s0, cannot
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Fig. 4: Simpler variants of span program over predicates, for modular approach

be zero. In some sense, this can be considered as a generalization of the already
well-known Boneh-Boyen cancellation technique for IBE [15].

Note that one has to prove two flavors of symbolic security: selective and
co-selective. The former allows the substitutions of variables in b, c to depend
only on y, while those in k to depend on both x, y. In the latter, those in b,k
can depend only on x, while those in c can depend on both x, y. Intuitively,
the framework of [2] uses each flavor in the two different phases—pre and post
challenge—in the dual system proof methodology [40,27,30,42,7,2].

Our Modular Approach. In constructing a PES for KP[P], we first look into
the predicate definition itself and decompose to simpler ones as follows. Instead
of dealing with predicates in the set P all at once, we consider its “direct sum”,
which allows us to view P as a single predicate, say P . Intuitively, this reduces
KP[P] of Fig. 1 to KP[P ] of Fig. 4a. We then observe that KP[P ] of Fig. 4a is,
in fact, already a nested predicate. It contains ciphertext-policy with the OR
policy in the lower layer, followed by key-policy augmentation in the upper layer,
as decomposed and shown in Fig. 4c and Fig. 4b, respectively. Hence, we can
consider a much simpler variant that deal with only one input at a time.

Our Starting Point: Agrawal-Chase Unbounded ABE. To illustrate the
above decomposition, we consider a concrete predicate, namely, unbounded KP-
ABE for monotone span program (MSP), along with a concrete PES, namely,
an instantiation by Agrawal and Chase [2], which is, in fact, our starting point
towards generalization. First we recall this PES (Appendix B.2 of [2])2:

cY =
(
b1s0 + (yjb2 + b3)s(j)

1
)
j∈[q]

k(A,π) =
(
Air̂

> + r
(i)
1 b1, r

(i)
1 (π(i)b2 + b3)

)
i∈[m]

(1)

where (A, π) is an MSP with A ∈ Zm×`N , Ai is its i-th row, r̂ = (α, r̂1, . . . , r̂`−1),
and Y = {y1, . . . , yq}. (The exact definition for MSP is not important for now.)
We now attempt to view this as being achieved by two consecutive transformations.
2 This encoding or closed variants are utilized in many works, e.g., [29,35,7,21]. Rouse-
lakis and Waters [35] were the first to (implicitly) use this exact encoding. Attra-
padung [7] formalized it as PES. Agrawal and Chase [2] gave its symbolic proof.
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We view the starting PES as the following PES for IBE (P IBE(x, y) = 1 iff x = y):

cy = b1s0 + (yb2 + b3)s1

kx =
(
α+ r1b1, r1(xb2 + b3)

) (2)

denoted as ΓIBE, which is first transformed to the following PES for IBBE
(ID-based broadcast encryption, P IBBE(x, Y ) = 1 iff x ∈ Y ), denoted as ΓIBBE:

cY =
(
b1s0 + (yjb2 + b3)s(j)

1
)
j∈[q] = (cj)j∈[q]

kx =
(
α+ r1b1, r1(xb2 + b3)

) (3)

which is then finally transformed to the above PES for KP-ABE. We aim to
generalize this process to any PES for arbitrary predicate.

The two transformations already comprise a nested policy augmentation
process: the first (IBE to IBBE) is a ciphertext-policy one with the policy being
simply the OR policy, while the second (IBBE to KP-ABE for MSP) is a key-
policy one with policy (A, π). To see an intuition on a policy augmentation, we
choose to focus on the first one here which is simpler since it is the OR policy. To
see the relation of both PESs, we look into their matrix/vector substitutions in
showing symbolic property. We focus on selective symbolic property here. It can
be argued by showing matrix/vector substitutions that cause zero evaluations in
all encodings, when x 6= y. For the base PES ΓIBE, this is:

3

cy : 1
0

B1 (s0)>
↑
1 +

(
y 0
−1

B2

+ −1
y

B3 )(s1)>
↑
1 = 0

0

kx :
(

1 + −1, − 1
y−x

1
0 = 0, −1, − 1

y−x

(
x 0
−1 + −1

y

)
= 0
) (4)

where each rectangle box represents a matrix of size 1× 2 or 2× 1. On the other
hand, the selective symbolic property for the PES ΓIBBE can be shown below,
where we let 1j be the length-q row vector with 1 at the j-th entry and 11,1 be
the (q+ 1)× q matrix with 1 at the entry (1, 1) (and all the other entries are 0).

cY :

B′1
↑

11,1

(s′0)>
↑

(11)> +
(
yj

(
0 ··· 0
−1

...
−1

)B′2

+
(−1 ··· −1

y1
...

yq

)B′3 )(s′(j)
1 )>

↑

(1j)
> = 0

kx : 11 +
(
−1, − 1

y1−x
, . . . , − 1

yq−x

)
11,1 = 0,(

−1, − 1
y1−x

, . . . , − 1
yq−x

)(
x

(
0 ··· 0
−1

...
−1

)
+
(−1 ··· −1

y1
...

yq

))
= 0.

(5)

Our Observation on Unboundedness. We now examine the relation of
substituted matrices/vectors between the two PESs: we observe that those for
3 As a convention throughout the paper, the substitution matrices/vectors are written
in the exact order of appearance in their corresponding encodings (here is Eq. (3)).
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ΓIBBE contains those for ΓIBE as sub-matrices/vectors. For example, B3 for the
substituted cy in Eq. (4) is “embedded” in B′3 for the substituted cY in Eq. (5),
for y ∈ Y . We denote such a sub-matrix as B(j)

3 =
(−1
yj

)
.

We crucially observe that the unbounded property (of IBBE) stems from
such an ability of embedding all the matrices from the base PES—(B(j)

3 )j∈[q]—
regardless of size q, into the corresponding matrix in the converted PES—B′3 in
this case. Our aim is unbounded-size policy augmentation for any PES. We thus
attempt to generalize this embedding process to work for any sub-matrices.

Difficulty in Generalizing to Any PES. Towards generalization, we could
hope that such an embedding of sub-matrices/vectors has some patterns to follow.
However, after a quick thought, we realize that the embedding here is quite
specialized in many ways. The most obvious specialized form is the way that
sub-matrices B(j)

3 are placed in B′3: the first row of B(j)
3 are placed in the same

row in B′3, while the other row are placed in all different rows in B′3. Now the
question is that such a special placement of sub-matrices into the composed
matrices also applies to any generic PES. An answer for now is that this seems
unlikely, if we do not restrict any structure of PES at all (which is what we aim).

We remark that, on the other hand, such a special embedding seems essential
in our example here since, in each cj , in order to cancel out the substitution of
b1s0, which is the same for all j, we must have the substitution for (yjb2 + b3)s(j)

1
to be the same for all j ∈ [q]. Therefore, we somehow must have a “projection”
mechanism; this is enabled exactly by the placement in the first row of B′2,B

′
3.

Our First Approach: Layering. Our first approach is to modify the trans-
formed PES so that sub-matrices can be placed in a “generic” manner into the
composed matrices. (It will become clear shortly what we mean by “generic”.) In
the context of IBBE, we consider the following modified PES, denoted as Γ̄IBBE:

cY =
(
f2snew + f1s

(j)
0 , b1s

(j)
0 + (yjb2 + b3)s(j)

1
)
j∈[q]

kx =
(
αnew + rnewf2, rnewf1 + r1b1, r1(xb2 + b3)

) (6)

This is modified from the PES in Eq. (3) by introducing one more layer involving
the first element in each encoding, where f1, f2 are two new parameters. The
main purpose is to modify the element b1s0 to b1s

(j)
0 so that it varies with j,

which, in turn, eliminating the need for “projection” as previously. This becomes
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clear in the following assessment for its selective symbolic property:

cY : 1̂1,1(11)> + F1(1j)
> = 0, 1

0
...

1
0

(1j)
> +

yj
 0
−1

...
0
−1

+


−1
y1

...
−1
yq


 (1j)

> = 0

kx : 11 + (−1̂1)1̂1,1 = 0,

(−1̂1)F1 +
(
−1, − 1

y1−x , . . . ,
−1, − 1

yq−x

) 1
0

...
1
0

 = 0,

(
−1, − 1

y1−x , . . . ,
−1, − 1

yq−x

)x
 0
−1

...
0
−1

+


−1
y1

...
−1
yq


 = 0.

(7)

where we let 1̂1,1 be of size (2q) × q and 1̂1 be of length 2q (defined similarly
to 11,1,11, resp.), and let F1 be the (2q)× q matrix with all entries in the first
row being −1 (and all the other entries are 0). Here, we observe that all the
composed matrices regarding the parameters (b1, b2, b3) of the PES ΓIBBE are
formed exactly by including the substituted matrices of the base PES in the
“diagonal blocks”, namely, we can now “generically” define, for i ∈ [n],

B′i =
(

B(1)
i

...

B(q)
i

)
.

Moreover, arranging the vector substitutions in their corresponding slots will result
in exactly the zero evaluation of each substituted equation of the base PES. This
approach is naturally generalized to any base PES. Put in other words, intuitively,
we can obtain the proof of symbolic property of the composed PES from that of
the base PES generically, via this conversion. Such a conversion, transforming
any PES (cy,kx) for predicate P to its ciphertext-policy augmentation (with OR
policy), can be described by

c′Y =
(
f2snew + f1s

(i)
0 , cyj

)
j∈[q]

, k′x =
(
αnew + rnewf2, (kx)|α7→rnewf1

)
(8)

where the variables su in cyj are superscripted as s(j)
u , and “ 7→” denotes the

variable replacement. This PES is for the predicate of “ciphertext-OR-policy”
over P—returning true iff ∃j P (x, yj) = 1. In fact, one can observe that Eq. (8)
is a generalization of Eq. (6).

Our Second Approach: Admissible PES. One disadvantage with our first
approach is the inefficiency due to the additional terms. Comparing PES Γ̄IBBE
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to ΓIBBE, the former requires 2q more elements than the latter (note that we
include also (s(j)

0 )j∈[q] when counting overall ciphertext elements). However, we
already knew that the additional terms are not necessary for some specific PESs
and predicates, notably our ΓIBE for IBE.

We thus turn to the second approach which takes the following two steps.
First, we find a class of “admissible” PESs where there exists a conversion for
ciphertext-policy augmentation without additional terms. Second, we provide a
conversion from any PES to a PES that is admissible.

As a result of our finding, the admissible class of PESs turns out to have a
simple structure: k consists of k1 = α+ r1b1, and α, b1 do not appear elsewhere
in k, while in c, we allow b1, s0 only if they are multiplied—b1s0. Intuitively,
this “isolation” of b1, α, s0 somewhat provides a sufficient structure4 where the
“projection” can be enabled, but without mitigating to additional elements as
done in the above first approach. The ciphertext-OR-policy augmentation can
then be done by simply setting

c′Y =
(

(cyj )|s(j)
0 7→snew

)
j∈[q], k′x = kx. (9)

One can observe that this is a generalization of Eq. (3), and that there is no
additional terms as in Eq. (8). Our conversion from any PES to an admissible
one (for the same predicate) is also simple: we set

c′y =
(
f2snew + f1s0, cy

)
, k′x =

(
αnew + rnewf2, (kx)|α7→rnewf1

)
(10)

where s0 is the variable in y, while snew is the new special variable (that defines
correctness). It is easy to see also that combining both conversions, that is,
Eq. (10) followed by Eq. (9), we obtain the conversion of the first approach
(Eq. (8)). But now, for any PES that is already admissible such as ΓIBE, we do
not have to apply the conversion of Eq. (10), which requires additional terms.
Towards General Policies. Up to now, we only consider the OR policy. It
ensures that P ′(x, Y ) = 0 implies P (x, yj) = 0 for all j. However, for general poli-
cies, this is not the case, that is, if we let P̄ be such a ciphertext-policy augmented
predicate over P (this will be formally given in Definition 5), P̄ (x, (A, π)) = 0
may hold even if P (x, π(j)) = 1 for some j. Consequently, we have no available
substituted matrices/vectors for the key encoding for such problematic j. Another
important issue is how to embed the policy (A, π) without knowledge of x (cf.
the selective property), but be able to deal with any x such that P̄ (x, (A, π)) = 0.

We solve both simultaneously by a novel way of embedding (A, π) so that,
intuitively, only the “non-problematic” blocks will turn “on”, whatever x will
be, together with a novel way of defining substituted vectors for k so that all
the “problematic” blocks will turn “off”. To be able to deal with any x, the
former has to be done in the “projection” part, while the latter is done in the
4 Note that we indeed require a few more simple requirements in order for the proof to
go through: see Definition 4.
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“non-projection” part of matrices. By combining both, we will have only the
non-problematic blocks turned on, and thus can use the base symbolic property.
Towards Other Predicative Machines: Automata. At the core of the above
mechanism is the existence of “mask” vectors which render problematic blocks to 0.
We crucially observe that such “mask” vectors depend on and only on (x, (A, π))
and the sole fact that P̄ (x, (A, π)) = 0, i.e., the non-acceptance condition of MSP.
Notably, it does not depend on the actual PES construction. This feature provides
an insight to extend our approach to other types of predicative machines—finite
automata in particular—by finding appropriate combinatorial vectors that encode
non-acceptance conditions. (See more discussions in §L.5.)
Wrapping up. Up to now, we mainly consider the selective symbolic property.
The co-selective property (for the ciphertext-policy case) is simpler to achieve,
since each substitution matrix of the converted PES is now required to embed
only one matrix from the base PES, as our modular approach allows to consider
one input at a time (for key attribute). The situation becomes reversed for the
key-policy case: the co-selective property is harder. Nonetheless, we can always
use the DUAL conversion to convert from ciphertext-policy to key-policy type.
Comparing to Unboundedness Approach in CGKW [21]. Chen et al. [21]
recently proposed unbounded ABE for MSP. Their approach conceptually converts
a specific bounded scheme ([31]) to an unbounded one for the same specific
predicate—MSP. This is already semantically different to our conversion, which
takes any pair encoding for a predicate P and outputs another for a different
predicate—namely, the (unbounded) policy-augmented predicate over P .

3 Preliminaries

Notations. N denotes the set of positive integers. For a, b ∈ N such that a ≤ b, let
[a, b] = { a, . . . , b }. For m ∈ N, let [m] = { 1, . . . ,m } and [m]+ = { 0, 1, . . . ,m }.
For a set S, we denote by 2S the set of all subsets of S. Denote by S∗ the set
of all (unbounded-length) sequences where each element is in S. For N ∈ N,
we denote by Zm×`N the set of all matrices of dimension m × ` with elements
in ZN . For a matrix M ∈ Zm×`N , its i-th row vector is denoted by Mi: (in
Z1×`
N ). Its (i, j)-element is Mi,j . Its transpose is denoted as M>. For vectors

a ∈ Z1×c
N ,b ∈ Z1×d

N , we denote (a,b) ∈ Z1×(c+d)
N as the concatenation. The i-th

entry of a is denoted as a[i]. For i < j, denote a[i, j] := (a[i],a[i+ 1], . . . ,a[j]).
Let M(ZN ) be the set of all matrices (of any sizes) in ZN , and Mm(ZN ) be
the set of those with m rows. For a set S of vectors of the same length (say,
in Z`N ), we denote span(S) as the set of all linear combinations of vectors in
S. For polynomials p = p(x1, . . . , xn) and g = g(y1, . . . , yn), we denote a new
polynomial p|x1 7→g := p(g(y1, . . . , yn), x2, . . . , xn). Matrices and vectors with all
0’s are simply denoted by 0, of which the dimension will be clear from the context.
We define some useful fixed vectors and matrices.
– 1`i is the (row) vector of length ` with 1 at position i where all others are 0.
– 1m×`i,j is the matrix of size m× ` with 1 at position (i, j) and all others are 0.
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3.1 Definitions for General ABE

Predicate Family. Let P = { Pκ : Xκ × Yκ → {0, 1} | κ ∈ K } be a predicate
family where Xκ and Yκ denote “key attribute" and “ciphertext attribute” spaces.
The index κ or “parameter” denotes a list of some parameters such as the
universes of attributes, and/or bounds on some quantities, hence its domain K

will depend on that predicate. We will often omit κ when the context is clear.

General ABE Syntax. Let M be a message space. An ABE scheme5 for
predicate family P is defined by the following algorithms:

– Setup(1λ, κ) → (PK,MSK): takes as input a security parameter 1λ and a
parameter κ of predicate family P , and outputs a master public key PK and
a master secret key MSK.

– Encrypt(y,M,PK) → CT: takes as input a ciphertext attribute y ∈ Yκ, a
message M ∈M, and public key PK. It outputs a ciphertext CT. We assume
that Y is implicit in CT.

– KeyGen(x,MSK,PK) → SK: takes as input a key attribute x ∈ Xκ and the
master key MSK. It outputs a secret key SK.

– Decrypt(CT,SK) → M : given a ciphertext CT with its attribute y and the
decryption key SK with its attribute x, it outputs a message M or ⊥.

Correctness. Consider all parameters κ, all M ∈M, x ∈ Xκ, y ∈ Yκ such that
Pκ(x, y) = 1. If Encrypt(y,M,PK)→ CT and KeyGen(x,MSK,PK)→ SK where
(PK,MSK) is generated from Setup(1λ, κ), then Decrypt(CT,SK)→M .

Security. The standard notion for ABE is called full security. We omit it here
and defer its definition to the §B.1, as we do not work directly on it but will
rather infer the implication from pair encoding scheme (Proposition 2).

Duality of ABE. For a predicate P : X × Y → {0, 1}, we define its dual as
P̄ : Y×X→ {0, 1} by setting P̄ (Y,X) = P (X,Y ). In particular, if P is considered
as key-policy type, then its dual, P̄ , is the corresponding ciphertext-policy type.

3.2 Pair Encoding Scheme Definition

Definition 1. Let P = { Pκ }κ where Pκ : Xκ × Yκ → { 0, 1 }, be a predicate
family, indexed by κ = (N, par), where par specifies some parameters. A Pair
Encoding Scheme (PES) for a predicate family P is given by four deterministic
polynomial-time algorithms as described below.

– Param(par)→ n. When given par as input, Param outputs n ∈ N that specifies
the number of common variables, which we denote by b := (b1, . . . , bn).

5 It is also called public-index predicate encryption, classified in the definition of
Functional Encryption [17]. It is simply called predicate encryption in [2].
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– EncCt(y,N)→ (w1, w2, c(s, ŝ,b)). On input N ∈ N and y ∈ Y(N,par), EncCt
outputs a vector of polynomial c = (c1, . . . , cw3

) in non-lone variables s =
(s0, s1, . . . , sw1

) and lone variables ŝ = (ŝ1, . . . , ŝw2
). For p ∈ [w3], the p-th

polynomial is given as follows, where ηp,z, ηp,t,j ∈ ZN :∑
z∈[w2]

ηp,z ŝz +
∑

t∈[w1]+
,j∈[n]

ηp,t,jbjst.

– EncKey(x,N) → (m1,m2,k(r, r̂,b)). On input N ∈ N and x ∈ X(N,par),
EncKey outputs a vector of polynomial k = (k1, . . . , km3

) in non-lone variables
r = (r1, . . . , rm1

) and lone variables r̂ = (α, r̂1, . . . , r̂m2
). For p ∈ [m3], the

p-th polynomial is given as follows, where φp, φp,u, φp,v,j ∈ ZN :

φpα+
∑

u∈[m2]

φp,ur̂u +
∑

v∈[m1],j∈[n]

φp,v,jrvbj .

– Pair(x, y,N) → (E,E). On input N , and both x, and y, Pair outputs two
matrices E,E of sizes (w1 + 1)×m3 and w3 ×m1, respectively. ♦

Correctness. A PES is said to be correct if for every κ = (N, par), x ∈ Xκ and
y ∈ Yκ such that Pκ(x, y) = 1, the following holds symbolically:

sEk> + cEr> = αs0. (11)

The left-hand side is indeed a linear combination of stkp and cqrv, for t ∈
[w1]+, p ∈ [m3], q ∈ [w3], v ∈ [m1]. Hence, an equivalent (and somewhat simpler)
way to describe Pair and correctness together at once is to show such a linear
combination that evaluates to αs0. We will use this approach throughout the
paper. (The matrices E,E will be implicitly defined in such a linear combination).

Terminology. In the above, following [2], a variable is called lone as it is
not multiplied with any bj (otherwise called non-lone). Furthermore, since α,
s0 are treated distinguishably in defining correctness, we also often call them
the special lone and non-lone variable, respectively. In what follows, we use
ct-enc and key-enc as a shorthand for polynomials and variables output by EncCt
(ciphertext-encoding) and EncKey (key-encoding), respectively. We often omit
writing w1, w2 and m1,m2 in the output of EncCt and EncKey.

3.3 Symbolic Property of PES

We now describe the symbolic property of PES, introduced in [2]. As in [2], we
use a : b to denote that a variable a is substituted by a matrix/vector b.

Definition 2. A PES Γ = (Param,EncCt,EncKey,Pair) for predicate family P
satisfies (d1, d2)-selective symbolic property for some d1, d2 ∈ N if there exists
three deterministic polynomial-time algorithms EncB,EncS,EncR such that for
all κ = (N, par), x ∈ Xκ, y ∈ Yκ with Pκ(x, y) = 0,
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– EncB(y)→ B1, . . . ,Bn ∈ Zd1×d2
N ;

– EncS(y)→ s0, . . . , sw1
∈ Z1×d2

N , ŝ1, . . . , ŝw2
∈ Z1×d1

N ;
– EncR(x, y)→ r1, . . . , rm1

∈ Z1×d1
N , a, r̂1, . . . , r̂m2

∈ Z1×d2
N ;

we have that:
(P1). as>0 6= 0.
(P2). if we substitute, for all j ∈ [n], t ∈ [w1]+, z ∈ [w2], v ∈ [m1], u ∈ [m2],

ŝz : ŝ>z , bjst : Bjs
>
t , α : a, r̂u : r̂u, rvbj : rvBj ,

into all the polynomials output by EncCt(y) and EncKey(x), then they
evaluate to 0.

(P3). a = 1d2
1 .

Similarly, a PES satisfies (d1, d2)-co-selective symbolic property if there exists
EncB,EncS,EncR satisfying the above properties but where EncB and EncR
depends only on x, and EncS depends on both x and y.

Finally, a PES satisfies (d1, d2)-symbolic property if it satisfies both (d′1, d
′
2)-

selective and (d′′1 , d
′′
2)-co-selective properties for some d′1, d

′′
1 ≤ d1, d

′
2, d
′′
2 ≤ d2. ♦

Terminology. The original definition in [2] consists of only (P1) and (P2); we
refer to this as Sym-Prop, as in [2]. We newly include (P3) here, and refer to the
full definition with all (P1)-(P3) as Sym-Prop+. This is w.l.o.g. since one can
convert any PES with Sym-Prop to another with Sym-Prop+, with minimal cost.
Such a conversion, which we denote as Plus-Trans, also appears in [2]; we recap
it in §B.2.

For convenience, for the case of selective property, we use EncBS(y) to simply
refer to the concatenation of EncB(y) and EncS(y). Similarly, we use EncBR(x)
for referring EncB(x) and EncR(x) for the case of co-selective property.
Implication to Fully Secure ABE. Agrawal and Chase [2] show that a PES
satisfying (d1, d2)-Sym-Prop implies fully secure ABE. They use an underlying
assumption called (D1, D2)-q-ratio, which can be defined in the dual system
groups [20] and can consequently be instantiated in the prime-order bilinear
groups. Note that paramater (D1, D2) are related to (d1, d2). Since their theorem
is not used explicitly in this paper, we recap it in §B.2 for self-containment.

3.4 Definitions for Some Previous Predicates
ABE for Monotone Span Program. We recap the predicate definition for
KP-ABE for monotone span program (MSP) [24]. We will mostly focus on
completely unbounded variant [7,2], where the family index is simply κ = N ∈ N,
that is, any additional parameter par is not required.6 Below, we also state a
useful lemma which is implicit in e.g., [24,31].
6 Bounded schemes would use par for specifying some bounds, e.g., on policy or
attribute set sizes, or the number of attribute multi-use in one policy. The term
“Unbounded ABE” used in the literature [29,34,21] still allows to have a bound for
the number of attribute multi-use in one policy (or even a one-use restriction).
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Definition 3. The predicate family of completely unbounded KP-ABE for mono-
tone span programs, PKP-MSP = { Pκ : Xκ × Yκ → {0, 1} }κ, is indexed by κ = (N)
and is defined as follows. Recall that Ai: denotes the i-th row of A.

– Xκ = { (A, π) | A ∈M(ZN ), π : [m]→ ZN }.
– Yκ = 2(ZN ).
– Pκ((A, π), Y ) = 1 ⇐⇒ 1`1 ∈ span(A|Y ), where A|Y := {Ai: | π(i) ∈ Y }.

where m× ` is the size of the matrix A. ♦

Proposition 1. Consider a matrix A ∈ Zm×`N . Let Q ⊆ [m] be a set of row
indexes. If 1`1 6∈ span {Ai: | i ∈ Q }, then there exists ω = (w1, . . . , w`) ∈ Z`N
such that w1 = 1 and Ai:ω

> = 0 for all i ∈ Q.

Specific Policies. It is well known that ABE for MSP implies ABE for monotone
Boolean formulae [24,13]. The procedure of embedding a boolean formula as
a span program can be found in e.g., §C of [28]. We will be interested in the
OR and the AND policy, for using as building blocks later on. For the OR
policy, the access matrix is of the form AOR,m = (1, . . . , 1)> ∈ Zm×1

N . For the
AND policy, it is AAND,m =

∑
i=1 1m×mi,i −

∑
j=2 1m×m1,j . For further use, we let

MOR(ZN ) =
{

AOR,m
∣∣ m ∈ N

}
and MAND(ZN ) =

{
AAND,m

∣∣ m ∈ N
}
.

Embedding Lemma. To argue that a PES for predicate P can be used to
construct a PES for predicate P ′, intuitively, it suffices to find mappings that
map attributes in P ′ to those in P , and argue that the predicate evaluation for
P ′ is preserved to that for P on the mapped attributes. In such a case, we say
that P ′ can be embedded into P . This is known as the embedding lemma, used
for general ABE in [16,9]. We prove the implication for the case of PES in §B.3.

4 Admissible Pair Encodings

We first propose the notion of admissible PES. It is a class of PESs where
a conversion to a new PES for its policy-augmented predicate exists without
additional terms, as motivated in the second approach in §2. We then provide
a conversion from any PES to an admissible PES of the same predicate (this,
however, poses additional terms).7 Together, these thus allow us to convert any
PES to a new PES for its policy-augmented predicate.

Definition 4. A PES is (d1, d2)-admissible if it satisfies (d1, d2)-Sym-Prop+ with
the following additional constraints.

(P4). In the key encoding k, the first polynomial has the form k1 = α + r1b1
and α, b1 do not appear elsewhere in k.

(P5). In the ciphertext encoding c, the variables b1 and s0 can only appear in
the term b1s0.

8

7 Interestingly, this conversion already appears in [2] but for different purposes.
8 That is, bjs0 and b1st for j ∈ [2, n], t ∈ [1, n] are not allowed in c.
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(P6). In the symbolic property (both selective and co-selective), we have that
B1 = 1d1×d2

1,1 , s0 = 1d2
1 , and rv[1] 6= 0 for all v ∈ [m1]. ♦

We will use the following for the correctness of our conversion in §5.

Corollary 1. For any admissible PES, let c,k, s, r,E,E be defined as in Defini-
tion 1 with Pκ(x, y) = 1. Let s̃ = (s1, . . . , sw1

). There exists a PPT algorithm that
takes E and outputs a matrix Ẽ of size w1×m3 such that s̃Ẽk>+cEr> = −r1b1s0.

Proof. We re-write Eq. (11) as s0k1 + T + cEr> = αs0 (where T is a sum of
stkj with coefficients from E). Note that s0k1 has coefficient 1 since α appears
only in k1 and we match the monomial αs0 to the right hand side. Substituting
k1 = α+ r1b1, we have T + cEr> = −r1b1s0. We claim that s0 is not in T , which
would prove the corollary. To prove the claim, we first see that k1 is not in T ,
since α is not in the right hand side. Thus b1 is also not in T (as b1 only appears
in k1). Hence, s0 is not in T , since otherwise bjs0 where j ≥ 2 appears in T , but
in such a case, it cannot be cancelled out since such term is not allowed in c.

Construction 1. Let Γ be a PES construction for P . We construct another
PES Γ ′ for also the same P as follows. We denote this Γ ′ by Layer-Trans(Γ ).

– Param′(par). If Param(par) returns n, then output n+2. Denote b = (b1, . . . , bn)
and b′ = (f1, f2,b).

– EncCt′(y,N). Run EncCt(y,N)→ c. Let s0 be the special variable in c. Let
snew be the new special variable. Output c′ = (f1snew + f2s0, c).

– EncKey′(x,N). Run EncKey(x,N)→ k. Let rnew be a new non-lone variable
and αnew be the new special lone variable. Let k̃ be exactly k but with α
being replaced by rnewf2. Output (αnew + rnewf1, k̃).

Pair/Correctness. Suppose P (x, y) = 1. From the correctness of Γ we have a
linear combination that results in αs0 = rnewf2s0. From then, we have (αnew +
rnewf1)snew − rnew(f1snew + f2s0) + rnewf2s0 = αnewsnew, as required.

Lemma 1. Suppose that Γ for P satisfies (d1, d2)-Sym-Prop+. Then, the PES
Layer-Trans(Γ ) for P is (d1 + 1, d2)-admissible. (The proof is deferred to §E.)

5 Ciphertext-policy Augmentation

We now describe the notion of ciphertext-policy-span-program-augmented predi-
cate over a single predicate family. We then construct a conversion that preserves
admissibility. The case for a set of predicate families will be described in §7. The
key-policy case will be in the next section §6.

Definition 5. Let P = { Pκ }κ where Pκ : Xκ × Yκ → { 0, 1 }, be a predicate
family. We define the ciphertext-policy-span-program-augmented predicate over P
as CP1[P ] =

{
P̄κ
}
κ
where P̄κ : X̄κ × Ȳκ → { 0, 1 } by letting
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– X̄κ = Xκ.
– Ȳκ = { (A, π) | A ∈M(ZN ), π : [m]→ Yκ }.
– P̄κ(x, (A, π)) = 1 ⇐⇒ 1`1 ∈ span(A|x), where A|x := {Ai: | Pκ(x, π(i)) = 1 }.

where m× ` is the size of the matrix A. ♦

Construction 2. Let Γ be a PES construction for P satisfying admissibility.
We construct a PES Γ ′ for CP1[P ] as follows. Denote this Γ ′ by CP1-Trans(Γ ).

– Param′(par) = Param(par) = n. Denote b = (b1, . . . , bn).
– EncKey′(x,N) = EncKey(x,N).
– EncCt′((A, π), N). Parse A ∈ Zm×`N .
• For i ∈ [m], run EncCt(π(i), N) to obtain a vector c(i) = c(i)(s(i), ŝ(i),b)

of polynomials in variables s(i) = (s(i)
0 , s

(i)
1 , . . . , s(i)

w1,i
), ŝ(i) = (ŝ(i)

1 , . . . , ŝ(i)
w2,i

),
and b. Denote s̃(i) = (s(i)

1 , . . . , s(i)
w1,i

).
• Let snew be the new special non-lone variable. Let v2, . . . , v` be new lone
variables. Denote v = (b1snew, v2, . . . , v`).
• For i ∈ [m], define a modified vector by variable replacement as

c′(i) := c(i)|
b1s

(i)
0 7→Ai:v

> . (12)

Finally, output c′ = c′(s′, ŝ′,b′) as c′ =
(
c′(i)

)
i∈[m]. It contains variables

s′ =
(
snew,

(
s̃(i))

i∈[m]

)
, ŝ′ =

(
v2, . . . , v`,

(
ŝ(i) )

i∈[m]

)
, and b′.

Pair/Correctness. For proving correctness, we suppose P̄κ(x, (A, π)) = 1.
Let S := { i ∈ [m] | Pκ(x, π(i)) = 1 }. For i ∈ S, we can run Pair(x, π(i), N) →
(E,E). From the correcteness of Γ , we derive Ẽ from E via Corollary 1, and
obtain a linear combination s̃(i)Ẽk> + c(i)Er> = −r1b1s

(i)
0 . With the variable

replacement in Eq. (12), this becomes s̃(i)Ẽk> + c′(i)Er> = −r1Ai:v
>. Now

since 1`1 ∈ span(A|x), we have linear combination coefficients { ti }i∈S such that∑
i∈S tiAi: = 1`1. Hence we have the following linear combination, as required:9

k1snew +
∑
i∈S ti

(
− r1Ai:v

>) = (α+ r1b1)snew − r1b1snew = αnewsnew.

Theorem 1. Suppose a PES Γ for P is (d1, d2)-admissible. Then, CP1-Trans(Γ )
for CP1[P ] is (`+m(d1 − 1), md2)-admissible, where m× ` is the size of policy.

Proof. We prove symbolic property of Γ ′ from that of Γ as follows.

Selective Symbolic Property. We define the following algorithms.

EncBS′(A, π) : For each i ∈ [m], run

EncBS(π(i))→
(
B(i)

1 , . . . ,B(i)
n ; s(i)

0 , . . . , s(i)
w1,i

; ŝ(i)
1 , . . . , ŝ(i)

w2,i

)
,

9 Note that, since s′ does not contain s(i)
0 , it is crucial that we use Corollary 1 where

the linear combination relies only on s̃(i) = (s(i)
1 , . . . , s

(i)
w1,i

).
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where B(i)
j ∈ Zd1×d2

N , s(i)
t ∈ Z1×d2

N , ŝ(i)
z ∈ Z1×d1

N . For j ∈ [2, n], we parse B(i)
j =:(

e(i)
j

B̃(i)
j

)
where e(i)

j ∈ Z1×d2
N and B̃(i)

j ∈ Z(d1−1)×d2
N (i.e., decomposing into the

first row and the rest). Let d′1 = `+m(d1−1) and d′2 = md2. Any vector of length
d′2 can be naturally divided into m blocks, each with length d2. Any d′1-length
vectors consists of the first ` positions which are then followed by m blocks of
length d1 − 1.10 Let B′1 = 1d

′
1×d

′
2

1,1 , snew = 1d
′
2

1 , v′ι = 1d
′
1
ι for ι ∈ [2, `], and

B′j =



e(1)
j A1,1 · · · e(m)

j Am,1
...

...

e(1)
j A1,` · · · e(m)

j Am,`

B̃(1)
j

B̃(2)
j

. . .

B̃(m)
j


∈ Zd

′
1×d

′
2

N , (13)

s′(i)t = (0, . . . , 0,

block i
↓

s(i)
t , 0, . . . , 0) ∈ Z1×d′2

N ,

ŝ′(i)z =
(
ŝ(i)
z [1]Ai:, 0, . . . , 0,

block i
↓

ŝ(i)
z [2, d1], 0, . . . , 0

)
∈ Z1×d′1

N , (14)

for j ∈ [2, n], i ∈ [m], t ∈ [w1,i], z ∈ [w2,i]. Output((
B′j
)
j∈[n]; snew,

(
s′(i)1 , . . . , s′(i)w1,i

)
i∈[m]; v′2, . . . ,v

′
`,
(
ŝ′(i)1 , . . . , ŝ′(i)w2,i

)
i∈[m]

)
.

EncR′(x, (A, π)) : First note that we have the condition P̄κ(x, (A, π)) = 0. Let
S = { i ∈ [m] | Pκ(x, π(i)) = 1 }.

1. From P̄κ(x, (A, π)) = 0 and from Proposition 1, we can obtain a vector
ω = (ω1, . . . , ω`) ∈ Z1×`

N such that ω1 = 1 and Ai:ω
> = 0 for all i ∈ S.

2. For each i 6∈ S, we can run EncR(x, π(i))→
(
r(i)

1 , . . . , r(i)
m1

; a, r̂(i)
1 , . . . , r̂(i)

m2

)
,

where r(i)
v ∈ Z1×d1

N , r̂(i)
u ∈ Z1×d2

N , and a = 1d2
1 ∈ Z1×d2

N .
3. For i ∈ [m], let gi = Ai:ω

>/r(i)
v [1]. Note that r(i)

v [1] 6= 0 due to admissibility.
4. Let anew = 1d

′
2

1 , and for v ∈ [m1], u ∈ [m2] let

r′v = −
(
ω, g1r(1)

v [2, d1], . . . , gmr(m)
v [2, d1]

)
∈ Z1×d′1

N , (15)

r̂′u = −(g1r̂(1)
u , . . . , gmr̂(m)

u ) ∈ Z1×d′2
N . (16)

5. Output (r′1, . . . , r
′
m1

; anew, r̂
′
1, . . . , r̂

′
m2

).

10 That is, the i-th block of a vector h ∈ Z1×d′1
N is h[`+ (d1− 1)(i− 1) + 1, `+ (d1− 1)i].
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Verifying Properties (sketch). Properties (P1),(P3)-(P6) are straightforward.
to verify. Due to limited space, we provide a sketch in verifying (P2)—zero
evaluation of substituted polynomials—here, and defer the full details to §F.

In ct-enc c′, the p-th polynomial in c′(i) is c′(i)p =

∑
z∈[w2,i]

η(i)
p,z ŝ
′(i)
z + η

(i)
p,0,1(Ai,1b1snew +

∑̀
ι=2

Ai,ιvι) +
∑

t∈[w1,i]
j∈[2,n]

η
(i)
p,t,jbjs

′(i)
t . (17)

Substituting ŝ′(i)z : (ŝ′(i)z )>, b1snew : B′1(snew)>, vι : (v′ι)
>, bjs

′(i)
t : B′j(s

′(i)
t )>,

into c′(i)p will result in a column vector of length d′1 = `+m(d1 − 1). We denote
it as w>. We claim that w> = 0. We use the symbolic property of the base
PES, Γ , which ensures that the substitution of c(i)

p via EncBS(π(i)), denoted
u>, evaluates to 0. In fact, via elementary linear algebra, one can verify that
for j ∈ [`], w[j] is u[1] scaled by Ai,j , and that the i-th block of w is exactly
u[2, d1], while the rest of w is already 0 by construction. Hence the claim holds.

In key-enc k, the substitution for k1 is straightforward. For p ∈ [2,m3], we have
kp =

∑
u∈[m2] φp,ur̂u+

∑
v∈[m1],j∈[2,n] φp,v,jrvbj . Substituting r̂u : r̂′u, rvbj : r′vB

′
j

into kp will result in a row vector of length d′2 = md2. We denote it as w. We
claim that w = 0. Let ui be the substitution result for kp via EncR(x, π(i)). One
can eventually verify that the i-th block of w is giui, which evaluates to 0 since,
if i ∈ S we have gi = 0, while if i 6∈ S we have ui = 0 due to the symbolic
property of the base PES. Hence the claim holds.

Co-selective Symbolic Property. Let EncBR′(x) = EncBR(x).

EncS′(x, (A, π)) : First note that we have the condition P̄κ(x, (A, π)) = 0. Let
S = { i ∈ [m] | Pκ(x, π(i)) = 1 }.

1. For each i 6∈ S, we have Pκ(x, π(i)) = 0. Thus, we can run EncS(x, π(i))→(
s(i)

0 , . . . , s(i)
w1,i

; ŝ(i)
1 , . . . , ŝ(i)

w2,i

)
, where s(i)

t ∈ Z1×d2
N , and ŝ(i)

z ∈ Z1×d1
N .

2. From P̄κ(x, (A, π)) = 0 and Proposition 1, we can obtain a vector ω =
(ω1, . . . , ω`) such that ω1 = 1 and Ai:ω

> = 0 for all i ∈ S. Let qi = Ai:ω
>.

3. Let snew = 1d2
1 , s′(i)t = qis

(i)
t , ŝ′(i)z = qiŝ

(i)
z , and v′ι = ωι1

d1
1 , for i ∈ [m],

t ∈ [w1,i], ι ∈ [2, `], z ∈ [w2,i].

4. Output
(

snew,
(
s′(i)1 , . . . , s′(i)w1,i

)
i∈[m]

; v′2, . . . ,v
′
`,
(
ŝ′(i)1 , . . . , ŝ′(i)w2,i

)
i∈[m]

)
.

Verifying Properties. First we can verify that anews>new = 1d2
1 (1d2

1 )> = 1 6= 0,
as required. Next, since we define EncBR′(x) = EncBR(x), the substitution for
key-enc is trivially evaluated to 0, due to the co-selective symbolic property of
Γ . It remains to consider the substitution for ct-enc c′. For i ∈ [m], p ∈ [w3,i],
the polynomial c(i)

p is depicted in Eq. (17). We have that the middle sum term
Ai:v

> is substituted and evaluated to qi(1
d2
1 )>. Let u>i ∈ Zd1×1

N denote the



21

substitution result for c(i)
p (as a part of c(i)) via EncS(x, π(i)) (and EncBR(x)).

By our constructions of s′(i)t and ŝ′(i)z , it is straightforward to see that the
substitution for c′(i)p (as a part of c′(i)) via EncS′(x, (A, π)) (and EncBR′(x))
is indeed qiu

>
i . Note that u>i contains B1s>0 = 1d2

1 : this corresponds to the
substitution of Ai:v

>. Finally, we can see that qiu
>
i = 0 since if i ∈ S then

qi = 0, while if i 6∈ S, we have u>i = 0 due to the co-selective property of Γ .

Intuition. Due to an abstract manner of our scheme, it might be useful to relate
the above selective proof to the idea described in §2. Intuitively, the upper part
of B′j of Eq. (13) acts as a “projection”, generalizing B′j of Eq. (5) in §2, but now
we also embed the policy A in a novel way. Consider the multiplication r′vB

′
j .

Here, only “non-problematic” blocks (the i-th block where i 6∈ S) are turned “on”
by ω from r′v. All “problematic” blocks (i ∈ S) are turned “off” by the “mask”
vector (A1:ω

>, . . . ,Am:ω
>). We also note that this “mask” vector encodes the

non-acceptance condition as per Proposition 1. All in all, this gives us the relation:
r′vB

′
j = −

(
g1r(1)

v B(1)
j , . . . , gmr(m)

v B(m)
j

)
(cf. Eq. (27) in §F), where we recover

the substitution vectors of the base PES, namely, r(i)
v B(i)

j , and thus can use the
base symbolic property. We succeed in doing so despite having the “projection”
part, which seems to hinder the independency among blocks in the first place.

6 Key-policy Augmentation

For a predicate family P , we define its key-policy-span-program-augmented
predicate—denoted as KP1[P ]—as the dual of CP1[P ′] where P ′ is the dual of P .
Therefore, we can use the dual conversion [12,2]—applying two times–sandwiching
CP1-Trans, to obtain a PES conversion for KP1[P ]. However, this would incur
additional elements for encodings (from dual conversions). Below, we provide a
direct conversion without additional elements.

Construction 3. Let Γ be a PES construction for a P satisfying admissibility.
We construct a PES Γ ′ for KP1[P ] as follows. Denote this Γ ′ by KP1-Trans(Γ ).

– Param′(par) = Param(par) = n. Denote b = (b1, . . . , bn).
– EncCt′(y,N) = EncCt(y,N) = c(s, ŝ,b).
– EncKey′((A, π), N). Parse A ∈ Zm×`N . Let v := (αnew, v2, . . . , v`) be new lone

variables. For all i ∈ [m], do as follows.
• Run EncKey(π(i), N) to obtain a vector k(i) = k(i)(r(i), r̂(i),b) of poly-

nomials in variables r(i) = (r(i)
1 , . . . , r(i)

m1,i
), r̂(i) = (α(i), r̂

(i)
1 , . . . , r̂(i)

m2,i
),b.

• Define a modified vector by variable replacement as

k′(i) := k(i)|
α

(i) 7→Ai:v
> .

In fact, this only modifies k(i)
1 = α(i) + r

(i)
1 b1 to k′(i)1 = Ai:v

> + r
(i)
1 b1.
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Finally, output k′ = k′(r′, r̂′,b) as k′ :=
(
k′(i)

)
i∈[m]. It contains variables

r′ := (r(i))i∈[m], r̂′ := (αnew, v2, . . . , v`, (r̂
(i))i∈[m]), and b.

Pair/Correctness. For proving correctness, we suppose P̄κ((A, π), y) = 1. Let
S := { i ∈ [m] | Pκ(π(i), y) = 1 }. For i ∈ S, we can run Pair(π(i), y,N)→ (E,E)
and obtain a linear combination sE(k′(i))> + cE(r(i))> = α(i)s0 = Ai:v

>s0.

Now since 1`1 ∈ span(A|y), we have linear combination coefficients { ti }i∈S such
that

∑
i∈S tiAi: = 1`1. Therefore, the above terms can be linearly combined to∑

i∈S ti(Ai:v
>)s0 = αnews0, as required.

Theorem 2. Suppose a PES Γ for P is (d1, d2)-admissible. Then, the the PES
KP1-Trans(Γ ) for KP1[P ] satisfies (md1, m

′d2)-Sym-Prop+, where m× ` is the
size of policy and m′ = max{m, `}. 11

The proof is analogous to CP1-Trans, and is deferred to G. Note that, unlike
CP1-Trans, KP1-Trans does not preserve admissibility, by construction.

7 Direct Sum and Augmentation over Predicate Set

In this section, we explore policy augmentations over a set of predicate families.
We will also introduce the direct sum predicate as an intermediate notion, which
is of an independent interest in its own right.

Notation. Throughout this section, let P = {P (1), . . . , P (k)} be a set of predicate
families. Each family P (j) = {P (j)

κj
}κj is indexed by κj = (N, parj). The domain

for each predicate is specified by P (j)
κj

: X(j)
κj
× Y

(j)
κj
→ { 0, 1 }. Unless specified

otherwise, we define the combined index as κ = (N, par) = (N, (par1, . . . , park)).
Let Xκ :=

⋃
i∈[k]({i} × X

(i)
κi

) and Yκ :=
⋃
i∈[k]({i} × Y

(i)
κi

).

Definition 6. We define the key-policy-span-program-augmented predicate over
set P as KP[P] =

{
P̄κ
}
κ
where P̄κ : X̄κ × Ȳκ → { 0, 1 } by letting

– X̄κ = { (A, π) | A ∈M(ZN ), π : [m]→ Xκ }.
– Ȳκ = 2Yκ .
– P̄κ((A, π), Y ) = 1 ⇐⇒ 1`1 ∈ span(A|Y ), where12

A|Y :=
{

Ai:

∣∣∣ ∃(π1(i), y) ∈ Y s.t. P (π1(i)) (π2(i), y) = 1
}
.

where π(i) = (π1(i), π2(i)) ∈ Xκ, and m× ` is the size of the matrix A. ♦

11 As noted in Remark 4, we have in particular that m, ` will affect only the size of
q-ratio assumption, but do not pose any bound on the policy size for the ABE scheme.

12 In the bracket, we write P (π1(i)) instead of P (π1(i))
κπ1(i)

for simplicity.
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Remark 1. When P has one element, say P = {P}, we abuse the notation and
write KP[P ] := KP[{P}]. Note that KP[P ] is still more powerful than KP1[P ],
defined in §6 (see Definition 12 in §G for a detailed description), as it allows a
ciphertext attribute to be a set.

Unbounded/Dynamic/Static/OR/AND. We consider (confined) variants
of the predicate KP[P] as follows. We will confine the domain of (A, π1), which
specifies a policy over predicates. Their full domain, inferred from Definition 6,
is D :=

⋃
m∈N Mm(ZN )× Fm,k, where Fm,k denotes the set of all functions that

map [m] to [k]. For a class C ⊆ D, the predicate KP[P] with the domain of
(A, π1) being confined to C is denoted by KPC [P] and is also called dynamic
span-program composition with class C. It is called unbounded if C = D. It is
called static if |C| = 1. We denote KPOR[P] as the shorthand for KPC [P] where
C =

⋃
m∈N{AOR,m} × Fm,k, and call it the key-OR-policy-augmented predicate

over P. (Recall that AOR,m is the matrix for the OR policy, see §3.4.) Analogous
notations go for the cases of KP1OR, KPAND, CPOR, and so on.

Definition 7. We define the predicate called the direct sum of P as DS[P] ={
P̄κ
}
κ
where we let the predicate be P̄κ : Xκ × Yκ → { 0, 1 } with

P̄κ
(
(i, x), (j, y)

)
= 1 ⇐⇒

(
i = j

)
∧
(
P (j)
κj

(x, y) = 1
)
.

For notational convenience, we also denote it as P (1) � · · · � P (k) = DS[P]. ♦

We are now ready to state a lemma for constructing KP[P]. The implication
is quite straightforward from definitions. We defer the proof to §H.

Lemma 2. KP[P] can be embedded into KP1[CP1OR[DS[P]]].

Constructing PES for KP[P]. Now, since DS[P] is a single predicate family
(rather than a set of them), we can apply the CP1-Trans and KP1-Trans to a
PES for DS[P] to obtain a PES for KP[P]. Note that we apply Layer-Trans for
admissibility if necessary.
Constructing PES for Direct Sum. In the next two subsections, we provide
two constructions of PESs for direct sum of a set P of predicate families. The first
is a simpler one that simply “concatenates” all the base PESs for each predicate
family in P. The second is superior as the same parameter variables b can be
“reused” for all predicate families in P.

7.1 Simple Direct Sum by Parameter Concatenation

Construction 4. Let Γ (j) be a PES for P (j). Also let Γ = (Γ (1), . . . , Γ (k)). We
construct a PES Γ ′ for DS[P], where P = {P (1), . . . , P (k)}, as follows. For further
use, we denote this Γ ′ by Concat-Trans(Γ).

– Param′(par). For j ∈ [k], run Param(j)(parj) to obtain nj . Denote b(j) =
(b(j)

1 , . . . , b(j)
nj

). Output n = n1 + . . .+ nk. Denote b′ = (b(1), . . . ,b(k)).
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– EncCt′((j, y), N). Run EncCt(j)(y,N)→ c = c(s, ŝ,b(j)) and output c.
– EncKey′((i, x), N). Run EncKey(i)(x,N)→ k = k(r, r̂,b(i)) and output k.

Pair/Correctness. This is straightforward from the base schemes. More pre-
cisely, for proving correctness, we suppose P̄κ

(
(i, x), (j, y)

)
= 1. That is, i = j

and P (j)
κj

(x, y) = 1. Hence, we can run Pair(j)(x, y,N) → (E,E) and obtain a
linear combination sEk> + cEr> = αs0, as required.

To prove symbolic security of Concat-Trans(Γ), we use one more intermediate
constraint for the underlying PESs, called Sym-Prop++, which, in turn, can be
converted from PES with normal Sym-Prop via Plus-Trans. We defer these proofs
to §H. Below, we let ⊥ be a special symbol which is not in Yκ, Xκ, and abuse
notation by letting any predicate evaluate to 0 if at least one input is the symbol
⊥.

Definition 8. A PES Γ for predicate family P satisfies (d1, d2)-Sym-Prop++ if
it satisfies (d1, d2)-Sym-Prop+ with the following further requirement.
(P7). In the selective symbolic property definition, the zero evaluation property

of key-enc (P2) also holds for EncB(⊥), EncR(x,⊥) for all x ∈ Xκ. ♦

Lemma 3. Suppose that, for all j ∈ [k], the PES Γ (j) for predicate family
P (j) satisfies (d1, d2)-Sym-Prop++. Then, the PES Concat-Trans(Γ) for predicate
family DS[P], where P = {P (1), . . . , P (k)}, satisfies (d1, d2)-Sym-Prop+.

7.2 Efficient Direct Sum with Parameter Reuse

Construction 5. Let Γ (j) be a PES for P (j). Also let Γ = (Γ (1), . . . , Γ (k)).
We construct a PES Γ ′ for DS[P], where P = {P (1), . . . , P (k)}, as follows. We
denote this scheme by Reuse-Trans(Γ). The intuition is to use two new parameters
gj , hj specific to Γ (j), where in the proof, their substituted matrices serve as the
“switches” that turn on only the j-th scheme, and that is why we can reuse the
same based parameters b (since the others are rendered zero by the switches).

– Param′(par). For j ∈ [k], run Param(j)(parj) to obtain nj . Let n = maxj∈[k] nj .
Output n′ = n + 2k. Denote b = (b1, . . . , bn, g1, . . . , gk, h1, . . . , hk). Also
denote bj = (b1, . . . , bnj ).

– EncCt′((j, y), N). Run EncCt(j)(y,N)→ c = c(s, ŝ,bj). Let snew be the new
special non-lone variable. Output c′ =

(
c, gjs0 + hjsnew

)
.

– EncKey′((i, x), N). Run EncKey(i)(x,N)→ k = k(r, r̂,bi). Let rnew be a new
non-lone variable and αnew be the new special lone variable. Let k̃ be exactly
k but with α being replaced by rnewgi. Output k′ =

(
k̃, αnew + rnewhi

)
.

Pair/Correctness. Suppose P̄κ
(
(i, x), (j, y)

)
= 1. Thus, i = j and P (j)

κj
(x, y) =

1. Hence, we can run Pair(j)(x, y,N)→ (E,E) and obtain a linear combination
sEk> + cEr> = αs0 = (rnewgj)s0. Hence, we have the following, as required:(
αnew + rnewhj

)
snew − rnew

(
gjs0 + hjsnew

)
+ (rnewgj)s0 = αnewsnew.
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q0

start
q1 q2

accept
∈ Bad

∈ Bad

∈ Bad

6∈ Bad 6∈ Bad

y1

start

y2 y3 y4 · · ·

Fig. 5: Predicative DFA for language of sentences that start with a bad word and have
an even number of the total bad words. Based predicates for testing membership/non-
membership can use IBBE, IBR, defined in §9.2, respectively.

Lemma 4. Suppose that PES Γ (j) for P (j) satisfies (d1, d2)-Sym-Prop+, for all
j ∈ [k]. Then, the PES Reuse-Trans(Γ) for predicate family DS[P], where P =
{P (1), . . . , P (k)}, satisfies (d1, d2)-Sym-Prop+. (The proof is deferred to §H.2.)

8 Predicative Automata

This section presents an augmentation via DFA over predicates. Due to direct
sum transformations, it is again sufficient to consider a single predicate variant.

Let P = { Pκ }κ where Pκ : Xκ × Yκ → { 0, 1 }, be a predicate family. A
Predicative Automata (PA) over Pκ is a 4-tuple (Q,T, q0, F ) where Q is the set
of states, T ⊆ Q×Q× Xκ is the transition table, q0 ∈ Q is the start state, and
F ⊆ Q is the set of accept states. For simplicity and w.l.o.g., we can assume that
there is only one accept state, and it has no outgoing transition. An input to
such an automata is a sequence Y = (y1, . . . , y`) ∈ (Yκ)∗, where ` is unbounded.
A predicative automata M = (Q = {q0, . . . , qσ−1},T, q0, qσ−1) accepts Y if there
exists a sequence of states (q(1), . . . , q(`)) ∈ Q` such that for all i ∈ [1, `], it
holds that there exists (q(i−1), q(i), x(i)) ∈ T such that Pκ(x(i), yi) = 1, and
that q(0) = q0 and q(`) = qσ−1. Following the predicate for deterministic finite
automata (DFA) [41,7,2], we will assume determinism of such a predicative
automata. (So we may call it predicative DFA.) In our context, this is the
restriction that for any different transitions with the same outgoing state, namely
(q, q′, x′) and (q, q′′, x′′) with q′ 6= q′′, we require that for all y ∈ Yκ, it must be
that Pκ(x′, y) 6= Pκ(x′′, y). We can observe that if P is the equality predicate
(IBE), then the resulting predicative DFA over P is exactly the definition of DFA.
Example. We provide an example of languages. Suppose we have a list of
words which are considered bad. There exists a simple predicative DFA, depicted
in Fig. 5, that accepts exactly any sentences that start with a bad word and
contain an even number of the total bad words. This seems not possible with
span programs, since a sentence can be arbitrarily long.

Definition 9. Let P = { Pκ }κ where Pκ : Xκ × Yκ → { 0, 1 }, be a predicate
family, indexed by κ = (N, par). We define the Key-policy-Automata-augmented
predicate over P as KA1[P ] =

{
P̄κ
}
κ
where P̄κ : X̄κ × Ȳκ → { 0, 1 } by letting

– X̄κ = {M |M is a predicative automata over Pκ }.
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– Ȳκ = (Yκ)∗.
– P̄κ(M,Y ) = 1 ⇐⇒ M accepts Y. ♦

Intuition. The intuition for constructing PESs for DFA over predicates is
similar to that of span program over predicates in that we follow the blueprint of
generalizing PESs for X over IBE to X over any predicates, where X is either
DFA or span program. Note that this blueprint was explained in §2 for the case of
span programs. Here, for the DFA case, the starting PES is the ABE for regular
languages (which can be considered as DFA over IBE) of [7], of which a symbolic
proof was given in §B.5 of [2]. In our construction below, one may notice that
the structure of PES contains “two copies” of the underlying PES. This feature
is inherited from the PES for ABE for regular languages of [7], which already
utilizes two copies of IBE encodings.

We note some differences from the case of span programs. For the constructions,
while our conversions for span programs use the second approach in §2 (based
on admissible PES), we will base our conversion for DFA instead on the first
approach (using the layering technique). This is done for simplicity. For the proofs,
we note that span programs and DFAs have completely different combinatorial
properties and thus different kinds of substituted matrices. See more discussions
below.

Construction 6. Let Γ be a PES construction for P . We construct a PES Γ ′
for KA1[P ] as follows. For further use, we denote this Γ ′ by KA1-Trans(Γ ).

– Param′(par). If Param(par) returns n, then output 2n + 5. Denote b1 =
(b1,1, . . . , b1,n), b2 = (b2,1, . . . , b2,n), and b′ = (b1,b2, h0, g1, h1, g2, h2).

– EncCt′(Y,N). Parse Y = (y1, . . . , y`). For i ∈ [`], run EncCt(yi, N) to obtain
a vector c(i) of polynomials. We will use two copies of it, with two different
sets of variables, written as:

c(1,i) := c(i)(s(1,i), ŝ(1,i),b1), c(2,i) := c(i)(s(2,i), ŝ(2,i),b2),

and relate these two sets of variables via:

s
′(i)
0 :=


s

(1,i+1)
0 if i = 0
s

(1,i+1)
0 = s

(2,i)
0 if i = 1, . . . , `− 1

s
(2,i)
0 if i = `

. (18)

We then define c′0 := h0s
(0)
new and, for i ∈ [`],

c′i := h1s
(i−1)
new + g1s

′(i−1)
0 + h2s

(i)
new + g2s

′(i)
0 ,

where s(0)
new, . . . , s

(`)
new are new non-lone variables with s(`)

new being special.
Finally, it outputs c′ :=

(
c′0, c

′
1, . . . , c

′
`, ( c(1,i), c(2,i) )i∈[`]

)
.
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– EncKey′(M,N). ParseM = (Q,T, q0, qσ−1) and parse T =
{

(qυt , qωt , xt)
}
t∈[m]

where each υt, ωt ∈ [0, σ − 1]. 13 Let u0, u1, . . . , uσ−1 be new lone variables
with uσ−1 being special. For all t ∈ [m], run EncKey(xt, N) to obtain a
vector k(t) of polynomials. We use two copies of it, with two different sets of
variables. We then modify them via variable replacement as follows.

k(1,t) := k(t)(r(1,t), r̂(1,t),b1), k(2,t) := k(t)(r(2,t), r̂(2,t),b2),

k′(1,t) := k(1,t)|
α

(1,t) 7→ r
(t)
newg1

, k′(2,t) := k(2,t)|
α

(2,t) 7→ r
(t)
newg2

,

where r(t)
new is a new non-lone variable (the same one for both). We then define

k̃0 := −u0 + r(0)
newh0, k̃1,t := uυt + r(t)

newh1, k̃2,t := −uωt + r(t)
newh2.

for t ∈ [m]. Finally, it outputs k′ :=
(
k̃0,
(
k̃1,t, k̃2,t,k

′(1,t),k′(2,t),
)
t∈[m]

)
.

Pair/Correctness. Suppose P̄κ(M,Y ) = 1. That is, there exists a sequence
(q(1), . . . , q(`)) ∈ Q` such that for all i ∈ [1, `], it holds that Pκ(x(i), yi) = 1
and (q(i−1), q(i), x(i)) ∈ T, and that q(0) = q0, while q

(`) = qσ−1. For i ∈ [`], we
proceed as follows. Denote ti ∈ [m] as the transition index that corresponds to
the i-th move; that is, let (qυti , qωti , xti) = (q(i−1), q(i), x(i)). From this, we have
qυti

= qωti−1
for all i ∈ [`]. Now since Pκ(xti , yi) = 1, we can run Pair(xti , yi, N)

to obtain linear combinations that are equal to

D1,i := α(1,ti)s
(1,i)
0 =

(
r(ti)

newg1
)
s
′(i−1)
0 ,

D2,i := α(2,ti)s
(2,i)
0 =

(
r(ti)

newg2
)
s
′(i)
0 .

We haveQi := D1,i+D2,i+s
(i−1)
new k̃1,ti+s

(i)
newk̃2,ti−c

′
ir

(ti)
new = s(i−1)

new uωti−1
−s(i)

newuωti
.

Let Q0 := s(0)
newk̃0− r

(0)
newc

′
0 = −s(0)

newu0. Combining them, we obtain −
∑`
i=0 Qi =

s(`)
newuσ−1, as required.

Theorem 3. Suppose a PES Γ for P satisfies (d1, d2)-Sym-Prop++. Then, the
the PES KA1-Trans(Γ ) for KA1[P ] satisfies (ψ1d1, ψ2d2)-Sym-Prop+, where ψ1 =
max{`+ 1,m}, ψ2 = max{`+ 1, 2m}, where ` is the size of ciphertext attribute
Y , and m is the size of transition table T for predicative automata M .

We defer the proof to §I. At the core, we point out combinatorial vectors
that encode the non-acceptance condition of predicative DFA and use them as
the “mask” vectors in the proof. Since the combinatorial properties here is richer
than the KP1 case, the proof is somewhat more complex.

13
υt, ωt indicate the “from” and the “to” state of the t-th transition in T, respectively.
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9 Applications

We provide applications from our framework. Due to limited space, we also offer
more discussions in §L.3, §L.4, where we also motivate for real-world applications.

9.1 ABE for New Predicates

Predicative Branching Program. This is similar to and might be less powerful
than predicative DFA but may serve an independent interest, since its definition
and construction are simpler. A Predicative Branching Program (PBP) over a
predicate Pκ : Xκ × Yκ → {0, 1} is a 4-tuple (Γ, q1, qσ, L) where Γ = (V,E) is
a directed acyclic graph (DAG) with a set of nodes V = {q1, . . . , qσ} and a set
of directed edges E ⊆ V 2, q1 is a distinguished terminal node (a node with no
outgoing edge) called the accept node, qσ is the unique start node (the node with
no incoming edge), and L : E → Xκ is an edge labelling function. An input to
a PBP M = (Γ, q1, qσ, L) is y ∈ Yκ. Let Γy be an induced subgraph of Γ that
contains exactly all the edges e such that Pκ(L(e), y) = 1. Such a PBPM accepts
y if Γy contains a directed path from the start node, qσ, to the accept node, q1.
Following the deterministic characteristic of boolean branching programs, we
will assume determinism of PBP: for any node v, for any two outgoing edges
e1, e2 from the same node v, we require that Pκ(L(e1), y) 6= Pκ(L(e2), y) for any
y ∈ Yκ. We denote the key-policy-augmented predicate using PBP over P as
KB1[P]. We show that it can be embedded into KP1[P] by using almost the same
proof as in the case for the implication ABE for span programs to ABE for BP
in [8]. For self-containment, we provide this in §J.

Nested-policy/Mixed-policy ABE. We can define new type of ABE that
nests policies. Nested-policy ABE is ABE for predicate CP[KP[P]] or KP[CP[P]],
or any arbitrarily hierarchically nested ones. In these schemes, however, the
structure of nesting is fixed. We define what we call Mixed-policy ABE to free
up this restriction altogether. It is defined in a recursive manner to make sure
that at level `, it includes all the possible nesting structures that have at most `
layers. To construct a transformation for this, we observe that a trivial scheme
using parameter concatenation would be inefficient as when going from level `− 1
to `, the number of parameters will become at least d times of level `− 1, where
d is the number of transformations plus one (e.g., if we want only KP[·] and
CP[·], then d = 3). Hence, the overall size at level ` would be O(d`). Fortunately,
thanks to our construction for direct sum with parameter reuse, Reuse-Trans, the
parameter size (which will correspond to the public key size for ABE) can be
kept small. For `-level scheme, the parameter size is O(n+k+d`), where n is the
maximum parameter size among k based predicates in P. We explore this in §K.

9.2 Revisiting Known Predicates

Known Predicates and Modular Constructions. We describe some known
predicates and how they are related to more basic predicates via the policy
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augmented predicate notions (e.g., KP1[·], KP[·]). These relations directly suggest
what transformations (e.g., KP1-Trans) can be used so as to achieve PES for
more expressive predicates from only PESs for basic predicates, namely, IBE
and its negation (NIBE), in a modular way. We note that the ciphertext-policy
variants can be considered analogously, and can be obtained simply by applying
the dual conversion [7,2]. Let U = ZN be the attribute universe.

We consider the following predicates.

– P IBE : U× U→ {0, 1} is defined as P IBE(x, y) = 1⇔ x = y.
– PNIBE : U× U→ {0, 1} is defined as PNIBE(x, y) = 1⇔ x 6= y.
– P IBBE : U× 2U → {0, 1} is defined as P IBBE(x, Y ) = 1⇔ x ∈ Y .14

• It is clear that P IBBE can be embedded into CP1OR[P IBE].
– P IBR : U× 2U → {0, 1} is defined as P IBR(x, Y ) = 1⇔ x 6∈ Y .
• It is clear that P IBR can be embedded into CP1AND[PNIBE].

– PTIBBE : ({1, 2} × U) × 2U → {0, 1} is defined as PTIBBE((i, x), Y ) = 1 ⇔
(i = 1 ∧ x ∈ Y ) ∨ (i = 2 ∧ x 6∈ Y ).15

• It is clear that PTIBBE can be embedded into CP1OR[P IBBE � P IBR].
– The predicate for completely-unbounded KP-ABE for monotone span program
PKP-MSP (as defined in [7] and recapped in §3.4) is the same as KP1[P IBBE],
or equivalently, KP[P IBE].

– The predicate for completely-unbounded KP-ABE for non-monotone span
program PKP-NSP corresponds to exactly the definition of KP1[PTIBBE]. For
self-containment, we also explicitly describe this induced definition in §D.

For self-containment, we provide PES constructions for P IBE and PNIBE in §C.

On ABE for Non-monotone Span Programs. To the best of our knowledge,
fully secure completely-unbounded large-universe KP-ABE for non-monotone
span program (NSP) had not been achieved before this work. We achieve a scheme
in prime-order groups, in a modular and clean manner from simple PESs for P IBE

and PNIBE. An explicit description of our PES for it is given in §D. We have to rely
on the q-ratio assumption, inherited from the framework of [2]16; nevertheless,
all the current completely unbounded ABE for even monotone span programs
still also need q-type assumptions [35,7,2], even selectively secure one [35]. We
provide a comparison to known KP-ABE schemes for NSP in prime-order groups
in Table 1. We further discuss why large-universe ABE for NSP is generally a
more difficult task to achieve than ABE for MSP in §L.1.

For the CP-ABE case, a fully secure completely-unbounded scheme for NSP
was recently and independently reported in [45]. Their scheme is constructed in
composite-order groups. Our instantiated CP-ABE for NSP is in prime-order
groups, and unlike [45] of which proof is complex and specific, ours can be
obtained in a modular manner. Table 2 for CP-ABE for NSP is deferred to §A.
14 IBBE is for ID-based broadcast encryption [22]; IBR is for ID-based revocation [11].
15 This is a unified notion for IBBE and IBR, and is called two-mode IBBE in [44].
16 In defense, we also provide a positive remark towards the q-ratio assumption in §L.2.
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Table 1: Summary for KP-ABE for non-monotone span programs with large universe.
Schemes |PK| |SK| |CT| Unbounded Security Assumption

|policy|/multi-use/|attrib. set|

OSW07 [32] I O(T ) O(m) O(T ) X X selective DBDH
II O(T ) O(m log(T )) O(t) X X selective DBDH

OT10 [33] O(TR) O(m) O(tR) X full DLIN
OT12 [34] O(1) O(m) O(tR) X X full DLIN
ALP11 [11] O(T ) O(Tm) O(1) X X selective T -DBDHE†

YAHK14 [44] I O(T ) O(Tm) O(1) X X selective T -DBDHE†

II O(T ) O(m) O(T ) X X selective DBDH
III O(T ) O(m log(T )) O(t) X X selective DBDH
IV O(1) O(m) O(t) X X X selective t-A†

Our KP-NSP I O(1) O(m) O(t) X X X full qratio†

II O(T 2) O(T 3
m) O(1) X X full qratio†

III O(M2 +ML) O(1) O(t(M3 +M
2
L)) X X full qratio†

Note: t = |attribute set|, m×` is the span program size, R is the attribute multi-use bound, T,M,L are the maximum
bound for t,m, `, respectively (if required). Assumptions with † are q-type assumptions.

On Constant-size Schemes. One huge further advantage in using the symbolic
PES framework of [2] is that any symbolically secure PES can be transformed
to constant-size schemes (in ciphertext or key sizes) by bounding corresponding
terms and trading-off with the parameter size (n from Param). In particular, any
of our transformed PESs in this paper, e.g., KP[P], can be made constant-size.
We include such ABE for NSP in Table 1,2. We derive their complexities in §D.

Revisiting the Okamoto-Takashima Definition. The Okamoto-Takashima
type ABE [33,34] for non-monotone span program was defined differently. We
recast it here in our terminology, and explain how to achieve a PES for it in a
modular manner in §D.
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Supplementary Materials

A Supplementary Table and Figure

This section provides a summary table for CP-ABE, for supplementary to §9.2.

Table 2: Summary for CP-ABE for non-monotone span programs with large universe.
Schemes |PK| |SK| |CT| Unbounded Security Assumption

|policy|/multi-use/|attrib. set|

OT10 [33] O(TR) O(tR) O(m) X full DLIN
OT12 [34] O(1) O(tR) O(m) X X full DLIN
YAHK14 [44] O(1) O(t) O(m) X X X selective m-B†

YWB18 [45] O(1) O(t) O(m) X X X full q-PBDHE†

(Composite-order)
Our CP-NSP I O(1) O(t) O(m) X X X full qratio†

II O(T 2) O(1) O(T 3
m) X X full qratio†

III O(M2 +ML) O(t(M3 +M
2
L)) O(1) X X full qratio†

Note: t = |attribute set|, m× ` is the span program size, R is the attribute multi-use bound, T,M,L are the maximum
bound for t,m, `, respectively (if required). Note that only the scheme of [45] is in composite-order groups. Assumptions
with † are q-type assumptions.

B Recapped Known Definitions and Results

B.1 Security Definition for ABE

For self-containment, here we describe the security definition for ABE, deferred
from §3.1. An ABE scheme for predicate family P is fully secure if no probabilistic
polynomial time (PPT) adversary A has non-negligible advantage in the following
game between A and the challenger C.

1. Setup: C runs Setup(1λ, κ)→ (PK,MSK) and hands PK to A.
2. Phase 1: A makes a j-th private key query for Xj ∈ Xκ. C returns SKj by

computing SKj ← KeyGen(Xj ,MSK,PK).
3. Challenge: A submits equal-length messagesM0,M1 and a target ciphertext

attribute y? ∈ Yκ with the restriction that Pκ(xj , y
?) = 0 for all j ∈ [1, q1]. C

flips a bit b $← {0, 1} and returns CT? ← Encrypt(y?,Mb,PK).
4. Phase 2: A continues to make a j-th private key query for Xj ∈ Xκ under

the restriction Pκ(xj , y
?) = 0. C returns SKj ← KeyGen(Xj ,MSK,PK).

5. Guess: The adversary A outputs a guess b′ ∈ {0, 1} and wins if b′ = b. The
advantage of A is defined as |Pr[b = b′]− 1

2 |.

B.2 Main Theorem in the Agrawal-Chase Framework

For self-containment, we recap the main theorem in the Agrawal-Chase frame-
work [2], deferred from the discussion in §3.3.
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Proposition 2 ([2]). Suppose there exists a PES that satisfies (d1, d2)-Sym-Prop
for a predicate family P . Then, there exists a fully secure ABE scheme for the
predicate family P in prime-order bilinear maps under the (D1, D2)-q-ratio and
the k-linear assumptions for any k ≥ 2, where D1 = max(d1, d2−1) +M1 + 1 and
D2 = d2 +W1 + 1, and M1 and W1 are the maximums of the number of key-enc
and ct-enc non-lone variables, respectively, in the encoding among respective key
and ciphertext queries (in the security game for ABE).

Remark 2 (Enhanced Symbolic Property [2]). A PES satisfying (d1, d2)-Sym-Prop
is indeed not directly sufficient for constructing fully secure ABE. Agrawal and
Chase [2] provide a more constrained definition of Sym-Prop called Enhanced
Symbolic Property, or Sym-Prop?. An ABE scheme constructed via their generic
construction over a PES with Sym-Prop? is proved fully secure. As shown in [2],
most previous concrete PESs [7,2] already satisfy Sym-Prop?. Otherwise, Agrawal
and Chase [2] also provide a generic conversion which converts any PES with
(d1, d2)-Sym-Prop to a PES with (d1, d2)-Sym-Prop?.

Remark 3. As noted in [2], if a scheme satisfies (d1, d2)-Sym-Prop, then it also
satisfies (d′1, d

′
2)-Sym-Prop for any d′1 ≥ d1 and d′2 ≥ d2.

Remark 4. As noted in [2], the parameter (d1, d2) for symbolic property of a
PES will affect only the size of q-ratio assumption, but will not pose any bound
on the ABE scheme syntax, constructed over the PES.

Constraint. We will use a constraint that a = 1d2
1 . This constraint is implied

from Sym-Prop? (but we do not need all the other constraints in Sym-Prop?, which
require a bit more). Therefore, any PES with Sym-Prop can be converted to a
PES with Sym-Prop+ using the conversion in [2].17 We describe this conversion
below.

Construction 7. Let Γ be a PES construction for P . We construct another
PES Γ ′ for also the same P as follows. We denote this Γ ′ by Plus-Trans(Γ ).

– Param′(par). If Param(par) returns n, then output n+1. Denote b = (b1, . . . , bn)
and b′ = (b, f).

– EncCt′(y,N). Run EncCt(y,N)→ c. Output c′ = (c, fs0).
– EncKey′(x,N). Run EncKey(x,N)→ k. Let rnew be a new non-lone variable.

Let k̃ be exactly k but with α being replaced by α+ rnewf . Output k̃.

Proposition 3 ([2]). Suppose that Γ for P satisfies (d1, d2)-Sym-Prop. Then,
Plus-Trans(Γ ) for P satisfies (d1, d2)-Sym-Prop+.

17 In fact, this requires only the first conversion out of the three consecutive conversions
in [2] that turns a PES with Sym-Prop to a PES with Sym-Prop?.
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B.3 Embedding Lemma

For arguing implications among PESs, we use the embedding lemma, deferred
from §3.4. Such a lemma is already known and applied for arguing implications
among ABE schemes [16,9]. We adapt to the case of PES here.

Definition 10. Let Pκ : Xκ × Yκ → {0, 1}, and P ′κ′ : X′κ′ × Y
′
κ
′ → {0, 1} be

two predicate families, indexed by κ = (N, par) ∈ K and κ′ = (N, par′) ∈ K
′,

respectively. We say that P ′ can be embedded into P if there exists three efficient
mappings fp, fe, fk where fp : K′ → K maps κ′ = (N, par′) 7→ κ = (N, par) and
fe : X′κ′ → Xκ, fk : Y′κ′ → Yκ such that for all x′ ∈ X

′
κ
′ , y′ ∈ Y

′
κ
′ , we have:

P ′κ′(x
′, y′) = 1 ⇐⇒ Pκ(fe(x

′), fk(y′)) = 1. (19)

Lemma 5. If P ′ can be embedded into P , then any symbolic-secure PES for P
implies a symbolic-secure PES for P ′.

Proof sketch. Let Γ be a PES for P . We construct a PES Γ ′ for P ′ by sim-
ply defining Param′(par′) = Param(fp(par′)), EncCt′(y′, N) = EncCt(fe(y

′), N),
EncKey′(x′, N) = EncCt(fk(x′), N), and Pair′(x′, y′, N) = Pair(fk(x′), fe(y

′), N).
The correctness and security is guaranteed by the forward and backward direction
of Eq. (19), respectively.

C Basic Concrete Pair Encoding Schemes

In this section, we describe pair encoding schemes for some basic predicates.

C.1 Basic Schemes

Construction 8. A PES for P IBE. The encoding is that of the Boneh-Boyen
scheme [15] (which is also used in [30,7]).

– Param→ 2. Denote b = (b1, b2).
– EncCt(y,N)→ c1 = (yb1 + b2)s0.
– EncKey(x,N)→ k1 = α+ r1(xb1 + b2).
– Pair. Suppose x = y. We have k1s0 − r1c1 = αs0.

Selective Symbolic Property of Construction 8.

– EncBS(y) outputs (b1 : −1, b2 : y, s0 : 1). Note that d1 = d2 = 1.
– EncR(x, y), where x 6= y, outputs (r1 : 1

x−y , α : 1).
– We can verify that
• αs0 : (1)(1) = 1 6= 0.
• c1 : (y(−1) + y)(1) = 0
• k1 : 1 + 1

x−y (x(−1) + y) = 0.

Co-selective Symbolic Property of Construction 8.
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– EncBR(x) outputs (b1 : (0,−1), b2 : (−1, x), r1 : 1, α : (1, 0)). Note that
d1 = 1, d2 = 2.

– EncS(x, y), where x 6= y, outputs (s0 : (1, 1
x−y )).

– We can verify that
• αs0 : (1, 0) · (1, 1

x−y )> = 1 6= 0.
• k1 : (1, 0) + (1)(x(0,−1) + (−1, x)) = (0, 0).
• c1 : (y(0,−1) + (−1, x)) · (1, 1

x−y )> = 0.

Construction 9. A PES for PNIBE (the negated predicate of IBE). This is
extracted (and simplified) as a special case of negated spatial encryption of [7].

– Param→ 2. Denote b = (b1, b2).
– EncCt(y,N)→ c1 = (yb1 + b2)s0.
– EncKey(x,N)→ (k1 = α+ r1b1, k2 = r1(xb1 + b2)).
– Pair. Suppose x 6= y. We have k1s0 − 1

x−yk2s0 + 1
x−y r1c1 = αs0.

Selective Symbolic Property of Construction 9.

– EncBS(y) outputs (b1 : −1, b2 : y, s0 : 1). Note that d1 = d2 = 1.
– EncR(x, y), where x = y, outputs (r1 : 1, α : 1).
– We can verify that
• αs0 : (1)(1) = 1 6= 0.
• c1 : (y(−1) + y)(1) = 0
• k1 : 1 + (1)(−1) = 0, and k2 : (1)(x(−1) + y) = 0.

Co-selective Symbolic Property of Construction 9.

– EncBR(x) outputs (b1 : −1, b2 : x, r1 : 1, α : 1). Note that d1 = d2 = 1.
– EncS(x, y), where x = y, outputs (s0 : 1).
– We can verify that
• αs0 : (1)(1) = 1 6= 0.
• k1 : 1 + (1)(−1) = 0, and k2 : (1)(x(−1) + x) = 0.
• c1 : (y(−1) + x)(1) = 0.

C.2 Basic Admissible Schemes

The above mentioned PESs for IBE and NIBE are not admissible. One can
apply the Layer-Trans transformation of Construction 1 to obtain ones, but these
would incur two additional elements for each of the key and ciphertext encoding
(counting also the non-lone variables). An alternative way is to use the dual
conversion [12,2], which incurs only one element to each encoding. Applying
the dual conversion to a symmetric predicate will result in the same predicate.
Equality (IBE) and inequality (NIBE) predicates are symmetric, hence we can
apply without changing their functionalities. We note that the converted PES from
the dual conversion can be easily shown to be admissible (by slightly adapting
the proof in [2]). For concreteness, we write the dually converted schemes for
Construction 8 and 9 here, as we will use them for constructing a PES for
KP-NSP in §D.
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Construction 10. A PES for P IBE, dually converted from Construction 8.

– Param→ 3. Denote b = (b1, b2, b3).
– EncKey(x,N)→ (k1 = α+ r1b1, k2 = r1(yb2 + b3)).
– EncCt(y,N)→ c1 = b1s0 + (xb2 + b3)s1.
– Pair. Suppose x = y. We have k1s0 − r1c1 + k2s1 = αs0.

Construction 11. A PES for PNIBE, dually converted from Construction 9.

– Param→ 3. Denote b = (b1, b2, b3).
– EncKey(x,N)→ (k1 = α+ r1b1, k2 = r1(xb2 + b3)).
– EncCt(y,N)→ (c1 = b1s0 + b2s1, c2 = (yb2 + b3)s1).
– Pair. Suppose x 6= y. We have k1s0 − r1c1 + 1

y−xr1c2 − 1
y−xk2s1 = αs0.

D PES for KP-ABE for Non-monotone Span Programs

In this section, for self-containment, we describe a concrete PES construction for
PKP-NSP. We first give the explicit definition of this predicate, which is induced
from what we define exactly as KP1[PTIBBE] in §9.

Definition 11. The predicate family of completely unbounded KP-ABE for non-
monotone span programs, PKP-NSP = { Pκ : Xκ × Yκ → {0, 1} }κ, is indexed by
κ = (N) and is defined by

– Xκ = { (A, π) | A ∈M(ZN ), π : [m]→ {1, 2} × ZN }.
– Yκ = 2(ZN ).
– Pκ((A, π), Y ) = 1 ⇐⇒ 1`1 ∈ span(A|Y ), where

A|Y :=
{

Ai:
∣∣ (π1(i) = 1 ∧ π2(i) ∈ Y

)
∨
(
π1(i) = 2 ∧ π2(i) 6∈ Y

) }
.

where m× ` is the size of the matrix A. ♦

We now describe a concrete PES construction for PKP-NSP, following the
explanation in §9. We first recall that PKP-NSP = KP1[PTIBBE] and that PTIBBE

can be embedded into CP1OR[P IBBE � P IBR]. Also, we have that P IBBE can be
embedded into CP1OR[P IBE], and P IBR can be embedded into CP1AND[PNIBE]. We
thus obtain a PES for PKP-NSP via the following sequence of transformations
applying to ΓIBE, ΓNIBE, which are the PES constructions 10 and 11, respectively.

ΓIBBE ← CP1-Trans(ΓIBE). Confine to OR.
ΓIBR ← CP1-Trans(ΓNIBE). Confine to AND.
Γ ′ ← Concat-Trans(ΓIBBE, ΓIBR).
ΓTIBBE ← CP1-Trans(Γ ′). Confine to OR.
ΓKP-NSP ← KP1-Trans(ΓTIBBE).

Construction 12. A PES ΓKP-NSP for PKP-NSP.
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– Param→ 8. Denote b = (b1, b2, b3, b̄1, b̄2, b̄3, g1, g2).
– EncCt(Y = {y1, . . . , yt}, N)→ c(s, ŝ,b) =

(
(cj , c̄1,j , c̄2,j)j∈[t], c

′, c̄′
)
:

cj = b1s+ (yjb2 + b3)sj , c′ = g2s0 + g1s,

c̄1,j = vj + b̄2s̄j , c̄2,j = (yj b̄2 + b̄3)s̄j , c̄′ = g2s0 + g1s̄,

where v1 = b̄1s̄− (v2 + · · ·+vt) and s =
(
s0, s, s̄, (sj , s̄j)j∈[t]

)
, ŝ = (v2, . . . , vt).

Note that s0 is special non-lone variable.
– EncKey((A, π), N). Parse A ∈ Zm×`N and π : [m] → {1, 2} × ZN . For k ∈
{1, 2}, let Sk := { i ∈ [m] | π1(i) = k }. For i ∈ [m], denote xi := π2[i]. Define

• for i ∈ S1: k1,i = r′ig1 + rib1, k2,i = ri(xib2 + b3).

• for i ∈ S2: k̄1,i = r′ig1 + rib̄1, k̄2,i = ri(xib̄2 + b̄3).

Also define k′i = Ai:α
> + r′ig2. Output the key encoding as k(r, r̂,b) =(

(k1,i, k2,i)i∈S1
, (k̄1,i, k̄2,i)i∈S2

, (k′i)i∈[m]
)
, where we let r =

(
r′i, ri

)
i∈[m], r̂ =

α := (α, α2, . . . , α`). Note that α is the special lone variable.
– Pair. Suppose (A, π) accepts Y . Let S′1 := { i ∈ S1 | π2(i) ∈ Y } and S′2 :=
{ i ∈ S2 | π2(i) 6∈ Y }. Let S := S1 ∪ S2. We have two cases:
• Consider i ∈ S′1. Let ji ∈ [t] be such that yji = xi. We have

r′ic
′ − k1,is+ ricji − k2,isji = r′ig2s0

• Consider i ∈ S′2. We have that for all j ∈ [t], yj 6= xi. We have

r′ic̄
′ − k̄1,is̄+

∑
j∈[t]

(ric̄1,j −
1

yj − xi
ric̄2,j + 1

yj − xi
k̄2,is̄j) = r′ig2s0.

Consider a further linear combination for all i ∈ S:

k′is0 − (r′ig2s0) = (Ai:α
>)s0.

Now since 1`1 ∈ span(A|Y ), we have linear combination coefficients { τi }i∈S
such that

∑
i∈S τiAi: = 1`1. Therefore, the above terms can be linearly

combined to
∑
i∈S τi(Ai:α

>)s0 = αs0, as required.

Theorem 4. ΓKP-NSP satisfies Sym-Prop+.

Proof (sketch). This is since the base PESs ΓIBE, ΓNIBE are admissible. We can
consecutively apply CP1-Trans and Concat-Trans which preserve admissibility.
We can finally apply KP1-Trans since it is admissible. The result of KP1-Trans
transformed PES satisfies Sym-Prop+.
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On Constant-size Schemes. Recall the notation that w1, w2, w3 represent
the number of non-lone variables, lone variables, and polynomials in ct-enc,
and m1,m2,m3 represent the number of non-lone variables, lone variables, and
polynomials in key-enc, respectively. The transformations in [2] can convert a
PES Γ to another PES Γ ′ with (w′1, w

′
2, w

′
3) = (1, 0, 1) (and hence would yield

an ABE scheme with constant-size ciphertexts). This comes with a cost that
(n′,m′1,m

′
2,m

′
3) = ((W1n+W2)W3,m1W3,m2W1,m3W1 +m1W

2
3 (W1n+W2)),

where W1,W2,W3 are the bounds for w1, w2, w3 allowed in the original scheme.
Schemes with constant-size keys can also be achieved and its resulting efficiency
can be obtained swapping the above “m-terms” and “w-terms”.

When applying these transformation to our instantiation for KP-ABE for NSP,
we have n = O(1), w1 = O(t), w2 = O(t), w3 = O(t), and m1 = O(m),m2 =
O(`),m3 = O(m), where t is the attribute set size, and m × ` is the size of a
span program. Bounding t,m, ` to T,M,L respectively, we obtain schemes with
constant-size ciphertexts or keys as shown in Table 1 and 2.

Revisiting the Okamoto-Takashima Definition. The Okamoto-Takashima
(OT) type ABE [33,34] for non-monotone span program was defined differently.
We recast it here in our terminology, and explain how to achieve a PES for it
modularly.

Define POT : ({1, 2}×N×U)×U∗ → {0, 1} by POT((i, j, x), (y1, . . . , yt)) = 1⇔
(i = 1∧x = yj)∨(i = 2∧x 6= yj). The OT-type ABE for NSP can then be defined
as PKP-NSP-OT := KP1[POT].18 Comparing to normal PKP-NSP which takes a set
of attributes as a ciphertext attribute, this variant takes a vector of attributes
and requires a key attribute to specify a position j in that vector. Decoupling
this basic predicate behind the OT variant of ABE for NSP gives some insight
not only how the functionality differs from the original definition but also how
to construct a scheme for it. It is not difficult to see that the above POT can be
embedded into CP1OR[P IBBE � CP1OR[P IBE ∧ PNIBE]], where ∧ is the static AND
composition (can be obtained by just fixing policy to AND). Intuitively, the two
parts of the direct sum are for mode i = 1 and i = 2, respectively. Inside the
second part, the P IBE is used for the equality check on the index j, while PNIBE

is used for checking x 6= yj . Interestingly, for the negative attribute part, it uses
OR (among y), as opposed to AND (among Y ) as in P IBR. OR suffices since the
evaluation needs to check only the specified position j.

With the definition in place, we can apply appropriate transformations to
achieve a PES for PKP-NSP-OT. We omit its explicit description here. The resulting
instantiations have the same asymptotic efficiency as shown in our original
instantiations in Table 1, 2.

18 As a caveat, our KP1 transformation is completely unbounded, while the OT12
scheme in [34] requires a bound on the attribute multi-use.
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E Proof for Layer Transformation

This section provides the correctness and the proof of Lemma 1 for the symbolic
property of the layer transformation, Layer-Trans, deferred from §4.
Selective Symbolic Property of Construction 1.

– EncB′(y). Run EncB(y)→ (Bj)j∈[n]. Note that Bj ∈ Zd1×d2
N . Let d′1 = d1 + 1.

Set B′j =
(

0
Bj

)
∈ Zd

′
1×d2
N , F1 = 1d

′
1×d2

1,1 , and F2 = −1d
′
1×d2

1,1 .

– EncS′(y). Set snew = 1d2
1 . Run EncS(y) →

(
(st)t∈[w1], (ŝz)z∈[w2]

)
. Let q =

1/s0[1]. Note that this can be computed since a(s0)> = s0[1] 6= 0 due to sym-
bolic property. Set s′t = qst, ŝ

′
z = q(0, ŝz). Output

(
snew, (s

′
t)t∈[w1], (ŝ′z)z∈[w2]

)
.

– EncR′(x, y). Run EncR(x, y) →
(
(rv)v∈[m1], a, (r̂u)u∈[m2]

)
. Set r′v = (1, rv),

rnew = −1d
′
1

1 , and anew = a = 1d2
1 . Output

(
rnew, (r

′
v)v∈[m1], anew, (r̂u)u∈[m2]

)
.

We can verify that αnewsnew : 1d2
1 (1d2

1 )> = 1 6= 0 and

– f1snew + f2s0 : 1d
′
1×d2

1,1 (1d2
1 )> − 1d

′
1×d2

1,1 q(s0)> = 0

– αnew + rnewf1 : 1d2
1 − 1d

′
1

1 1d
′
1×d2

1,1 = 0.

– c : 0 due to the symbolic property of Γ , and use B′j(s
′
t)
> = q

(
0

Bj(st)
>

)
.

– k̃ : 0 due to the symbolic property of Γ , and use r′vB
′
j = rvBj .

– (P6): we have F1 = 1d
′
1×d2

1,1 , snew = 1d2
1 , and r′v[1] = 1 6= 0 for v ∈ [m1]. (P4)

and (P5) are straightforward. (Note that f1 is treated as b1 of Def. 4.)

Co-selective Symbolic Property of Construction 1. This is exactly the same
as selective argument as above except that now we consider EncB′(x), EncR′(x),
EncS′(x, y) which utilizes EncB(x), EncR(x), EncS(x, y), respectively.

F Verifying Proof for Ciphertext-policy Augmentation

In this section, we provide a more in-depth explanation for verifying the selec-
tive symbolic property of the CP1-Trans conversion, deferred from the proof of
Theorem 1 in §5.

Verifying Selective Symbolic Property. First, we can verify that anews>new =
1d
′
2

1 (1d
′
2

1 )> = 1, which is not zero, as required.
We then verify that each polynomial in k, c′ evaluates to 0. For ct-enc c′, let

w3,i is the size of c(i). For i ∈ [m], p ∈ [w3,i], the p-th polynomial in c′(i) is

c′(i)p =
∑

z∈[w2,i]

η(i)
p,z ŝ
′(i)
z + η

(i)
p,0,1Ai:v

> +
∑

t∈[w1,i],j∈[2,n]

η
(i)
p,t,jbjs

′(i)
t . (20)
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where we recall that the term b1s
′(i)
0 is replaced by Ai:v

> in the construction.
First, Ai:v

> is substituted and evaluated to

Ai,1B′1(snew)> + Ai,2v′2 + · · ·+ Ai,`v
′
` =

∑̀
j=1

Ai,j1
d
′
1
j = (Ai:, 0, . . . , 0)> (21)

Next, bjs
′(i)
t is substituted and evaluated to

B′j(s
′(i)
t )> =



e(1)
j A1,1 · · · e(m)

j Am,1
...

...

e(1)
j A1,` · · · e(m)

j Am,`

B̃(1)
j

B̃(2)
j

. . .

B̃(m)
j





0
...
0

(s(i)
t )>
0
...
0


=



(e(i)
j (s(i)

t )>)Ai,1
...

(e(i)
j (s(i)

t )>)Ai,`

0
...
0

B̃(i)
j (s(i)

t )>
0
...
0



.

(22)

where the appearances of (s(i)
t )> and B̃(i)

j (s(i)
t )> are in their respective i-th block.

From these, together with the substitution for ŝ′(i)z to (ŝ′(i)z )> via Eq. (14), we
have that c′(i)p is substituted and evaluated to

∑
z∈[w2,i]

η(i)
p,z



(ŝ(i)
z [1])>Ai,`

...

(ŝ(i)
z [1])>Ai,`

0
...
0

(ŝ(i)
z [2, d1])>0

...
0


+ η

(i)
p,0,1



Ai,1
...

Ai,`

0
...
0


+

∑
t∈[w1,i]
j∈[2,n]

η
(i)
p,t,j



(e(i)
j (s(i)

t )>)Ai,1
...

(e(i)
j (s(i)

t )>)Ai,`

0
...
0

B̃(i)
j (s(i)

t )>
0
...
0



,

(23)

which is a vector in Zd
′
1×1
N . We argue that each row of it is 0. To see this, we

use the symbolic property of Γ , which ensures that the substitution of c(i)
p via
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EncBS(π(i)), as shown below, will evaluate to 0:∑
z∈[w2,i]

η(i)
p,z(ŝ

(i)
z )> + η

(i)
p,0,1B1s(i)

0 +
∑

t∈[w1,i],j∈[2,n]

η
(i)
p,t,jBj(s

(i)
t )> (24)

=
∑

z∈[w2,i]

η(i)
p,z

 ŝ(i)
z [1]

(ŝ(i)
z [2, d1])>

+ η
(i)
p,0,1(1d1

1 )> +
∑

t∈[w1,i]
j∈[2,n]

η
(i)
p,t,j

 e(i)
j (s(i)

t )>

B̃(i)
j (s(i)

t )>

 .

(25)

One can observe that the element in position j, for j ∈ [1, `], in Eq. (23) is exactly
the element in the first row of Eq. (25) multiplied by Ai,j . The i-th block of
Eq. (23) is exactly the remaining part of Eq. (25) when excluding the first row.

For key-enc k, let m3 is the size of k. The first polynomial k1 = α+ r1b1 is
substituted to anew +r′1B′1, which is evaluated to 0 since anew = 1d

′
2

1 , B′1 = 1d
′
1×d

′
2

1,1
and the first element of r′1 is −ω1 = −1. Next, we consider the p-th polynomial
in k, for p ∈ [2,m3], which is

kp =
∑

u∈[m2]

φp,ur̂u +
∑

v∈[m1],j∈[2,n]

φp,v,jrvbj . (26)

Note that α, b1 do not appear due to admissibility. We then observe that rvbj is
substituted and evaluated to

r′vB
′
j = −

(
ω, g1r(1)

v [2, d1], . . . , gmr(m)
v [2, d1]

)



e(1)
j A1,1 · · · e(m)

j Am,1
...

...

e(1)
j A1,` · · · e(m)

j Am,`

B̃(1)
j

B̃(2)
j

. . .

B̃(m)
j


= −

(
e(1)
j A1:ω

> + g1r(1)
v [2, d1]B̃(1)

j , . . . , e(m)
j Am:ω

> + gmr(m)
v [2, d1]B̃(m)

j

)
= −

(
g1r(1)

v B(1)
j , . . . , gmr(m)

v B(m)
j

)
(27)

This, together with our substitution of r̂u to r̂′u in Eq. (16), we have that the
substitution of kp is a vector in Z1×d′2

N of which the i-th block of length d2, for
i ∈ [m], is exactly

gi(ui) := gi

( ∑
u∈[m2]

φp,ur̂
(i)
u +

∑
v∈[m1],j∈[2,n]

φp,v,jr
(i)
v B(i)

j

)
.

For all i ∈ [m], this i-th block is evaluated to exactly 0 since
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– if i ∈ S, then we have gi = 0,
– if i 6∈ S, then the polynomials in the i-th block, gi(ui), evaluate to 0. This is

since ui is exactly the substitution result for kp via EncR(x, π(i)), and the
selective symbolic property of Γ applies here since, in this case of i, we have
Pκ(x, π(i)) = 0.

G Definition and Proof for Key-policy Augmentation

G.1 Definition

In §6, we define KP1[P ] based on the duality notion (§3.1) in a back-and-forth
manner. For concreteness and self-containment, we also describe its explicit
definition here.

Definition 12. Let P = { Pκ }κ where Pκ : Xκ × Yκ → { 0, 1 }, be a predicate
family, indexed by κ = (N, par). We define the key-policy-span-program-augmented
predicate over P as KP1[P ] =

{
P̄κ
}
κ
where P̄κ : X̄κ × Ȳκ → { 0, 1 } by letting

– X̄κ = { (A, π) | A ∈M(ZN ), π : [m]→ Xκ }.
– Ȳκ = Yκ.
– P̄κ((A, π), y) = 1 ⇐⇒ 1`1 ∈ span(A|y), where A|y := {Ai: | Pκ(π(i), y) = 1 }.

where m× ` is the size of the matrix A. ♦

G.2 Proof for Key-policy Augmentation

We describe the omitted proof of Theorem 2, deferred from §6.

Co-selective Symbolic Property. We first prove co-selective symbolic prop-
erty of Γ ′ from that of Γ . We assume w.l.o.g. that m ≥ ` (see Remark 5). We
define the following algorithms.

– EncBR′(A, π). For each i ∈ [m], run

EncBR(π(i))→
(
B(i)

1 , . . . ,B(i)
n ; r(i)

1 , . . . , r(i)
m1,i

; a, r̂(i)
1 , . . . , r̂(i)

m2,i

)
,

where B(i)
j ∈ Zd1×d2

N , r(i)
v ∈ Z1×d1

N , r̂(i)
u ∈ Z1×d2

N , and a = 1d2
1 ∈ Z1×d2

N . Also,
from admissibility we have B(i)

1 = B1 = 1d1×d2
1,1 . Let d′1 = md1 and d′2 = md2.

Any vector of length d′1 can be naturally divided into m blocks, each with
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length d1. (The same goes for d′2.) We then let

B′1 =

 A1,1B1 · · · A1,`B1
...

... 0
Am,1B1 · · · Am,`B1

 ∈ Zd
′
1×d

′
2

N , (28)

B′j =


B(1)
j

B(2)
j

. . .

B(m)
j

 ∈ Zd
′
1×d

′
2

N , (29)

r′(i)v = (0, . . . , 0,

block i
↓

r(i)
v , 0, . . . , 0) ∈ Z1×d′1

N ,

anew = 1d
′
2

1 ∈ Z1×d′2
N ,

v′ι = (0, . . . , 0,

block ι
↓

1d2
1 , 0, . . . , 0) = 1d

′
2

(ι−1)d2+1 ∈ Z1×d′2
N ,

r̂′(i)u = (0, . . . , 0,

block i
↓

r̂(i)
u , 0, . . . , 0) ∈ Z1×d′2

N , (30)

for j ∈ [2, n], i ∈ [m], v ∈ [m1,i], ι ∈ [2, `], u ∈ [m2,i]. The block number i
indicates that the specified sub-vector is at the i-th block position of the
whole vector.19 Finally, EncBR′ outputs(
B′1, . . . ,B

′
n;
(
r′(i)1 , . . . , r′(i)m1,i

)
i∈[m]

; anew,v
′
2, . . . ,v

′
`,
(
r̂′(i)1 , . . . , r̂′(i)m2,i

)
i∈[m]

)
.

– EncS′((A, π), y). First note that we have the condition P̄κ((A, π), y) = 0. Let
S = { i ∈ [m] | Pκ(π(i), y) = 1 }.
1. For each i 6∈ S, we have that Pκ(π(i), y) = 0. Hence, it is possible to run

EncS(π(i), y)→
(
s(i)

0 , . . . , s(i)
w1

; ŝ(i)
1 , . . . , ŝ(i)

w2

)
,

where s(i)
t ∈ Z1×d2

N , and ŝ(i)
z ∈ Z1×d1

N .
2. Since P̄κ((A, π), y) = 0, from Proposition 1, we can obtain a vector
ω = (ω1, . . . , ω`) ∈ Z1×`

N such that ω1 = 1 and Ai:ω
> = 0 for all i ∈ S.

We denote qi = Ai:ω
> for all i ∈ [m].

3. Let s′0 = (ω11d2
1 , . . . , ω`1

d2
1 , 0, . . . , 0) ∈ Z1×d′2

N . For t ∈ [w1], z ∈ [w2], let

s′t =
(
q1s(1)

t , . . . , qms(m)
t

)
∈ Z1×d′2

N ,

ŝ′z =
(
q1ŝ(1)

z , . . . , qmŝ(m)
z

)
∈ Z1×d′1

N . (31)

Finally, output
(
s′0, s

′
1, . . . , s

′
w1

; ŝ′1, . . . , ŝ
′
w2

)
.

19 For a d′1-length vector, the i-th block consists of position (i− 1)d1 + 1 to id1. For a
d
′
2-length vector, the i-th block consists of position (i− 1)d2 + 1 to id2.
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Remark 5. In the above, we assume w.l.o.g. that m ≥ `. In the case m < `, we
simply let d′2 = `d2 and append 0 to the right of B′j (for j ∈ [2, n]) instead of B′1.

Verifying Properties. First, we can verify that, since ω1 = 1, we have that
anew(s′0)> = 1, which is not zero, as required.

We then verify that each polynomial in k′, c evaluates to 0. For key-enc k′,
let m3,i is the size of k(i). For i ∈ [m], p ∈ [2,m3,i], the p-th polynomial in k′(i) is∑

u∈[m2,i]

φ(i)
p,ur̂

(i)
u +

∑
v∈[m1,i],j∈[2,n]

φ
(i)
p,v,jr

(i)
v bj (32)

where we recall that the coefficients are those of k(i) obtained from EncKey(π(i), N)
(for the PES Γ ). Note that α, b1 do not appear due to admissibility. We then
observe that r(i)

v bj is substituted and evaluated to

r′(i)v B′j = (0, . . . , 0,

block i
↓

r(i)
v B(i)

j , 0, . . . , 0).

This, together with Eq. (30), we have that the substitution for the term (32)
have only elements in the i-th block remained, which is∑

u∈[m2,i]

φ(i)
p,ur̂

(i)
u +

∑
v∈[m1,i],j∈[2,n]

φ
(i)
p,v,jr

(i)
v B(i)

j

but this is exactly 0 due to the co-selective symbolic property of Γ .
The remaining elements in key-enc are the first polynomials in each k′(i),

namely, k′(i)1 = Ai:v
> + r

(i)
1 b1. First, Ai:v

> is substituted and evaluated to

Ai,1anew + Ai,2v′2 + · · ·+ Ai,`v
′
` =

∑̀
j=1

Ai,j1
d
′
2

(j−1)d2+1

= (Ai,11d2
1 ,Ai,21d2

1 , . . . ,Ai,`1
d2
1 , 0, . . . , 0).

The other element, r(i)
1 b1, is substituted and evaluated to

r′(i)1 B′1 = (0, . . . , 0,

block i
↓

r(i)
1 , 0, . . . , 0)

 A1,1B1 · · · A1,`B1
...

... 0
Am,1B1 · · · Am,`B1


= −(Ai,11d2

1 ,Ai,21d2
1 , . . . ,Ai,`1

d2
1 , 0, . . . , 0),

where we use r(i)
1 B1 = −a = −1d2

1 . Hence, the whole substitution for k′(i)1 is 0.
For ct-enc c, the p-th polynomial in c is

cp =
∑
z∈[w2]

ηp,z ŝz + ηp,0,1b1s0 +
∑

t∈[w1],j∈[2,n]

ηp,t,jbjst,
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where we emphasize that b1, s0 does not appear except in monomial b1s0, due to
admissibility.

Via EncS′ (and EncBR′), this is substituted to∑
z∈[w2]

ηp,z(ŝ
′
z)
> + ηp,0,1B′1(s′0)> +

∑
t∈[w1],j∈[2,n]

ηp,t,jB
′
j(s
′
t)
>. (33)

We examine each term. First, we have

B′1(s′0)> =

 A1,1B1 · · · A1,`B1
...

... 0
Am,1B1 · · · Am,`B1



ω1(1d2

1 )>
...

ω`(1
d2
1 )>
0

 =

 q1(1d1
1 )>
...

qm(1d1
1 )>

 (34)

and for j ∈ [2, n], t ∈ [w1] we have

B′j(s
′
t)
> =


B(1)
j

. . .

B(m)
j


 q1(s(1)

t )>
...

qm(s(m)
t )>

 =


q1B(1)

j (s(1)
t )>

...

qmB(m)
j (s(m)

t )>

 .

Hence, we have that the term (33) evaluates to

 q1(u1)>
...

qm(um)>

 :=
∑
z∈[w2]

ηp,z

 q1(ŝ(1)
z )>
...

qm(ŝ(m)
z )>

+

 q1(1d1
1 )>
...

qm(1d1
1 )>



+
∑
t∈[w1]
j∈[2,n]

ηp,t,j


q1B(1)

j (s(1)
t )>

...

qmB(m)
j (s(m)

t )>

 . (35)

Eq. (35) is a vector in Zd
′
1×1
N . This can be divided to m blocks each of length d1.

For all i ∈ [m], the i-th block is evaluated to exactly 0 since

– if i ∈ S, then we have qi = 0,
– if i 6∈ S, then the polynomials in the i-th block, qi(ui)

>, evaluate to 0. This
is since (ui)

> is exactly the substitution result for cp via EncS(π(i), y), and
the co-selective symbolic property of Γ applies here since, in this case of i,
we have Pκ(π(i), y) = 0.

Selective Symbolic Property. We prove selective symbolic property of Γ ′
from that of Γ . We define the following algorithms.

– EncBS′(y) = EncBS(y).
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– EncR′((A, π), y). First note that we have the condition P̄κ((A, π), y) = 0. Let
S = { i ∈ [m] | Pκ(π(i), y) = 1 }.
1. From the condition P̄κ((A, π), y) = 0 and from Proposition 1, we can

obtain a vector ω = (ω1, . . . , ω`) ∈ Z1×`
N such that ω1 = 1 and Ai:ω

> = 0
for all i ∈ S. Denote qi = Ai:ω

>.
2. For each i 6∈ S, we have that Pκ(π(i), y) = 0. Hence, it is possible to run

EncR(π(i), y)→
(
r(i)

1 , . . . , r(i)
m1,i

; a, r̂(i)
1 , . . . , r̂(i)

m2,i

)
.

where r(i)
v ∈ Z1×d1

N , r̂(i)
u ∈ Z1×d2

N , and a = 1d2
1 ∈ Z1×d2

N .
3. For i ∈ [m], v ∈ [m1,i], ι ∈ [2, `], u ∈ [m2,i], let

r′(i)v = qi r(i)
v ∈ Z1×d′1

N ,

anew = ω11d
′
2

1 = (1, 0, . . . , 0) ∈ Z1×d′2
N ,

v′ι = ωι1
d
′
2

1 = (ωι,0, . . . , 0) ∈ Z1×d′2
N ,

r̂′(i)u = qi r̂(i)
u ∈ Z1×d′2

N .

4. Output
((

r′(i)1 , . . . , r′(i)m1,i

)
i∈[m]

; anew,v
′
2, . . . ,v

′
`,
(
r̂′(i)1 , . . . , r̂′(i)m2,i

)
i∈[m]

)
.

Verifying Properties. First we can verify that anews>0 = 1d2
1 (1d2

1 )> = 1 6= 0,
as required. Next, since we define EncBS′(y) = EncBS(y), the substitution for
ct-enc is trivially evaluated to 0, due to the selective symbolic property of Γ .

It remains to consider the substitution for key-enc k′. For i ∈ [m], consider the
p-th polynomial k(i)

p where p ∈ [2,m3,i]. Let ui ∈ Z1×d2
N denote the substitution

result for k(i)
p (as a part of k(i)) via EncR(π(i), y) (and EncBS(y)). By our

constructions of r′(i)v and r̂′(i)u , it is straightforward to see that the substitution
for k′(i)p (as a part of k′(i)) via EncR′((A, π), y) (and EncBS′(y)) is indeed qiui.
We can see that qiui = 0 since if i ∈ S then qi = 0, while if i 6∈ S, we have ui = 0
due to the selective symbolic property of Γ .

Finally, the remaining terms consist of k′(i)1 = Ai:v
> + r

(i)
1 b1, for i ∈ [m].

This is substituted and evaluated to 0 as

Ai,1anew + Ai,2v′2 + · · ·+ Ai,`v
′
` + r′(i)1 B′1 = qi1

d2
1 + qir

(i)
1 B1 = 0.

H Proofs for Direct Sum

In this section, we provide the proofs omitted from §7. We start with the following
lemma.

Lemma 2 (restated). KP[P] can be embedded into KP1[CP1OR[DS[P]]].
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Proof. We first explicitly describe the deduced definition of predicate family
CP1OR[DS[P]]: it is specified by P̄κ : Xκ × 2Yκ → { 0, 1 } where

P̄κ
(
(i, x), Y

)
= 1 ⇐⇒ ∃(i, y) ∈ Y s.t. P (i)

κi
(x, y) = 1.

Now, from the definition of KP1 over one predicate family CP1OR[DS[P]] (using
Definition 12), we have that KP1[CP1OR[DS[P]]] renders to exactly the same
as the definition of KP[P] (Definition 6). (Put in other words, the embedding
functions from the latter to the former can defined as the identity functions. )

H.1 Proof for Parameter Concatenation Scheme

Lemma 3 (restated). Suppose that, for all j ∈ [k], the PES Γ (j) for predicate
family P (j) satisfies (d1, d2)-Sym-Prop++. Then, the PES Concat-Trans(Γ) for
predicate family DS[P], where P = {P (1), . . . , P (k)}, satisfies (d1, d2)-Sym-Prop+.

Proof (sketch). We prove selective symbolic property by defining substitution
algorithms as follows.

– EncB′(j, y).
• Run EncB(j)(y) to obtain B(j)

1 , . . . ,B(j)
nj

.

• For j′ ∈ [k] {j}, run EncB(j′)(⊥) to obtain B(j′)
1 , . . . ,B(j′)

n
j
′ .

– EncS′(j, y). Simply run EncS(j)(y).
– EncR′((i, x), (j, y)). Since P̄κ

(
(i, x), (j, y)

)
= 0, we have two cases:

• Case i = j and P (j)
κj

(x, y) = 0. Output EncR(j)(x, y).

• Case i 6= j. Output EncR(i)(x,⊥), which is possible to run for all x ∈ X
(i)
κ .

It is then straightforward to see that the two properties follow from those of
Sym-Prop++ of Γ (j) for all j ∈ [k].

Co-selective symbolic property can be proved as follows.

– EncB′(i, x).
• Run EncB(i)(x) to obtain B(i)

1 , . . . ,B(i)
ni
.

• For i′ ∈ [k] {i}, simply set B(i′)
1 , . . . ,B(i′)

n
i
′ to 0.

– EncR′(i, x). Simply run EncR(i)(x).
– EncS′((i, x), (j, y)). Since P̄κ

(
(i, x), (j, y)

)
= 0, we have two cases:

• Case j = i and P (i)
κi

(x, y) = 0. Output EncS(i)(x, y).
• Case j 6= i. Output zero vectors for all elements except s0, which is set

so that as>0 6= 0.

The property (P1) holds due to our setting of s>0 . The property (P2) also holds
from the Sym-Prop of Γ (i) in key-enc and the above former case of ct-enc. For the
latter case of ct-enc, the only non-zero vector s0 will appear only as a product
B(j)
ι s>0 which is 0, since B(j)

ι for j 6= i was set to 0.
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Lemma 6. Suppose that Γ for P satisfies (d1, d2)-Sym-Prop. Then, Plus-Trans(Γ )
for P satisfies (d1, d2)-Sym-Prop++.

Proof. Sym-Prop+ follows from Proposition 3. We prove property (P7) as follows.

– EncB(⊥). Set all Bj to 0. Set F = 1d1×d2
1,1 ∈ Zd1×d2

N . Output (B1, . . . ,Bn,F).
– EncR(x,⊥). Let rnew = −1d1

1 , and all the remaining vectors be 0.

In key-enc, α + rnewf is substituted and evaluated to a + rnewF = 1d2
1 −

1d1
1 1d1×d2

1,1 = 0. As the other remaining terms are all 0, this concludes the
proof.

H.2 Proof for Parameter Reuse Scheme

Lemma 4 (restated). Suppose that, for all j ∈ [k], the PES Γ (j) for predi-
cate family P (j) satisfies (d1, d2)-Sym-Prop+. Then, the PES Reuse-Trans(Γ) for
predicate family DS[P], where P = {P (1), . . . , P (k)}, satisfies (d1, d2)-Sym-Prop+.

Proof. We first prove selective symbolic property by defining substitution algo-
rithms as follows.

– EncB′(j, y). Run EncB(j)(y) to obtain B1, . . . ,Bnj
. Set Gj = −1d1×d2

1,1 . Set
G1, . . . ,Gj−1,Gj+1, . . . ,Gk to 0. Set H1, . . . ,Hk to 1d1×d2

1,1 . The remaining,
Bnj+1, . . . ,Bn, can be set arbitrarily.

– EncS′(j, y). Run EncS(j)(y) to obtain s0, . . . , sw1
, ŝ1, . . . , ŝw2

. Let snew =
(s0[1])1d2

1 .
– EncR′((i, x), (j, y)). Set anew = 1d2

1 , rnew = −1d1
1 . Since P̄κ

(
(i, x), (j, y)

)
= 0,

we have two cases:
• Case I: i = j and P (j)

κj
(x, y) = 0. Run EncR(j)(x, y) to obtain all the

vectors rv, r̂u.
• Case II: i 6= j. Set all the vectors rv, r̂u to 0.

We verify the selective symbolic property as follows. First, we have anews>new =
(s0[1])1d2

1 (1d2
1 )> = as>0 6= 0 due to Sym-Prop (P1) of Γ (j).

For ct-enc, we have that all polynomials in c are substituted and evaluated to
0 thanks to Sym-Prop (P2) of Γ (j). The polynomial gjs0 + hjsnew is substituted
and evaluated to

Gjs
>
0 + Hjs

>
new = −1d1×d2

1,1 s>0 + 1d1×d2
1,1 (s0[1])(1d2

1 )> =
(
−s0[1] + s0[1]

0

)
= 0.

(36)

For key-enc, the polynomial αnew + rnewhi is substituted and evaluated to
anew + rnewHi = 1d2

1 − 1d1
1 1d1×d2

1,1 = 0. For the polynomials in k̃, consider the
above two cases.
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– Case I (i = j). Since rnewGj = (−1d1
1 )(−1d1×d2

1,1 ) = a, the substitution for k̃
becomes exactly the same as that of k via EncR(j), where the polynomials
are substituted and evaluated to 0 thanks to Sym-Prop (P2) of Γ (j).

– Case II (i 6= j). These polynomials are linear combinations rnewgi, rvbι,
r̂u, which are substituted to rnewGi, rvBι, r̂u, respectively, which are all
evaluated to 0, since Gi = 0, rv = 0, r̂u = 0.

Next, Turning to prove co-selective symbolic property, we define the following.

– EncB′(i, x). Run EncB(i)(x) to obtain B1, . . . ,Bni
. Set Gi = −1d1×d2

1,1 . Set
Hi = 1d1×d2

1,1 . Set H1, . . . ,Hi−1,Hi+1 . . . ,Hk to 0. The remaining matrices,
G1, . . . ,Gj−1,Gj+1, . . . ,Gk and Bni+1, . . . ,Bn, can be set arbitrarily.

– EncR′(i, x). Run EncR(i)(x) to obtain all the vectors rv, r̂u. Set anew = 1d2
1 ,

and rnew = −1d1
1 .

– EncS′((i, x), (j, y)). Since P̄κ
(
(i, x), (j, y)

)
= 0, we have two cases:

• Case I: j = i and P (i)
κi

(x, y) = 0. Run EncS(i)(x, y) to obtain s0, . . . , sw1
,

ŝ1, . . . , ŝw2
. Let snew = (s0[1])1d2

1 .

• Case II: j 6= i. Let snew = 1d2
1 , and set all the other vectors, st, ŝz, to 0.

We verify the co-selective symbolic property as follows. First, it is straightforward
to see that anews>new 6= 0 for both cases of snew.

For key-enc, the polynomial αnew + rnewhi is substituted and evaluated to
anew + rnewHi = 1d2

1 − 1d1
1 1d1×d2

1,1 = 0. The polynomials in k̃ are substituted
and evaluated to 0 thanks to Sym-Prop (P2) of Γ (i) and the fact that rnewGi =
(−1d1

1 )(−1d1×d2
1,1 ) = 1d2

1 = a.
For ct-enc, consider the above two cases.

– Case I (j = i). The polynomials in c are are substituted and evaluated to 0
thanks to Sym-Prop (P2) of Γ (i). The polynomial gjs0 +hjsnew is substituted
and evaluated to 0, exactly as in Eq.(36).

– Case II (j 6= i). The polynomials in c are linear combinations of bιst and
ŝz, which are substituted to Bιs

>
t and ŝ>z , respectively, all of which are

all evaluated to 0, since st = 0, ŝz = 0. The polynomial gjs0 + hjsnew is
substituted and evaluated to

Gjs
>
0 + Hjs

>
new = Gj0 + 0(1d2

1 )> = 0.

This concludes the proof.

I Proof for Predicative Automata

This section provides the symbolic security proof for Construction 6.
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I.1 Properties for Predicative DFA

We first state useful propositions for general properties of predicative DFA.
Notably, Proposition 4 below provides a necessary combinatorial condition for
(M,Y ) when a predicative DFA machine M does not accept an input Y . These
properties are general and are not specific to our scheme. They will be used to
define the “mask” vectors in the proof.
Notation and Some Properties. We generalize some notations and properties
for DFA given in [41,7,2] to predicative automata. Fixing a predicative automata
M = (Q,T, q0, qσ−1) over predicate Pκ, with Q = {q0, . . . , qσ−1} and T ={

(qυt , qωt , xt)
}
t∈[m], and fixing an input Y = (y1, . . . , y`) ∈ (Yκ)∗, we define

some notations as follows. For i ∈ [0, `], let Yi := (yi+1, . . . , y`), that is, the vector
formed by the last ` − i elements of Y . Thus, Y0 = Y and Y` is empty. For
k ∈ [0, σ − 1], let Mk be the same predicative automata as M except that the
start state is set to qk. For k ∈ [0, σ − 1], we define

Vk := { i ∈ [0, `] |Mk accepts Yi } .

We also let V +1
k := { i+ 1 | i ∈ Vk }. Hence, V +1

k ⊆ [1, ` + 1]. Conversely, for
i ∈ [0, `], we define

Ui := { k ∈ [0, σ − 1] |Mk accepts Yi } .

Proposition 4. For any M,Y , we have the following.

1. ` 6∈ Vk for all k ∈ [0, σ − 2].
2. Vσ−1 = {`} and U` = {σ − 1}.

Proof. First, for k ∈ [0, σ − 2], Mk starts with a non-accept state (since we have
only one accept state, qσ−1). Hence, Vk for such k does not accept an empty
string Y`; therefore, ` 6∈ Vk. Next, since Mσ−1 starts with the accept state, which
has no outgoing transition, it always accepts only an empty string Y`, hence we
have Vσ−1 = {`} and U` = {σ − 1}.

Proposition 5. Suppose that M does not accept Y . Then, we have the following.

1. 0 6∈ V0 and 0 6∈ U0.
2. For t ∈ [1,m], i ∈ [1, `], we have

i ∈ (V +1
υt

Vωt) ∪ (Vωt V +1
υt

) =⇒ Pκ(xt, yi) = 0, (37)

which is also equivalent to the following:

Pκ(xt, yi) = 1 =⇒ (υt ∈ Ui−1 ∧ ωt ∈ Ui) ∨ (υt 6∈ Ui−1 ∧ ωt 6∈ Ui). (38)

Proof. Suppose that M does not accept Y . First, since M0 = M does not accept
Y0 = Y , we have 0 6∈ V0 and 0 6∈ U0.

For Statement (37), we have two cases:
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– Case i ∈ (V +1
υt

Vωt). That is, i − 1 ∈ Vυt but i 6∈ Vωt . First, i − 1 ∈ Vυt
implies that Mυt

accepts Yi−1 = (yi, . . . , y`). Suppose Pκ(xt, yi) = 1. Due to
the determinism of M , the transition (υt, ωt, xt) ∈ T implies that Mωt

would
accept (yi+1, . . . , y`) = Yi. Thus, i ∈ Vωt , a contradiction. Hence, it must be
that Pκ(xt, yi) = 0. Note that without determinism, it might not hold that
Mωt

accepts Yi (when assuming Pκ(xt, yi) = 1). This is since there might
be another transition (υt′ , ωt′ , xt′) ∈ T with υt′ = υt and Pκ(xt′ , yi) = 1 but
ωt′ 6= ωt, and we might have Mω

t
′ accepts Yi instead.

– Case i ∈ (Vωt V +1
υt

). That is, i ∈ Vωt but i− 1 6∈ Vυt . First, i ∈ Vωt implies
that Mωt

accepts Yi = (yi+1, . . . , y`). Suppose Pκ(xt, yi) = 1. The transition
(υt, ωt, xt) ∈ T implies that Mυt

would accept (yi, yi+1, . . . , y`) = Yi−1. Thus,
i− 1 ∈ Vυt , a contradiction. Hence, it must be that Pκ(xt, yi) = 0.

Statement (38) is merely the contrapositive of Statement (37). Note that
i 6∈ (V +1

υt
Vωt)∪ (Vωt V +1

υt
) implies the remaining two cases: i−1 ∈ Vυt ∧ i ∈ Vωt ,

or i− 1 6∈ Vυt ∧ i 6∈ Vωt . That is, υt ∈ Ui−1 ∧ ωt ∈ Ui or υt 6∈ Ui−1 ∧ ωt 6∈ Ui.

I.2 Summary for Polynomials/Variables in Our Construction

We list polynomials and variables of Construction 6, for referring in the proof.

– A ciphertext encoding c′ = c′(s′, ŝ′,b′) is

c′ =
(
c′0, c

′
1, . . . , c

′
`, ( c(1,i), c(2,i) )i∈[`]

)
,

in variable b′ and

s′ :=
(
s(`)

new, s
(0)
new, . . . , s

(`−1)
new ,

(
s(1,i), s(2,i) )

i∈[`]

)
,

ŝ′ :=
(
ŝ(1,i), ŝ(2,i) )

i∈[`].

Note that c(1,i) = c(i)(s(1,i), ŝ(1,i),b1) contains variables b1 and

s(1,i) = (s(1,i)
0 , . . . , s(1,i)

w1,i
), ŝ(1,i) = (ŝ(1,i)

1 , . . . , ŝ(1,i)
w2,i

).

Also, c(2,i) = c(i)(s(2,i), ŝ(2,i),b2) contains variables b2 and

s(2,i) = (s(2,i)
0 , . . . , s(2,i)

w1,i
) ŝ(2,i) = (ŝ(2,i)

1 , . . . , ŝ(2,i)
w2,i

).

Note that the two sets of variables are related via Eq.(18).
– A key encoding k′ = k′(r′, r̂′,b′) is

k′ =
(
k̃0,
(
k̃1,t, k̃2,t,k

′(1,t),k′(2,t),
)
t∈[m]

)
,

in variable b′ and

r′ :=
(
r(0)

new, . . . , r
(m)
new,

(
r(1,t), r(2,t) )

t∈[m]

)
,

r̂′ :=
(
uσ−1, u0, u1, . . . , uσ−2,

(
r̂′(1,t), r̂′(2,t) )

t∈[m]

)
,
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where k′(1,t) contains variables

r(1,t) = (r(1,t)
1 , . . . , r(1,t)

m1,t
) r̂′(1,t) := (r̂(1,t)

1 , . . . , r̂(1,t)
m2,t

),

and k′(2,t) contains variables

r(2,t) = (r(2,t)
1 , . . . , r(2,t)

m1,t
) r̂′(2,t) := (r̂(2,t)

1 , . . . , r̂(2,t)
m2,t

),

Note that, here we newly define r̂′(1,t) to be exactly r̂(1,t) but without α(1,t).
The same goes for the second set.

I.3 Proof for Our Predicative DFA Scheme

Disclaimer. We opted to write matrices/vectors in their full expanded forms
for better visualization. This somewhat generates seemingly a longer proof than
it should be. The mechanism inside is actually fairly simple and directly reflects
the combinatorial properties of the non-acceptance conditions for predicate DFA.
Moreover, since verification of symbolic properties involves only doing simple
linear algebra (namely, matrix multiplications), the proof below is actually fairly
easy to verify.

Selective Symbolic Property. We first prove selective symbolic property of
Γ ′ from that of Γ . We will use Sym-Prop++ (cf. Definition 8), where we consider
a fixed dummy attribute y0 = ⊥, where Pκ(x, y0) = 0 for any x. We define the
following algorithms.

– EncBS′(Y ). Parse Y = (y1, . . . , y`). Proceed as follows.
1. For each i ∈ [`]+, run

EncB(yi)→
(
B(i)

1 , . . . ,B(i)
n ;

)
,

and for each i ∈ [`], run

EncS(yi)→
(
s(i)

0 , . . . , s(i)
w1,i

; ŝ(i)
1 , . . . , ŝ(i)

w2,i

)
,

where B(i)
j ∈ Zd1×d2

N , s(i)
τ ∈ Z1×d2

N , ŝ(i)
z ∈ Z1×d1

N . Let d′1 = (`+ 1)d1 and
d′2 = (`+ 1)d2. Note that EncB(y0 = ⊥) is available due to Sym-Prop++.

2. For j ∈ [n], let B1,j = 0 and

B2,j =


B(0)
j

B(1)
j

. . .

B(`)
j

 ∈ Zd
′
1×d

′
2

N .
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3. Let G1 = 0 and

H1 =

0 1 `−1 `



1 a

02 a
. . .

` a

0

, H0 =

0 1 `



1

0

a
2 a

. . .
` a

0

,

and let

H2 = −

0 1 `



1

0

a
2 a

. . .
` a
`+1

0

a
`+2 a

. . .
2` a
2`+1 a
2`+2 a
2`+3 a

. . .
3`+1 a

0

, G2 =

0 1 `



1

02
...

`

`+1

0

a
`+2 a

. . .
2` a
2`+1 a
2`+2 a
2`+3 a

. . .
3`+1 a

0

∈ Zd
′
1×d

′
2

N , and recall that a = 1d2
1 .

4. For i ∈ [`]+, let

s(i)
new = (0, . . . , 0,

block i
↓

1d2
1 , 0, . . . , 0) = 1d

′
2
id2+1 ∈ Z1×d′2

N ,

where the vector of length d′2 = (`+ 1)d2 is divided to (`+ 1) blocks of
length d2, starting from block 0 to block `.20 Blocks in d′1-length vectors
are defined similarly.

5. For i ∈ [`], compute ρi = 1/
(
s(i)

0 [1]
)
, which is computable since s(i)

0 [1] =
a(s(i)

0 )> 6= 0 (from the symbolic property of Γ ).
20 Hence, here, block i contains elements of position id2 + 1 to (i+ 1)d2.



55

6. For i ∈ [`], τ ∈ [w1,i]
+, z ∈ [w2,i], let

s(2,i)
τ = (0, . . . , 0,

block i
↓

ρis
(i)
τ , 0, . . . , 0) ∈ Z1×d′2

N ,

ŝ(2,i)
z = (0, . . . , 0,

block i
↓

ρiŝ
(i)
z , 0, . . . , 0) ∈ Z1×d′1

N ,

and ŝ(1,i)
z = 0, while s(1,i)

τ is defined arbitrarily with only the constraint
being Eq.(18).

7. Finally, output

B′ =
(
B1,1, . . . ,B1,n,B2,1, . . . ,B2,n,H0,G1,H1,G2,H2

)
,

S′ =
(

s(`)
new, s

(0)
new, . . . , s

(`−1)
new ,

(
s(1,i)

0 , . . . , s(1,i)
w1,i

, s(2,i)
0 , . . . , s(2,i)

w1,i

)
i∈[`]

)
,

Ŝ′ =
(
ŝ(1,i)

1 , . . . , ŝ(1,i)
w2,i

, ŝ(2,i)
1 , . . . , ŝ(2,i)

w2,i

)
i∈[`]

which define substitutions b′ : B′, s′ : S′, and ŝ′ : Ŝ′.
– EncR′(M,Y ). First note that we have the condition P̄κ(M,Y ) = 0.

1. Parse M = (Q = {q0, . . . , qσ−1},T =
{

(qυt , qωt , xt)
}
t∈[m] , q0, qσ−1).

Parse Y = (y1, . . . , y`).
2. For t ∈ [m], i ∈ [`]+ such that Pκ(xt, yi) = 0, it is possible to run21

EncR(xt, yi)→
(
r〈t,i〉1 , . . . , r〈t,i〉m1,t

; a, r̂〈t,i〉1 , . . . , r̂〈t,i〉m2,t

)
.

where r〈t,i〉v ∈ Z1×d1
N , r̂〈t,i〉µ ∈ Z1×d2

N , and a = 1d2
1 ∈ Z1×d2

N . Note that, for
i = 0 we have y0 = ⊥, and EncR(xt,⊥) is available due to Sym-Prop++.

3. For t ∈ [m], i ∈ [`]+, let22

ρ〈t,i〉 :=


−1 if i ∈ V +1

υt
Vωt

1 if i ∈ Vωt V +1
υt

0 otherwise
. (39)

4. Let r(1,t)
v = 0, r̂(1,t)

µ = 0, and

r(2,t)
v = (ρ〈t,0〉r〈t,0〉v , . . . , ρ〈t,`〉r〈t,`〉v ) ∈ Z1×d′1

N , (40)

r̂(2,t)
µ = (ρ〈t,0〉r̂〈t,0〉µ , . . . , ρ〈t,`〉r̂〈t,`〉µ ) ∈ Z1×d′2

N , (41)

for v ∈ [m1,t], µ ∈ [m2,t].
21 Note that 〈t, i〉 denotes a tuple of t and i, and is used for superscript here.
22 Intuitively, (ρ〈t,0〉, . . . , ρ〈t,`〉) plays the role of the “mask” vector, as motivated at the

end of §2: it encodes exactly the non-acceptance condition of DFAM (Proposition 5).
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5. For t ∈ [m], let

r(t)
new =

 ∑
i∈V +1

υt

1d
′
1
i

−
 ∑
i∈V +1

υt
Vωt

1d
′
1
`+i

+

 ∑
i∈Vωt V

+1
υt

1d
′
1

2`+1+i

 ∈ Z1×d′1
N .

(42)

Note that since ` 6∈ Vk for any k ∈ [0, σ − 2] (cf. Proposition 4) and
υt ∈ [0, σ − 2] (since it is a “from” state of a transition, and the accept
state qσ−1 has no outgoing transition), we have Vυt ⊆ [0, `− 1], that is,
V +1
υt
⊆ [1, `]. Therefore, the above definition of r(t)

new is well-defined.23

Moreover, we have V +1
υt

Vωt ⊆ [1, `] but Vωt V +1
υt
⊆ [0, `]. Hence, the

index in all the three sums (in r(t)
new) are [1, `], [`+1, 2`], and [2`+1, 3`+1],

which are disjointed.
6. Let

r(0)
new =

∑
i∈V0

1d
′
1
i ∈ Z1×d′1

N .

Note that since 0 6∈ V0 (due to Proposition 5), this is well-defined.
7. For k ∈ [0, σ − 1], let uk = (uk,0, . . . ,uk,`) ∈ Z1×d′2

N , where for i ∈ [`]+
each block uk,i is of length d2 and

uk,i :=
{
−a if i ∈ Vk
0 if i 6∈ Vk

.

That is, uk = −
(∑

i∈Vk 1d
′
2
id2+1

)
.

8. Finally, output

R′ =
(

r(0)
new, . . . , r

(m)
new,

(
r(1,t)

1 , . . . , r(1,t)
m1,t

, r(2,t)
1 , . . . , r(2,t)

m1,t

)
t∈[m]

)
,

R̂′ =
(

uσ−1,u0, . . . ,uσ−2,
(
r̂(1,t)

1 , . . . , r̂(1,t)
m2,t

, r̂(2,t)
1 , . . . , r̂(2,t)

m2,t

)
t∈[m]

)
which define substitutions r′ : R′ and r̂′ : R′.

Verifying Properties. Since Vσ−1 = {`} (cf. Proposition 4), we have uσ−1 =
−1d

′
2
`d2+1. We can thus verify that,

uσ−1(s(`)
new)> = −1d

′
2
`d2+1(1d

′
2
`d2+1)> = −1

which is not zero, as required.
For ct-enc, we have the following polynomials.

23 In particular, there is no such 1d
′
1

0 , which is undefined.
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– The polynomial c′0 = h0s
(0)
new is substituted and evaluated to

H0s(0)
new =

0 1 `



1

0

a
2 a

. . .
` a

0

(1d
′
2

1 )> = 0.

– For i ∈ [`], the polynomial c′i = h1s
(i−1)
new + g1s

′(i−1)
0 + h2s

(i)
new + g2s

′(i)
0 is

substituted and evaluated as follows. For the first term, h1s
(i−1)
new , it is

H1(s(i−1)
new )> =

0 1 `−1 `



1 a

02 a
. . .

` a

0

(0, . . . , 0,

block i−1
↓

1d2
1 , 0, . . . , 0)> = (1d

′
1
i )>.

The second term, g1s
′(i−1)
0 , is substituted and evaluated to 0, since G1 = 0.

The third term, h2s
(i)
new, is substituted and evaluated to

H2(s(i)
new)> = −

0 1 `



1

0

a
2 a

. . .
` a
`+1

0

a
`+2 a

. . .
2` a
2`+1 a
2`+2 a
2`+3 a

. . .
3`+1 a

0

(0, . . . , 0,

block i
↓

1d2
1 , 0, . . . , 0)>

= −(1d
′
1
i )> − (1d

′
1
`+i)

> − (1d
′
1

2`+1+i)
>.
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The fourth term, g2s
′(i)
0 , is substituted and evaluated to

G2(s′(i)0 )> =

0 1 `



1

02
...

`

`+1

0

a
`+2 a

. . .
2` a
2`+1 a
2`+2 a
2`+3 a

. . .
3`+1 a

0

(0, . . . , 0,

block i
↓

ρis
(i)
0 , 0, . . . , 0)>

= (1d
′
1
`+i)

> + (1d
′
1

2`+1+i)
>,

where we use that fact that ρia(s(i)
0 )> = 1. Combining all the four terms, we

have (1d
′
1
i )> − (1d

′
1
i )> − (1d

′
1
`+i)

> − (1d
′
1

2`+1+i)
> + (1d

′
1
`+i)

> + (1d
′
1

2`+1+i)
> = 0.

– For i ∈ [`], p ∈ [w3,i], the p-th polynomial in c(1,i) is∑
z∈[w2,i]

η(i)
p,z ŝ

(1,i)
z +

∑
τ∈[w1,i]

+
,j∈[n]

η
(i)
p,t,jb1,js

(1,i)
τ ,

where we recall that the coefficients are those of c(i) obtained from EncCt(yi, N).
We also note that w3,i is the size of c(i). Via EncBS′, it is substituted to∑

z∈[w2,i]

η(i)
p,z(ŝ

(1,i)
z )> +

∑
τ∈[w1,i]

+
,j∈[n]

η
(i)
p,t,jB1,j(s

(1,i)
τ )>

which is evaluated to 0 since ŝ(1,i)
z = 0 and B1,j = 0.

– For i ∈ [`], p ∈ [w3,i], the p-th polynomial in c(2,i) is∑
z∈[w2,i]

η(i)
p,z ŝ

(2,i)
z +

∑
τ∈[w1,i]

+
,j∈[n]

η
(i)
p,t,jb2,js

(2,i)
τ .

Via EncBS′, it is substituted∑
z∈[w2,i]

η(i)
p,z(ŝ

(2,i)
z )> +

∑
τ∈[w1,i]

+
,j∈[n]

η
(i)
p,t,jB2,j(s

(2,i)
τ )>
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which is evaluated to

∑
z∈[w2,i]

η(i)
p,z (0, . . . , 0,

block i
↓

ρiŝ
(i)
z , 0, . . . , 0)>+

∑
τ∈[w1,i]

+
,j∈[n]

η
(i)
p,t,j(0, . . . , 0,

block i
↓

ρi(B
(i)
j (s(i)

τ )>)> ,0, . . . , 0)>

which, in turn, is exactly 0, since the sum at the block i is 0 due to the
selective symbolic property of Γ . Note also that, in the above, we use

B2,j(s
(2,i)
τ )> =


B(0)
j

B(1)
j

. . .

B(`)
j

 (0, . . . , 0,

block i
↓

ρis
(i)
τ , 0, . . . , 0)>

= (0, . . . , 0,

block i
↓

ρi(B
(i)
j (s(i)

τ )>)> , 0, . . . , 0)>.
For key-enc, we have the following polynomials.

– The polynomial k̃0 = −u0 + r(0)
newh0 is substituted and evaluated to

−u0 + r(0)
newH0 = −

∑
i∈V0

1d
′
2
id2+1

+

∑
i∈V0

1d
′
1
i


0 1 `



1

0

a
2 a

. . .
` a

0

= 0.

– For t ∈ [m], the polynomial k̃1,t = uυt + r(t)
newh1 is substituted and evaluated

as follows. The last term, r(t)
newh1, is substituted to r(t)

newH1 =

 ∑
i∈V +1

υt

1d
′
1
i −

∑
i∈V +1

υt
Vωt

1d
′
1
`+i +

∑
i∈Vωt V

+1
υt

1d
′
1

2`+1+i


0 1 `−1 `



1 a

02 a
. . .

` a

0

=
∑
i∈V +1

υt

1d
′
2

(i−1)d2+1 =
∑
i∈Vυt

1d
′
2
id2+1.
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Now, since uυt = −
(∑

i∈Vυt
1d
′
2
id2+1

)
, we have that uυt + r(t)

newH1 = 0.

– For t ∈ [m], the polynomial k̃2,t = −uωt +r(t)
newh2 is substituted and evaluated

as follows. The last term, r(t)
newh2, is substituted to r(t)

newH2 =

−

 ∑
i∈V +1

υt

1d
′
1
i −

∑
i∈V +1

υt
Vωt

1d
′
1
`+i +

∑
i∈Vωt V

+1
υt

1d
′
1

2`+1+i



0 1 `



1

0

a
2 a

. . .
` a
`+1

0

a
`+2 a

. . .
2` a
2`+1 a
2`+2 a
2`+3 a

. . .
3`+1 a

0

= −

∑
i∈Vωt

1d
′
2
id2+1

 .

Now, since uωt = −
(∑

i∈Vωt
1d
′
2
id2+1

)
, we have that −uωt + r(t)

newH2 = 0.

– For t ∈ [m], p ∈ [m3,t], the p-th polynomial in k′(1,t) is

φ(t)
p r(t)

newg1 +
∑

µ∈[m2,t]

φ(t)
p,µr̂

(1,t)
µ +

∑
v∈[m1,t],j∈[n]

φ
(t)
p,v,jr

(1,t)
v b1,j ,

where we recall that the coefficients are those of k(t) obtained from EncKey(xt, N)
(for the PES Γ ), and we replace α(1,t) with r(t)

newg1. Also note that m3,t is the
size of k(t). Via EncBS′ and EncR′, it is substituted to

φ(t)
p r(t)

newG1 +
∑

µ∈[m2,t]

φ(t)
p,µr̂(1,t)

µ +
∑

v∈[m1,t],j∈[n]

φ
(t)
p,v,jr

(1,t)
v B1,j

but this evaluates to 0, since G1 = 0, r̂(1,t)
µ = 0, B1,j = 0.

– For t ∈ [m], p ∈ [m3,t], the p-th polynomial in k′(2,t) is

φ(t)
p r(t)

newg2 +
∑

µ∈[m2,t]

φ(t)
p,µr̂

(2,t)
µ +

∑
v∈[m1,t],j∈[n]

φ
(t)
p,v,jr

(2,t)
v b2,j .
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In the first term, r(t)
newg2, evaluates to r(t)

newG2 =

 ∑
i∈V +1

υt

1d
′
1
i −

∑
i∈V +1

υt
Vωt

1d
′
1
`+i +

∑
i∈Vωt V

+1
υt

1d
′
1

2`+1+i



0 1 `



1

02
...

`

`+1

0

a
`+2 a

. . .
2` a
2`+1 a
2`+2 a
2`+3 a

. . .
3`+1 a

0

= (ρ〈t,0〉a, . . . , ρ〈t,`〉a).

where we recall the definition of ρ〈t,i〉 from Eq. (39). Therefore, via EncBS′
and EncR′, the considering polynomial is substituted and evaluated to

φ(t)
p r(t)

newG2 +
∑

µ∈[m2,t]

φ(t)
p,µr̂(2,t)

µ +
∑

v∈[m1,t],j∈[n]

φ
(t)
p,v,jr

(2,t)
v B2,j

= φ(t)
p (ρ〈t,0〉a, . . . , ρ〈t,`〉a) +

∑
µ∈[m2,t]

φ(t)
p,µ(ρ〈t,0〉r̂〈t,0〉µ , . . . , ρ〈t,`〉r̂〈t,`〉µ )

+
∑

v∈[m1,t],j∈[n]

φ
(t)
p,v,j(ρ

〈t,0〉r〈t,0〉v B(0)
j , . . . , ρ〈t,`〉r〈t,`〉v B(`)

j ) (43)

=
(
ρ〈t,0〉

(
φ(t)
p a +

∑
µ∈[m2,t]

φ(t)
p,µr̂〈t,0〉µ +

∑
v∈[m1,t],j∈[n]

φ
(t)
p,v,jr

〈t,0〉
v B(0)

j

)
, . . . ,

ρ〈t,`〉
(
φ(t)
p a +

∑
µ∈[m2,t]

φ(t)
p,µr̂〈t,`〉µ +

∑
v∈[m1,t],j∈[n]

φ
(t)
p,v,jr

〈t,`〉
v B(`)

j

))
(44)
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where Eq. (43) holds since

r(2,t)
v B2,j = (ρ〈t,0〉r〈t,0〉v , . . . , ρ〈t,`〉r〈t,`〉v )


B(0)
j

B(1)
j

. . .

B(`)
j


= (ρ〈t,0〉r〈t,0〉v B(0)

j , . . . , ρ〈t,`〉r〈t,`〉v B(`)
j ).

We now consider the evaluation result, namely, the term (44), which is a
vector in Z1×d′1

N . This can be divided to `+ 1 blocks each of length d1. For
i ∈ [0, `], the block i is evaluated to exactly 0 since

• if i 6∈ (V +1
υt

Vωt) ∪ (Vωt V +1
υt

), then we have ρ〈t,0〉 = 0, by definition of
ρ〈t,0〉.

• if i ∈ (V +1
υt

Vωt) ∪ (Vωt V +1
υt

), then we have Pκ(xt, yi) = 0, due to
Proposition 5. Hence, the polynomial in the block i evaluates to 0 due to
the selective symbolic property of Γ .

Remark 6. In the above, we assume w.l.o.g. that d′1 ≥ 3`+1, so that the non-zero
rows of H2 (which comprise 3` + 1 rows) fits into the d′1 rows. This is w.l.o.g.
since in case of d′1 < 3`+ 1, we can just append all-zero row vectors to B2,j (and
all the d′1-length vectors) to have 3`+ 1 rows.

Co-selective Symbolic Property. We prove co-selective symbolic property of
Γ ′ from that of Γ .

– EncBR′(M). First, parseM = (Q,T, q0, qσ−1). Further parseQ = {q0, . . . , qσ−1},
and T =

{
(qυt , qωt , xt)

}
t∈[m]. Proceed as follows.

1. For t ∈ [m], run

EncBR(xt)→
(
B(t)

1 , . . . ,B(t)
n ; r(t)

1 , . . . , r(t)
m1,t

; a, r̂(t)
1 , . . . , r̂(t)

m2,t

)
.

where B(t)
j ∈ Zd1×d2

N , r(t)
v ∈ Z1×d1

N , r̂(t)
µ ∈ Z1×d2

N , and a = 1d2
1 ∈ Z1×d2

N .
Let d′1 = md1 and d′2 = 2md2.
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2. For j ∈ [n], let

B1,j =

1 2 ··· m m+1 ··· 2m


B(1)
j

0B(2)
j

. . .

B(m)
j

∈ Zd
′
1×d

′
2

N ,

B2,j =

1 ··· m m+1 m+2 ··· 2m
0

B(1)
j

B(2)
j

. . .

B(m)
j

∈ Zd
′
1×d

′
2

N .

3. Let

G1 =

1 2 ··· m m+1 ··· 2m



a

0a
. . .

a

0

∈ Zd
′
1×d

′
2

N ,

G2 = −

1 ··· m m+1 m+2 ··· 2m


0

a
a

. . .
a

0

∈ Zd
′
1×d

′
2

N .

4. Let

H0 = 1d
′
1×d

′
2

1,1 ∈ Zd
′
1×d

′
2

N ,

H1 = −
∑
t∈[m]

1d
′
1×d

′
2

t,(υtd2+1) ∈ Zd
′
1×d

′
2

N ,

H2 =
∑
t∈[m]

1d
′
1×d

′
2

t,(ωtd2+1) ∈ Zd
′
1×d

′
2

N .
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5. For t ∈ [m], v ∈ [m1,t], µ ∈ [m2,t], let

r(1,t)
v = (0, . . . , 0,

block t
↓

r(t)
v , 0, . . . , 0) ∈ Z1×d′1

N ,

r̂(1,t)
µ = (0, . . . , 0,

block t
↓

r̂(t)
µ , 0, . . . , 0) ∈ Z1×d′2

N

r(2,t)
v = −(0, . . . , 0,

block t
↓

r(t)
v , 0, . . . , 0) ∈ Z1×d′1

N ,

r̂(2,t)
µ = −(0, . . . , 0,

blockm+t
↓

r̂(t)
µ , 0, . . . , 0) ∈ Z1×d′2

N

where the vector of length d′1 = md1 is divided to m blocks of length
d1, starting from block 1 to block m.24 Blocks in d′2-length vectors are
defined similarly, but run through block 2m.

6. Let r(0)
new = 1d

′
1

1 . For t ∈ [m], let

r(t)
new = 1d

′
1
t ∈ Z1×d′1

N .

7. For k ∈ [0, σ − 1], let

uk = 1d
′
2
kd2+1 ∈ Z1×d′2

N .

8. Finally, output

B′ =
(
B1,1, . . . ,B1,n,B2,1, . . . ,B2,n,H0,G1,H1,G2,H2

)
,

R′ =
(

r(0)
new, . . . , r

(m)
new,

(
r(1,t)

1 , . . . , r(1,t)
m1,t

, r(2,t)
1 , . . . , r(2,t)

m1,t

)
t∈[m]

)
,

R̂′ =
(

uσ−1,u0, . . . ,uσ−2,
(
r̂(1,t)

1 , . . . , r̂(1,t)
m2,t

, r̂(2,t)
1 , . . . , r̂(2,t)

m2,t

)
t∈[m]

)
which define substitutions b′ : B′, r′ : R′ and r̂′ : R′.

– EncS′(M,Y ). Parse Y = (y1, . . . , y`). Parse M = (Q,T, q0, qσ−1). Further
parse Q = {q0, . . . , qσ−1}, and T =

{
(qυt , qωt , xt)

}
t∈[m].

1. For t ∈ [m], i ∈ [`] such that Pκ(xt, yi) = 0, it is possible to run

EncS(xt, yi)→
(
s〈t,i〉0 , . . . , s〈t,i〉w1,i

; ŝ〈t,i〉1 , . . . , ŝ〈t,i〉w2,i

)
,

where s〈t,i〉τ ∈ Z1×d2
N , ŝ〈t,i〉z ∈ Z1×d1

N . Compute δ〈t,i〉 :=
(
1/s〈t,i〉0 [1]

)
, which

is computable since s〈t,i〉0 [1] = a(s〈t,i〉0 )> 6= 0 (from the symbolic property
of Γ ).

24 Hence, here, the i-th block contains elements of position (i− 1)d1 + 1 to id1.
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2. For t ∈ [m], i ∈ [`], define25

ϕ〈t,i〉 :=
{
δ〈t,i〉 if υt ∈ Ui−1 and Pκ(xt, yi) = 0
0 otherwise

(45)

θ〈t,i〉 :=
{
δ〈t,i〉 if ωt ∈ Ui and Pκ(xt, yi) = 0
0 otherwise

(46)

3. For i ∈ [`], τ ∈ [w1,i]
+, first define some intermediate notations as follows.

e(i)
τ :=

(
ϕ〈1,i〉s〈1,i〉τ , . . . , ϕ〈m,i〉s〈m,i〉τ

)
∈ Z1×md2

N , (47)

f (i)
τ :=

(
θ〈1,i〉s〈1,i〉τ , . . . , θ〈m,i〉s〈m,i〉τ

)
∈ Z1×md2

N . (48)

We also let f (0)
τ := 0 and e(`+1)

τ := 0. We then let

s(1,i)
τ = (e(i)

τ , f (i−1)
τ ) ∈ Z1×d′2

N ,

s(2,i)
τ = (e(i+1)

τ , f (i)
τ ) ∈ Z1×d′2

N .

We can see that this is consistent with the requirement from Eq. (18),
that is, s(1,i+1)

0 = s(2,i)
0 .

4. For i ∈ [`], z ∈ [w2,i], let

ŝ(1,i)
z :=

(
ϕ〈1,i〉ŝ〈1,i〉z , . . . , ϕ〈m,i〉ŝ〈m,i〉z

)
∈ Z1×d′1

N ,

ŝ(2,i)
z :=

(
θ〈1,i〉ŝ〈1,i〉z , . . . , θ〈m,i〉ŝ〈m,i〉z

)
∈ Z1×d′1

N .

5. For i ∈ [0, `], let s(i)
new = (s(i)

new,0, . . . , s
(i)
new,σ−1, 0, . . . , 0) ∈ Z1×d′2

N , where
for k ∈ [0, σ − 1], each block s(i)

new,k is of length d2 and

s(i)
new,k :=

{
1d2

1 if k ∈ Ui
0 if k 6∈ Ui

.

That is, s(i)
new =

∑
k∈Ui 1d

′
2
kd2+1.

6. Finally, output

S′ =
(

s(`)
new, s

(0)
new, . . . , s

(`−1)
new ,

(
s(1,i)

0 , . . . , s(1,i)
w1,i

, s(2,i)
0 , . . . , s(2,i)

w1,i

)
i∈[`]

)
,

Ŝ′ =
(
ŝ(1,i)

1 , . . . , ŝ(1,i)
w2,i

, ŝ(2,i)
1 , . . . , ŝ(2,i)

w2,i

)
i∈[`]

which define substitutions s′ : S′, and ŝ′ : Ŝ′.
25 Intuitively, (ϕ〈t,0〉, . . . , ϕ〈t,`〉), (θ〈t,0〉, . . . , θ〈t,`〉) will play the role of the “mask” vec-

tors, as motivated at the end of §2: it encodes exactly the non-acceptance condition
of DFA M (Proposition 5).
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Verifying Properties. Since U` = {σ− 1} (cf. Proposition 4), we have s(`)
new =

1d
′
2

(σ−1)d2+1. We can thus verify that,

uσ−1(s(`)
new)> = 1d

′
2

(σ−1)d2+1(1d
′
2

(σ−1)d2+1)> = 1

which is not zero, as required.
For key-enc, we have the following polynomials.

– The polynomial k̃0 = −u0 + r(0)
newh0 is substituted and evaluated to

−u0 + r(0)
newH0 = −1d

′
2

1 + 1d
′
1

1 · 1
d
′
1×d

′
2

1,1 = 0

– For t ∈ [m], the polynomial k̃1,t = uυt + r(t)
newh1 is substituted and evaluated

to

uυt + r(t)
newH1 = 1d

′
2
υtd2+1 + 1d

′
1
t · (−

∑
t∈[m]

1d
′
1×d

′
2

t,(υtd2+1)) = 0.

– For t ∈ [m], the polynomial k̃2,t = −uωt +r(t)
newh2 is substituted and evaluated

to

−uωt + r(t)
newH2 = −1d

′
2
ωtd2+1 + 1d

′
1
t ·

∑
t∈[m]

1d
′
1×d

′
2

t,(ωtd2+1) = 0.

– For t ∈ [m], p ∈ [m3,t], the p-th polynomial in k′(1,t) is

φ(t)
p r(t)

newg1 +
∑

µ∈[m2,t]

φ(t)
p,µr̂

(1,t)
µ +

∑
v∈[m1,t],j∈[n]

φ
(t)
p,v,jr

(1,t)
v b1,j .

where we recall that the coefficients are those of k(t) obtained from EncKey(xt, N)
(for the PES Γ ), and we replace α(1,t) with r(t)

newg1. Also note that m3,t is the
size of k(t). Via EncBR′, it is substituted to

φ(t)
p r(t)

newG1 +
∑

µ∈[m2,t]

φ(t)
p,µr̂(1,t)

µ +
∑

v∈[m1,t],j∈[n]

φ
(t)
p,v,jr

(1,t)
v B1,j

which is evaluated to

φ(t)
p (0, . . . , 0,

block t
↓a , 0, . . . , 0)+

∑
u∈[m2,t]

φ(t)
p,u (0, . . . , 0,

block t
↓

r̂(t)
u , 0, . . . , 0)+

∑
v∈[m1,t],j∈[n]

φ
(t)
p,v,j(0, . . . , 0,

block t
↓

r(t)
v B(t)

j ,0, . . . , 0)
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which is exactly 0 since the sum at the t-th block is 0 due to the co-selective
symbolic property of Γ . Note that, in the above, we use

r(t)
newG1 = (0, . . . , 0,

t
↓
1, 0, . . . , 0) ·

1 2 ··· m m+1 ··· 2m



a

0a
. . .

a

0

= (0, . . . , 0,
block t
↓a , 0, . . . , 0),

and

r(1,t)
v B1,j = (0, . . . , 0,

block t
↓

r(t)
v , 0, . . . , 0) ·

1 2 ··· m m+1 ··· 2m


B(1)
j

0B(2)
j

. . .

B(m)
j

= (0, . . . , 0,

block t
↓

r(t)
v B(t)

j , 0, . . . , 0).

– For t ∈ [m], p ∈ [m3,t], the p-th polynomial in k′(2,t) is

φ(t)
p r(t)

newg2 +
∑

µ∈[m2,t]

φ(t)
p,µr̂

(2,t)
µ +

∑
v∈[m1,t],j∈[n]

φ
(t)
p,v,jr

(2,t)
v b2,j .

Via EncBR′, it is substituted to

φ(t)
p r(t)

newG2 +
∑

µ∈[m2,t]

φ(t)
p,µr̂(2,t)

µ +
∑

v∈[m1,t],j∈[n]

φ
(t)
p,v,jr

(2,t)
v B2,j

which is evaluated to

− φ(t)
p (0, . . . , 0,

blockm+t
↓a ,0, . . . , 0)+

∑
u∈[m2,t]

− φ(t)
p,u (0, . . . , 0,

blockm+t
↓

r̂(t)
u ,0, . . . , 0)+

∑
v∈[m1,t],j∈[n]

− φ(t)
p,v,j(0, . . . , 0,

blockm+t
↓

r(t)
v B(t)

j ,0, . . . , 0)
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which is exactly 0 since the sum at the (m + t)-th block is 0 due to the
co-selective symbolic property of Γ . Note that, in the above, we use

r(t)
newG2 = −(0, . . . , 0,

t
↓
1, 0, . . . , 0) ·

1 ··· m m+1 m+2 ··· 2m


0

a
a

. . .
a

0

= −(0, . . . , 0,
blockm+t

↓a , 0, . . . , 0),

and

r(2,t)
v B2,j = −(0, . . . , 0,

block t
↓

r(t)
v , 0, . . . , 0) ·

1 ··· m m+1 m+2 ··· 2m
0

B(1)
j

B(2)
j

. . .

B(m)
j

= (0, . . . , 0,

blockm+t
↓

r(t)
v B(t)

j , 0, . . . , 0).

For ct-enc, we have the following polynomials.

– The polynomial c′0 = h0s
(0)
new is substituted and evaluated to

H0(s(0)
new)> = 1d

′
1×d

′
2

1,1 · (
∑
k∈U0

1d
′
2
kd2+1)> = 0,

since 0 6∈ U0 due to Proposition 5.
– For i ∈ [`], the polynomial c′i = h1s

(i−1)
new + g1s

′(i−1)
0 + h2s

(i)
new + g2s

′(i)
0 is

substituted and evaluated as follows.
• The first term, h1s

(i−1)
new , is substituted and evaluated to

H1(s(i−1)
new )> =

− ∑
t∈[m]

1d
′
1×d

′
2

t,(υtd2+1)

 ·
 ∑
k∈Ui−1

1d
′
2
kd2+1

>

= −
∑

t s.t. υt∈Ui−1

(1d
′
1
t )>.
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• The third term, h2s
(i)
new, is substituted and evaluated to

H2(s(i)
new)> =

∑
t∈[m]

1d
′
1×d

′
2

t,(ωtd2+1)

 ·
∑
k∈Ui

1d
′
2
kd2+1

>

=
∑

t s.t. ωt∈Ui

(1d
′
1
t )>.

• The second term, g1s
′(i−1)
0 , is considered as follows. From Eq. (18), we

have g1s
′(i−1)
0 = g1s

(1,i)
0 . It is then substituted and evaluated to

G1(s(1,i)
0 )> =

1 2 ··· m m+1 ··· 2m



a

0a
. . .

a

0

· (e(i)
0 , f (i−1)

0 )>

=

1 2 ··· m



a
a
. . .

a

0

· (e(i)
0 )> (49)

=
(
ϕ〈1,i〉a(s〈1,i〉τ )>, . . . , ϕ〈m,i〉a(s〈m,i〉τ )>, 0, . . . , 0

)>
(50)

=
∑

t s.t. υt∈Ui−1∧
Pκ(xt,yi)=0

(1d
′
1
t )> (51)

where Eq. (50) is due to the definition of e(i)
0 from Eq. (47), that is, e(i)

0 =(
ϕ〈1,i〉s〈1,i〉τ , . . . , ϕ〈m,i〉s〈m,i〉τ

)
, while Eq. (51) is due to the definition of

ϕ〈t,i〉 given in Eq. (45).

• The fourth term, g2s
′(i)
0 , is considered as follows. From Eq. (18), we have

g2s
′(i)
0 = g2s

(2,i)
0 . It is then substituted and evaluated to
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G2(s(2,i)
0 )> = −

1 ··· m m+1 m+2 ··· 2m


0

a
a

. . .
a

0

· (e(i+1)
0 , f (i)

0 )>

= −

1 2 ··· m



a
a
. . .

a

0

· (f (i)
0 )> (52)

= −
(
θ〈1,i〉a(s〈1,i〉τ )>, . . . , θ〈m,i〉a(s〈m,i〉τ )>, 0, . . . , 0

)>
(53)

= −
∑

t s.t. ωt∈Ui∧
Pκ(xt,yi)=0

(1d
′
1
t )> (54)

where Eq. (53) is due to the definition of f (i)
0 from Eq. (48), that is,

f (i)
0 =

(
θ〈1,i〉s〈1,i〉τ , . . . , θ〈m,i〉s〈m,i〉τ

)
, while Eq. (54) is due to the definition

of θ〈t,i〉 given in Eq. (46).
• Combining all the four substituted terms, we have that the substitution

for c′i is evaluated to H1(s(i−1)
new )>+G1(s(1,i)

0 )>+H2(s(i)
new)>+G2(s(2,i)

0 )>

= −
∑

t s.t. υt∈Ui−1

(1d
′
1
t )> +

∑
t s.t. υt∈Ui−1∧
Pκ(xt,yi)=0

(1d
′
1
t )>

+
∑

t s.t. ωt∈Ui

(1d
′
1
t )> −

∑
t s.t. ωt∈Ui∧
Pκ(xt,yi)=0

(1d
′
1
t )>

= −
∑

t s.t. υt∈Ui−1∧
Pκ(xt,yi)=1

(1d
′
1
t )>+

∑
t s.t. ωt∈Ui∧
Pκ(xt,yi)=1

(1d
′
1
t )> = 0.

The last equality holds due to Proposition 5, which states that when M
does not accept Y , the condition that Pκ(xt, yi) = 1 implies that we have
υt ∈ Ui−1 if and only if ωt ∈ Ui.
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– For i ∈ [`], p ∈ [w3,i], the p-th polynomial in c(1,i) is∑
z∈[w2,i]

η(i)
p,z ŝ

(1,i)
z +

∑
τ∈[w1,i]

+
,j∈[n]

η
(i)
p,t,jb1,js

(1,i)
τ .

Via EncBR′ and EncS′, it is substituted to∑
z∈[w2,i]

η(i)
p,z(ŝ

(1,i)
z )> +

∑
τ∈[w1,i]

+
,j∈[n]

η
(i)
p,t,jB1,j(s

(1,i)
τ )>

=
∑

z∈[w2,i]

η(i)
p,z

 ϕ〈1,i〉(ŝ〈1,i〉z )>
...

ϕ〈m,i〉(ŝ〈m,i〉z )>

+
∑

τ∈[w1,i]
+
,j∈[n]

η
(i)
p,t,j


ϕ〈1,i〉B(1)

j (s〈1,i〉τ )>
...

ϕ〈m,i〉B(m)
j (s〈m,i〉τ )>


(55)

=


ϕ〈1,i〉(

∑
z∈[w2,i] η

(i)
p,z(ŝ

〈1,i〉
z )> +

∑
τ∈[w1,i]

+
,j∈[n] η

(i)
p,t,j(s

〈1,i〉
τ )>)

...

ϕ〈m,i〉(
∑
z∈[w2,i] η

(i)
p,z(ŝ

〈m,i〉
z )> +

∑
τ∈[w1,i]

+
,j∈[n] η

(i)
p,t,j(s

〈m,i〉
τ )>)

 . (56)

Note that in Eq. (55) above, we use

B1,j(s
(1,i)
τ )> =

1 2 ··· m m+1 ··· 2m


B(1)
j

0B(2)
j

. . .

B(m)
j

· (e(i)
τ , f (i−1)

τ )> (57)

=

1 2 ··· m


B(1)
j

B(2)
j

. . .

B(m)
j

·

 ϕ〈1,i〉(s〈1,i〉τ )>
...

ϕ〈m,i〉(s〈m,i〉τ )>



=


ϕ〈1,i〉B(1)

j (s〈1,i〉τ )>
...

ϕ〈m,i〉B(m)
j (s〈m,i〉τ )>


The term (56) is a vector in Zd

′
1×1
N . This can be divided to m blocks each of

length d1. For all t ∈ [m], the t-th block is evaluated to exactly 0 since
• if t satisfies υt ∈ Ui−1 and Pκ(xt, yi) = 0, then we have in particular that
Pκ(xt, yi) = 0. Hence, the polynomial in the t-th block evaluates to 0 due
to the co-selective symbolic property of Γ .
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• if t does not satisfy the above, we have that ϕ〈t,i〉 = 0 due to the definition
of ϕ〈t,i〉.

– For i ∈ [`], p ∈ [w3,i], the p-th polynomial in c(2,i) is∑
z∈[w2,i]

η(i)
p,z ŝ

(2,i)
z +

∑
τ∈[w1,i]

+
,j∈[n]

η
(i)
p,t,jb2,js

(2,i)
τ .

Via EncBR′ and EncS′, it is substituted and evaluated to∑
z∈[w2,i]

η(i)
p,z(ŝ

(2,i)
z )> +

∑
τ∈[w1,i]

+
,j∈[n]

η
(i)
p,t,jB2,j(s

(2,i)
τ )>

which is evaluated to 0 in an analogous manner to the case of c(1,i). Indeed,
it is evaluated to exactly the term in Eq. (56) albeit replacing all ϕ〈t,i〉 with
θ〈t,i〉, and we use the analogous property of θ〈t,i〉 to argue zero evaluation.
Note that, in contrast to Eq. (57), this time we instead have

B2,j(s
(2,i)
τ )> =

1 ··· m m+1 m+2 ··· 2m
0

B(1)
j

B(2)
j

. . .

B(m)
j

· (e(i+1)
τ , f (i)

τ )>

=

1 2 ··· m


B(1)
j

B(2)
j

. . .

B(m)
j

· (f (i)
τ )>.

J Proof for Predicative Branching Program

This section provides the implication from the predicate for predicative span
programs to the predicate for predicative branching programs, which we omitted
from 9.1. For formality, we first capture the definition as follows.

Definition 13. Let P = { Pκ }κ where Pκ : Xκ × Yκ → { 0, 1 }, be a predicate
family, indexed by κ = (N, par). We define the Key-policy-Branching-augmented
predicate over P as KB1[P ] =

{
P̄κ
}
κ
where P̄κ : X̄κ × Ȳκ → { 0, 1 } by letting

– X̄κ = {M |M is a predicative branching program over Pκ }.
– Ȳκ = Yκ.
– P̄κ(M,y) = 1 ⇐⇒ M accepts y. ♦
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Augmentation over a set of predicates P can be defined analogously as
previously, namely, we define KB[P] := KB1[CP1OR[DS[P]]].

As a further note, we remark that, similarly to boolean branching programs
in [23,8], it is w.l.o.g. to consider that there exists at most one edge connecting
any two nodes (that is why we can let E ⊆ V 2), and that we have only one start
node and one accept node.

We have the following result by generalizing the result that ABE for MSP
implies ABE for branching program from [8].

Lemma 7. KB1[P ] can be embedded into KP1[P ].

The proof will follow in exactly the same manner as in [8]. We adapt it to
the context of PBP and provide here for self-containment.

Proof. We define a map from a PBP M = (Γ, q1, qσ, L) to an MSP (A, π) as
follows. Parse the set of edges as E = {e1, . . . , em}. We represent an edge as
ej = (qυj , qωj ), which means that the edge ej directs from node qυj to node qωj .
Let A be a matrix of dimension m× (σ− 1) where its entry at (j, k) is defined by

Aj,k =


−1 if k = υj
1 if k = ωj
0 otherwise

.

Let π : [m]→ Yκ map j 7→ L(ej). The map for ciphertext attribute is just the
identity map. We now prove that M accepts y if and only if (A, π) accepts y.

We first prove the forward direction. SupposeM accepts y. Hence, there exists
a path from the start node (node qσ) to the accept node (node q1) in Γy. Let
(ej1

, . . . , ejt) be the edges on this path. Hence, Pκ(L(eji), y) = 1 for all i ∈ [1, t].
Also, we have υji = ωj1−1

for all i ∈ [2, t], while υj1
= σ and ωjt = 1. Recall that

A|y consists of exactly all the rows j where Pκ(π(j), y) = 1; therefore, all the
rows j1, . . . , jt are included in A|y, since π(ji) = L(eji). Now, consider the sum
of rows j1, . . . , jt. We have:

– The row j1 contributes 1 at column ωj1
(and, by the definition of A, there is

no column corresponding to υj1
= σ).

– For i ∈ [2, t− 1], the row ji contributes −1 at column υji = ωj1−1
, and 1 at

column ωji .
– The row jt contributes −1 at column υjt = ωjt−1

, and 1 at column ωjt = 1.

Hence, all the values at column ωj1
, . . . , ωjt−1

are canceled out to 0, and it leaves
only 1 at the column ωjt = 1. That is, the sum is exactly (1, 0, . . . , 0). Therefore,
(1, 0, . . . , 0) ∈ span(A|y) which means that (A, π) accepts y.

We now prove the converse by contrapositive. Suppose thatM does not accept
y. Let Γ ′y be the undirected graph obtained from Γy by treating every edge as an
undirected edge. We have the following properties:26

26 These properties were also used, albeit differently, for proving selective security for
the ABE for branching program of [23].
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1. Since M does not accept y, we have that the start node and the accept node
lie in different connected components of Γ ′y.

2. Γ ′y contains no cycle. This is since Γy is acyclic and every non-terminal node
has exactly one outgoing edge due to the determinism of PBP.

Assume for the sake of contradiction that (1, 0, . . . , 0) ∈ span(A|y). Let J =
{ j ∈ [1,m] | Pκ(π(j), y) = 1 }. (Hence, J is the set of edge indexes of Γy). We
write this linear combination as (1, 0, . . . , 0) =

∑
j∈J cjAj:, where Aj: is the row

j of A and cj is some coefficient. For each node index k ∈ [1, σ], let Jk be the set
of edge indexes j in J that are adjacent to k and that cj 6= 0. From the linear
combination, we must have that:

∑
j∈Jk

cjAj,k =
{

1 if k = 1,
0 if k ∈ [2, σ − 1].

(58)

Let Γ ′′y be the subgraph of Γ ′y that takes all the edge indexes j ∈ J such that
cj 6= 0. We observe that for every node index k ∈ [2, σ − 1] (i.e., not the accept
nor the start node), there are at least two edges adjacent to qk in Γ ′′y . This is
since otherwise the sum

∑
j∈Jk cjAj,k would not be canceled out to 0, where we

observe that for j ∈ Jk we have Aj,k 6= 0. Next, we claim that Γ ′′y will always
contain a cycle. Hence, this will contradict the property 2, and the proof will be
concluded. It now remains to prove the claim. We consider an arbitrary node
index k ∈ [2, σ − 1]. We have three cases:

– If qk is connected to neither the accept nor the start node in Γ ′′y , then in
the largest connected subgraph of Γ ′′y that contains qk, all the nodes have at
least two edges adjacent to it.

– If qk is connected to the accept node, then it is not connected to the start
node by the property 1. Hence, in the largest connected subgraph of Γ ′′y that
contains qk, there exists exactly one node (i.e., the accept node, q1) that may
have only one adjacent edge.

– If qk is connected to the start node, then it is not connected to the accept
node by the property 1. Hence, in the largest connected subgraph of Γ ′′y that
contains qk, there exists exactly one node (i.e., the start node, qσ) that has
one adjacent edge.

In all three cases, the considering connected subgraph has at most one node that
may have one adjacent edge (and all the other nodes have at least two adjacent
edges). Hence, it always contain a cycle. This concludes the proof of the claim,
and hence the lemma.

K Unbounded Arbitrary Mixed-policy Augmentation

Nested-policy ABE, as proposed in §9, allows to nest ciphertext-policy and
key-policy layers. However, the structure of nesting is fixed for the resulting
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augmented predicate. For example, CP[KP(P)] is a nested predicate which has
key-policy in a lower layer and ciphertext-policy in an upper layer. In this section,
we will explore what we call “Mixed-policy” ABE where the nesting structure can
be defined in an on-the-fly manner to a key and a ciphertext. In particular, the
nesting structure is not fixed for the predicate definition (and hence is not fixed
at the setup of the ABE scheme). The definition of such predicate will depend on
a base set P. The predicate allows any “closures” of P via operation KP and CP.
Definition 14. The any-policy-augmented predicate over a set P of predicate
families set is defined as KP[P]� CP[P]. We will use AP[P] as its shorthand.
Definition 15. The `-level mixed-policy-augmented predicate over a set P of
predicate families, denoted as MP`[P], is defined recursively as follows.

MP1[P] := DS[P],
MP`[P] := MP`−1[P]� AP[MP`−1[P]].

♦

This recursively defined predicate will contain arbitrarily augmented predi-
cates so far to that level. To illustrate this, if we start from a set P of predicate
families, at the second level we obtain predicate DS[P]� KP[P]� CP[P]. At the
third level, we obtain predicate

DS[P]� KP[P]� CP[P]� KP
[
DS[P]� KP[P]� CP[P]

]
� CP

[
DS[P]� KP[P]� CP[P]

]
.

Hence, at the third level, any nested policy with two or less applications of KP[·]
and CP[·], e.g., CP[KP(P)], will be contained as a special case.
Constructing PES for MP`[P]. We first observe that using the concatenation
direct sum construction, Concat-Trans, would yield the parameter size being
exponential in the number of levels `. This is since when doing the direct sum
with new schemes, the parameter sizes will be added up. When going from level
`− 1 to `, the number of parameters for level ` will become at least 3 times of
that for level `− 1. Hence, the overall size at level ` would be O(3`).

Fortunately, thanks to our construction for direct sum with parameter reuse,
Reuse-Trans, the parameter size (which will correspond to the public key size for
ABE) can be kept small. Our construction is as follows. A PES for MP1[P] is
obtained via Reuse-Trans. From MP`−1[P], we obtain a PES for KP[MP`−1[P]]
via CP1OR and KP1 as in Lemma 2, and a PES for CP[MP`−1[P]] analogously. We
then again use Reuse-Trans to combine to a PES for the direct sum of MP`−1[P],
KP[MP`−1[P]], and CP[MP`−1[P]], which results in MP`[P]. We have the following
lemma.
Lemma 8. Let P = {P (1), . . . , P (k)} be a set of predicate families. Suppose that
there exists a symbolically secure PES Γ (j) for P (j) each with the parameter
size nj. Let n = maxj∈[k] nj. Then, the above PES construction for MP`[P] has
parameter size n+ 2k + 10`.
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Proof. We prove by induction on `. When ` = 1, we have that the Reuse-Trans
yield n+2k parameters, as shown in Construction 5. Assume that P ′ := MP`−1[P]
has parameter size s := n+2k+10(`−1). Now since, CP1-Trans (for CP1OR[·]) and
KP1-Trans (for KP1[·]) each adds up 2 elements, we have that a PES for KP[P ′]
has parameter size s + 4. The same goes for CP[P ′]. Note that for simplicity
here, we always implicitly apply Layer-Trans so as to obtained admissible PES,
which can then be used for CP1-Trans, KP1-Trans. That is why the additional 2
elements are counted. Then combining P ′, KP[P ′], CP[P ′] via Reuse-Trans yields
a PES for MP`[P], which has parameter size max{s, s+4, s+4}+2(3) = s+10 =
n+ 2k + 10`.

L Further Discussions

This section gathers discussions that are deferred from various sections in the
paper body.

L.1 On Difficulty of ABE for Non-monotone Span Programs

In §9, we describe how to achieve ABE for NSP in a modular manner. Here, we
further discuss why ABE for NSP is seemingly more difficult to achieve than
ABE for MSP.

In fact, there seems to some misunderstanding in the literature that ABE
for MSP can be converted to ABE for NSP with only small (possibly constant)
loss factor in efficiency (as we get comments from some anonymous reviewers).
This seems to stem from the fact that a Boolean NSP can be interpreted as a
Boolean MSP with the cost of increasing the input domain from, say n-bit, to
2n-bit. This can be done by propagating all the internal NOT gates (think of it
as a Boolean formula) so that they appear only at the input gates.

For the large-universe scheme, the input 0 and 1 amounts to check attribute
membership and non-membership, say, x ∈ Y and x 6∈ Y , respectively. Intuitively,
in the context of ABE, this would be done by preparing the negative version of
attributes in U. However, if ABE for MSP is the only tool, this is not possible,
since the functionality of checking if x 6∈ Y would have to be done only via
checking if x ∈ U Y , which is, in turn, not clear how to achieve (in ABE)
if U is of super-polynomial size. Moreover, even if U is of polynomial size, a
ciphertext of any set Y would incur the fixed-once-and-for-all size of O(|U|),
which can be inefficient. This issue is clearly discussed and motivated nicely in
the original paper of Ostrovsky et al. [32], to which we would refer readers for
further intuition.

L.2 Remark on the q-ratio Assumption

We remark that criticisms towards the so-called q-type assumptions often stem
from the Cheon attack [18], which exactly exploits the property that an as-
sumption contains terms like ga and ga

q

, for some q ∈ N, together in the same
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instance. However, there are no such terms in the q-ratio assumption of [2], where
every variable contains only degree one or minus one (we refer its description
to [2]). Hence this same reason for general criticism is not applied for the q-ratio
assumption. (We do not argue that the q-ratio Assumption is all trustworthy,
but argue only that the reason for criticism should not be from this general one
by the Cheon attack).

We note further that the q-raio assumption has been shown in [2] to be
implied from other specific q-type assumptions from [30,7], where the Cheon
attack may apply (since they contain terms as above). However, this should not
be a concern either since the q-raio assumption can be shown to hold in the
generic group model in its own right, in a very simple manner. (We do not pursue
here though.)

L.3 More Applications and Extensions

This section provides more applications, for supplementary to §9.

Extension for Direct Sum. Direct sum of Definition 7 can be generalized so
that we can have many instances of one predicate family. To do so, an index
is generalized from i to (i, id), where id is an instance identifier. Equality check
on id can be done via IBE, hence this generalized direct sum can be embedded
into P IBE ∧ DS[P]. This is also similar to an idea for implementing the Okamoto-
Takashima variant of ABE definition, discussed in §9.2.

On Casting Known PESs. Any existing PESs proven secure in the sense of
perfect or computational master-key hiding [7,12,8] are not trivially broken in the
sense of [2]. Hence these PESs are also automatically symbolically secure via the
first theorem in [2]. Therefore, we can cast them all here and use as basic PESs
for basic predicates to be composed into our dynamic transformations. To name
just a few, we can cast the known PES constructions [7,12,8] for predicates of
doubly-spatial encryption, regular languages, branching programs, range/subset
membership [10], revocation [43].

Static Compositions of Predicates. Static compositions of predicates, where
the policy over predicate is fixed at setup, can be obtained from our dynamic
transformations by simply fixing the policy. For any P1, P2, its conjunction,
P1 ∧ P2, can be embedded into KPAND[P1 � P2] (or CPAND[P1 � P2]). The same
applies for the disjunction, P1 ∨ P2.

Example of ABE with Multi-layer Functionality: Fine-grained Tax
Return Audit System. We can consider ABE where a lower layer is a regular
expression matching, while an upper one is a formula matching. Waters [41]
suggests a tax return audit system as a motivating application of his ABE for
Regular Language (RL). There, one considers a set of tax-return documents, each
consists of a public deduction claim and a private data which is the amount of
tax deductions. If the claim matches a certain regular expression (e.g., according
to tax laws), the private data can be read by an auditor who has a key related to
that expression. ABE for RL is needed as a claim can be arbitrarily long. This
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basic system can be considered as an access control system over claims (which
can be considered as objects). In real-world situations, however, we may also want
access control over auditors (which can be considered as subjects), on top of the
basic system. As motivated by recent real-world leak cases like the Panama or
Paradise Papers, such a fine-grained control of auditors (instead of all-or-nothing)
is much needed. (We want to protect data against these insider auditors who
might turn malicious and leak files.) This is possible via our CP[PRL]. It was not
possible before as we did not know how to combine RL under another layer of
policy. Similar to the audit system, regular expressions can be used for defining
rules in firewall systems or scanning virus for webpages, as suggested also in [41],
hence our framework can produce “fine-grained” versions of such systems.

L.4 Possible Real-world Applications

Geographically Distributed Key Management. In the talk in the Real-
world cryptography conference 2018, Sullivan [37] (Cloudfare inc.) proposed a
geographically distributed key management scheme (geo manager) that is very
useful for building efficient and secure communication over high-latency network,
possibly across continents of the world. His scheme includes a building block
which is essentially the AND composition of IBBE and IBR, in our terminology.
His scheme is implemented by AND secret sharing the message as M = M1⊕M2
and encrypting each with IBBE of Delerablée [22] and IBR of Attrapadung et
al. [11]. However, it is completely broken via a collusion attack (this was quickly
pointed out by an audience after the talk).

Our framework provide a clean and modular solution for the above application
by composing IBBE and IBR in our framework. Concrete pair encodings for
IBBE, IBR can be promptly obtained from §C. In particular, the end product,
namely, fully secure ABE, is inherently collusion-secure. Moreover, due to the
dynamic nature of our composition framework, it is also flexible to do even more
than the AND of IBBE/IBR, if needed so in the future. This can be done without
any cost (only changing a policy over IBBE/IBR, or even mixing with other
predicates).

L.5 Some New Insight from Our Framework

An informal discussion here is supplementary to the end of §2. What we found
interesting and might give some new insight (although we do not formalize here)
is that all the symbolic proofs in this paper essentially contain “mask” vectors
that encode exactly the necessary condition when a predicative machine M does
not not accept an input Y . On one hand, this somewhat follows along the same
line as recent works of Ambrona et al. [3] and Agrawal and Chase [2] (which we
base on), in the sense that their proofs give some “witnesses” (as used in [3]) or
“certificates” (as used in [2]) that act as a short proof that such a scheme is secure.
In symbolic security, these refer to those substituted vectors/matrices for a pair
(M,Y ) where M does not accept Y . However, finding appropriate substituted
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vectors/matrices are somewhat not trivial tasks (as stated in [2]). On the other
hand, in our proofs, non-acceptance conditions for the considering predicate
(which should definitely be exploited in order to deduce a security proof) are
encoded in vectors in a somewhat more explicit manner. This is inherently due
to the fact that our transformations are modular and abstract, hence we can
separate what values come from based predicates or the predicative machine
itself. This is in contrast with all the symbolic proofs in [2] which were designed
specifically and monolithically to each PES, and hence all components (whether
from based predicates or policy over them) are intertwined. Particularly, we think
that the proof for our predicative DFA scheme decouples essential mechanisms in
the selective security proof in Waters’ DFA-based ABE [41] and in the selective
and co-selective master-key hiding proofs in Attrapadung’s DFA-based ABE [7],
in an abstract manner.

L.6 More Related Works and Open Problems

This subsection provides more related works and some open problems, deferred
from §1.

More Related Works. Conditional Disclosure of Secret (CDS) is a related
primitive that can be viewed as a limited form of private-key attribute-based
encryption which offers one-time information-theoretic security. Applebaum et
al. [5] studied generic compositions of CDS schemes. The composition takes CDS
schemes for predicate hi, and a boolean function g as inputs, and outputs a CDS
scheme for predicate g(h1, . . . , hn). Since the composition formula g is fixed for
the derived scheme, we can view their composition as a static one. It might be
interesting to define what dynamic composition means in the context of CDS
and construct such compositions.

Ambrona et al. [4] recently built an automated tool for checking symbolic
security of the class of ABE called rational-fraction induced ABE. It might be
interesting to see how the tools can be used for deriving automated proofs for
our schemes for composed predicates. In their case studies for the (bounded)
ABE scheme of [24], the automated tool is able to prove security for only small
fixed-size attribute sets and policies. Since our composed predicates are even
more complex, it might require some breakthroughs to be able to derive a fully
automated tool that works for our schemes.

Open Problem. It is an open problem to construct a fully secure ABE scheme
for dynamically composed predicates, e.g., KP[P]—the key-policy-span-program-
augmented predicate over a set P of predicates, under static (non-q-type) as-
sumptions, such as DLIN. It would require some breakthroughs to construct one.
This is since even in the simplest setting where we consider the policy-augmented
predicate over one predicate P and one input, namely, KP1[P ], we already require
the property of unbounded attribute multi-use in one policy and the property of
unbounded-size policy; and no such ABE (which achieves both unbounded prop-
erties and is fully secure under DLIN) is known, even for the specific predicates
KP1[P IBBE] (i.e., completely unbounded KP-ABE for MSP). We note that there



80

are only two available fully secure KP-ABE schemes for MSP that achieve the
unbounded attribute multi-use property under DLIN, namely, the schemes by
Takashima [38] and Kowalczyk et al. [26]. However, both schemes pose restrictions
on bounded-size policies. Put in other words, solving the problem of constructing
fully secure completely unbounded KP-ABE schemes for MSP under DLIN, even
without compositions, would already require some breakthroughs; the problem
of constructing ABE for composed predicates among them under DLIN should
require even more new techniques to accomplish. All in all, it is thus natural to
use a stronger assumption (the q-ratio assumption) for now.
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